
Effective and Efficient Data Reduction for the
Subset Interconnection Design Problem?

Jiehua Chen1, Christian Komusiewicz1, Rolf Niedermeier1, Manuel Sorge1,
Ondřej Suchý2, and Mathias Weller3

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin,
{jiehua.chen, christian.komusiewicz, rolf.niedermeier,

manuel.sorge}@tu-berlin.de
2 Department of Theoretical Computer Science, Czech Technical University in

Prague, ondrej.suchy@fit.cvut.cz
3 Département Informatique, LIRMM, mathias.weller@lirmm.fr

Abstract. The NP-hard Subset Interconnection Design problem
is motivated by applications in designing vacuum systems and scalable
overlay networks. It has as input a set V and a collection of subsets
V1, V2, . . . , Vm, and asks for a minimum-cardinality edge set E such that
for the graph G = (V,E) all induced subgraphs G[V1], G[V2], . . . , G[Vm]
are connected. It has also been studied under the name Minimum Topic-
Connected Overlay. We study Subset Interconnection Design
in the context of polynomial-time data reduction rules that preserve
optimality. Our contribution is threefold: First, we point out flaws in
earlier polynomial-time data reduction rules. Second, we provide a fixed-
parameter tractability result for small subset sizes and tree-like output
graphs. Third, we show linear-time solvability in case of a constant num-
ber m of subsets, implying fixed-parameter tractability for the param-
eter m. To achieve our results, we elaborate on polynomial-time data
reduction rules (partly “repairing” previous flawed ones) which also may
be of practical use in solving Subset Interconnection Design.

1 Introduction

We study relevant tractable cases of the following NP-complete decision problem:

Subset Interconnection Design (SID)
Input: A hypergraph H = (V,F), k ∈ N.
Question: Is there a graph G = (V,E) such that |E| ≤ k and for
each F ∈ F the induced subgraph G[F] is connected?

? JC was supported by Studienstiftung des Deutschen Volkes, MS and MW were
supported by Deutsche Forschungsgemeinschaft (projects NI 369/12 and NI 369/9),
and part of the work of OS and MW was done while they were affiliated with
TU Berlin. This manuscript is to appear in Proceedings of the 24th International
Symposium on Algorithms and Computation (ISAAC 2013), Hong Kong, Hong
Kong, December 2013. c© Springer.

Throughout this work, we refer to graphs G in which G[F] is connected for
each F ∈ F as solutions. Solutions with a minimum number of edges are called
optimal. Although we present our results for the decision version of the problem,
our positive algorithmic results can be easily adapted to its optimization version.

SID has applications in the design of vacuum systems [5, 6], in the design of
scalable overlay networks [2, 11, 14], in the design of reconfigurable interconnec-
tion networks [7, 8], and in inferring a most likely social network [1]. Indeed, the
respective research communities seemed largely unaware of each other’s work, for
instance leading to multiple NP-hardness proofs. Du [4] seemed to be the first to
have formally defined the problem and claimed NP-hardness; to the best of our
knowledge, the first published NP-hardness proof is due to Du and Miller [6]. SID
has been independently studied under the name Minimum Topic-Connected
Overlay by the “scalable overlay networks community” [2, 11, 14] and under
the name Interconnection Graph Problem by the “reconfigurable inter-
connection systems community” [7, 8]. Moreover, the “social network inference
community” [1], who additionally imposes edge costs, refers to this more general
problem as Network Inference. The term “topic-connected” in Minimum
Topic-Connected Overlay refers to the desired property of overlay networks
that agents interested in some particular topic should be able to inform each
other about updates concerning this topic without involving other agents [14].

Our main focus is on the problem-specific parameters “size d := maxF∈F |F |
of the largest hyperedge” and “number m of hyperedges” in the given hyper-
graph H. We perform a parameterized complexity analysis with respect to these
parameters. Notably, we always have d ≤ k + 1, where k is the number of edges
of the constructed solution. In particular, our core working machinery is the de-
velopment of numerous polynomial-time data reduction rules, thereby extending
and improving some previous work. We use n to denote the number |V | of ver-
tices in the input hypergraph and |H| to denote

∑
F∈F |F |.

Previous results. As mentioned before, SID has been independently studied in
different communities. Several NP-hardness proofs have appeared [2, 6, 7].4 NP-
hardness even holds for hypergraphs with d = 3 [8, 11], while d ≤ 2 allows
for polynomial-time solvability [11]. There also has been intense study of the
polynomial-time approximability, providing various logarithmic-factor approxi-
mation algorithms [1, 2, 11] and inapproximability results (implying that loga-
rithmic-factor approximation algorithms are optimal) [1, 11]. The currently best
exact algorithm for SID has a running time of O(n2k/4k +n2) [11]. In addition,
in a series of papers it has been shown that SID can be solved in polynomial
time if 2 ≤ m ≤ 4 [4, 15, 16]. A variant of SID where the edges incur costs
and where the solution is restricted to be a tree has been studied in the con-
text of communication network design; three variations of this tree-construction
problem have been shown polynomial-time solvable [12]. Finally, we mention in
passing that in the context of overlay networks it is of specific interest to search

4 The reduction in [2] actually only shows NP-hardness of the problem aiming to
minimize the maximum degree of a solution.

for solutions with small maximum and small average vertex degree [2, 14]; the
latter is achieved by SID.

Our contributions. We start by revealing a serious bug in “plausible” data re-
duction rules (two very similar rules) used in previous work [8, 11], constructing
a counterexample showing their incorrectness. Based on this, we provide refined
and completely new data reduction rules, assuring their correctness and effec-
tiveness. Almost all of our data reduction rules work in a parameter-independent
fashion. Making decisive use of the developed data reduction rules, we show that
SID can be solved in dO(df) · poly(|H|) time, where f denotes the size of a mini-
mum feedback edge set of an optimal solution G, that is, the minimum number
of edges whose removal makes G acyclic. Our result shows that SID becomes
tractable if the solution is required to be almost a tree (compare this with the
tree requirement in related work [12]). Furthermore, a simple calculation shows
that whenever f ≤ (n− 1)/9d the exponential term in our algorithm is smaller
than the one in the O(n2k/4k + n2)-time algorithm given by Hosoda et al. [11].
In case that d ≤ 4 we further show that SID can be reduced in polynomial time
to an equivalent instance of O(f) vertices, known as “polynomial-size problem
kernel” in parameterized algorithmics. Finally, improving and generalizing pre-
vious work [4, 15, 16], we show that SID can be solved in linear time if the input
hypergraph contains only a constant number of hyperedges. This implies that
SID is fixed-parameter tractable with respect to the parameter m. Due to lack
of space, most proofs are deferred to a full version of the paper.

2 Preliminaries

The concept of parameterized complexity was pioneered by Downey and Fel-
lows [3] (see also [9, 13]). A parameterized problem is a language L ⊆ Σ∗ ×Σ∗,
where Σ is an alphabet. The second component is called the parameter of the
problem. Typically, the parameter or the “combined” ones are non-negative in-
tegers. A parameterized problem L is fixed-parameter tractable (fpt) if there is
an algorithm that decides whether (x, k) ∈ L in g(k) · |x|O(1) time, where g is
an arbitrary computable function depending only on k. A core tool in the devel-
opment of fixed-parameter algorithms is polynomial-time preprocessing by data
reduction [10]. Here, the goal is to transform a given problem instance (x, k) in
polynomial time into an equivalent instance (x′, k′) with parameter k′ ≤ k such
that the size of (x′, k′) is upper-bounded by some function g only depending on k.
If this is the case, we call the instance (x′, k′) a (problem) kernel of size g(k).

The data reduction is usually presented as a series of reduction rules, that
is, polynomial-time algorithms that take as input an instance of some decision
problem and also produces one as output. A reduction rule is correct if for each
input instance I, the corresponding output instance of the rule is a yes-instance
if and only if I is a yes-instance. Search tree algorithms can be described by
branching rules that reduce one instance of a problem to several instances of the
same problem; a branching rule is correct if the original instance is a yes-instance
if and only if at least one of the constructed instances is a yes-instance.

Let V be a set and F be a family of subsets of V . We call H = (V,F) a
hypergraph with vertex set V and hyperedge set F . Unless stated otherwise, we
assume all hypergraphs to not contain singleton hyperedges, empty hyperedges
or multiple copies of the same hyperedge since they are not meaningful for SID,
and searching for and removing them can be done without increasing our running
times. We call v ∈ V and F ∈ F incident if v ∈ F . We denote by F(v) the set
of all hyperedges that are incident with v. If u, v ∈ V and F(v) ⊆ F(u) then we
say that u covers v. Vertices that cover each other are called twins; a maximal
set of twins is called twin class. The subhypergraph induced by V ′ is the hyper-
graph H[V ′] := (V ′,F ′) where F ′ = {F ∈ F | F ⊆ V ′}. By removing a vertex v
from H, we mean taking the hypergraph H ′ = (V \{v}, {F \{v} | F ∈ F}). A hy-
perwalk is an alternating sequence of vertices and hyperedges starting and ending
with a vertex and such that succeeding elements are incident with each other. A
hypergraph is connected if there is a hyperwalk between every pair of vertices.

For graphs G = (V,E) with vertex set V and edge set E, we use E(G) to
denote the edge set E of graph G. We denote by G[V ′] the subgraph of G induced
by V ′. We also use G−V ′ as a shorthand for G[V \V ′]. The feedback edge set of
a graph G is a minimum-size set of edges whose removal makes G a forest. If G
is connected, then the size of a feedback edge set is |E| − |V |+ 1.

3 Fundamental Observations

In this section, we show that a previously proposed data reduction rule for SID
is incorrect. We also show some properties of SID and some data reduction rules
that are used in our algorithms.

A very natural approach to identify edges of optimal solutions is to look for
vertices u and v such that u covers v, that is, F(v) ⊆ F(u). The following shows
that degree-one vertices of the solution are adjacent to vertices that cover them.

Observation 1. If the hypergraph H = (V,F) has a solution G such that
some u ∈ V has only one neighbor v in G, then v covers u.

It is thus tempting to devise a reduction rule that adds an edge between such
vertices: creating a degree-one vertex should be optimal since every vertex needs
at least one incident edge. Indeed, such a reduction rule was proposed for vertex
pairs u, v that are twins, that is, they are in the same hyperedges [8], or where
one covers the other [11]. The variant of these reduction rules that is applicable
less often reads as follows.

Rule 1. If vertices u and v are twins, that is F(u) = F(v), then remove u
from H and decrease k by one.

Unfortunately, this rule is not correct, as a counterexample shows.

Lemma 1. There is a yes-instance (H = (V,F), k) containing twins u and v
such that Rule 1 applied to u and v yields a no-instance.

Proof. Let f ≥ 3 be an arbitrary integer. Consider the hypergraph H = (V,F),
with vertex set V = {u, v, a1, . . . , af , b1, . . . , bf} and hyperedge set F which is
the union of the following sets of hyperedges:

F1 = {{ai, bi} | i ∈ {1, . . . , f}}, F2 = {{u, v, ai, bi} | i ∈ {1, . . . , f}},
F3 = {{u, v, ai, bi, aj} | i, j ∈ {1, . . . , f}, i 6= j}, and

F4 = {{u, v, ai, bi, bj} | i, j ∈ {1, . . . , f}, i 6= j}.

Note that the graph G = (V,E) with E := F1 ∪{{ai, u}, {bi, v} | i ∈ {1, . . . , f}}
is a solution for H containing 3f edges. Hence, (H, 3f) is a yes-instance.

Now, let (H ′ = (V ′,F ′), 3f − 1) be an instance that results from (H, 3f) by
applying Rule 1 to u and v, that is, removing u from H and decreasing the solu-
tion size by one. Then, V ′ = V \{u} and F ′ consists of the following hyperedges:

F1 = {{ai, bi} | i ∈ {1, . . . , f}}, F ′2 = {{v, ai, bi} | i ∈ {1, . . . , f}},
F ′3 = {{v, ai, bi, aj} | i, j ∈ {1, . . . , f}, i 6= j}, and

F ′4 = {{v, ai, bi, bj} | i, j ∈ {1, . . . , f}, i 6= j}.

We show that every solution for H ′ has at least 3f edges and, thus, (H ′, 3f−
1) is a no-instance. First, every solution for H ′ contains the f edges correspond-
ing to the size-two hyperedges of F1. Furthermore, due to the hyperedges in
F ′2, for each i ∈ {1, . . . , f}, either {v, ai} or {v, bi} is in any solution. By the
symmetry between ai and bi in the created hypergraph, assume without loss of
generality that an optimal solution contains the edge {v, bi} for all i ∈ {1, . . . , f}.
Now, let G′ = (V ′, E′) be such a solution for H ′ and let A1 = {ai | {v, ai} /∈ E′}
be the set of ais that are not adjacent to v in G′ and let A2 denote the remain-
ing ais. Now if A1 = ∅, then G′ contains at least 3f edges. We show that in case
A1 6= ∅ the graph G′ also has at least 3f edges. Assume that G′ is optimal and
that every optimal solution has at least g > 0 vertices in A1. For every hyper-
edge F = {v, ai, bi, aj} with aj ∈ A1 and i ∈ {1, . . . , f} \ {j}, G′ has an edge
between aj and {v, ai, bi} since G′[F] is connected. Note that if G′ contains the
edge {bi, aj}, then we can replace this edge by {v, aj}: The hyperedge F is the
only hyperedge that contains {bi, aj} and does not already induce a connected
subgraph. Clearly, G′[F] can also be made connected by adding {v, aj} instead.
This implies an optimal solution with g − 1 vertices in A1, contradicting our
choice of g. Hence, G′ contains no edges {bi, aj} with i 6= j. Consequently, in
order to make each {v, ai, bi, aj} ∈ F ′4 with aj ∈ A1 connected, there is an edge
between ai and aj .

Hence, G′ has g ·(f−g) edges between A1 and A2,
(
g
2

)
edges between vertices

in A1 and another f − g edges between v and A2. Altogether the total number
of edges in G′ is thus at least 2f + g · (f − g) +

(
g
2

)
+ f − g ≥ 3f . This implies

that (H ′, 3f − 1) is a no-instance. ut

With some additional conditions, rules similar to Rule 1 are correct (Rules 2
to 4, 6, and 8 below). First, if a vertex u is adjacent to some vertex v covering u
in an optimal solution, then there is an optimal solution that shifts some or all
other edges incident with u to v.

Lemma 2. Let u, v be two vertices in a hypergraph H with v covering u. If H
has an optimal solution G containing the edge {u, v}, then H also has an optimal
solution with u being adjacent only to v.

The above lemma immediately implies the following reduction rule.

Rule 2. If hypergraph H contains vertices u, v such that v covers u and there
is an optimal solution G containing the edge {u, v}, then remove u from H and
decrease k by one.

Note that the correctness of Rule 2 together with Lemma 1 implies that there
are instances in which twins or vertices that cover each other are not adjacent
in any optimal solution.

In the counterexample to Rule 1, there are only two twins and they are
contained in hyperedges of size five, that is, the size-five hyperedges containing
these two vertices have three other “unrelated” vertices. In the following, we
show that this is tight, that is, if in each hyperedge that contains some u, all
except two unrelated vertices cover u, then the reduction rule is correct.

Rule 3. If there are vertices u and v1, . . . , vq such that F(u) ⊆ F(vi) for every
i ∈ {1, . . . , q} and for each hyperedge F ∈ F(u) we have |F | ≤ q + 3, then
remove u from H and decrease k by one.

Lemma 3. Rule 3 is correct and can be applied exhaustively in O(n · |H|) time.

Proof (Sketch). Let Q = {v1, . . . , vq} and N the set of neighbors of u in an
optimal solution G. If N ∩ Q 6= ∅ then the correctness follows from Rule 2.
Otherwise, if N contains a neighbor w of some v ∈ Q in G, then removing {u,w}
and adding {u, v} yields another optimal solution and we can apply Rule 2. If
N contains no neighbor of any v ∈ Q we obtain |F ∩ N | ≤ 1 for all F ∈ F(u)
because of the size bound on F . Hence, removing all edges incident with u and
adding to u a single edge to a vertex in Q does not disconnect any F ∈ F(u).

The running time proof is deferred to a full version of the paper. ut

As a corollary of Lemma 3, we also obtain correctness of the following rule since
it is a special case of Rule 3. This rule will be useful in the next section.

Rule 4. If there are two vertices u and v such that F(u) ⊆ F(v) and |F | ≤ 4
for each hyperedge F ∈ F(u), then remove u from H and decrease k by one.

Note that the condition |F | ≤ 4 in Rule 4 is also tight in the sense that if u is
incident with hyperedges of size at least five, this rule is not correct (Lemma 1).

4 Data Reduction Rules for Sparse Solutions

In this section, we present a set of reduction rules whose aim is to remove parts
of the instance where optimal solutions can be identified in polynomial time. In
particular, we aim at finding structures that either produce tree-like parts or
long degree-two paths in the solution. We stress that our data reduction rules
are applicable regardless of the structure of an optimal solution. We merely use
the size of its feedback edge set to provide formal performance guarantees.

4.1 Problem Kernel for f and d ≤ 4

We now describe how we can remove all but O(f) vertices from a SID instance
with d ≤ 4 in O(n ·m3) time by using Rule 4 and an additional reduction rule.
Basically, the parameter f upper-bounds the number of vertices that are in cycles
and have degree at least three, while Rule 4 ensures that there are no degree-one
vertices in solutions. To get an upper bound on the number of vertices, we also
have to deal with long paths. This is the purpose of Rule 5, which is also needed
in Section 4.2 to deal with larger hyperedges. Hence, this rule is more general
than needed for d ≤ 4.

Rule 5. Let (H = (V,F), k) be an instance of SID. If H contains a vertex set
P := {p0, . . . , p2d} with incident hyperedge set F ′ :=

⋃
p∈P F(p) such that

1. no pi ∈ P covers any pj ∈ P with j 6= i,
2. for each F ∈ F ′ we have F ∩ P = {pi, . . . , pj} for some 0 ≤ i ≤ j ≤ 2d,
3. for each F ∈ F ′ with F ∩{p0, p2d} = ∅, and for every vertex v ∈ F \P , there

is a vertex p ∈ P that covers v, and
4. there is no hyperedge F ∈ F such that F ∩ P = {pi} for any 0 < i < 2d,

then for every F ∈ F ′ with F ∩{p0, p2d} = ∅, remove all vertices in F \P from H
and decrease k by their number. Furthermore, remove the vertices p2, . . . , p2d−2
from H and decrease k by 2d− 2.

Intuitively, Conditions 1 and 2 indicate that a solution for such a hypergraph
contains a long path and Condition 3 ensures that all vertices not in the path
can be attached to it in a simple way.

Next, we give two observations that we need in the correctness proof and in
the analysis of the running time of Rule 5. The first observation is about the
structure of the hyperedges along the presumed path containing P .

Observation 2. Let H be a hypergraph and P ⊆ V as in Rule 5. For every 0 <
i < 2d there is a hyperedge F+

i such that pi−1 /∈ F+
i and {pi, pi+1} ⊆ F+

i

and also a hyperedge F−i such that {pi−1, pi} ⊆ F−i and pi+1 /∈ F−i . Moreover,
there is a hyperedge F−0 such that F−0 ∩ P = {p0} and a hyperedge F+

2d such
that F+

2d ∩ P = {p2d}.

The second observation provides a lower bound for the number of edges in solu-
tions for connected subhypergraphs.

Observation 3. Let H = (V,F) be a hypergraph and let G be a solution for H.
If the subhypergraph H[V ′] induced by a vertex subset V ′ ⊆ V is connected,
then |E(G[V ′])| ≥ |V ′| − 1.

Using these observations we can prove the correctness of Rule 5.

Lemma 4. Rule 5 is correct and it is possible to find an application of Rule 5
or to decide that it does not apply to the hypergraph in O(m3d3) time.

We now derive an upper bound on the number of vertices in reduced instances.
As mentioned before, we use Rule 5 in Section 4.2, where we also need a similar
upper bound on the number of vertices. However, the preconditions of Rule 5

will be satisfied here by Rule 4 and later by a different rule. Hence, we introduce
a “cleared”-notion for hypergraphs that will be ensured by these rules. To state
our results conveniently, we first introduce another definition.

Definition 1. The 2-core of a graph G is the uniquely defined induced subgraph
of G with maximum number of vertices and minimum vertex-degree two.

Definition 2. We say that a hypergraph H = (V,F) is cleared if there is an
optimal solution G for H such that each vertex of degree at least two is in the
2-core of G and, furthermore, for each P := {p0, . . . , p2d} with P ⊆ V and
F ′ :=

⋃
p∈P F(p) that satisfy Conditions 1, 2, and 3 of Rule 5, it holds that H

and P also satisfy Condition 4.

It turns out that Rule 4 “clears hypergraphs”:

Lemma 5. Let H = (V,F) be a hypergraph with d ≤ 4 that is reduced with
respect to Rule 4. Then, H is cleared.

We now bound the size of reduced instances. We also use this bound in Section 4.2
and, hence, prove it in a slightly more general form than needed for d ≤ 4.

Lemma 6. Let (H, k) be a yes-instance of SID such that H is connected,
cleared, and reduced with respect to Rule 5. Then, there is a solution G = (V,E)
for (H, k) such that the 2-core of G has at most (9d − 1)(f − 1) vertices and,
hence, at most 9d · f edges.

Using Lemmas 5 and 6, and combining them with the observation that hyper-
graphs that are reduced with Rule 4 have solutions without degree-one vertices,
we now obtain that exhaustively applying Rules 4 and 5 yields a polynomial-size
problem kernel for SID parameterized by the parameter f , when d ≤ 4.

Theorem 1. An instance of SID with d ≤ 4 can be reduced to an equivalent
one with at most 35(f − 1) vertices in O(n ·m3) time.

4.2 A Fixed-Parameter Algorithm for f and d

Our polynomial-time data reduction in the last section does not generalize easily
to arbitrary d, but, using an additional reduction rule, we can obtain the same
vertex-bound of the 2-core of a solution. However, many degree-one vertices may
still remain and it seems unclear how to remove them for d ≥ 5.

Nevertheless, using the bounded 2-core in solutions, we obtain a branching
algorithm with running time O(dO(d·f) · m2 + n · m3 · d3). The algorithm first
applies Rule 5 and Rule 6 (below) to simplify the structure of the solution that we
are looking for. Then, we apply a branching rule that branches into O(d2) cases
and finds at least one of the edges in the 2-core of a solution. If the branching
rule does not apply, then an optimal solution can be found in polynomial time.

First, to obtain the bound on the 2-core, we replace Rule 4 with Rule 6 to
clear the input hypergraph and to make Lemma 6 applicable.

Rule 6. Let H = (V,F) be a hypergraph and {u, u1, . . . , u`} ∈ F such that u
covers each ui. Then, remove the vertices u1, . . . , u` from H and decrease k by `.

We use Rule 6 to replace Rule 4 in clearing hypergraphs.

Lemma 7. Let H = (V,F) be a hypergraph that is reduced with respect to
Rule 6. Then, H is cleared.

Now, Lemma 6 is applicable to hypergraphs that are reduced with respect to
Rule 6 giving us that there is a solution with at most 9d · f edges in the 2-core.
Based on this lemma, we devise a branching algorithm for the parameter (d, f).
This algorithm creates a search tree where at each node of the search tree the
current instance consists of a hypergraph H, a partial solution G, and an in-
teger k′. The task is to find a solution G′ such that G′ is a supergraph of G,
all edges of G are within the 2-core of G′, and the 2-core of G′ has at most k′

edges more than G. In order to obtain a search tree whose size depends only
on d and f , we ensure that the search tree has depth at most 9d · f and that the
algorithm branches into at most

(
d
2

)
cases in each step.

In the following, we assume that G and H are reduced with respect to Rule 6.

Branching Rule 1. Let F be a hyperedge of H such that G[F] is disconnected
and let F0 ⊆ F denote the vertices in F that have degree zero in G. Furthermore,
G[F] cannot be made connected by adding for each u ∈ F0 an edge between u
and some vertex v ∈ F \ F0 that covers u. Then, branch into all possibilities to
add an edge to G[F], decreasing k by one.

Next, we show that, if Branching Rule 1 does not apply to any vertex, then we
can solve the instance by greedily assigning the remaining vertices.

Lemma 8. Let H be a hypergraph and let G be a graph such that there is a
solution for H that is a supergraph of G and Branching Rule 1 does not apply
to H and G. Then, an optimal solution for H can be computed in O(n ·m) time.

Combining all of the above, we arrive at the main result of this section.

Theorem 2. SID can be solved in O(dO(d·f) ·m2 + n ·m3 · d3) time.

5 Data Reduction for Instances with Few Hyperedges

In this section, we show that SID is fixed-parameter tractable with respect to
the number m of hyperedges. A previous fixed-parameter tractability result for
this parameter relied on Rule 1 [11, Theorem 8] and is therefore incorrect. In or-
der to restore this result, we need a slightly more involved rule whose correctness
proof makes use of the following upper bound on the number of edges needed in
the solution.

Lemma 9. Every instance with k ≥
(
2m

2

)
+ n is a yes-instance.

The upper bound provided by Lemma 9 grows exponentially in the number of
hyperedges. For many purposes, it would be practical to replace this exponential
dependence by a polynomial function. However, we note that there are instances
that require a solution with at least n+ 2Ω(m) edges (proof deferred).

Lemma 9 directly yields the following reduction rule.

Rule 7. If k ≥
(
2m

2

)
+ n, then answer “yes”.

The following rule removes vertices from large twin classes.

Rule 8. Let H be an instance that is reduced with respect to Rule 7. If there
is a twin class T in H with |T | > 4m + 7 · 2m + 1, then remove an arbitrary
vertex v ∈ T from H and decrease k by one.

To prove the correctness of Rule 8, we need to show that there is a solution G
that has the following property concerning its low-degree vertices.

Lemma 10. Let H = (V,F) be a hypergraph. There is a solution G = (V,E)
such that for each twin class T of H the graph G has
1. at most one vertex t ∈ T that has degree-one neighbors, and
2. at most one degree-two vertex t′ ∈ T .

Now, the main idea for the proof of correctness of Rule 8 is to show that a
solution G with k <

(
2m

2

)
+ n edges for a hypergraph H cannot contain too

many vertices of degree at least three. As a consequence, at least one vertex of T
has degree one in G and can be removed safely.

Exhaustive application of Rule 7 and Rule 8 yields a problem kernel for SID
parameterized by the number m of hyperedges. Moreover, this kernel can be
computed in linear time.

Theorem 3. An instance of SID can be reduced to an equivalent one of size at
most O(8m ·m) in O(|H|) time.

6 Conclusion

Our work leads to a number of interesting tasks for future research: We left
open the existence of a polynomial-size problem kernel for Subset Intercon-
nection Design parameterized by the number m of hyperedges; we conjecture
that there is none, however. Further, we did not resolve whether SID is fixed-
parameter tractable with respect to the feedback edge set size of the solution
alone. It would also be interesting to significantly improve on the straightfor-
ward exponential upper bound 2O(n2) when solving Subset Interconnection
Design parameterized by the number n of vertices. It seems also promising to
consider data reduction for the variant of Subset Interconnection Design
that asks to minimize the maximum degree instead of the average degree (see
Onus and Richa [14]). It is furthermore of practical interest to deal with edge
weights for the constructed network [12]; our methods only cover the unweighted
case. Given the numerous applications, an in-depth investigation of all relevant
parameters motivated by real-world instances, that is, performing a parame-
ter analysis for real-world instances, is promising from a practical and from a
theoretical side.

Acknowledgment. We thank Peter Damaschke for stimulating discussions and
for pointing us to the Subset Interconnection Designs problem.

References

[1] D. Angluin, J. Aspnes, and L. Reyzin. Inferring social networks from out-
breaks. In Proc. 21st ALT, volume 6331 of LNCS, pages 104–118. Springer,
2010.

[2] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Constructing scalable
overlays for pub-sub with many topics. In Proc. 26th PODC, pages 109–118.
ACM, 2007.

[3] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

[4] D.-Z. Du. An optimization problem on graphs. Discrete Appl. Math., 14
(1):101 – 104, 1986.

[5] D.-Z. Du and D. F. Kelley. On complexity of subset interconnection designs.
J. Global Optim., 6(2):193–205, 1995.

[6] D.-Z. Du and Z. Miller. Matroids and subset interconnection design. SIAM
J. Discrete Math., 1(4):416–424, 1988.

[7] H. Fan and Y.-L. Wu. Interconnection graph problem. In Proc. FCS 2008,
pages 51–55. CSREA Press, 2008.

[8] H. Fan, C. Hundt, Y.-L. Wu, and J. Ernst. Algorithms and implementation
for interconnection graph problem. In Proc. 2nd COCOA, volume 5165 of
LNCS, pages 201–210. Springer, 2008.

[9] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
[10] J. Guo and R. Niedermeier. Invitation to data reduction and problem

kernelization. ACM SIGACT News, 38(1):31–45, 2007.
[11] J. Hosoda, J. Hromkovič, T. Izumi, H. Ono, M. Steinová, and K. Wada. On

the approximability and hardness of minimum topic connected overlay and
its special instances. Theor. Comput. Sci., 429:144–154, 2012.

[12] E. Korach and M. Stern. The clustering matroid and the optimal clustering
tree. Math. Program., 98(1-3):385–414, 2003.

[13] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press, 2006.

[14] M. Onus and A. W. Richa. Minimum maximum-degree publish-subscribe
overlay network design. IEEE/ACM Trans. Netw., 19(5):1331–1343, 2011.

[15] T.-Z. Tang. An optimality condition for minimum feasible graphs. Applied
Mathematics - A Journal of Chinese Universities, pages 24–21, 1989. In
Chinese.

[16] Y. Xu and X. Fu. On the minimum feasible graph for four sets. Applied
Mathematics - A Journal of Chinese Universities, 10:457–462, 1995.

	Effective and Efficient Data Reduction for the Subset Interconnection Design Problem

