
Studies in Computational Aspects of Voting
— a Parameterized Complexity Perspective?

Dedicated to Michael R. Fellows on the occasion of his 60th birthday

Nadja Betzler, Robert Bredereck, Jiehua Chen, and Rolf Niedermeier

Institut für Softwaretechnik und Theoretische Informatik,
TU Berlin, Germany

{robert.bredereck, jiehua.chen, rolf.niedermeier}@tu-berlin.de

Abstract. We review NP-hard voting problems together with their sta-
tus in terms of parameterized complexity results. In addition, we survey
standard techniques for achieving fixed-parameter (in)tractability results
in voting.

1 Introduction

Once there is more than one alternative for a community to choose from, voting
comes into play. Different voters usually have conflicting preferences over the
alternatives, hence some voting protocol has to be used to reach a joint deci-
sion or, in other words, to aggregate preferences. Voting is part of the fields of
preference handling, decision making, and social choice. There are many voting
protocols whose pros and cons have been studied for centuries in such diverse
fields as philosophy, mathematics, political science, and economy. Recently, com-
puter science has entered the stage for several reasons. With the omnipresence
of the Internet and modern communication tools, applications such as auctions,
bids, ratings, and rankings have become an everyday business. All these are
related to voting scenarios. Moreover, the advent of intelligent multi-agent sys-
tems leads to numerous cases of preference aggregation. Inside computer science,
voting occurs in quite diverse areas, including planning problems in multi-agent
systems [ER91,ER97], spam detection [DKNS01a], databases [FKS03], bioin-
formatics [JSA08], and graph drawing [BBD09]. We refer interested readers to
a couple of surveys [BCE12,BEH+10,CELM07,Con10,FHH10,FHHR09a] and a
book [RBLR11, in German] for a general overview on voting in computer science.

Voting problems (winner determination being just the most basic one) come
in many different guises, often making the corresponding tasks computationally
challenging to solve. First of all, there are numerous different voting protocols
including Plurality, k-Approval, and Kemeny, to name just a few. Then, it may
happen that there are only incomplete voter preferences available, making the
determination of a possible or necessary winner hard. Moreover, questions such
as manipulation, control, or bribery often lead to NP-hard problems. The study
? Supported by the DFG, research project PAWS, NI 369/10.

of the computational complexity of voting problems was initiated by a seminal
series of papers of Bartholdi, Orlin, Tovey, and Trick [BO91,BTT89a,BTT89b].
Many voting problems turned out to be NP-hard. Actually, Bartholdi et al.
pointed out that in the context of voting, computational intractability may
sometimes be a desirable property. For instance, it is desirable to have a voting
protocol that is “resistant” against attacks such as manipulation or bribery.

Voting problems carry many natural parameters, obviously including the
number of candidates and the number of votes. There are real-world scenar-
ios for each of them having small values. Hence, the analysis of parameterized
computational complexity comes into play. To the best of our knowledge, this
fruitful line of research was explicitly initiated Christian, Fellows, Rosamond,
and Slinko [CFRS07] in a work concerned with lobbying. Moreover, a complex-
ity analysis for manipulating voting systems when the parameter “number of
candidates” is small was addressed by Conitzer, Sandholm, and Lang [CSL07].
In this survey, we try to review the state of the art and motivate the rapidly
developing field of parameterized complexity analysis for voting problems. See
Lindner and Rothe [LR08] for an early survey in this direction.

Our work is organized as follows. Section 2 introduces some basic concepts
and definitions related to both voting problems and parameterized complexity
analysis. In Section 3, we briefly review a number of prominent voting protocols
and some of their respective pros and cons. In Section 4, we survey in some
detail the state of the art concerning the multivariate complexity analysis for
Kemeny voting. This exhibits how many different parameters naturally occur
in a practically relevant voting problem, and how the tools of parameterized
complexity analysis can help to better understand the computational complex-
ity of an NP-hard voting problem. In Section 5, we present several NP-hard
voting problems and describe their status in terms of parameterized complex-
ity analysis. In Section 6, we describe applications of tools from parameterized
algorithmics that have been applied to gain fixed-parameter tractability results
for voting problems. Finally, in Section 7, we discuss the relevance and benefits
of parameterized (and multivariate) complexity analysis in voting scenarios and
conclude with numerous challenges for future research.

2 Preliminaries

Since we are talking about voting problems and their computational complexity,
we start with basic definitions from the context of voting. We assume familiarity
with classical computational complexity theory [Pap94,AB09], and we provide
some basic definitions concerning parameterized computational complexity the-
ory [DF99,FG06,Nie06].

Formally, an election (C, V) consists of a set C of m candidates (or, synony-
mously, alternatives) and a multiset V of n votes. If not stated otherwise, a vote
is a linear order (that is, a transitive, antisymmetric, and total relation) on C.
Sometimes we also call this a ranking over C. For example, for C = {a, b, c}, the
vote a �v b �v c expresses that a is the best-liked and c the least-liked candidate

2

in the vote v. We use ‘�’ instead of ‘�v’ if it is clear from the context which vote
we mean. For any two candidates a 6= b, let #(a, b) be the number of votes that
rank candidate a higher than candidate b in the considered election. A voting
protocol1 is a function that maps an election to a subset of candidates, the set of
winners. When one is interested in finding a uniquely determined winner (that
is, a one-element winner set), one refers to such a candidate as unique winner.
When allowing for a set of winners, the corresponding candidates are denoted
as co-winners.

Sometimes we also consider a more general definition of votes. There are sce-
narios where (complete) linear orders are not available. That is, some candidates
are not comparable in some votes, leading to incomplete votes. In such cases, our
votes are partial orders on the candidate set. A linear order v extends a partial
order w if w ⊆ v, that is, for any c1, c2 ∈ C one has c1 �w c2 ⇒ c1 �v c2. Con-
sider two candidates a, b ∈ C and an incomplete vote v ∈ V . If neither a �v b
nor b �v a, then we say the candidate pair {a, b} is undetermined in vote v.

Parameterized Complexity. The concept of parameterized complexity was pio-
neered by Downey and Fellows [DF99] (see also [FG06,Nie06] for more recent
textbooks). The fundamental goal is to find out whether the seemingly unavoid-
able combinatorial explosion occurring in algorithms to decide NP-hard problems
can be confined to certain problem-specific parameters. The idea is the follow-
ing: When such a parameter assumes only small values in applications, then
an algorithm with a running time that is exponential exclusively with respect
to the parameter may be efficient and practical. We now provide some formal
definitions.

Definition 1 (Parameterized Problem). A parameterized problem is a lan-
guage L ⊆ Σ∗×Σ∗, where Σ is an alphabet. The second component is called the
parameter of the problem.

We typically consider the special case of parameters which are non-negative
integers or “combined” parameters which are tuples of non-negative integers. For
instance, an obvious parameter in voting is the number of candidates. Thus,
typically L ⊆ Σ∗ × N, where a combined parameter can be interpreted as the
maximum of its integer components.

Definition 2 (Fixed-Parameter Tractability). A parameterized problem L
is fixed-parameter tractable if there is an algorithm that decides in f(k) · |x|O(1)

time whether (x, k) ∈ L, where f is an arbitrary computable function depend-
ing only on k. Correspondingly, FPT denotes the class of all fixed-parameter
tractable parameterized problems.
1 In this survey, we do not discuss the more general concepts of social choice func-
tions or social welfare functions. Note that by our definition of voting protocols,
every voting protocol is anonymous, that is, the voting protocol does not discrim-
inate among voters. We will only exemplarily discuss some other properties of the
considered voting protocols when necessary. For an overview about general concepts
and properties of voting protocols, we refer to the two handbooks on social choice
and welfare [ASS02,ASS10].

3

We stress that the concept of fixed-parameter tractability is different from
the notion of “polynomial-time solvability for constant k” since an algorithm
running in O(|x|k) time does not show fixed-parameter tractability. All problems
which can be solved in running time |x|f(k) for a computable function f form
the complexity class XP, where f : N → N is a function depending only on k.
Clearly, FPT ⊆ XP.

For many parameterized problems, fixed-parameter tractability could not be
shown. Downey and Fellows [DF99] developed a theory of (presumable) param-
eterized intractability. It comprises of a hierarchy of complexity classes coming
along with complete problems. This so-called W-hierarchy consists of the follow-
ing classes and interrelations:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[Sat]⊆ W[P] ⊆ XP.

In this survey, we only provide intractability results regarding the first two
levels of (presumable) parameterized intractability captured by the complexity
classes W[1] and W[2]. The containment W[1] ⊆ FPT would not imply P = NP
but the failure of the Exponential Time Hypothesis [IP01,IPZ01].2 It is com-
monly believed that W[1]-hard problems are not fixed-parameter tractable. To
show W[t]-hardness for any non-negative integer t, we introduce the following
reducibility concept.

Definition 3 (Parameterized Reduction). Let L,L′ ⊆ Σ∗ × N be two pa-
rameterized problems. A parameterized reduction from L to L′ consists of two
mappings φ : Σ∗ × N → Σ∗ and g : N → N, where for every x ∈ Σ∗ and k ∈ N
it holds that

– (x, k) 7→ φ(x, k) is computable in time h(k) · |x|O(1) with h : N→ N, and
– (x, k) ∈ L⇔ (φ(x, k), g(k)) ∈ L′.

Analogously to the case of NP-hardness, for any non-negative integer t, it
suffices to give a parameterized reduction from one W[t]-hard parameterized
problem X to a parameterized problem Y to show W[t]-hardness of Y . Contain-
ment of Y in W[t] can be shown by giving a reduction from Y to a problem
contained in W[t]. If there are parameterized reductions for two problems such
that each of them can be reduced to the other problem, we say that they are
FPT-equivalent.

Kernelization [Bod09,GN07] is an alternative way of showing fixed-parameter
tractability [CCDF97]. In a nutshell, it is a polynomial-time algorithm that trans-
forms an instance of a parameterized problem into an equivalent instance whose
size is bounded by a function of the parameter. This resulting instance is called
a problem kernel. Typically, kernelizations are based on several polynomial-time
executable data-reduction rules that help shrinking the instance size.

For more details about parameterized complexity theory we refer to the text-
books [DF99,FG06,Nie06] and a recent survey by Downey and Thilikos [DT11].
2 In a nutshell, the Exponential Time Hypothesis says that, for k ≥ 3, the NP-
complete k-SAT problem cannot be solved in time subexponential in the number
of variables.

4

Table 1. Hypothetical student rankings of TU Berlin (B), MIT (M), Oxford Uni-
versity (O), Tsinghua University (T) and ETH Zurich (Z) according to research in
parameterized complexity, salary, practicing English, and cultural activities, respec-
tively.

Criterion Institutions

Parameterized complexity B � O � M � T � Z
Salary Z � O � M � T � B
Practicing English M � O � B � Z � T
Cultural activities B � T � Z � M � O

3 Types of Voting Protocols

Suppose that a student decides to pursue his PhD in parameterized complexity
analysis. He gets five offers: From TU Berlin (B), MIT (M), Oxford Univer-
sity (O), Tsinghua University (T), and ETH Zurich (Z). He decides to select one
that is not only good in research but also offers a manifold of cultural activities,
as well as a good opportunity to polish his English. Last but not least, he needs
a decent income.

Depending on these different criteria, the five universities are ranked3. In the
field of parameterized complexity, TU Berlin is ranked first, followed by Oxford
University, MIT, and Tsinghua University. ETH Zurich is ranked last. As for
salaries, ETH Zurich makes the best offer, followed by Oxford University, MIT,
and Tsinghua University. TU Berlin offers the least. For practicing English, MIT
ranks first, followed by Oxford University, and then by TU Berlin. ETH Zurich is
ranked fourth and Tsinghua University last. With respect to cultural activities,
TU Berlin is ranked the best, followed by Tsinghua University, and then by
ETH Zurich. Oxford University is ranked last, just behind MIT. These rankings
are listed in Table 1.

The universities B, M, O, T, and Z can be seen as the candidates for an
election and the rankings in Table 1 as the votes on these candidates. Deciding
on an institution means aggregating the different rankings and deciding on the
winner of this election.

Applying different voting protocols to the same multiset of votes may lead to
different winners. Many of the most widely used voting protocols can be assigned
to one of the following two classes: scoring protocols and voting protocols based on
pairwise comparisons between candidates. In the following, we will look into these
two classes in some detail (Sections 3.1 and 3.2). In Section 3.3, we will take a look
at some additional voting protocols which fall into neither class. We illustrate
some common and popular voting protocols with the help of our PhD place
example. We emphasize that it would be beyond the scope of our survey to name

3 Clearly, these rankings are influenced by marketing and political pressure. In this
example, also a certain degree of bribery comes into play.

5

and discuss the properties (desirable and undesirable ones) of the various voting
protocols. For further information on this topic, or voting protocols in general,
we refer to the expositions of Arrow et al. [ASS02,ASS10], Gaertner [Gae09],
Nurmi [Nur87], Rothe et al. [RBLR11, in German], and Taylor [Tay05].

3.1 Scoring Protocols

In a (positional) scoring protocol, each candidate is assigned a certain number
of points from each vote depending on her position in this vote. A candidate is
called a winner if no other candidate gets a higher total sum of points.

Plurality. Plurality is perhaps the most widely used voting protocol. It is a
scoring protocol which assigns one point to the top-ranked candidate in each
vote, and zero points to all others. A candidate with the highest total score
belongs to the winner set. There may be multiple winners. In our PhD place
example, it is easily seen that the winning university is TU Berlin (2 points) if
we use the Plurality protocol to make the decision.

Plurality is very simple. However, it has some shortcomings. For example, it
is often criticized for considering only the topmost candidate of each vote and
completely disregarding the information about other candidates. For this reason
voters sometimes do not submit their true preferences if they know that their
most preferred candidate has only a small chance to win. Suppose that there is
an election on three candidates, a, b, and c, with

two votes a � b � c,
four votes c � b � a, and
three vote b � a � c.

According to the Plurality voting protocol, candidate c wins with four points.
However, if the first two voters exchange the positions of candidates a and b
in their votes such that they submit b � a � c instead of a � b � c, then
candidate b wins with five points. This is a better outcome for them, since they
prefer candidate b to candidate c.

k-Approval. Occasionally, a voter has more than one favorite candidate. The
k-Approval voting protocol gives the possibility to “approve” k candidates: The
first k candidates in a vote get one point each. Thus, Plurality is the same as
1-Approval. In our example, using 2-Approval, one would select Oxford Univer-
sity (3 points) for a PhD position, which intuitively seems to be a good com-
promise, since three of four criteria are ranking Oxford University in the second
position.

Veto. Another simple scoring protocol is Veto. It assigns zero points to the last
candidate and one point to each of the other candidates in each vote. Once
again, every candidate with the highest sum of points wins. Using Veto, the
PhD place example will result in selecting MIT (4 points). Veto is the same as
(m− 1)-Approval, where m is the total number of candidates.

6

Borda. A prominent voting protocol is Borda voting.4 Borda voting directly
translates the position of each candidate in a vote into the number of points she
gets. For each vote, Borda voting assigns zero points to the candidate ranked
last, one point to the candidate ranked last but one, etc., and the highest-ranked
candidate in each vote is assignedm−1 points. Once again, every candidate with
the highest total score wins. According to Borda voting, TU Berlin (10 points)
is the winner in the PhD place example.

Determining the set of winners using any of the scoring protocols described
above can be easily done in time polynomial in the input size.

3.2 Voting Protocols Based on Pairwise Comparisons

Comparison-based voting protocols date back to the 13th century. Ramon Lull,
who first came up with Borda voting, devised a voting protocol which takes into
account pairwise comparisons between any two candidates. Today, this is known
as the Condorcet method [dC85].5

Definition 4 (Condorcet winner). A candidate is the Condorcet winner if
she is preferred to any other candidate in more than half of the votes.

Obviously, deciding whether a candidate is the Condorcet winner can be
done efficiently, that is, in polynomial time. However, not every election has a
Condorcet winner. For instance, in the PhD place example, there is no Con-
dorcet winner since no institution has an absolute majority of votes which pre-
fer it to any other institution: TU Berlin beats both, Tsinghua University and
ETH Zurich by 3-to-1; TU Berlin and Oxford University, TU Berlin and MIT
as well as Oxford University and MIT are tied 2-to-2. The pairwise comparisons
of every two candidates are shown in Table 2.

There is a close relation between directed graphs and voting protocols based on
pairwise comparisons. More precisely, for each election there is a majority graph
which is defined as follows:

Definition 5 (Majority Graph). The majority graph of an election E =
(C, V) is a directed graph whose vertices are the candidates and there is an
arc from vertex v to vertex w if and only if more than half of the votes prefer
candidate v to candidate w. An arc from v to w is labeled with “x : y” which
means that x votes prefer v to w, and y votes prefer w to v.

4 The Borda voting protocol was invented independently several times. It was first
described by Ramon Llull, a 13th century Majorcan writer and philosopher. It is
now named after Jean-Charles de Borda, a French mathematician, physicist, political
scientist of the 18th century [dB81].

5 Named after the 18th-century French philosopher Marie Jean Antonie Nicolas de
Caritat, Marquis de Condorcet.

7

Table 2. Pairwise comparisons in the PhD place example

Candidate pairs (x, y)
votes with # votes with

x � y y � x

(B, O) 2 2
(B, M) 2 2
(B, T) 3 1
(B, Z) 3 1
(O, M) 2 2
(O, T) 3 1
(O, Z) 2 2
(M, T) 3 1
(M, Z) 2 2
(T, Z) 2 2

B O M

TZ

3 : 1
3 : 1

3 : 1
3 : 1

Fig. 1. The majority graph of our PhD place example.

Many voting problems (especially when comparison-based voting protocols
are involved) can be considered as directed (weighted) graph problems. For ex-
ample, if there is a vertex with exactly m − 1 outgoing arcs with m being the
number of candidates, then the corresponding candidate is the Condorcet win-
ner. As we can easily see from the majority graph of our example in Figure 1,
no vertex with out-degree four exists. This meets with the fact that there is no
Condorcet winner in our PhD place example.

Although the existence of a Condorcet winner cannot be guaranteed, the
Condorcet winner for an election is always unique if it does exist. Many voting
protocols are designed to choose a candidate as the winner who is “closest” to the
Condorcet winner. In the following, we will take a closer look at five well-known
comparison-based voting protocols (Dodgson, Kemeny, Young, Copelandα, and
Maximin [Dod76,Kem59,You77,Cop51,Wal49,Fis77]) which all fulfill the Con-
dorcet principle, that is, the Condorcet winner for an election will be selected as
the winner if she exists. The winner determination problems for the first three
voting protocols are NP-hard, while the last two can be solved efficiently, that
is, in time polynomial in the input size.

Dodgson Voting. In his work “A Method of Taking Votes on More than Two Is-
sues” [Dod76], the English writer, mathematician, and logician Charles Lutwidge

8

Dodgson (better known as Lewis Carroll) proposed selecting the winner set as
follows: Any candidate requiring the minimum number of swaps between two
neighboring candidates to become a Condorcet winner is considered as a win-
ner. Given an election and a non-negative integer k ∈ N, determining whether
a candidate can become a Condorcet winner with at most k swaps in the given
votes is NP-complete [BTT89b]. This problem is called Dodgson Score. In
the PhD place example, the Dodgson score of TU Berlin is 2: By exchanging
the positions of TU Berlin and Oxford University, and then the positions of
TU Berlin and MIT, the ranking with respect to “Practicing English” turns into
B � M � O � Z � T and TU Berlin becomes the Condorcet winner. In fact,
this is the fewest number of swaps needed to let the PhD place example have
a Condorcet winner. Finally, we remark that generalized winner determination
for Dodgson is complete for parallel access to NP (PNP

|| -complete) [HHR97].

Kemeny Voting. This voting protocol goes back to Kemeny [Kem59] and Con-
dorcet [dC85] and was specified by Levenglick [Lev75] (see also our case study
for Kemeny voting in Section 4). Consider an election consisting of a multiset
of rankings of the candidates. The Kendall-Tau distance between rankings r1
and r2 is the number of swaps of two neighboring candidates in order to trans-
form r1 into r2. The score of a ranking r is the sum of Kendall-Tau distances
between r and each input ranking. A “consensus ranking” with respect to Ke-
meny voting is a ranking with minimum score. Correspondingly, we call such
a ranking a Kemeny consensus. The first candidate in a Kemeny consensus is
considered as a winner. TU Berlin as well as Oxford University are winners in
our PhD place example. See Section 4 for more details.

Kemeny voting has many desirable properties. For example, it is the only
voting protocol which is neutral and consistent6, and satisfies the Condorcet
principle [YL78]. Thus, Kemeny voting is used in various applications such as
meta-search engines, spam detection [DKNS01a], databases [FKS03,Scu07], or
the construction of genetic maps in bioinformatics [JSA08]. However, to deter-
mine a Kemeny consensus is computationally intractable. More precisely, the
Kemeny Score problem, that is, given an election and a non-negative integer
k ∈ N, determining whether the score of a Kemeny consensus is at most k is
NP-complete [BTT89b]. Some more general Kemeny voting related problems
(including winner determination) are even PNP

|| -complete [HSV05].

Young Voting. H. Peyton Young [You77] took a different approach to finding
a candidate “closest” to the Condorcet winner. His main idea was to delete the
fewest number of votes to let the remaining votes have a Condorcet winner. The
Young Score problem asks whether a candidate can become the Condorcet

6 A voting protocol is neutral if the candidates are treated equally, that is, if the
candidates of an election are renamed, the winner of the election with renamed
candidates is the renamed winner of the original election. Consistency requires that
if a candidate wins in two multisets of votes, then she should also win in the union
multiset of these two multisets.

9

winner in a “sub-election” consisting of at least k′ (k′ ∈ N) of the input votes,
while the Dual Young Score problem asks whether deleting at most k (k ∈ N)
votes can make a distinguished candidate the Condorcet winner. Both problems
are NP-complete [RSV03]. For the PhD place example, removing only one vote
(the ranking for practicing English) can make the remaining votes have a Con-
dorcet winner (TU Berlin). Finally, we remark that the Young winner prob-
lem, that is, deciding whether a distinguished candidate can become a Condorcet
winner by the deleting minimum number of votes, is PNP

|| -complete [RSV03]. As
one can easily verify, in our PhD place example, TU Berlin is a Young winner.

The NP-hardness results for the winner determination problems described above
make such voting protocols usually infeasible for practical use. However, in some
restricted scenarios winner determination becomes efficiently solvable. For exam-
ple, Dodgson Score is fixed-parameter tractable with respect to the number
of candidates. Table 4 in Section 5.1 gives some parameterized complexity re-
sults for Dodgson Score, Dual Young Score, and Young Score, while
the corresponding analysis of Kemeny voting is discussed in more detail in our
case study (Section 4).

Copelandα Voting. This voting protocol considers each pair of candidates: The
candidate that beats the other one in more than half of the votes is rewarded
one point, while the loser gets zero points. If the two candidates are tied,
then each gets α points. The candidate with highest total score wins. The
original Copeland voting [Cop51,BF02,Goo54] uses a slightly different way for
awarding points to the loser in a pairwise comparison. However, it is equivalent
to Copeland0.5 [FHHR09b]. In our PhD place example, TU Berlin wins with
(2 + 2 · α) points under Copelandα voting (see Figure 1). For α = 1, there are
also two more co-winners (Oxford University and MIT).

Maximin Voting. Let #min(x) = min{#(x, y) : y ∈ C \ {x}} for x ∈ C (recall
that #(c, c′) is the number of votes ranking candidate c higher than candi-
date c′). According to Maximin voting, a candidate c wins if she has the maxi-
mum value #min(c). In our PhD place example, TU Berlin, Oxford University,
and MIT are all winners under Maximin voting. Clearly, winner determina-
tion using Maximin voting can be done in time polynomial in the input size.
The Maximin concept originates from decision theory [Wal49,Sni08]. There are
many other names for this voting protocol. For instance, Fishburn [Fis77] called
it Condorcet procedure and Young [You77] used the name Minimax function.

We conclude this section with a remark on the relation between scoring pro-
tocols and Condorcet-related protocols. Condorcet [dC85] argued that there are
elections whose Condorcet winner is not elected by any scoring protocol that
awards more points to the first ranked candidate than to the second ranked one,
and so forth; for example, this holds true for Borda voting [BF02]. The following
example is due to Brams and Fishburn [BF02, Section 9.3] and shall illustrate
this phenomenon. Suppose that there is an election on three candidates, a, b,
and c, with seven votes cast as follows:

10

three votes a � b � c,
two votes b � c � a,
one vote b � a � c, and
one vote c � a � b.

The Condorcet winner of this election is a. She beats both b and c by 4-to-
3. However, any scoring protocol assigning strictly more points to a candidate
placed 2nd than to a candidate placed 3rd makes b win. Indeed, Moulin [Mou91]
showed that no positional scoring protocol fulfills the Condorcet principle.

3.3 Further Voting Protocols

In this section, we introduce two more commonly used voting protocols which
require several stages to aggregate votes. We also discuss one additional issue
concerning the election of multiple winners.

Plurality with Runoff. This voting protocol consists of two rounds. In the first
round, it orders the candidates according to the number of votes in which they
rank first; all candidates but the first two in this new order are eliminated from
the original votes. In case that two or more candidates are tied to pass the first
round, Conitzer et al. [CRX09] argued that a candidate c is a winner if and only
if there exists a way to break ties in all steps such that c wins. In this survey, we
adopt a specific tie-breaking rule: Let C1 be the set of candidates that have the
highest number of first positions, and let C2 be the set of candidates that have
the second-highest number of first positions.

– If |C1| = 1 and |C2| = 1, or |C1| = 2, then go to the second round.
– If |C1| = 1 and |C2| ≥ 2, then the candidate c ∈ C2 who has the high-

est number of second positions stays. If |C1| ≥ 3, then the two candidates
among C1 with the highest numbers of second positions pass the first round.
For both cases (|C1| = 1 ∧ |C2| ≥ 2 or |C1| ≥ 3): If there are more than two
candidates to pass the first round, then for tie-breaking the number of third
positions is used, and so on. If, however, after m − 1 steps, still more than
two candidates are tied, then all these candidates pass the first round.

In the second round, Plurality voting is applied to the input votes restricted
to the candidates that pass the first round to elect a winner.

The second round can be omitted if in the first round there is a candidate
who ranks first in more than half of the votes.

In our PhD place example, TU Berlin safely passes to the second round.
However, ETH Zurich and MIT each rank first in one vote, and second in no
votes, so we have to consider the votes where they rank third. MIT ranks third
in two votes but ETH Zurich in only one vote, so MIT can stay for the second
round. After eliminating the other candidates, TU Berlin and MIT are tied 2-to-2
in the second round, so they both are co-winners.

Variations of Plurality With Runoff voting are widely used in the presidential
elections of many countries (such as Austria, Brazil, and France). It is criticized

11

for its so-called no-show paradox [Mou91], which means that sometimes it may
be advantageous not to submit your vote. Let us see an example to better un-
derstand this paradox. Suppose that there are 100 votes on the candidates, a, b,
and c, with

30 votes a � c � b,
41 votes b � a � c, and
29 votes c � b � a .

The winner according to Plurality with Runoff is b. However, if two of the voters
who favor a abstain, then in the first round a will be eliminated and c beats b by
59-to-41 in the second round. While this does not make candidate a win, these
votes do prefer candidate c to candidate b.

Single Transferable Voting (STV). To select a single winner, STV deletes the
candidates ranked first in the fewest votes. This procedure is repeated until a
candidate ranks first in more than half of the restricted votes–the votes without
deleted candidates. By deleting some candidates, some originally lower ranked
candidates can be transferred to a higher position. STV can take up to m − 1
stages with m being the total number of candidates. This happens if in each
stage no candidate ranks first in more than half of the restricted votes. Note
that if there are only three candidates, then STV for the single winner case is
equivalent to Plurality with Runoff voting, and, hence, suffers from the same
“no-show paradox”.

When using STV in our PhD place example, Oxford University and Tsinghua
University will be first deleted from the votes: No vote ranks Oxford University
or Tsinghua University as the first candidate. Then every candidate ranking
behind Oxford University or Tsinghua University in the original votes will be
transferred to a higher position:

Parameterized complexity: B � M � Z
Salary: Z � M � B
English usage: M � B � Z
Cultural activities: B � Z � M

In the next stage, we delete MIT and ETH Zurich from the remaining votes.
Finally, the only candidate remaining, that is, TU Berlin, is the winner according
to STV.

STV with some modifications is often used in political elections, for instance
in Australia, Ireland, and New Zealand.

Obviously, the winner determination problem for Plurality with Runoff or
STV can be solved in time polynomial in the input size.

Multi-Winner Protocols. Multi-winner elections come into play whenever one
has to elect an assembly whose members need to be authorized to take decisions

12

on behalf of the society. Hence, for a multi-winner voting protocol, it is impor-
tant to elect an assembly (winner set) that represents the society adequately.
Although the protocols stated above can be easily modified to return a set of
winners, for all of them except for STV this does arguably not lead to an ap-
propriate choice of winners [BF02,LB11]. An alternative way is based on the
concept of “misrepresentation”. Basically, in this model, each vote can assign a
misrepresentation value to every candidate. The set of winners is selected from
the candidates such that the total misrepresentation is minimized.

Borda voting is a natural example for a misrepresentation function: Every
vote assigns a misrepresentation value of zero to his favorite candidate, a value
of one to his second choice, a value of two to the third choice, and so on.

One natural approach for selecting winners is to choose a set of, say, k winning
candidates such that the sum of misrepresentation values is minimized (mini-
mum sum); another way is to minimize the maximum misrepresentation (mini-
max) [BEH+10,BF02]. In both cases, in the model suggested by Chamberlin and
Courant [CC83] every candidate can represent an unlimited number of votes,
that is, within a selected assembly a vote is always represented by an assembly
member for whom its misrepresentation value is minimal. Since this may lead
to the situation that different assembly members represent different numbers
of votes, Chamberlin and Courant suggested to use weights as a way out. In
contrast, the model suggested by Monroe [Mon95] requires that every assembly
member represents about the same number of votes, that is, at most dn/ke and
at least bn/kc for n votes and k winners.

Unfortunately, all four problem variants resulting from combining Chamber-
lin and Courant’s as well as Monroe’s approach with “minimax” or “minimum
sum” optimization are already NP-hard for the basic Borda misrepresentation
function [BSU11,LB11,PRZ08].

Parameterized complexity analysis with respect to the parameters “number
of winners”, “total misrepresentation value”, “number of voters”, and “number of
candidates” has been started only recently [BSU11].

4 Kemeny Voting

In this section, we provide a case study on different parameterizations of the
voting problem Kemeny Score (which was mentioned in Section 3.2). The op-
timization problem behind Kemeny Score can also be seen as a natural com-
binatorial median finding problem: Given a multiset of rankings, find a ranking
that is “closest” to the given rankings. Here, the distance measure is the so-called
Kendall-Tau distance. Let (C,V) be an election and let l be a ranking over C.
Then, the score of l is defined as∑

v∈V
KT-dist(v, l),

13

where KT-dist(v, l) denotes the Kendall-Tau distance. The Kendall-Tau distance
between v ∈ V and l is defined as

KT-dist(v, l) :=
∑

{a,b}⊆C

dv,l(a, b),

where dv,l(a, b) is 0 when v and l rank a and b in the same relative order, and 1,
otherwise. Formally, the corresponding decision problem is defined as follows:

Kemeny Score

Input: An election (C, V) and a non-negative integer k.
Question: Is there a ranking with score at most k?

A Kemeny consensus l∗ is a ranking with minimum score. The Kemeny score of
a given election is the score of l∗.

The Kemeny score of our PhD place example (see Section 3) is sixteen. For
instance, the ranking B � O � M � Z � T and the ranking O � M � B �
T � Z each forms a Kemeny consensus. There are altogether eighteen different
Kemeny consensuses. The reason is that most candidate pairs are tied 2-to-2
and both relative orderings of these two candidates contribute the same to the
score. Every Kemeny consensus for our PhD place example realizes the cheaper
relative ordering for all four non-tied candidate pairs (see Table 2 or Figure 1 in
Section 3.2).

For small examples like this, a Kemeny consensus is easy to find. However, in
practice one often has to deal with larger and more complicated instances. Ke-
meny Score is NP-hard, but in some applications exact solutions are required.
Here, parameterized algorithmics comes into play. In the remainder of this sec-
tion, we overview recent research concerning the parameterized complexity of
Kemeny Score (see also Table 3).

4.1 Input and Output Parameterizations

Three parameters directly appear in the problem definition of Kemeny Score.
The parameters “number n of votes” and “number m of candidates” are given
by the input. The parameter “Kemeny score k” is given by the solution of the
problem.

Number n of Votes. Kemeny Score is NP-hard even for elections with only
four votes [DKNS01a,DKNS01b]. This means that there is no hope for fixed-
parameter tractability with respect to the parameter “number of votes”. To
the best of our knowledge, NP-hardness for Kemeny Score with a constant
odd number of votes is still open. On the contrary, NP-hardness for Kemeny
Score with an unbounded odd number of votes has been shown by Bartholdi
et al. [BTT89b].

14

Table 3. Parameterized complexity of Kemeny Score and two of its generalizations.
In case of fixed-parameter tractability results, we only state the exponential parts
of the corresponding running times if provided in the corresponding papers. “NP-h”
means NP-hard. Results marked by (♣) follow from [DKNS01a,DKNS01b], (♦) follow
from [KS10], (♠) follow from [MRS09], and (♥) follow from [BGKN11]. The remaining
results are provided in [BFG+09]. Note that “?” means that the corresponding case
remains open whereas “—” means that the corresponding parameter does not apply to
the problem.

Kemeny Score with ties incomplete votes

votes n NP-h for n = 4 (♣) NP-h for n = 4 (♣) NP-h for n = 4 (♣)
candidates m 2m 2m 2m

Kemeny score k 2O(
√
k) (♦) 1.76k k! · 4k

max. range rm 32rm (3rm + 1)! · 23rm+1 —
avg. range ra NP-h for ra ≥ 2 NP-h for ra ≥ 2 —
max. KT-dist dm 2O(

√
dm) (♦) (6dm + 2)! · 26dm+2 NP-h for dm = 0

avg. KT-dist da 2O(
√
da) (♦) 2O(d2a) (♥) NP-h for da = 0

d := k/n 2O(
√
d) (♦) 2O(d

2
) (♥) NP-h for d = 0

above guarantee FPT (♠) ? ?

Number m of Candidates. Kemeny Score becomes fixed-parameter tractable
for the parameter “number of candidates”. This is easy to see: Try all possible m!
rankings over C, compute the corresponding scores, and check whether the min-
imum score is at most k. Note that, given an election with n votes and m candi-
dates, one can compute the score of any ranking in O(n ·m logm) time [KT06].

By a dynamic programming approach, one can improve the exponential part
of the running time from m! to 2m [BFG+09,RS07]. The basic idea behind the
dynamic programming is to compute a Kemeny consensus for the elections re-
stricted to subsets of candidates: The dynamic programming table contains a
Kemeny consensus for each subset of candidates. We compute the entries for
all subsets of size s beginning with s = 1. Then, we increase s until we get
the entire candidate set. The initialization of the table is easy, because elections
with only one candidate induce exactly one ranking. The recurrence behind the
dynamic programming is as follows. Consider the computation of an entry for
a subset C ′ ⊆ C. For each c ∈ C ′, compute the score of the ranking begin-
ning with c and concatenated with the Kemeny consensus for C ′ \ {c} obtained
from the dynamic programming table. Now, the entry for C ′ is a ranking with
minimum score.

Kemeny Score k. The Kemeny score measures the “distance of the solution from
the input votes”. The following two simple data reduction rules lead to a problem
kernel with at most 2k votes and at most 2k candidates [BFG+09]. Herein, we
call a pair of candidates {a, b} conflict pair if there is one vote with “a � b” and
another vote with “b � a” in the election.

15

Rule 1 Delete every candidate that is not involved in any conflict pair.

Rule 2 If there are more than k identical votes, then return “yes” if the score
of one of them is at most k; otherwise, return “no”.

The problem kernel obtained through Rules 1 and 2 already shows fixed-
parameter tractability of Kemeny Score with respect to the parameter k.
This can be improved by considering the conflict pairs. In this way, one obtains
bounded search-tree algorithms which are much faster than an O∗((2k)!)-time7
brute-force strategy or an O∗(22k)-time dynamic programming algorithm oper-
ating on the problem kernel. First, observe that the number of conflict pairs
is at most k for every yes-instance [BFG+09]. A search-tree which decides for
each conflict pair which of both orderings appears in a Kemeny consensus has
size O(2k). Considering “conflict triples” one obtains an improved algorithm with
running time O(1.53k+m2 ·n) [BFG+09]. Further refined search-tree algorithms
lead to search-tree sizes of O∗(1.403k) [Sim09]. Besides search tree algorithms,
further approaches were considered in the literature to solve Kemeny Score—
yielding sub-exponential time fixed-parameter algorithms with respect to the
parameter k [ALS09,FFL+10,KS10].

4.2 Structural Parameterizations

Depending on the voting protocols used, voting problems provide a large amount
of interesting structural parameters. For Kemeny Score, we discuss the param-
eters “maximum range rm of candidate positions”, “average range ra of candidate
positions”, “maximum KT-distance dm between the input votes”, and “average
KT-distance da between the input votes”. All four parameters are illustrated
with the help of our PhD place example (see Table 1) in Figure 2. This section
will be concluded by a brief discussion of an “above average parameterization”
for Kemeny Score.

The parameters “maximum range rm of candidate positions” and “average
range ra of candidate positions” both use a common concept called the range
of a candidate. The range of a candidate c is defined as one plus the difference
between her best and worst position.

Maximum Range rm of Candidate Positions. The maximum range of candidate
positions is the range of the candidate who has the maximum range. It seems
plausible that instances with a bounded range of candidate positions are easier
to solve. Indeed, using dynamic programming, one can solve Kemeny Score
in O(32rm · (r2m ·m+ rm ·m2)) time [BFG+09].

7 The notation O∗(.) is similar to O(.), but only states the superpolynomial part of
the running time.

16

B � O � M � T � ZZ

Z � O � M � T � B

M � O � B � Z � TT

B � T � Z � M � O

range of B and Z is 5, respectively

range of O and T is 4, respectively

range of M is 4

maximum range rm = 5

average range ra = 4.4

B � O � M � T � Z

Z � O � M � T � B

M � O � B � Z � T

B � T � Z � M � O

Kendall-Tau distances

7

6

7

5

4

8

maximum KT-distance dm = 8

average KT-distance da = 6.1667

Fig. 2. Illustration of structural parameters for Kemeny Score. On the left we have
our four votes from the PhD place example where the range of each candidate, that is,
the difference between the worst and the best position is highlighted. The first vote is
also one possible Kemeny consensus. On the right, we depict the KT-distances between
every pair of input votes (written as labels on the arcs).

Average Range ra of Candidate Positions. Analogously to the maximum range,
the average range ra of candidate positions is the average range of all candidates.
A small maximum range indicates instances which are easy to solve, while in-
stances with a small average range of candidate positions remain hard. Even
for instances with ra = 2 Kemeny Score remains NP-hard [BFG+09]: Given
a Kemeny Score instance (C, V, k), one can construct an equivalent instance
with average range 2 by adding |C|2 many new candidates and putting them at
the end of every vote (for each vote in the same order). Each new candidate has
a range of one and hence the average range is at most

|C| · |C|+ |C|2

|C|2 + |C|
≤ 2.

Based on the Kendall-Tau distance, we discuss three further parameterizations.

Average KT-Distance da. The average KT-distance is formally defined as

da :=
∑
v,w∈V

KT-dist(v, w)

n(n− 1)
.

It measures “the average amount of variety in the votes”. In the first fixed-
parameter algorithm with respect to parameter da [BFG+09], the authors basi-
cally observed that in every Kemeny consensus each candidate may only occur
in a fixed range of positions whose size is bounded by da. Based on this obser-
vation, there is a dynamic programming algorithm that solves Kemeny Score

17

in O(16da · (d2a ·m + da ·m logm · n) + n2 ·m logm) time. This was improved
by Simjour [Sim09] who developed a search tree algorithm with running time
O∗(5.833da). Furthermore, Karpinski and Schudy [KS10] developed a subexpo-
nential fixed-parameter algorithm with running time 2O(

√
da) + nO(1).

Besides fixed-parameter algorithms with respect to the parameter average
KT-distance, data reduction rules were developed whose performance guaran-
tee depends on the average KT-distance. Although no problem kernel in the
classical sense is known, the currently best upper bound on the number m of
candidates is linear in the average KT-distance [BBN10]. This is achieved by
applying polynomial-time data reduction. Note that the non-existing bound on
the number n of votes does not harm too much, since Kemeny Score is fixed-
parameter tractable with respect to m. More precisely, it was shown that ex-
haustive application of the following simple rule already yields a “partial problem
kernel” [BBN10,BGKN11].

Rule 3 If there is a candidate c such that there is no other candidate c′ with
1/4 · |V | ≤ #(c, c′) ≤ 3/4 · |V |, then remove c (and adjust the allowed score
accordingly8).

Exhaustive application of Rule 3 yields an equivalent instance of Kemeny
Score with at most 16/3 · da candidates [BBN10].

Maximum KT-Distance dm. Clearly, fixed-parameter tractability for da also im-
plies fixed-parameter tractability for the parameter “maximum KT-distance dm
between two input votes”. However its potentially larger values (compared to
average KT-distance) allow for improvements in the algorithm. With slight mod-
ifications in the search tree algorithm for Kemeny Score parameterized by da,
one can solve Kemeny Score inO∗(4.829dm) time [Sim09]. Note that the subex-
ponential fixed-parameter algorithm due to Karpinski and Schudy [KS10] for da
also works for dm.

Parameterizations Above Average kmin. Mahajan and Raman [MR99] introduced
“parameterization above guaranteed values” as a general form of parameteriza-
tion. For Kemeny Score, a guaranteed value is a lower bound on the Kemeny
score k, for instance

kmin :=
∑

{a,b}⊆C

min{#(a, b),#(b, a)}.

This is an obvious lower bound for k, because it is simply the sum of the minimum
contributions for each candidate pair. A natural question is to parameterize
above this guaranteed lower bound, that is, by the parameter “k− kmin”. Fixed-
parameter tractability with respect to (k− kmin) for Kemeny Score is implied
by a parameter-preserving reduction from Kemeny Score to a weighted variant
of Directed Feedback Vertex Set [MRS09].
8 For each candidate c′ with#(c′, c) > 3/4·|V |, decrease the score by#(c, c′); otherwise,
decrease the score by #(c′, c).

18

4.3 Ties and Incomplete Votes

In this section, we briefly discuss results obtained for two generalizations of
Kemeny Score. In the first generalization, we modify our election model such
that candidates may also be ranked equally, that is, we allow for ties. The second
generalization is to allow for incomplete votes, that is, considering partial orders
instead of linear orders (see Section 2 for a formal definition of incomplete votes).
In contrast to the parameterization by “number of candidates”, which can also
be used for both generalizations more or less without any modification (compare
with Section 4.1), for most other parameterizations the situation changes when
we consider the more general models.

Kemeny Score with Ties. In the Kemeny Score generalization Kemeny Score
with Ties [Ail10,HSV05] one additionally allows that two candidates in a vote
are ranked equally. Now, the term dv,w(a, b) expressing the contribution of the
candidate pair {a, b} to the KT-distance between two votes v and w is defined
as

dv,w(a, b) =

2 if (a � b in v and b � a in w) or (b � a in v and a � b in w),
0 if a and b are ordered in the same way in v and w, and
1 otherwise.

There are slightly different models for the consensus of an election with ties in
the literature: Hemaspaandra et al. [HSV05] allowed that the consensus can also
have ties, while Ailon [Ail10] defined the consensus as permutation of candidates
(without ties).

Betzler et al. [BFG+09] analyzed the parameterized complexity of Kemeny
Score with Ties for the setting of Hemaspaandra et al. [HSV05]. With similar
approaches as described in Section 4.1, one obtains a search tree of size O(1.76k)
as well as a polynomial-size problem kernel with respect to the parameter “Ke-
meny score k” [BFG+09].

Concerning structural parameters such as maximum range rm or average
range ra, one has to be careful when ties are allowed. Betzler et al. [BFG+09] used
an intuitive concept where, similarly to the classical Kemeny Score, the range
is defined as the difference between the best and the worst position. However, to
make these positions in a vote with ties uniquely determined, the best position
of a candidate is defined as the minimum number of candidates that are better
than her and her worst position is defined as the maximum number of candidates
that are better or equally ranked.

It is not obvious how to transfer the results for structural parameterizations
with classical Kemeny Score to Kemeny Score with Ties. However, fixed-
parameter tractability with respect to the parameter maximum range rm of
candidate positions can be obtained by an approach similar to the dynamic pro-
gramming algorithm for classical Kemeny Score with respect to rm [BFG+09].
Furthermore, when extending the problem by additionally assigning weights to
candidates, the dynamic programming approach also covers the parameteriza-
tion with maximum KT-distance dm. The maximum range of candidate positions

19

is bounded by 2 · dm for instances with candidate weights [BFG+09]. Finally, a
partial kernelization with respect to the parameter average KT-distance can be
transferred to Kemeny Score with Ties [BGKN11].

Kemeny Score with Incomplete Votes. In the Kemeny Score generalization
Kemeny Score with Incomplete Votes [DKNS01a], the given votes are
not required to be permutations of the entire candidate set, but of candidate
subsets.9 In contrast to the votes, the Kemeny consensus is a permutation of
all candidates. As a consequence, the term dv,w(a, b) expressing the contribution
of the candidate pair {a, b} to the KT-distance between two votes v and w is
adjusted to

dv,w(a, b) :=

{
0 if {a, b} 6⊆ Cv or {a, b} 6⊆ Cw or v and w agree on a and b,
1 otherwise,

where Cv contains the candidates occurring in vote v.
Since one can have non-trivial instances without “conflict pairs”, the branch-

ing approach for classical Kemeny Score does not apply to the parameteri-
zation with the Kemeny score k when we allow for incomplete votes. However,
by a parameterized reduction to Weighted Feedback Arc Set, one obtains
fixed-parameter tractability [BFG+09].

As to structural parameterizations, defining the range of candidate posi-
tions does not make sense. Furthermore, Kemeny Score with Incomplete
Votes remains NP-hard even if the maximum KT-distance dm between two
input votes is zero, that is, there is no hope for fixed-parameter tractability
with respect to the parameters average KT-distance da and maximum KT-
distance dm [BFG+09].

5 Types of Voting Problems

In this section, we review a number of voting problems and account for their
computational complexity, both standard and parameterized. We start with the
most immediate question in Section 5.1: Can a candidate win an election under
a given voting protocol? In later sections we deal with more subtle voting prob-
lems, often rendering the considered problems already hard for scoring protocols.
In Section 5.2, we consider possible winner determination in case of incomplete
votes (partial orders instead of linear orders), then move on to the related prob-
lem of manipulating elections (Section 5.3), and eventually study questions of
bribery, control, and optimal lobbying in Sections 5.4, 5.5, and 5.6.

5.1 Winner Determination

The most basic computational task in voting is the determination of a win-
ner using a given voting protocol E . Alternatively, we can ask whether a given
candidate is a winner of an election under voting protocol E :
9 This only yields a subset of all possible partial orders.

20

Table 4. Parameterized complexity results for computationally hard winner determi-
nation problems. Considered parameters are the numberm of candidates, the number n
of votes, and the number k of modifications. For Dodgson Score, k denotes the num-
ber of swaps; for Young Score, k denotes the number of remaining votes, while for
Dual Young Score k denotes the number of deleted votes. The fixed-parameter
tractability results for parameter m follow from integer linear programming formula-
tions [BTT89b,You77] and Lenstra’s result on integer linear programming with a fixed
number of variables [Len83]. Results marked by (4) follow from [BTT89b,You77],
by (♣) from [FJL+10], by (♥) from [BGN10], and by (♠) from [RSV03].

Parameter Dodgson Score Dual Young Score Young Score

m FPT (4) FPT (4)
n W[1]-hard (♣) FPT (O∗(2n)) (4)
k FPT (O∗(2k)) (♥) W[2]-complete (♥) W[2]-complete (♥, ♠)

E Winner Determination

Input: An election (C, V) and a distinguished candidate p ∈ C.
Question: Does p win the election under voting protocol E?

A voting protocol having nice properties but for which one cannot compute
a winner in reasonable time is not useful in practice. While for some voting pro-
tocols such as positional scoring protocols, the computation of a winner can be
easily achieved in polynomial time, for other voting protocols the computation
of a winner is NP-hard. Famous voting protocols with NP-hard winner determi-
nation are listed in the survey by Chevaleyre et al. [CELM07]. This includes the
voting protocols proposed by Banks, Dodgson, Kemeny, Slater, and Young.10

In Table 4, we list parameterized complexity results for Dodgson Score,
Dual Young Score, and Young Score with respect to several parameteri-
zations.

5.2 Possible & Necessary Winner

Possible Winner. In standard voting scenarios, one typically assumes that voters
provide their preferences as linear orders. To determine a winner, the given linear
orders are aggregated according to a voting protocol. However, in many realistic
settings, the voters may provide partial orders only [KL05]. This directly leads
to the Possible Winner problem which, given a set of incomplete votes, asks
whether a specific candidate can still become a winner if one extends the votes to
10 Banks [Ban85] and Slater [Sla61] are two comparison-based voting protocols. They

both work on the majority graph of a given election (see Definition 5) and are closely
related to graph problems restricted to tournaments [CH00,Woe03]. A tournament
is a directed graph with exactly one arc between any two vertices. See Woegin-
ger [Woe03] and Hudry [Hud04] for the computation of Banks winners, and Charon
and Hudry [CH00] and Conitzer [Con06] for the computation of Slater winners.

21

linear orders (see Section 2 for detailed information on partial orders and their
extensions).

Let us go back to the student from Section 3 who decides to do his PhD
research at the TU Berlin. At the enrollment, it happens that there is a My Fa-
vorite Professor evaluation among four candidate professors: Prof. Bosch (B),
Prof. Geiger (G), Prof. Hertz (H), and Prof. Zuse (Z). 11 Until now, only sixteen
students have participated in the evaluation. Five of them like Prof. Bosch as
much as Prof. Geiger (in the subsequent example expressed by {B, G}), followed
by Prof. Hertz and then by Prof. Zuse. Another five students favor Prof. Hertz
over Prof. Zuse, followed by Prof. Bosch, while ranking Prof. Geiger as the least-
liked candidate. The remaining six students prefer Prof. Geiger and Prof. Zuse
to Prof. Hertz. Their least favorite professor is Prof. Bosch. The current state of
the evaluation is as follows:

Five students with {B, G} � H � Z,
five students with H � Z � B � G, and
six students with {G, Z} � H � B.

Obviously, the preferences of the students are not all linear orders. Hence,
instead of determining the best ranked professor, we are interested in determin-
ing the possible winners of the election. For instance, to ask whether Prof. Hertz
is a possible winner under Borda voting in the above evaluation is to determine
whether there are extensions of students’ preferences such that Prof. Hertz be-
comes a winner. In our example, such extensions exist: If the first five students
submit the linear oder B � G � H � Z, three of the last six students submit
G � Z � H � B and the other three students submit Z � G � H � B, then
Prof. Hertz (26 points) becomes a winner under Borda voting. However, to de-
termine whether a distinguished candidate is a possible winner in an election
using Borda voting is NP-complete [XC11] (also see Table 5).

Formally, Possible Winner for a given voting protocol E is defined as
follows:

E Possible Winner

Input: An election (C, V) with the multiset V = {v1, . . . , vn} of incom-
plete votes represented as partial orders on C, and a distinguished
candidate p ∈ C.

Question: Is there a multiset V ′ = {v′1, . . . , v′n} of votes over C, such that
each vote v′i extends vi and p wins the election (C, V ′) under
voting protocol E?

The motivation behind Possible Winner is that it might be impossible
for the voters to provide a complete ranking because, for instance, the set
of candidates is too large. Another reason can be that not all voters might
have given their rankings yet during the aggregation process, or new candidates
11 Historical note: Only Hans Geiger and Gustav Hertz were professors at TU Berlin

whereas Carl Bosch and Konrad Zuse were students at TU Berlin.

22

Table 5. Summary of (parameterized) complexity results for the NP-complete [XC11]
Possible Winner using several common voting protocols. Parameters considered are
“the number m of candidates”, “the number n of votes”, “the total number s of undeter-
mined candidate pairs”, and “the maximal number u of undetermined candidate pairs
in a vote”. Note that the fixed-parameter tractability results for parameter s hold for
all voting protocols whose Winner Determination problem can be solved in time
polynomial in the input size. Fixed-parameter tractability results for parameter m are
again due to Lenstra’s result on integer linear programming with a fixed number of
variables [Len83]. Results marked with (♣) come from [XC11], those with (♥) come
from [BHN09]. Note that “?” means that the corresponding case remains open and
para-NP-c means that the problem remains NP-complete even for constant parameter
values.

Parameter Borda k-Approval Copelandα

m FPT FPT FPT
n (♥) para-NP-c para-NP-c ?
s (♥) O∗(1.82s) O∗(2s) O∗(2s)
u (♣) para-NP-c para-NP-c para-NP-c

might be introduced after some voters already have given their rankings (see
also [CLM+11]). Moreover, one often has to deal with incomplete votes due to
two or more candidates not being comparable, because of lack of information
or other reasons. Hence, the study of incomplete voting profiles is natural and
essential.

Again, we survey standard and parameterized computational complexity re-
sults for Possible Winner under various voting protocols. Notably, although
Winner Determination problems are straightforward for (most) scoring pro-
tocols, Possible Winner is already computationally hard for simple scoring
protocols such as k-Approval. Table 5 lists the results together with references
to the literature.

Due to the way how k-Approval assigns points to candidates, two further
structural parameters immediately pop up in the study of k-Approval Possi-
ble Winner: The “number k of approvals in each vote” and the “number k′ =
m − k of disapprovals in each vote” with m being the total number of candi-
dates. However, k-Approval Possible Winner is already NP-complete for any
constant number k ≥ 2 [XC11]. This motivates a multivariate complexity analy-
sis [Fel09,Nie10] with respect to the combined parameter number n of votes and
number k (k′) of candidates to whom a voter gives one (zero) point. Parameter-
ized complexity results for k-Approval Possible Winner are summarized in
Table 6.

There are many interesting open questions concerning E Possible Winner.
In the following we just mention a few:

– Until now, existing studies [BD10,BHN09,Wal07,XC11] on Possible Win-
ner consider only scoring protocols as well as some comparison-based proto-

23

Table 6. Parameterized complexity results of k-Approval Possible Winner, where
t denotes the number of incomplete votes in an election, k denotes the number of ones
assigned in the k-Approval voting, while k′ denotes the number of zeros assigned in
the k-Approval voting. Results marked with (♣) come from [XC11], while (♥) marks
results from [Bet10b].

Parameter Results Remarks

k (♣) NP-complete For any fixed k ≥ 2

(t, k′) (♥) FPT O∗(min{2t
2k′ , 2tk

′
· (tk′)k

′
})

(t, k) (♥) FPT Super-exponential kernel

cols that are computationally efficient (polynomial time solvable) for Win-
ner Determination, since if the E Winner Determination is compu-
tationally hard, then E Possible Winner is also computationally hard. It
would be interesting to see whether the fixed-parameter tractability results
for Kemeny Score, Dodgson Score, Young Score, or Dual Young
Score still hold for Possible Winner where incomplete votes are given.

– As we have seen in Table 5, the parameter “total number s of undetermined
candidate pairs” leads to fixed-parameter tractability; however, s may be
very large for some scenarios. On the contrary, Possible Winner is already
NP-complete for Borda, k-Approval, and Copelandα voting even if the maxi-
mal number u of undetermined candidate pairs in a vote is a constant [XC11].
This motivates further parameterizations concerning incomplete votes of an
election. For example, it would be interesting to know whether Possible
Winner is fixed-parameter tractable with respect to the parameter “aver-
age/maximum number of undetermined candidate pairs in which a candidate
is involved”.

Necessary Winner. Finally, we mention in passing that, in addition to the Pos-
sible Winner problem, there is also the Necessary Winner problem, which
asks whether a given distinguished candidate is a winner in all extensions of
the given votes. As a rule of thumb, it appears that the Necessary Winner
problem is computationally easier than the Possible Winner problem. For
example, Necessary Winner can be solved in polynomial time for scoring
protocols as well as some other protocols such as Plurality with Runoff, Max-
imin voting, and Bucklin12, while Possible Winner is NP-complete for these
voting protocols [XC11]. We refer to the literature [KL05,PRVW11,XC11] for
more details.

12 Bucklin voting is a hybrid voting protocol. In a nutshell, it combines k-Approval with
Majority voting. Majority voting is similar to Plurality with the additional constraint
that the candidate who has a score of more than half of the number of votes wins.
See Xia and Conitzer [XC11] for a definition and more in-depth explanation.

24

5.3 Manipulation

Manipulation is a voting scenario where a coalition of voters casts their votes in
an insincere way such that they end up better off than voting honestly. We illus-
trate such a situation with the help of the My Favorite Professor example.
Suppose that the election has

five students with B � G � H � Z,
five students with H � Z � B � G,
three students with G � Z � H � B, and
three students with Z � G � H � B.

Under Borda voting, Prof. Hertz (26 points) wins the election. Suppose that the
last three students in the above election know the votes of all other thirteen
students.13 They want to make their favorite candidate, Prof. Zuse, win the
election. Hence they form a coalition and try to manipulate the election result
by casting their own votes contrary to their actual preferences. Although they
all prefer Prof. Geiger and Prof. Hertz to Prof. Bosch, by submitting

two votes Z � G � B � H and
one vote Z � B � G � H,

together with the other thirteen votes, Prof. Zuse will indeed become the Borda
winner with 25 points instead of Prof. Hertz with 23 points.

For manipulation, we assume that the voters of the coalition know about
all the votes of the sincere voters. The coalition uses strategic voting to achieve
their goal of letting their favorite candidate win. Formally, the decision problem
Manipulation for any voting protocol E is defined as follows:

E Manipulation

Input: An election (C, V), a coalition size k ∈ N encoded in unary alpha-
bet, and a distinguished candidate p ∈ C.

Question: Is there a multiset V ′ of at most k votes on C such that p is the
winner according to E in (C, V ∪ V ′)?

The E Manipulation problem can be considered as a special case of the
E Possible Winner problem: The non-manipulative votes are linear orders
and the manipulative votes are totally empty. Hence, any hardness result on
E Manipulation is also valid for E Possible Winner.

A voting protocol is strategy-proof if manipulation is never beneficial for
any voter or coalition of voters. A famous result of Gibbard and Satterth-
waite [Gib73,Sat75] states that a resolute14, surjective15, and strategy-proof

13 This is rarely the case in practice. However, it allows for a worst-case analysis.
14 A voting protocol is resolute if there is always exactly one winner for an election.
15 A voting protocol is surjective if every candidate has a chance of winning.

25

voting protocol is dictatorial16. Bartholdi et al. [BTT89a] suggested using com-
putational hardness to “resist” manipulations in an election: The idea is that
if a voting protocol can be manipulated in principle, but it is computation-
ally intractable to decide whether it is possible to cast the votes to achieve a
desired result, then this voting protocol is unlikely to be manipulated in prac-
tice. In particular, Bartholdi et al. [BO91,BTT89a] focused on the special case
of having a coalition of size one: After obtaining polynomial-time solvability
results for manipulation under a set of common voting protocols including Plu-
rality, Borda, Maximin and Copeland [BTT89a], Bartholdi and Orlin [BO91]
showed that STV Manipulation is NP-hard even for a single manipulator.
However, Conitzer et al. [CSL07] showed fixed-parameter tractability with re-
spect to “the number m of candidates” for STV Manipulation with a coali-
tion of size one. The corresponding algorithm runs in O∗(1.62m) time. Recent
studies [BNW11,DKNW11] show that Borda Manipulation is already NP-
complete for a coalition of size two. When parameterized by “the number of
candidates”, Borda Manipulation is fixed-parameter tractable [BHN09]. A
further parameter is derived from so-called “instance tightness”, again yielding
fixed-parameter tractability [BNW11].

Since E Manipulation is a special case of E Possible Winner, some open
computational hardness questions stated in Section 5.2 can also be transformed
to the context of E Manipulation.

For STV Manipulation with one manipulator, there is a fixed-parameter
algorithm with respect to “the number of candidates” [CSL07]. Naturally, it
would be interesting to know whether this also holds for two or more manipula-
tors.

5.4 Bribery

As the name suggests, bribery is another attack on elections, where the briber
“pays” some voters to have them change their votes in order to reach a desired
outcome [FHH09]. Typically, the briber has a budget. The basic question with
respect to bribery is whether the briber can achieve his goal without exceeding
his budget.

There are different settings of bribery: Besides varying prices for different
voters, one relaxes the notion of votes by allowing arbitrary relations instead of
linear orders [Fal08,FHHR09b]. In addition, there are more fine-grained models
such as paying for specific operations. For instance, in Swap Bribery [EFS09],
one is only allowed to perform swaps of two neighboring candidates in a vote.
Formally, a swap in some vote v ∈ V is a triple (v, c1, c2) where {c1, c2} ⊆ C, c1 6=
c2. Applying a swap (v, c1, c2), that is, exchanging the positions of c1 and c2 in
the vote v, is admissible when c1 and c2 are neighbors in v. A sequence of swaps
is called admissible when the application of the swaps in the given ordering is
admissible in each case. The decision problem is defined as follows:
16 Dictatorial means that there exists a voter who always decides what the outcome of

an election shall be.

26

E Swap Bribery

Input: An election (C, V), a distinguished candidate p ∈ C, a budget
β ∈ N, and a cost function c : V × C × C → N.

Question: Is there an admissible sequence Γ of swaps with
∑
s∈Γ c(s) ≤ β

such that p wins the election under voting protocol E after having
applied the swaps as given by Γ?

For our My Favorite Professor example (see Section 5.3 for the com-
plete list of student votes), we already know that Prof. Hertz wins under Borda
voting. Suppose that a fan of Prof. Bosch knows all the votes of the students.
His goal is to make Prof. Bosch win the election via swap bribery. A single swap
costs one Euro. However, he is only willing to pay at most four Euros. Now the
question is whether, without exceeding his budget, the fan of Prof. Bosch can
bribe some students and let them swap neighboring candidates in their votes
such that Prof. Bosch wins the election. If he bribes the three students with
identical original vote G � Z � H � B and one student whose original vote
is Z � G � H � B, and lets them each swap the two neighboring candidates
H and B in their votes, then he can make B (Prof. Bosch with 26 points) win
the election. Each of the four swaps has a cost of one Euro, so the budget (four
Euros) is not exceeded.

Table 7 shows some computational complexity results for k-Approval Swap
Bribery. Classical complexity results are given by Elkind et al. [EFS09], while
the parameterized results are provided by Dorn and Schlotter [DS12]. It should
be mentioned that E Possible Winner can be seen as a special case of E Swap
Bribery, where the price of any determined candidate pair is one, swapping two
undetermined neighboring candidates17 has cost zero, and the budget is zero. So
hardness results on E Possible Winner are also valid for E Swap Bribery for
some restricted scenarios.

Restricting the allowed operations such that each swap must involve the dis-
tinguished candidate leads to Shift Bribery [EFS09]. As for the parameterized
complexity analysis of this scenario, we refer to a recent study by Schlotter et
al. [SEF11].

In microbribery [FHHR09b], a briber can invert the relative order of any two
candidates in a vote for a given price. Typically, this leads to votes which are
no longer linear orders. For example, inverting the relative order of a and c in a
vote a � b � c results in three pairwise comparisons: a � b, b � c, and c � a.

Elkind and Faliszewski [EF10a] initiated research on another aspect of bribery
which concerns campaign management. There, bribing voters means, for instance,
investing in advertisement for a specific candidate. They argued that such kind of
campaign can strongly influence the outcome of an election. This has applications
in political elections or product marketing. Schlotter et al. [SEF11] studied both
classical and parameterized complexity regarding two specific cases of campaign
management, shift bribery and support bribery, for several voting protocols.

17 Recall that two neighboring candidates are called undetermined if they are not
comparable in the incomplete vote.

27

Table 7. Parameterized complexity results of k-Approval Swap Bribery [DS12]. The
parameters are “the budget β”, “the number n of votes”, “the number m of candidates”,
and “the number k of approved candidates in a vote”. Note that k-Approval Swap
Bribery is already NP-complete for k = 2 due to its close relationship to Possible
Winner [BD10,DS12,EFS09]. With respect to the parameter m, the fixed-parameter
tractability result holds not only for k-Approval but indeed for a wide range of voting
protocols including Copelandα and Maximin [DS12].

Parameter Results Remarks

β W[1]-hard for n = 1 Reduction from Multi-Colored Clique
k W[1]-hard Reduction from Clique
m FPT for constant k Integer linear programming
n FPT for constant k Color-coding
(β, n) FPT Kernel with n2β2 candidates and n2β votes
(β, n, k) FPT Kernel with (n+ k)β candidates and n2β votes

Destructive bribery, that is, using bribery to prevent one candidate from win-
ning, is NP-hard for Copelandα and Maximin voting [FHH09,FHH11,FHHR09b].
Until now, parameterized complexity aspects in this context seem to be unex-
plored, presenting good opportunities for new research.

5.5 Control

To control an election, an external agent, somewhat misleadingly called the chair
in the literature, can change the election structure to reach certain goals. For
example, a typical question is whether the chair can make his favorite candi-
date a winner by deleting some candidates. Going back to our My Favorite
Professor example, using Copeland0.5 also results in selecting Prof. Hertz as
the most favorite professor (2 points). If a fan of Prof. Bosch who wants to
influence the election is in the election committee and somehow manages to dis-
qualify Prof. Zuse from the election, then all three remaining candidates become
(co)-winners (1 point) according to Copeland0.5.

Actually, there are many different types of control including adding or delet-
ing candidates or votes [BTT92]. Furthermore, one distinguishes between con-
structive control (CC), where the chair aims at making a distinguished candi-
date a winner, and destructive control (DC), where the chair wants to prevent a
distinguished candidate from winning [HHR07]. In the following, we define the
E Constructive Control Via Adding Candidates (E CC-AC).

E CC-AC

Input: Two disjoint sets C,D of candidates, a multiset V of votes over C∪
D, a distinguished candidate p ∈ C, and a non-negative integer k.

Question: Is there a subset D′ ⊆ D of candidates with |D′| ≤ k such that
p is the winner in the election (C ∪ D′, V) according to voting
protocol E?

28

Three more types of constructive control problems, that is, via deleting can-
didates, via adding votes, and via deleting votes, can be defined analogously: For
the case of adding votes, we are given a multiset of votes from which we can se-
lect additional votes in order to change the outcome of an election. The decision
problems of destructive control via adding or deleting candidates or votes can
be defined accordingly: Instead of making the distinguished candidate a winner,
destructive control aims at precluding the distinguished candidate from winning.

The investigation of the computational complexity of control problems goes
back to Bartholdi et al. [BTT92]. Since then, there has been a series of pub-
lications [BTT92,FHHR09b,HHR07] which provides a complete picture of the
classical computational complexity for 22 basic types of control. These papers
cover standard voting systems such as Plurality, Condorcet, and Copelandα for
all rational values of α in the range of [0, 1]. For example, one of the voting proto-
cols that can be used to determine the winner of an election in time polynomial
in the input size and is NP-hard for all standard types of constructive control is
Copeland0.5 [FHHR09b].

Hemaspaandra et al. [HHR09] showed that so-called hybrid elections can lead
to stronger resistance results for electoral control. Further work looks into control
for two specific hybrid systems combining Approval voting and systems based
on linear preferences [EF10b,ENR09,EPR10,ER10].

A closely related problem introduced by Elkind et al. [EFS10a] is cloning,
where one only allows for adding candidates that are “similar”18 to one of the
existing candidates. Moreover, Chevaleyre et al. [CLM+11] investigated the ques-
tion whether a candidate can become a winner by adding “arbitrary” candidates.

Recently, Faliszewski et al. [FHH11] introduced the extended scenario of
“multi-mode control attacks”, that is, the chair is allowed to use various kinds of
attacks like deleting candidates and adding votes simultaneously.

Table 8 lists some parameterized complexity results for eight different kinds
of control: Constructive Control via Adding Candidates (CC-AC),
Constructive Control via Deleting Candidates (CC-DC), Construc-
tive Control via Adding Votes (CC-AV), Constructive Control via
Deleting Votes (CC-DV), and their destructive control (DC) versions.

Table 9 shows some results on control of elections employing Copelandα.
Considered parameters are the number m of candidates and the number n of
votes. Furthermore, there are also results concerning parameterized complexity
for Copelandα, α = 1, with respect to non-standard parameters like “feedback
arc set size of the majority graph” [BBNU11].

We conclude this section with a few interesting research directions. The pa-
rameterized complexity of many scoring protocols, such as Borda, seems to be
unexplored. Multi-mode control as proposed by Faliszewski et al. [FHH11] seems
a natural candidate for a multivariate complexity study. For instance, the prob-
lem whether a distinguished candidate can win by deleting k candidates and
adding k′ votes under Copeland1 is NP-hard [FHH11]; it is an open question

18 Here, a candidate c1 is called similar to another candidate c2 if for each vote, candi-
dates c1 and c2 have the same relative position to any other candidate.

29

Table 8. Control-related (parameterized) complexity results. All W-hardness re-
sults are with respect to the output parameter. For example, Plurality CC-AC
is W[2]-hard with respect to the number of added candidates. Results marked with
(♠) come from [BTT92], those with (♦) come from [HHR07], those with (♣) come
from [LFZL09], those with (�) come from [LZ10], results marked with (♥) come
from [BU09], those marked with (4) come from [FHHR09b], those marked with (©)
come from [EF10b,EFPR11,ER10], and those marked with (5) come from [BGN10].
The W[2]-completeness result of Dual Young Score holds for Condorcet CC-DV
because they are equivalent. Any entry labeled “P” means polynomial-time solvability.
“/” means either that we are not aware of any meaningful parameterized complexity
results or that it is irrelevant. For example, in Condorcet CC-AC, the chair can
never make a non-winning candidate win the election by adding some additional can-
didates [BTT92]. W[t]-h stands for W[t]-hard with t = 1 or t = 2; W[2]-c stands for
W[2]-complete. Recall that Bucklin voting is a hybrid voting protocol which combines k-
Approval with Majority voting [EF10b,XC11]. Fallback [BS09] voting combines Bucklin
with Approval voting. Here, Approval voting, slightly different from k-Approval, allows
each voter to approve of an arbitrary number of candidates.

Plurality Condorcet Maximin Copelandα Bucklin/Fallback

CC-AC W[2]-h (♠) / W[2]-h (�) W[2]-c (♥) W[2]-h (©)
CC-DC W[2]-h (♥) P (♠) / W[2]-c (♥) W[2]-h (©)
CC-AV P (♠) W[1]-h (♣) W[1]-h (�) / W[2]-h (©)
CC-DV P (♠) W[2]-c (5) W[1]-h (�) / W[2]-h (©)
DC-AC W[2]-h (♦) P (♦) / P (4) W[2]-h (©)
DC-DC W[1]-h (♥) / / P (4) W[2]-h (©)
DC-AV P (♦) P (♦) W[1]-h (�) / P (©)
DC-DV P (♦) P (♦) W[1]-h (�) / P (©)

Table 9. Parameterized complexity results on control of elections using Copelandα.
We use (♣) to denote the results from [FHHR09b] and (♥) to denote the results
from [BU09]. Results on control by adding (deleting) candidates with a bounded num-
ber of added (deleted) candidates as well as on control by adding (deleting) votes with
a bounded number of added (deleted) votes follow from brute-force enumeration of all
possible subsets of candidates of votes. For the case of candidate control with a bounded
number of votes, the fixed-parameter algorithms are based on Lenstra’s integer linear
programming result [Len83].

AC DC AV DV

candidates m FPT (♣) FPT (♣) FPT (♣) FPT (♣)
votes n NP-c (♥) NP-c (♥) FPT (♣) FPT (♣)

whether this NP-hard problem is fixed-parameter tractable with respect to the
combined parameter (k, k′).

30

5.6 Lobbying

Sometimes we do not only vote on one but on multiple issues at the same time.
A corresponding voting procedure can be very simple: Approve or disapprove
of each issue. Formally, a multi-issue election for m issues and n voters is an
n×m binary matrix

W =

w

1,1
w

1,2
· · · w

1,m

...
...

. . .
...

w
n,1

w
n,2
· · · w

n,m

 ∈ {0, 1}n×m.
An entry wi,j of W represents voter i’s opinion on issue j: 0 stands for disap-
proval; 1 stands for approval.

Given a multi-issue election and desired outcomes for each issue, Christian
et al. [CFRS07] studied how hard it is to “lobby” some voters optimally, that
is, to persuade the minimum number of voters to change their votes such that
each issue has a majority of voters with values equal to the desired outcome.
The formal definition of Optimal Lobbying is as follows:

Optimal Lobbying

Input: A multi-issue election W ∈ {0, 1}n×m, a non-negative integer k,
and a size m target vector x ∈ {0, 1}m.

Question: CanW be transformed into a new matrixW ′ ∈ {0, 1}n×m by edit-
ing entries in at most k different rows such that for each column j
there is a strict majority of rows with value xj?

If Optimal Lobbying can be shown to be computationally intractable, then
potential attackers may not succeed in influencing the outcome of a multi-issue
election via lobbying in reasonable time. This is what Bartholdi et al. [BTT89b]
and Faliszewski et al. [FHH10] meant by using complexity to protect elections.
But what about more restricted scenarios, that is, what about parameterized
complexity analysis? To the best of our knowledge, Christian et al. [CFRS07]
started the parameterized complexity analysis of voting problems concerning lob-
bying in multi-issue elections. They showed that Optimal Lobbying is W[2]-
complete with respect to the number of votes to be changed. The idea of the proof
of this result is shown in Section 6.6. Erdély et al. [EFG+09] further extended
Optimal Lobbying to a probabilistic setting and, in particular, provided sev-
eral results on fixed-parameter tractability and W[2]-completeness. Finally, we
remark that Optimal Lobbying is fixed-parameter tractable with respect to
the number of issues, since it can be easily transformed into an integer linear
program with a fixed number of variables. See also Section 6.4 for more details.

6 Parameterized Techniques

In this section, we overview different techniques for investigating fixed-parameter
tractability which already have been successfully applied in the area of voting. We

31

start with some techniques for designing fixed-parameter algorithms and close
with a general technique to obtain intractability results. Each technique will be
accompanied by an example. Although these standard techniques “cover” most
results so far, there are further approaches to obtain fixed-parameter tractability
results in the context of voting [ALS09,FFL+10,KS10].

6.1 Search Trees

A search tree algorithm identifies a “small subset” of the input instance such that
at least one part of the subset is part of a solution. Then, it branches over all
possible parts of this small subset to fix it as part of the solution. This procedure
is repeated in a recursive manner until the whole solution has been found. In the
context of fixed-parameter algorithms, the identification of the subset is done
in polynomial time and the search tree size is bounded by some function only
depending on the parameter.

For instance, in the case of Kemeny Score (see Section 4.1) a simple search
tree algorithm identifies as small subset the two possible orderings a candidate
pair can have in the solution. Since one can show that for at most k many
candidate pairs, where k denotes the Kemeny score of the election, the ordering
is not yet clear, the search tree size is bounded by O(2k).

Next, we briefly discuss a search tree approach that applies to Possible
Winner for arbitrary voting protocols [BHN09]. For every undetermined can-
didate pair, say {a, b} from incomplete vote v, branch into the following two
possible cases: Either add a � b to v or add b � a to v. If an option violates the
transitivity of v, then discard the corresponding branch in the search tree. The
search tree size is at most O(2s), where s is the total number of undetermined
candidate pairs, implying that for every voting protocol with polynomial-time
winner determination, Possible Winner is fixed-parameter tractable with re-
spect to the parameter s.

Similarly to the improved search tree for Kemeny Score (see Section 4.1),
one gains a refined fixed-parameter algorithm for Possible Winner through
considering undetermined triples instead of pairs combined with a network flow
construction [BHN09].19 As a consequence, for a specific class of scoring pro-
tocols, including k-Approval and Borda, Possible Winner can be decided in
O(1.82s · (nm2 + s2)) time, where s is the total number of undetermined pairs.

6.2 Kernelization

Problem Kernels. Recall from Section 2 that a problem kernel can be seen as
an equivalent instance whose size is bounded by a function in the parameter
and which can be computed by polynomial-time preprocessing (so-called data
reduction rules) [Bod09,GN07].
19 Indeed, techniques based on network flows are used in several other voting contexts

to derive polynomial-time solvability for special cases or as part of a fixed-parameter
algorithm (see, for example, [BD10,BHN09,DS12,FHHR09b]).

32

For instance, by exhaustive application of Rules 1 and 2 from Section 4.1
one gets a problem kernel with at most 2k votes and at most 2k candidates for
Kemeny Score.

Dorn and Schlotter [DS12] developed a kernelization algorithm that con-
structs a problem kernel with O(n2 · β) votes and O(n2 · β2) candidates for k-
Approval Swap Bribery, where n denotes the number of votes and β denotes
the budget. Kernelization algorithms have also been developed for k-Approval
Possible Winner: Problem kernels for Possible Winner with respect to the
combined parameters (t, k) as well as (t, k′) have been obtained by data reduction
rules [Bet10a,Bet10b], where t denotes the number of incomplete votes, k denotes
the number of one-point positions, and k′ denotes the number of zero-point posi-
tions. For (t, k′) there is a kernel with O(t · k′2) candidates and O(t2 · k′2) votes,
while for (t, k) there is a superexponential-size kernel that shows fixed-parameter
tractability.

No Polynomial Kernel. A natural question for a fixed-parameter tractable prob-
lem is: How small can a corresponding problem kernel be? In particular, can we
expect to derive a polynomial-size kernel for every fixed-parameter tractable
problem? To answer this, Bodlaender et al. [BDFH09] and Fortnow and San-
thanam [FS11] introduced a general framework; also see the surveys by Bod-
laender [Bod09] and Misra et al. [MRS11]. The basic idea is that if a parameter-
ized version of an NP-complete problem has a so-called “composition algorithm”,
then it does not admit a polynomial-size problem kernel, under some widely be-
lieved complexity assumptions. Furthermore, such lower-bound results can be
transferred to other problems by so-called “polynomial parameter transforma-
tions” [BTY11].

For instance, Fellows et al. [FJL+10] showed that Dodgson Score with
respect to the parameter number of swaps (see also Section 3.2 for the corre-
sponding definition) is unlikely to admit a polynomial-size kernel. This result
is obtained by a polynomial parameter transformation from Small Universe
Hitting Set which is known to be unlikely to have a polynomial-size problem
kernel [DLS09].

Partial and Turing Kernels. There are cases where it seems hard to bound the
whole size of the instance by a polynomial function in the parameter, but it
is possible to bound only one dimension20 of the input by such function. Here,
the concept of partial kernelization [BGKN11] comes into play. For instance,
for Kemeny Score one has a partial kernel with respect to the average KT-
distance da, that is, one can construct equivalent instances with at most 16/3 ·da
candidates, but the number of votes is unbounded [BBN10].

Furthermore, it could also be possible that one cannot find a problem ker-
nel, but one is able to compute polynomially many instances whose sizes are
bounded by some function in the parameter and the original instance is a yes-
instance if and only if one of the new instances is a yes-instance. This leads to the
20 In case of voting, for example the number of candidates or the number of votes are

two natural dimensions.

33

concept of Turing kernelization, or to be more specific, disjunction truth-table
kernelization [FFL+09,Lok09]. We are not aware of Turing kernelization results
in voting.

Both, partial kernels and Turing kernels provide (similarly to the classical
kernel concept) the possibility of obtaining fixed-parameter algorithms.

6.3 Dynamic Programming

The key idea of dynamic programming is to solve a problem by solving subprob-
lems and to combine overlapping solutions to find an overall solution. Dynamic
programming tries to avoid multiple computation of the same subsolution by
storing it in a so-called dynamic programming table. It is a standard technique
in mathematics and computer science and in the design of fixed-parameter al-
gorithms [Nie06]. Often leading to very efficient algorithms, a typical bottleneck
of dynamic programming is its memory consumption which may also be expo-
nential in the parameter.

For instance, with dynamic programming one can solve Kemeny Score
in O∗(2m) time (see Section 4.1). However, also the space requirement is O∗(2m).

A further example is Dodgson Score. Using dynamic programming it can
be solved in O(2k ·nk ·nm) time [BGN10], where k denotes the number of swaps.

6.4 Integer Linear Programming

As one of the most popular techniques for problem solving, (integer) linear pro-
gramming21 is also useful for classification and algorithm design in the context of
parameterized algorithmics [Nie06]. A famous result of Lenstra [Len83] implies
that a problem is fixed-parameter tractable when it can be solved by an integer
linear program where the number of variables is upper-bounded by a function
solely depending on the parameter.

Bartholdi et al. [BTT89b] developed an integer linear program to solve Dodg-
son Score and gave a running time bound based on Lenstra’s result. They did
not explicitly state this, but this shows fixed-parameter tractability for Dodg-
son Score with respect to the parameter number m of candidates. The corre-
sponding integer linear program is shown in Figure 3. Note that it computes the
Dodgson score of a specific candidate.

Although solvability by an integer linear program with a bounded number
of variables implies fixed-parameter tractability, there is by far no guarantee for
practically efficient algorithms. Indeed, due to a huge exponential function in
the number of variables being part of the running time bound, Lenstra’s [Len83]
result is basically for classification only.

There are several similar fixed-parameter tractability results with respect to
the parameter number of candidates for control problems [FHHR09b], Possi-
ble Winner [BHN09], and Swap Bribery [DS12] for various voting protocols.
21 See, for example, Matoušek and Gärtner [MG06] for a general introduction to linear

programming.

34

min
∑
i,j

j · xi,j subject to

∀i ∈ Ṽ :
∑
j

xi,j = Ni

∀y ∈ C :
∑
i,j

ei,j,y · xi,j ≥ dy

xi,j ≥ 0

Fig. 3. Integer linear program determining the Dodgson score of candidate c. Here,
C denotes the set of candidates, Ṽ denotes the set of ranking types (that is, the set
of votes where identical votes appear only once), Ni denotes the number of votes of
type i, xi,j denotes the number of votes with rankings of type i for which candidate c
will be moved upwards by j positions, ei,j,y is 1 if the result of moving candidate c by j
positions upward in a ranking of type i is that c gains an additional vote against can-
didate y, and 0 otherwise. Furthermore, dy is the deficit of c with respect to candidate
y, that is, the minimum number of votes that c must gain against y to defeat her in a
pairwise comparison. If c already defeats y, then dy = 0. For more details see Bartholdi
et al. [BTT89b]. Altogether, the integer linear program contains at most m ·m! vari-
ables xi,j and at most m! +m non-trivial constraints, where m denotes the number of
candidates.

Furthermore, Dorn and Schlotter [DS12] convey without details that their re-
sult concerning Swap Bribery can be transferred to problems like Optimal
Lobbying and Manipulation under some specific voting protocols as well.

6.5 Color-Coding

Alon et al. [AYZ95] introduced color-coding as a randomized algorithm for solv-
ing some types of graph problems. Recently, Dorn and Schlotter [DS12] used it
to show the fixed-parameter tractability of k-Approval Swap Bribery with
respect to the number of votes for constant k (see Section 5.4). Here we sketch
the idea behind their randomized fixed-parameter algorithm and how it employs
color-coding.

Let I be an instance of k-Approval Swap Bribery consisting of an elec-
tion (C, V) with |C| = m and |V | = n, a distinguished candidate d ∈ C, a budget
β ∈ N, and a cost function c : V ×C×C → N. Instance I is a yes-instance if and
only if there is a sequence Γ of swaps with

∑
s∈Γ c(s) ≤ β, and d wins after the

swaps in Γ have been performed. We denote the votes after having performed Γ
as V Γ =

⋃
v∈V v

Γ .
A candidate is relevant with respect to Γ if it receives at least one point in

V Γ . Let Crel(Γ) be the set of candidates relevant with respect to Γ . Since each
of the first k candidates of a vote receives one point according to k-Approval,
and since there are at most nk relevant candidates, we can identify each vote
through a vote pattern which is a size-k subset of {1, . . . , nk}. It should represent

35

the set of the first k candidates. An election pattern P = (p1, . . . , pn) is an n-
tuple of vote patterns. There are

(
nk
k

)n
< (nk)nk such election patterns. If the

distinguished candidate d wins the bribed election, then we can assume that
d ∈ Crel(Γ). We also require that d represents the number 1. Thus, an election
pattern P is called successful if 1 appears at least as frequently as any other
number between 2 and nk in P .

The basic idea of the algorithm is as follows: For each successful election
pattern P = (p1, . . . , pn), we color each candidate (except for candidate d) ran-
domly with one of the colors of

⋃
p∈P p\{1}; d has color 1. If I is a yes-instance,

then with probability of at least (nk − 1)1−nk we can find in (nk)nk · O(mk+1)
randomized time a sequence Γ of swaps22 with the following properties: each
relevant candidate in Crel has a different color (while p has color 1), the colors
of relevant candidates of vote viΓ ∈ V Γ form the vote pattern pi ∈ P , and
the budget is not exceeded. Trying all possible successful election patterns, the
algorithm takes a total of (nk)2nkO(mk+1) randomized time. Note that using
nk-perfect hash functions [AYZ95], one gains a deterministic fixed-parameter
algorithm with respect to the parameter n for constant k.

6.6 Parameterized Intractability

There are several voting problems where computational intractability can be
desirable for a protocol. Intractability in terms of parameterized complexity
means W[t]-hardness for some integer t ≥ 1 (see Section 2). Without going
into the details of the theory, the main message is that W[t]-hard problems
are not fixed-parameter tractable under several widely believed complexity as-
sumptions (including the Exponential Time Hypothesis [IPZ01]). We present a
simple parameterized reduction showing W[2]-hardness in what follows; refer to
the textbooks [DF99,FG06,Nie06] for general accounts.

To the best of our knowledge, the first W-hardness result result for a com-
putational social choice problem is due to Christian et al. [CFRS07]. They con-
sidered the problem Optimal Lobbying as defined in Section 5.6.

Parameterized Reduction for Optimal Lobbying. The idea behind the proof of
parameterized intractability for Optimal Lobbying is to describe a parame-
terized reduction (see Section 2) from the W[2]-complete problem Dominating
Set to Optimal Lobbying [CFRS07] (see Section 5.6). Dominating Set asks,
given an undirected graph G = (V,E), whether there exists a size-k subset of
vertices V ′ ⊆ V such that every vertex is either from V ′ or has a neighbor in
V ′. Such a vertex subset is called dominating set.

The construction of the Optimal Lobbying instance works as follows.23
The matrix W is an extension of the adjacency matrix of G. First take the
22 See Dorn and Schlotter [DS12] for the detailed algorithm to find the swap sequence Γ

when a successful election pattern and a feasible coloring are given.
23 Note that the original construction works with interchanged roles for 1 and 0. This

slight modification allows for a compact way of only presenting the idea.

36

adjacency matrix of G and add one additional selection column filled with 1s.
Then, add |V | − 2k+1 dummy rows filled with 0s. We call the original |V | rows
vertex rows and the original |V | columns vertex columns. Finally, for each vertex
column i, flip |V |−k−N [i]+1 entries in the dummy rows from 0 to 1, where N [i]
denotes the number of neighbors of the vertex corresponding to column i. The
target vector x (see Section 5.6) has a 0 in each of the |V |+ 1 positions.

Now, we have the following situation. First, consider the selection column.
The number of 1s exceeds the number of 0s by 2k − 1, that is, k of the graph
rows must be chosen in the solution. Now, consider the vertex columns. For
each column the number of 1s exceeds the number of 0s only by 1. Hence,
there is a majority for 0s if and only if the chosen vertex rows correspond to
vertices forming a dominating set. In analogy, every dominating set implies such
a solution.

Roughly speaking, this means that Optimal Lobbying remains intractable
even if the number of voters to influence is small.

7 Discussion and Future Challenges

So far, the consideration of problems from algorithmic graph theory prevails in
parameterized complexity studies. The impact of parameterized complexity anal-
ysis, however, strongly hinges on its high potential to explain, to predict, and to
engineer computational complexity. The “computational complexity landscape”
of problems arising in real-world applications needs a more fine-grained consid-
eration than classical (one-dimensional) complexity analysis delivers. Thus, in
2008, two issues of The Computer Journal (Volume 51, Numbers 1 and 3 edited
by Rod G. Downey, Michael R. Fellows, and Michael A. Langston) cover appli-
cations of parameterized complexity analysis in bioinformatics, computational
geometry, artificial intelligence, constraint satisfaction, data bases, and cogni-
tive modelling. Clearly, this list is far from being complete and deserves further
additions. With this survey, we try to overview and promote the research on pa-
rameterized (and multivariate) complexity of voting problems, a subfield of the
strongly growing area of computational social choice. Indeed, voting problems
seem to be a particularly fruitful ground of (future) parameterized complexity
analysis for at least three reasons:

– many NP-hard voting problems have simple and clear combinatorial defini-
tions;

– many voting problems carry very natural structural parameters such as the
number of candidates or the number of votes, with application scenarios
where these parameter values are anticipated to be small;

– it is very natural and sometimes forcing to search for exact solutions.

The parameterized complexity analysis of voting problems leaves numerous
challenges for future research. Some of these have been indicated in the preceding
sections. Moreover, there are many NP-hard voting problems that have not yet
been studied from a parameterized complexity perspective.

37

We conclude with a few more specific research questions and directions con-
cerning the parameterized computational complexity of NP-hard voting prob-
lems (refer to a recent PhD thesis [Bet10a] for additional material).

– A central parameter in voting problems is the number of candidates (equiva-
lently, alternatives). There is a number of fixed-parameter tractability results
for this parameter [Bet10a,BHN09,DS12,EFS10b,FHHR09b] relying on in-
teger linear programming and exploiting Lenstra’s result [Len83] for a fixed
number of variables. It would be highly desirable to replace these results by
direct combinatorial algorithms with more efficient running times.

– There are numerous results in the theory of voting [ASS02,ASS10] providing
structural properties of specific voting systems. These might be exploited
for spotting interesting parameters in voting problems. For instance, Elkind
et al. [EFS10b] explored and exploited “distance rationalizability” to show
fixed-parameter tractability results. Pini et al. [PRVW11] used “indepen-
dence of irrelevant alternatives” to even gain polynomial-time solvability for
a restricted Possible Winner voting problem.

– From an algorithmic point of view, the established parameterized technique
iterative compression [RSV04,GMN09] seems widely unexplored. Moreover,
there are only few kernelization results in voting (see Section 6.2). Notably,
it seems difficult to come up with kernelizations for the parameter “number
of votes”. Hence, this calls for combined parameters in the spirit of multi-
variate algorithmics [Fel09,Nie10] or the development of partial kerneliza-
tions [BBN10,BGKN11] where only one input dimension is reduced.

– Many fixed-parameter tractability results in voting (as in algorithmic graph
theory) are of theoretical nature only. It remains a general task to improve
the efficiency of these results and to finally arrive at implementations and ex-
periments in the spirit of algorithm engineering. For instance, algorithm engi-
neering for computing Kemeny scores revealed that data reduction (based on
partial kernelization results) combined with (integer) linear program solvers
leads to practically relevant results [BBN10].

– Voting is an ideal playground for multivariate algorithmics [Fel09,Nie10]. In
particular, for identifying (structural) parameters to exploit, it seems worth-
while to explore many of the NP-hardness proofs for voting problems. For
instance, a proof showing NP-hardness for Kemeny Score with only four
votes [DKNS01a,DKNS01b] reveals that in order to work, it requires a high
average KT-distance between the votes, making this a plausible parameter.
Hence, “deconstructing intractability” [KNU11,Nie10] appears particularly
beneficial in case of voting problems.

– Voting provides numerous challenging combinatorial problems which are
not about graphs.24 However, directed graph problems pop up in many
voting problems. For instance, there are close connections (also employed

24 In August 2011, Michael R. Fellows and Frances A. Rosamond organized at Charles
Darwin University, Australia, the Workshop–Parameterized Complexity: Not About
Graphs (NAG) in order to stimulate more parameterized complexity research beyond
graph problems.

38

for proving NP-hardness results) between voting and problems on tourna-
ments [BBS11,KS10,Woe03] or control in voting and vertex deletion prob-
lems on directed graphs [BBNU12,BU09,FHHR09b].

Voting problems are highly attractive from a parameterized complexity anal-
ysis perspective; this survey hopefully helps to attract more parameterized re-
search in this fruitful and important area. Be invited!

Acknowledgements

We are grateful to Britta Dorn, Piotr Faliszewski, Jiong Guo, Matthias Mnich,
Jörg Rothe, Ildikó Schlotter, and an anonymous referee for their numerous in-
sightful remarks and their constructive advice.

References

AB09. Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2009. 2

Ail10. Nir Ailon. Aggregation of Partial Rankings, p-Ratings, and Top-m Lists.
Algorithmica, 57(2):284–300, 2010. 19

ALS09. Noga Alon, Daniel Lokshtanov, and Saket Saurabh. Fast FAST. In Pro-
ceedings of the 36th International Colloquium on Automata, Languages and
Programming, volume 5555 of LNCS, pages 49–58. Springer, 2009. 16, 32

ASS02. Kenneth Joseph Arrow, Amartya K. Sen, and Kotaro Suzumura, editors.
Handbook of Social Choice and Welfare, Volume 1. North-Holland, 2002.
3, 6, 38

ASS10. Kenneth Joseph Arrow, Amartya K. Sen, and Kotaro Suzumura, editors.
Handbook of Social Choice and Welfare, Volume 2. North-Holland, 2010.
3, 6, 38

AYZ95. Noga Alon, Raphael Yuster, and Uri Zwick. Color-Coding. Journal of the
ACM, 42(4):844–856, 1995. 35, 36

Ban85. J. S. Banks. Sophisticated Voting Outcomes and Agenda Control. Social
Choice and Welfare, 1(4):295–306, 1985. 21

BBD09. Therese C. Biedl, Franz-Josef Brandenburg, and Xiaotie Deng. On
the Complexity of Crossings in Permutations. Discrete Mathematics,
309(7):1813–1823, 2009. 1

BBN10. Nadja Betzler, Robert Bredereck, and Rolf Niedermeier. Partial Kernel-
ization for Rank Aggregation: Theory and Experiments. In Proceedings of
5th International Symposium on Parameterized and Exact Computation,
volume 6478 of LNCS, pages 26–37. Springer, 2010. 18, 33, 38

BBNU11. Nadja Betzler, Robert Bredereck, Rolf Niedermeier, and Johannes
Uhlmann. On Making a Distinguished Vertex Minimum Degree by Vertex
Deletion. In Proceedings of the 37th International Conference on Current
Trends in Theory and Practice of Computer Science, volume 6543 of LNCS,
pages 123–134. Springer, 2011. 29

BBNU12. Nadja Betzler, Robert Bredereck, Rolf Niedermeier, and Johannes
Uhlmann. On Bounded-Degree Vertex Deletion Parameterized by
Treewidth. Discrete Applied Mathematics, 160(1–2):53–60, 2012. 39

39

BBS11. Felix Brandt, Markus Brill, and Hans Georg Seedig. On the Fixed-
Parameter Tractability of Composition-Consistent Tournament Solutions.
In Proceedings of the 22nd International Joint Conference on Artificial In-
telligence, pages 85–90. AAAI Press, 2011. 39

BCE12. Felix Brandt, Vincent Conitzer, and Ulle Endriss. Computational Social
Choice. In Gerhard Weiss, editor, Multiagent Systems. MIT Press, 2012. 1

BD10. Nadja Betzler and Britta Dorn. Towards a Dichotomy of Finding Possible
Winners in Elections Based on Scoring Rules. Journal of Computer and
System Sciences, 76(8):812–836, 2010. 23, 28, 32

BDFH09. Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny
Hermelin. On Problems Without Polynomial Kernels. Journal of Computer
and System Sciences, 75(8):423–434, 2009. 33

BEH+10. Dorothea Baumeister, Gábor Erdélyi, Edith Hemaspaandra, Lane A.
Hemaspaandra, and Jörg Rothe. Computational Aspects of Approval Vot-
ing. In Jean-François Laslier and M. Remzi Sanver, editors, Handbook on
Approval Voting, chapter 10, pages 199–251. Springer, 2010. 1, 13

Bet10a. Nadja Betzler. A Multivariate Complexity Analysis of Voting Problems.
PhD thesis, Friedrich-Schiller-Universität Jena, 2010. 33, 38

Bet10b. Nadja Betzler. On Problem Kernels for Possible Winner Determination
Under the k-Approval Protocol. In Proceedings of the 35th International
Conference on Mathematical Foundations of Computer Science, volume
6281 of LNCS, pages 114–125. Springer, 2010. 24, 33

BF02. Steven Brams and Peter C. Fishburn. Voting Procedures. In Ken-
neth Joseph Arrow, Amartya K. Sen, and Kotaro Suzumura, editors, Hand-
book of Social Choice and Welfare, volume 1, pages 173–236. Elsevier, 2002.
10, 13

BFG+09. Nadja Betzler, Michael R. Fellows, Jiong Guo, Rolf Niedermeier, and
Frances A. Rosamond. Fixed-Parameter Algorithms for Kemeny Rank-
ings. Theoretical Computer Science, 410:4554–4570, 2009. 15, 16, 17, 19,
20

BGKN11. Nadja Betzler, Jiong Guo, Christian Komusiewicz, and Rolf Niedermeier.
Average Parameterization and Partial Kernelization for Computing Medi-
ans. Journal of Computer and System Sciences, 77:774–789, 2011. 15, 18,
20, 33, 38

BGN10. Nadja Betzler, Jiong Guo, and Rolf Niedermeier. Parameterized Compu-
tational Complexity of Dodgson and Young Elections. Information and
Computation, 208(2):165–177, 2010. 21, 30, 34

BHN09. Nadja Betzler, Susanne Hemmann, and Rolf Niedermeier. A Multivariate
Complexity Analysis of Determining Possible Winners Given Incomplete
Votes. In Proceedings of the 21st International Joint Conference on Arti-
ficial Intelligence, pages 53–58, 2009. 23, 26, 32, 34, 38

BNW11. Nadja Betzler, Rolf Niedermeier, and Gerhard J. Woeginger. Unweighted
Coalitional Manipulation Under the Borda Rule is NP-hard. In Proceedings
of 22nd International Joint Conference of Artificial Intelligence, pages 55–
60, 2011. 26

BO91. John J. Bartholdi III and James B. Orlin. Single Transferable Vote Resists
Strategic Voting. Social Choice and Welfare, 8:341–354, 1991. 2, 26

Bod09. Hans L. Bodlaender. Kernelization: New Upper and Lower Bound Tech-
niques. In Proceedings of the 4th International Workshop on Parameter-
ized and Exact Computation, volume 5917 of LNCS, pages 17–37. Springer,
2009. 4, 32, 33

40

BS09. Steven Brams and M. Remzi Sanver. Voting Systems that Combine Ap-
proval and Preference. In Steven Brams, William V. Gehrlein, and Fred S.
Roberts, editors, The Mathematics of Preference, Choice, and Order: Es-
says in Honor of Peter C. Fishburn, pages 215–237. Springer, 2009. 30

BSU11. Nadja Betzler, Arkadii Slinko, and Johannes Uhlmann. On the Computa-
tion of Fully Proportional Representation, 2011. Available at Social Science
Research Network. 13

BTT89a. John J. Bartholdi III, Craig A. Tovey, and Michael A. Trick. The Compu-
tational Difficulty of Manipulating an Election. Social Choice and Welfare,
6(3):227–241, 1989. 2, 26

BTT89b. John J. Bartholdi III, Craig A. Tovey, and Michael A. Trick. Voting
Schemes for Which It Can Be Difficult to Tell Who Won the Election.
Social Choice and Welfare, 6(2):157–165, 1989. 2, 9, 14, 21, 31, 34, 35

BTT92. John J. Bartholdi, III, Craig A. Tovey, and Michael A. Trick. How Hard
Is It to Control an Election? Mathematical and Computer Modeling, 16(8-
9):27–40, 1992. 28, 29, 30

BTY11. Hans L. Bodlaender, Stéphan Thomassé, and Anders Yeo. Kernel Bounds
for Disjoint Cycles and Disjoint Paths. Theoretical Computer Science,
412(35):4570–4578, 2011. 33

BU09. Nadja Betzler and Johannes Uhlmann. Parameterized Complexity of Can-
didate Control in Elections and Related Digraph Problems. Theoretical
Computer Science, 410(52):5425–5442, 2009. 30, 39

CC83. John R. Chamberlin and Paul N. Courant. Representative Deliberations
and Representative Decisions: Proportional Representation and the Borda
Rule. American Political Science Review, 77(3):718–733, 1983. 13

CCDF97. Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows.
Advice Classes of Parameterized Tractability. Annals of Pure and Applied
Logic, 84:119–138, 1997. 4

CELM07. Yann Chevaleyre, Ulle Endriss, Jérôme Lang, and Nicolas Maudet. A
Short Introduction to Computational Social Choice. In Proceedings of the
33rd Conference on Current Trends in Theory and Practice of Computer
Science, volume 4362 of LNCS. Springer, 2007. 1, 21

CFRS07. Robin Christian, Mike Fellows, Frances Rosamond, and Arkadii Slinko.
On Complexity of Lobbying in Multiple Referenda. Review of Economic
Design, 11(3):217–224, 2007. 2, 31, 36

CH00. Irène Charon and Olivier Hudry. Slater Orders and Hamiltonian Paths of
Tournaments. Electronic Notes in Discrete Mathematics, 5:60–63, 2000. 21

CLM+11. Yann Chevaleyre, Jérôme Lang, Nicolas Maudet, Jérôme Monnot, and
Lirong Xia. New Candidates Welcome! Possible Winners with Respect
to the Addition of New Candidates. CoRR, abs/1111.3690, 2011. 23, 29

Con06. Vincent Conitzer. Computing Slater Rankings Using Similarities among
Candidates. In Proceedings of the 21st AAAI Conference on Artificial
Intelligence, pages 613–619. AAAI Press, 2006. 21

Con10. Vincent Conitzer. Making Decisions Based on the Preferences of Multiple
Agents. Communications of the ACM, 53:84–94, 2010. 1

Cop51. A. H. Copeland. A ‘Resonable’ Social Welfare Function, 1951.
Mimeographed (University of Michigan Seminar on Application of Mathe-
matics in Social Science). 8, 10

CRX09. Vincent Conitzer, Matthew Rognlie, and Lirong Xia. Preference Functions
That Score Rankings and Maximum Likelihood Estimation. In Proceedings

41

of the 20th International Joint Conference on Artificial Intelligence, pages
109–115, 2009. 11

CSL07. Vincent Conitzer, Tuomas Sandholm, and Jérôme Lang. When Are Elec-
tions with Few Candidates Hard to Manipulate? Journal of the ACM,
54:1–33, 2007. 2, 26

dB81. Jean-Charles de Borda. Mémoire sur les élections au scrutin. Histoire de
l’Académie Royale des Sciences, 1781. 7

dC85. Marie Jean Antoine Nicolas Caritat de Condorcet. Essai sur l’application
de l’analyse à la probabilité des décisions rendues à la pluralité des voix.
Paris: L’Imprimerie Royale, 1785. 7, 9, 10

DF99. Rodney G. Downey and Michael R. Fellows. Parameterized Complexity.
Springer Verlag, 1999. 2, 3, 4, 36

DKNS01a. Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar.
Rank Aggregation Methods for the Web. In Proceedings of the 10th Inter-
national Conference on World Wide Web, pages 613–622. ACM, 2001. 1,
9, 14, 15, 20, 38

DKNS01b. Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar.
Rank Aggregation Revisited, 2001. Manuscript. 14, 15, 38

DKNW11. Jessica Davies, George Katsirelos, Nina Narodytska, and Toby Walsh.
Complexity of and Algorithms for Borda Manipulation. In Proceedings of
the 25th AAAI Conference on Artificial Intelligence, pages 657–662. AAAI
Press, 2011. 26

DLS09. Michael Dom, Daniel Lokshtanov, and Saket Saurabh. Incompressibility
through Colors and IDs. In Proceedings of the 36th International Col-
loquium on Automata, Languages and Programming (ICALP’10), volume
5555 of LNCS, pages 378–389. Springer, 2009. 33

Dod76. Charles Dodgson. A Method of Taking Votes on More Than Two Issues.
Pamphlet printed by the Clarendon Press, Oxford, and headed “not yet
published”, 1876. 8

DS12. Britta Dorn and Ildikó Schlotter. Multivariate Complexity Analysis of
Swap Bribery. Algorithmica, 2012. Available electronically. 27, 28, 32, 33,
34, 35, 36, 38

DT11. Rodney G. Downey and Dimitrios M. Thilikos. Confronting Intractability
via Parameters. Computer Science Review, 5(4):279–317, 2011. 4

EF10a. Edith Elkind and Piotr Faliszewski. Approximation Algorithms for Cam-
paign Management. In Proceedings of the 6th Workshop on Internet and
Network Economics, volume 6484 of LNCS, pages 473–482, 2010. 27

EF10b. Gábor Erdélyi and Michael R. Fellows. Parameterized Control Complexity
in Bucklin Voting and in Fallback Voting. In Proceedings of the 3rd Inter-
national Workshop on Computational Social Choice, pages 163–174, 2010.
29, 30

EFG+09. Gábor Erdélyi, Henning Fernau, Judy Goldsmith, Nicholas Mattei, Daniel
Raible, and Jörg Rothe. The Complexity of Probabilistic Lobbying. In
Proceedings of the 1st International Conference on Algorithmic Decision
Theory, volume 5783 of LNCS, pages 86–97. Springer, 2009. 31

EFPR11. Gábor Erdélyi, Michael R. Fellows, Lena Piras, and Jörg Rothe. Con-
trol Complexity in Bucklin and Fallback Voting. Technical report,
arXiv:1103.2230, 2011. 30

EFS09. Edith Elkind, Piotr Faliszewski, and Arkadii Slinko. Swap Bribery. In Pro-
ceedings of the 2nd International Symposium on Algorithmic Game Theory,
volume 5814 of LNCS, pages 299–310. Springer, 2009. 26, 27, 28

42

EFS10a. Edith Elkind, Piotr Faliszewski, and Arkadii Slinko. Cloning in Elections.
In Proceedings of the 24th AAAI Conference on Artificial Intelligence,
pages 768–773. AAAI Press, 2010. 29

EFS10b. Edith Elkind, Piotr Faliszewski, and Arkadii Slinko. On the Role of Dis-
tances in Defining Voting Rules. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems, pages 375–
382, 2010. 38

ENR09. Gábor Erdélyi, Markus Nowak, and Jörg Rothe. Sincere-Strategy
Preference-Based Approval Voting Fully Resists Constructive Control and
Broadly Resists Destructive Control. Mathematical Logic Quaterly, 55:425–
443, 2009. 29

EPR10. Gábor Erdélyi, Lena Piras, and Jörg Rothe. Control Complexity in Fall-
back Voting. Technical report, arXiv:1004.3398v1, 2010. 29

ER91. Eithan Ephrati and Jeffrey S. Rosenschein. The Clarke Tax as a Consensus
Mechanism Among Automated Agents. In Proceedings of the 9th AAAI
Conference on Artificial Intelligence, pages 173–178. AAAI Press, 1991. 1

ER97. Eithan Ephrati and Jeffrey S. Rosenschein. A Heuristic Technique for
Multi-Agent Planning. Annals of Mathematics and Artificial Intelligence,
20(1–4):13–67, 1997. 1

ER10. Gábor Erdélyi and Jörg Rothe. Control Complexity in Fallback Voting.
In Proceedings of Computing: the 16th Australasian Theory Symposium,
Australian Computer Society Conferences in Research and Practice in In-
formation Technology Series, pages 39–48, 2010. 29, 30

Fal08. Piotr Faliszewski. Nonuniform Bribery. In Proceedings of the 7th Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems,
pages 1569–1572. International Foundation for Autonomous Agents and
Multiagent Systems, 2008. 26

Fel09. Michael R. Fellows. Towards Fully Multivariate Algorithmics: Some New
Results and Directions in Parameter Ecology. In Proceedings of the 20th In-
ternational Workshop on Combinatorial Algorithms, volume 5874 of LNCS,
pages 2–10. Springer, 2009. 23, 38

FFL+09. Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Daniel Raible, Saket
Saurabh, and Yngve Villanger. Kernel(s) for Problems with No Kernel: On
Out-Trees with Many Leaves. In Proceedings of the 26th International Sym-
posium on Theoretical Aspects of Computer Science, volume 3 of LIPIcs,
pages 421–432. Schloss Dagstuhl, 2009. 34

FFL+10. Henning Fernau, Fedor V. Fomin, Daniel Lokshtanov, Matthias Mnich,
Geevarghese Philip, and Saket Saurabh. Ranking and Drawing in Subex-
ponential Time. In Proceedings of the 21st International Workshop on
Combinatorial Algorithms, volume 6460 of LNCS, pages 337–348. Springer,
2010. 16, 32

FG06. Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer
Verlag, 2006. 2, 3, 4, 36

FHH09. Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. How
Hard Is Bribery in Elections? Journal of Artificial Intelligence Research,
35:485–532, 2009. 26, 28

FHH10. Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra.
Using Complexity to Protect Elections. Communications of the ACM,
53(11):74–82, 2010. 1, 31

43

FHH11. Piotr Faliszewski, Edith Hemaspaandra, and Lane A. Hemaspaandra. Mul-
timode Control Attacks on Elections. Journal of Artificial Intelligence Re-
search, 40:305–351, 2011. 28, 29

FHHR09a. Piotr Faliszewski, Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg
Rothe. A Richer Understanding of the Complexity of Election Systems.
Fundamental Problems in Computing: Essays in Honor of Professor Daniel
J. Rosenkrantz, pages 375–406, 2009. 1

FHHR09b. Piotr Faliszewski, Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg
Rothe. Llull and Copeland Voting Computationally Resist Bribery and
Constructive Control. Journal of Artificial Intelligence Research, 35:275–
341, 2009. 10, 26, 27, 28, 29, 30, 32, 34, 38, 39

Fis77. Peter C. Fishburn. Condorcet Social Choice Functions. SIAM Journal on
Applied Mathematics, 33(3):469–489, 1977. 8, 10

FJL+10. Michael R. Fellows, Bart Jansen, Daniel Lokshtanov, Frances A. Rosa-
mond, and Saket Saurabh. Determining the Winner of a Dodgson Election
is Hard. In Proceedings of the 29th Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science, pages 459–469. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2010. 21, 33

FKS03. Ronald Fagin, Ravi Kumar, and Dandapani Sivakumar. Efficient Similarity
Search and Classification via Rank Aggregation. In Proceedings of the 22nd
ACM SIGMOD International Conference on Management of Data, pages
301–312. ACM, 2003. 1, 9

FS11. Lance Fortnow and Rahul Santhanam. Infeasibility of Instance Compres-
sion and Succinct PCPs for NP. Journal of Computer and System Sciences,
77(1):91–106, 2011. 33

Gae09. Wulf Gaertner. A Primer in Social Choice Theory–LSE Perspectives in
Economic Analysis. Oxford University Press, revised edition, 2009. 6

Gib73. Allan Gibbard. Manipulation of Voting Schemes: A General Result. Econo-
metrica, 41(4):587–601, 1973. 25

GMN09. Jiong Guo, Hannes Moser, and Rolf Niedermeier. Iterative Compression
for Exactly Solving NP-Hard Minimization Problems. In Algorithmics of
Large and Complex Networks, volume 5515 of LNCS, pages 65–80. Springer,
2009. 38

GN07. Jiong Guo and Rolf Niedermeier. Invitation to Data Reduction and Prob-
lem Kernelization. ACM SIGACT News, 38(1):31–45, 2007. 4, 32

Goo54. Leo A. Goodman. On Methods of Amalgamation. In R. M. Thrall, C. H.
Coombs, and R. L. Davis, editors, Decision Processes, pages 39–48. John
Wiley and Sons, Inc., 1954. 10

HHR97. Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. Exact
Analysis of Dodgson Elections: Lewis Caroll’s 1876 Voting System is Com-
plete for Parallel Access to NP. Journal of the ACM, 44(6):806–825, 1997.
9

HHR07. Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. Anyone
but Him: The Complexity of Precluding an Alternative. Artificial Intelli-
gence, 171(5-6):255–285, 2007. 28, 29, 30

HHR09. Edith Hemaspaandra, Lane A. Hemaspaandra, and Jörg Rothe. Hybrid
Elections Broaden Complexity-Theoretic Resistance to Control. Mathe-
matical Logic Quarterly, 55(4):397–424, 2009. 29

HSV05. Edith Hemaspaandra, Holger Spakowski, and Jörg Vogel. The Complexity
of Kemeny Elections. Theoretical Computer Science, 349(3):382–391, 2005.
9, 19

44

Hud04. Olivier Hudry. A Note On “Banks Winners in Tournaments Are Difficult to
Recognize” by G. J. Woeginger. Social Choice and Welfare, 23(1):113–114,
2004. 21

IP01. Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT.
Journal of Computer and System Sciences, 62:367–375, 2001. 4

IPZ01. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Prob-
lems Have Strongly Exponential Complexity? Journal of Computer and
System Sciences, 63(4):512–530, 2001. 4, 36

JSA08. Benjamin N. Jackson, Patrick S. Schnable, and Srinivas Aluru. Consensus
Genetic Maps as Median Orders from Inconsistent Sources. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 5(2):161–171,
2008. 1, 9

Kem59. John G. Kemeny. Mathematics Without Numbers. Daedalus, 88:571–591,
1959. 8, 9

KL05. Kathrin Konczak and Jérôme Lang. Voting Procedures with Incomplete
Preferences. In Proceedings of IJCAI’05 Multidisciplinary Workshop on
Advances in Preference Handling, pages 124–129, 2005. 21, 24

KNU11. Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. Decon-
structing Intractability—A Multivariate Complexity Analysis of Interval
Constrained Coloring. Journal of Discrete Algorithms, 9:137–151, 2011.
38

KS10. Marek Karpinski and Warren Schudy. Faster Algorithms for Feedback
Arc Set Tournament, Kemeny Rank Aggregation and Betweenness Tour-
nament. In Proceedings of the 21st International Symposium on Algorithms
and Computation, volume 6506 of LNCS, pages 3–14. Springer, 2010. 15,
16, 18, 32, 39

KT06. Jon Kleinberg and Éva Tardos. Algorithm Design. Addison Wesley, 2006.
15

LB11. Tyler Lu and Craig Boutilier. Budgeted Social Choice: From Consensus
to Personalized Decision Making. In Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, pages 280–286, 2011. 13

Len83. Hendrik W. Lenstra. Integer Programming with a Fixed Number of Vari-
ables. Mathematics of Operations Research, 8(4):538–548, 1983. 21, 23, 30,
34, 38

Lev75. Arthur Levenglick. Fair and Reasonable Election Systems. Behavioral
Science, 20(1):34–46, 1975. 9

LFZL09. Hong Liu, Haodi Feng, Daming Zhu, and Junfeng Luan. Parameterized
Computational Complexity of Control Problems in Voting Systems. The-
oretical Computer Science, 410:2746–2753, 2009. 30

Lok09. Daniel Lokshtanov. New Methods in Parameterized Algorithms and Com-
plexity. PhD thesis, University of Bergen, 2009. 34

LR08. Claudia Lindner and Jörg Rothe. Fixed-Parameter Tractability and Pa-
rameterized Complexity Applied to Problems From Computational Social
Choice. Supplement in the Mathematical Programming Glossary, October
2008. 2

LZ10. Hong Liu and Daming Zhu. Parameterized Complexity of Control Prob-
lems in Maximin Election. Information Processing Letters, 110(10):383–
388, 2010. 30

MG06. Jiří Matoušek and Bernd Gärtner. Understanding and Using Linear Pro-
gramming (Universitext). Springer, 2006. 34

45

Mon95. Burt L. Monroe. Fully Proportional Representation. American Political
Science Review, 89(4):925–940, 1995. 13

Mou91. Hervé Moulin. Axioms of Cooperative Decision Making. Cambridge Uni-
versity Press, 1991. 11, 12

MR99. Meena Mahajan and Venkatesh Raman. Parameterizing Above Guaranteed
Values: MaxSat and MaxCut. Journal of Algorithms, 31(2):335–354, 1999.
18

MRS09. Meena Mahajan, Venkatesh Raman, and Somnath Sikdar. Parameterizing
Above or Below Guaranteed Values. Journal of Computer and System
Sciences, 75:137–153, 2009. 15, 18

MRS11. Neeldhara Misra, Venkatesh Raman, and Saket Saurabh. Lower Bounds
on Kernelization. Discrete Optimization, 8(1):110–128, 2011. 33

Nie06. Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Uni-
versity Press, February 2006. 2, 3, 4, 34, 36

Nie10. Rolf Niedermeier. Reflections on Multivariate Algorithmics and Problem
Parameterization. In Proceedings of the 27th International Symposium on
Theoretical Aspects of Computer Science, volume 5 of LIPIcs, pages 17–32,
2010. 23, 38

Nur87. Hannu Nurmi. Comparing Voting Systems. Kluwer Academic Publishers,
1987. 6

Pap94. Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994. 2

PRVW11. Maria Silvia Pini, Francesca Rossi, K. Brent Venable, and Toby Walsh. In-
completeness and Incomparability in Preference Aggregation: Complexity
Results. Artificial Intelligence, 175:1272–1289, 2011. 24, 38

PRZ08. Ariel D. Procaccia, Jeffrey S. Rosenschein, and Aviv Zohar. On the Com-
plexity of Achieving Proportional Representation. Social Choice and Wel-
fare, 30:353–362, 2008. 13

RBLR11. Jörg Rothe, Dorothea Baumeister, Claudia Lindner, and Irene Rothe.
Einführung in Computational Social Choice: Individuelle Strategien und
kollektive Entscheidungen beim Spielen, Wählen und Teilen. Spektrum
Akademischer Verlag, 2011. 1, 6

RS07. Venkatesh Raman and Saket Saurabh. Improved Fixed Parameter
Tractable Algorithms for Two “Edge” Problems: MAXCUT and MAXDAG.
Information Processing Letters, 104(2):65–72, 2007. 15

RSV03. Jörg Rothe, Holger Spakowski, and Jörg Vogel. Exact Complexity of
the Winner Problem for Young Elections. Theory of Computing Systems,
36(4):375–386, 2003. 10, 21

RSV04. Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. Finding Odd Cycle
Transversals. Operations Research Letters, 32:299–301, 2004. 38

Sat75. Mark Allen Satterthwaite. Strategy-Proofness and Arrow’s Conditions:
Existence and Correspondence Theorems for Voting Procedures and Social
Welfare Functions. Journal of Economic Theory, pages 187–217, 1975. 25

Scu07. David W. Sculley. Rank Aggregation for Similar Items. In Proceedings of
the 7th SIAM International Conference on Data Mining, pages 587–592,
2007. 9

SEF11. Ildikó Schlotter, Edith Elkind, and Piotr Faliszewski. Campaign Man-
agement under Approval-Driven Voting Rules. In Proceedings of the 25th
AAAI Conference on Artificial Intelligence, pages 726–731. AAAI Press,
2011. 27

46

Sim09. Narges Simjour. Improved Parameterized Algorithms for the Kemeny Ag-
gregation Problem. In Proceedings of the 4th International Workshop on
Parameterized and Exact Computation, volume 5917 of LNCS, pages 312–
323. Springer, 2009. 16, 18

Sla61. Patrick Slater. Inconsistencies in a Schedule of Paired Comparisons.
Biometrika, 48(3–4):303–312, 1961. 21

Sni08. Moshe Sniedovich. Wald’s Maximin Model: A Treasure in Disguise! Journal
of Risk Finance, 9(3):287–291, 2008. 10

Tay05. Alan D. Taylor. Social Choice and the Mathematics of Manipulation. Cam-
bridge University Press, 2005. 6

Wal49. Abraham Wald. Statistical Decision Functions. The Annals of Mathemat-
ical Statistics, 20(2), 1949. 8, 10

Wal07. Toby Walsh. Uncertainty in Preference Elicitation and Aggregation. In
Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pages
3–8. AAAI Press, 2007. 23

Woe03. Gerhard J. Woeginger. Banks Winners in Tournaments are Difficult to
Recognize. Social Choice and Welfare, 20(3):523–528, 2003. 21, 39

XC11. Lirong Xia and Vincent Conitzer. Determining Possible and Necessary
Winners under Common Voting Rules Given Partial Orders. Journal of
Artificial Intelligence Research, 41:25–67, 2011. 22, 23, 24, 30

YL78. H. P. Young and Arthur Levenglick. A Consistent Extension of Condorcet’s
Election Principle. SIAM Journal on Applied Mathematics, 35(2):285–300,
1978. 9

You77. H. P. Young. Extending Condorcet’s Rule. Journal of Economic Theory,
16:335–353, 1977. 8, 9, 10, 21

47

	Studies in Computational Aspects of Voting

