
Technische Universität Berlin

Algorithms and Experiments for Betweeness
Centrality in Tree-Like Networks

Bachelorarbeit
von Alexander Dittmann

zur Erlangung des Grades
”
Bachelor of Science“

(B. Sc.) im Studiengang Informatik

Betreuer:
Matthias Bentert

Dr. André Nichterlein
Prof. Dr. Rolf Niedermeier

Erstgutachter: Prof. Dr. Rolf Niedermeier
Zweitgutachter: Prof. Dr. Toby Walsh

1

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie
ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten
Quellen und Hilfsmittel angefertigt habe.

Die selbständige und eigenständige Anfertigung versichert an Eides statt:

Berlin, den

Unterschrift

2

Zusammenfassung

Die Betweenness Centrality ist ein Standarmaß bei der Analyse von Netzwerken, um
die Wichtigkeit von Knoten in einem Netzwerk einzustufen. Die Betweenness Centrality
repräsentiert die relative Anzahl an kürzesten Pfaden, auf dem ein Knoten in einem Netz-
werk liegt. Das Ermitteln von Knoten mit hoher Betweenness Centrality, und damit das
Finden von Knoten, die wichtig für das Netzwerk sind, hat eine Reihe von Anwendungen
in verschiedenen wissenschaftlichen Feldern wie Soziologie, Biologie und Informatik.

Die aktuell schnellsten Algorithmen zum Berechnen der Betweenness Centrality für
alle Knoten in einem Netzwerk haben eine Laufzeit von O(n ·m), wobei n die Anzahl
der Knoten und m die Anzahl der Kanten in dem Netzwerk ist. Diese Laufzeit ist jedoch
nicht praktikabel, wenn sehr große Instanzen von Netzwerken analysiert werden müssen.
Dies stellt eine Motivation dar, um schnellere Algorithmen zu finden oder vorhandene zu
verbessern, sodass die Betweenness Centrality auch in großen Instanzen in angemessener
Zeit berechnet werden kann.

Ein solcher O(n ·m)-Algorithmus ist der von Brandes [J Math Sociol 2001]. Baglioni
u. a. [ASONAM 2012] verbesserten diesen, indem sie Grad-Eins-Knoten aus dem Netz-
werk löschen, bevor sie Brandes Algorithmus auf dem Netzwerk ausführen. Falls genug
Knoten gelöscht werden können, kann das eine wesentliche Beschleunigung darstellen.
In dieser Arbeit möchten wir diese Idee weiter ausführen. Wir stellen einen parametri-
sierten Algorithmus in Hinsicht auf die Feedback Edge Number vor, der das Löschen von
einigen Knoten von Grad zwei miteinbezieht.

Abstract

When it comes to analyzing networks the betweenness centrality is a standard measure to
rank the importance of the vertices in a network. The betweenness centrality represents
the relative number of shortest paths a vertex lies on in a network. Finding vertices with
a high betweenness centrality and thus vertices that are important for the network, has
several applications in different fields of science, for example in sociology, biology and
computer science.

The currently best known algorithms for computing the betweenness centrality for
each vertex of a network have a running time of O(n · m), where n is the number of
vertices and m is the number of edges in the network. This running time however is not
feasible for very big instances of networks. This motivates to find faster algorithms or
to improve existing algorithms to make the betweenness centrality a usable method of
analysis even for these instances which are currently to big for practical use.

One such O(n · m)-algorithm is the one of Brandes’ [J Math Sociol 2001]. Baglioni
et al. [ASONAM 2012] improved Brandes’ algorithm by deleting degree-one vertices
in the network before running Brandes’ algorithm on the network. If enough vertices
are deleted, then this can be a significant speed up. In this work we follow this idea.
In particular we provide a parameterized algorithm with respect to the feedback edge
number, which involves the deletion of some vertices of degree two.

3

Contents

1 Introduction 5

2 Preliminaries 7

3 Overview of the algorithm 8
3.1 Splitting balloons from the graph . 9
3.2 Finding balloons and chains . 12
3.3 Outline of the Algorithm . 13

4 Popping balloons: Dealing with cyclic structures 14

5 Chains: Dealing with paths 19
5.1 Processing the chains . 21
5.2 Step 1: Shortest paths between chains and vertices of degree greater than

two . 22
5.3 Step 2: Shortest paths between pairs of chains 28
5.4 Step 3: Shortest paths between vertices of a single chain 42
5.5 Final running time . 48

6 Conclusion & Outlook 48

Literature 49

4

1 Introduction

Networks, for example social networks, are often represented as graphs, where the ver-
tices of the graph represent the entities in the network. If there is an edge between two
vertices, then the respective entities are in some kind of relationship. This relationship
can represent any circumstances: In a social network like Facebook, two people, the
entities, could be connected with an edge, if they were “friends”. Methods of graph
theory can be applied to the graphs of the networks to analyze them and get various
information about the entities or their relationships. One of such information are the so
called centrality indices, the betweenness centrality being one of them. For an overview
of the other indices, see [Bra01] for example. Centrality indices were already mentioned
by Bavelas [Bav48] in 1948 but without providing a formal definition of them. This was
done by Freeman [Fre77] in 1977 for example. Freeman also provided a formal definition
of the betweenness centrality. The betweenness centrality is a measure, of how central a
vertex is in the graph. This measure is calculated by, roughly said, counting the number
of shortest paths that the vertex lies on. For a graph G = (V,E), the exact value of the
betweenness centrality CB(v) for a given vertex v ∈ V is obtained by adding up for each
pair (s, t), s 6= v 6= t ∈ V , of vertices the ratio of the number of shortest paths between s
and t that v lies on and the total amount of shortest paths between s and t. The formal
definition is as follows:

CB(v) =
∑
s,t∈V
s 6=v 6=t

σst(v)

σst
, (1)

where σst denotes the number of shortest path between s and t and σst(v) denotes the
number of shortest paths between s and t where v lies on. A formalization of the problem
we deal with in this work is:

Betweenness Centrality
Input: An undirected graph G = (V,E)

Task: For each v ∈ V calculate the betweenness centrality CB(v) =
∑
s,t∈V
s 6=v 6=t

σst(v)
σst

.

The higher the betweenness centrality of a vertex is in a network, the more shortest
paths the vertex lies on. The betweenness centrality is motivated by the assumption that
information flow in a network follows shortest paths [Bag+12]. Hence, if a vertex lies
on many shortest paths, it has a high potential to influence or control the information
flow in the network. For a short example, see Figure 1. In Figure 1a the vertex b has
a betweenness centrality of four, since b lies on all shortest paths between four pairs
of vertices, which are (a, c), (a, d), (c, a) and (d, a) (each pair is counted twice). In
Figure 1b, a new vertex b′ is added. Now, between each of the just mentioned pairs
of vertices, there are two shortest paths, and b only lies on one of them. That is, why
its betweenness centrality reduces to two: Both b and b′ now share the connections
between a and c and a and d; b does not have exclusive influence on these connections
anymore.

5

(a) The betweenness centrality of b is four
(b) The betweenness centrality of b is only

two

Figure 1: Example for betweenness centrality in two similar graphs

Betweenness centrality plays an important role in different fields of science. In brain
networks, it could be used to find neural links with a high information flow. These links
may represent important anatomical or functional connections between different regions
in the brain [RS10]. In social or biological networks in general, betweenness measures
can be used for finding community structures [For10; NG04]. Community structures
are clusters of vertices with a high amount of edges between the vertices of a cluster,
while between the clusters, there are rather few links. Those links are important for the
information flow between the groups and hence, the vertices being part of these links are
more likely to have a high betweenness centrality. Since these networks are often big, a
fast computation of betweenness centrality is desirable.

If we wanted to compute the betweenness centrality for all vertices of a graph and
look at formula (1), a naive approach of doing so would take O(n3) time in total. This
is only feasible for relatively small networks. If we look at bigger networks though, with
(hundreds of) thousands of vertices, this running time is not feasible for practical use any
more. In 2001 Brandes [Bra01] introduced an algorithm for computing the betweenness
centrality of each vertex in a graph in O(n · m) time, where n denotes the number of
vertices and m denotes the number of edges in the graph. Since (social) networks are
rather sparse [Bra01], this is a significant improvement to the hitherto known naive
approaches.

In 2012, Baglioni et al. [Bag+12] introduced an improvement for Brandes’ algorithm.
Before running the algorithm of Brandes on the graph, they recursively delete all vertices
of degree one, leaving a graph with only vertices of degree at least two. This reduces the
number of vertices on which Brandes’ algorithm has to be performed and thus improves
the running time of the computation. The performance improvement directly depends
on the number of degree-one vertices in the graph.

Now, our approach is to take the next step and continue the work of Baglioni et al.
[Bag+12]. We want to delete as many vertices of degree two as possible in the input
graph to shrink the graph even more and thus, to reduce the number of vertices that
Brandes’ algorithm needs to be run on. We additionally give a theoretical analysis by

6

using the feedback edge set of the graph. This is a set of edges such that removing it from
the graph results in an acyclic graph. The size k of the smallest such set is called the
feedback edge number. In this work, we want to provide an algorithm with a running time
of the form O(kO(1) ·n2). This follows the idea of “FPT in P”: For a problem solvable in
polynomial time O(nc), we want to find a parameter k and an algorithm, such that the
problem is solvable in O(f(k) · nc′), where c′ < c and f only being dependent from k.
If k is small enough, then this is an improvement to the running time of O(nc). Our
parameter k is the feedback edge number of the input graph and the algorithm that
we present in this work has a running time of O(k2 · n2). For a more comprehensive
explanation of “FPT in P”, see Giannopoulou et al. [Gia+17]. At this point, we want
to formalize the theorem that we proof with this work:

Theorem 1.1. The betweenness centrality for all vertices in a graph can be computed
in O(k2 · n2) time, where k is the feedback edge number of the graph.

The rest of this work is structured as follows: In Section 2 we list formulas and
variables that we use in this work. In Section 3 we give a an overview of our algorithm.
We give definitions for balloons and chains as well as a brief pseudo code to put all of
our steps in a defined order. In Section 4 we show how we handle the just mentioned
balloons. In Section 5 we do the same for chains. Section 5 will be the most extensive
one in this work. In Section 6 we will give a conclusion and ideas on how to further
improve our algorithm.

2 Preliminaries

Here, we define the formulas and variables that we use in this work.
An undirected graph is a pair G = (V,E). In this context, we denote by

V the vertex set of G;

E the edge set of G with E ⊆
(
V
2

)
; for an edge e = {u, v} ∈ E the two vertices u

and v are called endpoints of e;

nG the number |V | of vertices;

mG the number |E| of edges;

degG(v) the degree of v in G;

V=1 the set of all vertices in V with degree one;

V=2 the set of all vertices in V with degree two;

V≥3 the set of all vertices in V with degree at least three;

σvw the number of shortest paths between v and w;

7

σvw(u) the number of shortest paths between v and w that include vertex u; for con-
venience we set σvw(v) = σvw(w) = σvw;

dG(v, w) the distance of v and w, i. e. the length of a shortest path between v and w;

S(T) the set of all elements that appear in the tuple T , i. e. for T = (t1, ..., t`) we
have S(T) = {t1, ..., t`} ;

S∗(T) the set of all elements that appear in the tuple T except the first and the last,
i. e. for T = (t1, ..., t`) we have S∗(T) = {t2, ..., t`−1} ;

G− {v} the induced subgraph of G, obtained by removing v ∈ V and all its edges from
G;

G[V ′] the induced subgraph of G, obtained by removing all vertices v ∈ V , v /∈ V ′ ⊆ V
and all its edges from G;

If the graph G is clear from the context, then we will omit the subscript G.

3 Overview of the algorithm

As mentioned in the introduction, Baglioni et al. [Bag+12] improved Brandes’ algorithm
[Bra01] by recursively deleting all degree-one vertices in the input graph before running
Brandes’ algorithm on it. For the deletion process they introduce a labeling p, V → N ,
where initially p(v) = 0 for all v ∈ V . After deleting a degree-one vertex v in the graph,
they increase p(v′) by p(v) + 1, with v′ being the unique neighbour of v. Thus, p(v)
denotes the number of vertices that were already deleted from the graph and directly
connected to v. This labeling is needed for calculating the correct betweenness centrality
for the remaining vertices later, when running Brandes’ algorithm on the graph. Baglioni
et al. slightly modify Brandes’ algorithm to involve the labeling p. Besides, in the
deletion process, they already compute the final betweenness centrality of each deleted
vertex. See Baglioni et al. [Bag+12] for a more detailed description. The main ideas
behind that procedure are that they shrink the input graph before running Brandes
algorithm on it by deleting vertices of degree one, that the shrinking process can be
done in almost linear time and that the deletion of those vertices does not alter the
betweenness centrality of the remaining vertices in the graph.

In this work, we want to further improve the algorithm of Baglioni et al. [Bag+12].
Our algorithm starts with the same procedure as Baglioni’s algorithm does: We delete
all vertices of degree one in the graph and apply the labeling p on all vertices left, with
a small difference: We want p(v) to represent the number of vertices that were directly
connected to v (as in Baglioni’s algorithm) plus v itself. Therefore, after removing the
degree-one vertices, we increase each value for p by one. After the deletion of all degree-
one vertices, the input graph contains only vertices with a degree of at least two. Our
goal is to delete as many degree-two vertices as possible to further reduce the number
of vertices that Brandes’ algorithm needs to be run on. For this purpose, we distinguish
between two types of subgraphs in which degree-two vertices may appear:

8

(a) a balloon (b) a chain

Figure 2: A balloon and a chain

Definition 3.1. A balloon is a path (y0, y1, ..., y`, y0) where y0 ∈ V and y1, ..., y` ∈ V=2.

Definition 3.2. A chain is a path (x, y1, ..., y`, z) where x, z ∈ V≥3 and y1, ..., y` ∈ V=2

and x 6= z.

See Figure 2a and Figure 2b for a visualization of a balloon and a chain, respectively.
These subgraphs can be found in linear time in the input graph, as we will see later.
In addition, every vertex of degree two is either part of a balloon or part of a chain. If
there are only vertices of degree two left in the graph, then the whole graph is a balloon.
At this point we give a more detailed look on the feedback edge set of the graph. With
its help we can bound the number of chains and the number of vertices with degree at
least three in the graph.

Feedback Edge Set and Feedback Edge Number As explained in Section 1, the
feedback edge set of a graph is a set of edges that needs to be removed to make the
graph acyclic. The feedback edge number is the size of a smallest such set. Now,
consider the residual graph after we have removed all vertices of degree one from it
using the procedure of Baglioni et al. [Bag+12]. The vertices in the residual graph all
have a degree of at least two. If follows from the work of Mertzios et al. [Mer+17, proof
of Thm 2.3] that the number of chains in the residual graph is linear in the feedback
edge number k, i. e. |C| ∈ O(k). The same holds for the vertices of degree at least three,
i. e. |V≥3 | ∈ O(k), too.

In the next paragraph we show how we can remove balloons from the graph. Chains
are handled later in Section 5, because they cannot be simply deleted from the graph.

3.1 Splitting balloons from the graph

The behavior of balloons in the graph is similar to that of degree-one vertices. This
allows us to remove them for similar reasons as degree-one vertices can be deleted from G.
Vertices of degree one can be deleted from G, because all shortest paths from a vertex of
degree one pass through its unique neighbour. For balloons, this is similar: All shortest

9

(a) The graph before splitting (b) The two new graphs after splitting

Figure 3: Splitting a graph into two

paths from each vertex y1, ..., y` in the balloon to each vertex outside that balloon pass
through y0. After removing a balloon from the graph we just have to increase y0’s value
for p by the size of the balloon (and all vertices that were originally connected to the
balloon). We do this step iteratively, since after “popping” a balloon, that is deleting
all vertices except y0 from the input graph, there could be a new one. At this point, we
want to introduce the following helpful lemma. See Figure 3 for a visualization of it. In
Figure 3a vertex v is the only connection between the vertices in V1 and V2. All shortest
paths between vertices of V1 and vertices of V2 pass through v. If we split the graph
into two as shown in Figure 3b we have to make sure that after performing Brandes’
algorithm on the graphs the betweenness centrality for the vertices in them are not
altered. Therefore, we have to increase the betweenness centrality of v by the product
of the number of vertices in V1 and V2. Then, because we delete a number of vertices
from the graph, we yet have to increase the value of p(v) by the sum of all p-values of
all vertices in V1 or V2, respectively. This is expressed in Lemma 3.3:

Lemma 3.3 (Split Lemma). Let G = (V,E) be a connected graph and let v ∈ V be any
vertex, such that the graph G − v is disconnected. Let G′ = (V ′, E′) be one connected
component of G− v. Set G1 = (V1, E1) := G[V ′ ∪ {v}] and G2 = (V2, E2) := G[V \ V ′].
Also, let pG1(v) =

∑
w∈V2 pG(w) and let pG2(v) =

∑
w∈V1 pG(w). For all u1 ∈ V1 \ {v}

and u2 ∈ V2 \ {v}, let pG1(u1) = pG(u1) and pG2(u2) = pG(u2).
Then, for u ∈ V we have:

CGB (u) =


CG1
B (u) + CG2

B (u) + 2
∑

w∈V1\{v} p(w)
∑

w∈V2\{v} p(w), if u = v

CG1
B (u), if u ∈ V1 and u 6= v

CG2
B (u), if u ∈ V2 and u 6= v

Proof. First, we will show that CGB (u) = CG1
B (u) for each u ∈ V , u 6= v. The proof

of CGB (u) = CG2
B (u) is analogous. Then, we will show the correctness of CGB (v) =

CG1
B (v) + CG2

B (v) + 2
∑

w∈V1\{v} p(w)
∑

w∈V2\{v} p(w).

10

Let u ∈ V1 \ {v}:

CG1
B (u) =

∑
s,t∈V1
s 6=u6=t

pG1(s)pG1(t)
σst(u)

σst

=
∑

s,t∈V1\{v}
s 6=u6=t

pG1(s)pG1(t)
σst(u)

σst
+ 2

∑
s∈V1\{v}
s6=u6=v

pG1(s)pG1(v)
σsv(u)

σsv

(i)
=

∑
s,t∈V1\{v}
s 6=u6=t

pG(s)pG(t)
σst(u)

σst
+ 2

∑
s∈V1\{v}
s 6=u6=v

pG(s)pG1(v)
σsv(u)

σsv

(ii)
=

∑
s,t∈V1\{v}
s 6=u6=t

pG(s)pG(t)
σst(u)

σst
+ 2

∑
s∈V1\{v}
s 6=u6=v

pG(s)(
∑
w∈V2

pG(w))
σsv(u)

σsv

(iii)
=

∑
s,t∈V1\{v}
s 6=u6=t

pG(s)pG(t)
σst(u)

σst
+ 2

∑
s∈V1\{v}
w∈V2
s 6=u6=v

pG(s)pG(w)
σsw(u)

σsw

(iv)
=

∑
s,t∈V1\{v}
s 6=u6=t

pG(s)pG(t)
σst(u)

σst
+ 2

∑
s∈V1\{v}
w∈V2
s 6=u6=v

pG(s)pG(w)
σsw(u)

σsw

+
∑

s,t∈V2\{v}
s 6=u6=t

pG(s)pG(t)
σst(u)

σst

=
∑
s,t∈V
s 6=u6=t

pG(s)pG(t)
σst(u)

σst
= CGB (u)

(i): pG1(w1) = pG(w1) for each w1 ∈ V1 \ {v} and pG2(w2) = pG(w2) for each w2 ∈
V2 \ {v}

(ii): pG1(v) =
∑

w∈V2 pG(w)

(iii): Each shortest path from w ∈ V2 to s, t ∈ V1 \ {v} has to pass through v. Thus, if
u lies on a shortest path from v to s or t, then u will also lie on the shortest path
from w to s or t. So, σvt(u)

σvt
= σwt(u)

σwt
and σsv(u)

σsv
= σsw(u)

σsw
.

(iv): If s, t ∈ V2 \ {v} and u ∈ V1 \ {v}, then σst(u) = 0, because each shortest path
from s to t “stays” in V2: There is only one vertex connecting the vertices in V1
and V2 and a shortest path never covers the same vertex twice.

11

For v:

CG1
B (v) + CG2

B (v) + 2

 ∑
w∈V1\{v}

pG(w)

 ∑
w∈V2\{v}

pG(w)


=CG1

B (v) + CG2
B (v) + 2

∑
w1∈V1\{v}
w2∈V2\{v}

pG(w1)pG(w2)

(v)
=CG1

B (v) + CG2
B (v) + 2

∑
w1∈V1\{v}
w2∈V2\{v}

pG(w1)pG(w2)
σw1w2(v)

σw1w2

=
∑
s,t∈V1
s 6=v 6=t

pG1(s)pG1(t)
σst(v)

σst
+
∑
s,t∈V2
s 6=v 6=t

pG2(s)pG2(t)
σst(v)

σst

+ 2
∑
w1∈V1
w2∈V2

w1 6=v 6=w2

pG(w1)pG(w2)
σw1w2(v)

σw1w2

=
∑
s,t∈V
s 6=v 6=t

pG(s)pG(t)
σst(v)

σst
= CGB (v)

(v): Vertex v is part of each shortest path from w1 ∈ V1 \ {v} to w2 ∈ V2 \ {v}. Thus,
σw1w2 (v)
σw1w2

= 1.

Notice that for a balloon B = (y0, y1, ..., y`, y0) vertex y0 is a separator as described in
Lemma 3.3. Basically, Lemma 3.3 generalizes the procedure of Baglioni et al. [Bag+12]
treating vertices of degree one: It removes vertices from the graph (and does some extra
computations) without altering the final betweenness centrality of the remaining vertices.
We will use Lemma 3.3 to separate the balloons from the graph without influencing the
betweenness centrality for the residual graph.

Before we can actually begin with removing balloons from the graph we have to find
them first. In the next paragraph we show how to do so. Note that we search for all
chains in the graph parallel, since we of course need to find the chains, too, to process
them. We also mention that in this work we do not remove the chains from the graph
and hence, we do not remove all vertices of degree two from the graph. In Section 5 we
give a detailed explanation on how we deal with chains.

3.2 Finding balloons and chains

Before continuing with Section 4 and Section 5, we show how to find all balloons and
chains in a graph G.

12

(a) The graph before the removal of B (b) The graph after the removal of B

Figure 4: Removing a balloon

Consider any vertex v ∈ V . If degG(v) = 2, then iteratively look at the left and right
neighbour of v, until there are neighbours vl and vr with a degree greater than two. If
vl = vr, we found a balloon. Let B = (y0, y1, ..., y`, y0) be the found balloon. If vl 6= vr,
we found a chain. Let C = (x, y1, ..., y`, z) be the found chain.

If we find a balloon, then we will remove it from G according to Lemma 3.3. See
Figure 4 for a visualization. Afterwards, we have to check y0 again, since in the residual
graph the degree of y0 is decreased by two. If then degG(y0) = 1, then we will just
remove y0, too, in the same way as Baglioni et al. [Bag+12] remove the degree-one
vertices from the graph. But if degG(y0) = 2, then we have to do the same procedure
as above again. If, additionally, y0 was an endpoint of a chain, then we have to extend
that chain instead of creating a new one. Let B be the set of all balloons and let C the
set of all chains. If we keep a mapping of which vertex is part of which chain, then this
part can be done in O(n+m) time.

To complete this section we give a short summary of the next steps followed by a brief
pseudo code in Section 3.3. The pseudo code will help later, when linking the sections
of this work with their respective part of the pseudo code:

• In Section 4 we will show how we process the found balloons.

• Section 4 is a preparation to the more extensive part of dealing with the chains in
Section 5: After deleting all balloons the remaining vertices of degree two are all
part of either chain. Then, we are ready to run the modified version of Brandes’
algorithm on the shrinked graph. At last, we will process the chains. In Section 5.5
we provide the overall running time of our algorithm.

• In Section 6 we give a conclusion followed by some ideas on how to further improve
the algorithm.

3.3 Outline of the Algorithm

We provide a brief a pseudo code in Algorithm 1. The pseudo code does not cover
every detail of our computations. By looking at the code, the reader can quickly get an

13

overview of what we do in this work. This is suggested before continuing with reading
the following sections. In the first three lines we do the preparation work: Initializing
the needed variables and removing all vertices of degree one from the graph. In lines
5-13 we search for balloons and chains in the graph. If we find a balloon, then we remove
it from the graph according to Lemma 3.3 and add the balloon to the set of all balloons.
If we find a chain, then we just add it to the set of all chains. In lines 15-17 we compute
the betweenness centrality of the vertices in the balloons. In the last three loops we deal
with the found chains (see Section 5).

4 Popping balloons: Dealing with cyclic structures

In Section 3 we already showed how to find balloons and how to remove them from
the graph using Lemma 3.3. In this section we calculate the appropriate values for the
betweenness centrality for the vertices in the balloons. Therefore, look at any B =
(y0, y1, ..., y`, y0) ∈ B. Since we removed the balloon from the graph, we can look at the
balloon isolated from the rest of the graph. The respective line in Algorithm 1 of this
part is line 16.

Handling the balloon Before starting with the computations of the betweenness cen-
trality for the vertices in B, we construct two tables tleft and tright for B. They are
defined as follows:

tleft(yi) :=

i∑
k=0

p(yk)

tright(yi) := p(y0) +
∑̀
k=i

p(yk)

Intuitively, tleft(yi) represents the number of vertices that were originally connected to
y0, ...yi plus the number of these vertices itself, while tright(yi) represents the number of
vertices that were originally connected to yi, ..., y`, y0 plus the number of these vertices
itself. With a naive approach, the above tables would need quadratic time for their
construction. Because we want the computations to work in linear time, here is how the
tables can be computed iteratively in linear time:

tleft(yi) =

{
p(y0), if i = 0

tleft(yi−1) + p(yi), otherwise

tright(yi) =

{
p(y0), if i = 0

tright(yi+1 mod l+1) + p(yi), otherwise
.

(2)

In the next part, for each yi, we compute CBB (yi), the betweenness centrality of the
vertex yi in the balloon B.

We first look at y0 and calculate CBB (y0). Next, for each other yi, we iteratively
compute CBB (yi). Doing this iteratively ensures a linear running time for the processing

14

Algorithm 1 Betweenness Centrality

Input: An undirected, unweighted graph G = (V,E)
Output: CB(v) for all v ∈ V
1: CB(v)← 0 for all v ∈ V
2: run Baglionis’ procedure on G // delete all vertices of degree one from G
3: p(v) ← p(v)+1 for v ∈ V // increase p-value of each vertex by one
4:

5: while there is a balloon or chain do
6: if balloon then
7: Let (y0, y1, ..., y`, y0) be the balloon
8: (G1, G2) ← split(G, y0) // split found balloon from the graph
9: CGB (y0) ← CGB (y0) + 2

∑
w∈V1\{y0} p(w)

∑
w∈V2\{y0} p(w)

// increase betweenness centrality of the separator y0
10: add balloon to set of all balloons
11: G ← G2

12: else
13: add chain to set of all chains
14:

15: for balloon in balloons do
16: compute betweenness for balloon // Section 4
17: run Brandes’ modified algorithm on vertices with degree at least three
18:

19: for chain in chains do
20: for v in V do
21: if degG(v) ≥ 3 then
22: process chain-vertex pair (chain, v) // Section 5.2, (Step 1)

(Section 5.2)
23:

24: for chain1 in chains do
25: for chain2 in chains do
26: process chain pair (chain1, chain2) // Section 5.3, (Step 2)
27:

28: for chain in chains do
29: process single chain(chain) // Section 5.4, (Step 3)

15

of each balloon. For the following computations we define

t(yi, yj) :=


p(yi), if i = j

tleft(yj), if i < j and i = 0

tleft(yj)− tleft(yi−1), if i < j and i > 0

tleft(yj) + tright(yi)− p(y0), if i > j

.

The formula t(yi, yj) sums up all values for p from yi to yj , clockwise (p(yi) + ...+ p(yj),
or p(yj) + ...+ p(y`) + p(y0) + ...+ p(yi), if j < i). In the rest of the section we show the
following theorem:

Theorem 4.1. Let B = (y0, y1, ..., y`, y0) be a balloon. The betweenness centrality of all
vertices in B can be computed in O(`) time.

Depending of whether ` is even or odd, we have to do slightly different computations.
A formal proof can be found at the end of this section.

Case 1: ` is even We compute the betweenness centrality for y0 by constructing a sum.
We will first give the definitions and then an explanation. The betweenness centrality
to add to y0 is:

CBB (y0) :=

l
2
−1∑
k=1

p(yk) · (tright(y l
2
+1+k)− p(y0)).

From each vertex yi, 1 ≤ i ≤ `
2−1, there is exactly one shortest path to each vertex yj ,

`
2 + 1 + i ≤ j ≤ `, that includes y0. Each of these shortest paths has to be considered
p(yi) ·p(yj) times, since we also have to include the shortest paths from the vertices that
were originally connected to yi and yj . If we sum up all possible p(yj) for a fixed yi,
then we get tright(

`
2 + 1 + i)− p(y0). The sum above adds up the values for all shortest

paths that pass through y0.
For every other yi, 0 < i ≤ `, we compute the following (starting at y1). Again, the

explanation follows:

CBB (yi) :=CBB (yi−1)

− p(yi) · t(yi− l
2
mod l+1, yi−2 mod l+1)

+ p(yi−1) · t(yi+1 mod l+1, yi+ l
2
−1 mod l+1).

(3)

Basically, the formula CBB (yi) takes the just computed value for yi−1, subtracts the
amount of betweenness that is given by all shortest paths that pass through yi−1 but
do not pass through yi and adds the amount of betweenness centrality that is given by
all shortest paths that do not pass through yi−1 but do pass through yi. This process
is like shifting a window clockwise, where the window indicates which shortest paths
between which pairs of vertices need to be considered for yi. See Figure 5 for a graphical
representation of the window. The blue colored vertex is the currently treated vertex.

16

(a) The window for the here treated ver-
tex y0

(b) The window for the here treated ver-
tex y1

Figure 5: The window indicating the shortest paths that the treated vertex lies on

The red and green lines between two vertices symbolize that between these vertices there
is a shortest path where the currently treated vertex lies on. In Figure 5a between y1
and y6 and y1 and y5 there is a shortest path where y0 (the treated vertex) lies on. This
is indicated by the two red lines connecting these vertices. Between y2 and y6 there is
a shortest path where y0 lies on, too. This is indicated by the green line connecting
them. These are all shortest paths that need to be considered for y0. Now, in Figure 5b
we treat the next vertex, y1. Therefore, we shift the window by one step clockwise.
Afterwards, the red lines now connect y2 with y0 and y6, because between those pairs
of vertices there now is a shortest path that y1 (the treated vertex) lies on. The green
line connects y3 and y0, because between those vertices there is also a shortest path that
includes y1.

Case 2: ` is odd This case is slightly different. In Case 1, there is exactly one shortest
path between each pair of vertices. In Case 2, there are pairs of vertices where there
are exactly two shortest paths between them. These are the pairs of vertices which are
opposite or, expressed mathematically, those yi, yj , i < j, where j − i = b `2c. Each
other vertex can only lie on one of these two shortest paths. This is why there is a term
with a factor of 1

2 in the formulas. Again, we first compute the betweenness for y0 by
constructing a sum. The sum is:

CBB (y0) :=

b l
2
c∑

k=1

p(yk) · (tright(yd l
2
e+1+k mod l+1)− p(y0)) +

1

2
p(yk) · p(yd l

2
e+k).

Every other yi is computed recursively as in Case 1. Again, we have pairs of vertices
where there are two shortest paths between them. These need to be treated separately,
which is why there are again two terms with the factor 1

2 , one of them being subtracted

17

and one being added.

CBB (yi) :=CBB (yi−1)

− p(yi)(t(yi+d l
2
e+1 mod l+1, yi−2 mod l+1)−

1

2
p(yi+d l

2
e mod l+1))

+ p(yi−1)(t(yi+1 mod l+1, yi+b l
2
c−1 mod l+1) +

1

2
p(yi+b l

2
c mod l+1)).

Since we only look at each pair of vertices once, all results for CBB (yi), 0 ≤ i ≤ `, in
this section have to be doubled. Next, we prove the correctness of Theorem 4.1.

Proof. We will divide the proof of the formula CBB into two parts. In the first part, we
show that the value CBB (y0) is correct. This will be our induction basis. In the second
step, we show the correctness of any CBB (yi), given that CBB (yi−1) is already correct.
Combining both steps will yield the total correctness of the formula CBB . Additionally,
let ` > 2, because otherwise, the balloon is a clique and the betweenness centrality of
each vertex in the balloon is zero. At the end, we proof the linear running time of the
computations.

Step 1: CBB (y0) is correct First, look at the following observation. The vertex y0 lies
on a shortest path between two vertices yi1 and yi2 if the path yi1 , ..., y0, yl, ..., yi2 has a
maximum length of l

2 . Otherwise, the path in the opposite direction would be shorter
and, thus, would not include y0. Formally, the inequation

i1 + l − i2 + 1 ≤ l

2
(4)

has to be true for all pairs yi1 , yi2 . The value i1 is the distance from y0 to yi1 (clockwise)
while the value (` − i2 + 1) is the distance from y0 to y` (anti-clockwise). Recall, that
we used the following formula to compute CB(y0):

CBB (y0) =

l
2
−1∑
k=1

p(yk) · (tright(y l
2
+1+k)− p(y0)).

In the formula, i1 corresponds to k and i2 corresponds to l
2 + 1 +k. So, for these choices

of i1 and i2 inequality (4) has to be true:

i1 + l − i2 + 1 ≤ l

2

⇐⇒ k + l − (
l

2
+ 1 + k) + 1 ≤ l

2

⇐⇒ k + l − l

2
− 1− k + 1 ≤ l

2

⇐⇒ l − l

2
≤ l

2

⇐⇒ l

2
≤ l

2

(5)

18

As we see, the inequality holds.
Since k is bounded by l

2 − 1, y l
2
+1+ l

2
−1 = yl is the last vertex that is included in the

formula. For all greater choices of k, y l
2
+1+k would be left to or equal to y0 and thus, y0

would not be part of the shortest paths from yk to y l
2
+1+k. This means that we did not

miss any shortest paths in our computations of CGB (y0)

Step 2: CBB (yi) is correct Consider

CBB (yi) := CBB (yi−1)

−p(yi) · t(y l
2
+1+i mod l+1, yl+i−1 mod l+1)

+p(yi−1) · t(y1+i mod l+1, y l
2
+i−1 mod l+1)

All shortest paths that have an endpoint in yi are part of the subtraction. This has to
be done since yi has to lie between the endpoints of the shortest paths and may not be
an endpoint. Next, we have to add all shortest paths where yi−1 is an endpoint. These
shortest paths were not included in CBB (yi−1), because yi−1 was an endpoint of them.
But since yi is not an endpoint from the shortest paths going out from yi−1 anymore,
we now have to include these shortest paths. We need the biggest i1, such that yi is
still included in the shortest path from yi−1 to yi1 (clockwise). Therefore, we solve the
following inequation. The value i1 − (i− 1) is the distance from i− 1 to i1 (clockwise).
Again, this value must not be greater than `

2 to include yi:

i1 − (i− 1) ≤ l

2

⇐⇒ i1 ≤
l

2
+ i− 1.

Note, that i−1 < i < i1 ≤ l
2+i−1. Hence, yi lies between every shortest path from yi−1

to yi1 . Since the computations are correct for any CBB (yi), given that CBB (yi−1) is correct,
and the induction basis states that CBB (y0) is correct, our proof is now complete.

Running time The construction of tright and tleft takes O(`) time, if done as in (2). The
evaluation of the formula CBB (y0) takes O(`) time, too. The computation of any CBB (yi),
i 6= 0, needs O(1) time. Thus, the total running time per balloon is O(`),

∑
B∈B O(|B|)

for all balloons. Since there cannot be more balloons than vertices in the graph, it holds
that

∑
B∈B O(|B|) = O(n).

5 Chains: Dealing with paths

In this part, we will process all chains in G. In Section 3 we already mentioned that we
will run Brandes’ modified algorithm on the graph before processing the chains. In the
next paragraphs, we will explain some details on Brandes’ algorithm and show how we
make use of the algorithm.

19

Basically, Brandes’ algorithm performs a breadth first search (bfs) from every vertex
of the graph. Doing one iteration, i. e. one bfs, on any vertex s pairs s with every other
vertex t and constructs every shortest path between s and t. After the iteration the
respective amount of betweenness centrality is added to all vertices v ∈ V on these
shortest paths. Since we use the modified version of Brandes’ algorithm due to Baglioni
et al. [Bag+12], the weight p of each vertex is included in the computations. Thus, the
sum computed by one such bfs is∑

t∈V
s6=v 6=t

p(s) · p(t)σst(v)

σst
.

We restrict Brandes’ algorithm to vertices of degree at least three, that is, only per-
forming a bfs from each s ∈ V≥3 and only considering the shortest paths going out from
these s. If we do this for all s ∈ V≥3, then we compute the sum∑

s∈V≥3,t∈V
s 6=v 6=t

p(s) · p(t)σst(v)

σst
.

This sum is computed in line 17 of Algorithm 1.
Afterwards, we still have to consider the shortest paths going out from the vertices of

degree two. We have to compute the sum∑
s∈V=2,t∈V
s 6=v 6=t

p(s) · p(t)σst(v)

σst
.

As all vertices of degree at most one were already deleted, combining both sums yields
the correct betweenness centrality∑

s,t∈V
s 6=v 6=t

p(s) · p(t)σst(v)

σst
.

This allows us to treat the vertices of degree two separately. Instead of performing one
bfs on every vertex in V=2, we will only perform one bfs on each endpoint of each chain.
These bfs’ are performed when running Brandes’ algorithm on G, since the endpoint
of the chains are of degree at least three. Afterwards we do some extra computations
on the chains and will process all vertices of a chain all together. This is faster than
performing a bfs on each vertex of a chain separately, if the chains are large enough.
The bigger the chains are the bigger the speed up is.

While we perform Brandes’ algorithm on G, we will store some additional information.
These information will help when processing the chains later. For each chain C =
(x, y1, ..., y`, z) ∈ C and each v ∈ V≥3 we store

• the distances dG(v, x) and dG(v, z);

20

• the number of shortest paths from v to x (σvx) and from v to z (σvz);

• the shortest path(s) from v to x and z, respectively. (These can be stored by storing
the DAG that is created by running Brandes’ algorithm from x or z, respectively.)

5.1 Processing the chains

We assume that we already ran Brandes’ algorithm on G. Thus, for all v ∈ V we
computed the sum ∑

s∈V≥3,t∈V≥3

s 6=v 6=t

p(s) · p(t)σst(v)

σst
.

Now, we still have to calculate these sums:∑
s∈V=2,t∈V
s 6=v 6=t

p(s) · p(t)σst(v)

σst
(6)

and ∑
s∈V≥3,t∈V=2

s 6=v 6=t

p(s) · p(t)σst(v)

σst
. (7)

Let us first look at the first of the two sums (6). Since all vertices of degree two are
part of exactly one chain, the following is true (Recall, that C is the set of all chains
in G.): ∑

s∈V=2,t∈V
s 6=v 6=t

p(s) · p(t)σst(v)

σst
=

∑
s∈S∗(C),t∈V

C∈C
s6=v 6=t

p(s) · p(t)σst(v)

σst
. (8)

Splitting the sum We separate the computation of the above sum (8) into three steps.
In every step we handle the shortest paths between different pairs of vertices. The three
steps are:

Step 1 Shortest paths between each chain and each vertex of degree at least three (9)

Step 2 Shortest paths between each pair of two chains (10)

Step 3 Shortest paths between each two vertices in a single chain (11)

Splitting the sum will result in the following sub sums, each of them being computed in
the respective step above: ∑

s∈S∗(C),t∈V
C∈C
s 6=v 6=t

p(s) · p(t)σst(v)

σst
=

21

∑
s∈S∗(C),t∈V≥3

C∈C
s 6=v 6=t

p(s) · p(t)σst(v)

σst
(9)

+
∑

s∈S∗(C1),t∈S∗(C2)
C1,C2∈C
C1 6=C2
s 6=v 6=t

p(s) · p(t)σst(v)

σst
(10)

+
∑

s,t∈S∗(C)
C∈C
s 6=v 6=t

p(s) · p(t)σst(v)

σst
(11)

Each of the above steps and its respective sub sum is computed in a separate sub section,
in the given order.

Before we show to compute (9) - (11), look at (7). This sum still needs to be considered.
Therefore, we will make use of the symmetry of shortest paths:∑
s∈V≥3,t∈V=2

s 6=v 6=t

p(s)·p(t)σst(v)

σst
=

∑
s∈V=2,t∈V≥3

s 6=v 6=t

p(s)·p(t)σst(v)

σst
=

∑
s∈S∗(C),t∈V≥3

C∈C
s 6=v 6=t

p(s)·p(t)σst(v)

σst

(12)
This sum is already computed in Step 1 (9). Thus, we just need to multiply the results
of Step 1 by two to also include this sum.

For each C = (x, y1, ..., y`, z) ∈ C we construct two tables tleft and tright similar to
the tables constructed for each balloon in Section 4. These tables store the amount of
vertices that were connected to the vertices y1, ..., yi or yi, ..., y`1 , respectively. We will
make use of them in the following subsections:

tleft(yi) =


0, if i < 1 or i > `

p(y1), if i = 1

tleft(yi−1) + p(yi), otherwise

tright(yi) =


0, if i < 1 or i > `

p(y`), if i = `

tright(yi+1) + p(yi), otherwise

.

5.2 Step 1: Shortest paths between chains and vertices of degree greater
than two

In this step, for every v ∈ V , we calculate sum (9) :∑
s∈S∗(C),t∈V≥3

C∈C
s 6=v 6=t

σst(v)

σst
.

22

Figure 6: Chain C and vertex v

The respective line in Algorithm 1 is line 22.
We will look at all shortest paths between each chain and each vertex of degree at

least two. On these shortest paths, there are vertices which are part of the chain, i. e.
which are inside the chain, and there are vertices which are outside the chain. We split
our computations into two parts. In the first part we will show how to increase the
betweenness centrality of the vertices outside the chain. In the second part we will look
at the vertices inside the chain.

Vertices outside the chain For every chain C = (x, y1, ..., y`, z) ∈ C we look at every
v ∈ V \ S∗(C) = V \ {y1, ..., y`}. From every yi, 1 ≤ i ≤ `, there are some shortest
paths to v, each of them either passing through x or z. To determine the exact number
of shortest paths to v through x and z, respectively, we have to determine the “middle
index” of chain C. That is imid ∈ Q, 0 ≤ imid ≤ `, such that the shortest paths from all
vertices yi with i < imid to v pass through x and the shortest paths from all vertices yi
with i > imid to v pass through z. If imid is an integer, then the vertex yimid

exists.
Then, from yimid

there are some shortest paths to v, which pass x and some, which
pass z. Otherwise, there is no vertex yimid

. Additionally, let ileft be the largest integer
such that ileft < imid and let iright be the smallest integer such that iright > imid. See
Figure 6 for an illustration.

To calculate imid, we solve the following equation:

dG(v, x) + imid = dG(v, z) + `+ 1− imid

⇐⇒ imid =
dG(v, z) + `+ 1− dG(v, x)

2

The term dG(v, x) + imid is the length of the path from v to imid entering C via x, while
dG(v, z) + ` + 1 − imid is the length of the path from v to imid entering C via z. We
basically determine the middle of the chain and then shift that middle to the left (or

23

right) by half of the difference of the distances between v and x and v and z. If imid

should be smaller than one or greater than `, we set it to one or `, respectively.
Recall that we stored the amount of shortest paths from x and z to v and the shortest

paths itself in Section 5.1. From x to v, there are σxv shortest paths and from z to v,
there are σzv shortest paths. From each yi there are σxv or σzv shortest paths to v, too,
depending on wheter i ≤ ileft or i ≥ iright, because between each yi and x or z, there
is exactly one shortest path. We also want to take into account the vertices that were
originally connected to v and each yi. There were p(v) vertices originally connected to v
(including v) and there were p(yi) vertices originally connected to each yi (including yi).
When we sum up all p(yi), we get tleft(yileft) if i ≤ ileft, or tright(yiright) if i ≥ iright.
For each vertex w lying on a shortest path between x and v or z and v, increase its
betweenness centrality by∑

1≤i≤ileft

p(i)p(v)
σxv(w)

σxv
= tleft(yileft) · p(v)

σxv(w)

σxv

or ∑
iright≤i≤`

p(i)p(v)
σzv(w)

σzv
= tright(yiright) · p(v)

σzv(w)

σzv
,

respectively.
If yimid

exists, then we add a value of

p(yimid
)p(v)

σxv(w) + σzv(w)

σxv + σzv
(13)

to every w ∈ V≥3 which lies on a path to from x to v or on a path from z to v.

Vertices inside the chain The above computations only increase the betweenness cen-
trality of vertices outside the chain. For vertices in C the computations are different.
Each yi ∈ S∗(C) is included in all shortest paths from vertices between yi and yimid

to v.
Thus, for yi, we have to increase its betweenness centrality by

(tleft(yileft)− tleft(i)) · p(v)

if i < imid, and by
(tright(yiright)− tright(i)) · p(v)

if i > imid.
If yimid

exists, then we additionally have to increase the betweenness centrality of
each yi by

p(yimid
) · p(v)

σxv
σxv + σzv

if i < imid, and by

p(yimid
) · p(v)

σzv
σxv + σzv

24

if i > imid, since there are paths from yimid
to v either passing through x or z and each yi

can be included in only one of these paths. If i = imid, then we do not increase its
betweenness centrality at all, because there are no shortest paths passing through yimid

.
We now have considered each shortest path between v and vertices yi of chain C and

increased the betweenness of every vertex w lying on these paths by their respective
amount.

As shown in (12), all results have to be added twice to the betweenness centrality of
the respective vertex. Next, we proof the correctness of the computations done in Step 1
by proving the following lemma:

Lemma 5.1. In Step 1 we compute for each v ∈ V∑
s 6=v 6=t

s∈C,t∈V≥3

C∈C

σst(v)

σst
.

Proof. We will split the proof into two parts. In the first, we show the proof for the
vertices outside the chain. In the second part, we show the proof for the vertices inside
the chain.

Vertices outside the chain Before beginning with the proof, we define the following:

fv(w, imid) :=

{
p(yimid

)p(v)σxv(w)+σzv(w)σxv+σzv
, if yimid

exists

0, otherwise

The function fv represents the amount of betweenness that needs to be added to vertex
w ∈ V \ S∗(V) \ {v} according to (13), depending of whether yimid

exists or not. For fv,
the following holds (if yimid

exists):

fv(w, imid) = p(yimid
)p(v)

σxv(w) + σzv(w)

σxv + σzv
= p(yimid

)p(v)
σyimid

v(w)

σyimid
v

This is true, since from yimid
to v there are shortest path through both x and z. Thus,

the number of shortest paths from yimid
to v is the number of shortest paths from x to v

plus the number of shortest paths from z to v.
For each C = (x, y1, ..., y`, z) ∈ C, each v ∈ V≥3 and each w ∈ V \ S∗(C) \ {v} we

25

compute the following term in Step 1:

tleft(yileft) · p(v)
σxv(w)

σxv
+ tright(yiright) · p(v)

σzv(w)

σzv
+ fv(w, imid)

(i)
=

∑
1≤k≤ileft

p(yk)p(v)
σxv(w)

σxv
+

∑
iright≤k≤`

p(yk)p(v)
σzv(w)

σzv
+ fv(w, imid)

(ii)
=

∑
1≤k≤ileft

p(yk)p(v)
σykv(w)

σykv
+

∑
iright≤k≤`

p(yk)p(v)
σykv(w)

σykv
+ fv(w, imid)

=
∑

1≤k≤`
p(yk)p(v)

σykv(w)

σykv

=
∑

y∈S∗(C)

p(y)p(v)
σyv(w)

σyv

(i): by construction of tleft and tright

(ii): From each yk, 1 ≤ k ≤ ileft, there is one shortest path to x. From x there are σxv
shortest paths to v. Thus, from each yk, there are σxv shortest paths to v, too.
So, σxv = σykv is true. Since these shortest paths also include the same vertices
outside the chain and w is outside the chain, too, σxv(w) = σykv(w) is also true.
For each yk, iright ≤ k ≤ `, this works analogously.

We do this for each C ∈ C and for each v ∈ V≥3 \{w}:∑
C∈C

∑
v∈V≥3

∑
y∈S∗(C)

p(y)p(v)
σyv(w)

σyv
=

∑
C∈C

y∈S∗(C),v∈V≥3

y 6=w 6=v

p(y)p(v)
σyv(w)

σyv

Because y ∈ V=2 and w ∈ V≥3, y 6= w is true. Since v ∈ V≥3 \{w}, v 6= w is true, too.

Vertices inside the chain Now, we look at the vertices inside the chain, i. e. yi ∈ S∗(C).
According to our procedure in Step 1, for each C = (x, y1, ..., y`, z) ∈ C and v ∈ V≥3,
we have to increase the betweenness centrality of yi, 1 ≤ i ≤ ileft, by the following value

26

(The proof for iright ≤ i ≤ ` works analogously.):

(tleft(yileft)− tleft(yi))p(v) + fv(w, imid)

= (
∑

1≤k≤ileft

p(yk)−
∑

1≤k≤i
p(yk))p(v) + fv(w, imid)

= (
∑

i<k≤ileft

p(yk))p(v) + fv(w, imid)

(iii)
= (

∑
i<k≤ileft

p(yk)
σykv(yi)

σykv
)p(v) + fv(w, imid)

(iv)
= (

∑
i<k≤ileft

p(yk)
σykv(yi)

σykv
+
∑

1≤k<i
p(yk)

σykv(yi)

σykv

+
∑

iright≤k≤`
p(yk)

σykv(yi)

σykv
)p(v) + fv(w, imid)

=
∑

1≤k≤`
i 6=k

p(yk)
σykv(yi)

σykv
p(v)

=
∑

y∈S∗(C)
y 6=yi

p(y)p(v)
σyv(y)

σyv

(iii): From each yk, i < k ≤ ileft, there are some shortest paths to v. These shortest
paths all leave chain C through x, which means that yi is part of these shortest

paths. Hence, σykv(yi) = σykv =
σykv(yi)

σykv
= 1.

(iv): From each yk, 1 < k < i, there are some shortest paths to v. These shortest paths
all leave chain C through x. But since k < i, yi is not part of these shortest paths

and σykv(yi) = 0 and
σykv(yi)

σykv
= 0.

From each yk, iright ≤ k ≤ `, the shortest paths to v leave the chain through z.
Thus, yi is not part of these shortest paths, which means that σykv(yi) = 0 and
σykv(yi)

σykv
= 0.

Again, we do this for each C ∈ C and for each v ∈ V≥3 \{w}:∑
C∈C

∑
v∈V≥3

∑
y∈S∗(C)

p(y)p(v)
σyv(w)

σyv
=

∑
C∈C

y∈S∗(C),v∈V≥3

y 6=w 6=v

p(y)p(v)
σyv(w)

σyv

Running time The running time of Step 1 depends on the number of chains and on
the number of vertices that have a degree of at least three. For each chain and each
vertex of degree at least three, we have to increase the betweenness centrality of each

27

vertex lying on the shortest paths between the chain and the vertex. The number of the
vertices lying on those shortest paths depends on n. Since we can bound the number of
chains in the graph and the vertices of degree at least three in the graph by the feedback
edge number k, the following holds: O(|C| · |V≥3 | · n) = O(k2 · n) time.

We will now continue with Step 2.

5.3 Step 2: Shortest paths between pairs of chains

In this section, we compute sum (10):∑
C1,C2∈C

s∈S∗(C1),t∈S∗(C2)
C1 6=C2
s 6=v 6=t

p(s) · p(t)σst(v)

σst
,

by considering all shortest paths between each pair of chains. This corresponds to line 26
in Algorithm 1.

As mentioned above every vertex of degree two is part of exactly one chain. Thus, if
we compute all shortest paths between the vertices of each pair of chains and add the
betweenness centrality to the vertices lying on these paths and do the same for all pairs
of vertices within one chain, we have also considered all shortest paths between vertices
of degree two. In this step, we will only look at the pairs of vertices between two chains.

Let C1 = (x, y1, ..., y`1 , z) and C2 = (a, b1, ..., b`2 , c) be any pair of two different chains
and let 1 ≤ i ≤ `1 and 1 ≤ j ≤ `2. Also, let Ijmid = `1

2 − (dG(x, bj) − dG(z, bj)) be the

index such that all shortest paths from vertices yi, i < Ijmid, to bj leave C1 through x and

all shortest paths from vertices yi, i > Ijmid, to bj leave C1 through z. For easier reading,

let yjmid = y
Ijmid

. The shortest paths from yjmid, if existing, to bj leave C1 through x or z.

Additionally, let Ijleft be the largest integer such that Ijleft < Ijmid and let Ijright be the

smallest integer such that Ijright > Ijmid. Again, for easier reading, let yjleft = y
Ijleft

and

yjright = y
Ijright

.

Now look at a shortest path from any y ∈ S∗(C1) to any b ∈ S∗(C2). This shortest
path can leave C1 through either x or z and enter C2 through either a or c. This leads to
four possible combinations of vertices that a shortest path from y to b has to pass. We
distinguish these four combinations in four cases. In Figure 7 are the four cases. The
lines between the vertices x or z and a or c represent the shortest paths between those
vertices. In Figure 7a, for example, the shortest paths from vertices yi to bj leave C1

through x or z, respectively, depending of whether i < Ijmid or i > Ijmid and enter C2

via a. We have to distinguish these cases, because in each of the four cases we have to
do different computations. These computations follow in the next paragraphs. Now the
cases follow:

• Case 1 (see Figure 7a)
The shortest paths from x to bj and from z to bj both enter C2 through a.

28

(a) Case 1 (b) Case 2

(c) Case 3
(d) Case 4

Figure 7: The four possible cases

• Case 2 (see Figure 7b)
The shortest paths from x to bj enter C2 through a while the shortest paths from
z to bj enter C2 through c.

• Case 3 (see Figure 7c)
The shortest paths from x to bj enter C2 through c while the shortest paths from
z to bj enter C2 through a.

• Case 4 (see Figure 7d)
The shortest paths from x to bj and from z to bj both enter C2 through c.

A case applies for a vertex bj , 1 ≤ j ≤ `, if the shortest paths from x and z to bj
behave as described in the respective case. Depending on the case that applies for a
given bj , the case that applies for the following bj′ , j

′ > j, is restricted:
If for a vertex bj either Case 2 or 3 applies, then for bj′ , j

′ > j, there can only apply
Case 4 (or still Case 2 or 3, respectively). If for a vertex bj Case 4 applies, then for bj′ ,
j′ > j, no other case applies. This is proven in Section 5.3.

We now group the vertices in C2 by the case which applies for them. Since the order
in which the cases apply is fixed we can calculate indices j1, j2, 1 ≤ j1 ≤ j2 ≤ `2 + 1,
such that for every bj , j < j1, Case 1 applies, for every bj , j1 ≤ j < j2, either Case 2
or 3 applies and for every bj , j2 ≤ j ≤ `2, Case 4 applies.

29

We first compute j1. For each 1 ≤ j < j1 the length of the path from bj to x by
leaving C2 via a has to be smaller than the length of the path from bj to x by leaving C2

via c, and the length of the path from bj to z by leaving C2 via a has to be smaller than
the length of the path from bj to z by leaving C2 via c. This results in two inequalities
to be true:

dG(a, x) + j < dG(c, x) + `2 + 1− j

⇐⇒ j <
dG(c, x) + `2 + 1− dG(a, x)

2
and

dG(a, z) + j < dG(c, z) + `2 + 1− j

⇐⇒ j <
dG(c, z) + `2 + 1− dG(a, z)

2

.

Both of the above inequalities result in a value for j. We need the smaller of the two
results, thus:

j < j1 = min{1, dG(c, x) + `2 + 1− dG(a, x)

2
,
dG(c, z) + `2 + 1− dG(a, z)

2
}.

The inequalities for j2 are analogous, we just have to replace the smaller-than symbol
by a greater-than symbol. So, for j2, we get

j ≥ j2 = min{`2,max{dG(c, x) + `2 + 1− dG(a, x)

2
,
dG(c, z) + `2 + 1− dG(a, z)

2
}}.

For the different cases we have to do different computations. Again, we split these
computations depending of whether the vertices are outside the chains or inside the
chains:

Vertices outside the chain (I)

Case I.1 Recall, that C1 = (x, y1, ..., y`1 , z) and C2 = (a, b1, ..., b`2 , c). In this case, the
shortest paths from the vertices yk1 , k1 ≤ Ijleft, and yk2 , k2 ≥ Ijright, to each bj , 1 ≤ j < j1,
leave C1 through x or z, respectively, and enter C2 through a. Thus, between each yk1
or yk2 and each bj there are σxa or σza shortest paths, respectively. Since we also need to
take into account the vertices that were originally connected to the respective vertices,
we have to multiply these values by p(bj) and by p(yk1) or p(yk2). We have to increase
the betweenness centrality of w ∈ V lying on a shortest path from x to a by the following:∑

1≤j<j1

∑
1≤k≤Ijleft

p(bj)p(yk)
σxa(w)

σxa
=

∑
1≤j<j1

tleft(y
j
left)p(bj)

σxa(w)

σxa
.

But for Case 1, Ijleft = Ij
′

left and Ijright = Ij
′

right holds for any j, j′, 1 ≤ j, j′ < j1, since the
difference of the distances dG(x, bj) and dG(z, bj) stays constant for all 1 ≤ j < j1 (this

also means that yjleft = yj
′

left and yjright = yj
′

right). Thus:∑
1≤j<j1

tleft(y
j
left)p(bj)

σxa(w)

σxa
= tleft(y

j1−1
left) · tleft(bj1−1)

σxa(w)

σxa
. (14)

30

If w ∈ V lies on a shortest path from z to a, then the circumstances are analogous.
Summarizing our results, we have to increase the betweenness centrality of every

w ∈ V \ (S∗(C1) ∪ S∗(C2)) lying on a shortest path from x to a by

tleft(y
j1−1
left) · tleft(bj1−1) ·

σxa(w)

σxa

and the betweenness centrality of every w lying on a shortest path from z to a by

tright(y
j1−1
right) · tleft(bj1−1) ·

σza(w)

σza
.

The distance from yjmid, if existing, to x is the same as to z. Thus, from this vertex
there are σxa shortest paths to bj leaving C1 through x and σza shortest paths to bj
leaving C1 through z. For each vertex w lying on at least one of these paths we have to
increase its betweenness centrality by

p(yj1−1mid) · tleft(bj1−1)
σxa(w) + σza(w)

σxa + σza
. (15)

Case I.2 (and I.3) If Case 2 applies, between the vertices yk1 , k1 ≤ Ijleft and yk2 ,

k2 ≥ Ijright and each bj , j1 ≤ j < j2, there are σxa or σzc shortest paths, respectively,
because the shortest paths from yk1 to bj leave C1 through x and enter C2 via a while
the shortest paths from yk2 to bj leave C1 through z and enter C2 via c

This time, we have Ijleft 6= Ij
′

left and Ijright 6= Ij
′

right for j 6= j′. This means, that we
have to create a sum over all bj and cannot replace this sum by a single term as done in
equation (14) in Case 1 above. We have to increase the betweenness centrality of every
w ∈ V \ (S∗(C1) ∪ S∗(C2)) lying on a shortest path from x to a by∑

j1≤k<j2

tleft(y
k
left) · p(bk) ·

σxa(w)

σxa

and the betweenness centrality of every w lying on a shortest path from z to c by∑
j1≤k<j2

tright(y
k
right) · p(bk) ·

σzc(w)

σzc

Also, if yjmid exists, we have to increase the betweenness centrality of each w lying on a
shortest paths from x to a or from z to c by∑

j1≤k<j2

p(ykmid) · p(bk) ·
σxa(w) + σzc(w)

σxa + σzc
. (16)

Case I.3 is analogous to Case I.2: We only have to replace all appearances of σxa in
the above formulas by σxc and all appearances of σzc by σza. This needs to be done,
since in Case 3 all shortest paths from vertices on the left of yjmid to bj enter C2 via c

instead via a, and all shortest paths from vertices on the right of yjmid to bj enter C2

via a instead via c.

31

Case I.4 Case I.4 is analogous to Case I.1: In the formulas of Case I.1, we only need
to replace j1 − 1 by j2 and a by c. This has to be done because in Case 4 all shortest
paths leaving C1 enter C2 through c (instead of a as in Case 1).

Vertices inside the chain (II) In the above case distinction we only increased the
betweenness centrality of vertices outside both chains. For the vertices inside the chains
we have to do slightly different computations in the particular cases. We only increase
the betweenness centrality of the vertices in C2 and then double this value. Because we
look at each pair of chains twice (with switched C1 and C2), this still produces correct
results.

Case II.1 As already mentioned in Case I.1 above between each y ∈ C1 and each bj ,
1 ≤ j < j1, there are shortest paths which all enter C2 via a. Hence, any bj′ , j

′ < j,
lies on all these shortest paths. The total amount of shortest paths that any bj′ lies on
is the number of vertices in C1 (plus those, who were originally connected to vertices
in C1) multiplied by the number of vertices between bj′ and bj1 (plus those, who were
originally connected to them). This is∑

j′<k<j1

p(bk) ·
∑

1≤k≤`1

p(yk) = (tleft(bj1−1)− tleft(bj′)) · tleft(y`1) (17)

shortest paths in total. We have to increase the betweenness centrality of each such bj′

by this amount.

Case II.2 (and Case II.3) All shortest paths from vertices yk1 , k1 ≤ Ijleft to bj , j1 ≤
j < j2, enter C2 via a and all shortest paths from vertices yk2 , k2 ≥ Ijright, to bj enter C2

via z. The shortest paths from the vertex yjmid to bj , if existing, enter C2 through either a
or c according to whether leaving C1 via x or z. We need to consider the vertices in C2

differently, depending on whether their index is smaller than j1 (Case II.2.1), greater
than j2 (Case II.2.2) or between j1 and j2 (Case II.2.3).

Case II.2.1 If 1 ≤ j′ < j1, then bj′ lies on all shortest paths that enter C2 via a.
Summing over all bj , j1 ≤ j < j2, the total amount of these shortest paths is:

j2−1∑
k=j1

tleft(y
k
left)p(bk). (18)

We have to increase the betweenness centrality of each bj′ by this value.

Case II.2.2 If j2 ≤ j′ ≤ `2, then bj′ lies on all shortest paths that enter C2 via c.
Summing over all bj , the total amount of those shortest paths is:

j2−1∑
k=j1

tright(y
k
right)p(bk). (19)

32

Again, we have to increase the betweenness centrality of each bj′ by this value.

Case II.2.3 Now we look at each bj′ , j1 ≤ j′ < j2. Each bj′ lies on all shortest paths
that enter C2 via a and end in any bj with j′ < j < j2, and on all shortest paths that
enter C2 through c and end in any vertex bj with j1 ≤ j < j′. The total amount of all
these shortest paths is:

j2−1∑
k=j+1

tleft(y
k
left)p(bk) +

j−1∑
k=j1

tright(y
k
right)p(bk), (20)

which is the value by which the betweenness centrality of each bj′ has to be increased.

If yjmid exists, then we additionally have to increase the betweenness centrality of
each bj′ , 1 ≤ j′ ≤ `2, by ∑

j1≤k<j2

p(ykmid)p(bk)
σykmidbk

(bj′)

σykmidbk

Case 3 is analogous.

Case 4 This case is analogous to Case 1. We increase the betweenness centrality of
each bj , j2 ≤ j ≤ l2, by

2 · (tright(bj2)− tright(bj)) · tleft(y`1). (21)

We now increased the betweenness centrality of each vertex lying between any two
chains. Next, we proof the correctness of Step 2 by proving the following lemma:

Lemma 5.2. In Step 2 we compute for each v ∈ V∑
C1,C2∈C

s∈S∗(C1),t∈S∗(C2)
C1 6=C2
s 6=v 6=t

σst(v)

σst
.

Proof. Between every vertex in C1 and each b ∈ S∗(C2) there are some shortest paths.
We first show that we can distinguish these shortest paths through the four cases men-
tioned in Step 2. Next, we show that there are only two possible orders in which the cases
can appear. Last, we show that the computations in the respective cases are correct.

The shortest paths from C1 to any b can start in one vertex yk1 , k1 ≤ Ileft, yk2 ,
k2 ≥ Iright or in ymid. Every shortest path from yk1 to b leaves C1 through x and
enters C2 through either a or c and every shortest path from yk2 to b leaves C1 through z
and enters C2 through either a or c. The shortest paths from ymid, if existing, can both
leave C1 via x and z and enter C2 via a or c. This results in the four possible combinations
already mentioned:

• Case 1 : The shortest paths from y to b which leave C1 through x enter C2 through a
and the shortest paths which leave C1 through z enter C2 through a, too.

33

• Case 2 : The shortest paths from y to b which leave C1 through x enter C2 through a
and the shortest paths which leave C1 through z enter C2 through c.

• Case 3 : The shortest paths from y to b which leave C1 through x enter C2 through c
and the shortest paths which leave C1 through z enter C2 through a.

• Case 4 : The shortest paths from y to b which leave C1 through x enter C2 through c
and the shortest paths which leave C1 through z enter C2 through c, too.

We will now show that the cases that may apply for a vertex bj′ , 1 ≤ j < j′ ≤ `2, are
restricted, depending on the case that applied for bj .

If Case 2 applies for bj , then for bj′ there can only apply either, still, Case 2 or
Case 4. With increasing j the distance dG(bj , a) becomes greater and the distance
dG(bj , c) becomes smaller. Thus, only the shortest paths from C1 to C2 which enter C2

through a can be replaced by an even shorter path, because the shortest paths which
enter C2 through c become smaller as dG(bj , c) becomes smaller. The only case which
then is possible is Case 4. For Case 3, the circumstances are analogous.

If Case 4 applies for bj , then for bj′ there cannot apply any other case than Case 4 :
The distance dG(bj , c) becomes smaller with increasing j. Thus, there cannot be any
other shortest paths from C1 to bj which are even shorter, because in Case 4 all shortest
paths from C1 to bj enter C2 via c.

Summarized, for increasing indices, from Case 1 we can transition into either Case 2, 3
or 4. From Case 2 or 3 we can only transition into Case 4 and from Case 4 we cannot
transition into any other case. Thus, we can separate C2 by indexes j1, j2, j1 ≤ j2, such
that for every bj , 1 ≤ j < j1 Case 1 applies, for every bj , j1 ≤ j < j2, either Case 2 or 3
applies and for every bj , j2 ≤ j ≤ l2, Case 4 applies.

We now show that we do the correct computations for calculating the betweenness
centrality in the four cases for v ∈ V . We will begin with the proof for the vertices
outside C1 and C2. First, we will look at each case separately. Then, we will sum up
the results of the different cases and show the correctness of the computations we did in
this section. Afterwards, we do the same for the vertices inside C1 and C2.

Vertices outside the chain (I) As done in the proof for Step 1, we first define a
function f . This function represents the amount of betweenness that has to be added
to w for the shortest paths between bj ∈ C2 and yjmid ∈ C1 in each of the three cases

if yjmid exists, according to the formulas (15) and (16).

f(w, j) :=


p(y1mid) · tleft(bj1−1)

σxa(w)+σza(w)
σxa+σza

, if yjmid exists and 1 ≤ j < j1∑
j1≤k<j2 p(y

k
mid) · p(bk)σxa(w)+σzc(w)σxa+σzc

, if yjmid exists and j1 ≤ j < j2

p(y`2mid) · tleft(bj1−1)
σxc(w)+σzc(w)

σxc+σzc
, if yjmid exists and j2 ≤ j ≤ `2

0, otherwise

,

34

We already show some equalities for f , which are needed in the proofs of the four cases,
following in the next paragraphs just after these equalities. If Case 1 applies for j, then:

f(w, j) = p(y1mid) · tleft(bj1−1)
σxa(w) + σza(w)

σxa + σza
=

∑
1≤k<j1

p(y1mid)p(bk)
σy1midbk

(w)

σy1midbk

If Case 2 or 3 applies for j, then:

f(w, j) =
∑

j1≤k<j2

p(ykmid) · p(bk)
σxa(w) + σzc(w)

σxa + σzc
=

∑
j1≤k<j2

p(ykmid) · p(bk)
σykmidbk

(w)

σykmidbk

,

If Case 4 applies for j, then:

f(w, j) = p(y`2mid) · tleft(bj1−1)
σxc(w) + σzc(w)

σxc + σzc
=

∑
1≤k<j1

p(y`2mid)p(bk)
σ
y
`2
midbk

(w)

σ
y
`2
midbk

,

Recall, that for all vertices bj , 1 ≤ j < j1, Case 1 applies, for all vertices bj , j1 ≤ j < j2,
either Case 2 or 3 applies and for all vertices bj , j2 ≤ j < `2, Case 4 applies.

35

Case I.1 According to our computations in Step 2, we have to increase the betweenness
centrality of each vertex w outside C1 and C2 by:

tleft(y
1
left) · tleft(bj1−1) ·

σxa(w)

σxa
+ tright(y

1
right) · tleft(bj1−1) ·

σza(w)

σza
+ f(w, j)

(i)
=

∑
1≤k1<j1

tleft(y
1
left)p(bk1)

σxa(w)

σxa
+

∑
1≤k1<j1

tright(y
1
right)p(bk1)

σza(w)

σza
+ f(w, j)

(i)
=

∑
1≤k1<j1

∑
1≤k2≤I1left

p(yk2)p(bk1)
σxa(w)

σxa

+
∑

1≤k1<j1

∑
I1right≤k2≤`1

p(yk2)p(bk1)
σza(w)

σza
+ f(w, j)

(ii)
=

∑
1≤k1<j1

∑
1≤k2≤I1left

p(yk2)p(bk1)
σyk2bk1 (w)

σyk2bk1

+
∑

1≤k1<j1

∑
I1right≤k2≤`1

p(yk2)p(bk1)
σyk2bk1 (w)

σyk2bk1
+ f(w, j)

=
∑

1≤k1<j1

(
∑

1≤k2≤I1left

p(yk2)p(bk1)
σyk2bk1 (w)

σyk2bk1

+
∑

I1right≤k2≤`1

p(yk2)p(bk1)
σyk2bk1 (w)

σyk2bk1
) + f(w, j)

=
∑

1≤k1<j1

∑
1≤k2≤`1

p(yk2)p(bk1)
σyk2bk1 (w)

σyk2bk1

=
∑

1≤k1<j1

∑
y∈S∗(C1)

p(y)p(bk1)
σybk1 (w)

σybk1

(i): by definition of tleft and tright

(ii): From each yk, 1 ≤ k ≤ I1left, there is one shortest path to x and from each yk,
I1right ≤ k ≤ `1, there is one shortest path to z. From x there are σxa shortest
paths to a and from z there are σza shortest paths to a. From a there is one
shortest path to bj , 1 ≤ j < j1. Thus, from each yk, there are σxa or σza shortest
paths to bj , too, respectively. So, σxa = σykbj (1 ≤ k ≤ I1left) and σza = σykbj
(I1right ≤ k ≤ `1) is true.

36

Case I.2 (I.3 is analogous) In Case I.2 (or I.3) we have to increase the betweenness
centrality of each vertex w outside C1 and C2 by:

j2−1∑
k1=j1

tleft(y
k1
left) · p(bk1) · σxa(w)

σxa
+

j2−1∑
k1=j1

tright(y
k1
right) · p(bk1) · σzc(w)

σzc
+ f(w, j)

(i)
=

∑
j1≤k1<j2

∑
1≤k2≤I

k1
left

p(yk2)p(bk1)
σxa(w)

σxa
+

∑
j1≤k1<j2

∑
I
k1
right≤k2≤`1

p(yk2)p(bk1)
σzc(w)

σzc

analog
to (ii)

=
∑

j1≤k1<j2

∑
1≤k2≤I

k1
left

p(yk2)p(bk1)
σyk2bk1 (w)

σyk2bk1

+
∑

j1≤k1<j2

∑
I
k1
right≤k2≤`1

p(yk2)p(bk1)
σyk2bk1 (w)

σyk2bk1
+ f(w, j)

=
∑

j1≤k1<j2

(
∑

1≤k2≤I
k1
left

p(yk2)p(bk1)
σyk2bk1 (w)

σyk2bk1

+
∑

I
k1
right≤k2≤`1

p(yk2)p(bk1)
σyk2bk1 (w)

σyk2bk1
) + f(w, j)

=
∑

j1≤k1<j2

∑
1≤k2≤`1

p(yk2)p(bk1)
σyk2bk1 (w)

σyk2bk1

=
∑

j1≤k1<j2

∑
y∈S∗(C1)

p(y)p(bk1)
σybk1 (w)

σybk1

37

Case I.4 We have to increase the betweenness centrality of each vertex w lying outside
the chain by the following amount:

tleft(y
j2
left) · tright(bj2) · σxc(w)

σxc
+ tright(y

j2
right) · tright(bj2) · σzc(w)

σzc
+ f(w, j)

(i)
=

∑
j2≤k1≤`2

tleft(y
j2
left)p(bk1)

σxc(w)

σxc
+

∑
j2≤k1≤`2

tright(y
j2
right)p(bk1)

σzc(w)

σzc
+ f(w, j)

(i)
=

∑
j2≤k1≤`2

∑
1≤k2≤I

j2
left

p(yk2)p(bk1)
σxc(w)

σxc

+
∑

j2≤k1≤`2

∑
I
j2
right≤k2≤`1

p(yk2)p(bk1)
σzc(w)

σzc
+ f(w, j)

analog
to (ii)

=
∑

j2≤k1≤`2

∑
1≤k2≤I

j2
left

p(yk2)p(bk1)
σyk2bk1 (w)

σyk2bk1

+
∑

j2≤k1≤`2

∑
I
j2
right≤k2≤`1

p(yk2)p(bk1)
σyk2bk1 (w)

σyk2bk1
+ f(w, j)

=
∑

j2≤k1≤`2

(
∑

1≤k2≤I
j2
left

p(yk2)p(bk1)
σyk2bk1 (w)

σyk2bk1

+
∑

I
j2
right≤k2≤`1

p(yk2)p(bk1)
σyk2bk1 (w)

σyk2bk1
) + f(w, j)

=
∑

j2≤k1≤`2

∑
1≤k2≤`1

p(yk2)p(bk1)
σyk2bk1 (w)

σyk2bk1

=
∑

j2≤k1≤`2

∑
y∈S∗(C1)

p(y)p(bk1)
σybk1 (w)

σybk1

If we combine the three sums and add them up, then we get the following:∑
1≤k<j1

∑
y∈S∗(C1)

p(y)p(bk)
σybk(w)

σybk
+

∑
j1≤k<j2

∑
y∈S∗(C1)

p(y)p(bk)
σybk(w)

σybk

+
∑

j2≤k≤`2

∑
y∈S∗(C1)

p(y)p(bk)
σybk(w)

σybk

=
∑

1≤k<`2

∑
y∈S∗(C1)

p(y)p(bk)
σybk(w)

σybk

=
∑

b∈S∗(C2)

∑
y∈S∗(C1)

p(y)p(b)
σyb(w)

σyb

(22)

38

Since we compute this sum for each C1, C2 ∈ C, C1 6= C2:∑
C1 6=C2∈C

∑
b∈S∗(C2)

∑
y∈S∗(C1)

p(y)p(b)
σyb(w)

σyb
=

∑
y∈S∗(C1),b∈S∗(C2)

C1,C2∈C
C1 6=C2
y 6=w 6=b

p(y)p(b)
σyb(w)

σyb
(23)

It holds that y 6= w and w 6= b because w is a vertex outside of C1 and C2.
Next, we show the proof for the vertices inside the chain.

Vertices inside the chain (II)

Case II.1 We begin with the proof of the computations done in Case II.1. For bj ,
1 ≤ j ≤ j1, this is the term:

(tleft(bj1−1)− tleft(bj)) · tleft(y`1)

(i)
= (

∑
1≤k<j1

p(bk)−
∑

1≤k≤j
p(bk))

∑
y∈S∗(C1)

p(y)

=
∑

j<k<j1

∑
y∈S∗(C1)

p(y)p(bk)

(ii)
=

∑
j<k<j1

∑
y∈S∗(C1)

p(y)p(bk)
σybk(bj)

σybk

(iii)
=

∑
j<k<j1

∑
y∈S∗(C1)

p(y)p(bk)
σybk(bj)

σybk
+
∑

1≤k<j

∑
y∈S∗(C1)

p(y)p(bk)
σybk(bj)

σybk

=
∑

1≤k<j1
j 6=k

∑
y∈S∗(C1)

p(y)p(bk)
σybk(bj)

σybk

(i): by definition of tleft and tright

(ii): If j < k < j1,
σybk (bj)

σybk
= 1, since in Case 1 all shortest paths from y ∈ S∗(C1) to bk

enter C2 through a and bj is between a and bk (because j < k < j1) and, thus,
part of all shortest paths from y to bk.

(iii): If 1 ≤ k < j, σybk(bj) = 0, since in Case 1 all shortest paths from y ∈ S∗(C1) to bk
enter C2 through a and bj is not between a and bk (because k < j).

Case II.2 (II.3 is analogous) For Case II.2, depending on the index j, 1 ≤ j ≤ `2, we
have to do different computations for bj . But before, we define

f(j) :=


∑

j1≤k<j2 p(y
k
mid)p(bk)

σ
yk
mid

bk
(bj)

ykmidbk
, if yjmid exist

0, otherwise
,

39

because again, yjmid may or may not exist and thus, its contribution to the betweenness
centrality of the other vertices may be zero.

Case II.2.1 If 1 ≤ j < j1, then we have to compute term (18):∑
j1≤k<j2

tleft(y
k
left)p(bk) + f(j)

(i)
=

∑
j1≤k1<j2

∑
1≤k2≤I

k1
left

p(yk2)p(bk1) + f(j)

analog
to (ii)

=
∑

j1≤k1<j2

∑
1≤k2≤I

k1
left

p(yk2)p(bk1)
σyk2bk1 (bj)

σyk2bk1
+ f(j)

analog
to (iii)

=
∑

j1≤k1<j2

(
∑

1≤k2≤I
k1
left

p(yk2)p(bk1)
σyk2bk1 (bj)

σyk2bk1

+
∑

I
k1
right≤k2≤`1

p(yk2)p(bk1)
σyk2bk1 (bj)

σyk2bk1
) + f(j)

=
∑

j1≤k1<j2

∑
1≤k2≤`2

p(yk2)p(bk1)
σyk2bk1 (bj)

σyk2bk1

=
∑

j1≤k1<j2

∑
y∈S∗(C1)

p(y)p(bk1)
σybk1 (bj)

σybk1

Case II.2.2 If j2 ≤ j ≤ `2, then we have to compute term (19):∑
j1≤k<j2

tright(y
k
right)p(bk) + f(j)

analog to
Case II.2.1=

∑
j1≤k1<j2

∑
y∈S∗(C1)

p(y)p(bk1)
σybk1 (bj)

σybk1

40

Case II.2.3 If j1 ≤ j < j2, then we have to compute term (20):∑
j<k<j2

tleft(y
k
left)p(bk) +

∑
j1≤k<j

tright(y
k
right)p(bk) + f(j)

(i),
analog
to (ii)

=
∑

j<k1<j2

∑
1≤k2≤I

k1
left

p(yk2)p(bk1)
σyk2bk1 (bj)

σyk2bk1

+
∑

j1≤k<j

∑
I
k1
right≤k2≤`1

p(yk2)p(bk1)
σyk2bk1 (bj)

σyk2bk1
+ f(j)

(iv)
=

∑
j<k1<j2

(

∑
1≤k2≤I

k1
left

p(yk2)p(bk1)
σyk2bk1 (bj)

σyk2bk1
+

∑
I
k1
right≤k2≤`1

p(yk2)p(bk1)
σyk2bk1 (bj)

σyk2bk1
)

+
∑

j1≤k1<j
(

∑
I
k1
right≤k2≤`1

p(yk2)p(bk1)
σyk2bk1 (bj)

σyk2bk1
+

∑
1≤k2≤I

k1
left

p(yk2)p(bk1)
σyk2bk1 (bj)

σyk2bk1
) + f(j)

=
∑

j<k<j2

(
∑

y∈S∗(C1)

p(y)p(bk)
σybk(bj)

σybk
) +

∑
j1≤k<j

(
∑

y∈S∗(C1)

p(y)p(bk)
σybk(bj)

σybk
)

=
∑

j1≤k<j2
j 6=k

∑
y∈S∗(C1)

p(y)p(bk)
σybk(bj)

σybk

(iv): If j < k1 < j2 and Ik1right ≤ k2 ≤ `1, then σyk2bk1 (bj) = 0 since all shortest paths
from yk2 to bk1 enter C2 through z and bj is not between z and bk1 (because j < k1).

If j1 ≤ k1 < j and 1 ≤ k2 ≤ Ik1left, then σyk2bk1 (bj) = 0 since all shortest paths
from yk2 to bk1 enter C2 through a and bj is not between a and bk1 (because
k1 < j).

Independent of the index j in this case, we get the correct result.

Case II.4 The proof of Case II.4 is analogous to the proof of Case II.1. We have to
compute the term:

tright(bj2)− tright(bj)) · tleft(y`1)

analog to
Case II.1=

∑
j2≤k<`2
j 6=k

∑
y∈S∗(C1)

p(y)p(bk)
σybk(bj)

σybk

41

Combining all cases and doing this for all C1, C2 ∈ C, C1 6= C2, is already shown in (22)
and (23).

Running time The running time of Step 2 depends on the cases that apply for each
pair of chains C1, C2. In the best case, only Case 1 or Case 4 apply for the vertices
in C2. In Case 1 or Case 4, the computations for each pair of chains are linear in time,
since we have to increase the betweenness centrality of all vertices which lie on some
shortest path by a constant term and the number of these vertices is dependent from n.
This yields a total running of

(
∑

C1,C2∈C
C1 6=C2

O(1)) ·O(n) = O(|C|2 · n) = O(k2 · n)

for Step 2. Recall that we can bound the number of chains in the graph the feedback
edge number k. In the worst case though, only Case 2 or Case 3 apply. In those cases
we have to compute a sum, whose size depends on the length of C2, rather than a just a
constant term for each pair C1, C2 of chains. Since the length of a chain depends on n,
this results in a total running time of

(
∑

C1,C2∈C
C1 6=C2

O(n)) ·O(n) = O(k2 · n2)

for Step 2.

5.4 Step 3: Shortest paths between vertices of a single chain

We now look at each chain separately and consider every shortest path between each
pair of vertices in that chain. The respective sum that we now calculate for every v ∈ V
is the following (see (11)): ∑

s,t∈S∗(C)
C∈C
s 6=v 6=t

p(s) · p(t)σst(v)

σst
.

In Algorithm 1, this is displayed in line 29.
Let C = (x, y1, ..., y`, z) be any chain. We distinguish the two cases, whether the

shortest paths from y0 to y` go through C or not:

Case 1: `− 1 < d(x, z) + 2 In this case, we can look at C as a path from y1 to y`. For
paths, Unnithan et al. [Unn+14] showed that the betweenness centrality of each vertex
in that path is computed by multiplying the number of vertices left to that vertex by
the number of vertices right to that vertex. Since we also have to take into account the

42

vertices originally connected to the vertices in the chain, for each yi, 2 ≤ i ≤ ` − 1, we
have to increase its betweenness centrality by

tleft(i− 1) · tright(i+ 1).

No shortest path between the vertices in C leaves the chain. Hence, we do not have to
increase the betweenness centrality of vertices outside the chain.

Case 2: `− 1 ≥ d(x, z) + 2 = d(y1, y`) Since the distance from y1 to y` is smaller than
(or equal to) ` (the length of the chain), there may be shortest paths from y1 to y` which
leave the chain and go through the vertices x and z. Then, the betweenness centrality
of vertices outside the chain is also affected by the shortest paths between the vertices
in the chain. Formally, for a chain C = (x, y1, ..., y`, z), the shortest path between yi
and yj , 1 ≤ i < j ≤ `, stays inside C, if the following inequality holds:

j − i < i+ `− j + 1 + dG(x, z) (24)

In the inequality, the term (j−i) on the left-hand-side is the length of the path (yi, ..., yj),
which is the path from yi to yj that stays inside C. The term (i+ `− j + 1 + dG(x, z))
on the right-hand-side is the length of the path (yi, ..., y1, x, ..., z, y`, ...yj), which is the
path from yi to yj that leaves C and passes trough x and z. Note that in this case there
is exactly one shortest path between yi and yj . If the inequality is not true though, then
we can distinguish two cases: If

j − i > i+ `− j + 1 + dG(x, z) (25)

holds, then the shortest paths from yi to yj pass through x and z. In this case, there
are σxz shortest paths from yi to yj . If

j − i = i+ `− j + 1 + dG(x, z) (26)

is true, then the path inside C and the path outside C have the same length and, thus,
are both shortest paths. This results in a total of σxz + 1 shortest paths between yi
and yj .

We will use the above inequalities to construct formulas that compute the betweenness
centrality for all y ∈ S∗(C) lying on some shortest paths between the vertices inside C.
Since we want a linear computing time per chain, we use the same approach as in
Section 4: We start by constructing a sum that computes the betweenness centrality
of y1 in linear time. Next, we iteratively compute the betweenness centrality for all
other yi ∈ S∗(C) by subtracting the amount of betweenness that is given for shortest
paths that pass through yi−1 but do not pass through yi and adding the amount of
betweenness that is given for shortest paths that do not pass through yi−1 but pass
through yi. Each step of the iteration needs constant time. This way we achieve a total
computing time of O(`) per chain.

After doing so, we still have to handle the vertices lying on some shortest paths
between vertices of C but are not part of C itself. We do this by constructing a sum,
which represents the amount shortest paths that leave C. For each w ∈ V \ S∗(C), we
have to increase its betweenness centrality by a value depending on the constructed sum.
This part has a running time of O(`+ n) = O(n) per chain.

43

Figure 8: A single chain with both shortest paths staying in the chain (red line) and
leaving the chain (blue line)

Computations for y1 The vertex y1 can only be part of those shortest paths between yi
and yj , 1 < i < j ≤ `, that leave C, because, otherwise, y1 had to lie between yi and yj ,
which is impossible. See Figure 8 for the chain C. The red lines between the vertices y1
and yi and between y1 and yj represent that between those pairs of vertices there is
a shortest path that stays in C. The blue lines between the vertices y1 and yj and
between yi and y` indicate that between those pairs of vertices there is a shortest path
leaving the chain. We will create a sum that for each i, adds up the number of shortest
paths to each yj leaving C. In Figure 8 one such shortest paths is represented by the blue
line between yi and y`. The shortest paths from yi to yj leave C, if and only if inequality
(25) holds. We want to find the smallest j, such that the shortest paths between yi
and yj still leave C. This is achieved by solving inequality (25) for j:

j − i > i+ `− j + 1 + dG(x, z)

⇐⇒ j >
`+ 1 + dG(x, z)

2
+ i

(27)

For easier reading we define

γ(i) :=
`+ 1 + dG(x, z)

2
+ i. (28)

Now, we want to find the biggest i such that there still is a yj , i < j ≤ `, such that
there is a shortest path between yi and yj leaving C. Therefore, we again have to solve
inequality (25). This time, we solve it for i and set j = `, since we need the biggest
possible yj :

`− i > i+ `− `+ 1 + dG(x, z)

⇐⇒ i <
`− dG(x, z)− 1

2

44

Combining the results of both inequalities results that for each i, 2 ≤ i < `−dG(x,z)−1
2 ,

there is a shortest path to each yj , γ(i) < j ≤ `. If we create a sum over all possible
pairs yi, yj (and also taking into account the vertices originally connected to the graph),
for the betweenness centrality of y1 in C, we get:

b `−dG(x,z)−1

2
c∑

i=2

p(yi)(
∑̀

j=dγ(i)e

p(yj)) =

b `−dG(x,z)−1

2
c∑

i=2

p(yi) tright(ydγ(i)e)

But the above sum only considers these pairs of vertices yi and yj , 1 ≤ i < j ≤ `, for
which all shortest path between them leave C. We still need to consider those pairs,
where there is a shortest path between them staying in C and some shortest paths
leaving C. In Figure 8 this is the case between the vertices y1 and yj since there is
both a red line and a blue line connecting y1 and yj . Those pairs do not necessarily
exist: Whether they exist or not depends on the length of the chain, `, and the distance
between x and z, dG(x, z), as we will see later (in (29)). For now, assume those pairs
exist. We need to look at equation (26) again. For each i, there can exist only one j,
such that between yi and yj there are both shortest paths leaving C and staying in C.
We determine that j by solving equation (26) for j:

j − i = i+ `− j + 1 + dG(x, z)

⇐⇒ j =
`+ 1 + dG(x, z)

2
+ i

This is the same result as in inequality (27) and already defined in (28). So, between yi
and yγ(i), if γ(i) is an integer and yγ(i) exists, there is exactly one shortest path staying
in C and there are σxz shortest paths leaving C. The vertex y1 lies on all the shortest
paths leaving C but not on that shortest path staying in C. This results in a value
of σxz

σxz+1 for each pair yi and yγ(i) to add to the betweenness centrality of y1.

Combining all results, for the betweenness centrality of y1 in C, CCB (y1), we finally
get:

CCB (y1) :=

b `−dG(x,z)−1

2
c∑

i=2

p(yi)(tright(ydγ(i)e+1) + p(dγ(i)e)ω(C)),

where

ω(C = (x, y1, ..., y`, z)) =

{
1, if `+1+dG(x,z)

2 is odd
σxz
σxz+1 , otherwise

(29)

represents the fact that there may exist pairs of vertices, where there are both shortest
paths staying in C and leaving C between them: If they they exist, then we need the
factor of σxz

σxz+1 , if not, then we need the factor 1.
We will continue with the computations that need to be done for all further yi ∈ C,

1 < i ≤ `.

45

Computations for yi, 1 < i ≤ ` In this part, we compute the betweenness centrality
for the remaining vertices in the chain. As already mentioned, we do this iteratively:
For yi, 1 < i ≤ `2, we first take the result of its predecessor, CCB (yi−1). Next, we subtract
the amount of all shortest paths, that start in yi, since, if yi is an endpoint of a shortest
path, then this path must not be considered for the betweenness centrality of yi. Then,
we have to add all shortest paths, that start in yi−1 and pass through yi. The shortest
paths from yi−1 were not considered in the computation of CCB (yi−1), since yi−1 is an
endpoint of them. The formula is similar to the one for balloons:

CCB (yi) = CCB (yi−1)− p(yi)α(i) + p(yi−1)β(i)

The term α(i) represents the number of shortest paths that need to be subtracted
whereas the term β(i− 1) is the number of shortest paths that need to be added.

We will first show how to calculate α(i). We need to subtract all shortest paths that
start in yi and pass through yi−1. These shortest paths can again either stay in C
or leave C. For both cases, we need to solve an inequality. We first have to find the
smallest possible i′, 0 < i′ < i − 1, such that the shortest path from yi′ to yi stays
inside C. Therefore, we solve (24) for i′:

i− i′ < i′ + `− i+ 1 + dG(x, z)

⇐⇒ i′ > i− l + 1 + dG(x, z)

2

Next, we need the smallest possible i′, i < i′ ≤ `, such that the shortest path from yi
to yi′ leaves C. Therefore, we solve (25) for i′:

i′ − i > i+ `− i′ + 1 + dG(x, z)

⇐⇒ i′ > i+
l + 1 + dG(x, z)

2

For easier reading, we define:

δ :=
l + 1 + dG(x, z)

2

If we combine both results, we get:

α(i) := tright(i− dδe+ 1)− tright(i− 1) + tright(i+ dδe+ 1)

+ ω′(C)p(i− dδe) + ω(C)p(i+ dδe)
,

where

ω′(C = (x, y1, ..., y`, z)) =

{
1 , if `+1+dG(x,z)

2 is odd
1

σxz+1 , otherwise
. (30)

Note the factors ω(C) and ω′(C) in the formula. These factors are needed, because if
between two vertices yi and yj , there is both one shortest path that stays inside C and
a shortest path that leaves C, then the vertices lying on one of these paths do not lie

46

on all shortest paths between yi and yj . Each vertex can only lie on either the single
shortest path that stays in C or on each shortest path that leaves C. This results in a
factor of 1

σxz+1 or σxz
σxz+1 , respectively.

Now, for β, we have to find similar indices. We need to add up all shortest paths,
that start in yi−1 and pass through yi. Therefore, we need to find the biggest possible i′,
i < i′ ≤ `, such that the shortest path from yi−1 to yi′ stays in C and we have to find the
biggest possible i′, 0 < i′ < i− 1, such that the shortest paths from yi′ to yi−1 leave C.
Again, we have to solve two inequalities to get these indices. Since this is analogous as
for α (i is just replaced by (i− 1)), we only give the results:

β(i) := tleft((i− 1) + bδc − 1)− tleft(i) + tleft((i− 1)− bδc − 1)

+ ω′(C)p((i− 1) + bδc) + ω(C)p((i− 1)− bδc).

Vertices outside the chain In both computations, we only treated the vertices inside C.
But since some shortest paths leave the chain, we need to also look at the vertices lying
on such shortest paths. Therefore, we sum up all shortest paths that leave C. We
already did this for the computation of CCB (y1) (see (5.4)). But we need to also include
all shortest paths starting in y1 itself. These are not included in CCB (y1), because y1
obviously is an endpoint of them. Thus, the sum begins with i = 1. For w ∈ V \ S∗(C),

we have to compute the following sum. We have to add the factor σxz(w)
σxz

since each w
does not necessarily lie on all shortest paths between two vertices in the chain.

CCB (w) =

b `−dG(x,z)−1

2
c∑

i=1

p(yi)((tright(ydγ(i)e+1))
σxz(w)

σxz
+ p(dγ(i)e)ω′′(C)σxz(w))

= σxz(w)

b `−dG(x,z)−1

2
c∑

i=1

p(yi)((tright(ydγ(i)e+1)
1

σxz
+ p(dγ(i)e)ω′′(C))

,

where

ω′′(C = (x, y1, ..., y`, z), w) =

{
1
σxz

, if `+1+dG(x,z)
2 is odd

1
σxz+1 , otherwise

.

The sum does not depend on the vertex w. Thus, we only have to compute the sum
once and then multiply it with the term σxz(w). This ensures a linear running time per
chain. We define ω′′, since between some pairs of vertices in the chain, there may exist
both shortest paths leaving C and staying in C. Each w only lies on the σxz(w) shortest
paths that leave C and cannot lie on the shortest path that stays in C. This results in
a factor of σxz(w)

σxz+1 if those pairs exist, or in a factor of σxz(w)
σxz

if not. The correctness of
the above formulas follows from their construction.

Running time The computation of CCB (y1) is linear, depending on `, the length of the
chain. The computation of all other CCB (yi), 1 < i ≤ `, is constant. Hence, for the
vertices inside C, we have a running time of O(`).

47

The computation of CCB (w), w ∈ V \ S∗(C) is linear in time for the first w, again
depending on ` and constant for all following w. Since the size of |V \S∗(C)| is bounded
by n, we have a running time of O(`+ n) per chain. In total, the computing time for a
single chain is O(`) +O(`+ n) = O(n) and O(|C| · n) = O(k · n) for all chains.

5.5 Final running time

We now summarize the results of Section 4 and Section 5 and thus proof the correctness
of Theorem 1.1. The correctness of the computations we did in both sections were
already proven in the respective section. Hence, we yet need to show that the final
running time of our algorithm is O(k2 · n2): Therefore, look at the running times of the
computations done in Section 4 and in the subsections of Section 5:

• The running time of the computations done in Section 4 is O(n).

• The running times of the computations done in Section 5 are:

– O(k2 · n) for Section 5.2

– O(k2 · n2) for Section 5.3

– O(k · n) for Section 5.4

Adding up all running times, we get:

O(n) +O(k2 · n) +O(k2 · n2) +O(k · n) = O(k2 · n2).

In the following section we give a conclusion summarizing the ideas and results of this
work as well as an approach to further improve our algorithm.

6 Conclusion & Outlook

Baglioni et al. [Bag+12] showed in their work that when it comes to computing the
betweenness centrality of each vertex in a graph it makes sense to treat degree-one
vertices separately and exploit their unique characteristics. They can be removed from
the input graph in linear time, and with little adjustments in Brandes’ algorithm, do
not play any role later, when actually performing Brandes’ algorithm on the residual
graph. This work is an attempt to show that it makes sense to treat degree-two vertices
separately, too. In this work we could not delete all vertices of degree two but only some
of them. If we were able to delete all vertices of degree two from the graph we could
define a kernel on the input graph with only vertices of degree at least three left. By
making use of the feedback edge number k we can bound the size of the kernel and can
provide an algorithm being linear in n and m and only polynomial in k. For small k this
can be faster than Brandes’ algorithm.

The algorithm that we presented in this work however, only has a running time of
O(k2 ·n2), which is not linear in n and thus, not necessarily faster than the algorithm of
Brandes, which runs in O(n ·m). We conjecture that with little improvements a running

48

time of O(k2 · (n + m)) can be achieved. The needed improvement is mentioned in the
next paragraph. Additionally, our chosen parameter k, the feedback edge number, can
become relatively big for big instances of networks. This is not desirable and motivates
to find better parameters to bound the running time of such algorithms.

Improvement The factor n2 results from the need of computing sums dependent on n
in Cases 2 and 3 in Step 2 (see Section 5.3). Replacing these sums by constant terms
would yield the desired running time of O(k2 · n) for Step 2. We are confident that this
is indeed possible. The effective speed up in a practical environment needs then to be
evaluated in experiments. At last follows an approach to define a problem kernel by
deleting all vertices of degree two from the graph.

Towards a problem kernel We only deleted those vertices of degree two that were
part of a cyclic structure. Here, we want to give an approach on how to delete other
degree-two vertices from the input graph. This would speed up the execution of Brandes’
(modified) algorithm (see line 17 in Algorithm 1). Since we delete all vertices of degree
two, we would also obtain a problem kernel of size O(k) (see [Mer+17, proof of Thm
2.3]).

Our approach is to replace each chain with a weighted edge before running Brandes’
algorithm on the graph. The weight of the new edge is set to the length of the chain. This
way, we do not alter the lengths of the shortest paths between the remaining vertices.
Of course, this transforms the input graph into an edge-weighted graph. But because
Brandes’ algorithm also works on edge-weighted graphs [Bra01], this is not a problem.
When replacing the chains with edges though, some new problems arise. For example,
when running Brandes’ algorithm on the residual graph with only vertices with a degree
of at least three left, we do not increase the betweenness centrality of the just deleted
degree-two vertices. This has to be done separately afterwards. In this work we were not
able to overcome all such technical details. This needs to be done in future work. Future
work may also exploit other parameters than the feedback edge number to develop faster
and more feasible algorithms for calculating the betweenness centrality.

Literature

[Bag+12] M. Baglioni, F. Geraci, M. Pellegrini, and E. Lastres. “Fast exact compu-
tation of betweenness centrality in social networks”. In: Proceedings of the
2012 International Conference on Advances in Social Networks Analysis and
Mining (ASONAM 2012). IEEE Computer Society. 2012, pp. 450–456 (cit.
on pp. 5, 6, 8, 9, 12, 13, 20, 48).

[Bav48] A. Bavelas. “A mathematical model for group structures”. In: Human orga-
nization 7.3 (1948), pp. 16–30 (cit. on p. 5).

[Bra01] U. Brandes. “A faster algorithm for betweenness centrality”. In: Journal of
mathematical sociology 25.2 (2001), pp. 163–177 (cit. on pp. 5, 6, 8, 49).

49

[For10] S. Fortunato. “Community detection in graphs”. In: Physics reports 486.3
(2010), pp. 75–174 (cit. on p. 6).

[Fre77] L. C. Freeman. “A set of measures of centrality based on betweenness”. In:
Sociometry (1977), pp. 35–41 (cit. on p. 5).

[Gia+17] A. C. Giannopoulou, G. B. Mertzios, and R. Niedermeier. “Polynomial fixed-
parameter algorithms: A case study for longest path on interval graphs”. In:
Theoretical Computer Science (2017) (cit. on p. 7).

[Mer+17] G. B. Mertzios, A. Nichterlein, and R. Niedermeier. “The power of data
reduction for matching.” In: (2017) (cit. on pp. 9, 49).

[NG04] M. E. Newman and M. Girvan. “Finding and evaluating community struc-
ture in networks”. In: Physical review E 69.2 (2004), p. 026113 (cit. on p. 6).

[RS10] M. Rubinov and O. Sporns. “Complex network measures of brain connec-
tivity: uses and interpretations”. In: Neuroimage 52.3 (2010), pp. 1059–1069
(cit. on p. 6).

[Unn+14] R. Unnithan, S. Kumar, B. Kannan, and M. Jathavedan. “Betweenness cen-
trality in Some classes of graphs”. In: International Journal of Combinatorics
2014 (2014) (cit. on p. 42).

50

	Introduction
	Preliminaries
	Overview of the algorithm
	Splitting balloons from the graph
	Finding balloons and chains
	Outline of the Algorithm

	Popping balloons: Dealing with cyclic structures
	Chains: Dealing with paths
	Processing the chains
	Step 1: Shortest paths between chains and vertices of degree greater than two
	Step 2: Shortest paths between pairs of chains
	Step 3: Shortest paths between vertices of a single chain
	Final running time

	Conclusion & Outlook
	Literature

