
Diplomarbeit

Steiner Tree Problems

in the Analysis of Biological

Networks

Nadja Betzler

Betreuer: Prof. Klaus-Jörn Lange
Prof. Mike Hallett
Dr. Jens Gramm
Prof. Rolf Niedermeier

begonnen am: 15. August 2005

beendet am: 15. Februar 2006

Arbeitsbereich für theoretische Informatik/Formale Sprachen
Wilhelm-Schickard-Institut für Informatik

Universität Tübingen

Contents

1 Introduction 5

1.1 Preliminaries and notation . 8

1.2 Fixed-parameter tractability 9

2 Biochemical networks 11

2.1 Biochemical basics . 12

2.2 Differentially expressed genes 13

2.3 Databases . 14

2.4 Network types . 15

2.4.1 Protein interaction network 15

2.4.2 Metabolic network . 16

2.4.3 Transcriptional regulatory network 16

2.4.4 Interaction network . 17

2.5 Summary . 17

3 Steiner Trees and biological networks 19

3.1 The Steiner method for biological networks 20

3.2 The Steiner Tree in Graphs problem 22

3.2.1 Algorithms . 22

3.2.2 Reduction rules . 25

3.3 Vertex-Weighted Steiner Tree in Graphs problem 32

3.3.1 Algorithms . 32

3.3.2 Reduction rules . 35

3.4 Network Properties . 39

3.4.1 Degree distribution . 40

3.4.2 Diameter . 40

3.4.3 Separability . 43

3.5 Software: The Steiner Package 44

3.5.1 Input, output, and options 45

4 Contents

3.5.2 Selection of graph-theoretical data reduction rules . . 45
3.5.3 Biological preprocessing 47
3.5.4 Conflicts of data reduction and preprocessing 49
3.5.5 Description and usage of software 50
3.5.6 Results and examples 52

4 Parameterized complexity of Steiner tree related problems 59
4.1 Problem definitions . 60
4.2 Biological relevance of G-STG and GV-STG 62
4.3 Parameterized complexity . 63
4.4 Weighted Tree Coloring . 65

4.4.1 Algorithm for the Weighted Colorful Tree problem . . 66
4.4.2 Finding non-colored subtrees 71
4.4.3 Extensions: Vertex weights and constructive solutions 73

4.5 Parameterized hardness and tractability 73
4.5.1 Number of nodes of the subgraph as a parameter . . . 74
4.5.2 Weight as a parameter 76
4.5.3 Parameterized complexity of MWCS 85
4.5.4 Discussion . 86

5 Conclusion 89
5.1 Summary . 89
5.2 Open problems and challenges 89

Chapter 1

Introduction

Networks provide a useful tool to present information about molecular pro-
cesses in a cell. Prominent examples are metabolic networks or networks
based on protein-protein interactions, that allow for a compact and concise
representation of biochemical data. The analysis of biological networks is an
important field of research that can be used to gain a deeper understand-
ing of regulatory mechanisms [ILB04] or to identify important molecules or
interactions [ITR+01]. As the size of the considered networks usually is
too large for a complete manual analysis—even for simple organisms there
are networks consisting of thousands of vertices—it is necessary to develop
methods for an automatic analysis. Naturally, it therefore makes sense to
use well-known graph algorithms for this purpose or to formulate the anal-
ysis goal as graph-theoretical problem and then develop solution strategies
for it as it is done in this work.

In the analysis of biological networks with methods from bioinformat-
ics there have been many recent successes. We only mention the follow-
ing two examples: There have been advances in the fully automated detec-
tion of important subnetworks or paths by different graph-algorithmic ap-
proaches [IOSS02], [SIKS05]. As another example, it was possible to achieve
a better understanding of the regulation of genes or so-called transcriptional
regulatory processes [ILB04], [LRR+02].

Our kind of analysis in this work is based on Steiner tree related problems.
A Steiner tree spans a given set of vertices in a graph. The Steiner Tree
in Graphs problem itself can be stated as follows.

Steiner Tree in Graphs (STG)
Input: An undirected graph G = (V, E) with weight function
w : E →

�
≥0, and a set of distinguished vertices (or terminals)

6 1. Introduction

S ⊆ V .
Task: Find a minimum weight tree T = (VT , ET) that spans S.
The weight of a tree T is defined as w(T) =

∑

e∈ET
w(e).

The NP-hard Steiner Tree in Graphs problem is an immensely well-
studied problem to which several books have been devoted, e.g. [DRS00]
and [PS02]. Furthermore, a wide range of different kinds of algorithmic
approaches has been developed ([DW72], [RZ00], and [PV02]) and there is
a large amount of publications dealing with preprocessing methods such as
data reduction ([DV89], [Dui00], [KM98]). This work considers some less
studied variants of STG, like its vertex-weighted case, which are extremely
useful for the analysis of biological networks as shown by the working group of
Hallett [SPB+05] and therefore provide a fruitful link between graph theory
and molecular biology. One contribution of this work was the development
of a software tool, called Steiner Package, as part of a project in the group
of Mike Hallett. More precisely, it can be described as follows:

Steiner Package The Steiner Package can be used for the computation
of Steiner trees in biological networks and integrates different kinds of pre-
processing and data reduction rules with algorithms. More precisely, I con-
tributed the following features:

• Design and implementation of new data reduction rules

Data reduction rules are an important technique for exactly solving
NP-hard problems. Here, we evaluate known data reduction rules for
STG and propose a set of new data reduction rules for STG and its
variants. Our experimental evaluations show that for many instances
the data reduction rules are essential to solve the problem exactly.

• Implementation of an approximation algorithm

In addition to an already existing implementation of the exact Dreyfus-
Wagner [DW72] algorithm, we implemented the approximation algo-
rithm by Klein and Ravi [KR95] that can be applied to all instances.

• Biological preprocessing

Besides graph-theoretical data reduction rules, we introduce some pre-
processing that is based on the biochemical meaning of the considered
graph vertices. These rules turned out to become extremely useful to
obtain biological relevant solutions in case the graph-theoretical ap-
proaches alone were not sufficient.

7

• Structure of the program

We worked out the design of the overall program structure, including
the determination of a reasonable order for preprocessing and data
reduction rules.

• Experimental results

We carried out experimental tests for different instances and provide
some promising results. In all considered cases the running time could
be significantly improved by applying the data reduction rules. Fur-
thermore, we were able to compute exact solutions for instances that
could not be solved by the Dreyfus-Wagner algorithm alone.

Whereas the first part of this work is concerned with the development
of a software tool, in the second part, we investigate Steiner tree related
problems from a parameterized point of view. Generally, fixed-parameter
algorithms can allow for efficient algorithms for some NP-hard problems as
they have a running time that is only exponential in a specified part of the
input, called parameter. If we consider the number of terminals as parameter
for STG, there is a classical fixed-parameter algorithm: the Dreyfus-Wagner
algorithm [DW72]. In contrast, in literature there are no fixed-parameter
algorithms or negative results for the other variants of STG discussed in this
work. This yields the second main contribution of this work that we can
state as follows:

Parameterized complexity study We discuss the relevance of other
graph-theoretical (Steiner tree related) problems for the analysis of biological
networks. Then, we start a theoretical study and provide the first parame-
terized complexity analysis for Steiner tree related problems, that

• contains a systematic analysis of the parameterized complexity of a
range of problem variants with respect to a number of parameteriza-
tions. Thereby, we gain insight into the problem structure and illus-
trate some facets of intractability.

• includes new fixed-parameter algorithms and hardness results.

• uses a new technique for the design of fixed-parameter algorithms that
combines color coding [AYZ95], a classical parameterized approach,
with enumeration.

• answers an open question posed by Hallett [Hal04] about the parame-
terized complexity of the so-called Generalized Vertex-Weighted

8 1. Introduction

Steiner Tree in Graphs (GV-STG)1 problem; independently from
this work, this question was also answered in [SIKS05]. In contrast to
STG, the input of GV-STG does not contain a set of terminals. It
consists of searching a subgraph of a given size such that its weight
does not exceed a given threshold.

The structure of the work is as follows. In Chapter 2 we start with a
summary of results regarding biological networks in combination with graph
algorithms and provide an overview of their applications. Chapter 3 is con-
cerned with a new approach, called Steiner method, that was first introduced
by Scott et al. [SPB+05] and uses the graph-theoretical problem Steiner
Tree in Graphs, for a new kind of network analysis. The main contribution
of this chapter is the development of a software tool for the Steiner method,
which includes the design and implementation of new data reduction and
preprocessing rules. Furthermore, we illustrate their usefulness by providing
practical examples from molecular biology. In Chapter 4, we suggest new
Steiner tree related problems and discuss their relevance for the analysis of
biological networks. We provide the first parameterized complexity study
for Steiner tree related problems that yields new fixed-parameter algorithms
and hardness results.

1.1 Preliminaries and notation

The computational problems we will study in this work are based on graphs
(or networks). A graph is denoted by G = (V, E), where V is the set of
vertices and E is the set of edges. In an undirected graph an edge {u, v} ∈ E
is an unordered pair of vertices and in a directed graph an edge (u, v) ∈ E is
an ordered pair of vertices. If not stated otherwise, n refers to the number
of vertices in a graph, and m refers to the number of edges. To stress that
the vertices V (or edges E, respectively) belong to G, we sometimes denote
them as V (G) (or E(G), respectively).

A subgraph G′ = (V ′, E′) of G is a graph with V ′ ⊆ V and E′ ⊆ E ∩
V ′ × V ′. For a subset V ′ ⊆ V , the subgraph of G induced by V ′ is denoted
by G[V ′] = (V ′, E′), where E′ := E ∩ (V ′ × V ′).

The (open) neighborhood of a vertex v in graph G = (V, E) is defined
as N(v) := {u | {u, v} ∈ E}, and the closed neighborhood is defined as
N [v] := N(v) ∪ {v}. We write deg(v) for the degree of vertex v, where
deg(v) := |N(v)|.

1Also known as Vertex-Weighted k-cardinality Tree problem.

1.2 Fixed-parameter tractability 9

In an undirected graph G = (V, E), a path between two vertices u, v ∈ V
is a set of edges e1, ..., el ∈ E such that u ∈ e1, v ∈ el, and |ei ∩ ei+1| = 1,
for 1 ≤ i ≤ l − 1, and ei ∩ ej = ∅, for 1 ≤ i, j ≤ l with |i − j| > 1. A graph
is connected if every pair of vertices is connected by a path. A connected
component of a graph G is a maximal connected subgraph of G.

Two graphs G = (V, E) and G′ = (V ′, E′) are isomorphic if there exists
a bijection g : V → V ′ such that {u, v} ∈ G if and only if {g(u), g(v)} ∈ E′.

A forest is an acyclic graph and a tree is an acyclic connected graph. A
subtree of G is an acyclic connected subgraph of G, and a subforest consists
of subtrees. A spanning tree of a connected graph G is a tree T that is a
subgraph of G and uses all vertices of G.

In some cases we need to modify a graph G = (V, E). To contract two
vertices u and v ∈ V results in a modified graph G′ = (V ′, E′) in which u
and v are replaced by a new vertex v′, formally, we get

V ′ = (V \{u, v}) ∪ {v′}

and
E′ = E\({{v, n} | n ∈ N [v]} ∪ {{u, n} | n ∈ N [u]})∪
{{v′, n} | n ∈ (N(v)\u)} ∪ {{v′, n} | n ∈ (N(u)\v)}

.

1.2 Fixed-parameter tractability

In this work, we consider NP-hard problems, i.e. problems that are not likely
to be solved in polynomial time. There are several approaches like random-
ized algorithms, approximation algorithms or heuristic methods, that deal
with NP-hard problems. None of them can guarantee to obtain optimal so-
lutions. An exact method that can be applied to NP-hard problems with
a specific problem structure, is provided by so-called “fixed-parameter algo-
rithms”. Here, we obtain algorithms that are only exponential in the size of a
part of the input, called parameter, that means the seemingly inherent “com-
binatorial explosion” can be restricted to a hopefully small part of the input.
Fixed-parameter algorithms turned out to be very useful for the problems
considered in this work. The Steiner Tree in Graphs problem itself is
a prominent representative for a problem that can be solved efficiently with
this approach.

We give some basic definitions of parameterized complexity theory. For
further information we refer to [DF99, Nie06].

10 1. Introduction

Definition 1.1. A parameterized problem is a language L ⊆ Σ∗×Σ∗, where
Σ is a finite alphabet. The second component is called the parameter.

Now, we can introduce the concept of fixed-parameter tractability.

Definition 1.2. A parameterized problem L is fixed-parameter tractable if
the question “(x1, x2) ∈ L?” can be decided in running time f(|x2|) · |x1|

O(1),
where f is an arbitrary computable function on nonnegative integers. The
associated complexity class containing all parameterized problems that are
fixed-parameter tractable is called FPT.

We call an algorithm that can solve a parameterized problem in a running
time as given in Definition 1.2 fixed-parameter algorithm. There are several
general techniques to design fixed-parameter algorithms. The most common
ones are search trees, dynamic programming or data reduction by preprocess-
ing such that the size of the reduced instance depends only on the parameter.
To show that a problem is not in FPT Downey and Fellows [DF99] devel-
oped a completeness program analogously to classical complexity theory as
described in Section 4.3.

Chapter 2

Biochemical networks

Depending on environmental influences and their stage of development cells
with exactly the same genetic information can fulfill a wide range of func-
tions. The functionality of a single cell is therefore determined by a compli-
cated interplay between proteins, genes, and other biochemical components.
Although the fine details of cellular regulation are not well understood, re-
cent research has significantly advanced our knowledge of how the various
regulators of a cell interact and influence each other at a global level. For ex-
ample, the simple eukaryote yeast has been extensively studied in this regard,
and large databases with information about gene and protein expression and
interaction as well as regulatory data are widely available. These databases
are an important resource for the study of protein- and gene-regulatory dy-
namics.

In this chapter, we describe how large-scale databases can be used for
achieving a deeper understanding of cellular processes and their regulation.
We focus on solution strategies that involve the inference of networks from
biological data. We describe some sources of biological data on basis of which
networks are modeled. Furthermore, we explain for some types of networks
how they are derived from the data. In particular we point out how graph-
theoretic substructures in these networks can be interpreted. Discussing
example studies from the literature, we show scenarios where these models
have been used to obtain biologically meaningful insights into the data by
a graph-theoretic analysis of their networks. In all this, we concentrate on
databases, network models, and example studies that are related to topics
covered in this thesis.

We start with an explanation of some basic biochemical methods and
terminology that are further needed for the understanding of this chapter

12 2. Biochemical networks

(Section 2.1). As in the remainder of this work used for the computation of
vertex weights, we explain briefly how large-scale information about so called
“differentially expressed” genes can be obtained (Section 2.2). In Section 2.3,
we give a short overview of publicly available databases relevant to this work.
Next, we give some examples of network types from the literature required
for this work and explain how they have been used to develop new insights
about cellular regulation (Section 2.4).

2.1 Biochemical basics

In this section we very roughly explain some basic terms of molecular biology
that are relevant for the understanding of this work. For further information
about basic concepts of biochemistry we refer to [BST02].

Gene expression Gene (or protein) expression describes the process in
which genetic information is converted into cellular processes and structures.
As generally every gene encodes for one protein, gene expression basically
consists of the production of proteins in the cell. Proteins influence the cell in
all kinds of different ways: catalyzing reactions, working on cellular structure,
or influencing gene expression. The state of a cell is determined by a number
of different proteins and their corresponding cellular concentrations, called
expression levels.

Gene expression is a multi-step process. Information is transferred from
DNA to a transmitter molecule, called mRNA, and then from mRNA to
protein. The cellular concentration of a protein often correlates to the con-
centration of its mRNA in the cell, so measurements of mRNA levels, often
performed in a high-throughput fashion with microarrays, can give a rough
indication of protein levels.

Microarrays Microarray analysis makes it possible to determine the cellu-
lar concentration of mRNA at a large scale. It was firstly published as Serial
Analysis of Gene Expression [VZVK95] and is now widely used. A DNA
microarray is a collection of DNA spots that are attached to a solid matrix
to form a 2-dimensional array. A DNA spot consists of short single-stranded
DNA that is characteristic of a specific gene. The mRNA of a cell can then
be isolated, marked with fluorescent tags, and bound to the complementary
DNA on the microarray. The resulting fluorescent-tag intensity is a measure
of the relative expression of the corresponding gene.

2.2 Differentially expressed genes 13

Transcription Transcription refers to the gene-expression process whereby
a DNA sequence is copied to mRNA. It is initiated by specific proteins known
as transcription factors, which bind to regions of genes known as promotors,
and prepare the DNA for information duplication.

2.2 Differentially expressed genes

As needed for the computation of weight functions for some biological net-
works in the remainder of this work, we discuss the measurement of gene
expression over multiple conditions.

Although the genetic blueprints of different cells of an organism are ex-
actly the same, the functionality of two cells can be quite diverse. The char-
acteristics of a single cell depend on the expression of its genes. An important
field of research with application to cancer research [DPB+96] and [ZZV+97]
is the comparison of expression patterns of cells. If a gene is expressed in dif-
ferent amounts over multiple conditions we consider it as being differentially
expressed. Microarray analysis makes it possible to observe the expression-
level changes of tens of thousands of genes over multiple conditions. Hereby,
data are generated from DNA microarrays with spots for each gene with
a dye intensity that depends on the level of expression of the gene. Find-
ing accurate models that analyze the genes that are differentially expressed
based on microarray information is a critical step of analysis. The goal is
to compute a value (often called p-value) for each gene that indicates the
likelihood that it is differentially expressed. One then considers all genes
with a p-value higher then a specific threshold as differentially expressed.
Because of the error-prone nature of microarray analysis, the computation
of p-values is a difficult statistical task involving error models. To give one
out of many publications addressing this issue, Ideker et al [ITSH00] pro-
vide the software tools VERA and SAM for the determination of p-values.
For an application example concerning the analysis of gene expression data
from yeast, Ideker et al. [ITR+01] used VERA and SAM in the compu-
tation of differentially expressed genes. They considered multiple condi-
tions initiated by different perturbations of the yeast galactose-utilization
pathway and provide the computed data (used for the computation of ver-
tex weights later in this work) as part of the supplementary material at
http://science-mag.org/cgi/content/full/292/5518/929/DC1.

14 2. Biochemical networks

2.3 Databases

In this section, we introduce some publicly available databases or data sources.

• BIND—The Biomolecular Interaction Network Database

URL: www.bind.ca
Maintainer: Blueprint
Data obtained for this work: protein-protein interaction
Reference: [AAA+05]
General information: BIND archives biomolecular interaction, reac-
tion, complex and pathway information. It provides details about
molecular interactions that have been drawn from published experi-
mental research. Furthermore, it makes tools available to enable data
analysis. Presently (October 2005) it contains nearly 200 000 interac-
tion records from a number of different organisms.

• Munich Information Center for Protein Sequences (MIPS)

URL: http://mips.gsf.de/
Maintainer: MIPS
Data obtained for this work: protein complex information
Reference: [GMK+05],[PKO+05]
General information: The MIPS databases provide highly accurate in-
formation about protein-protein interaction for different plants and
fungi, e.g. the Comprehensive Yeast Genome Database [GMK+05].
They also have a database containing mammalian protein-protein in-
teractions [PKO+05].

• TRANSFAC

URL: http://www.gene-regulation.com/pub/databases.html
Maintainer: BIOBASE
Data obtained for this work: protein-DNA interaction
Reference: [WCF+01]
General information: TRANSFAC is a database on eukaryotic tran-
scription factors, their genomic binding sites and DNA-binding profiles.

• SCPD: A promotor database of yeast Saccharomyces cere-
visiae

URL: http://rulai.cshl.edu/
Maintainer: Zhang Lab (Cold Spring Harbor Laboratory)
Data obtained for this work: protein-DNA interaction

2.4 Network types 15

Reference: [ZZ99]
General information: A promotor database of yeast Saccharomyces
cerevisiae, SCPC contains experimentally mapped transcription factor
binding sites and transcriptional start sites, as well as relevant binding
affinity and expression data [ZZ99].

• ChIP-CHIP

URL: http://web.wi.mit.edu/young/regulator_network/
Maintainer: Lee et al.
Data obtained for this work: protein-DNA interaction
Reference: [LRR+02]
General information: Lee et al. [LRR+02] provide data derived from
so-called ChIP-CHIP experiments, which combine a Chromatin
Immunoprecipitation (ChIP) procedure with DNA microarray analysis.

Note that especially in large databases like BIND, many records are based
on high-throughput projects which are error-prone. Therefore, they are likely
to contain many false-positive entries. And, as there are still many inter-
actions that have not been detected by experimental studies, none of the
databases can give a complete picture of the cell.

There are different tools available for the visualization of biochemical
networks, including information and annotations about molecules and built-
in functions for analysis. Two examples are the Cytoscape software package,
which is available to the academic community at http://www.cytoscape.org,
or the online visualization and analysis tool for biochemical interaction data
VisANT [HMWD04], freely available at http://visant.bu.edu.

2.4 Network types

The analysis of biological networks is a well-studied field of recent research.
There are many ways of organizing biological data into networks. We de-
scribe four common biological networks—especially relevant to this work—
including descriptions of how they have been used to obtain important results
in the analysis of biological data. An overview is provided in Table 2.1.

2.4.1 Protein interaction network

Databases like BIND (Section 2.3) provide large amounts of protein-protein
interaction data for different species and can easily be used to build large-
scale protein interaction networks consisting of thousands of ten thousands

16 2. Biochemical networks

of vertices and edges. In this case, proteins are considered as vertices with an
undirected edge between two proteins if they interact. Scott et al. [SIKS05]
considered the protein interaction network of yeast with edge weights. The
weight of each edge indicates the strength of evidence for the existence of
the corresponding interaction. Using a graph-algorithmic approach to find
paths in the network, they identified important substructures.

2.4.2 Metabolic network

In a metabolic network, cell substrates are interconnected through biochem-
ical reactions. The set of vertices consists of metabolites like amino acids
or carbohydrates and other molecules like enzymes. Edges correspond to
biochemical reactions. In case of a reversible reaction there is an undirected
edge, otherwise a directed one exists. Ihmels et al. [ILB04] integrated large-
scale expression data with the structural description of the metabolic net-
work of Saccharomyces cerevisiae. They systematically analyzed the expres-
sion pattern of genes associated with metabolic pathways. From a graph-
theoretical point of view this can be considered as assigning a weight de-
pending on its expression pattern to a vertex. With this approach Ihmels et
al. [ILB04] were able to glean deeper insights into the principles of transcrip-
tional control in the network. For example, they showed that coexpressed
enzymes, e.g. enzymes that are expressed in similar amounts over different
conditions, are often arranged in a linear order corresponding to a metabolic
flow and made interesting observations about the regulation of isozymes (dif-
ferent enzymes that catalyse the same biochemical reaction).

2.4.3 Transcriptional regulatory network

The state of each cell is determined by specific gene expression programs in-
volving the regulated transcription of thousands of genes. Lee et al. [LRR+02]
experimentally identified most of the interactions between the transcriptional
regulators and the promotor sequences of yeast genes. With this information
one can build the transcriptional regulatory network for yeast, in which the
vertices correspond to the genes. Furthermore, there is a directed edge from
gene u to gene v if the gene product of u is a transcription factor of v. A
path in such a network can be considered as a pathway that a cell can use
to regulate global gene expression programs. Lee et al. [LRR+02] identified
so-called network motifs, which can be considered as simplest units of net-
work architecture, and provided a method that use these motifs to assemble
a transcriptional regulatory network structure.

2.5 Summary 17

2.4.4 Interaction network

The working groups of Ideker [IOSS02] and Hallett [SPB+05] considered a
network type that comprises protein-protein and protein-DNA interactions
and denote it as interaction network. As a protein directly corresponds to
a gene, an interaction network can be considered as the union of a protein
interaction network (with proteins as vertices) and a transcriptional regula-
tory network (with genes as vertices) with vertices that can be considered
either as genes or as proteins. Note that the network contains directed as
well as undirected edges.

In both works ([IOSS02] and [SPB+05]) the authors chose vertex weights
that are a measure for the differential expression based on data provided by
a previous work of Ideker [ITR+01] as described in Section 2.2. Ideker et
al. [IOSS02] provided a statistical measure for scoring subnetworks. When
searching the networks for subnetworks with high score, they could identify
“active subnetworks”, e.g. connected set of genes with unexpectedly high level
of differential expression. Applied to the yeast interaction network, they
found several top-scoring subnetworks with good correspondence to known
regulatory mechanisms.

Scott et al. [SPB+05] suggested another approach. They used a set of
distinguished proteins as input and attempted to identify regulatory subnet-
works by looking at a subgraph that connects the vertices of this set. They
re-discovered known regulators of some well-studied pathways and suggested
a previously unknown connection regarding the diauxic shift in yeast. Every
vertex can be assigned a weight such that the weight of an active vertex
is usually high and the weight of vertices corresponding to genes with very
little differential expression is very low or below zero.

2.5 Summary

In addition to a description how biological networks can be defined and gen-
erated, this chapter motivates the usefulness of including graph-theoretical
approaches into their analysis. This was the main motivation of this work.
In the following chapters, we will firstly further investigate the approach
of Scott et al. [SPB+05] that was mentioned in Section 2.4.4. Secondly,
we introduce graph-theoretical problems that can be used in a way similar
to [IOSS02] (explained in Section 2.4.4) for the analysis of interaction or
other biological networks.

18
2
.
B
io

ch
em

ic
a
l
n
et

w
o
rk

s
Network Type protein interaction metabolic transcriptional regulatory interaction

(combination of protein interaction and
transcriptional regulatory network)

Vertices proteins metabolites genes proteins/genes
Edges protein interaction biochemical reactions regulator-gene interaction protein + regulator-gene interaction

undirected undirected if reversible,
otherwise directed

directed undirected + directed

Weights edges: edges: — vertices:
indicating the strength of
evidence that interaction
exists

correlation coefficient (ex-
pression patterns)

based on differential expression

Example Scott et al. [SIKS05] Ihmels et al. [ILB04] Lee et al. [LRR+02] Ideker et al. [IOSS02] Scott et al. [SPB+05]
provide an method that
automatically can iden-
tify known pathways.

gain information about
possible design principles
of metabolic gene regula-
tion.

describe eukaryotic net-
work motifs and a method
to build them into mod-
ules of function.

identified subnetworks
with good correspon-
dence to known regula-
tory mechanisms.

provide an approach to
identify regulatory sub-
networks for a set of sig-
nificant proteins or genes.

Table 2.1: Overview of different types of biological networks. The row Vertices displays what kind of
molecules are matched to vertices for the given network type. The row Edges describes the corresponding biochemical
interactions that match the edges of the network. The row Weights tells if the network has vertex or edge weights
and gives the basic idea on that the weight function is based on. Example cites a work that used the considered
network type and very briefly summarizes its results.

Chapter 3

Steiner Trees and biological

networks

This chapter is concerned with the analysis of biological networks by means
of the so-called Steiner method, a new approach introduced by the working
group of Hallett [SPB+05]. The Steiner method that is further described in
Section 3.1 can be applied whenever one is interested in determining impor-
tant vertices that connect a distinguished set of vertices, usually proteins or
genes, that have been obtained from biochemical experiments. Here, in line
with the working group of Hallett, we deal with the development of strate-
gies that make the Steiner approach applicable for a wider range of instances
and accessible to biochemical working groups in general. A contribution of
this work consists of the development and design of new preprocessing rules,
including their analysis, implementation, and the experimental validation of
their effectiveness. Furthermore, we provide a study about properties and
structure of the regarded network that hints which preprocessing and algo-
rithmic approaches can be applied efficiently and which can be used for the
selection of methods for the conclusive software tool Steiner Package. A last
step in the design of the Steiner package is the combining of different pre-
processing rules and algorithms by determining a reasonable order in which
they are applied. Finally, we provide experimental tests that show their
usefulness.

In Section 3.1 we give a short overview of the Steiner method as intro-
duced by Scott et al. [SPB+05]. In the next Sections 3.2 and 3.3 we regard
algorithms and reduction rules for Steiner Tree in Graphs (STG) and
Vertex-Weighted Steiner Tree in Graphs (V-STG). For each prob-
lem we start with an overview of literature and then introduce new reduction

20 3. Steiner Trees and biological networks

rules. Furthermore, we investigate how known reduction rules developed for
STG can be directly transferred or modified for V-STG. Next, we consider
structure and properties of a typical biological network that is used for the
computation of Steiner trees in this work (Section 3.4). We end this chap-
ter with a description of the software tool Steiner Package, including its
implementation and interface as well as results and examples (Section 3.5).

3.1 The Steiner method for biological networks

In this section, we present a new method for the analysis of biological net-
works developed by the working group of Hallett [SPB+05]. It is based on a
variant of Steiner Tree in Graphs that considers vertex instead of edge
weights and is defined as follows.

Vertex-Weighted Steiner Tree in Graphs (V-STG)
Input: An undirected graph G = (V, E), a weight function w :
V →
�

≥0, a set of distinguished vertices (or terminals) S ⊆ V .
Task: Find a connected subgraph G′ = (V ′, E′) of G with S ⊆
V ′ and where weight w(V ′) =

∑

v∈V ′ w(v) is minimum.

We call a tree that spans a set of distinguished vertices or a connected
subgraph G′ as required for V-STG Steiner tree and the non-distinguished
vertices of a Steiner tree Steiner nodes.

The goal of the Steiner method is to detect biological relationships be-
tween a set of distinguished proteins or genes. Many biochemical experiments
present a set of genes or proteins that seems to be important in a specific
scenario. A typical example is a set of genes that is differentially expressed
under the same conditions. Another possibility is a list of essential genes
generated by knock-out experiments. The next step of analysis is to find
coherences between the proteins or genes of the distinguished set. For this,
a promising approach is provided by the Steiner method. The basic idea
is to consider the set of relevant proteins or genes as distinguished vertices
in a biological network and compute a Steiner tree for them. Generally,
Steiner nodes then correspond to proteins or genes that are candidates for
the regulation of the distinguished set as the Steiner nodes connect them in
the network in a compact way. As many of the regarded biological networks
contain thousands of vertices a non-automated analysis seems to be elusive.
To obtain more information from a computed Steiner tree, it can be regarded
as a backbone and augmented by vertices of its neighborhood under some ad-
ditional constraints. This vertices than can also be considered as important

3.1 The Steiner method for biological networks 21

candidates of proteins or genes that could explain the relationship between
the proteins corresponding to the distinguished set.

In the experimental part of [SPB+05], the authors investigate the yeast
interaction network composed of 5,458 proteins and 23,642 interactions from
BIND version 2 [AAA+05] (restricted to yeast protein-protein interactions),
TRANSFAC [WCF+01] (yeast protein-DNA interaction), SCPD (yeast pro-
tein-DNA interactions), and ChIP-Chip (yeast protein-DNA) [LRR+02] data
sets. They include protein-DNA interactions from ChIP-Chip data if their
associated p-value is 0.001 or less. Note that the directed edges that de-
scribe protein-DNA interactions are treated like undirected edges for this
approach. (The directed Steiner tree problem which is defined in [FR99]
would yield different results.) Furthermore, they employ two weight func-
tions: The weight function w1 that assigns one to every vertex and a weight
function wd computed from p-values based on differential expression data
from [ITR+01]. More precisely, they set wd(u) = − log(1− pu), where u is a
vertex in the graph and pu the corresponding p-value. They show evidence
for the practical usefulness of the Steiner approach by performing different
sets of experiments. The distinguished sets were obtained from microarray
expression data and from substrates of known regulatory pathways (as gluco-
neogenesis or glycolyse pathway). Apart from re-detecting known regulatory
elements for some pathways, the authors were able to detect new connections
in the galactose metabolism of yeast and to support various claims from lit-
erature.

As V-STG is NP-hard [GJ79], the computation of a Steiner tree is a
crucial part of the approach. Luckily, in many cases the set of distinguished
vertices is small enough that a Steiner tree can be computed by the Dreyfus-
Wagner algorithm, whose running time is only exponential in the size of the
distinguished set and polynomial otherwise [DW72].

This work is concerned with developing further strategies to compute
Steiner trees for so far unsolved instances. For this, we focus on differ-
ent approaches like data reduction, preprocessing techniques based on cell
molecular information, and the implementation of other algorithms.

Although the work of Hallett considers only applications of V-STG, we
start by investigating the literature for the much more intensively studied
STG. This is done for two reasons. First, we hope that some of the ap-
proaches for STG can be modified in a way that they are applicable for
V-STG as well. A promising example for this is the Dreyfus-Wagner algo-
rithm that was developed for STG and could be modified for V-STG in a
straightforward way [SPB+05]. Another motivation to look at STG is that

22 3. Steiner Trees and biological networks

there are also some biological scenarios in which this variant may be use-
ful. For example, it could be applied to protein interaction networks with
edge weights depending on the reliability of the corresponding interaction. A
Steiner tree for some given products and/or reactants could identify impor-
tant regulator proteins or intermediate products of the pathway. Another
application could arise in interaction networks with edge weights that are
based on the correlation coefficient from the p-values of the differentially
expressed genes (analogously to the edge weights of the metabolic network
in [ILB04]).

3.2 The Steiner Tree in Graphs problem

In this section we consider solution strategies for STG. We start by intro-
ducing some algorithms in Section 3.2.1 and go on with data reduction rules
in Section 3.2.2.

3.2.1 Algorithms

Although STG is NP-hard in general, there exist some special cases which
are solvable in polynomial time. If the terminal set has cardinality two, STG
coincides with the Shortest Path problem, and, if the terminal set contains
all vertices of the graph, it coincides with Minimum Spanning Tree. Both
problems can be computed in O(n log n + m) time [CLRS01]. Furthermore,
there exists a wide range of algorithms attacking the problem from different
points of view. We give a brief overview of exact fixed-parameter algorithms
and approximation algorithms.

Dreyfus-Wagner algorithm STG is fixed-parameter tractable with re-
spect to the size of the terminal set k. The Dreyfus-Wagner algorithm [DW72]
solves STG in O(3k ·n+2k ·n2+n2 ·log n+n·m) time. As the Dreyfus-Wagner
algorithm is relevant for the remainder of this work, we give its description
in pseudo-code in Figure 3.1. The basic idea is to compute Steiner trees
for subsets of the terminal set and combine them by dynamic programming
to the solution Steiner tree. The algorithm starts with the computation for
terminal sets of size two, and then uses them to compute Steiner trees for
terminal sets of size three and so on. The recursion is based on the observa-
tion that one can use Steiner nodes with degree at least three in the Steiner
tree to split it into subtrees. So, in every step, the algorithm computes the
weight of a minimum Steiner tree for all subsets of terminals X of a specific

3.2 The Steiner Tree in Graphs problem 23

Dreyfus-Wagner Algorithm

/* input: A graph G = (V, E) with weight function w : E →�+

0 ,
a terminal set S ⊆ V */

/* output: The weight of a Steiner minimum tree T for S */

01 /* initialization */
02 forall v, w ∈ V do

03 compute shortest path p(v, w)
04 forall {x, y} ∈ S do

05 s({x, y}) := p(x, y)

06 /* recursion */
07 for i = 2 to k − 1 do

08 forall X ⊆ S with |X| = i and all v ∈ V \X do

09 sv(X ∪ {v} := min
∅6=X′(X

{s(X ′ ∪ {v}) + s((X\X ′) ∪ {v})}

10 forall X ⊆ S with |X| = i and all v ∈ V \X do

11 s(X ∪ {v}) := min { min
w∈X

{p(v, w) + s(X)}, min
w∈V \X

{p(v, w) + sw(X ∪ {w})}}

Figure 3.1: Dreyfus-Wagner algorithm Description in pseudo-code as
given in [PS02].

24 3. Steiner Trees and biological networks

size and every vertex v ∈ V \X. The value s(X) denotes the value of a
Steiner minimum tree for the terminal set X (line 05, 11). The computation
for every subset starts with the computation of sv(X ∪ {v}) as given in line
09 that simulates the possibility that v could be used to split the Steiner
tree.

For a detailed proof for the correctness of the algorithm as described in
Figure 3.1 we refer to [PS02].

Improved parameterized algorithm w.r.t. the number of terminals
Mölle et al. [MRR05] developed a new algorithm that improves the running
time of the Dreyfus-Wagner algorithm to O((2+ ε)k · poly(n)) for 0 < ε < 1.
Whereas the Dreyfus-Wagner algorithm splits the tree at a single node v,
they choose a subset |X| of nodes to split the tree, such that |X| is bounded
by 1/ε for an adjustable parameter ε. The improved asymptotical running
time comes along with large constants hidden in the Landau notation for
small values of ε. More precisely, small values of ε imply a higher exponent
in the polynomial term. The authors themselves point out that their al-
gorithm without further improvements “is very likely to be slower than the
Dreyfus-Wagner algorithm”. For this reason, in the remainder of this work,
we use the Dreyfus-Wagner algorithm for practically solving STG. Note that
the Dreyfus-Wagner algorithm could in all cases be replaced by the improved
algorithm to gain fixed-parameter algorithms with a theoretically better run-
ning time.

An enumeration algorithm for bounded |V | − k If the number of ter-
minals becomes nearly as large as the number of all vertices of a graph, STG
can be efficiently solved by a simple enumeration algorithm that was first
developed by Hakimi [Hak72]. It can be implemented such that its running
time is bounded by O(n2 log n+nm+min{nk−2, 2n−k}·k2) [PS02]. Basically,
the algorithm generates all subsets of non-terminals and then considers the
subgraphs induced by vertices of each of these subsets and of the terminal
set. In a next step, it computes minimum spanning trees for these subgraphs
in the corresponding distance graph, that is a complete graph whose edges
have the weight of a shortest path in the original graph. An optimal Steiner
tree then coincides with the minimum spanning tree over the spanning trees
for all these subgraphs.

An algorithm for graphs with bounded treewidth Korach and
Solel [KS90] provide a fixed-parameter algorithm with respect to the tree-

3.2 The Steiner Tree in Graphs problem 25

width d of a graph. The running time is given as O(n · dd). As the running
time grows quickly with the treewidth, the algorithm can probably only be
used for instances with very small treewidth. In [KS90] no experimental
results are given.

Algorithms for graphs with bounded pathwidth Polzin and Vah-
dati [PV02] give a practical dynamic programming algorithm whose running
time is linear in the number of vertices if the pathwidth is constant. The
formulation of the algorithm is based on a concept of small width that is
closely related to the pathwidth of a graph. The authors showed evidence
for the practical usefulness of the algorithm by solving previously unsolved
benchmark instances.

Approximation algorithms Even in the case that the edge weights are
restricted to {1, 2}, the Steiner Tree in Graphs problem is APX-com-
plete [BP89]. The best known polynomial-time approximation algorithm for
STG has a performance guarantee of 1 + ln 3

2 ≈ 1.55, (i.e. it guarantees a

solutions with a size that is less or equal than 1 + ln 3
2 times the size of an

optimal solution) and the aforementioned version with weights restricted to
{1, 2} is approximable within 1.28 [RZ00]. A simple and efficient approxi-
mation algorithm, based on the computation of minimum spanning trees in
the distance graph, has a performance guarantee of 2 [TM80].

3.2.2 Reduction rules

Data reduction for STG is a well-studied field of research. A data reduction
rule replaces, in polynomial time, a given STG instance (G, w, T) consisting
of a graph G with weight function w and a terminal set T by a simpler
instance (G′, w′, T ′) such that (G, w, T) has a solution iff (G′, w′, T ′) has a
solution. This section gives a brief overview of some important publications.
Further, we briefly introduce some basic concepts of data reduction for STG
as we investigate their adaptability to V-STG. In a next step we provide new
reduction rules for STG.

Literature

A fundamental work concerned with data reduction for STG is provided by
Duin and Volgenant [DV89]. They give an overview of the reduction rules
known at that time, generalize some of them, and introduce new concepts.

26 3. Steiner Trees and biological networks

An example for an efficient way of using known reduction rules as part
of a programming package is described by Koch and Martin [KM98].

There are also many publications dealing with special graph structures.
Winter et al. [Win95] introduced the concept of extension for rectilinear STG.
It assumes that an edge is part of the solution, tries to find a contradiction
looking at the neighborhood of the edge, and possibly concludes that the
edge cannot be part of a minimum Steiner tree. Uchoa et al. [UdAR02] show
that a combination of reduction rules from Duin and Volgenant and the idea
of extension can be successfully applied on “grid graphs with holes”, which
could not be tackled by Koch/Martin [KM98].

In a book chapter, which covers more than 50 pages, Duin gives extensive
information about preprocessing the Steiner problem [Dui00]. It provides an
overview of terminology, known rules, as well as even more advanced new
concepts and experimental results.

Furthermore, Polzin and Vahdati [DP02] use alternative reduction rules
in combination with branch-and-bound methods and thereby introduce some
more sophisticated tests dealing with more general patterns, like trees, in-
stead of vertices or edges.

Basic concepts of data reduction

As mentioned in the last paragraph, Duin and Volgenant [DV89] give an
interesting overview of reduction rules and underlying concepts. We investi-
gate them at this point as they contain many basic ideas of data reduction.
We would like to test their applicability of these ideas to V-STG. Since most
of the other works are either extensions of these concepts or introduce more
complicated rules, we decided to consider the basic concepts as a first step.
We briefly summarize the most important ideas and reduction rules. For a
more detailed description of reduction rules and their correctness we refer
to [DV89]. In the following presentation, we basically follow [DV89].

Depending on the reduction rule, the graph can be affected in different
ways. On the one hand, there are reduction rules that determine edges
and/or vertices that can be deleted, on the other hand, some rules identify
Steiner edges (edges that have to be part of an optimum Steiner tree). If a
Steiner edge {u, v} is detected, it is incorporated into the solution and u and
v are contracted and in the case of an identical neighbor w, i.e. w ∈ N [u]
and w ∈ N [v], the new edge between the contracted vertex and w is assigned
min{w({u, w}), w({v, w})}. Note that this effect could decrease the size of
the terminal set and therefore can improve the performance of the Dreyfus-
Wagner algorithm more effectively than the removal of edges or vertices in

3.2 The Steiner Tree in Graphs problem 27

general.

In the following, let d(u, v) denote the weight of a shortest path from u
to v. We start with the description of some simple reduction rules whose
correctness is obvious.

Reduction Rule 1. (Least Cost Test) An edge {v, w} can be removed if
there is a shortest path from v to w that contains at least one intermediate
vertex.

Reduction Rule 2. (Degree Tests)

1. A non-terminal vertex with degree one can be removed.

2. An edge that is incident to a terminal vertex with degree one is a Steiner
edge.

3. A non-terminal degree-two vertex v with the incident edges {u, v} and
{v, z} can be replaced by an edge {u, z} with w({u, z}) = w({v, u}) +
w({v, z}).

Reduction Rule 3. (Nearest Vertex Test) For any terminal t ∈ S, let
vi be the nearest vertex, i.e., w({t, vi}) = min{w({t, vj}) | vj ∈ N(t)}. Then
{t, vi} is a Steiner edge if there exists a vertex t′ ∈ S\{t} such that

w({t, vi}) + d(t′, vi) ≤ min{w({t, vj}) | vj ∈ V \{vi}}.

The Nearest Vertex Test was first introduced by Beasley [Bea84] and is
based on the observation that an edge e adjacent to a terminal k has to
be part of an optimum Steiner tree if there is a path that connects k with
another terminal such that the weight of the path is less than the weight of
all other edges adjacent to k.

Another method that is described in [DV89] are Reachability Tests.
If one has obtained an upper bound for a Steiner tree, e.g. by a heuristic
or an approximation algorithm, it can be used to eliminate vertices that are
“not reachable”. That is, the lower bound for a Steiner tree containing a
particular vertex exceeds the cost of the upper bound. Duin and Volgenant
give different possibilities to obtain lower bounds.

Now, we review some so-called bottleneck approaches from [DV89]. The
basic idea is to find an edge that cannot be part of a Steiner minimum tree
as every path containing this edge cannot be part of a Steiner minimum tree
or the weight of the edge exceeds the weight of an alternative solution that
can connect its endpoints in a better way.

28 3. Steiner Trees and biological networks

Reduction Rule 4. (Vertices Nearer to S Test). An edge {u, v} can
be deleted if there is a vertex k ∈ S with max{d(k, u), d(k, v)} < w({u, v}).

Note that if k is connected to a Steiner tree that does contain {u, v},
this Steiner tree has to include a path from k to v or u without {u, v}. The
correctness of Vertices Nearer to S Test then is based on the fact that any
solution with edge {u, v} is improved by replacing {u, v} with either the
shortest path from u to k or with the shortest path from v to k.

An important concept introduced by Duin and Volgenant is the special
distance which is very useful for the formulation of further reduction rules.
For an intuitive description, as given in [KM98], one can consider each ter-
minal as a petrol station. Then, assume you like to drive from location u
to location v. The special distance between u and v denotes the distance
you must be able to drive without refilling if you choose among all possible
routes. We give the formal definition as specified in [KM98]:

Definition 3.1. (Special Distance)
Given two vertices u, v ∈ V , we consider some path P ⊆ E that connects u
and v. Set TP = (V (P) ∩ S) ∪ {u, v} and let

b(P) = max{w(F) | F ⊆ P is a path connecting two nodes from TP

such that |TP ∩ V (F)| = 2}.

The number

s(u, v) = min{b(P) | P is a path connecting u and v}

is called the special distance (between u and v).

Note that we have the following relations between special distance s, smallest
distance d, and the weight of an edge between two vertices

s(u, v) ≤ d(u, v) ≤ w({u, v}).

The special distance can be computed efficiently and leads to a very effective
test for deleting edges as shown in [DV89]:

Reduction Rule 5. (Smaller Special Distance Test) Any edge {u, v}
can be eliminated if s(u, v) < w({u, v}).

3.2 The Steiner Tree in Graphs problem 29

Furthermore, the special distance leads to more general tests having Least
Cost Test and Vertices Nearer to S Test as special cases. For example, as not
further described here, it can be used to improve the conditions for the so-
called Nearest Special Vertices Test (NSV) that detects Steiner edges.
Only sketching the idea, by computing minimum spanning trees in the graph
NVS is able to detect some edges that can be identified as Steiner edges
if their weight is higher than a value computed with the help of (special)
distances in the graph.

Lastly, Duin and Volgenant consider some more general degree test and
some edge cost transformation. As the degree test can only be efficiently
applied for vertices with small degree and an edge cost transformation is
obviously not useful for the vertex weigthed case, we omit a description of
the corresponding rules.

New structure-based reduction rules

Most of the reduction rules described in the literature depend on the cost
of an edge. They determine either that an edge cannot be in an optimal
solution because its cost is too high or that an edge has to be part of an
optimal solution because all alternative solutions would cost more. In con-
trast, we present in the following new reduction rules that are motivated by
the application considered in this work and only look at the structure of a
graph.

Components without distinguished vertices

Examining biological networks in a way as described by Scott et al. [SPB+05],
we typically have to deal with large networks with few distinguished vertices.
Therefore, we look for subgraphs of a network not containing distinguished
vertices. In some cases such subgraphs can be found efficiently and replaced
by simplified structures. A simple example is a subgraph only connected to
the remaining graph by two distinguished vertices (Figure 3.2).

For the formulation of further reduction rules we need the following def-
initions.

Definition 3.2. A connected subgraph G′ = (V ′, E′) of G is called a dvfree
component if all vertices from V ′ are non-distinguished.

An i-dvfree component Ci is a dvfree component that is separated from
the remaining graph by i vertices t1, ..., ti (i.e., deleting t1, ..., ti there is no
path from a vertex v′ ∈ Ci to a vertex v ∈ V \Ci). We say that Ci connects
the boundary vertices ti.

30 3. Steiner Trees and biological networks

t1 t2 t1 t2

Figure 3.2: Illustration of 2-Dvfree Rule. The network on the left-hand
side contains a 2-dvfree component (white vertices). The instance can be
reduced to the network given on the right-hand side. Terminals are marked
as squares.

Definition 3.3. A component Steiner tree (STC) for a dvfree component C
is a minimum Steiner tree that connects all boundary vertices X ⊆ N [C] and
contains only vertices from C.

In Figure 3.2 a dvfree component is given by the white vertices. We
can further classify it as a 2-dvfree component that connects the boundary
vertices t1 and t2.

A 2-dvfree component can obviously be replaced by a shortest path or
an edge with the weight of a shortest path. More precisely, we can define
the following reduction rule.

Reduction Rule 6. (2-free Rule)
Let dC(t1, t2) denote the weight of a shortest path from t1 to t2 only contain-
ing vertices of C. The vertices of a 2-dvfree component connecting t1 and t2
can be replaced by an edge between t1 and t2 with edge cost cnew := dC(t1, t2).

The 2-Dvfree Rule is illustrated in Figure 3.2.

Dealing with three or more boundary vertices, the replacement of the corre-
sponding dvfree component becomes more difficult.

If a dvfree component is connected with three boundary vertices t1, t2,
and t3, we have to take into account the following possibilities. Vertices of
this component in a minimum Steiner Tree can connect either pairs of them
(“t1 and t2”, “t1 and t3”, and/or “t2 and t3”) or all of them (t1 and t2 and
t3). To replace the component we find a component Steiner tree connecting

3.2 The Steiner Tree in Graphs problem 31

i-Dvfree Rule

/* input: Graph G = (V, E), set of distinguished vertices S ⊆ V ,
i-dvfree component Ci with boundary vertices T */

/* output: reduced graph G′ = (V ′, E′) */

initialize Q := ∅
forall X ⊆ T with |X| ≥ 2

compute STCi

add edges of STCi
to Q

forall e ∈ Ci

if e /∈ Q then

remove e = {u, v} from E
if u (or v) has degree 0 then

remove u (or v) from V
return G

Figure 3.3: Computation of i-Dvfree Rule in pseudo-code

t1, t2, and t3 and delete all vertices and edges of the component that are not
in this tree or in one of the three shortest paths.

Generally, we can formulate i-Dvfree Rule for a given i-dvfree compo-
nent as given in the pseudo-code of Figure 3.3. In the following, we consider
its correctness and running time. For the running time we start by deter-
mining in which time all i-dvfree components can be obtained (Lemma 3.5)
and then consider the time one needs for the computation of i-Dvfree Rule
applied to an i-dvfree component (Lemma 3.6).

Lemma 3.4. The size of a Steiner tree of a graph G with terminal set S
does not change by applying i-Dvfree Rule to an i-dvfree component Ci.

Proof. If an optimum Steiner tree of G contains edges of Ci, they must
be used to connect a subset of boundary vertices, otherwise they would
be redundant and the Steiner tree could not be minimum. As i-Dvfree
Rule keeps one optimum local Steiner tree that connects every subset of the
boundary vertices of Ci, the size of a Steiner minimum tree is not increased
by its application.

Lemma 3.5. All i-dvfree components can be obtained in time O(
(

n
i

)

· n).

32 3. Steiner Trees and biological networks

Proof. An i-dvfree component must be connected to i boundary vertices out
of n vertices, i.e. we have to regard

(

n
i

)

candidate subsets. For every subset
we can check if there is a i-dvfree component in O(n) time by removing all
boundary vertices from the graph and check if there are connected compo-
nents which contain no distinguished vertex left. This yields the claim.

Lemma 3.6. The i-Dvfree Rule can be carried out in time (4i · n + 3i · n2 +
2i · n3)

Proof. The time consuming part of i-Dvfree Rule is the computation of a
Steiner tree for all subsets of T . Using the Dreyfus-Wagner algorithm this
can be achieved in time O(

∑i
j=1

(

i
j

)

· (3i · n + 2i · n2 + n3)).

As the running time of the i-Dvfree Rule grows exponentially with the
number of boundary vertices i, in practice it only makes sense to apply the
rule for small values of i. In graphs that are not highly connected this can
still decrease their size.

3.3 Vertex-Weighted Steiner Tree in Graphs prob-

lem

In this section, we consider how to obtain solutions for V-STG. Whereas the
classical Steiner Tree in Graphs problem is well-studied in the literature,
there are only few publications regarding the Vertex-Weighted Steiner
Tree in Graphs problem. Most of them are concerned with its approx-
imability. We give a brief overview of algorithms for V-STG as described
in the literature (Section 3.3.1) and then consider data reduction rules for
V-STG. As, as far as we know, there are no publications that are concerned
with data reduction for V-STG, we start by investigating the applicability
from reduction rules designed for STG and then describe some new data
reduction rules (Section 3.3.2).

3.3.1 Algorithms

Before presenting algorithms for V-STG in general, we consider some trivial
cases for which the otherwise NP-hard V-STG can be solved in polynomial
time. Analogously to STG, in case of a terminal set of size two, V-STG
coincides with the Shortest Path problem which can be solved in time
O(m + n · log n) [CLRS01]. In case the terminal set contains all vertices,
the graph itself is an optimum solution. Note, whereas STG for this case

3.3 Vertex-Weighted Steiner Tree in Graphs problem 33

coincides with the Minimum Spanning Tree problem, there is no obvious
correspondence between V-STG and Minimum Spanning Tree.

Exact Algorithms

Most of the exact algorithms for STG described in Section 3.2.1 can be
applied to V-STG. For the Dreyfus-Wagner algorithm and its improvement
as well as for the algorithms for bounded pathwidth or treewidth one only has
to adapt the computation of the weight of a tree, i.e. set w(T) :=

∑

v∈V w(v)
instead of w(T) :=

∑

e∈E w(e). Obviously, this does not affect the running
time of the algorithms.

In contrast, the enumeration algorithm can not be modified in a straight-
forward way to solve V-STG. This is due to the fact that it is based on the
computation of minimum spanning trees, that cannot be translated to the
vertex-weighted case. Note that the Dreyfus-Wagner algorithm, using an
all-pairs shortest paths algorithm as a subroutine, can only be translated as
V-STG coincides with Shortest Path for two terminals.

Approximation algorithms

The V-STG problem is harder to approximate than STG. Let k denote the
number of terminals. Klein and Ravi [KR95] show that there is no ap-
proximation algorithm with better ratio than (1 − o(1)) · ln k unless NP ⊆
DTIME[nO(polylogn)] and give an approximation algorithm with performance
ratio 2 · ln k. As the algorithm is part of our software tool we give a descrip-
tion in pseudo-code in Figure 3.4. The algorithm works on a node-disjoint
set of trees such that every terminal belongs to one of the trees. Each tree
of the set is initialized by a terminal (line 06). The algorithm then uses a
greedy strategy to merge the subtrees into larger trees. In each iteration, it
selects a vertex v and at least one of the current trees so as to minimize the
ratio

weight of node v + sum of distances to the trees

number of trees

as given in line 17.

As no analysis of running time is given (and we would like to include
an implementation of the algorithm into our software tool), we provide the
following lemma:

Lemma 3.7. The approximation algorithm by Klein and Ravi can be carried
out in time O(n2 · log n + n · m + n · k3 · log k).

34 3. Steiner Trees and biological networks

Approximation Algorithm (Klein, Ravi)

/* input: A graph G = (V, E) with weight function w : V →
�+

0 ,
a terminal set S = {s1, ..., sk} ⊆ V */

/* output: The weight of a Steiner tree T for S such that
w(T) ≤ 2 · ln k · w(Topt) */

01 /* initialization */
02 forall v, w ∈ V do

03 compute shortest path SP (v, w)
04 set d(v, w) := w(SP (v, w))
05 for i = 1 to k
06 Ki := {si}
07 K := {K1, ..., Kk}
08 /* algorithm */
09 while |K| > 1
10 mg := +∞, L := ∅
11 forall v ∈ V
12 forall Ki ∈ K
13 d(v, Ki) := minn∈Ki

d(v, n)
14 enumerate K in the order given by d(v, K1) ≤ d(v, K2) ≤ d(v, K3)...
15 ml := +∞, p := 0
16 for i = 1 to |K|
17 m := (w(v) +

∑i
j=1 d(v, Kj))/i

18 if m < ml then

19 ml := m and p := i
20 if ml < mg then

21 mg := ml and L :=
⋃

j≤p Kj ∪ {u ∈ SP (Kj , v) | 1 ≤ j ≤ p} ∪ {v}
22 forall Ki ∈ K
23 if Ki ∩ L 6= ∅ then delete Ki

24 K1 := L
24 return K1

Figure 3.4: Approximation algorithm for V-STG Here we define
SP (v, w) to contain the intermediate vertices of a shortest path from v to
w.

3.3 Vertex-Weighted Steiner Tree in Graphs problem 35

Proof. The first step of the algorithm consists in the computation of shortest
paths for all pairs of vertices and can be carried out by Johnson’s algorithm
in O(n2 · log n+n·m) [CLRS01]. As the cardinality of S is bounded by k, the
iteration over the remaining for-loops takes time O(k2+n·k2·(k+k·log k)) =
O(n · k3 · log k).

As for our applications the number of terminals k is rather small, the
most time consuming part of the algorithm is the computation of All-Pairs
Shortest Paths (line 02/03).

Guha and Khuller [GK99] improved the constant factor of the perfor-
mance ratio to 1.35 + ε for any constant ε > 0. Again, they do not provide
the exact running time of the algorithm but point out that the algorithm,
“although polynomial, is not very practical due to its high running time”.
Furthermore, they developed a simple greedy algorithm with a worst-case
approximation factor of 1.6103 ln k that has the same time complexity as
the approximation algorithm by Klein and Ravi. Basically, it works analo-
gously to the algorithm by Klein and Ravi, but considers more sub cases to
select trees with minimum ratio in the iteration step.

3.3.2 Reduction rules

We start by investigating the adaptability of the reduction rules for STG
taken from Duin and Volgenant [DV89] as given in Section 3.2.2. After that,
we introduce some new reduction rules for V-STG.

(Non)adaptable rules from STG

Unfortunately, most of the reduction rules for the STG problem cannot be
applied without loss of efficiency or cannot be applied at all to the vertex-
weighted case.

One of the main problems is that many rules for STG inspect each edge
e as follows. If it can be determined that for every solution containing e
there is an alternative solution not containing e that is at least as good,
e can be deleted. Usually, reduction rules make this decision based on e’s
endpoints only. To use the analogous way to delete a vertex we have to
investigate subsets of its neighbors. This seems to be more costly in terms
of running time and less promising in its effectiveness. We illustrate this
problem for the Least Cost Test rule, one of the simplest rules for STG.
Least Cost Test as defined for STG removes an edge e if there is a path
that connects its endpoints that weighs less than e itself. Removing a vertex

36 3. Steiner Trees and biological networks

e

a) b)

n1

v

n4

n2

n3

Figure 3.5: Least Cost Test for STG and V-STG. a) shows an example
for STG. We have to consider a shortest path (grey) between the endpoints
of e. b) shows the situation for a vertex v with degree-four from a V-STG
instance. All shortest paths that have to be considered are shown in grey.

v of a V-STG instance in a similar way is only possible if there are paths
between all pairs of its neighbors that do not include v and weigh less than
v. Figure 3.5 demonstrates the more complex situation for V-STG. Apart
from the fact that the running time grows, the rule is also less likely to apply
as the weight of all considered shortest paths has to be less than the weight
of v. Analogously, the rules Vertices Nearer to S Test and Smaller
Special Distance Test work in this way and hence seem not to be useful
for V-STG.

In the case of Nearest Vertex Test it is not even obvious how to trans-
form the reduction rule for V-STG. It determines a Steiner edge incident to
a terminal k if all other incident edges have a weight that is too high to be
part of an optimal solution. This cannot be done for V-STG because in con-
trast to the incident edges of a terminal its neighbors cannot be investigated
locally as they could be useful to connect other terminals.

Another problem arises from the fact that some reduction rules involve
the computation of a minimum spanning tree to determine edges. As dis-
cussed in Section 3.3.1 this does not translate to V-STG. For this reason
Nearest Special Vertices Test cannot be applied to V-STG.

Rule Degree Test works only for non-terminals with degree one that
will be referred to as Degree-One Rule. In the next paragraph we give
some special cases in which we can reduce vertices with degree two.

Generally, different kinds of Reachability Tests can be used for V-STG
as well.

3.3 Vertex-Weighted Steiner Tree in Graphs problem 37

We can directly use i-Dvfree Rule formulated for STG (Section 3.2.2)
for V-STG.

New reduction rules

The following simple reduction rules attack degree-one and degree-two ver-
tices in a V-STG instance.

Reduction Rule 1. (Terminal Rule) Remove a terminal with degree one
and add its neighbor to the set of terminals.

Reduction Rule 2. (Adjacent Terminals Rule) If there are two adjacent
terminals, contract them.

Reduction Rule 3. (Path Rule) If there are two adjacent vertices with
degree two, contract them to one vertex. The weight of the new vertex is the
sum of the weights of all contracted vertices.

Reduction Rule 4. (Connected Neighbor Rule) Remove a non-terminal
vertex with degree two if there is an edge between its neighbors.

Reduction Rule 5. (Diamond Rule) If there are two or more non-
terminal vertices with degree two vertices with the same neighbors, remove
all of them except the one with the minimum weight.

Obviously, reduction rules 7-11 do not change the size of a Steiner min-
imum tree. Furthermore, Terminal Rule can be carried out in time O(k)
and Adjacent Terminals Rule in O(k2) (if the existence of an edge can be
tested in constant time). All vertices with degree two can be found in time
O(n). As investigating the neighborhood of a degree-two vertex can be done
in constant time, Path Rule, Connected Neighbor Rule and Diamond Rule
can be applied to all vertices in the graph in time O(n).

Now, we define new reduction rules that investigate the local neighbor-
hood of a vertex. Note that these rules cannot be directly used for STG.

First, we consider the neighborhood of terminals. We need the following
definition.

Definition 3.8. Regarding the neighborhood of a terminal v, we call a non-
terminal vertex i ∈ N(v) isolated if N(i) ⊆ N [v].

Note, that we only have to consider non-terminal isolated vertices, as other-
wise we could apply Adjacent Terminal Rule to contract the two terminals.
We can deal with isolated vertices by the following reduction rule.

38 3. Steiner Trees and biological networks

n2 n3

n4

n5n6

n1

n1

n3

n4

n2 n3

n4

v

v

vn1

Figure 3.6: Iso Rule 1 + 2 We show the effect of Iso Rule 1 in contrast to
the effect of Iso Rule 2. For the application of Iso Rule 1 we consider v to be
a terminal and we can find three isolated vertices and delete them (on top).
To apply Iso Rule 2 we consider v to be non-terminal and then can remove
only two isolated vertices (on bottom).

Reduction Rule 6. (Iso Rule 1) Remove isolated vertices in the neigh-
borhood of a terminal.

Lemma 3.9. The weight of a Steiner minimum tree is not changed by ap-
plying Iso Rule 1.

Proof. An isolated vertex i of the neighborhood of a terminal v cannot be
part of a Steiner minimum tree. This is due to the fact that all vertices that
can be connected by i are already connected by v itself in a Steiner minimum
tree.

Lemma 3.10. Iso Rule 1 can be carried out in time O(n3).

Proof. To find the isolated vertices in the neighborhood of a vertex we have
to consider the neighborhood of all its neighbors. This can be done in time
O(n2). Iterating over all vertices in V yields the running time O(n3).

We now investigate criteria to remove vertices in the neighborhood of
non-terminals. Here, we need a more restricted definition of isolated vertices.

3.4 Network Properties 39

The problem is illustrated in Figure 3.6: As v has not to be part of a solution
Steiner tree, the neighbor n2 may possibly connect n1 and n3 in a cheaper
way than v.

Definition 3.11. We call a vertex l ∈ N(v) linking vertex if there is a vertex
n ∈ N(l) so that n /∈ N [v]. The linking set L[v] of a vertex v consists of all
linking vertices of its neighborhood.

Definition 3.12. A vertex p ∈ N [v] is an isolated vertex if there is exactly
one linking vertex l′ ∈ L[v] so that every path from p to a vertex l ∈ L[v]
contains v or l′.

We can now formulate a reduction rule analogously to Iso Rule 1:

Reduction Rule 7. (Iso Rule 2) Remove non-terminal isolated vertices
in the neighborhood of a non-terminal.

Lemma 3.13. Applying Iso Rule 2 does not affect the weight of a Steiner
minimum tree.

Proof. An isolated vertex as defined for the neighborhood of a non-terminal
in Definition 3.12 can at most connect v and one of the neighbors n of v. If it
is part of a Steiner tree it can be replaced by the edge between v and n.

Lemma 3.14. Iso Rule 2 can be carried out in time O(n3).

Proof. In a first step, the linking set in the neighborhood of a vertex can be
obtained analogously to Iso Rule 1 in time O(n2). Secondly, we have to test
the connectivity for less than n non-linking vertices, which can be done in
linear-time by depth-first search. Again, the iteration over all vertices leads
to the running time O(n3).

Even if these rules can be considered as a special case of i-Dvfree rule,
they can still be useful because we can also apply them to dvfree compo-
nents with a large number of boundary vertices and their running times are
comparatively small.

3.4 Network Properties

Many biological networks seem to have similar characteristics. For exam-
ple, considering protein interaction networks Jeong et al. [JMALO01] in-
vestigated networks of the two different organisms S. cerevisiae and Heli-
cobacter pyroli. For both organisms they found “highly connected inhomo-
geneous scale-free networks in which a few highly connected proteins play a

40 3. Steiner Trees and biological networks

central role in mediating interactions among numerous, less connected pro-
teins” [JMALO01]. The small diameter of the yeast network increases rapidly
when the most connected proteins are eliminated from the network. Jeong
et al. [JMALO01] state that the detected characteristics are general network
properties, which are likely to be found in protein interaction networks of
other organisms as well.

Note that it is not obvious whether some characteristics observed for
interaction networks arise from “natural” network structure or are a con-
sequence of wrong or incomplete experimental results used to derive the
network. The existence of a relatively small number of high-degree vertices
is a typical example that could partly result from the fact that usually such
vertices correspond to exceedingly well-studied proteins or genes. Therefore,
we know about much more interaction corresponding to such proteins than
about interactions corresponding to less well-studied proteins. Nevertheless,
a hint that experimental errors are not the only reason for this property
is given by the results of [JMALO01], which show evidence that the most
highly connected proteins are also the most important for the survival of a
cell.

As our goal is to compute Steiner trees for the interaction network of
yeast, we analyze some of its network properties in the hope of finding useful
starting points for data reduction or other algorithmic approaches. The next
subsections examine the yeast interaction network as described in Section 3.1.
We look at its largest connected component consisting of 5421 vertices and
21594 (undirected) edges.

3.4.1 Degree distribution

The degree distribution of the yeast interaction network is shown in Table 3.1
and Figure 3.7. Whereas about a fifth of all vertices have degree one, there
are only very few vertices with high degree. More than 95% of all vertices
have a degree lower than 30.

3.4.2 Diameter

The distribution of the lengths of all pair shortest paths is given in Figure 3.8.
The diameter of the network is only 9. Furthermore, after the deletion of all
vertices with degree one the diameter decreases from 9 to 7. Intuitively, this
makes it even harder to tackle the remaining network by data reduction.

3.4 Network Properties 41

deg #vertices deg #vertices deg #vertices deg #vertices deg #vertices

1 1078 25 21 49 5 78 1 116 1

2 932 26 16 50 3 79 2 120 1

3 692 27 17 52 3 80 2 124 1

4 509 28 17 54 1 81 2 125 1

5 364 29 12 55 1 82 2 126 1

6 281 30 12 56 1 83 1 127 1

7 222 31 14 57 3 86 1 138 1

8 156 32 11 58 1 88 1 144 1

9 137 33 14 59 3 89 1 145 1

10 105 34 8 61 1 90 1 155 2

11 109 35 7 62 1 91 1 156 2

12 73 36 8 63 1 92 2 158 1

13 69 37 5 64 2 96 1 161 1

14 52 38 7 65 1 97 2 163 1

15 65 39 7 66 2 100 1 199 1

16 45 40 9 67 3 101 1 205 1

17 40 41 4 68 2 104 1 292 2

18 38 42 5 69 2 105 3 458 1

19 40 43 6 70 1 106 1

20 25 44 2 71 3 107 1

21 24 45 8 72 2 109 1

22 20 46 3 74 1 110 2

23 25 47 4 75 4 112 2

24 26 48 6 77 2 113 1

Table 3.1: Degree distribution Number of vertices (#vertices) of given
degree (deg) (not counting self-loops) for the yeast interaction network.

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350 400 450 500

Figure 3.7: Degree distribution The diagram plots the degree of vertices
(x-axis) against the number of vertices with this degree (y-axis).

42 3. Steiner Trees and biological networks

length number of paths

1 21594
2 663296
3 4168906
4 7281225
5 2213648
6 311761
7 28879
8 1538
9 63

Figure 3.8: Distribution of all pair shortest path lengths for the un-
weighted yeast interaction network.

deg component size number of removed vertices

50 4488 96
40 4246 142
30 3872 232
25 3578 306
20 3171 422
15 2535 610
10 1187 978
5 116 1679

Figure 3.9: High degree separators of the yeast interaction network. All
vertices with degree higher than deg are removed. Component size denotes
the size of the largest connected component after removing them.

3.4 Network Properties 43

3.4.3 Separability

In this section, we investigate the “separability” of the yeast interaction
network. For some algorithmic approaches like divide-and-conquer or tree
decomposition-based algorithms it is necessary, in a first step, to find rea-
sonable separators of a graph, i.e. a small subset of vertices after deletion
of which the graph consists of unconnected components of limited size. The
question for a separator of size k such that the remaining components are
smaller than a given limit (such as half of the number of vertices of the orig-
inal graph) is NP-hard [GJ79]. Therefore, to gain more information about
the network structure we use a heuristic approach that attempts to find good
separators by deleting vertices with high degree. Figure 3.9 shows the size
of the largest remaining connected component of the yeast interaction net-
work after removing vertices with high degree for a varying degree threshold
beyond which a vertex is considered as high-degree vertex. It does not seem
possible to separate the network into small subnetworks by removing only a
small number of high-degree vertices. These results and the very small di-
ameter of the network indicate that it is unlikely and, in general, difficult to
find separators of a reasonable size for further algorithmic approaches. Note
that, e.g. in the case of path or tree decomposition-based algorithms, the
running time depends exponentially on the size of the bags and the elements
of each bag have to separate the graph.

Another study that investigates the connectivity of a subnetwork of
the yeast protein interaction network that consists of 778 vertices and in-
cludes only high-confidence interactions as edges is provided by Han et
al. [HBH+04]. They tested the connectivity of the network after remov-
ing vertices with degree higher than five which they denote as hubs. They
make a distinction between two different kinds of hubs depending on a pro-
tein interacts with its different partners simultaneously, called party hubs, or
at different times or locations, referred to as date hubs. It turns out that
the removal of the date hubs (contrary to the removal of the party hubs)
splits the network into small subnetworks. In the given example they are
able to split the connected component with 778 vertices of the interaction
network into subnetworks with about 200 or less vertices by removing all
78 date hubs. By removing the 86 party hubs or 86 randomly selected ver-
tices the size of the largest remaining component is over 400. Although the
set of all data hubs separates the network studied in [HBH+04] quite well,
its size is still too large for further separator-based algorithmic approaches.
Moreover, as the here considered network is much smaller than our yeast
interaction network from this work, it seems unlikely that applying this ap-

44 3. Steiner Trees and biological networks

proach without further improvements to our network would lead to efficient
separators.

Recapitulating this section, from the small diameter and the degree distri-
bution we can follow, that the yeast interaction network is highly connected
by few high-degree vertices. Furthermore, the separation of the network into
small pieces seems to be difficult. In the next section, we try to use the
knowledge about the network structure for the design of a software tool.

3.5 Software: The Steiner Package

In this section we describe a software tool, called Steiner package, that was
developed in this thesis within the scope of a project conducted by the
working group of Mike Hallett (McGill Center for Bioinformatics, Montreal,
Canada). The goal is to make the Steiner approach available to users, e.g.
from biochemistry with no computational or graph-theoretical background.

The Steiner Package integrates biological preprocessing, graph-theoretical
data reduction and different algorithms to compute Steiner trees for biolog-
ical networks. More precisely, it includes an implementation of two algo-
rithms: (1) The Dreyfus-Wagner algorithm, described in Section 3.2.1, is
used to determine an optimal solution unless prohibitively expensive. (2) The
approximation algorithm from Klein and Ravi, described in Section 3.3.1,
computes an approximative Steiner tree for any instances.

To make the Dreyfus-Wagner algorithm applicable to a wider range of
instances, we include some graph-theoretical data reduction and biological
preprocessing rules. In contrast to data reduction that is based on network
information, the biological preprocessing depends on the meaning of the ver-
tices in a biological network. As we are especially interested in obtaining an
optimal solution if possible, we implemented data reduction and preprocess-
ing rules that can affect the network in a way such that it can be solved by
the Dreyfus-Wagner algorithm.

My contribution of this work to the Steiner Package is the development
and implementation of biological preprocessing and graph-theoretical data
reduction rules and an implementation of the approximation algorithm. Fur-
thermore, I was concerned with working out the structure of the program
that determines a reasonable order of preprocessing and reduction rules and
combines them with the algorithms. The Steiner Package assimilates an
implementation of the Dreyfus-Wagner algorithm by T. J. Perkins (McGill
Center for Bioinformatics, Montreal, Canada).

We start with a short description of the input and output of the Steiner

3.5 Software: The Steiner Package 45

Package and its options. We continue with the explanation of graph-theore-
tical data reduction (Section 3.5.2) and biological preprocessing rules (Sec-
tion 3.5.3) that are part of the implementation and discuss how they can be
combined in Section 3.5.4. Then, we give an overview of the structure of the
program and its interfaces (Section 3.5.5). We end the section by giving ex-
amples for Steiner trees that have been computed using the Steiner Package
(Section 3.5.6).

3.5.1 Input, output, and options

This subsection provides a brief overview on the input that has to be provided
to the Steiner Package and the most important results that are returned by
the program as this is sufficient for the understanding of the next subsections.
For a detailed description of the interface we refer to Section 3.5.5.

To run the program the user must provide network data and a set of
terminals. Optionally he/she can provide his/her own data for biological
preprocessing as further described in Section 3.5.3. Furthermore, the user
can choose an interactive mode that shows possible information for biological
preprocessing provided by the MIPS database (described in Section 2.3) and
then select the part of the information he wants to use.

The output contains a Steiner tree computed by the Dreyfus-Wagner
algorithm if the number of terminals is smaller than a given threshold and
always a Steiner tree computed by the approximation algorithm. The Steiner
Package also provides information describing the results of data reduction
and preprocessing.

3.5.2 Selection of graph-theoretical data reduction rules

To avoid the assimilation of futile rules that needlessly consume running
time, we investigated the effectiveness of the reduction rules described in
Section 3.3.2 applied to the yeast interaction network. As its network prop-
erties seem to be typical for biological networks, we use the results to select
reduction rules for our implementation. We made the following observations:

Iso Rules Iso Rule 1 considers the neighborhood of terminals and therefore
its overall performance depends on which vertices belong to the terminal set.
To obtain a general idea about its effectiveness we treated every vertex as
terminal with only non-terminal neighbors. It turned out that Iso Rule 1
applied to all vertices under that assumption still performed very badly.
Most of the isolated vertices that we found had a degree of one or two

46 3. Steiner Trees and biological networks

and could therefore be deleted by the simpler Deg-One Rule or Adjacent
Neighbor Rule. Altogether out of 5,458 vertices we detected 13 isolated
vertices of degree three and one isolated vertex with degree four that could
be deleted with Iso Rule 1 (if they are in the neighborhood of a terminal).
Furthermore, this also means for Iso Rule 2 that there are at most 14 vertices
that are possible candidates for deletion. Therefore, we can conclude that
Iso Rules 1 and 2 are not useful for data reduction in our case.

Dvfree Rules If we try to apply i-dvfree Rule for pairs or triples of all
vertices, we find only few very small dvfree components spending hours of
running time, e.g. we could delete less than 100 vertices by applying 2-dvfree
Rule. The reason for the bad performance is that the graph is well connected
as discussed in Section 3.4.2, so that it is very unlikely to find small subsets
of vertices that separate the graph.

Reachability Tests We omitted an implementation of any kind of reach-
ability tests as they are very unlikely to be effective because of the small
diameter of the network.

Degree Rules Looking at the degree distribution of our network we can
obviously remove nearly one fifth of the vertices because they have degree
one and additionally, we can remove vertices of degree two with Path Rule,
Connected Neighbor Rule and Diamond Rule.

Rules for terminals Terminal Rule and Adjacent Terminals Rule depend
on the vertices that are part of the terminal set and therefore cannot be tested
for the network in general. In our further experiments (Section 3.5.6) they
turned out to be extremely useful.

Summarizing, many of the more “complicated rules” do not seem to apply
to the structure of the biological networks, whereas the simple rules are very
effective.

We do not include i-dvfree Rule, Iso Rule 1 + 2, and any kind of reach-
ability test in the Steiner Package as they seem to consume running time
without yielding considerable success in reducing biological networks.

As they significantly decrease the size of the network and cost very little
running time the Steiner Package comprises Deg-1 Rule and some of the
rules attacking vertices of degree two. To simplify matters we summarize
them for the further description of the Steiner package and refer to them as

3.5 Software: The Steiner Package 47

deg1/deg2-rules. Note, that the deletion of degree-one or degree-two vertices
before applying the Dreyfus-Wagner algorithm only affects the running time
of the computation of all-pairs shortest paths and not the running time of
the dynamic programming step itself. This is due to the fact that in the
dynamic programming one does not have to test non-terminals with degree
less than three.

Furthermore, Terminal Rule and Adjacent Terminal Rule are part of
the Steiner Package implementation. We denote them as special-rules. As
shown in the experimental part of this work (Section 3.5.6), they can become
extremely useful because they are able to decrease the number of terminals
and therefore the value of the parameter of the Dreyfus-Wagner algorithm.

3.5.3 Biological preprocessing

In many cases the graph-theoretical data reduction is not effective enough
to decrease the number of distinguished vertices to a size that is able to
be computed by the Dreyfus-Wagner algorithm. Thus, we attempt to ad-
ditionally use biological information to reduce the number of distinguished
vertices, while still allowing for a result with reasonable biological mean-
ing even if not necessarily optimal from a graph-theoretical point of view.
Furthermore, biological preprocessing generally allows a user to bring in his
biochemical knowledge to influence the solution of the Steiner tree.

We distinguish between the following two kinds of biological preprocess-
ing.

Complex-based preprocessing. We contract a group of distinguished
vertices to a single vertex if we can find a meaningful criterion that this group
can be considered as entity in the cell. In the case of a protein interaction
network, a typical example is the contraction of vertices that are part of
some complex. Other criteria could be based upon expression profiles, such
as those generated from microarray experiments. We denote this kind of
preprocessing by the keyword complex .

Function-based preprocessing A second strategy for biological prepro-
cessing is to compute a “local” Steiner tree for a subset of distinguished
vertices. Then, the vertices of the local Steiner Tree are added to the solu-
tion and contracted for the further computation. This kind of data reduction
would be applicable for a group of vertices belonging to the same pathway
or participating in the same cellular process. We denote this kind of prepro-
cessing by the keyword function.

48 3. Steiner Trees and biological networks

complex

SAGA

YDR448W

YDR176W

YGR252W

YOL148C

function

vacu

YAL002W

YPL045W

YJR075W

YLR295C

...

Table 3.2: User data. In a file provided by the user every group of genes has
to start with the keyword “complex” or “function” followed by a name for the
complex/function, which is then followed by the names of genes. The name of
the contracted vertex will be the given name of the complex/function. For this
example we would contract the vertices YDR448W, YDR176W, YGR252W,
and YOL148C to a vertex called SAGA. Analogously, the vertices that follow
the keyword “function” and the name “vacu” are treated as described by the
function-based preprocessing.

Data presentation

In the case of biological preprocessing, it is important to use only experimen-
tally rigorous information and to let the user control the process. Therefore,
the following two avenues are available for data presentation.

The first possibility is to provide your own data in the file format as given
in Table 3.2.

The other choice is to use data from the Munich Information center for
Protein Sequences (MIPS). As discussed in Section 2.3 it provides highly
accurated information about protein complexes. The information is made
accessible to the user by choosing an interactive mode. Then, the program
displays all complexes of MIPS that contain more than one distinguished
vertex as shown in Table 3.3 and the user can enter the numbers of the com-
plexes he wishes to contract. For further information about the complexes
we refer to the the MIPS home page [fPSM].

3.5 Software: The Steiner Package 49

The following complexes containing special vertices are provided by mips:

complex number: 133.40 YCR081W YPL042C

complex number: 220 YLR447C YHR026W YOR332W YDL185W YPR036W YHR039CA

complex number: 510.190.10.20.10 YGR252W YDR176W YOL148C

...

Table 3.3: MIPS data. Output in the interactive mode. Every complex
number is followed by the names of the distinguished vertices that are part
of the complex. For example, complex number 133.40 contains YCR081W
and YPL042C. The complex numbers are identical to the numbers provided
by MIPS.

3.5.4 Conflicts of data reduction and preprocessing

We now consider some conflicts that arise by combining different graph-
theoretical data reduction and biological preprocessing rules.

Ambiguous vertices

One protein can be part of different complexes or it can be an element of
different pathways. In this case, we have to make sure that we do not contract
the vertices of different complexes to one vertex. Therefore, we treat a vertex
appearing in more than one complex or corresponding to more than one
function in the following way. We delete it from all complexes (or function
groups) and give a warning (which allows the user to change the provided
information). If a vertex is part of diverse groups, the complex information
provided by the user has higher priority than the function information which
in turn has higher priority than the complex information based on MIPS-
data. For example, if one vertex is part of a user complex and a function
group, it is only removed from the function group.

Order of reduction rules and preprocessing

The biological preprocessing which we use depends on the meaning of the
particular vertices. In contrast, the graph-theoretical special-rules, i.e. Ter-
minal Rule and Adjacent Terminals Rule, only take into account the network
structure. We therefore apply the biological preprocessing first. Otherwise,
we would have to define in which case a vertex resulted from contraction
by the special-rules is part of a complex. In our experiments, in most cases
this order of data reduction decreases the number of terminals as much as
possible. We describe one exception concerning a degree-one vertex which

50 3. Steiner Trees and biological networks

is part of a complex. In this case, applying the biological preprocessing will
yield a contracted vertex with degree higher than one. After that we cannot
use the special-rules for a terminal with degree-one and put its neighbor v
into the set of terminal vertices. If, additionally, the neighbor vertex v has
some terminal neighbors, it could be starting point for Adjacent Terminal
Rule which contracts terminals. Therefore, we can decrease the number of
terminals stronger if we ignore this degree-one vertex in the biological pre-
processing and attack it with the special-rules. Indeed, in some examples
we could achieve a smaller number of terminals after data reduction if we
remove a terminal with degree one from a complex. As it is hard to decide
what works best in general, the program prints a warning for every degree
one terminal which is part of a complex (function) and is used for data re-
duction. If the user is not absolutely sure about the complex information,
he/she can try to achieve a stronger reduction by removing the vertex from
the complex.

Implemented algorithms

For the computation of an optimal solution the Dreyfus-Wagner algorithm
is applied if the number of terminals after data reduction is small enough.
The largest size of a terminal set for which we were able to run the Dreyfus-
Wagner algorithm was 13. On a standard Linux PC with one gigabyte
main memory and a 2,26 GHz processor, the running time was more than 20
hours. To prevent from starting the algorithm in such a time consuming case
without informing the user, the Dreyfus-Wagner algorithm is only applied
automatically if the number of terminals is smaller than 12. In this case the
running time is up to several minutes. Otherwise, the user can choose to run
it or not.

The Steiner Package always provides a solution obtained using the ap-
proximation algorithm by Klein and Ravi as described in Section 3.3.1. As
the running time of the algorithm does not depend on the size of the terminal
set, it is applied to the network without any data reduction.

3.5.5 Description and usage of software

The Steiner Package is implemented in C++ and was compiled with the
g++ compiler with compiler options “-O2 -g”. The new parts of the imple-
mentation, i.e. everything except the Dreyfus-Wagner algorithm, consist of
more than 2000 lines of code. We now describe the structure of the program
and its user interface.

3.5 Software: The Steiner Package 51

We apply the reduction rules and algorithms in the following order:

1. deg1/deg2-rules

2. biological preprocessing (user based information is processed before
MIPS data)

3. special-rules (alternating, beginning with Terminal Rule)

4. deg1/deg2-rules

5. Dreyfus-Wagner, if number of terminals is less than 12 or selected by
the user

6. approximation algorithm (runs independently from the data reduc-
tion.)

The user interface is described in the following. Note that as a graphical
interface was not part of this work, the interface is based on command line
parameters and standard input and output.

input: (command line parameters in the given order)

• edge-file: each row contains names of two terminals, if and only if there
is an edge between them

• file with names of terminals

• choice of MIPS-reduction (’y’/’n’): ’y’ will change to an interactive
mode where you can choose to use complex information provided by
MIPS for biological data reduction (see Table 3.3).

• file with weights: Each row contains a vertex name followed by its
weight. If you consider unit weights and do not provide complex in-
formation, the weight file is optional. (In case you wish to provide
complex information for a network with unit weights, you can provide
an incorrect file name. This results an error message to the standard
output and the initialization of all weights with 1.0.)

• file with complex information (optional) (Table 3.2)

output:

• Steiner tree computed by Dreyfus-Wagner algorithm, if possible (stan-
dard output)

52 3. Steiner Trees and biological networks

• approximation Steiner tree (filename: apprST)

• special notes/warnings starting with “!!!!!” (standard output)

– names of non-reachable terminals if there are any

– names of terminals with degree one being part of a complex or
function group (see Section 3.5.4)

– names of terminals which are part of more than one complex or
function group (for explanation see Section 3.5.4)

• local Steiner trees used for biological data reduction as described in
Section 3.5.3 (filename: localSTs

• results of graph-theoretical special reduction as described in
Section 3.5.2 (filename: special_results)

• files for visualization of the Steiner tree. More precisely, the undi-
rected induced subgraph of Steiner nodes and terminals computed with
data reduction in combination with the Dreyfus-Wagner algorithm
(filename: ospreyDW.txt) and with the approximation algorithm (file-
name: ospreyAppr.txt). The osprey-format consists of the headline
“GeneA GeneB” followed by the edges, that means there are two vertex
names in a row iff there is an edge between the vertices.

• degree-distribution of the terminals and Steiner nodes in the unreduced
network for the solution of the Dreyfus-Wagner algorithm (filename:
degDisDW) and of the approximation algorithm (filename: degDisAppr);
the degree distribution gives further information about the importance
of the considered vertices in the whole network.

3.5.6 Results and examples

To demonstrate the application of the Steiner Package and to show its use-
fulness we give three examples for the computation of Steiner trees in un-
weighted networks. All experiments were run on a standard Linux PC with
2,26 GHz processor and one gigabyte main memory.

Example 1a: GAL80 deletion set

We considered the yeast interaction network and a distinguished set consist-
ing of ten genes obtained by a GAL80 deletion experiment that was computed
as an example for [SPB+05] in the yeast interaction network. The data has

3.5 Software: The Steiner Package 53

YAL054C

YMR280C

YLR377C

YER065C

YJR095W

YKL112W

YDR384C

YKL015W

YKL109W

YML089C

YBR296C

YNL337C

YPL248C

YML051W

YLR142W

YKL217W

YKR097W

Figure 3.10: Steiner tree for the GAL80 deletion set. The distinguished
vertices are given in rectangular boxes.

been obtained from the results of GAL80 deletion microarray expression ex-
periments from [ITR+01] (as described in Section 2.2). More precisely, the
deletion of the gene GAL80 in the absence of galactose leads to a large set
of genes that is highly over-expressed compared to wild-type yeast grown in
the presence of galactose. The distinguished set of this example contains all
genes whose average log-ratio of expression is greater than two.

For this example the biological analysis of [SPB+05] based on the Steiner
approach allowed for the re-discovery of known interaction networks (as the
Steiner tree contains some well known interaction subnetworks). Further-
more, it suggests that GAL80 may play a role in controlling the so-called
diauxic shift: the shift from glucose to ethanol metabolism.

For the computation of the Steiner tree we did not use any biological
preprocessing, which means we chose no MIPS preprocessing and did not
provide any complex information. The resulting Steiner tree is illustrated in
Figure 3.10.

The connected component of the yeast interaction network that con-
tains all distinguished of this example vertices consists of 5421 vertices and
21594 undirected edges. With deg1/deg2-rule we could remove 1085 degree-
one and 82 degree-two vertices that were not distinguished. Applying the
special-rules decreased the number of distinguished vertices from ten to five.
Table 3.4 shows the output of the file special_results.

54 3. Steiner Trees and biological networks

deg1: terminal -> Steiner Node

YJR095W -> YMR280C

Special neighbors:

component 1:

YAL054C

YMR280C

YLR377C

YER065C

YKR097W

YKL217W

Table 3.4: Output file special results. The terminal YJR095W has
degree one and is therefore deleted and YMR280C is put into the terminal
set by Terminal Rule. As you can also see in Figure 3.10, the terminals
specified by component 1 are neighbors and can therefore be contracted by
Adjacent Terminals Rule.

YJR095W : YMR280C

YAL054C : YKL112W YMR280C

YMR280C : YAL054C YLR377C YER065C YKR097W YJR095W YKL217W

YLR377C : YMR280C

YER065C : YMR280C

YKR097W : YMR280C

YKL217W : YMR280C

YKL109W : YKL015W YML089C YNL337W

YNL337W : YPL248C YKL109W

YPL248C : YML051W YNL337W

YML051W : YPL248C

YML089C : YKL109W YBR296C

YBR296C : YML089C

YKL015W : YLR142W YKL109W YKL112W

YKL112W : YAL054C YKL015W YDR384C

YDR384C : YKL112W

YLR142W : YKL015W

Table 3.5: Output of a Steiner minimum tree for GAL80 deletion
set from Example 1a. Every row contains a terminal or Steiner nodes
followed by its neighbors in the Steiner tree.

3.5 Software: The Steiner Package 55

Dreyfus-Wagner and the approximation algorithm computed the same
Steiner tree of size 17 that is printed to the standard output (for the DW-
algorithm) and to the file apprST as shown by Table 3.5. For small sizes of
the distinguished set, the approximation algorithm seems to perform very
well. In the course of this work we computed Steiner trees for more than ten
different sets of distinguished genes with size up to twelve. In these examples
the size of the Steiner trees obtained by the approximation algorithm did not
exceed the optimal solution by more than one or two.

The computation of the Steiner tree with both algorithms took less than
a minute. The most time-consuming part of the approximation algorithm
is the computation of all-pairs shortest paths independently from the size
of the distinguished set. Generally, for the Dreyfus-Wagner algorithm the
running time increases with the number of distinguished vertices up to hours
for a distinguished set of size more than 10. That means that in this example
the running time could be drastically decreased by applying the reduction
rules.

Example 1b: Extended GAL80 deletion set

In another experiment we were interested in a set of distinguished genes
that has been obtained analogously to Example 1a with a threshold of +1.7
instead of +2.0 for the average log-ratio expression. This leads to a dis-
tinguished set consisting of 15 genes (YML051W, YDR384C, YAL054C,
YER065C, YBR296C, YKL217W, YKR097W, YHR137W, YPL061W,
YLR142W, YDR256C, YLR377C, YPR001W, YJR095W, and YHR139C)
for which we could not run the Dreyfus-Wagner algorithm directly. By ap-
plying the graph-theoretical data reduction rules, the size of the distinguished
set was reduced to nine and we could compute an optimal solution of size 28
in less than half an hour. The size of an approximation Steiner tree obtained
by the algorithm from Klein and Ravi is 30.

Example 2: Fluconazole knock-out set

In this example the distinguished set consists of 53 genes that have been
experimentally detected by the group of David Y. Thomas (Department of
Biochemistry, McGill Faculty of Medicine, Montreal, Canada). The absence
of the obtained genes leads to the death of yeast grown in the presence of the
drug fluconazole (which is only fungi-static otherwise). The computation of
a Steiner tree for the 53 genes is part of the analytical process that should
find out interrelations between the genes of the set. We consider the protein

56 3. Steiner Trees and biological networks

Figure 3.11: Fluconazole knock-out set. The figure shows the distin-
guished vertices (grey) and their neighbors in the protein interaction network
of yeast. As the graph-theoretical Adjacent Terminals Rule applies to termi-
nals that are neighbors, it can only attack some of the distinguished vertices
that are part of the largest connected component. The picture was generated
with Cytoscape (see Section 2.3) and is provided by Scott Bunnell (McGill
Center of Bioinformatics, Montreal, Canada).

3.5 Software: The Steiner Package 57

interaction network based data from BIND. The set of distinguished genes
with all neighbors in the network is illustrated in Figure 3.11. Here, we use
this example to show the potential of biological preprocessing.

In our initial examination of the data, two of the 53 proteins were not
part of the considered network, which means BIND contains no information
about interactions between them and other proteins. Two more proteins were
not reachable from the other distinguished proteins. Therefore, we computed
a Steiner tree for the remaining 49 distinguished proteins that were part of
a connected component consisting of 4831 vertices and 17106 edges.

First, we tried to compute a Steiner tree without any biological prepro-
cessing. The graph-theoretical reduction rules were able to reduce the size
of the distinguished set from 49 to 32 and, the Dreyfus-Wagner algorithm
could not be applied yet. The size of the Steiner tree obtained by the ap-
proximation algorithm was 85.

In the second experimental scenario we additionally applied biological
preprocessing based on complex information. There are three well-known
complexes containing distinguished proteins:

• SAGA: Four of the distinguished proteins are part of the SAGA com-
plex, which is important for transcription in vivo and possesses histone
acetylation function [SGR+99].

• RNA pol II: Another four distinguished proteins are associated within
the RNA polymerase II Holoenzyme Multi-protein complex (more pre-
cisely part of Srb).

• V-ATPase: The complex V-ATPase, that functions in the accidifica-
tion of intra-cellular compartments [SF97], includes six distinguished
proteins.

Using the given complex information for biological preprocessing and
applying the special-rules, the number of distinguished vertices could be
decreased to 28—a size still not manageable with the Dreyfus-Wagner algo-
rithm.

Lastly, we additionally provided information about groups of proteins
that are involved in the same cellular process (treated as function informa-
tion). More precisely, we grouped six proteins that are required for vacular
protein sorting and two that are important for the biosynthesis of choris-
mate. Two more proteins are connected to cellular functions regarding the
yeast nuclear core complex (NPC) and three proteins with the formation

58 3. Steiner Trees and biological networks

VATPase (complex): YLR447C YOR332W YPR036W YDL185W YHR026W YHR039CA

SRB (complex): YGL151W YCR081W YHR041C YPL042C

SAGA (complex): YDR448W YDR176W YGR252W YOL148C

actin (function): YNL271C YDR129C YCR063W

chorismate (function): YDR127W YGL148W

vacu (function): YDR080W YPL045W YMR077C YJL029C YBR131W YHR060W

YKL119C

NPC (function): YDL116W YLR242C

Table 3.6: Data for biological preprocessing.

of action filaments or its cytoskeletal organization. All proteins that were
used for biological preprocessing are given in Table 3.6. In this scenario the
preprocessing worked out extremely well. In combination with the reduc-
tion rules, the size of the distinguished set is reduced to 13. Within a bit
more than 20 hours a Steiner tree of size 80 was computed by applying the
Dreyfus-Wagner algorithm. Note that even though the resulting tree must
not necessarily be an optimal Steiner tree from graph-theoretical point of
view, it gives in a better solution than the approximation algorithm, which
yielded a Steiner tree of size 85.

Altogether, we provided three biological important examples that showed
the usefulness of data reduction and preprocessing rules included in the
Steiner Package. The data reduction rules in Example 1a reduced the run-
ning time for the computation of an optimal Steiner tree from several hours
to less than a minute. In Example 1b data reduction made it possible to
compute an optimal solution for an otherwise unsolved instance. Lastly, we
showed the power of biological preprocessing in Example 2: It allowed for
the computation of a biological meaningful Steiner tree for a relatively large
number of distinguished vertices, which size is smaller than the size of the
computed approximation Steiner tree.

Chapter 4

Parameterized complexity of

Steiner tree related problems

Whereas the Steiner method as described in the previous chapter allows for
the identification of regulators for a given set of proteins or genes, this chap-
ter is concerned with graph-theoretical problems which help us to screen
large networks for “relevant” subnetworks without prior specification of a
vertex set of interest. The identification of significant subnetworks in bio-
logical networks is an important computational task. Even the interaction
network of a simple organism like yeast contains thousands of vertices, a size
that makes a manual search very laborious or even impossible. A promising
strategy was developed by Ideker et al. [IOSS02]. They successfully searched
a vertex-weighted interaction network (as described in Section 2.4.4) for “ac-
tive subnetworks”, i.e. for connected sets of genes with unexpectedly high lev-
els of differential expression. The computational task consists of identifying
the highest scoring subnetworks and is defined as Maximum-Weight Con-
nected Subgraph (MWCS) problem in [IOSS02]. The authors provided
a proof for the NP-hardness of MWCS and solved it by using a simulated
annealing strategy.

In this chapter, we introduce two graph-theoretical problems, General-
ized Steiner Tree in Graphs (G-STG) and Vertex-Weighted Gen-
eralized Steiner Tree in Graphs (GV-STG)1, which can be used sim-
ilarly to MWCS for network analysis as described in Section 4.2. A main
contribution of this chapter is to formulate fixed-parameter algorithms with
respect to the size of the subgraph for both problems answering an open

1Also known as Edge-Weighted k-cardinality Tree problem and Vertex-

Weighted k-cardinality Tree problem [FK94]

60 4. Parameterized complexity of Steiner tree related problems

question posed by Hallett [Hal04]2. For that, we introduce a new technique
for providing fixed-parameter algorithms combining enumeration with the
well-known method of color-coding3. In contrast, no corresponding fixed-
parameter algorithm is known for MWCS.

Furthermore, we give the first systematic study of parameterized com-
plexity of Steiner tree related problems for a range of optimization criteria.

In the following sections, we start with a formal definition of G-STG
and GV-STG and give an overview of results and algorithms from litera-
ture (Section 4.1). After that, we discuss their biological relevance (Sec-
tion 4.2). Then, we introduce a general scheme to classify problems from a
parameterized point of view (Section 4.3). In a next step, we examine the
parameterized complexity of the considered problems for a range of natural
parameterizations: Our results include fixed-parameter algorithms as well
as proofs of parameterized intractability. As a fundamental building block
for our algorithmic results we describe a fixed-parameter algorithm which is
an important subroutine for our algorithms (Section 4.4). Finally, we deal
with the parameterized complexity of STG, V-STG, MWCS, G-STG and
GV-STG (Section 4.5).

4.1 Problem definitions

The formal definition of the MWCS problem is given as follows.

Maximum-Weight Connected Subgraph (MWCS):
Input: An undirected graph G = (V, E) and a vertex weight
wv ∈
�

for each v ∈ V .
Task: Find a connected subgraph G′ = (V ′, E′) of G with max-
imum weight wG′ =

∑

v∈V ′ wv.

The MWCS problem is substantial for the work of Ideker et al. [IOSS02]
for the identification of meaningful subnetworks.

Now, we give the definition of two Steiner tree related problems. Their
biological relevance will be discussed in the following section.

2Note that during the course of this work a similiar fixed-parameter algorithm was,
independently, published by Scott et al. [SIKS05]. Their algorithm directly applies color-
coding without enumeration

3Note that the same idea was also suggested by Narayanan and Karp [NK04] for a
similar variant of the Steiner tree problem

4.1 Problem definitions 61

Generalized Vertex-Weighted Steiner Tree in Graphs
(GV-STG):
Input: An undirected graph G = (V, E), a vertex weight wv ∈
�

≥0 for each v ∈ V , a positive integer s ∈�, and a positive real
l ∈
�

.
Task: Find a connected subgraph G′ = (V ′, E′) of G with size
|V ′| ≥ s and weight wG′ =

∑

v∈V ′ wv ≤ l.

Generalized Steiner Tree in Graphs (G-STG):
Input: An undirected graph G = (V, E), an edge weight we ∈
�

≥0 for each e ∈ E, a positive integer s ∈�, and a positive real
l ∈
�

.
Task: Find a connected subgraph (Steiner Tree) G′ = (V ′, E′)
of G with size |V ′| ≥ s and weight wG′ =

∑

e∈E′ we ≤ l.

Both problems seek to find a subgraph which contains at least a given
number of nodes in a weighted graph such that the total weight of the sub-
graph is less than or equal to a specific limit. Furthermore, we only allow for
non-negative weights as this is sufficient for many applications (as described
in Section 4.2).

G-STG is defined on a graph with edge weights and GV-STG on a vertex-
weighted graph. Note that therefore the resulting subgraph of G-STG usually
has tree structure (except for edges with weight zero) and depends on the
kind or strength of connections (interactions) between the nodes. In contrast,
in the vertex-weighted case, we obtain a subgraph depending only on the
“importance” of the vertices and the existence of a connection.

Besides from biological applications, both problem variants arise in var-
ious important applications, including oil-field leasing [HJ93], facility lay-
out [FH92], quorum-cast routing [CK94], and telecommunications [GH97].

On general graphs G-STG and GV-STG are NP-complete [RSM+96,
FK94]. The G-STG problem is still NP-hard if the edge weights are re-
stricted to {1, 2, 3} [RSM+96]. It is solvable in polynomial time if there
are only two distinct edge weights in a complete graph [RSM+96]. Further-
more, it is NP-complete for planar graphs, whereas in the case of graphs
with constant treewidth there is a polynomial algorithm with running time
O(ns2) [RSM+96]. GV-STG is solvable in polynomial time if the graph G is
a tree [FK94]. Furthermore, Faigle and Kern [FK94] proved that GV-STG is
NP-hard for grid graphs and split graphs and in P for interval and co-graphs.

The G-STG and GV-STG problems have been extensively studied re-
garding their approximability. Currently, both can be approximated within

62 4. Parameterized complexity of Steiner tree related problems

factor 3 [Gar96].

There is very little literature concerned with exact algorithms. All of it is
based on integer linear programming using Branch and Bound or Branch and
Cut. However, these strategies seem only applicable to very small instances.
Brimberg et al. [BUM06] point out that, experimenting with the CPLEX
mixed integer solver, they could only solve instances with less than 20 graph
vertices.

A large body of literature is available on heuristic methods and exper-
imental results. For example, there are local search algorithms for GV-
STG [BE03] and G-STG [BUM06]. Furthermore, there are several meta-
heuristic approaches, including genetic algorithms and a tabu search based
method [BB05].

4.2 Biological relevance of G-STG and GV-STG

An example for a graph theoretical problem with the power to gain insight
into molecular processes is given by MWCS [IOSS02]. As discussed in the
introduction of this chapter, MWCS is helpful for identifying active subnet-
works in an interaction network at large scale.

Another example for the use of advanced graph algorithms for extract-
ing meaningful information from biological networks is given by Scott et
al. [SIKS05]. They detected important signaling pathways in an edge-weight-
ed protein interaction network (Section 2.4.1) by searching the network for
paths of a given length with maximum weight. Independently from this
work, they use the same algorithmic approach as we do to tackle the prob-
lem. Whereas in their work they apply the algorithms and verify the results
from a biological point of view, the focus of this work is more on the com-
plexity of the problems from a parameterized point of view.

Furthermore, Scott et al. [SIKS05] describe (independently from this
work) the possibility of searching for meaningful subtrees in a protein in-
teraction network. This can be considered as applying G-STG (or a slightly
modified version) to the network. Although, note that the experimental part
of [SIKS05] is restricted to paths and we describe additional application sce-
narios for G-STG and GV-STG.

Whereas a possible application for G-STG is the detection of important
signaling pathways in protein interaction networks, GV-STG can be used to
identify relevant subnetworks in an interaction network with vertex weights
based on differential expression, as described in Section 2.2. In a similar way
to MWCS it could allow for finding high-scoring subnetworks of a reasonable

4.3 Parameterized complexity 63

size chosen by the user. This seems to be an advantage as MWCS solved by
the simulated annealing strategy of Ideker et al. [IOSS02] sometimes seems
to return subnetworks of a size still too large to handle. Therefore, these
subnetworks have to be further processed, which is done by applying the
simulated annealing to the remaining subnetworks recursively.

Choosing edge weights that depend on the correlation coefficient of the
differential-expression of the genes corresponding to the edges’ endpoints,
G-STG can be applied to an interaction network analogously.

Note that for some applications it also could make sense to look at protein
interaction and transcriptional regulatory networks independently.

Altogether, G-STG and GV-STG can be a good framework for finding
subsets in networks that arise from varying biological scenarios and therefore
provide a new way of identifying important subsets in weighted networks for
biological analysis.

4.3 Parameterized complexity

In the following sections we consider problems from a parameterized point
of view: We either want to give a fixed-parameter algorithm w.r.t. a specific
parameter for a problem or we would like to prove that no such algorithm
exists.

Not every parameterized problem is necessarily fixed-parameter tract-
able. To show the intractability of parameterized problems, Downey and Fel-
lows developed a completeness program for classifying parameterized prob-
lems analogously to classical complexity theory. However, the completeness
theory of parameterized intractability involves significantly more technical
effort. We very briefly sketch the basic concepts of this theory in the follow-
ing (for details we refer to [DF99, Nie06]).

First, we need a concept of reducibility to compare the hardness of two
parameterized problems:

Definition 4.1. Let L, L′ ⊆ Σ∗ ×�be two parameterized languages. We
say that L reduces to L′ by a standard parameterized m-reduction if there
are functions k 7→ k′ and k 7→ k′′ from�to�and a function (x, k) 7→ x′

from Σ∗ ×�such that

1. (x, k) 7→ x′ is computable in time k′′|x|c for some constant c and
2. (x, k) ∈ L iff (x′, k′) ∈ L′.

Now, the “lowest class of parameterized intractability” can be defined
as the class of parameterized languages that are equivalent to the so-called

64 4. Parameterized complexity of Steiner tree related problems

Short Turing Machine Acceptance problem (also known as k-Step
Halting problem).

Short Turing Machine Acceptance
Input: A nondeterministic Turing machine M , an input word
x, and a nonnegative integer k.
Question: Does M accept x in a computation of at most k
steps?

This can be considered as the parameterized analogue to the Turing
machine acceptance problem—the basic generic NP -complete problem
in classical complexity theory. Now, we can define the lowest class of param-
eterized intractability as follows.

Definition 4.2. The class of all parameterized languages that reduce by a
standard parameterized m-reduction to Short Turing Machine Accep-
tance is called W[1]. A problem to which Short Turing Machine Ac-
ceptance reduces by a standard parameterized m-reduction is called W[1]-
hard; if, additionally, it is contained in W[1] then it is called W[1]-complete.

Even if it is currently not possible to prove the inequality of FPT and
W[1], this hypothesis is strongly supported by some results from classical
complexity theory. For example the coincidence of FPT and W[1] would
imply a 2o(n) time algorithm for the 3-Satisfiability problem (the question
whether there is a satisfying assignment for a formula in conjunctive normal
form with n variables and clauses consisting of at most three literals) [DF99],
which is generally believed not to hold true.

As a matter of fact, W[1] is only the lowest level of a whole hierarchy of
parameterized intractability. In general, the classes W[t], t ∈�, are defined
based on “logical depth” (i.e., the number of alternations between unbounded
fan-in And- and Or-gates) in boolean circuits [DF99].

An important example for a W[2]-complete problem is the Dominating
Set problem, where the size of the dominating set is the parameter.

Input: A graph G = (V, E), a positive integer k.
Task: Find a subset V ′ ⊆ V of size k such that every vertex of
G either belongs to V ′ or has a neighbor in V ′.

In the following sections we use the Dominating Set problem for the
proof of the W[2]-hardness for some parameterizations of the considered
problems.

4.4 Weighted Tree Coloring 65

4.4 Weighted Tree Coloring

Whereas we need the concept of parameterized reduction to prove the hard-
ness of a parameterized problem, the best way to show fixed-parameter
tractability is to design a concrete algorithm. There are some general meth-
ods to design fixed-parameter algorithms. The most common ones are search
trees or dynamic programming in combination with data reduction. In this
section we describe a fixed-parameter algorithm which is based on a dy-
namic programming method called color-coding first introduced by Alon et
al. [AYZ95]. We use this algorithm as a subroutine for designing fixed-
parameter algorithms in the remainder of this section.

The method of color-coding can be used to find subgraphs with specific
properties (like paths, cycles, and trees or graphs with bounded treewidth)
such that it is fixed-parameter with respect to the size of the subgraph k.
For this, one has to avoid to look separately at all subsets of vertices of size
k. Obviously, for a graph with n vertices this would lead to a running time
which is Ω(nk). Therefore, Alon et al. [AYZ95] use a dynamic programming
approach in which the coloring of the vertices with k different colors provides
the possibility to store tables of subsets of colors instead of all possible subsets
of vertices.

More precisely, there is a randomized version of color-coding in which
the first step consists of coloring the vertices of the graph randomly with
k different colors. Then, one can observe that it is easier to find colorful
subgraphs, i.e. subgraphs which contain only vertices of pairwise disjoint
colors. The basic idea is that, using a dynamic programming approach, a
subgraph with a particular coloring can only be enlarged by vertices with
colors that do not already occur in the subgraph. Therefore, the loss of
complexity is due to the fact that one can store subsets of colors instead of
all subgraphs with identical coloring.

As we discuss in Section 4.4.2 the color-coding method can be derandom-
ized. One can find a number of colorings such that we color every subgraph
of size k of G with different colors at least once and such that the overall
running time is still fixed-parameter tractable with respect to k.

So, with color-coding as described by Alon et al. [AYZ95] we can find a
subtree of a given structure in a graph. Since for G-STG and GV-STG we
do not look for any subtree of a specific structure, we have to combine the
color-coding method with the enumeration of all possible tree structures of
a given number of nodes. More precisely, we look for an optimal solution
for every possible tree structure and pick out the optimum of all possible
structures.

66 4. Parameterized complexity of Steiner tree related problems

Furthermore, we need to incorporate the weight of the subtree into the
dynamic programming routine4. In the following subsection we give a formu-
lation of the color-coding algorithm that extends the algorithm as described
by Alon et al. [AYZ95] in two ways:

• It additionally includes the weight of the subtrees.

• It describes the algorithm in more detail than is done in [AYZ95] or
[SIKS05].

More precisely, the algorithm solves the Weighted Tree Color Coding
problem, which is defined in the next subsection.

4.4.1 Algorithm for the Weighted Colorful Tree problem

We start with some definitions necessary for the formulation of the algorithm.

Definitions

We call a colored graph G colorful if all its vertices are colored with pairwise
distinct colors.

We formulate the problem as follows.

Weighted Colorful Tree:
Input: An undirected graph G = (VG, EG) with weight function
w : EG →

�+
0 , a k-coloring c : VG → {1, . . . , k}, and a rooted

tree T = (VT , ET) with k nodes.
Task: Find the minimum weight WT of all colorful subtrees of
G which are isomorphic to T (or report that no such tree exists).

Note that we require a rooted tree T only for convenience when describing
our algorithm since the root of T determines the processing order of dynamic
programming. The root can be arbitrarily chosen in the case of an unrooted
tree T .

For the formalization of the algorithm we need some further definitions re-
garding the tree T and the graph G:

• W.l.o.g. we assume that the nodes VT = {n1, ..., nk} are ordered in
post-order. If they are not, this order can be obtained in linear time.

• Let T (ni) denote the subtree of T rooted at ni.

4This was also done independently from this work by Scott et al. [SIKS05]

4.4 Weighted Tree Coloring 67

• Let n ∈ VT have d(n) children n(1), . . . , n(d(n)). Then, for 0 ≤ j ≤ d(n)
let T (n, j) be the bottom-up subtree of T containing n and
T (n(1)), ..., T (n(j)).

• Set w(T) :=
∑

e∈ET
w(e).

• Set c(T) :=
⋃

v∈VT
c(v).

• In the process of the algorithm, we regard the graph G as bidirected,
that means we replace each undirected edge {u, v} by two directed
edges (u, v) and (v, u).

We define the dynamic programming table to contain entries

W [u, n, j, C]

with u ∈ VG, n ∈ VT , 0 ≤ j ≤ d(n), and C ⊆ {1, ..., k} a color set which
contains |V (T (n, j))| pairwise disjoint colors. The value of W [u, n, j, C] then
denotes the minimum weight of a subtree colored with all colors of C, iso-
morphic to T (n, j), and rooted at u.

We give some further definitions which are useful for the proof of the cor-
rectness of the algorithm.

• We call an entry W [u, n, j, C] valid if W [u, n, j, C] < ∞.

• For an entry W [u, n, j, C] we call a coloring C possible if G contains a
colorful subtree TS rooted at u and isomorphic to T (n, j) with c(TS) =
C. We then say the subtree TS corresponds to the coloring C.

Algorithm

Figure 4.1 gives a description of algorithm WTCC that solves Weighted
Colorful Tree. Basically, the algorithm works as follows: Every node
n of the tree is matched with every vertex v of the graph. Then it stores
all possible subsets corresponding to colorful subtrees which are rooted at v
and isomorphic to a subtree rooted at n. The index j denotes the number
of children of n that have been processed at this iteration step. During
the dynamic programming step color sets (corresponding to node-disjoint
subtrees) are merged to larger color sets corresponding to subtrees in G. In
the end there is an entry for every vertex v ∈ G that returns the minimum
weight of all colorful subtrees isomorphic to T and rooted at v. A solution
for Weighted Colorful Tree then is obtained by iterating over these
entries.

68 4. Parameterized complexity of Steiner tree related problems

procedure WeightedTreeColorCoding (graph G, tree T, coloring c)

/* input: a graph G = (VG, EG), a weight function w : EG →
�+

0 ,
a k-coloring c : VG → {1, . . . , k},
and a rooted tree T = (VT , ET) with k nodes
and root r */

/* output: the minimum weight WT of a tree among all
colorful subtrees of G which are isomorphic to T ;
in case there is no such tree, WT = ∞ */

01 /* initialization: */
02 forall u ∈ VG do

03 forall n ∈ VT do

04 for j = 0..d(n) do
05 forall C ⊆ {1, . . . , k} do

06 if C = {c(u)} and j = 0 do

07 W [u, n, 0, {c(u)}] := 0
08 else

09 W [u, n, j, C] := ∞

10 /* dynamic programming: */
11 for i = 1..k do

12 for j = 1..d(ni) do
13 forall (u, v) ∈ EG do

14 forall C, C ′ ⊆ {1, ..., k} with C ∩ C ′ = ∅
15 and W [u, ni, j − 1, C] < ∞

16 and W [v, n
(cj)
i , d(n

(cj)
i), C ′] < ∞ do

17 W [u, ni, j, C ∪ C ′] = min{W [u, ni, j, C ∪ C ′],

18 w((u, v)) + W [u, ni, j − 1, C] + W [v, n
(cj)
i , d(n

(cj)
i), C ′]}

19 /* result: */
20 return WT = minv∈VG

{W [v, r, d(r), {1, ..., k}]}

Figure 4.1: Algorithm WTCC for Weighted Colorful Tree

4.4 Weighted Tree Coloring 69

Lemma 4.3. Algorithm WTCC computes an optimal solution for
Weighted Colorful Tree.

Proof. We show that after running the dynamic programming every entry
W [u, n, j, C] returns the weight of a colorful subtree of minimum weight
rooted at u, colored by the colors of C, and isomorphic to T (n, j). Then,
the correctness follows directly from the choice of WT in the last step of the
algorithm. For every vertex u ∈ VG the entry W [u, r, dr, {1, ..., k}] returns
the minimum weight of all colorful subgraphs of G which are isomorphic to
T while mapping u to the root of T . Choosing the minimum of all these
weights for all vertices u ∈ VG clearly yields an optimum solution.

We prove the correctness by induction on the structure of the tree T . As
we traverse T in post-order, we assume that the induction hypothesis is true
for all entries containing W [∗, ni, ∗, ∗] where i is smaller than the index of
the currently processed node of T . As the post-order numbers of the children
of a node are always smaller than its own number, that means in particular
that the induction hypothesis is true for the entries corresponding to children
of ni.

More precisely, looking at an arbitrary entry W [u, ni, j, S] for a node
with index i, we assume the following for all u ∈ VG, for 0 ≤ j ≤ d(ni+1)
and all possible colorings S ⊆ {1, ..., k}: If there is a colorful subtree TG of
G with c(TG) = S that is isomorphic to T (ni, j) and rooted at u, then the
entry W [u, ni, j, S] contains the weight w(TG). If there is more than one
such subtree with coloring S, the entry W [u, ni, j, S] contains the weight of
the tree of minimum weight among these .

Following a post-order traversal of T , we start with i = 1 at a leaf of T .
The only tree isomorphic to a leaf of T which is rooted at an arbitrary vertex
u is u itself and the only possible coloring is C = {c(u)}. Obviously, the cost
of it is w(u) = 0. After the initialization step, for every u ∈ VG there is an
entry W [u, n1, 0, {c(u)}] which is set to 0 and is not modified after this.

For the induction step we have to show that the hypothesis is true for
all entries W [u, ni+1, j, S]. That means that we compute W [u, ni+1, j, S]
correctly for all u ∈ VG, for 0 ≤ j ≤ d(ni+1), and all possible colorings
S ⊆ {1, ..., k}). We have to distinguish the following three cases:

Case 1: The node ni+1 is a leaf of T, that means j = 0.

The correctness follows analogously to the proof of the base case for
n1.

70 4. Parameterized complexity of Steiner tree related problems

Case 2: The node ni+1 is expanded by the subtree rooted at its first child,
that means j = 1. The algorithm computes entry W [u, ni+1, 1, S] based

on the valid entries W [u, ni+1, 0, C] and W [v, n
(1)
i+1, d(n

(1)
i+1), C

′] with
C ∪ C ′ = S. Entries of the form W [u, ni+1, 0, C] are only changed
in the initialization step. For every such entry that is valid we have
C = {c(u)}. During the iteration over all edges (u, v) ∈ EG the algo-

rithm examines all valid entries W [v, n
(1)
i+1, d(n

(1)
i+1), C

′]. By induction
hypothesis for every such entry there must be a colorful subtree iso-
morphic to T (n1, d(n1)) rooted at v with c(T (n1, d(n1))) = C ′. To
compute the new entry W [u, ni+1, 1, C ∪ C ′] the algorithm only con-
siders entries with coloring C ′ such that c(u) /∈ C ′. That ensures that
no subtree corresponding to the coloring C ′ contains u. Therefore u
can be used to expand such a subtree to a tree isomorphic to T (ni+1, 1)
with c(T) = C ∪ C ′. By induction hypothesis we can assume that, if
there exists a subtree of the demanded properties, there must be a valid
entry for W [v, n1, d(n1), C

′], which returns a minimum weight. There-
fore, and because the coloring of a tree rooted at u must contain c(u),
the algorithm computes an entry for every colorful subtree isomorphic
to T (ni+1, 1). In the case that there is more than one tree correspond-
ing to a coloring, the algorithm chooses the minimum weight of all
these trees as it compares their weights by iterating over all edges.

Now, we show case 3 by induction on the index j iterating over the
children of ni+1. The correctness of the base case j = 1 is given in case
2.

Case 3: The subtree rooted at ni+1 is expanded by the subtree of a non-first
child, that means 2 ≤ j ≤ d(ni+1).

In this case, the algorithm considers for all edges (u, v) ∈ EG all valid

entries of W [u, ni+1, j−1, C] (∗1) and W [v, n
(j)
i+1, d(n

(j)
i+1), C

′] (∗2) with
C ′ ∪ C = S.

As the algorithm increases j in every step and since we proved the
correctness of the induction hypothesis for j = 1 in case 2, we can
assume that (∗1) stores the minimum weight for all colorings C of all
subtrees isomorphic to T (ni+1, j−1) and rooted at u. Furthermore by
induction hypothesis, the entry (∗2) stores the minimum weight for all

colorings C ′ of all subtrees isomorphic to T (n
(j)
i+1) and rooted at v.

As the algorithm looks at all colorings C and C ′ that are disjoint, all
corresponding subtrees are also node disjoint. Therefore, they can be

4.4 Weighted Tree Coloring 71

connected by the edge (u, v) to a subtree isomorphic to T (ni+1, j) with
c(T) = C ∪ C ′.

By iterating over all edges and combining all possible colorings, the
algorithm ensures that there is a valid entry corresponding to every
colorful subtree of G. Furthermore, this ensures that in the case that
there is more than one subtree of G corresponding to a coloring the
minimum weight is chosen.

Theorem 4.1. Weighted Colorful Tree can be solved in time O(k ·
|EG| · 3

k).

Proof. We use algorithm WTCC solving Weighted Tree Color Coding
by Lemma 4.3.

Clearly, the initialization step of WTCC can be carried out in time
O(|VG| · k · 2k) as the iteration over j is upper-bounded by k as there are
at most k children in a tree of size k and there are 2k different subsets of k
colors.

The time consuming part of the algorithm is the dynamic programming
step. There, the algorithm iterates O(k) times over |EG| edges and then
has to combine the subsets of the different colorings. An upper bound for
all possible combinations of all subsets C and C ′ during an iteration step is
given by 3k. This is due to the fact that there are 3k possibilities to divide
the set S = {1, ..., k} into three disjoint subsets C, C ′ and S\(C ∪ C ′).

Lemma 4.4. The memory requirement of Algorithm WTCC is O(|VG|·k·2
k).

Proof. An example for a dynamic programming table is given in Figure 4.2.
We store an entry for every vertex u ∈ VG and every node n ∈ VT and
for every child of n. As the total number of children is bounded by k, we
have to store all colorings for O(|VG| ·k) possible assignments of vertices and
nodes. The number of different colorings with |T (n)| colors chosen from the
possible k colors is at most the number of subsets of a set of size k which is
2k. Therefore, the total memory requirement is O(|VG| · k · 2k).

4.4.2 Finding non-colored subtrees

Analogously to Alon et al [AYZ95], we can now describe a randomized algo-
rithm to find a non-colored weighted subtrees. Coloring vertices of a graph
uniformly at random with k colors, a subtree is colorful with probability

72 4. Parameterized complexity of Steiner tree related problems

u







































































































n1
...

ni































































1
...

j























1 2 ... k weight

0 0 ... 0 w1

..

..

1 1 ... 1 w2k

...
d(vi)

...
nk

∈ G ∈ T children of ni subsets of colors

Figure 4.2: Dynamic programming table for algorithm WTCC

(k!)/kk, which is lower-bounded by e−k. Repeating WTCC for ek = 2O(k)

randomly chosen colorings yields an algorithm that can find a minimum
weight subtree in expected running time 2O(k) · |E|.

To get a deterministic algorithm, as needed to show the fixed-parameter
tractability of problems, we can derandomize the algorithm analogously to
Alon et al. [AYZ95]. What we need is a family of colorings such that every
subgraph of G is colorful by at least one coloring of the family. Then, we can
apply the WeightedTreeColorCoding method to every coloring of the family.
Furthermore, the size of the family must be exponential only in k and there
must exist a fixed-parameter algorithm w.r.t. k for its computation. Alon et
al. [AYZ95] describe a possibility to construct such a family—which can be
considered as a k-perfect family of hash functions from {1, 2, · · · , |VG|} to
{1, 2, · · · , k}—of size 2O(k) · log VG. Since with the described construction ev-
ery coloring of the family can be evaluated in O(1) time, Alon et al. conclude
an extra factor of 2O(k) · log VG for the complexity of the original randomized
algorithm. Therefore, the overall running time for finding a subtree of mini-
mum weight in a graph is 2O(k)·log |VG|·O(|EG|·k). We denote the derandom-
ized Weighted Tree Color-Coding method as dWTCC(graph G, tree T) with
the arguments graph G and tree T analogously to WTCC(graph G, tree T,

coloring C).

4.5 Parameterized hardness and tractability 73

4.4.3 Extensions: Vertex weights and constructive solutions

We would also like to apply the algorithm to graphs with vertex weights, that
means we define the problem analogously for a graph with weight function
w : V →

�+
0 by defining w(T) =

∑

v∈VT
w(v). We then have to modify

the initialization step by setting W [u, n, j, C] := w(u) for j = 0 and the
computation of the new entry during the dynamic programming such that
we do not add an edge weight. More concretely, in lines 17+18, we set

W [u, ni, j, C ∪ C ′] = min

{

W [u, ni, j, C ∪ C ′],
W [u, ni, j − 1, C] + W [v, nicj

, dnicj
, C ′]

}

.

We denote the modified method as VertexWeightedTreeColorCoding

(VWTCC) and its derandomized version as dVWTCC(graph G, tree T) with
the same arguments as dWTCC(graph G, tree T).

In the next section, we use the dWTCC and dVWTCC method to describe
algorithms for G-STG and GV-STG. So, we need to find a tree with minimum
weight instead of the minimum weight itself. This can be easily achieved by
a small modification of the algorithm. The only thing to do is to additionally
store a subtree corresponding to every coloring in the table. Obviously, this
does not change the running time of the algorithm.

4.5 Parameterized hardness and tractability

This section provides an overview of the parameterized complexity of STG,
V-STG, G-STG and GV-STG w.r.t. a range of possible parameterizations.
Furthermore, we have a brief look at the complexity of MWCS. We want
to point out that G-STG and GV-STG are NP-complete. The NP-hardness
can be proved by reduction from Dominating Set. We omit the proof at
this point as the parameterized reductions we use to prove Theorem 4.8 and
Theorem 4.15 yield this result as well.

In the next subsections, we only consider the decision variants of the
problems. That is sufficient for their classification into parameterized com-
plexity classes. Note that all of the described algorithms for the decision
problems can be modified in a straight-forward way into algorithms obtain-
ing a constructive solution within the same running times.

We start with regarding the number of nodes of the requested subgraph
as parameter (Section 4.5.1). In Section 4.5.2, we use the total weight of

74 4. Parameterized complexity of Steiner tree related problems

the requested subgraph as parameter and discuss the complexity for differ-
ent weight functions. Thereby, we consider four different weight functions
allowing uniform, binary, integer, and rational weights. Interestingly, the re-
sults for the different problems differ with the choice of the weight function.
Then, in Section 4.5.3 we consider the MWCS problem.

4.5.1 Number of nodes of the subgraph as a parameter

First, we present some well known results for STG and V-STG, then we show
the tractability for G-STG and GV-STG w.r.t. the number of nodes of the
subgraph.

Known results for STG and V-STG

For STG and V-STG we can distinguish between the number of terminals
and the number of Steiner nodes as parameter. This distinction leads to the
following results.

Theorem 4.2. The STG problem as well as its vertex-weighted version V-
STG are fixed-parameter tractable w.r.t. the number of terminals.

Theorem 4.2 follows directly by the Dreyfuss-Wagner algorithm, which solves
the problems in a running time that is only exponential in the number of
terminals [DW72] (see Section 3.2.1).

Theorem 4.3. STG and V-STG are W [2]−hard with respect to the number
of Steiner nodes as parameter.

The W[2]-hardness of STG is claimed by Downey and Fellows [DF99] by
reduction from Dominating Set, but they give an incorrect reference for
the actual proof. In the compendium by Marco Cesati [Ces] it is claimed
to be W[2]-hard by personal communication. In any case, Theorem 4.3 also
follows analogously to the parameterized reductions from Dominating Set
which we give in the proof of Theorem 4.8.

Furthermore, it is obvious that there is no correlation between the total
number of nodes in a Steiner tree and the number of Steiner nodes. An easy
example is a path of terminals, where an arbitrary large number of terminals
can be connected without any Steiner Node.

New results for G-STG and GV-STG

In contrast to STG and V-STG we do not longer distinguish between the
number of terminals and Steiner nodes, but consider the total number of

4.5 Parameterized hardness and tractability 75

/* input: Graph G = (E, V) with weight function w : E →
�+

0 ,
positive integer s, positive real l */

/* output: true, if there is a subgraph G′ = (V ′, E′)
with |V ′| = s and w(E′) ≤ l */

forall trees T of size k do

if dWTCC(G, T) ≤ l then
return true

end forall

return false

Figure 4.3: Fixed-parameter algorithm w.r.t. the number of nodes
of the subtree for G-STG

parameter STG V-STG G-STG GV-STG

Terminals FPT FPT - -
Steiner vertices W[2]-hard W[2]-hard - -
Nodes of the subgraph - - FPT FPT

Table 4.1: Tractability with respect to the number of nodes

nodes in the tree or subgraph. This is due to the fact that no terminal set
is given in the definition of G-STG and GV-STG.

Theorem 4.4. G-STG and GV-STG are fixed-parameter tractable w.r.t. the
total number |V ′| of nodes of the subgraph.

Proof. In Figure 4.3 we describe a fixed-parameter algorithm for the G-STG
problem that uses algorithm dWTCC as subroutine. As the number of pairwise
non-isomorphic trees over k nodes is O(2.96k) [Ott48] and the WTCC algorithm
has a running time only exponential in the size of the subgraph k as well,
this yields a fixed-parameter algorithm with respect to k. More precisely,
the running time is 2O(k) · log VG · O(k · |EG|).

For GV-STG we can use the same algorithm as for G-STG with the dVWTCC

method as subroutine. For every connected subgraph with k vertices there
is at least on spanning tree with k − 1 edges. Therefore, it is sufficient to
iterate over all non-isomorphic trees of size k.

76 4. Parameterized complexity of Steiner tree related problems

Table 4.1 provides an overview of the parameterized complexity of STG,
V-STG, G-STG and GV-STG with respect to the number of nodes as pa-
rameter. With this choice of the parameter the edge- and vertex-weighted
problem versions have the same complexity.

4.5.2 Weight as a parameter

Now, we consider the complexity of the four problems STG, V-STG, G-STG,
and GV-STG from another point of view by looking at their parameterized
tractability w.r.t. the weight of the solution of the subgraph. While in Sec-
tion 4.1 the problems have been defined for non-negative real edge weights,
here we also consider several alternative weight functions. We distinguish
between uniform, binary, integer, and rational weights.

Uniform weight function

The most restricted case of all possible weight functions is to assign the value
one to every edge and every vertex, respectively. Using the total weight of
the tree (subgraph) as parameter we can show the following results for this
weight function.

Theorem 4.5. STG as well as V-STG are in FPT w.r.t. the weight of the
subgraph G′ for a uniform weight function.

As the number of total nodes is at least as high as the number of terminals
and every node is assigned a uniform weight, Theorem 4.5 follows directly
from the Dreyfus-Wagner algorithm.

Theorem 4.6. Restricted to a uniform weight function G-STG and GV-
STG are solvable in linear time.

Proof. Both problems only have a solution if s (the minimum size of the sub-
graph) is smaller than l (the maximum weight of the subgraph). Therefore,
we only have to look for any connected subgraph of size s. This can be done
with depth-first search in linear time.

Binary weight function

Now, we choose the binary weight functions w : E → {0, 1} and w : V →
{0, 1}, respectively.

Theorem 4.7. STG is in FPT w.r.t. the weight of the Steiner tree for a
binary weight function.

4.5 Parameterized hardness and tractability 77

procedure prepro_STG_bin_weight (graph G, set of terminals T)

/* input: Graph G = (V, E), weight function w : E → {0, 1},
set of terminals T ⊆ V */

/* output: reduced graph G′ with weight function w : E → {1}
reduced set of terminals T ′ ⊆ T */

forall {u, v} ∈ E with w({u, v}) = 0 do

insert a new vertex w with N [w] = N [v] ∪ N [u]
if u ∈ T or v ∈ T then

put w into the set of terminals T
remove u and v and edges incident to u or v

end forall

return (G, T)

Figure 4.4: Preprocessing method for the STG problem with binary weight
function.

Proof. We can solve the problem by applying the Dreyfus-Wagner algorithm
after a simple preprocessing, contracting all weight 0 edges, with polynomial
running time as given in Figure 4.4.

The running time of the Dreyfus-Wagner algorithm applied to the re-
duced instance is only exponential in the number of terminals z. As one
needs at least z − 1 edges to connect the z terminals and the minimum
weight of an edge is one, the weight of the Steiner Tree is at least as much
as the number of terminals (minus one). That implies that the problem is
fixed-parameter tractable w.r.t. the weight of the Steiner tree.

Theorem 4.8. V-STG and GV-STG are W[2]-hard w.r.t. the weight of the
subgraph G′ for a binary weight function.

Proof. We prove the W[2]-hardness of the problems by reduction from Dom-
inating Set.

Every vertex i of the Dominating Set instance is represented by two
vertices ri and di in the V-STG or GV-STG instance (Figure 4.5). One of
them, ri, represents that i has to be dominated and the other one, di, that
i is able to dominate all vertices representing its neighborhood.

Now, we give the formal definition of the reduction.

78 4. Parameterized complexity of Steiner tree related problems

1
2

3

4
5

6 7

8

9

d1 d9

r1 r9r2 r3 r5 r6 r7 r8r4

Figure 4.5: Reduction from Dominating Set to V-STG/GV-STG
(w.r.t. the weight of the subgraph for binary weights). On the left-hand side is
an example for a Dominating Set instance, where the black vertices belong
to an optimal dominating set. The right-hand side shows the corresponding
V-STG/GV-STG instance with the subgraph of the solution colored in black.

Given a Dominating Set instance G = (V, E) with V = {1, ..., n} and
a parameter k which denotes the size of an optimal dominating set, we
construct an instance G′ = (V ′, E′) with weight function w : V ′ → {0, 1} for
V-STG or GV-STG as follows:

• V ′ = {di | i = 1, . . . , n} ∪ {ri | i = 1, . . . , n}

• E′ = {(di, dj) | i, j = 1, . . . , n, i 6= j} ∪ {(di, rj) | i = 1, . . . , n, j ∈
N [i]}

• w(di) = 1, w(ri) = 0 for i = 1, . . . , n

Claim: G has a dominating set of size k iff

(i) for G′ with terminal set R = {ri | i = 1, ..., n} V-STG has an optimal
solution S ⊆ V ′ with weight w(S) = k, or, equivalently

(ii) G′ has a solution S ⊆ V ′ for the GV-STG with |S| ≥ n + k and
w(S) = k.

Proof of claim:
(i) “⇒”: Let VDS be an optimal dominating set of G of size k. Then the
subset VST = {di | i ∈ VDS} connects all vertices ri of the neighborhood of
VDS . As VDS is a dominating set there is at least one edge between every
vertex r ∈ R and one vertex d ∈ VDS . As, additionally, all pairs of vertices
of D := {di | i = 1, . . . , n} are connected, VST ∪ R is a Steiner tree with
weight k for the terminal set R.

4.5 Parameterized hardness and tractability 79

“⇐”: Let VST be the set of Steiner nodes of a Steiner tree with weight
k in G′ that connects the terminal set R. Because of the weight function
VST consists of k vertices out of D. Following the construction of G′ there
is an edge between di ∈ D and rj ∈ R only if i ∈ N [j] in G. As every
vertex rj ∈ R is connected to the Steiner tree, every vertex j must be in the
neighborhood of a vertex i with di ∈ VST . Therefore, a dominating set of
size k for G is given by VDS = {i | di ∈ VST }.

(ii) “⇒”: Let VDS be an optimal dominating set of G. After construction the
subset VGST = {di | i ∈ VDS} ∪ {ri | i = 1, . . . , n}, G[VGST] is a connected
subgraph of size n + k and with weight k.

“⇐”: Let VGST be a connected subgraph of G′ of size n + k and with
weight k. As the vertices of R have weight zero and the vertices of D have
weight one, every such subgraph has to contain all vertices ri ∈ R and k
vertices out of D. There are no edges between vertices r ∈ R, therefore, every
vertex r ∈ R must have a neighbor d ∈ D, otherwise the subgraph would
not be connected. It follows directly that the subset {i ∈ V | di ∈ VGST } is
a dominating set of size k.

Theorem 4.9. G-STG is in FPT w.r.t. the weight of the subgraph G′ for a
binary weight function.

In the next subsection we give in the proof of Theorem 4.12 a fixed-parameter
algorithm w.r.t. the weight of the subgraph for an integer weight function,
which can be applied to the special case of binary weights as well. Therefore,
the proof of Theorem 4.9 derives from the one for Theorem 4.12.

Integer weight function

Now, we consider the weight functions w : E → �0 and w : V → �0,
respectively.

Theorem 4.10. STG is in FPT w.r.t. the weight of the Steiner tree for an
integer weight function.

Proof. We use the same preprocessing method as in the binary weighted case
(Figure 4.4), contracting the weight 0 edges. Then, we apply the Dreyfus-
Wagner algorithm. After the preprocessing the minimum weight of an edge
is 1, therefore the size of the Steiner tree is an upper bound for its weight.
As the running time of the Dreyfus-Wagner algorithm is exponential in the
size of the Steiner tree, this clearly yields an algorithm that is FPT with
respect to the weight of the Steiner tree.

80 4. Parameterized complexity of Steiner tree related problems

procedure prepro_GSTG_int_weight (graph G, set of terminals T)

/* input: Graph G = (V, E), weight function w : E →�,
set of terminals T ⊆ V */

/* output: reduced graph G′ with weight function w : E → {1}
reduced set of terminals T ′ ⊆ T , counter p : V →� */

initialize p(v) := 0 forall v ∈ VG

forall {u, v} ∈ E with w({u, v}) = 0 do

insert new vertex w with N [w] = N [v] ∪ N [u]
set p(w) = p(u) + p(v) + 1

if u ∈ T or v ∈ T then

add w into the set of terminals T
remove u and v and edges incident to u or v

end forall

return (G, T, p)

Figure 4.6: Preprocessing method for the G-STG problem with integer
weight function.

Theorem 4.11. V-STG and GV-STG are W[2]-hard w.r.t. the weight of the
subgraph G′ for an integer weight function.

Theorem 4.11 is an immediate consequence of the W[2]-hardness of the bi-
nary weighted case shown in Theorem 4.8.

Theorem 4.12. G-STG is in FPT w.r.t. the weight of the subtree G′ for an
integer weight function.

Proof. We prove Theorem 4.12 by describing a fixed-parameter algorithm
w.r.t. the weight of the subtree for G-STG. It consists of a preprocessing
step, given in Figure 4.6, that removes edges with weight equal to zero and a
slightly modified version of the WTCC algorithm. Deleting weight-zero edges
ensures that the size of the subgraph for which we seek in the dynamic
programming is bounded by the weight of the subgraph. In the preprocessing
step we additionally have to count for every vertex in the reduced graph how
many vertices of the unreduced instance it replaces. Furthermore, we have
to incorporate a counter into the dynamic programming process itself. More
precisely, we use a slightly modified version of the algorithm given for the

4.5 Parameterized hardness and tractability 81

proof Theorem 4.4. We only change the WTCC subroutine (Figure 4.1) as
follows:

• An entry of the dynamic programming table is extended by the counter
p which indicates how many nodes in the unreduced instance are part
of the subgraph. We now consider entries of type W [u, n, j, C, p].

• We extend the arguments by the maximum weight of the subgraph s,
the minimum size of the subgraph s, and counter p as computed by
the preprocessing.

• We modify the initialization step in line 07 as follows:

W [u, n, 0, {c(u)}, p(u)] := 0

• To take into account that the entries additionally contain counters p
and p′, we replace lines 17+18 by:

W [u, ni, j, C ∪ C ′, p + p′] = min{W [u, ni, j, C ∪ C ′, p + p′],

w((u, v)) + W [u, ni, j − 1, C, p] + W [v, n
(cj)
i , d(n

(cj)
i), C ′, p′]}

• Instead of computing the minimum weight after the dynamic program-
ming, the algorithm returns true as soon as it computed an entry for
a subtree that fulfills the required conditions. This is achieved by in-
serting the following code immediately after line 18.

if (p + p′ ≥ s and W [u, ni, j, C ∪ C ′, p + p′] ≤ l)
return true

Correctness of the algorithm: If the algorithm returns true, there must be
connected subtree S with |C ∪ C ′| nodes whose weight is less than l as an
immediate consequence of the correctness of the non-modified algorithm.
We reverse the preprocessing by replacing the nodes of n ∈ S with p(n) > 1
by the nodes they replace in the original graph. In this way we obtain a
connected subgraph of G with p + p′ ≥ s nodes and weight ≤ l.

Furthermore, the modification of the algorithm does not change its run-
ning time.

82 4. Parameterized complexity of Steiner tree related problems

1
2

3

4
5

6 7

8

9

d1 d9

r1 r9

}

(n−k)(k−1)/n

} (k−1)/n

k/n

x

x’

r2 r3 r4 r5 r6 r7 r8

Figure 4.7: Parameterized Reduction from Dominating Set to STG
(w.r.t. the weight of the Steiner Tree for rational weights). On the left hand
is an example for a Dominating Set instance such that the black vertices
belong to an optimal dominating set. The right-hand side shows the cor-
responding STG instance with terminal set {r1, ..., r9}. The edges of an
optimal Steiner tree are colored black.

Rational weight function

All problems become W[2]-hard if we allow a rational weight function and
parameterize with respect to the weight of the solution tree.

Theorem 4.13. V-STG and GV-STG are W[2]-hard w.r.t. the weight of the
subgraph G′ for a rational weight function.

The correctness of Theorem 4.13 follows directly from the W[2]-hardness for
the binary weights shown in Theorem 4.8.

Theorem 4.14. STG is W[2]-hard w.r.t. the weight of the subgraph G′ for
a rational weight function.

We prove Theorem 4.14 by reduction from Dominating Set. Again, every
vertex i of the Dominating Set instance is represented by two vertices ri

and di in the STG instance (Figure 4.7). The vertex ri represents the ability
of vertex i to dominate all its neighbors and di stands for the fact that i has
to be dominated itself. The basic idea of the reduction is that in the case
of a dominating set of size k in the original instance one has to choose k
edges connecting x with k vertices out of {di | i = 1, . . . , n} to get a Steiner
tree in the Steiner Tree instance. The more complex weight function is
necessary to avoid that two subgraphs of the Steiner tree containing subsets
of {ri | i = 1, . . . , n} as terminal sets can be connected without using an
edge with an endpoint in x.

4.5 Parameterized hardness and tractability 83

Proof. (Theorem 4.14) Given a Dominating Set instance G = (V, E) with
V = {1, ..., n} and parameter k which is the size of a dominating set, we
construct an STG instance G′ = (V ′, E′) with weight function w : E′ →

�

as follows:

• V ′ = {x, x′} ∪ {di | i = 1, . . . , n} ∪ {ri | i = 1, . . . , n}

• E′ = {{x, di} | i = 1, . . . , n} ∪{{di, rj} | i = j ∨ {i, j} ∈ E} ∪{x, x′}

• w({x, di}) = k−1
n

for all i = 1, . . . , n

• w({di, rj}) = k
n

for all i = 1, . . . , n

• w({x, x′}) = (n−k)·(k−1)
n

Claim:
G has a dominating set of size k if and only if a Steiner tree in G′ with
terminal set {ri | i = 1, . . . n} ∪ {x′} has weight 2 · k − 1.

Proof of the claim:
“⇒”: Let VDS be an optimal dominating set of G of size k. Define D :=
{di | i = 1, . . . , n}, R := {ri | i = 1, . . . , n}. As VDS is a valid dominating
set, by construction there must exist a subset C ⊆ E′ of size n that connects
every vertex r ∈ R with a vertex d ∈ D. More precisely, there exists a
subset C = {{ri, dj} ∈ E′ | i = 1, . . . , n, j ∈ N [i] ∩ VDS}. Now, we can
construct a Steiner tree by the following set of edges EST : EST = {{di, x} |
i ∈ VDS}∪{x, x′}∪C. Obviously, the given Steiner tree is connected and its
weight is w(E′) = k · (k − 1)/n + ((n − k) · (k − 1))/n + n · k/n = 2 · k − 1.

“⇐:” For this direction we have to show that a Steiner tree ST with terminal
set {ri} ∪ {x′} and cost 2 · k − 1 contains at most k vertices of D, let them
be denoted as DST . Then obviously, there must be an edge between every
vertex of R and a vertex of DST and we obtain a dominating set for G by
VDS = {i | di ∈ DST}.

As ST is a valid Steiner tree, it contains at least one edge that connects
every vertex r ∈ R to a vertex d ∈ D and it contains the edge {x, x′}.
So, there must be a subforest S of ST consisting, for every i = 1, . . . , n, of
one edge {ri, dj} for some j ∈ {1, . . . , n}, and of {x, x′}. The weight of this
subforest is w(S) = n·k/n+((n − k) · (k − 1))/n. The remaining weight that
can be used to connect the subforest is wcon = c(ST)−c(S) = (k · (k − 1))/n.
As the remaining edges of E′\ES have either weight k/n or (k − 1)/n, there
can be at most k edges that connect the subforest S to form ST . Therefore,
the subforest S can consist of at most k + 1 subtrees including the subtree

84 4. Parameterized complexity of Steiner tree related problems

parameter STG V-STG G-STG GV-STG

uniform weights FPT FPT P (linear) P (linear)
binary weights FPT W[2]-hard FPT W[2]-hard
integer weights FPT W[2]-hard FPT W[2]-hard
rational weights W[2]-hard W[2]-hard W[2]-hard W[2]-hard

Table 4.2: Tractability with respect to the total weight of the sub-
tree depending on the weight function

given by {x, x′}. As every subtree can contain at most one d ∈ D there can
be at most k vertices d ∈ D that are part of ST .

Theorem 4.15. G-STG is W[2]-hard w.r.t. the weight of the subgraph G′

for a rational weight function.

Proof. We give a reduction from Dominating Set that is very similar to
the reduction for the proof of the W[2]-hardness of STG used in the proof of
Theorem 4.14. The only difference is that as we do not have a given set of
terminals we have to simulate this by adding new vertices that are connected
by edges with weight w = 0. More precisely, we construct G′ as in the proof
of Theorem 4.14 and add n + 1 vertices {ti | i = 1, . . . , n + 1} and connect
them by the edges T = {{ti, ri} | i = 1, . . . , n} ∪ {tn+1, x

′} with edge weight
w(t) = 0 forall t ∈ T .

We then can claim the following. A graph G has a Dominating Set of
size k if and only if there is a Generalized Steiner Tree in G′ of size
2n + k + 3 and weight 2 · k − 1. The proof is analogous to the proof of the
W[2]-hardness for STG.

Table 4.2 provides on overview of of parameterized complexity w.r.t.
the weight of the subgraph for all four problems. Allowing only for uni-
form weights simplifies G-STG and GV-STG such that they are solvable
in linear time. In contrast, STG and V-STG remain NP-hard and can be
computed with efficient fixed-parameter algorithms. Going from binary to
integer weight functions, every problem remains in the same complexity class.
Interestingly, the decisive factor for their complexity seems to be the type of
the weights (vertex or edge weights). The complexity class does not change
with the step from the original problem versions to the generalized ones.
Though the algorithm for G-STG is more complex and practically there is a
big gap between the performance of it and the algorithm for STG, both are

4.5 Parameterized hardness and tractability 85

still fixed-parameter tractable. As to the vertex-weighted problems, V-STG
is already W[2]-hard for a binary weight function. Stepping further form an
integer to a rational weight function STG and G-STG become W[2]-hard as
well.

4.5.3 Parameterized complexity of MWCS

In the supplementary materials of [IOSS02] Karp showed that MWCS is
NP-hard by reduction from Set Cover.

Whereas, as can be seen in Table 4.1 in the case of the other four problems
it is possible to find a fixed-parameter algorithm w.r.t. the number of nodes
of the subgraph, this seems to be difficult for MWCS. This is due to the
weight function that allows for negative weights as well. Therefore, for a
subgraph S of size k, the information that there is no subgraph of size k + 1
with higher weight than S is not sufficient to conclude that there is no such
subgraph with more than k +1 vertices. Moreover, it is not obvious whether
MWCS is W[2]-hard w.r.t the number of vertices of the subgraph.

Regarding the total weight of the maximum connected component as
parameter we can show the following.

Theorem 4.16. MWCS is W[2]-hard w.r.t. the total weight of the maximum
connected component.

Proof. We prove Theorem 4.16 by reduction from Dominating Set.

Given a DS instance G = (V, E) with V = {1, ..., n} and parameter k which
is the size of a dominating set, we construct an MWCS instance G′ = (V ′, E′)
with weight function w : V ′ →

�
as follows:

• V ′ = {di | i = 1, . . . , n} ∪ {ri | i = 1, . . . , n}

• E′ = {(di, dj) | i, j = 1, . . . , n ∧ i 6= j} ∪ {(di, rj) | i = 1, . . . , n ∧ j ∈
N [i]}

• w(ri) = 2·k
2·n−k

forall i = 1, . . . , n

• w(di) = − k
2·n−k

forall i = 1, . . . , n

Claim: G has a dominating set of size k iff the weight of a maximum-
weight connected subgraph is k.

As the proof of the Claim is similar to the proof of Theorem 4.14 we only
sketch the basic observations needed for it. Denote R := {ri | i = 1, ..., n}
and D := {dj | j = 1, ..., n}.

86 4. Parameterized complexity of Steiner tree related problems

• Vertices ri ∈ R can only be connected by vertices dj ∈ D.

• It is always worth connecting a node ri ∈ R to the subgraph as its
weight is higher than the negative weight one has “to pay” for its con-
nector vertex.

• A maximum-weight connected subgraph contains all ri ∈ R and as few
dj ∈ D as possible.

• The weight of a subgraph containing k vertices out of D (which cor-
respond to the dominating set) and all vertices ri ∈ R is w(S) =
n · 2·k

2·n−k
− k · k

2·n−k
= k.

4.5.4 Discussion

In this chapter, we introduced G-STG and GV-STG, which are graph the-
oretical problems that can be applied in the analysis of biological networks.
Therefore, they provide another fruitful link between graph theory and bio-
chemistry. As an example for this link, we describe how algorithms for
the problems can be used to screen protein interaction or transcriptional
networks for important subnetworks. Out of lack of time, we omitted an im-
plementation and experiments. However, the work of Scott et a. [SIKS05],
that uses a similar color-coding based approach in the analysis of protein
interaction networks, shows evidence that our approach might be effective
in practice. To give a more complete picture of this field of research we also
present some basic ideas of the work of Ideker et al. [IOSS02] based on the
MWCS problem and contrasting our new problems to MWCS.

The main part of this chapter is concerned with the parameterized com-
plexity of G-STG, GV-STG, and MWCS as well as of the Steiner tree
in graphs problem and its vertex-weighted variant. We were able to prove
the W[2]-hardness w.r.t. a range of parameters and to give fixed-parameter
algorithms w.r.t. other practically relevant parameterizations.

One of the main results is the formulation of fixed-parameter algorithms
for G-STG and GV-STG w.r.t. the number of nodes. No such algorithm is
known for MWCS. Although the running time of the algorithm for G-STG
(and GV-STG) is not practical yet, there are some simple modifications
which have the potential to make the algorithms more efficient. First, one
can use the randomized version to call the WTCC algorithm, which after a
reasonable number of random colorings finds with high probability a specific

4.5 Parameterized hardness and tractability 87

subgraph. Then, a further improvement of the running time for practical ap-
plication can be achieved by iterating only over some selected tree structures
instead of iterating over all possible tree structures. What kind of tree struc-
tures seem to occur more likely than others in metabolic or other pathways
therefore seems to be an interesting field of future research. One example for
such a tree structure is mentioned by Scott et al. [SIKS05]. It consists of two
separate paths that merge into a single path. Although they, independently
from our work, also describe the color-coding method for trees, the experi-
mental part of their work is focused on paths only and gives no further hint
for common tree structures.

Looking at the W[2]-hardness results w.r.t. the weight of the subgraph, an
interesting observation is that it shows the rise of complexity while going from
the edge to the vertex-weighted variants, e.g. going from STG to V-STG. The
observation that a problem becomes more complex if one considers vertices
instead of edges seems to be quite common for graph-theoretical problems.
Another well-known example is the domination of all edges in a network
which is called Vertex Cover and is in FPT whereas the domination of
all vertices, the Dominating Set problem, is W[2]-hard [DF99, Nie06].
Furthermore, it indicates that V-STG is more difficult than STG. This fits
perfectly to the observation that a lot of reduction rules for the STG can not
be modified to apply them to V-STG and to the fact that V-STG is harder
to approximate than STG as described in Section 3.3.

Chapter 5

Conclusion

In the following we summarize this work including a brief overview of the
most important contributions. Finally, we pose open questions in the context
of this work.

5.1 Summary

We considered various algorithmic techniques in the analysis of biological
networks. The work has two main parts, a practical and a theoretical one.
Firstly, we presented the software tool Steiner Package and substantiated its
benefit for biological analysis by providing examples with biological impor-
tance. An important part of the Steiner Package are the data reduction and
preprocessing rules that have been developed in this work. Secondly, we con-
centrated on the parameterized complexity of Steiner tree related problems.
We gave new hardness results and developed fixed-parameter algorithms for
problems with biological significance. Furthermore, the systematic analysis
of the problems gave interesting insights into their relations and problem
structures.

5.2 Open problems and challenges

Subsequent to this work there is still a wide range of open questions and
approaches for further research.

Improved solution strategies for V-STG. As V-STG is important for
biological analysis it would be important to develop further strategies to
obtain optimal or biological meaningful solutions. Although in this work

90 5. Conclusion

we greatly profited from using simple reduction rules, we know about no
work that presents other concepts, like more advanced reduction rules or
alternative solution techniques.

Problem kernel for STG (and V-STG) Although data reduction by
preprocessing is immensely well-studied for STG, the question of how to
obtain a problem kernel as defined in [DF99] is still open.

Enumeration of Steiner trees. A nice extension of the Steiner approach
would be the enumeration of all optimal Steiner trees. As the number of
optimal Steiner trees could be exponential in the size of the network, the
enumeration itself and the extraction of information of all optimal solutions
yields new problems. An interesting question in this context is if there is a
compact representation of all optimal solutions analogously to the work of
Damaschke [Dam04]. Regarding the analysis of biological networks, further
information about vertices could be obtained by considering if it is part of
more than one optimal solution, or if there is an optimal solution without it.

Further applications for the Steiner approach Until now the Steiner
approach was mainly used for the analysis of interaction or protein inter-
action networks. Therefore, it could be interesting to investigate further
applications, i.e. on other types of biological networks.

Parameterized complexity of Maximum-Weight Connected Sub-
graph. An interesting open question is the parameterized complexity of
MWCS w.r.t. the number of nodes as parameter. As discussed in Sec-
tion 4.5.3, the color-coding based approach that helped to a breakthrough
for G-STG and GV-STG seems not to be applicable to MWCS.

Implementation of new algorithms for G-STG and GV-STG From
a biological point of view it seems to be important to implement the intro-
duced algorithms and investigate how useful they are for real life applications.
Furthermore, it could be useful to study possible combination of G-STG and
GV-STG for applications to networks with edge and vertex weights, i.e.
protein interaction networks with edge weights based on reliability of an
interaction and vertex weights depending on differential expression data.

Bibliography

[AAA+05] C. Alfarano, C. E. Andrade, K. Anthony, N. Bahroos, et al. The
Biomolecular Interaction Network Database and related tools
2005 update. Nucleic Acids Research, 33(Database issue):D418-
24, Jan 2005. PubMed. 14, 21

[AYZ95] N. Alon, R. Yuster, and U. Zwick. Color-coding. J.ACM,
42(4):844–856, 1995. 7, 65, 66, 71, 72

[BB05] C. Blum and M. J. Blesa. New metaheuristic approaches for
the edge-weighted k-cardinality tree problem. Computers and
Operations Research, 32:1355–1377, 2005. 62

[BE03] C. Blum and M. Ehrgott. Local search algorithms for the
k-cardinality tree problem. Discrete Applied Mathematics,
128:511–540, 2003. 62

[Bea84] J. E. Beasley. An algorithm for the Steiner problem in graphs.
Networks, 14:147–159, 1984. 27

[BP89] M. W. Bern and P. E. Plassmann. The Steiner problem with
edge lengths 1 and 2. Information Processing Letters, 32(4):171–
176, 1989. 25

[BST02] J. M. Berg, L. Stryer, and J. L. Tymoczko. Biochemistry. W.
H. Freeman, 5 edition, 2002. 12

[BUM06] J. Brimberg, D. Urošević, and Mladenović. Variable neighbor-
hood search for the vertex weighted k-cardinality tree problem.
European Journal of Operational Research, 171:74–84, 2006. 62

[Ces] Marco Cesati. Compendium of parameterized complex-
ity. http://bravo.ce.uniroma2.it/home/cesati/research/com-
pendium/. 74

92 Bibliography

[CK94] S. Y. Cheung and A. Kumar. Efficient quorumcast routing
algorithms. In Proceedings of IEEE INFOCOM 94, 1994. 61

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. The MIT Press, Cambridge, Mas-
sachusetts, 2 edition, 2001. 22, 32, 35

[Dam04] P. Damaschke. Parameterized enumeration, transversals, and
imperfect phylogeny reconstruction. In Proceedings of 1st IW-
PEC, volume 3162 of LNCS, pages 1–12. Springer, 2004. Long
version to appear in Theoretical Computer Science. 90

[DF99] R. G. Downey and M. R. Fellows. Parameterized Complexity.
Springer-Verlag, 1999. 9, 10, 63, 64, 74, 87, 90

[DP02] S. V. Daneshmand and T. Polzin. Extending reduction tech-
niques for the Steiner tree problem. In Algorithms - ESA 2002:
10th Annual European Symposium, volume 2461 of LNCS, pages
795–807. Springer, 2002. 26

[DPB+96] J. DeRisi, L. Penland, P. O. Brown, M. L. Bittner, et al. Use
of a cDNA microarray to analyse gene expression patterns in
human cancer. Nature Genetics, 14(4):457–460, 1996. 13

[DRS00] D-Z. Du, J. H. Rubenstein, and J. M. Smith, editors. Advances
in Steiner Trees. Kluwer Academic Publishers, 2000. 6

[Dui00] C. Duin. Advances in Steiner Trees, chapter "Preprocessing the
Steiner Problem in Graphs", pages 175–233. Kluwer Academic
Publishers, 2000. 6, 26

[DV89] C.W. Duin and A. Volgenant. Reduction tests for the Steiner
problem in graphs. Networks, 19:549–567, 1989. 6, 25, 26, 27,
28, 35

[DW72] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs.
Networks, 1:195–207, 1972. 6, 7, 21, 22, 74

[FH92] L. R. Foulds and H. W. Hamacher. A new integer programming
approach to (restricted) facilities layout problems allowing flex-
ible shapes. Technical Report 1992-3, University of Waikato,
Department of Management Science, 1992. 61

Bibliography 93

[FK94] U. Faigle and W. Kern. Computational complexity of some
maximum average weight problems with precedence constraints.
Operations Research, 42(4):688–693, 1994. 59, 61

[fPSM] Munich Information Center for Protein Sequences (MIPS).
http://mips.gsf.de/. 48

[FR99] J. Feldman and M. Ruhl. The Directed Steiner Network prob-
lem is tractable for a constant number of terminals. In 40th
IEEE Symposium on Foundations of Computer Science, pages
299–308, 1999. 21

[Gar96] N. Garg. A 3-approximation for the minimum tree spanning k
vertices. In Proceedings of the 37th IEEE Symposium on Foun-
dations of Computer Science, pages 302–309, 1996. 62

[GH97] N. Garg and D. Hochbaum. An O(log k) approximation algo-
rithm for the k minimum spanning tree in the plane. Algorith-
mica, 18:111–121, 1997. 61

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability.
W. H. Freeman and Company, 1979. 21, 43

[GK99] S. Guha and S. Khuller. Improved methods for approximat-
ing node weighted Steiner trees and connected dominating sets.
Information and Computation, 150:57–74, 1999. 35

[GMK+05] U. Güldener, M. Münsterkötter, G. Kastenmüller, N. Strack,
et al. CYGD: the Comprehensive Yeast Genome Database.
Nucleic Acids Research, 33 Database Issue:D364-8, Jan 2005.
14

[Hak72] S. L. Hakimi. Steiner’s problem in graphs and its applications.
Networks, 1:113–133, 1972. 24

[Hal04] M. Hallett. personal communication, April 2004. 7, 60

[HBH+04] J-D. J. Han, N. Bertin, T. Hao, D. S. Goldberg, et al. Evidence
for dynamically organized modularity in the yeast protein-
protein interaction network. Nature, 430:88–93, 2004. 43

[HJ93] H. W. Hamacher and K. Jörnsten. Optimal relinquishment ac-
cording to the norwegian petroleum law: A combinatorial opti-
mization approach. Technical Report 7/93, Norwegian School
of Economics and Business Administration, Bergen, 1993. 61

94 Bibliography

[HMWD04] Z. Hu, J. Mellor, J. Wu, and C. DeLisi. VisANT: an online
visualization and analysis tool for biological interaction data.
BMC Bioinformatics, 5:17, 2004. 15

[ILB04] J. Ihmels, R. Levy, and N. Barkai. Principles of transcriptional
control in the metabolic network of Saccharomyces cerevisiae.
Nature Biotechnology, 22(1):86–92, Jan 2004. 5, 16, 18, 22

[IOSS02] T. Ideker, O. Ozier, B. Schikowski, and A. F. Siegel. Discov-
ering regulatory and signalling circuits in molecular interaction
networks. Bioinformatics, 18:233–240, 2002. 5, 17, 18, 59, 60,
62, 63, 85, 86

[ITR+01] T. Ideker, V. Thorsson, J. A. Ranish, R. Christmas, et al. In-
tegrated genomic and proteomic analyses of a systematically
perturbed metabolic network. Science, 292(5518):929–34, May
2001. 5, 13, 17, 21, 53

[ITSH00] T. Ideker, V. Thorsson, A. F. Siegel, and L. E. Hood. Testing for
differentially-expressed genes by maximum-likelihood analysis
of micrarray data. Journal of Computational Biology, 7(6):805–
17, 2000. 13

[JMALO01] H. Jeong, S. P. Mason, Barabási A.-L., and Z. N. Oltvai. Lethal-
ity and centrality in protein networks. Nature, 411:41–42, May
2001. 39, 40

[KM98] T. Koch and A. Martin. Solving Steiner tree problems in graphs
to optimality. Networks, 32:207–232, 1998. 6, 26, 28

[KR95] P. Klein and R. Ravi. A nearly best-possible approximation al-
gorithm for node-weighted Steiner trees. Journal of Algorithms,
19:104–115, 1995. 6, 33

[KS90] E. Korach and N. Solel. Linear time algorithm for minimum
weight Steiner tree in graphs with bounded tree-width. Techni-
cal Report 632, Technion - Israel Institute of Technology, Com-
puter Science Department, Haifa, Israel, 1990. 24, 25

[LRR+02] T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, et al. Transcrip-
tional regulatory networks in Saccharomyces cerevisiae. Sci-
ence, 298(5594):799–804, Oct 2002. 5, 15, 16, 18, 21

Bibliography 95

[MRR05] D. Mölle, S. Richter, and P. Rossmanith. A faster algorithm
for the Steiner tree problem. Technical Report AIB-2005-04,
Department of Computer Science, RWTH Aachen, 2005. To
appear in STACS2006, Marseille, France, Feb 2006, Springer
LNCS. 24

[Nie06] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Ox-
ford University Press, 2006. 9, 63, 87

[NK04] M. Narayanan and R. Karp. personal communication, July
2004. 60

[Ott48] R. Otter. The number of trees. Annals of Mathematics, 2nd
Ser., 49(3):583–599, July 1948. 75

[PKO+05] P. Pagel, S. Kovac, M. Oesterheld, B. Brauner, et al. The MIPS
mammalian protein-protein interaction database. Bioinformat-
ics, 21(6):832–834, 2005. 14

[PS02] H. J. Prömel and A. Steger. The Steiner Tree Problem. Vieweg,
2002. 6, 23, 24

[PV02] T. Polzin and S. Vahdati. Using (sub)graphs of small width for
solving the Steiner problem. Technical report, MPI-I-2002-1-
001, 2002. 6, 25

[RSM+96] R. Ravi, R. Sundaram, M. V. Marathe, D. J. Rosenkrantz, and
S. S. Ravi. Spanning trees short or small. SIAM Journal on
Discrete Mathematics, 9(2):178–200, 1996. 61

[RZ00] G. Robins and A. Zelikovsky. Improved Steiner tree approxima-
tion in graphs. Proceedings of the 11th ACM-SIAM Symposium
on Discrete Algorithms, pages 770–779, 2000. 6, 25

[SF97] T. H. Stevens and M. Forgac. Structure, function, and regula-
tion of the vacuolar (H+)-ATPase. Annual Review of Cell and
Developmental Biology, 13:779–808, Nov 1997. 57

[SGR+99] D. E. Sterner, P. A. Grant, S. M. Roberts, et al. Functional or-
ganization of the yeast SAGA complex: distinct components
involved in structural integrity, nucleosome acetylation, and
TATA-binding protein interaction. Molecular and Cellular Bi-
ology, 19(1):86–98, Jan 1999. 57

96 Bibliography

[SIKS05] J. Scott, T. Ideker, R. M. Karp, and R. Sharan. Efficient al-
gorithms for detecting signaling pathways in protein interac-
tion networks. In Research in Computational Molecular Biology:
9th International Conference, RECOMB 2005, volume 3500 of
LNCS. Springer, 2005. 5, 8, 16, 18, 60, 62, 66, 86, 87

[SPB+05] M. S. Scott, T. Perkins, S. Bunnell, F. Pepin, D. Y. Thomas,
and M. Hallett. Identifying regulatory subnetworks for a set of
genes. Molecular and Cellular Proteomics, 4:683–692, 2005. 6,
8, 17, 18, 19, 20, 21, 29, 52, 53

[TM80] H. Takahashi and A. Matsuyama. An approximate solution
for the Steiner problem in graphs. Math. Japonica, 9:463–470,
1980. 25

[UdAR02] E. Uchoa, M. P. de Aragao, and C. C. Ribeiro. Preprocess-
ing Steiner problems from VLSI layout. Networks, 40(1):38–50,
2002. 26

[VZVK95] V. E. Velculescu, L. Zhang, B. Vogelstein, and K. W. Kinzler.
Serial analysis of gene expression. Science, 270(5235):484–7,
Oct 20 1995. 12

[WCF+01] E. Wingender, X. Chen, E. Fricke, R. Geffers, et al. The
TRANSFAC system on gene expression regulation. Nucleid
Acids Research, 29:281–283, 2001. 14, 21

[Win95] P. Winter. Reductions for the rectilinear Steiner tree problem.
Networks, 26:187–198, 1995. 26

[ZZ99] J. Zhu and M. Q. Zhang. SCPD: A promotor database of yeast
Saccharomyces cerevisiae. Bioinformatics, 15:607–611, 1999.
15

[ZZV+97] L. Zhang, W. Zhou, V. E. Velculescu, S. E. Kern, et al.
Gene expression profiles in normal and cancer cells. Science,
276(5316):1268–72, May 1997. 13

	Introduction
	Preliminaries and notation
	Fixed-parameter tractability

	Biochemical networks
	Biochemical basics
	Differentially expressed genes
	Databases
	Network types
	Protein interaction network
	Metabolic network
	Transcriptional regulatory network
	Interaction network

	Summary

	 Steiner Trees and biological networks
	The Steiner method for biological networks
	The Steiner Tree in Graphs problem
	Algorithms
	Reduction rules

	Vertex-Weighted Steiner Tree in Graphs problem
	Algorithms
	Reduction rules

	Network Properties
	Degree distribution
	Diameter
	Separability

	Software: The Steiner Package
	Input, output, and options
	Selection of graph-theoretical data reduction rules
	Biological preprocessing
	Conflicts of data reduction and preprocessing
	Description and usage of software
	Results and examples

	Parameterized complexity of Steiner tree related problems
	Problem definitions
	Biological relevance of G-STG and GV-STG
	Parameterized complexity
	Weighted Tree Coloring
	Algorithm for the Weighted Colorful Tree problem
	Finding non-colored subtrees
	Extensions: Vertex weights and constructive solutions

	Parameterized hardness and tractability
	Number of nodes of the subgraph as a parameter
	Weight as a parameter
	Parameterized complexity of MWCS
	Discussion

	Conclusion
	Summary
	Open problems and challenges

