
Technische Universität Berlin
Electrical Engineering and Computer Science
Institute of Software Engineering
and Theoretical Computer Science
Algorithmics and Computational Complexity (AKT)

Parameterized Algorithmics of
2-Club Cluster Graph Modification

Bachelor thesis

von Aleksander Figiel

zur Erlangung des Grades
”
Bachelor of Science“ (B. Sc.)

im Studiengang Informatik

Erstgutachter: Prof. Dr. Rolf Niedermeier
Zweitgutachter: Prof. Dr. Stephan Kreutzer

Betreuer: Anne-Sophie Himmel,
Dr. André Nichterlein,
Prof. Dr. Rolf Niedermeier

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie
ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten
Quellen und Hilfsmittel angefertigt habe.

Die selbstständige und eigenständige Anfertigung versichert an Eides statt:

Berlin, den
Datum Unterschrift

2

Zusammenfassung

Wir befassen uns mit drei eng verwandten Graphenmodifikationsproblemen aus der
Perspektive der parametrisierten Komplexität. Diese Probleme sind 2-Club Cluster
Editing, 2-Club Cluster Vertex Deletion und 2-Club Cluster Edge De-
letion, worin es das Ziel ist einen gegebenen Graphen so zu transformieren, dass jede
Komponente einen Durchmesser von zwei hat mit der kleinstmöglichen Anzahl ein-
gefügter und gelöschter Kanten, gelöschter Knoten beziehungsweise gelöschter Kanten.
Bemerkenswerte Anwendungsgebiete schließen graphbasiertes Clustering ein—die Auf-
teilung von Knoten in Cluster, so dass die Knoten in einem Cluster stark miteinander
verbunden sind. Eine vorherige Arbeit resultierte in Algorithmen mit Laufzeit O∗(3.31k)
beziehungsweise O∗(2.74k) für die letzten zwei Probleme. Wir zeigen ein W[2]-Härte-
Ergebniss für 2-Club Cluster Editing, was bedeutet, dass die Existenz eines FPT
Algorithmuses sehr unwahrscheinlich ist. Auf der positiven Seite entwickeln wir mehrere
Datenreduktionsregeln und untere Schranken für 2-Club Cluster Vertex Deleti-
on und 2-Club Cluster Edge Deletion und implementieren einen Solver für das
erste von den Beiden. Wir haben erfolgreich Probleminstanzen aus einem biologischen
Datensatz mit dichten Graphen bis zu 250 Knoten gelöst.

Abstract

We study three closely related graph modification problems from a parametrized com-
plexity perspective. These problems are 2-Club Cluster Editing, 2-Club Clus-
ter Vertex Deletion and 2-Club Cluster Edge Deletion, where the goal is
to transform a graph into a 2-club cluster graph, that is a graph in which component
has diameter at most two, with as few edge insertion and deletions, vertex deletions,
and edge deletions, respectively. Notable areas of application include graph-based data
clustering—the partitioning of vertices into highly interrelated clusters. Previous work
resulted in O∗(3.31k) and O∗(2.74k) algorithms for the last two of the problems. We
present a W[2]-hardness result for 2-Club Cluster Editing, which means it is likely
not fixed-parameter tractable (FPT) with respect to the number of allowed edge modifi-
cations. On the positive side, we develop multiple data reduction rules and lower bounds
for 2-Club Cluster Vertex Deletion and 2-Club Cluster Edge Deletion,
and implement a solver for the former. We have successfully solved problem instances
from a biological dataset with dense graphs up to 250 vertices.

3

Contents

1 Introduction 5

2 Preliminaries 8
2.1 Graph theory . 8
2.2 Parameterized complexity . 9
2.3 Problem definitions . 10
2.4 2-Club specifics . 12

3 2-Club Cluster Editing 13
3.1 W[2]-hardness . 13
3.2 Useful algorithmic properties . 16

4 2-Club Cluster Vertex Deletion 19
4.1 Search tree . 20
4.2 Data reduction rules . 22
4.3 Lower bounds . 26
4.4 Introducing weights . 27

5 2-Club Cluster Edge Deletion 31

6 Implementation and Experiments 35
6.1 Setup and solver configurations . 35
6.2 Implementation . 36
6.3 Experiments . 39

6.3.1 Dataset . 40
6.3.2 Results . 41

7 Conclusion 45

Literature 46

4

1 Introduction

The clustering or partitioning of data is an important step used for data analysis. One
of the most popular clustering algorithms is k-means clustering, where datapoints rep-
resented as vectors from Rn are to be split into k clusters, such that the points in each
cluster are close to its center and distanced from other clusters as well as possible.

An emerging domain is graph-based data clustering, where the data is no longer rep-
resented as vectors in Rn, but as vertices of a graph G = (V,E). The edges of the
graph can carry diverse semantic meaning such as similarity or interaction of datapoints
and can optionally have weights to represent the strength of interaction or similarity.
The goal of graph-based data clustering is the separation or clustering of vertices into
disjoint sets in which vertices are highly interrelated—which means that they induce
dense subgraphs such as cliques. However, it is unlikely that the vertices of a graph can
be partitioned nicely into many large cliques, because in them no edge can be missing.

For this reason the graph-based clustering problem is often a graph modification
problem. The graph is to be transformed with as few modifications as possible such that
the resulting graph has a desired structure, for example that each component forms a
clique. The resulting transformed graph defines the clustering of vertices. Vertices in the
same component of the transformed graph are part of the same cluster. Standard graph
modification operations are: inserting edges, deleting edges, and deleting vertices and
typically one only allows one or two modification types. These modification problems
are often NP-hard and have been studied from a computational complexity perspective,
particularly fixed-parameter tractability (FPT) with respect to the number of allowed
modifications [Bor+16; Böc12; Guo+10].

One of the most popular graph modification problems is Cluster Editing where one
wants to find the number of edge insertions and deletions that is necessary to transform
a graph into a cluster graph, that is a graph in which each component is a clique. In
particular, clustering of graphs representing protein sequence similarities has had much
appeal [Wit+10].

The condition of the components forming cliques is, however, very restrictive. The
choice of a clustering model is very use-case dependent and there is no model that is
well-suited for all applications. Alternative models that relax the conditions for density,
minimum vertex degree or diameter have been proposed and include: µ-cliques, k-cores,
s-plexes and s-clubs, among others [Lee+10]. Distance-based relaxation models have
been mostly unexplored, particularly in the area of graph modification problems. An s-
club is a graph which has diameter at most s, which means any two vertices have a
distance of at most s. A 1-club is equivalent to a clique, whereas 0-clubs are isolated
vertices, which means only s-clubs with s ≥ 2 are interesting from the viewpoint of
distance based relaxations. In our work we will be focusing on the first of them, that
is 2-clubs. The 2-club relaxation model has been proposed for the analysis of biological

5

1 Introduction

[BBT05] and social networks [PYB12]. These graphs have the property that any two
vertices are adjacent or have a common neighbor, which can be thought of as “two hop
transitivity”, and already is a quite relaxed model.

In our work we are interested in modifying graphs into 2-club cluster graphs, that
is graphs in which each component is a 2-club. Liu, Zhang, and Zhu [LZZ12] intro-
duced three NP-hard graph modification problems: 2-Club Cluster Editing, 2-
Club Cluster Edge Deletion and 2-Club Cluster Vertex Deletion, the
last two of which are fixed-parameter tractable with respect to the number of modifica-
tions, but tractability of the first is an open problem. In 2-Club Cluster Editing
the goal is to transform the graph into a 2-club cluster graph with as few edge insertions
and deletions as possible, whereas for 2-Club Vertex and Edge Deletion with
as few vertex and edge deletions, respectively. The prominence of Cluster Editing
means that 2-Club Cluster Editing is of particular interest to us.

Related work Many graph modification problems have been analyzed in literature.
Cao and Chen [CC12], Böcker [Böc12] and many others studied kernels and fast branch-
ing algorithms for (Weighted) Cluster Editing. Boral et al. [Bor+16] and Hüffner
et al. [Hüf+10] developed O∗(1.92k) and O∗(2k) algorithms for Cluster Vertex
Deletion. For clique relaxations Guo et al. [Guo+10] developed a polynomial ker-
nel and an efficient search tree for s-Plex Cluster Editing. In the field of 2-clubs
we have the work of Liu, Zhang, and Zhu [LZZ12] with O∗(3.31k) and O∗(2.74k) algo-
rithms for 2-Club Cluster Vertex Deletion and 2-Club Cluster Edge Dele-
tion, respectively. Hartung, Komusiewicz, and Nichterlein [HKN15] studied fast ways
of finding the largest 2-club in a graph, whereas Castelli et al. [Cas+19] use a genetic
algorithm for finding the k largest 2-clubs in a graph. Komusiewicz et al. [Kom+19]
explore different variants of well-connected 2-clubs and efficient ways to find them.

Our contribution In Chapter 3 we present a W[2]-hardness result for 2-Club Clus-
ter Editing, meaning that 2-Club Cluster Editing is likely not FPT with respect
to the number of allowed modifications. On the positive side, we extend the work of
Liu, Zhang, and Zhu [LZZ12] on the fixed-parameter tractability of 2-Club Cluster
Vertex Deletion and 2-Club Cluster Edge Deletion and develop multiple
data reduction rules and lower bounds for the two problems in Chapter 4 and Chap-
ter 5, respectively. For this we use a standard depth-bounded search tree approach.
We also extensively use constraints by identifying vertices or edges that must not be
deleted and use this information to improve our reduction rules and lower bounds. The
deletion of a vertex being much more powerful than the deletion of an edge, means that
likely fewer vertex than edge deletions are necessary to transform the graph into a 2-club
cluster graph. We therefore hope to find better results for 2-Club Cluster Vertex
Deletion than for 2-Club Cluster Edge Deletion. For this reason we focus our
efforts mainly on 2-Club Cluster Vertex Deletion, but also describe similarities
and differences in 2-Club Cluster Edge Deletion. We explore a setting in which
vertices can have positive integer weights and its surprisingly simple equivalence to the
unweighted variant. We make use of vertex weights to explicitly model our constraints,
by assigning infinite weight to vertices, but also allow the merging of vertices. Finally,

6

1 Introduction

we develop a solver for 2-Club Cluster Vertex Deletion using our findings and
conduct some experiments on a biological dataset with dense graphs and describe our
results in Chapter 6. We have successfully applied our solver on this dataset to solve
instances with up to 250 vertices and 15,000 edges, where up to 60 vertices had to be
deleted to transform the graphs into 2-club cluster graphs. The maximum running time
of our solver was 4 minutes, but took only up to 10 seconds in most cases.

7

2 Preliminaries

We will first introduce basic knowledge about graph theory and parameterized complex-
ity that we will need for the rest of this thesis. In Section 2.4 we will describe important
properties of 2-clubs that need to be considered.

2.1 Graph theory

A graph G = (V,E) is a pair of a set V of vertices and a set E ⊆ {{v, w} | v, w ∈ V, v 6=
w} of edges. This means there are no self-loops or multi-edges. We will often denote
by n and m the number of vertices and edges, respectively.

A path P in G is an ordered sequence of pairwise distinct vertices v1, v2, . . . , vk+1 ∈ V
such that {vi, vi+1} ∈ E for all i ∈ {1, . . . , k}. It is also an induced path if these are the
only edges between its vertices. The length of P is k. We will call a path on n vertices
a Pn.

A graph is said to be connected if there exists a path between all pairs of vertices
from V (G) in G. A (connected) component of a graph is a maximal vertex set S ⊆ V
such that G[S] is connected. A cut vertex is a vertex whose deletion increases the
number of components.

The following list summarizes most of the notation that we will use:(
V
2

)
the set of all possible pairs, formally {{a, b} | a, b ∈ V, a 6= b}

E4F the symmetric difference of two sets, formally (E \ F) ∪ (F \ E)

V (G) the vertex set of G

E(G) the edge set of G

NG(v) the open neighborhood of v, formally {{v, a} ∈ E | a ∈ V }

NG[v] the closed neighborhood of v, formally NG(v) ∪ {v}

degG(v) the degree of v ∈ V , formally |NG(v)|

∆(G) the maximum degree of G, formally maxv∈V degG(v)

δ(G) the minimum degree of G, formally minv∈V degG(v)

G[V ′] the subgraph of G induced by V ′ ⊆ V , formally (V ′, E ∩
(
V ′

2

)
)

G[E ′] the subgraph of G induced by E ′ ⊆ E, formally (V,E ′)

G− v the graph obtained after deleting the vertex v ∈ V , formally G[V \ {v}]

8

2 Preliminaries

(a) A star with six leaves (b) The Petersen graph

Figure 2.1: Examples of 2-clubs. Notice that after removing any vertex from the Pe-
tersen graph it is no longer a 2-club. The Petersen graph with its complex yet
highly symmetrical structure is infamous for being a small counterexample
to many optimistic assumptions.

G− e the graph obtained after deleting the edge e = {a, b} ∈ E, formally G[E\{e}]

ab a shorthand for the edge {a, b} ∈ E

distG(s, t) the distance of s, t ∈ V , i.e., the length of the shortest path connecting s
and t or ∞ if none exists

When in context it is clear which graph we are working with then we will not use G
in the subscripts and only write deg(v) instead of degG(v), for example. We will call
two vertices u, v twins if either NG(u) = NG(v) or NG[u] = NG[v], the former sometimes
being called false twins and the latter true twins, however, we will not make use of
this distinction. The diameter of a graph is the maximum distance of any two vertices,
formally maxs,t∈V distG(s, t).

A clique or complete graph is a graph G of the form (V,
(
V
2

)
). A tree is a connected

graph with n−1 edges. An s-club is a graph of diameter at most s. Stars are particularly
simple 2-clubs, which are trees that have at most one vertex with degree greater than
one. For examples of 2-clubs see Figure 2.1. A cluster graph is a graph in which
each component is a clique, likewise an s-club cluster graph is a graph in which each
component is an s-club.

2.2 Parameterized complexity

A problem of size n and with a parameter k is said to be fixed-parameter tractable if it
can be solved in f(k) · nO(1) time, where f is a computable function. We sometimes use
the notation O∗(f(k)) for algorithms for FPT problems, in which omit the polynomial
term dependent on the size of the input problem. Fixed-parameter tractable problems
form the class FPT . FPT algorithms often make use of data reduction rules. A data
reduction rule is a polynomial-time algorithm, which reduces an instance (I, k) to an
instance (I ′, k′). Typically the reduced instance is smaller, that is, |I ′| ≤ |I| and k′ ≤ k.
The data reduction rule is said to safe if (I, k) and (I ′, k′) are equivalent, i.e., that (I, k)

9

2 Preliminaries

is a yes-instance if, and only if, (I ′, k′) is a yes-instance. We are only interested in safe
data reduction rules. A kernel is an alogrithm that reduces an instance (I, k) to an
equivalent instance (I ′, k′) with |I ′|+ k′ ≤ f(k′) for some computable function f . It is
also called a polynomial kernel if f is a polynomial.

FPT algorithms are often based on depth-bounded search trees [Nie06]. They recur-
sively explore the space of possible solutions by identifying a “small subset of the input
instance” such that at least one element from this subset is part of an optimal solution.
This small subset is often guaranteed to have a fixed size. The algorithm then branches
into appropriately many cases to check which of these elements can be found in an opti-
mal solution. This is done in an recursive manner and a parameter k, often representing
the desired solution size, is decreased by di in the i-th branch. The search tree does not
branch further if k were to become negative, thus bounding its depth. The resulting
recursive call graph is a tree. For the running time analysis of such FPT algorithms it
is important to analyze the number of recursive calls or the size of the search tree. This
can be done by solving the following recurrence relation:

T (k) = 1 for k ≤ 0

T (k) = T (k − d1) + · · ·+ T (k − d`) otherwise

The vector (d1, . . . , d`) is called a branching vector. The size of the search tree can be
computed by solving zk = zk−d1 + · · ·+ zk−d` for z. The root α with the largest absolute
value then gives T (k) = kO(1) · αk and if α is a single root, then T (k) = O(αk). The
branching number corresponding to the branching vector (d1, . . . , d`) is |α|.

The W-hierarchy: FPT = W [0] ⊆ W [1] ⊆ · · · ⊆ W [P] is an important hierarchy of
NP-hard problems. All of these inclusion are believed to be strict [Cyg+15], meaning
that the “deeper” a problem is in the W-hierarchy the less likely is its fixed-parameter
tractability. In order to prove for example W[2]-hardness of a problem B one needs
to find a parameterized reduction from a W[2]-hard problem A to B. A parameterized
reduction is an algorithm that given an instance (I, k) of A outputs an equivalent
instance (I ′, k′) of B such that k′ ≤ g(k) for some computable function g and the
running time of the algorithm is f(k) · |I|O(1).

For more details about the topic of parameterized complexity we refer to the books
by Cygan et al. [Cyg+15], Downey and Fellows [DF13], and Niedermeier [Nie06].

2.3 Problem definitions

What follows is a list of problems relevant for our thesis.

Vertex Cover
Input: A graph G and an integer k ∈ N.
Question: Is there a U ⊆ V with |U | ≤ k such that each edge has at least one end

in U?

Dominating Set
Input: A graph G and an integer k ∈ N.
Question: Is there a U ⊆ V with |U | ≤ k such that each vertex in V \ U has at

least one neighbor in U?

10

2 Preliminaries

d-Hitting Set
Input: A collection C of subsets of size d of a finite set S and an integer k ∈ N
Question: Is there a subset S ′ ⊆ S with |S ′| ≤ k such that S ′ contains at least

one element from each of the sets in C?

Cluster Editing
Input: A graph G and an integer k ∈ N.

Question: Is there an F ⊆
(
V
2

)
with |F | ≤ k such that G[E4F] is a cluster graph?

Weighted Cluster Editing
Input: A graph G, a weight function w : E → N and an integer k ∈ N+.

Question: Is there an F ⊆
(
V
2

)
with w(F) :=

∑
e∈F w(e) ≤ k such that G[E4F]

is a cluster graph?

Cluster Vertex Deletion
Input: A graph G and an integer k ∈ N.
Question: Is there an S ⊆ V with |S| ≤ k such that G[V \ S] is a cluster graph?

s-Club Cluster Editing
Input: A graph G and an integer k ∈ N.

Question: Is there an F ⊆
(
V
2

)
with |F | ≤ k such that G[E4F] is an s-club cluster

graph?

s-Club Cluster Vertex Deletion
Input: A graph G and an integer k ∈ N.
Question: Is there an S ⊆ V with |S| ≤ k such that G[V \ S] is an s-club cluster

graph?

s-Club Cluster Edge Deletion
Input: A graph G and an integer k ∈ N.
Question: Is there an F ⊆ E with |F | ≤ k such that G[E \F] is an s-club cluster

graph?

s-Club
Input: A graph G and an integer k ∈ N.
Question: Is there an S ⊆ V with |S| ≥ k such that G[S] is a s-club?

While these are all decision problems, one is usually also interested in finding the
solution for a yes-instance. We will be using the terms minimum solution and optimal
solution interchangeably. The domination number γ(G) is the size of a minimum dom-
inating set of G. Similarly, τ(G) is the size of a minimum vertex cover of G. Vertex
Cover is famously fixed-parameter tractable with respect to k, whereas Dominating
Set is W[2]-complete [DF13; Nie06].
Cluster Editing is equivalent to 1-Club Editing and Cluster Vertex Dele-

tion is equivalent to 1-Club Vertex Deletion. Notice also how Vertex Cover
is equivalent to 0-Club Vertex Deletion.

11

2 Preliminaries

e

a

b

c

d

f g

h

i

jk

Figure 2.2: An example to demonstrate robustness. For example we have the fol-
lowing robustness: robust(a, d) = 2, robust(f, j) = robust(h, k) = 0
and robust(h, j) = ∞. Two optimal 2-club cluster vertex deletion sets
are {e, j} and {i, k}.

2.4 2-Club specifics

A 2-club is a graph with diamater at most two, which means that for all pairs of
vertices u, v ∈ V it holds that u and v are adjacent or have at least one common neighbor.
We will use terminology from Liu, Zhang, and Zhu [LZZ12] and call a path stuv in G
a restricted P4 if distG(s, v) = 3. In this case, the restricted P4 is a shortest path
connecting s and v and it is also an induced P4.

Observation 2.1. G is a 2-club cluster graph if and only if it contains no restricted P4’s.

This alternate 2-club characterization is important for fixed parameter tractability
of 2-Club Cluster Vertex Deletion and 2-Club Cluster Edge Deletion.
While a restricted P4 exists the graph cannot be a 2-club cluster graph. Therefore, one
of the three edges or four vertices needs to be deleted. If edge insertions are allowed
this is no longer so simple, as we will see in Chapter 3.

2-Clubs are non-hereditary, that is, if G is a 2-club, then for a V ′ ⊆ V the graph G[V ′]
is not necessarily a 2-club (for example see the Petersen graph in Figure 2.1). For 2-
Club Cluster Vertex Deletion we introduce the following terminology. We will
call a vertex b a bridge vertex if for some s, v ∈ N(b) there exists an induced P4 stuv for
some t, u ∈ V . We say that b bridges stuv. Because restricted P4’s are induced paths
and the deletion of a vertex cannot create more induced paths, this means that only
the deletion of bridge vertices can create additional restricted P4’s. However, deleting
a single vertex may not be enough to create a restricted P4. We therefore introduce
the following robustness function to find the number of vertices that need to be deleted
before between some vertices s and v a restricted P4 can be created.

robust(s, v) =

{
∞ if there is no induced P4 stuv for any t, u ∈ V
|(N(s) ∩N(v))| otherwise

For an example see Figure 2.2
An induced P4 stuv is a restricted P4 if and only if robust(s, v) = 0. For the in-

duced P4 stuv the set U = N(s) ∩ N(v) of vertices needs to be deleted, before stuv is
“promoted” to a restricted P4. We will say that the deletion of the vertices in U con-
tributes to the creation of the restricted P4 stuv. We will call a set S such that G[V \S]
a 2-club cluster graph a 2-club vertex deletion set.

12

3 2-Club Cluster Editing

Some work has been done analyzing problems closely related to 2-Club Cluster
Editing such as 2-Club Cluster Edge Deletion and 2-Club Cluster Vertex
Deletion. The last two are fixed-parameter tractable with respect to the solution set
size k [LZZ12]. The core idea behind the algorithms was to search for a restricted P4 stuv
and delete a vertex or an edge to separate s and v. This is correct, because while a
restricted P4 connecting s and v exists, the graph is not a 2-club cluster graph. These
observations were essential to show the fixed-parameter tractability of the two problems.

3.1 W[2]-hardness

In the context of restricted P4’s for 2-Club Cluster Editing we consider ways of
eliminating a restricted P4 stuv with only a single edge deletion or insertion:

• inserting {s, v}, {t, v} or {s, u},

• deleting {s, t}, {t, u} or {u, v}.

We call these six operations local resolutions (see Figure 3.1a). It is not immediately
obvious whether these six local resolutions are sufficient to construct a minimum 2-club
editing set F . After all, other ways of eliminating restricted P4’s exist—meaning those
that add edges {a, b} such that a ∈ {s, t, u, v} and b ∈ V \ {s, t, u, v}, which we will call
non-local resolutions (see Figure 3.1b). What is more, we also notice that by inserting
new edges into the graph, new restricted P4’s could be created. An unlucky choice of a
restricted P4 to eliminate might lead to the editing cost of the graph in all six branches
to be at least as high as it was before, meaning that that specific restricted P4 should
not have been branched on.

Indeed, we find cases where it is not sufficient to branch on an arbitrary P4 (see
Figure 3.2a). In particular, cases exist where branching on any restricted P4 does not
yield an optimal solution (see Figure 3.2b). This means that considering paths of length
three and their local resolutions is not always sufficient to find an optimal solution.

This begs the question if 2-Club Cluster Editing is at all fixed-parameter tractable
with respect to k. We show that this is very unlikely. To this end, we show that 2-Club
Cluster Editing is W[2]-hard with respect to k.

A problem closely related to 2-Club Cluster Editing is the following.

Diameter-2 Augmentation
Input: A graph G and an integer k ∈ N.

Question: Is there an F ⊆
(
V
2

)
\ E with |F | ≤ k such that G[E ∪ F] is a graph

with diameter two?

13

3 2-Club Cluster Editing

s t u v

(a) The six local resolutions. Any edge
that is inserted or deleted has both its
ends in {s, t, u, v}.

s t u v

b

(b) A non-local resolution, where b can
be any vertex other than s, t, u and v.
It is possible that at most one of the
edges {s, b} or {v, b} is already present.

Figure 3.1: Examples of ways in which a restricted P4 stuv can be resolved. Dashed
edges are edges to be inserted, whereas dotted ones are to be deleted.

s

t

u

v

a

b

c

d

e

(a) No local resolution of stuv yields an
optimal solution

a

b

c d

e
f

g

h i

j

(b) No local resolution of any restricted P4

yields an optimal solution

Figure 3.2: Cases where the optimistic assumption of branching on any restricted P4

fails. The dashed edges indicate the single optimal solution. Notice that
in Figure 3.2b the distance of c and d is four. Therefore we cannot insert
the edge {c, d} as part of a local resolution without first decreasing their
distance.

The only difference between 2-Club Cluster Editing and Diameter-2 Augmen-
tation is that the latter does not allow edges to be deleted. Gao, Hare, and Nastos
[GHN13] already claim that Diameter-2 Augmentation is W[2]-hard with respect
to k, by constructing a parameterized reduction from Dominating Set; however, we
have not been able to verify their results. We use an idea similar to the one by Gao,
Hare, and Nastos [GHN13], which involves a parameterized reduction from Dominat-
ing Set, to prove W[2]-hardness for 2-Club Cluster Editing. Dominating Set
remains W[2]-hard for graphs with diameter two [Lok+13], which allows us to assume
that the Dominating Set instance has diameter two.

Theorem 3.1. 2-Club Cluster Editing is W[2]-hard with respect to k.

Proof. Let G = (V,E) be graph with diameter two. We construct a graph G′ in such a
way that G has a minimum dominating set of size k if and only if G′ has a minimum
2-club editing size of k. The graph G′ = (V ′, E ′) can be broken down into following
parts: the original graph G, a clique C of size (n+ 1)2 and a single vertex x. We assign
two indices for the vertices ci,j ∈ C such that i, j ∈ {0, . . . , n}. The vertices in V only

14

3 2-Club Cluster Editing

ci,0

ci,n

cj,ncj,0

c0,0

c0,n

. .
.

. . .

. . .

vix

vj

Figure 3.3: A schematic picture of the construction of G′ from the proof of Theorem 3.1.
The vertices in the gray circle form a clique, but only the vertices connected
to vi, vj or x are shown. The edge between vi and vj may be present, de-
pending on G.

have one index: vi ∈ V , i ∈ {1, . . . , n}. In addition to the existing edges in G and C we
add the following edges:

• for each j ∈ {0, . . . , n} : {x, c0,j} ∈ E ′,

• for each ci,j ∈ C, i 6= 0 : {vi, ci,j} ∈ E ′.

The graph G′ has O(n4) edges and O(n2) vertices. For a schematic picture of G′ see
Figure 3.3. Notice that the only pairs of vertices with distance three are x and vi ∈ V ,
all others have distance at most two.

We claim there exists a minimum 2-club editing set for G′ (which only inserts edges)
of the form {{x, v} | v ∈ D}, where D is a minimum dominating set for G. We will
denote by η(G′) the size of a minimum 2-club editing set for G′. Recall that γ(G) is the
size of a minimum dominating set of G. We will now show that γ(G) = η(G′).
γ(G) ≥ η(G′): Let D be a minimum dominating set for G, and F = {{x, v} | v ∈ D}.

Let H = G′[E ′4F] be the graph transformed by F . Every vi is either in D, and
then distH(x, vi) = 1, or vi /∈ D, then vi has a neighbor in D and thus distH(x, vi) = 2.
This means H is a 2-club cluster graph and F a 2-club editing set for G′.
η(G′) ≥ γ(G): Let F be any minimum 2-club editing set for G′ and H = G′[E ′4F] be

the resulting 2-club cluster graph. Notice that the minimum cut of G′ is n+1. Removing
any edge would only be optimal if H contained more than one 2-club cluster. However,
since η(G′) ≤ γ(G) ≤ n, a 2-club editing set of size γ(G) ≤ n can be constructed from a
minimum dominating set for G. As such, no minimum 2-club editing set F deletes any
edges from G′.

For any inserted edge {a, b} ∈ F exactly one of the following cases applies, since the
distance of x and some vi ∈ V has to be reduced by means of inserting {a, b} .

• {a, b} = {vi, x}: Then distH(x, vi) = 1 and for a ∈ NG(vi) distH(x, a) ≤ 2. We
interpret this as vi being a dominating vertex in G.

15

3 2-Club Cluster Editing

• {a, b} = {vi, c0,j}: This edge enables a path of length two from vi to x via c0,j.
This means this edge is only of benefit to vi. Then F ′ = (F \ {vi, c0,j}) ∪ {x, vi}
is also a minimum 2-club editing set with |F | = |F ′|.

• {a, b} = {vi, vj}: This means that one of the vertices has an edge to x. Without
loss of generality assume {x, vi} ∈ F . Notice that F is only optimal if {x, vj} /∈ F ,
as the edge {vi, vj} is only of benefit to vj and no other vertices, since the edge
enables a path of length two from vj to x via vi. Then F ′ = (F \ {vi, vj})∪{x, vj}
is also a minimum 2-club editing set with |F | = |F ′|.

• {a, b} = {vi, cj,k} , j 6= i, j 6= 0: This means that there is an edge {x, cj,k} ∈ F ,
otherwise F would not be optimal. The edge {vi, cj,k} enables a path of length
two from vi to x via cj,k. This means the edge is of no benefit to any other
vertices. Then F ′ = F \ {vi, cj,k} ∪ {x, vi} is also a minimum 2-club editing set
with |F | = |F ′|.

• {a, b} = {x, ci,j} , i 6= 0: This edge enables a path of length two from vi to x
via ci,j. By the case above we know there exists an F ′ with {x, ci,j} ∈ F ′ such
that there exists no edge {vk, ci,j} ∈ F ′ with k 6= i. This means the edge {x, ci,j}
is of no benefit to any other vertices. Then F ′′ = (F ′ \ {x, ci,j}) ∪ {x, vi} is also a
minimum 2-club editing set with |F | = |F ′′|.

With this, we know there exists an F ′ with |F ′| = |F | such that F ′ is a minimum
2-club editing set of the form {{x, v} | v ∈ D} for some D ⊆ V . This means D is a
dominating set for G. This implies γ(G) ≤ η(G′)

As such γ(G) = η(G′) and the reduction from (G, k) to (G′, k) is a valid param-
eterized reduction from Dominating Set for graphs with diameter two to 2-Club
Cluster Editing. Since Dominating Set remains W[2]-hard for graphs of diameter
two [Lok+13] this means 2-Club Cluster Editing is also W[2]-hard.

Our parameterized reduction from Dominating Set to 2-Club Cluster Editing
can also be used to show W[2]-hardness for Diameter-2 Augmentation, because by
our construction an optimal 2-club editing set does not delete any edges, which means
that it is also an optimal diameter two augmentation set.

3.2 Useful algorithmic properties

Despite being W[2]-hard we would like to describe some properties of this problem that
could be useful for a solver. A trivial way to approach the problem would be to try
all F ⊆

(
V
2

)
of size at most k. The running time would then be O∗(

(
n2

k

)
) = O∗(n2k).

We noticed that local resolutions of a restricted P4 are not enough to construct an
optimal 2-club editing set. The only other way to resolve stuv is by “constructing a
bridge”, i.e., finding a vertex b ∈ V \ {s, t, u, v} and inserting the edges {s, b} and {v, b}
if they are not in E already. Since distG(s, v) = 3, at least one of the edges is not
present. If we try all six local resolutions and all n− 4 non-local resolutions of stuv this
gives us a search tree algorithm with running time O∗((n+ 2)k).

16

3 2-Club Cluster Editing

We notice that the number of edges that can be inserted or removed from a graph
can be in the order of n2. However, there is a simple type of 2-club that has only n− 1
edges—a star with n − 1 leaves. This means that we can make any graph into a 2-
club cluster graph with at most n− 1 edge modifications by selecting any vertex v and
inserting edges to any vertex that is not a neighbor of v. This leads to the following
upper bound for the minimum 2-club editing cost of a graph.

Observation 3.2. The minimum 2-club editing set size of a graph G = (V,E) is at
most |V | −∆(G)− 1.

Due to the number of edges that need to be potentially deleted to split a graph into
multiple 2-clubs being in the order of n2 it is likely that the previously noted upper
bound is also a minimum 2-club editing set size for many dense graphs. In the context
of graph-based clustering such a solution would likely not be very satisfactory. It might
be more meaningful to find a constrained solution that does not modify too many edges
adjacent to a vertex (refer to Komusiewicz and Uhlmann [KU12]).

Next we want to study the effect of inserting or deleting an edge. We consider an
instance (G, k) of 2-Club Cluster Editing and some simple search tree algorithm
that solves this problem recursively by branching. Let F ′ be a partial 2-club editing
set that was constructed at some stage of the search tree algorithm. We are left with
the graph G′ = G[E4F ′]. Solving this problem recursively involves now searching for a
2-club editing set F ′′ with F ′′ ≤ k−|F ′| for G′, because then the set F = F ′′4F ′ would
be a 2-club editing set for G. However, it would be strange if F ′′ ∩F ′ 6= ∅, because that
would mean that F ′′ either deleted edges inserted by F ′ or inserted edges deleted by F ′.
The search tree would have then “paid” for one edge modification from its budget k
only to pay once more to later undo it. Undoing edge modifications in the search tree
means losing budget for two edge modifications. Constraining the solver to find an F ′′

with F ′′ ∩ F ′ = ∅ is then much more desirable.
We now consider such a constrained search tree, and a partial 2-club editing set F ′

constructed at some stage of the branching. We will call an edge {a, b} permanent if it
was inserted, i.e., {a, b} ∈ F ′ \ E. Likewise, we will call an edge {a, b} forbidden if was
deleted, i.e., {a, b} ∈ E ∩F ′. Permanent and forbidden edges have been used previously
by Böcker et al. [Böc+09] for their Weighted 2-Club Editing solver.

A fairly obvious observation is the following:

Observation 3.3. The existence of a permanent edge {a, b} enforces that a and b must
be in the same 2-club.

Furthermore, if a permanent edge {b, c} exists, then a, b and c must be in the same
2-club. We notice that if two vertices a and c must be in the same 2-club, then it is not
optimal to delete the edge {a, c}, if it exists, which means that this edge can also be
marked as permanent. Permanent edges have a transitivity property.

We can further constrain the search tree to only find 2-club editing sets F , such
that in in each 2-club in G[E4F] no edge was deleted by F , because such solutions
would clearly not be optimal, because the edge can be simply added back. With such a
constraint in place this leads us to the following observation:

17

3 2-Club Cluster Editing

Observation 3.4. The existence of a forbidden edge {a, b} enforces that a and b must
be in different 2-clubs.

This opposite function of forbidden and permanent edges has a fruitful consequence.

Observation 3.5. Let F ′ be a partial solution constructed at some stage of the branch-
ing, and A,B ⊆ V be two disjoint sets of vertices that must be in the same 2-club, as
enforced by F ′. If for some a ∈ A and b ∈ B the edge {a, b} is forbidden, then all edges
between A and B need to be deleted.

We will later capture some of these ideas more formally for 2-Club Cluster Edge
Deletion in Chapter 5.

18

4 2-Club Cluster Vertex Deletion

To solve 2-Club Cluster Vertex Deletion we use an approach typical for FPT
algorithms involving a search tree, which we describe in Section 4.1. We introduce a set
of permanent vertices, which is initially empty, and we constrain ourselves to finding a
2-club vertex deletion set that does not include a permanent vertex. These permanent
vertices will act as additional information about the graph, which we obtain during the
execution of our solver, and can be used in many different areas of our algorithm in
each of which it yields small improvements. Permanent vertices serve a similar purpose
as permanent and forbidden edges in 2-Club Cluster Editing, which were also
used by Böcker et al. [Böc+09] for Cluster Editing. We describe multiple data
reduction rules, for deleting vertices (with and without the help of permanent vertices),
but also for marking vertices as permanent (Section 4.2). We then develop lower bounds
(Section 4.3) to further reduce the size of the search tree. In Section 4.4 we switch to a
setting that allows vertices to have weights. We do this to create data reduction rules
which would not work without vertex weights, particularly “merging” of twin vertices.
We explain how our rules for the unweighted variant still apply to the weighted one, in
many cases without restrictions due to weights.

An important idea that we use repeatedly is to find many vertex-disjoint restricted P4’s.
Finding a maximum set of vertex-disjoint P4’s is NP-hard [IPS82], thus finding such a
set of restricted P4’s is likely also NP-hard. A practical implementation would then
employ heuristics.

In Chapter 6 we experimentally evaluate an implementation of the algorithm described
in this chapter. There we explore the impact of the techniques used involving permanent
vertices and twin merging. We also compare our solver against an ILP formulation,
which we describe next, that is solved using CPLEX.

ILP Formulation We start by devising an integer linear programming formulation for
2-Club Cluster Vertex Deletion. Although compact, it manages to capture some
important properties of the problem.

The only requirement that our graph has to fulfill in the end is that it is a 2-club
cluster graph, i.e., that it contains no restricted P4. Recall that a restricted P4 is an
induced P4 for which there is no vertex bridging it, i.e., a vertex whose neighborhood
includes the two ends of the P4. The deletion of any vertex cannot create any new
induced path. However, the deletion of a bridge vertex might “promote” an induced P4

to a restricted P4. This means that for any induced P4 stuv in G, if N(s) ∩N(v) = ∅,
then at least one vertex from stuv must be deleted.

We introduce a variable xv for each vertex v ∈ V . This variable has a value of 1 if and

19

4 2-Club Cluster Vertex Deletion

only if v is in the 2-club vertex deletion set. This leads to the following ILP formulation:

minimize:
∑
v∈V

xv

subject to: xs + xt + xu + xv +
∑

b∈N(s)∩N(v)

(1− xb) ≥ 1 for all induced P4’s stuv in G

xv ∈ {0, 1} for all v ∈ V

From this ILP formulation it is easy to see that deleting a vertex can cause some con-
straints to no longer hold, i.e., create restricted P4’s, and therefore force us to delete
additional vertices. However, deleting just one vertex may not be enough to create a
restricted P4. This effect is due to the non-hereditary property of 2-clubs.

If we could omit the sum over the common neighbors of s and v and thus only consider
restricted P4’s rather than induced P4’s, then 2-Club Cluster Vertex Deletion
could be trivially reduced to 4-Hitting Set and we could immediately benefit from
having a kernel with at most O(k3) vertices and a 4-approximation algorithm [Abu10].
However, it remains open whether 2-Club Cluster Vertex Deletion has a poly-
nomial kernel.

4.1 Search tree

The characterization of 2-club clusters graphs as graphs free of restricted P4’s yields a
straight-forward search tree algorithm, described by Branching Rule 4.1. We use this
as a basis of our solver.

Branching Rule 4.1. Let I = (G, k) be an instance of 2-Club Cluster Vertex
Deletion. If G is not a 2-club cluster graph, then find a restricted P4 stuv and split I
into four smaller instances Is, It, Iu, Iv as follows:

• Is = (G− s, k − 1),

• It = (G− t, k − 1),

• Iu = (G− u, k − 1),

• Iv = (G− v, k − 1).

Lemma 4.1. Branching Rule 4.2 is correct.

Proof. If G is already a 2-club cluster graph, then there is nothing to do. Otherwise
assume that G contains a restricted P4 stuv. We have to show that I is a yes-instance
if and only if at least one of the instances Is, It, Iu, Iv is a yes-instance.

“⇐”: Let S with |S| ≤ k − 1 be a 2-club vertex deletion set for one of the four
instances Ix with x ∈ {s, t, u, v}. Then the set S ′ = S ∪ {x} with |S ′| ≤ k is a 2-club
vertex deletion set for the instance I.

“⇒”: If I is a yes-instance, then at least one of the vertices s, t, u or v has to be
deleted. Let S be a 2-club vertex deletion set for G with |S| ≤ k. For any x ∈ {s, t, u, v}
if x ∈ S, then the instance Ix must also be a yes-instance with S ′ = S \ {x} being its
2-club vertex deletion set and |S ′| ≤ k − 1.

20

4 2-Club Cluster Vertex Deletion

Here the branching number is four, because we split into four branches in which k is
reduced by one. A more extensive case analysis can be made that yields a branching rule
whose branching number is 3.31 [LZZ12]. However, we concentrate on data reduction
rules and other strategies to significantly reduce the number of total recursive calls.

In the remainder of this section we focus on improving our branching rule through
constraints. For this we introduce permanent vertices and constrain our solver to never
delete a permanent vertex. This also means that a permanent vertex is never part of
a 2-club vertex deletion set that we find. We will use permanent vertices to encode
additional information about our graph. Knowing that a vertex must not be deleted
might not be enough information to benefit from immediately, but we can “save” this
information for later by marking the vertex as permanent. As we will see in Section 4.2
and Section 4.4 we can benefit from having many permanent vertices to apply more
data reduction rules and improve our lower bounds. We formally capture permanent
vertices in the following problem definition.

Constrained 2-Club Cluster Vertex Deletion (Cstr2CVD)

Input: A graph G = (V,E), an integer k ∈ N and a set F ⊆ V of permanent
vertices.

Question: Is there an S ⊆ V with |S| ≤ k and S ∩ F = ∅ such that G[V \ S] is a
2-club cluster graph?

An instance (G, k) of 2-Club Cluster Vertex Deletion is clearly equivalent to
the instance (G, k, ∅) of Cstr2CVD.

Suppose there is some restricted P4 stuv and an optimal solution of size k removes s
and v. Then we know that, this solution will be found in (at least) two branches of
Branching Rule 4.1. To reduce this overlap we extend Branching Rule 4.1 and introduce
the following branching rule.

Branching Rule 4.2. Let I = (G, k, F) be an instance of Cstr2CVD. If G is not
a 2-club cluster graph, then find a restricted P4 stuv and split I into four smaller in-
stances Is, It, Iu, Iv as follows:

• Is = (G− s, k − 1, F),

• It = (G− t, k − 1, F ∪ {s}),

• Iu = (G− u, k − 1, F ∪ {s, t}),

• Iv = (G− v, k − 1, F ∪ {s, t, u}).

If an instance Ix was derived by removing a permanent vertex x ∈ {s, t, u, v} ∩ F , then
skip Ix.

Lemma 4.2. Branching Rule 4.2 is correct.

Proof. If G is already a 2-club cluster graph, then there is nothing to do. Otherwise
assume that G contains a restricted P4 stuv. We have to show that I is a yes-instance
if and only if at least one of the instances Is, It, Iu, Iv is a yes-instance.

21

4 2-Club Cluster Vertex Deletion

“⇐”: Let S ′ be a 2-club vertex deletion for one of the four instances where the
vertex x ∈ {s, t, u, v} was deleted. Because all four instances have a set of permanent
vertices that is a superset of F , the set S = S ′∪{x} is a 2-club vertex deletion set for I
unless x is permanent, in which case the instance Ix would have been skipped.

“⇒”: If I is a yes-instance, then at least one of the vertices s, t, u or v has to be
deleted. Let S be a 2-club vertex deletion set for G with |S| ≤ k and S ∩ F = ∅.
If s ∈ S, then Is is clearly a yes-instance; otherwise if t ∈ S, then It is a yes-instance;
otherwise if u ∈ S, then Iu is a yes-instance; otherwise v ∈ S and Iv is a yes-instance.

With this we have developed a simple search tree for Cstr2CVD, but also integrated
the generation of permanent vertices directly into the branching. An added benefit of
Branching Rule 4.2 is that we can skip branches where a permanent vertex would have
been deleted.

4.2 Data reduction rules

We now present some data reduction rules. Finding powerful data reduction rules for
2-Club Cluster Vertex Deletion is difficult, due to 2-clubs being non-hereditary.
Recall that robust(s, v) tells us the number of vertices that need to be deleted before
a restricted P4 stuv is created. The effect of deleting “wrong” vertices might lead to a
large increase of restricted P4’s. These effects must be considered when designing safe
data reduction rules.

For this reason we were only able to find rather simple data reduction rules. In
Section 4.4 we generalize a few rules by incorporating information about permanent
vertices by considering a scenario where vertices have weights.

The following reduction rule is obviously safe, because no vertex from a component
that already is a 2-club needs to be deleted.

Reduction Rule 4.1. If G contains a component C that is a 2-club, then delete all
vertices in C.

If a restricted P4 stuv has to be eliminated, then one has to potentially branch into
four cases. If some of these vertices of stuv are permanent, then this reduces this
number. In the cases that three vertices of stuv are permanent, then there is only one
possible branch.

Reduction Rule 4.2. If the graph G contains a restricted P4 stuv such that only one
vertex x ∈ {s, t, u, v} is not permanent, then delete x and decrease k by 1.

Lemma 4.3. Reduction Rule 4.2 is safe.

Proof. Let stuv and x be as above. At least one vertex from stuv has to be deleted, but
three vertices are permanent, which leaves no choice but to delete x.

The next rule uses that sometimes with the budget k we cannot afford not to delete
a specific vertex. For an example see the vertex v in Figure 4.1.

22

4 2-Club Cluster Vertex Deletion

v

..
.

..
.

..
.

..
.

..
.

..
.

k + 1

Figure 4.1: An example of a graph that has k + 1 P4’s that overlap only in v. Here we
also illustrate the two types of restricted P4’s that can contain v: either v is
at the beginning or it is the second vertex in the restricted P4. The vertex v
could also be the third or fourth vertex, but due to symmetry this is the
same as being the second or first vertex, respectively.

Reduction Rule 4.3. Given k + 1 restricted P4’s that each contain the vertex v, but
are otherwise vertex-disjoint, then delete v and decrease k by 1 or ∞ if v is permanent.

Lemma 4.4. Reduction Rule 4.3 is safe.

Proof. If G contains k+ 1 restricted P4’s that overlap only in v, then if v is not deleted,
then one vertex from each of the k + 1 restricted P4’s has to be deleted. This is not
possible with a budget of k.

In Section 4.4 we will further improve Reduction Rule 4.3 by exploiting permanent
vertices.

A 2-club vertex deletion set S is clearly not optimal if a vertex v can be removed from
it and S ′ = S \ {v} remains a 2-club vertex deletion set.

Observation 4.5. Let S be a 2-club vertex deletion set of G. If N [v] ⊆ S for some v ∈
V , then S \ {v} is also a 2-club vertex deletion set.

One could use Observation 4.5 as a simple optimality test. Clearly we do not have
to wait until we have found a 2-club vertex deletion set S to apply this test. A partial
2-club vertex deletion set S ′ is a set of vertices which were removed from G along the
way from the root of the search tree to some branch. The test can be applied to S ′ in
the same way it would be applied to S. Additionally, if the removal of any vertex in G
would cause this test to fail, then this vertex must not be removed.

Reduction Rule 4.4. Let S ′ be a partial 2-club vertex deletion set of G constructed at
some stage of the branching. If for any v ∈ S ′ : |N(v) \ S ′| = 1, then mark the unique
vertex x ∈ N(v) \ S ′ as permanent.

Lemma 4.6. Reduction Rule 4.4 is safe.

Proof. Let S ′ and x be as above. Any 2-club vertex deletion set S with S ∩ (S ′ ⊆ {x})
clearly fails the optimality test from Observation 4.5, which means x cannot be in any
optimal solution.

23

4 2-Club Cluster Vertex Deletion

a

v

b

t
s

u v

Figure 4.2: Examples of graphs where Reduction Rule 4.5 can be applied on the non-
bridge vertex v. The gray areas contain vertices that can be marked as
permanent. Each gray area is a 2-club that is isolated from the rest of
the graph after deleting v. Notice that in the first graph the removal of v
increases the distance of a and b to five and no induced and therefore re-
stricted P4 exists between a and b. Notice also how in the second graph the
restricted P4 stuv contains three permanent vertices. Reduction Rule 4.2
will allow us to delete v in such a case.

The intuition for the next rule is that we would like to have something similar to
the simple Degree-One-Rule from Vertex Cover, that is, if there is a vertex with
degree one, then its neighbor can be safely included in the vertex cover [Nie06]. For
Cstr2CVD we would like to replace the degree one vertex with a 2-club, but still
require that this 2-club can be isolated from the rest of the graph by deleting only a
single vertex.

However, this proved to be not quite so simple. The following rule does not state
that given some conditions a vertex v can be deleted, but rather that the vertices in
the 2-club that is isolated by removing v can be safely excluded from the solution (by
marking them as permanent)—all under the premise that if any vertex from that 2-club
was included in the solution it could be replaced by v to yield another solution of the
same size. In the Vertex Cover analogy we could rephrase the Degree-One-Rule to
say that a degree one vertex can be safely excluded from a minimum vertex cover (unless
its neighbor also has degree one and is already excluded), because if it was it could be
replaced by its neighbor to yield another minimum vertex cover.

This is all because even if deleting v creates an isolated 2-club C we cannot be sure
that deleting v is the right choice. For example, the graph could have no restricted P4’s
and deleting any vertex would be unnecessary.

Recall that a bridge vertex b is a vertex such that for s, v ∈ N(b) there exists an
induced P4 stuv. Recall also that only the deletion of a bridge vertex b can decrease
robustness and therefore create restricted P4’s. For an example of the application of the
following rule see Figure 4.2.

Reduction Rule 4.5. Given a cut vertex v in G that is not a bridge vertex and not
permanent. For any component C in G − v, if C is a 2-club, then mark the vertices
in C as permanent.

Lemma 4.7. Reduction Rule 4.5 is safe.

Proof. If C is a 2-club, then it contains no restricted P4. If any vertex in C is part of a
restricted P4, then v must be on this path. Suppose that an optimal solution S removes

24

4 2-Club Cluster Vertex Deletion

v

b

a

c

Figure 4.3: An example where Reduction Rule 4.5 cannot be applied on the vertex v,
which bridges a and b. Deleting v would increase the distance of a and b to
three, and thus create a restricted P4. This means that deleting v would force
us to delete a second vertex. However, deleting c eliminates all restricted P4’s
in the graph, and is the only optimal solution. Reduction Rule 4.5 can, how-
ever, be applied to c, and all vertices except c can be marked as permanent.

some vertices F ⊆ C,F 6= ∅. Removing F is only needed to eliminate P4’s that start
in C, which also necessairly contain v. If v ∈ S, then S is not optimal. Otherwise we
claim that S ′ = (S \ F)∪ {v} is another optimal solution. That is because v eliminates
the same P4’s as F and because v is not a bridge vertex, it follows that removing v
cannot contribute to the creation of a restricted P4.

For an example why we require v to be a non-bridge vertex in Reduction Rule 4.5 see
Figure 4.3.

A slight generalization of Reduction Rule 4.5 can be made. Recall that robust(a, b)
tells us how many vertices need to be removed before there can exist a restricted P4

between a and b. In Reduction Rule 4.5 the deletion of v cannot decrease the robustness
of any two vertices, because v is not a bridge vertex. However, we do not want to restrict
ourselves to just vertices that cannot decrease robustness. We adapt this rule to also
allow v to be a bridge vertex, but we still need to guarantee that the deletion of v
cannot contribute to the creation of a restricted P4. For this we consider our remaining
budget k and conclude that if the robustness in the neighborhood is sufficiently high,
then we can still mark the 2-clubs as permanent under the same premise that v can be
deleted instead of any vertex in those 2-clubs. Additionally, we do not need to consider
how removing v affects the robustness between vertices in 2-clubs that would be isolated,
because we already know that they are 2-clubs and do not have restricted P4’s.

Reduction Rule 4.6. Given a vertex v in G that is not permanent. Let C1, . . . , C` be
the components of G−v that are 2-clubs, and H = G−v−C1−· · ·−C`. If for all pairs
of vertices a, b ∈ NG(v) ∩ V (H) robustG(a, b) > k, then mark all vertices in C1, . . . , C`

as permanent.

Lemma 4.8. Reduction Rule 4.6 is safe.

Proof. If Ci is a 2-club, then it contains no restricted P4. If any vertex in Ci is part of a
restricted P4, then v must be on this path. Suppose that an optimal solution S removes
some vertices F ⊆ Ci with F 6= ∅. Removing F is only needed to eliminate P4’s that
start in Ci, which also necessairly contain v. If v ∈ S, then S is not optimal. Otherwise
we claim that S ′ = (S \ F) ∪ {v} is another optimal solution. Deleting v reduces the
robustness between its neighbors. However, deleting v cannot create a restricted P4. If

25

4 2-Club Cluster Vertex Deletion

deleting v created a restricted P4, then this P4 must start and end in two neighbors of v.
Deleting v cuts off the 2-clubs C1, . . . , C` which means no restricted P4’s were created in
them, which means the neighbors of v in these 2-clubs need not be considered further.
The only other vertices that could be affected are those in U = NG(v)∩V (H). Because
the pairwise robustness of vertices in U is at least k + 1, this means that at least k + 1
vertices need to be removed before there can be a restricted P4 that starts and ends
in U . Because the budget k does not allow that to happen, replacing F by the single
vertex v to obtain S ′ results in another optimal solution.

The next rule can be used to shrink some subgraphs in which all vertices are perma-
nent.

Reduction Rule 4.7. Let C be a permanent 2-club that can be isolated by removing
the vertex v as in Reduction Rule 4.6. Let d be the maximum distance of a vertex in C
to v. Replace C with d new permanent vertices that together with v induce a path of
length d+ 1.

Lemma 4.9. Reduction Rule 4.7 is safe.

Proof. Let C and v be as in Reduction Rule 4.5. Since the vertices in the 2-club are
all marked permanent and if they are part of any restricted P4, then the vertex v must
also be part of the restricted P4. This means that only the distance of the vertices in C
to v is important and the path with at most d + 1 vertices that starts in v is sufficient
to represent all vertices that have some distance (which is at most three) to v.

4.3 Lower bounds

We have developed multiple data reduction rules, but another way to reduce the size of
the search tree are lower bounds. A lower bound can be thought of as a function `(G)
of the graph G such that `(G) ≤ |S|, where S is an optimal 2-club vertex deletion set
for G. Lower bounds are a very practical way to reduce the size of the search tree,
because if k < `(G), then we know that there is no solution.

Lower Bound 4.1. Let P = {p1, . . . , p`} be a set of vertex-disjoint restricted P4’s in G.
Then a minimum 2-club vertex deletion set for G has size at least `.

Proof. As long as the restricted P4’s in P exist, the graph cannot be a cluster graph.
Because no two paths in P have a common vertex, at least one vertex from each P4 has
to be deleted before the graph can become a 2-club cluster graph.

The number of vertex-disjoint P4’s cannot be greater than n
4
. While we have not been

able to prove any upper bounds for 2-Club Cluster Vertex Deletion better than a
trivial n−3 upper bound, this value is a factor of 2 away from the 2-club vertex deletion
size n

2
− 1 for some graphs we found (see Figure 4.4). These graphs had a minimum

vertex cut of size n
2
− 1.

The size of a minimum vertex cut can also be used as a lower bound if we know that
an optimal 2-club vertex deletion set S for G splits it into multiple 2-clubs, which means
that S must be a vertex cut set. However, an optimal 2-club vertex deletion set is not
always a vertex cut set. The following lower bound overcomes this problem:

26

4 2-Club Cluster Vertex Deletion

(a) k = 2, i = 0, n = 6 (b) k = 4, i = 1, n = 10

Figure 4.4: Graphs where a minimum 2-club vertex deletion set has a size of k = n
2
− 1,

which can be found by picking any vertex and deleting all its neighbors.
There appears to be a family of graphs with this property. For i ∈ N: create
a circle with n = 6 + 4i vertices such that each vertex has an edge to the
first w = 1 + i vertices to its left and right side.

Lower Bound 4.2. Let G be a connected graph, t the size of the largest 2-club in G,
and c the minimum vertex cut of G. Then a minimum 2-club vertex deletion set for G
has size of at least min(n− t, c).

Proof. Let S be an optimal 2-club vertex deletion set and G′ = G[V \ S] the resulting
2-club cluster graph. If G′ contains at least two components, then S is a vertex cut set
for G and |S| ≥ c. If G′ has only one component, then V \ S = V (G′) is the largest
2-club in G and |S| = n− t.

4.4 Introducing weights

Weights allow to further control the type of solution that will be found. We will allow
vertices to have weights. Some vertices might be more important than others, which is
why one might consider giving them a higher weight to avoid their deletion. However,
we will only use weights to allow for more flexibility while designing data reduction
rules and lower bounds. Similarly, Böcker et al. [Böc+09] were able to develop an ele-
gant O∗(1.82k) algorithm for Cluster Editing through a branching rule that allowed
vertex merging thanks to edge weights. We will develop a data reduction rule which
will allow us to merge twin vertices.

We now consider a weighted variant of 2-Club Cluster Vertex Deletion, where
along with G and k we are given a positive weight function w : V → N+ ∪ {∞}. For a
set A ⊆ V we define w(A) :=

∑
v∈Aw(v).

Weighted 2-Club Cluster Vertex Deletion (Weighted 2CVD)

Input: An undirected graph G and an integer k ∈ N and a weight function w :
V → N+ ∪ {∞}.

Question: Is there an S ⊆ V with w(S) ≤ k such that G[V \S] is a 2-club cluster
graph?

27

4 2-Club Cluster Vertex Deletion

We can clearly convert an unweighted 2-Club Cluster Vertex Deletion instance
to a weighted one by assigning each vertex a weight of one. Furthermore for Cstr2CVD
permanent vertices can be modeled by assigning them an infinite weight, or if strictly
integer weights are sought a weight of k + 1. We will see that most of our results
for Cstr2CVD also apply to the weighted variant, due to a simple way to convert
a weighted instance to an unweighted one. Some data reduction rules can be made
more powerful thanks to weights. A problem with this weighted variant is that given
a binary encoding of the weights the minimum 2-club vertex deletion set cost k can
be exponentially larger than the size of the encoding, meaning that a FPT approach
might not be practically feasible. However, because we convert unweighted instances to
weighted ones this is not a big concern for us.

We want to show a surprising connection between Weighted 2-Club Cluster
Vertex Deletion and its unweighted variant. For this we require a simple observation
about the structure of 2-clubs with twins. Recall that twins are vertices u and v which
have the same neighborhood and may be adjacent, i.e., N(u) = N(V) or N [u] = N [v].

Observation 4.10. If a graph is a 2-club and contains two twins u, v, then after deleting
one of them, the graph remains a 2-club. Likewise a 2-club to which a twin is added,
remains a 2-club.

The following data reduction rule allows us to “compress” a graph by “merging”
twins, because, as we will see, they are always in the same 2-club in an optimal solution.
Two vertices u and v in the graph G can be merged by creating a new vertex x such
that in the transformed graph G′ it holds that NG′(x) = (NG(u) ∪ NG(v)) \ {u, v}
and w(x) = w(u) + w(v). This can be simplified in the case of twins as seen below.

Reduction Rule 4.8. Given two vertices u, v ∈ V such that either N [u] = N [v]
or N(u) = N(v), i.e., u, v are twins, then v can be merged into u as follows:

• delete v and

• set w(u) to w(u) + w(v).

Lemma 4.11. Reduction Rule 4.8 is safe.

Proof. We have to show that (G,w, k) is a yes-instance if and only if (G′, w′, k) is a
yes-instance.

“⇐”: Let S ′ be an optimal 2-club vertex deletion set with w′(S ′) ≤ k. If S ′ removes u,
then S = S ′ ∪ {v} is a 2-club vertex deletion set for G with w′(S ′) = w(S). Otherwise
by Observation 4.10 S ′ is also a 2-club vertex deletion set for G.

“⇒”: Let S be an optimal 2-club vertex deletion set with w(S) ≤ k and H = G[V \S].
We claim that S either removes both u and v or neither of them. Assume without loss
of generality that S only removes u. Then by Observation 4.10 S ′ = S \ {u} would be
a 2-club vertex deletion set as u and v would be twins in H ′ = G[V \ S ′]. Since S ′ is
smaller than S, this a contradiction to the optimality of S.

28

4 2-Club Cluster Vertex Deletion

Equivalence of weighted and unweighted instances There is a simple way to con-
vert an instance (G,w, k) with positive integer weights into an equivalent unweighted
instance (G′, k). Each vertex v in the weighted instance can be replaced by w(v) many
twins of v each with a weight of one. After this is done for all vertices the vertices in
the resulting graph all have a weight of one and the minimum 2-club vertex deletion set
cost of both graphs is the same. The correctness follows immediately from Reduction
Rule 4.8. Because the vertices all have a weight of one, we can discard weights and are
left with an equivalent unweighted instance.

Due to this duality of the weighted and unweighted instance, the constraints, data
reduction rules, and lower bounds for 2-Club Cluster Vertex Deletion can be
easily adapted for the weighted variant. This is what we did for our solver. For brevity,
however, we only describe a few improved rules which make use of weights. We only
note that all previous branching and data reduction rules and lower bounds still apply
without restrictions, except for Reduction Rule 4.5 and Reduction Rule 4.6 where the
vertex v must have a weight of one. Additionally, while deleting a vertex we have to
decrease k by its weight rather than one.

An important idea that we used repeatedly for Lower Bound 4.1 is to find many vertex-
disjoint restricted P4’s, and in the case of Reduction Rule 4.3 many restricted P4’s that
overlap in a single vertex, but are otherwise vertex-disjoint. One difficulty with this is
that finding a maximum set of vertex-disjoint P4’s is NP-hard [IPS82], thus finding such
a set of restricted P4’s is likely also NP-hard. A practical implementation would then
employ heuristics. Separately from that another challenge might be that the maximum
number of such vertex-disjoint paths is small, due to each P4 containing four vertices. We
exploit permanent vertices by switching from using vertex-disjoint paths to paths that
may overlap multiple times in vertices whose weight is greater than one, in particular
we allow restricted P4’s to overlap infinitely many times in permanent vertices

The following is a generalization of Reduction Rule 4.3 to weighted graphs. We can
relax the restrictions and allow restricted P4’s to overlap in more than just the vertex v,
if the other vertices they overlap in have a weight of more than 1. This is particularly the
case for permanent vertices. Clearly, we cannot afford to remove a vertex with infinite
weight, so we can allow multiple restricted P4’s to contain this vertex and still consider
them “disjoint”.

Reduction Rule 4.9. Let P be a multiset of restricted P4’s that each contain the
vertex v and such that each vertex a ∈ V other than v is contained in at most w(a)
many restricted P4’s in P. If |P| ≥ k + 1, then delete v and decrease k by w(v).

Lemma 4.12. Reduction Rule 4.9 is safe.

Proof. Let v and P be as above. Clearly, deleting v would eliminate all restricted P4’s
in P . Let u ∈ V be some other vertex. Denote by ` the number of P4’s in P that
contain u, which means deleting u eliminates ` P4’s in P . The cost of deleting u is w(u) ≥
`. This means eliminating all P4’s in P without deleting v has a cost of at least |P| ≥
k + 1, which is not possible with a budget of k.

A perhaps more intuitive proof for the correctness of Reduction Rule 4.9 is to use
Reduction Rule 4.8 “in reverse” (see Figure 4.5) to split vertices which appear in multiple

29

4 2-Club Cluster Vertex Deletion

v

a

c

e
2

b

d

⇔ v

a

c

e1

e2

b

d

Figure 4.5: Example of graphs where Reduction Rule 4.9 can be applied on the vertex v
when k = 1. If a vertex’s weight is not one, then the number above the vertex
is its weight. The gray paths outline restricted P4’s in the multiset P . For the
left graph P = {vaeb, vced}. The right graph can be transformed into the left
one by merging e1 and e2 to create the vertex e using Reduction Rule 4.8.
Notice how in the right graph the multiset P ′ = {vae1b, vce2d} has the
desired property from Reduction Rule 4.3 of containing only restricted P4’s
that overlap only in v. This means that merging twins has no impact on the
applicability of Reduction Rule 4.9.

restricted P4’s into twins (while distributing the weight of the vertex arbitrarily, but
ensuring that each vertex has a weight of at least one). That way we can transform the
graph in such a way that one can translate the multiset P into P ′ such that P ′ is a set
of vertex-disjoint restricted P4’s in the transformed graph that overlap only in v and
then use the idea from Reduction Rule 4.3 to argue that v must be deleted.

We use exactly the same idea as with Reduction Rule 4.9 to improve Lower Bound 4.1.

Lower Bound 4.3. Let P = {p1, . . . , p`} be a multiset of restricted P4’s in G such that
each vertex v ∈ V is contained in at most w(v) many restricted P4’s in P. Then a
minimum vertex deletion set for G has a size of at least `.

Proof. Let P be as above and v ∈ V be any vertex. Denote by ` the number of P4’s in P
that contain v, which means deleting v eliminates ` P4’s in P . The cost of deleting v
is w(v) ≥ `. This means eliminating all P4’s in P has a cost of at least |P|. Clearly, if
a restricted P4 in P is not eliminated, then the graph is not a 2-club cluster graph.

Closing discussion We presented a sophisticated search tree algorithm with multiple
data reduction rules and lower bounds. We started with the plain 2-Club Cluster
Vertex Deletion problem and switched to the constrained variant Cstr2CVD in
which we could formally embed permanent vertices. The generalized variant Weighted
2-Club Cluster Vertex Deletion allowed for even more flexibility while designing
data reduction rules and lower bounds. In particular it allowed us to merge twin vertices.
It also allowed us to represent permanent vertices as vertices with infinite weight.

Unfortunately, our results were not enough to guarantee a polynomial problem kernel.
Due to the non-hereditary property of 2-clubs, we had to take particular care while
designing data reduction rules to not accidentally create more restricted P4’s.

30

5 2-Club Cluster Edge Deletion

We want to show that 2-Club Cluster Vertex Deletion shares many properties
with 2-Club Cluster Editing and 2-Club Cluster Vertex Deletion. Similarly
to 2-Club Cluster Vertex Deletion we will use a search tree approach and include
permanent and forbidden edges as constraints. We will use the observations we made
for 2-Club Cluster Editing that deleting an edge ab from the graph makes the
edge forbidden and through a simple constraint we can enforce that a and b must be
in different 2-clubs. Recall that a 2-club to which an edge is inserted remains a 2-club,
which is why if an edge ab is deleted, then this can only be optimal if a and b are to be
separated into different 2-clubs.

We formally capture permanent edges in the following problem definition:

Constrained 2-Club Cluster Edge Deletion (Cstr2CED)

Input: An undirected graph G = (V,E), an integer k ∈ N and a set Ep ⊆ E
of permanent edges.

Question: Is there an F ⊆ E with |F | ≤ k and F ∩Ep = ∅ such that G′ = G[E\F]
is a 2-club cluster graph?

We will also include a set Ef of forbidden edges as input to remember edges which have
been deleted. At the start Ef is empty. We did not include it in the above problem
definition, due to problems with formality. We will rather treat forbidden edges as an
optional “hint” than a strict constraint of the problem.

An instance (G, k) of 2-Club Cluster Edge Deletion is clearly equivalent to the
instance (G, k, ∅, ∅) of Cstr2CED.

While we cannot insert edges into the graph and mark them as permanent, as we
could for 2-Club Cluster Editing, there are other ways of generating permanent
edges. Consider the following branching rule inspired by Branching Rule 4.2. For any
restricted P4 stuv at least one of the edges st, tu, uv need to be deleted, but if a solution F
deletes two or more, then this solution would be found in two or more branches. The
following branching rule reduces this overlap.

Branching Rule 5.1. Let I = (G, k,Ep, Ef) be an instance of Cstr2CED. If G is
not a 2-club cluster graph, then find a restricted P4 stuv and split I into three smaller
instances Ist, Itu, Iuv as follows:

• Ist = (G− st, k − 1, Ep, Ef ∪ {st}),

• Itu = (G− tu, k − 1, Ep ∪ {st} , Ef ∪ {tu}),

• Iuv = (G− uv, k − 1, Ep ∪ {st, tu} , Ef ∪ {uv}).

31

5 2-Club Cluster Edge Deletion

If an instance Ix was derived by removing a permanent edge x ∈ {st, tu, uv} ∩ Ep then
skip Ix.

Lemma 5.1. Branching Rule 5.1 is correct.

Proof. If G is already a 2-club cluster graph then there is nothing to do. Otherwise
assume that G contains a restricted P4 stuv. We have to show that I is a yes-instance
if and only if at least one of the instances Ist, Itu, Iuv is a yes-instance.

“⇐”: Let F ′ be a 2-club edge deletion for one of the three instances where the
edge x ∈ {st, tu, uv} was deleted. Because all three instances have a set of permanent
and forbidden edges that is a superset of Ep and Ef , respectively, the set F = F ′ ∪ {x}
is a 2-club edge deletion set for I, unless x is permanent, in which case the instance Ix
would have been skipped.

“⇒”: If I is a yes-instance, then at least one of the edges st, tu or uv or has to
be deleted. Let F be a 2-club edge deletion set for G with |F | ≤ k and F ∩ Ep = ∅,
and such that for any edge ab ∈ Ef the vertices a and b are in different components
of G[E \ F]. If st ∈ F , then Ist is clearly a yes instance; otherwise if tu ∈ F , then Itu
is a yes-instance; otherwise if uv ∈ S, then Iuv is a yes-instance.

A very important property of permanent edges is transitivity. We capture this in the
following data reduction rule.

Reduction Rule 5.1. For any edges ab, bc, ac ∈ E if the first two are permanent, then
mark ac as permanent.

Lemma 5.2. Reduction Rule 5.1 is safe.

Proof. Because ab and bc are permanent that means that a, b and c must be in the same
2-club of G[E \ F] for any solution F . Because no optimal solution F would delete the
edge ac it can be marked as permanent.

Permanent edges are not the only thing that necessitates that two vertices must be
in the same 2-club. The budget k can sometimes not be enough to separate the two
vertices.

Reduction Rule 5.2. If two adjacent vertices a, b ∈ V with |N(a) ∩ N(b)| ≥ k exist,
then mark the edge ab as permanent.

Lemma 5.3. Reduction Rule 5.2 is safe.

Proof. Because a and b are adjacent and have k common neighbors, then a minimum
edge cut set that separates a and b has to delete at least k+1 edges. This is not possible
with a budget of k which means a and b must be in the same 2-club and the edge ab
can be marked as permanent.

We are also able to devise a simple equivalent of Reduction Rule 4.5 for Cstr2CED.

Reduction Rule 5.3. Given a non-permanent edge uv whose deletion isolates a 2-
club C from the graph, then mark all edges in C as permanent.

32

5 2-Club Cluster Edge Deletion

ba

..
.

..
.

..
.

..
.

k + 1

Figure 5.1: An example of a graph that has k + 1 P4’s that overlap only in the edge ab.
Here we also illustrate the two types of restricted P4’s that can contain ab:
either ab is at the beginning or it in the middle of the restricted P4.

Lemma 5.4. Reduction Rule 5.3 is safe.

Proof. Assume there exists a solution F that deletes an edge ab in the 2-club C.
Then F ′ = (F \ {ab}) ∪ {uv} would be another solution of the same size, because
any restricted P4’s that contain edges from C must also contain the edge uv.

So far we only used forbidden edges to remember deleted edges. The next rule will
take advantage of the opposite function of permanent and forbidden edges.

Reduction Rule 5.4. Let A,B ⊆ V be two different components in G[Ep]. If for
some a ∈ A and b ∈ B the edge ab is forbidden, then delete all edges between A and B
from G and decrease k by the number of deleted edges or ∞ if this would delete a
permanent edge.

Lemma 5.5. Reduction Rule 5.4 is safe.

Proof. The permanent edges Ep enforce that the vertices in A must be in the same
2-club, as do the vertices in B. Because the edge ab was deleted this means that a and b
must be in different 2-clubs, which means that the vertices in A and B must be in two
different 2-clubs and all edges between them need to be deleted.

With 2-Club Cluster Edge Deletion we are also interested in disjoint P4’s, but
unlike 2-Club Cluster Vertex Deletion they do not need to be vertex-disjoint, but
rather edge-disjoint which is much less restrictive. We can use these edge-disjoint P4’s
for data reduction rules and lower bounds. The following data reduction rule is an
equivalent of Reduction Rule 4.3. For an example see Figure 5.1.

Reduction Rule 5.5. Given k + 1 restricted P4’s that overlap only in the edge ab, but
are otherwise edge-disjoint, then delete ab mark it as forbidden and decrease k by one
or ∞ if ab ∈ Ep.

Lemma 5.6. Reduction Rule 5.5 is safe.

Proof. If G contains k + 1 restricted P4’s that overlap only in ab, then if ab is not
deleted, then one edge from each of the k + 1 restricted P4’s has to be deleted. This is
not possible with a budget of k. Deleting this edge is only optimal if a and b are to be
separated into different 2-clubs, which means we can mark the edge as forbidden.

33

5 2-Club Cluster Edge Deletion

v

u

Figure 5.2: An example for a graph with twins u, v which are separated into different
2-club clusters in an optimal solution. The dotted edges indicate edges that
are deleted in an optimal solution.

Similarly we create an equivalent of Lower Bound 4.1 for 2-Club Cluster Edge
Deletion.

Lower Bound 5.1. Let P = {p1, . . . , p`} be a set of edge-disjoint restricted P4’s in G.
Then a minimum 2-club edge deletion set for G has a size of at least `.

Proof. While the restricted P4’s in P exist the graph cannot be a cluster graph. Because
no two paths in P have a common edge, at least one edge from each P4 has to be deleted
before the graph becomes a 2-club cluster graph.

We could extend Reduction Rule 5.5 and Lower Bound 5.1 to also incorporate perma-
nent edges as we did for 2-Club Cluster Vertex Deletion in Reduction Rule 4.9
and Lower Bound 4.3 to allow the restricted P4’s to overlap in permanent edges.

However, unlike 2-Club Cluster Vertex Deletion, 2-Club Cluster Edge
Deletion does not allow us to treat twins exactly the same. For an example of a
graph where this is the case see Figure 5.2. Notice how that graph has two overlapping
Petersen graphs, and that the vertex v they overlap in has a twin u. We can separate
the two Petersen graph with six edge deletions by “assigning” each twin u and v to a
different Petersen graph. However, if we wanted to find a solution in which the vertices u
and v are in the same 2-club, then we would have to delete at the very least six edges
from each Petersen graph.

The intuition for why this happens is because the following. A 2-club edge deletion
set F partitions the vertices in a graph into 2-clubs. When deciding to which 2-club a
vertex should be assigned we may be faced with multiple choices. For example consider
again the graph from Figure 5.2, but without the vertex u. We could assign the vertex v
to the left Petersen graph, however, this would force us to delete many edges from the
right Petersen graph, because the vertex v is very “useful”. However, because u and v
are twins we can assign v to the left and u to the right Petersen graph.

34

6 Implementation and Experiments

In this section we want to cover results from an implementation of solvers. The dele-
tion of a vertex is more “powerful” than the deletion of an edge and therefore it is
probable that 2-Club Cluster Vertex Deletion is easier to solve than 2-Club
Cluster Edge Deletion. For this reason we only try to solve 2-Club Cluster
Vertex Deletion. For this we implemented our Weighted 2-Club Cluster Ver-
tex Deletion solver and we assign each vertex from a unweighted instance a weight
of one. Recall that twin merging required vertex weights and that weights were useful
for explicitly modeling permanent vertices.

In Section 6.1 we describe what configurations of our solver we will be using for our
experiments, whereas in Section 6.2 we discuss some important aspects of the imple-
mentation. Then finally in Section 6.3 we describe our experiments on a biological
dataset.

6.1 Setup and solver configurations

We implemented our search tree with all data reduction rules and lower bounds for
Weighted 2-Club Cluster Vertex Deletion. This solver computes a 2-club
vertex deletion set size of minimum cost and outputs the solution set. Recall that we
used Weighted 2-Club Cluster Vertex Deletion to make it possible to merge
twins and explicitly model permanent vertices as vertices with infinite weight. The input
of our solver expects an unweighted graph and then assigns each vertex a weight of one.
The solver could be easily adapted to accept weighted instances, but we only focus on
unweighted ones.

Solver configurations To later test the impact of the different combinations of our
data reduction rules and lower bounds we introduce the following configurations of our
solver:

• solver ALL (almost everything) - which includes Branching Rule 4.2, Reduction
Rules 4.1, 4.2, 4.4 and 4.6 to 4.9, and Lower Bound 4.3. These also also improve
or generalize Reduction Rules 4.3 and 4.5 and Lower Bound 4.1

• solver NPV (no permanent vertices) - implements Branching Rule 4.1, Reduction
Rules 4.1, 4.8 and 4.9, and Lower Bound 4.3 which also improve or generalize
Reduction Rule 4.3 and Lower Bound 4.1

• solver NTM (no twin merging) - implements everything in solver ALL except
Reduction Rule 4.8

35

6 Implementation and Experiments

Solver ALL is only missing Lower Bound 4.2, which we implemented, but disabled for
reason we describe in Section 6.2. Note also that for the implementation of some data
reduction rules and lower bounds we use heuristics; see Section 6.2 for details. All of
these configurations apply all their data reduction rules at each recursive step. These
data reduction rules are not applied exhaustively, but rather we try to apply them once
to each vertex.

CPLEX We will later compare the performance of our solver against the ILP formu-
lation from the beginning of Chapter 4 solved using the commercial solver CPLEX.

We used a recent version of CPLEX, 12.8, for our experiments. We use mostly default
parameters and only set mip tolerances mipgap and absmipgap to zero and enabled
emphasis numerical. These are parameters that Akiba and Iwata [AI16] used for find-
ing minimum vertex covers in order to force CPLEX to find optimal solutions (although
they report that even with these parameters some solutions were not optimal). While
we did not have problems with CPLEX not returning optimal solutions we did not want
CPLEX perhaps cheating by using heuristics that do not guarantee optimal solutions.
However, this had only a small impact on the running time, with all instances being
solved ±10% slower or faster, except one which was twice as slow with these parameters.

CPLEX can use up to 32 threads by default. Even though we had 8 cores available in
our experiments CPLEX usually only used four. This is a small advantage of CPLEX,
because our solver was only written to use a single thread.

6.2 Implementation

The implementation was written in C++ and uses only the C++ standard li-
brary. The source code is available at: https://fpt.akt.tu-berlin.de/software/

two-club-editing/two-club-vertex-deletion.zip We would now like to discuss
some important details of the implementation.

Some aspects of our algorithm from Weighted 2-Club Cluster Vertex Dele-
tion have been intentionally left open. For example we do not say how to compute a
multiset of restricted P4’s that can overlap in complex ways. It is clear that ideally we
would like to find such a multiset whose size is maximum. This is likely an NP-hard
problem (refer to Itai, Perl, and Shiloach [IPS82]), which is why in a practical imple-
mentation we would rather have a fast heuristic that offers good results in most cases.
We will now discuss aspects of heuristics involved or other challenges that could be of
interest.

Finding a minimum 2-club vertex deletion set size In order to find a minimum
2-club vertex deletion set size we simply try increasing values for the budget k, as can
be seen in Algorithm 1. Naturally, our solver also outputs the 2-club vertex deletion set
that was found.

Branching Rule 4.2 This is the branching rule that allows us to mark some vertices as
permanent and skip branches in which a permanent vertex would have been deleted. It

36

https://fpt.akt.tu-berlin.de/software/two-club-editing/two-club-vertex-deletion.zip
https://fpt.akt.tu-berlin.de/software/two-club-editing/two-club-vertex-deletion.zip

6 Implementation and Experiments

Algorithm 1 Finding a minimum 2-club vertex deletion set

Input: A graph G = (V,E)
Output: The minimum 2-club vertex deletion set size of G

1: initialize the weight function w with w(v) = 1 for each v ∈ V
2: (G′,∞, w′) ← apply data reduction rules to (G,∞, w)
3: k ← lowerbound(G′, w′)
4:

5: while (G′, k, w′) is a no-instance of Weighted 2CVD
6: k ← k + 1
7:

8: return k

also allows us to freely choose any restricted P4 to branch on. It is highly advantageous
to choose a P4 that contains permanent vertices, because for each permanent vertex
we are allowed to skip one out of a total of four branches. For this reason we select a
restricted P4 that contains the most permanent vertices and if there is more than one,
we select the one in which the average weight of non-permanent vertices is the highest,
because then on average k is decremented by a larger value in the branches and thus
also making the search tree smaller.

Handling multiple components Each component can be solved separately. However,
we do not know how to distribute the budget k among these components. As in Algo-
rithm 1 we try to solve each component with as little budget as possible, first trying
small values for k and then increasing it by one each time. An improvement is to sort
all components by size and when solving the last component to give it all remaining
budget, which prevents us from trying many different k values for the last component.
While this only gives an improvement by a constant factor of at most 4, the effect is
much more noticeable when the graph repeatedly decomposes into one large component
and a few smaller ones. If from the root of a search tree to some leaf this happens i
many times, then we have a speedup of up to 4i along those branches of the search tree.

Reduction Rule 4.9 This rule allows us to delete the vertex v if there is a multiset P
of k + 1 restricted P4’s that each contain v, but otherwise each vertex u can only
be present in at most w(u) many restricted P4’s. We would like to find a maximum
multiset P and then test if its size is at least k + 1. However, this proved to be quite
challenging. For our implementation we use a heuristic that does not guarantee finding
a maximum multiset.

We focus on finding a maximum multiset that only contains such restricted P4’s that
start in the vertex v. This means we do not try to find P4’s where v might be in the
“middle” (see Figure 4.1). This can then be modeled as a maximum flow problem. The
algorithm is described in Algorithm 2. Because for a restricted P4 stuv the distance
from v to u, t and s is one, two and three, respectively, we partition the vertices in
the graph into three sets D1, D2, D3. No restricted P4 can contain two vertices from
the same Di, which is why our flow graph only contains edges from Di to Di+1. We

37

6 Implementation and Experiments

Algorithm 2 Heuristic for Reduction Rule 4.9

Input: A graph G = (V,E), with a weight function w, a vertex v and k ∈ N
Output: true if Reduction Rule 4.9 can be applied to remove v from G

1: Create a directed graph Gf containing only the vertex s and t
2: for each i ∈ {1, 2, 3} // Split vertices into layers based on distance
3: Di ← all vertices with distance i to v in G
4: for each u ∈ D1 ∪D2 ∪D3 // Limit flow through a vertex
5: add the vertex uin and uout to Gf

6: add the edge (uin, uout) with a capacity of w(u) to Gf

7: for each u ∈ D1 // Connect layer 1 to source
8: add the edge (s, uin) with infinite capacity to Gf

9: for each i ∈ {1, 2} // Connect the layers
10: for each u ∈ Di

11: for each x ∈ Di+1 with {u, x} ∈ E
12: add the edge (uin, xout) with infinite capacity to Gf

13: for each u ∈ D3 // Connect layer 3 to sink
14: add the edge (uout, t) with infinite capacity to Gf

15:

16: f ← maximum s− t flow in Gf

17: if f > k then return true

18: return false

make sure that a vertex u is part of at most w(u) many P4’s by splitting it into two
vertices connected by an edge with w(u) capacity. As a result there can be only flow
along paths of type suin1 u

out
1 uin2 u

out
2 uin3 u

out
3 t, and sending a flow of value 1 along that path

means adding the restricted P4 vu1u2u3 to P . The final, maximum flow in Gf does not
uniquely identify a multiset P , however the value of the maximum flow tells us the size
of all maximum P ’s. Because we are only interested in the size of the multiset P this is
all we need.

The difficulty of finding restricted P4’s where v is in the “middle” comes from the
need to partition v’s neighbors, as for a restricted P4 avbc, both a and b are neighbors
of v, but the role of a and b is slightly different, because b needs to be adjacent to c.
Additionally, if we were able to overcome this partitioning problem we might have to
solve not a maximum flow, but rather maximum 4 or 5-Length-Bounded Flow. The
maximum L-Lenght-Bounded Flow problem is to find a maximum flow which can be
decomposed into flows along paths of length at most L. For L = 5 it is NP-hard [IPS82]
while NP-hardness for L = 4 is an open problem.

Lower Bound 4.3 Here we use a multiset of restricted P4’s P such that each vertex v is
present in at most w(v) many restricted P4’s. The size of this multiset is then the lower
bound. We compute the multiset P using a greedy heuristic. Each vertex has a counter
initialized with the value of its weight. This counter keeps track of how many times this
vertex can be used in a restricted P4. We iterate over all vertices in V by increasing
degree and for each vertex s we look for a restricted P4 stuv such that for all four vertices

38

6 Implementation and Experiments

Figure 6.1: Two maximal sets of disjoint restricted P4’s in the same graph. Each P4

is represented by a gray path. The restricted P4 on the left contains the
highest degree vertices, each of which could have been in their own disjoint
restricted P4 like on the right. Our heuristic for Lower Bound 4.3 prevents
such a bad case.

of this P4 their counter is positive. The restricted P4 is not chosen randomly, but rather
we select such a P4 that minimizes the sum of degrees of its vertices. Finding such a P4

takes O(n + m) time. The P4 stuv is then implicitly added to P by decrementing the
counter for s, t, u and v by one. If the counter for s remains positive we repeat this step
and search for another P4.

The reason for minimizing the sum of the degrees is that selecting a P4 which contains
many high degree vertices might overlap with and therefore likely exclude many other
restricted P4’s (see Figure 6.1).

Lower Bound 4.2 The lower bound is min(n− t, c) where t is the largest 2-club and c
is the minimum vertex cut of G. Computing t involves solving 2-Club, which is NP-
complete. It would suffice to use an upper bound for t, however we are not aware
of any good upper bounds. A very practical solver from Hartung, Komusiewicz, and
Nichterlein [HKN15] is able to compute this value even for large real-world graphs. This
solver is invoked as a separate process each time this lower bound is computed. However,
invoking the process and writing the graph to a file in each recursive step has a very
large overhead so this lower bound was disabled in our experiments.

The vertex connectivity c can be computed by solving O(n + δ(G)2) maximum flow
problems [EH84]. Our implementation runs in O((n+ δ(G)2)nm).

6.3 Experiments

All experiments were run on a machine with an Intel Xeon W-2125 8-core, 4.0 GHz CPU
and 256GB of RAM running Ubuntu 18.04. Our solver only needs very little memory
(O(n + m)), but we have seen CPLEX use even 30GB of RAM. For the running time
measurements of our solver and CPLEX we used wallclock time. We will be testing
different configurations of our solver from Section 6.1 and an ILP formulation solved
using CPLEX which we will simply refer to as CPLEX from now on. For running time
measurements of CPLEX we excluded the time it takes to build the ILP model, which

39

6 Implementation and Experiments

0 1,000 2,000 3,000 4,000
100

101

102

103

104

instance number

n

100

102

104

106

m

(a) Bio33

0 1,000 2,000 3,000 4,000
100

101

102

103

104

instance number

n

100

102

104

106

108

m

(b) Bio50

Figure 6.2: Two graphs showing the number of vertices n in blue and the number of
edges m in red in the bio33 and bio50 instances. The instance number was
selected such that the number of edges increases with the instance number.
There are about 15 instances with more than 500 vertices, the largest of
which has nearly 9000 vertices.

can have O(n4) constraints. For instances with 250 vertices this process can take 20
seconds, and sometimes even 60. However, in a vast majority of cases, the build time
was at most 30% of the total running time.

6.3.1 Dataset

For our analysis we used a real-world biological dataset1 that has been used for the
evaluation of Weighted Cluster Editing solvers [Böc+09; Rah+07]. The vertices
in the graphs represent protein sequences and between each vertex there is an edge
whose weight represents some sort of similarity of the proteins. The edge weights can
be positive or negative.

A graph with weighted edges does not match the input of 2-Club Cluster Ver-
tex Deletion. Hartung and Hoos [HH15] used the following conversion for their
(unweighted) Cluster Editing solver: first sort the edges by descending weight, keep
the first c% of edges for some c ∈ [0, 100] and discard their weight. We additionally
delete degree zero vertices from the graphs. Hartung and Hoos [HH15] used the val-
ues c = 33, c = 50 and c = 66, which is also what we did, and obtained three datasets,
which we will refer to as bio33, bio50 and bio66, respectively. Our experiment results
for bio66 are fairly similar to bio50, which is why we will only discuss results for bio33
and bio50.

The bio33 and bio50 datasets each contain 3964 instances. See Figure 6.2 for the
number of vertices and edges in the instances. The “noise” in the number of vertices is
a results of us deleting degree zero vertices from the graphs. From Figure 6.2 we can
see that these datasets contain many instances with less than 50 vertices and a few with

1The dataset is available at https://bio.informatik.uni-jena.de/data/#cluster_editing_data

40

https://bio.informatik.uni-jena.de/data/#cluster_editing_data

6 Implementation and Experiments

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

solver ALL

C
P

L
E

X

(a) Bio33

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

solver ALL

C
P

L
E

X

(b) Bio50

Figure 6.3: Running time comparison (in seconds) of our solver and the ILP solved by
CPLEX. The diagonal lines mark running time factors of 1 (solid), 5 (dashed)
and 25 (dotted). A running time of 6000s means that no solution was found
in the 30 minute time limit.

around 8000 vertices. Our results show that the vast majority of instances with less
than 100 vertices can be solved under a second. For this reason we want to focus on the
harder instances. From each dataset we only kept instances with 50–250 vertices. From
now on when referring to bio33 and bio50 we will mean these filtered datasets. After
this filtering bio33 contains 430 instances, whereas bio50 446 instances.

6.3.2 Results

From these results in Figure 6.3 we can see that our solver is almost always faster than
CPLEX by a factor of 5–25 for bio33 and a factor of 25–100 for bio50. For bio33 it
appears that for harder instances CPLEX is not much slower than our solver, with
CPLEX potentially outperforming us on even larger instances. On bio50, CPLEX does
very poorly compared to our solver. This is likely due to the minimum 2-club vertex
deletion set size on these graphs being smaller than for bio33 (see Figure 6.4). The
majority of bio33 instances has a minimum 2-club vertex deletion set size of up to 30,
whereas bio50 up to 20. Our strategy for trying increasing values for k is then well
suited for a dataset such as this. From Figure 6.4 we also see that usually at most a
quarter of vertices are deleted, meaning that a large portion of the graph remains in the
2-club cluster graphs.

The process for building the ILP model for CPLEX is usually fairly short, but for
larger instances it can take up to 60 seconds. For example, in bio50 there is a graph with
205 vertices and 10455 edges which is already a 2-club cluster graph. It takes about
50 seconds to create the ILP model, and when exported to a file it takes up 1.6GB
(uncompressed) and includes 5.8 million constraints, whereas the original graph only
takes up 72kB stored in an edge list format.

41

6 Implementation and Experiments

50 100 150 200 250
0

20

40

60

number of vertices

2C
V

D
so

lu
ti

on
si

ze

(a) Bio33

50 100 150 200 250
0

20

40

60

number of vertices

2C
V

D
so

lu
ti

on
si

ze
(b) Bio50

10−2

10−1

100

101

102

so
lv

er
A

L
L

ru
n
n
in

g
ti

m
e

[s
]

Figure 6.4: Comparison of the size of a minimum 2-club vertex deletion set and the
number of vertices in our dataset. The dashed lines are y = 0.5x, y = 0.25x
and y = 0.125x.

In Figure 6.5 we compare the sizes of a minimum cluster vertex deletion set (CVD)
size and the 2-club vertex deletion set (2CVD) size on our datasets. For bio33 there
is a much stronger correlation between these two values than for bio50. For bio33 the
CVD solution size is around 2–4 times larger than the 2CVD solution size, but on many
bio50 instances the CVD solution size can be very large while the 2CVD solution size
is below five.

We next compare the impact of different configurations of our solver. We first tested
a configuration that disables the marking of permanent vertices (solver NPV). From
Figure 6.6 is clear that for the harder bio33 instances permanent vertices had a large
improvement on the running time. For bio50 permanent vertices mostly slowed us down,
very likely due to Reduction Rule 4.6 being an expensive data reduction rule. The vertex
connectivty on the more dense bio50 instances is likely higher than for bio33 and it is
therefore less likely that we can apply Reduction Rule 4.6, because there needs to be a
cut vertex.

We further tested the impact of twin merging from Reduction Rule 4.8. For this we
disabled merging of twins (solver NTM) and compared it to solver ALL. In Figure 6.7
we can see that twin merging gives us a modest average speedup of up to five for bio33
and a speedup of up to two for bio50. This difference is likely because in the less dense
bio33 instances the average vertex degree is lower and, therefore, it is more likely that
there are more twins.

42

6 Implementation and Experiments

0 20 40 60 80 100 120
0

20

40

60

CVD solution size

2C
V

D
so

lu
ti

on
si

ze

(a) Bio33

0 20 40 60 80 100 120
0

10

20

30

40

CVD solution size

2C
V

D
so

lu
ti

on
si

ze
(b) Bio50

Figure 6.5: Comparison of the size of a minimum cluster vertex deletion set and a 2-club
vertex deletion set on our dataset. The solid line is y = x, and the dashed
ones are y = 0.5x and y = 0.25x

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

solver ALL

so
lv

er
N

P
V

(a) Bio33

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

solver ALL

so
lv

er
N

P
V

(b) Bio50

Figure 6.6: Running time comparison of different configurations of our solver—solver
ALL versus solver NPV.

43

6 Implementation and Experiments

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

solver ALL

so
lv

er
N

T
M

(a) Bio33

10−2 10−1 100 101 102 103 104

10−2

10−1

100

101

102

103

104

solver ALL

so
lv

er
N

T
M

(b) Bio50

Figure 6.7: Running time comparison of different configurations of our solver—solver
ALL versus solver NTM.

44

7 Conclusion

We investigated the problem of modifying graphs into 2-club cluster graphs. To this end,
we considered three problem variants: 2-Club Cluster Editing, 2-Club Cluster
Vertex Deletion and 2-Club Cluster Edge Deletion. We have shown that 2-
Club Cluster Editing is W[2]-hard for the parameter solution size k, which means
that it is likely not fixed-parameter tractable with respect to k. Furthermore, we de-
veloped sophisticated search tree algorithms for the fixed-parameter tractable 2-Club
Cluster Vertex Deletion and 2-Club Cluster Edge Deletion problems and
employed multiple data reduction rules and lower bounds. We also investigated the close
connection between Weighted 2-Club Cluster Vertex Deletion and 2-Club
Cluster Vertex Deletion and provide a simple way to translate weighted instances
into unweighted ones. We provide an implementation of our 2-Club Cluster Vertex
Deletion solver, which can be easily adapted to also accept weighted instances. Our
experiments on a biological dataset show that we can solve problem instances with 250
vertices and 15,000 edges in usually well below 4 minutes. Our results also show that
our techniques involving permanent vertices and merging of twins yielded significant
speedups. Compared to an ILP formulation solved using CPLEX our solver was 5–25
times faster in most cases.

Future work & open problems It would be interesting to see if our results also general-
ize for s-clubs with s ≥ 3, particularly the W[2]-hardness of 2-Club Cluster Editing
with respect to k or perhaps even other parameters. An important question that re-
mains is the existence of polynomial kernels for 2-Club Cluster Vertex Deletion
and 2-Club Cluster Edge Deletion. For other 2-club related graph modification
problems one could perhaps allow overlapping clusters or use stricter 2-club models such
as well-connected 2-clubs [Kom+19]. Limiting the number of local manipulations (lo-
cally bounded manipulation [KU12]) might also lead to a better quality of the clustering,
particularly for 2-Club Cluster Editing.

45

Literature

[Abu10] F. N. Abu-Khzam. “A kernelization algorithm for d-Hitting Set”. In: Jour-
nal of Computer and System Sciences 76.7 (2010), pp. 524–531. url: https:
//doi.org/10.1016/j.jcss.2009.09.002 (cit. on p. 20).

[AI16] T. Akiba and Y. Iwata. “Branch-and-reduce exponential/FPT algorithms
in practice: A case study of vertex cover”. In: Theoretical Computer Science
609 (2016), pp. 211–225. url: https://doi.org/10.1016/j.tcs.2015.
09.023 (cit. on p. 36).

[BBT05] B. Balasundaram, S. Butenko, and S. Trukhanov. “Novel Approaches for
Analyzing Biological Networks”. In: Journal of Combinatorial Optimization
10.1 (2005), pp. 23–39. url: https://doi.org/10.1007/s10878-005-
1857-x (cit. on p. 6).

[Bor+16] A. Boral, M. Cygan, T. Kociumaka, and M. Pilipczuk. “A Fast Branching
Algorithm for Cluster Vertex Deletion”. In: Theory of Computing Systems
58.2 (2016), pp. 357–376. url: https://doi.org/10.1007/s00224-015-
9631-7 (cit. on pp. 5, 6).

[Böc+09] S. Böcker, S. Briesemeister, Q. B. A. Bui, and A. Truß. “Going weighted:
Parameterized algorithms for cluster editing”. In: Theoretical Computer Sci-
ence 410.52 (2009), pp. 5467–5480. url: https://doi.org/10.1016/j.
tcs.2009.05.006 (cit. on pp. 17, 19, 27, 40).

[Böc12] S. Böcker. “A golden ratio parameterized algorithm for Cluster Editing”.
In: Journal of Discrete Algorithms 16 (2012), pp. 79–89. url: https://
doi.org/10.1016/j.jda.2012.04.005 (cit. on pp. 5, 6).

[Cas+19] M. Castelli, R. Dondi, S. Manzoni, G. Mauri, and I. Zoppis. “Top k 2-
Clubs in a Network: A Genetic Algorithm”. In: Computational Science -
ICCS 2019 - 19th International Conference. Vol. 11540. Lecture Notes in
Computer Science. Springer, 2019, pp. 656–663. url: https://doi.org/
10.1007/978-3-030-22750-0_63 (cit. on p. 6).

[CC12] Y. Cao and J. Chen. “Cluster Editing: Kernelization Based on Edge Cuts”.
In: Algorithmica 64.1 (2012), pp. 152–169. url: https://doi.org/10.
1007/s00453-011-9595-1 (cit. on p. 6).

[Cyg+15] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.
url: https://doi.org/10.1007/978-3-319-21275-3 (cit. on p. 10).

[DF13] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Com-
plexity. Texts in Computer Science. Springer, 2013. url: https://doi.
org/10.1007/978-1-4471-5559-1 (cit. on pp. 10, 11).

46

https://doi.org/10.1016/j.jcss.2009.09.002
https://doi.org/10.1016/j.jcss.2009.09.002
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1016/j.tcs.2015.09.023
https://doi.org/10.1007/s10878-005-1857-x
https://doi.org/10.1007/s10878-005-1857-x
https://doi.org/10.1007/s00224-015-9631-7
https://doi.org/10.1007/s00224-015-9631-7
https://doi.org/10.1016/j.tcs.2009.05.006
https://doi.org/10.1016/j.tcs.2009.05.006
https://doi.org/10.1016/j.jda.2012.04.005
https://doi.org/10.1016/j.jda.2012.04.005
https://doi.org/10.1007/978-3-030-22750-0_63
https://doi.org/10.1007/978-3-030-22750-0_63
https://doi.org/10.1007/s00453-011-9595-1
https://doi.org/10.1007/s00453-011-9595-1
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1

Literature

[EH84] A. Esfahanian and S. L. Hakimi. “On computing the connectivities of graphs
and digraphs”. In: Networks 14.2 (1984), pp. 355–366 (cit. on p. 39).

[GHN13] Y. Gao, D. R. Hare, and J. Nastos. “The parametric complexity of graph di-
ameter augmentation”. In: Discrete Applied Mathematics 161.10-11 (2013),
pp. 1626–1631. url: https://doi.org/10.1016/j.dam.2013.01.016
(cit. on p. 14).

[Guo+10] J. Guo, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. “A More Relaxed
Model for Graph-Based Data Clustering: s-Plex Cluster Editing”. In: SIAM
Journal on Discrete Mathematics 24.4 (2010), pp. 1662–1683. url: https:
//doi.org/10.1137/090767285 (cit. on pp. 5, 6).

[HH15] S. Hartung and H. H. Hoos. “Programming by Optimisation Meets Pa-
rameterised Algorithmics: A Case Study for Cluster Editing”. In: Learning
and Intelligent Optimization - 9th International Conference, LION 2015.
Vol. 8994. Lecture Notes in Computer Science. Springer, 2015, pp. 43–58.
url: https://doi.org/10.1007/978-3-319-19084-6_5 (cit. on p. 40).

[HKN15] S. Hartung, C. Komusiewicz, and A. Nichterlein. “Parameterized Algorith-
mics and Computational Experiments for Finding 2-Clubs”. In: Journal of
Graph Algorithms and Applications 19.1 (2015), pp. 155–190. url: https:
//doi.org/10.7155/jgaa.00352 (cit. on pp. 6, 39).

[Hüf+10] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier. “Fixed-Parameter
Algorithms for Cluster Vertex Deletion”. In: Theory of Computing Systems
47.1 (2010), pp. 196–217. url: https://doi.org/10.1007/s00224-008-
9150-x (cit. on p. 6).

[IPS82] A. Itai, Y. Perl, and Y. Shiloach. “The complexity of finding maximum
disjoint paths with length constraints”. In: Networks 12.3 (1982), pp. 277–
286. url: https://doi.org/10.1002/net.3230120306 (cit. on pp. 19,
29, 36, 38).

[Kom+19] C. Komusiewicz, A. Nichterlein, R. Niedermeier, and M. Picker. “Exact
algorithms for finding well-connected 2-clubs in sparse real-world graphs:
Theory and experiments”. In: European Journal of Operational Research
275.3 (2019), pp. 846–864. url: https://doi.org/10.1016/j.ejor.
2018.12.006 (cit. on pp. 6, 45).

[KU12] C. Komusiewicz and J. Uhlmann. “Cluster editing with locally bounded
modifications”. In: Discrete Applied Mathematics 160.15 (2012), pp. 2259–
2270. url: https://doi.org/10.1016/j.dam.2012.05.019 (cit. on
pp. 17, 45).

[Lee+10] V. E. Lee, N. Ruan, R. Jin, and C. C. Aggarwal. “A Survey of Algorithms
for Dense Subgraph Discovery”. In: Managing and Mining Graph Data. Ed.
by C. C. Aggarwal and H. Wang. Vol. 40. Advances in Database Systems.
Springer, 2010, pp. 303–336. url: https://doi.org/10.1007/978-1-
4419-6045-0_10 (cit. on p. 5).

47

https://doi.org/10.1016/j.dam.2013.01.016
https://doi.org/10.1137/090767285
https://doi.org/10.1137/090767285
https://doi.org/10.1007/978-3-319-19084-6_5
https://doi.org/10.7155/jgaa.00352
https://doi.org/10.7155/jgaa.00352
https://doi.org/10.1007/s00224-008-9150-x
https://doi.org/10.1007/s00224-008-9150-x
https://doi.org/10.1002/net.3230120306
https://doi.org/10.1016/j.ejor.2018.12.006
https://doi.org/10.1016/j.ejor.2018.12.006
https://doi.org/10.1016/j.dam.2012.05.019
https://doi.org/10.1007/978-1-4419-6045-0_10
https://doi.org/10.1007/978-1-4419-6045-0_10

Literature

[Lok+13] D. Lokshtanov, N. Misra, G. Philip, M. S. Ramanujan, and S. Saurabh.
“Hardness of r-Dominating Set on Graphs of Diameter (r+1)”. In: Param-
eterized and Exact Computation. Vol. 8246. Lecture Notes in Computer Sci-
ence. Springer, 2013, pp. 255–267. url: https://doi.org/10.1007/978-
3-319-03898-8_22 (cit. on pp. 14, 16).

[LZZ12] H. Liu, P. Zhang, and D. Zhu. “On Editing Graphs into 2-Club Clusters”.
In: Frontiers in Algorithmics and Algorithmic Aspects in Information and
Management. Vol. 7285. Lecture Notes in Computer Science. Springer, 2012,
pp. 235–246. url: https://doi.org/10.1007/978-3-642-29700-7_22
(cit. on pp. 6, 12, 13, 21).

[Nie06] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press, 2006 (cit. on pp. 10, 11, 24).

[PYB12] J. Pattillo, N. Youssef, and S. Butenko. “Clique Relaxation Models in Social
Network Analysis”. In: Handbook of Optimization in Complex Networks:
Communication and Social Networks. New York, NY: Springer New York,
2012, pp. 143–162. url: https://doi.org/10.1007/978-1-4614-0857-
4_5 (cit. on p. 6).

[Rah+07] S. Rahmann, T. Wittkop, J. Baumbach, M. Martin, A. Truss, and S. Böcker.
“Exact and heuristic algorithms for weighted cluster editing”. In: Computa-
tional Systems Bioinformatics: (Volume 6). World Scientific, 2007, pp. 391–
401. url: https://doi.org/10.1142/9781860948732_0040 (cit. on p. 40).

[Wit+10] T. Wittkop, D. Emig, S. Lange, S. Rahmann, M. Albrecht, J. H. Morris,
S. Böcker, J. Stoye, and J. Baumbach. “Partitioning biological data with
transitivity clustering”. In: Nature methods 7.6 (2010), pp. 419–420. url:
https://doi.org/10.1038/nmeth0610-419 (cit. on p. 5).

48

https://doi.org/10.1007/978-3-319-03898-8_22
https://doi.org/10.1007/978-3-319-03898-8_22
https://doi.org/10.1007/978-3-642-29700-7_22
https://doi.org/10.1007/978-1-4614-0857-4_5
https://doi.org/10.1007/978-1-4614-0857-4_5
https://doi.org/10.1142/9781860948732_0040
https://doi.org/10.1038/nmeth0610-419

	Introduction
	Preliminaries
	Graph theory
	Parameterized complexity
	Problem definitions
	2-Club specifics

	2-Club Cluster Editing
	W[2]-hardness
	Useful algorithmic properties

	2-Club Cluster Vertex Deletion
	Search tree
	Data reduction rules
	Lower bounds
	Introducing weights

	2-Club Cluster Edge Deletion
	Implementation and Experiments
	Setup and solver configurations
	Implementation
	Experiments
	Dataset
	Results

	Conclusion
	Literature

