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Zusammenfassung

In der vorliegenden Arbeit untersuchen wir die algorithmische Komplexität klassischer
NP -vollständiger Graphprobleme auf Subklassen Hamiltonischer Graphen. Die betrach-
teten Subklassen sind k-reguläre Graphen, dies sind Graphen, für welche jeder Knoten
Grad k hat, und

”
k-ordered“ Graphen, dies sind Graphen, die für jedes k-Tupel von

Knoten einen Kreis enthalten, der diese in der gegebenen Reihenfolge durchläuft. Die
von uns untersuchten Probleme sind Feedback Vertex Set, 3-Coloring, Inde-
pendent Set, Clique und Treewidth. Es stellt sich heraus, dass die betrachte-
ten Einschränkungen keinen wesentlichen Einfluss auf die algorithmische Komplexität
der Probleme haben. Wir beweisen, dass alle genannten Probleme für jedes k ≥ 3
auf

”
k-ordered“ Hamiltonischen Graphen NP -vollständig bleiben. Desweiteren entschei-

den wir für alle genannten Probleme bis auf Treewidth, und für jedes k ≥ 3, ob
sie auf k-regulären Hamiltonischen Graphen NP -vollständig bleiben oder polynomzeit-
lösbar sind, .

Abstract

In this thesis we analyze the computational complexity of classical NP -complete graph
problems on subclasses of Hamiltonian graphs. The subclasses we study are k-regular
graphs, which are graphs where every vertex has degree k, as well as k-ordered graphs,
which are graphs that, given a k-tuple of vertices, contain a cycle that visits the ver-
tices in that given order. The problems we analyze are Feedback Vertex Set,
3-Coloring, Independent Set, Clique and Treewidth. It turns out that the con-
sidered restrictions do not have an essential influence on the tractability of the mentioned
problems. For all of the mentioned problems, we prove that they remain NP -complete
when restricted to k-ordered Hamiltonian graphs, for every k ≥ 3. Furthermore we de-
cide for each of these problems except Treewidth, and for every k ≥ 3, whether they
remain NP -complete or become polynomial-time solvable when restricted to k-regular
Hamiltonian Graphs.
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1 Intro

In computational complexity theory, it is natural to study intractable graph problems
restricted to finer subclasses. Hamiltonian graphs, which are graphs that contain a cycle
passing through all their vertices, form a well-known and extensively studied graph class.
This motivates our research towards understanding the influence of hamiltonicity on the
tractability of graph problems. Problems involving Hamiltonian graphs can be traced
back to the 9th century, namely the Knight’s tour problem, which is roughly speaking
the problem of finding a Hamilton-cycle in a specific graph [Wil88]. During the past
few decades, there have been many results on Hamiltonian graphs, and several sufficient
and necessary conditions for Hamilton-cycles in graphs have been shown [CE72; DeL00;
Dir52; HN65; Mey73]. Broersma [Bro02] published a survey gathering many results
on Hamiltonian graphs such as open problems and conjectures in Hamiltonian graph
theory. Hamiltonian graphs turn out to be of special interest in usability testing for
computer systems, and arise from reliability considerations in network design [Wal17;
WW84]. Moreover Hamilton-cycles play a fundamental role in the extensively studied
and well-known Travelling Salesman Problem, as well as other folklore problems
[BM+76; BN68].

In this thesis we focus on two major subclasses of Hamiltonian graphs. The first one is
the class of k-regular Hamiltonian graphs, that are Hamiltonian graphs for which every
vertex is of degree k. Regular graphs form a popular and broadly studied graph class,
for which many subclasses, as for example cubic graphs, turn out to be of particular
interest in several fields of graph theory and computer sciences [GP95]. The restriction
to subclasses of regular graphs seems to be prevalent in computational complexity theory;
there have been a large number of results for a broad and diverse collection of problems
since the introduction of NP -completeness [FSS10; GJ90; LG83]. The second class we
analyze is given by k-Hamiltonian ordered graphs, which are graphs that, for any k-tuple
of vertices, contain a Hamilton-cycle with respect to the ordering given by the k-tuple.
These graphs were introduced by Ng and Schultz [NS97] as a new strong Hamiltonian
property that, by the time, have gained popularity. There have been several results
on sufficient degree conditions and other properties of k-Hamiltonian ordered graphs
[CGP04; KSS99]. Faudree [Fau01] published a survey gathering many results on k-
Hamiltonian ordered graphs and highlighting relations to other well-known graph-classes.
As our goal is to study the influence of hamiltonicity on the tractability of problems,
studying the computational complexity of graph problems restricted to graphs with a
strong Hamiltonian property seems natural.
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1 Intro

Our Contributions.

F.V. Set 3-Coloring Ind. Set Clique Treewidth
Hamiltonian NP -c NP -c NP -c NP -c NP -c
planar NP -c NP -c NP -c p-time unknown
3-regular (planar) p-time p-time NP -c p-time unknown
4-regular NP -c NP -c NP -c p-time unknown
4-regular (planar) NP -c unknown NP -c p-time unknown
5-regular planar unknown unknown NP -c p-time unknown
k-regular, k ≥ 5 NP -c NP -c NP -c p-time unknown
k-Ham. ordered, k ≥ 3 NP -c unknown NP -c NP -c NP -c
k-ordered k ≥ 3 NP -c NP -c NP -c NP -c NP -c
k-connected k ∈ N NP -c NP -c NP -c NP -c NP -c

Table 1.1: The Table surveying our results. Every mentioned graph class is also a sub-
class of Hamiltonian graphs if not mentioned. The problem-names are writ-
ten in obvious abbreviations. NP -c stands for NP -complete, and p-time for
polynomial-time solvable. For problems restricted to graph classes for which
we do not know if they remain NP -complete or become polynomial-time solv-
able, we marked the respective cell in the table as unknown.

The problems that we will analyze throughout this thesis are the following:

• Feedback Vertex Set, that is, given a graph G and some integer k, decide
whether there is a set of size k whose deletion leaves G acyclic.

• 3-Coloring, that is, given a graph G, decide whether G can be colored with
three colors, such that no two vertices adjacent by an edge share a color.

• Independent Set, that is, given a graph G and some integer k, decide whether
there is a set of size k, such that no two vertices in the given set are adjacent by
an edge in G.

• Clique, that is, given a graph G and some integer k, decide whether there is a
clique of size k.

• Treewidth, that is, given a graph G and some integer k, decide whether there
is tree-decomposition of G with width k.

These are all graph-theoretic problems with many applications, making the analysis of
their computational complexity crucial for the optimization of algorithm implementa-
tions. We will motivate and analyze each of the mentioned problems in their respective
section.

In this thesis we prove that all of the mentioned problems remain NP -complete when
restricted to Hamiltonian graphs. For every problem except 3-Coloring, we prove that
they remain NP -complete on k-Hamiltonian ordered graphs, for every k ≥ 3. Further-
more, we decide for each of the problems except for Treewidth, whether they remain
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NP -complete or become polynomial-time solvable on k-regular Hamiltonian graphs, for
every k ≥ 3. A summary of our results is depicted in Table 1.1. As special cases, we
prove that Feedback vertex set remains NP -complete when restricted to planar
4-regular Hamiltonian graphs, and Independent Set remains NP -complete when re-
stricted to planar 5-regular Hamiltonian graphs. All of our NP -hardness proves will be
done via polynomial-time many-one reductions.

Related work. As mentioned above, there have been many results on the computa-
tional complexity of several graph-problems restricted to Hamiltonian graphs. Fleis-
chner, Sabidussi, and Sarvanov [FSS10] proved that independent set remains NP -
complete when restricted to 3-regular planar Hamiltonian graphs, as well as to 4-
regular planar Hamiltonian graphs. Fleischner and Sabidussi [FS03] proved that 3-
coloring, remains NP -complete on 4-regular Hamiltonian graphs. A result due to
Brooks [Bro41] proves that 3-Coloring is polynomial-time solvable on 3-regular Hamil-
tonan graphs. We are not aware of known results regarding the computational complex-
ity of Feedback vertex set, Clique and treewidth on Hamiltonian graphs or
subclasses thereof. However, Speckenmeyer [Spe88] shows that Feedback vertex
set remains NP -complete on planar graphs of maximum degree four. Clique, as well
as treewidth, have been proven to be NP -complete on general graphs by Karp [Kar72]
and Arnborg, Corneil, and Proskurowski [ACP87] respectively.
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2 Preliminaries

Graph theory. Let G = (V,E) denote an undirected graph, where V denotes the set
of vertices and E ⊆ {{v, w} | v, w ∈ V, v 6= w} denotes the set of edges. We will also
write V (G) and E(G) to denote the set of vertices and the set of edges of G respectively.
The order of any graph G will be denoted by nG := |V (G)| if not stated otherwise.
For a vertex v ∈ V (G), its degree is defined as deg(v) = |{{v, w} | {v, w} ∈ E(G)}|. A
subgraph H ⊆ G is a graph for which it holds true that V (H) ⊆ V (G) and E(H) ⊆ E(G).
Let V ′ ⊆ V (G) be a set of vertices. Then the induced subgraph (on V ′), denoted by G[V ′],
is defined by V (G[V ′]) := V ′ and E(G[V ′]) = {{u, v} | {u, v} ∈ E(G) and u, v ∈ V ′}.
Let H ⊆ G, then G −H denotes the graph G[V (G) \ V (H)]. Let V ′ ⊆ V (G), then we
define G− V ′ := G[V (G) \ V ′]. Let E ′ ⊆ E(G) and V ′ := V (G) \ {v, w | {v, w} ∈ E ′},
then we define G− E ′ := G[V ′].

For two graphsG1 andG2, the union of two graphs G := G1 ∪G2 is defined by V (G) :=
V (G1) ∪ V (G2) and E(G) := E(G1) ∪ E(G2). If furthermore V (G1) ∩ V (G2) = ∅,
then we write G = G1 ] G2 and call G the disjoint union of G1 and G2. Analogously
we define V (G1) ] V (G2) as the disjoint union of two vertex sets.

Let G denote a graph of order nG. Then a bijective function Φ : {0, . . . , nG − 1} →
V (G) denotes an enumeration of V , where Φ(i) := vσ(i) for some permutation σ :
{0, . . . , nG − 1} → {0, . . . , nG − 1}. For the sake of readability we will write Φ =
(vσ(0), . . . , vσ(nG−1)) ∈ V nG , where again Φ(i) := vσ(i) for every i ∈ {0, . . . , nG − 1}. By
writing V (G) = {v0, . . . , vnG−1} we implicitly give an enumeration of the vertices in G.

Let G be a graph of order nG. Then a path P = (VP , EP ), is a subgraph of G such
that there is an enumeration Φ = (v0, . . . , vk) of P for some k < nG, satisfying EP =
{{vi, v(i+1)} | i ∈ {0, . . . , k − 1}}. Subsequently we will write P = (v0, . . . , vk) to denote
a path from v0 to vk in G, where the vi, vj are pairwise disjoint for i 6= j. Its length
is defined as |P | := |V (P )| = k + 1. If a vertex v is part of the path, we may write
v ∈ P instead of v ∈ V (P ). For two vertex disjoint paths P1 = (v0, . . . , vk) and
P2 = (vj, . . . , vm), with {vk, vj} ∈ E(G) and k, j,m ∈ {0, . . . , nG − 1}, we define the
concatenation of paths as P := P1 � P2 = (v0, . . . , vk, vj, . . . , vm). Note that this is
again a path. Let P3 = (vk, . . . , vm) be another path such that V (P3) ∩ V (P1) = {vk}.
Then, as an extension to the definition of concatenation of paths, we define P1 � P3 :=
(v0, . . . , vk, . . . , vm). As an abbreviation, a single vertex vk can be seen as a path of
length 1. Given a path P = (v0, . . . , vk) and two vertices vj, vl ∈ P with j > l, we
write (vj, . . . , vl) to denote the

”
sub-path“ (vj, . . . , vl).

A cycle C = (VC, EC) is a subgraph of G such that there is an enumeration Φ =
(v0, . . . , vk) of VC for some k < nG, satisfying EC = {{vi, v(i+1)} | i ∈ {0, . . . , k − 1}} ∪
{vk, v0}. We will refer to Φ as the enumeration induced by C. Subsequently, for the sake
of readability, a cycle will be denoted as C = (v0, . . . , vk, v0), k ≤ nG − 1. The length
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2 Preliminaries

of C is defined as |C| = k + 1. We denote by PC = (v0, . . . , vnG−1) the path induced by
the cycle C = (v0, . . . , vnG−1, v0).

Let G = (V,E) be a graph of order nG. Then G is called Hamiltonian, if there is
a cycle C with V (C) = V (G). A cycle C with the property that V (C) = V (G) will
be referred to as Hamilton-cycle. If the Hamilton-cycle is part of the input, or was
computed explicitly, we say that G is a Hamiltonian graph with known Hamilton-cycle.

A graph G is called k-regular for some k ∈ N, if for every vertex v ∈ V (G) it holds
true that deg(v) = k. Let v ∈ V (G) be a vertex. Then we denote by N(v) := {w |
{w, v} ∈ E} the neighborhood of v. Furthermore let H ⊆ G and v ∈ H. Then NH(v) :=
{w | {w, v} ∈ E(H)} denotes the neighborhood of v in H.

Let G be a graph of order nG, and let k ≤ nG be an integer. Then Ord :=
(v0, . . . , vk−1) ∈ V (G)k is called an ordering, if vi 6= vj for i 6= j. Moreover we will
write v ∈ Ord if there is i ∈ {0, . . . , k − 1} with v = vi. Note that due to our abuse of
notation, cycles and paths are also orderings. We will refer to these as orderings induced
by a cycle (or path). The length of an ordering Ord ∈ V (G)k is defined by |Ord| := k.
Let G be a graph of order nG and Ord ⊂ V (G)k for some k ≤ nG, then we say that C is
a cycle with respect to Ord, if C visits every vertex in Ord in its prescribed order.

For k ∈ N, we call a graph G k-Hamiltonian ordered, if for every ordering of length k
in G, there is a Hamilton-cycle that encounters the vertices in that given order. The
notion of k-Hamiltonian ordered graphs was firstly introduced by Ng and Schultz [NS97].

Throughout this thesis, it will without loss of generality be assumed that for any
graph G, its order is denoted by nG and an enumeration V (G) := {v0, . . . , vnG−1} of
the vertices is given unless stated otherwise. Note that relabelling the vertices in G can
be done in linear time on G. Moreover if we are given a Hamilton-cycle C in G, the
enumeration of the vertices in G will without loss of generality be assumed to be induced
by the cycle, meaning that C = (v0, . . . , vnG−1, v0) unless stated otherwise.
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3 The Feedback Vertex Set Problem
on Hamiltonian Graphs

The problem of deciding whether a graphG contains a feedback vertex set of cardinality k
for some integer k can be stated as follows.

Feedback Vertex Set
Input: An undirected graph G, an integer k ∈ N.
Question: Is there a set I ⊆ V (G) with |I| = k such that G[V (G) \ I] is acyclic?

The problem of computing a feedback vertex set in a graph has many applications; in
the study of deadlock recovery, the solution to a minimum feedback vertex set problem
determines the number of processes that need to be aborted in order to resolve the
deadlocks [SGG18]. Applications of Feedback Vertex Set to constraint satisfaction
problems and Bayesian systems have been highlighted by Bar-Yehuda et al. [Bar+98].
Over the past few decades, many variations of Feedback Vertex Set have been
extensively studied from multiple angles. As one of the several NP -complete problems
that have been studied by Karp [Kar72], the algorithmic complexity of Feedback Ver-
tex Set, and variations thereof, has been analyzed on a multitude of restricted graph
classes [Bra87; CTY07; Spe88]. In recent years, several polynomial-time approximation
algorithms and exact exponential-time algorithms for finding minimum feedback vertex
sets in different graph classes have been developed and analyzed [Fom+08; FP05; Hac97;
RSS05].

In this chapter we will prove that Feedback Vertex Set remains NP -complete
on general Hamiltonian graphs as well as some subclasses thereof—namely on k-regular
Hamiltonian and k-Hamiltonian-ordered graphs, for every k ≥ 3. As a special case,
we will moreover prove that Feedback Vertex Set remains NP -complete on pla-
nar 4-regular Hamiltonian graphs, implying the NP -completeness on 4-regular planar
graphs. In the first section we will show that Feedback Vertex Set remains NP -
complete on Hamiltonian graphs. The second section is dedicated to the proof of the
NP -completeness of Feedback Vertex Set on 4-regular planar Hamiltonian graphs.
This result will then be used in the third section in order to prove that Feedback Ver-
tex Set remains NP -complete on k-regular Hamiltonian graphs for every k ≥ 4. We
will conclude the chapter in the fourth section with a proof that Feedback Vertex
Set remains NP -complete even when restricted to k-Hamiltonian ordered graphs, for
every k ≥ 3.

Throughout this chapter we will write FVS(G) ≤ k if G has a feedback vertex set
of maximal cardinality k ∈ N, and FVS(G) ≥ k if G has no feedback vertex set of
cardinality less than k.
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3 The Feedback Vertex Set Problem on Hamiltonian Graphs

G
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Figure 3.1: Envelope-shaped Hamiltonian closure of G. The (red) diamond-shaped ver-
tices labelled with a, b, c represent Venv, and the (red) edges represent the
edges of Eenv, while the thick (red) edges highlight a Hamilton-cycle in Genv.
Dashed edges, as well as the dashed ellipse, denote some of the possible edges
in G.

3.1 General Hamiltonian graphs.

It is commonly known that Feedback Vertex Set is NP -complete on general (undi-
rected) graphs [Kar72]. As a first result in this chapter, we will give a simple polynomial-
time many-one reduction from Feedback Vertex Set on general graphs to Feed-
back Vertex Set on Hamiltonian graphs, yielding the following.

Theorem 3.1. Feedback Vertex Set on Hamiltonian graphs with known Hamilton-
cycle is NP -complete.

For the polynomial-time many-one reduction in the proof of Theorem 3.1, we will need
a construction that, given some graph G, constructs a Hamiltonian graph G′. The main
idea behind our construction is to, given some graph G, enumerate its vertices by v0

to vnG−1, and for each two consecutive vertices in the enumeration add a disjoint K3 and
connect both vertices to it, in order to guarantee the construction of a Hamilton-cycle
through G. The choice of K3 graphs will guarantee the hamiltonicity of the resulting
graphs, and their influence on the cardinality of feedback vertex sets in G turns out to be
easily understood. A schematic illustration of the construction is depicted in Figure 3.1.

Definition 3.2 (Envelope-shaped Hamiltonian closure.). Let G = (V,E) be a graph
and Φ := (v0, . . . , vnG−1) an enumeration of its vertices. Then the envelope-shaped
Hamiltonian closure of G (through Φ), denoted by Genv = (V ′, E ′), is:

V ′ := V ] Venv, where Venv = {ai, bi, ci | i ∈ {0, . . . , nG − 1}}, and

E ′ := E ] Eenv , where

Eenv := {{ai, bi}, {bi, ci}, {ci, ai} | i ∈ {0, . . . , nG − 1}}∪
{{vi, ai}, {bi, vi+1 mod nG

} | i ∈ {0, . . . , nG − 1}}.
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3.1 General Hamiltonian graphs.

The next two lemmata prove that the construction given by Definition 3.2 gives rise
to Hamiltonian graphs, and that deciding whether G contains a feedback vertex set of
cardinality k is equivalent to deciding whether Genv contains a feedback vertex set of
cardinality k + nG.

Lemma 3.3. Let G be a graph. Then the envelope-shaped Hamiltonian closure Genv is
Hamiltonian, and it can be constructed from G in O(|V (G)|) time after reading G.

Proof. The following is a Hamilton-cycle in Genv:

C = (v0, a0, c0, b0, v1, a1, . . . , bnG−2, vnG−1, anG−1, cnG−1, bnG−1, v0),

since {vi, ai}, {bi, vi+1 mod nG
} ∈ E(Genv) andG[{ai, bi, ci}] ∼= K3 for every i ∈ {0, . . . , nG−

1} (see Figure 3.1). Genv can be constructed from G by a disjoint union with nG
many K3

∼= Genv[{ai, bi, ci}] graphs, and subsequently connecting two distinct ver-
tices ai, bi ∈ V (K3) to two consecutive vertices vi, vi+1 mod nG

∈ V (G) for every i ∈
{0, . . . , nG − 1}, given an enumeration of the vertices in G. This can clearly be done
in O(|V (G)|) time after reading G.

Lemma 3.4. Let G be a graph and denote the envelope-shaped Hamiltonian closure of G
by Genv. Then,

FVS(G) ≤ k ⇐⇒ FVS(Genv) ≤ k + nG

for every k ∈ N.

Proof. Let V (Genv) = V ∪ Venvas in Definition 3.2. Define by K
(i)
3 the complete graph

on {ai, bi, ci} for every i ∈ {0, . . . , nG − 1}, and note that by construction K
(i)
3 is a

subgraph of Genv for every i ∈ {0, . . . , nG − 1}.

⇐: Let S ⊂ V (Genv) be a feedback vertex set in Genv with |S| ≤ k + nG. Note

that as FVS(K
(i)
3 ) ≥ 1, there is at least one vi ∈ {ai, bi, ci} such that vi ∈ S,

for every i ∈ {0, . . . , nG − 1}. As V (K
(i)
3 ) ∩ V (K

(j)
3 ) = ∅ for all i 6= j, this

yields that
∣∣∣S ∩ (⋃nG−1

i=0 V (K
(i)
3 )
)∣∣∣ ≥ nG. Since moreover V (K

(i)
3 ) ∩ V = ∅ for

every i ∈ {0, . . . , nG − 1}, we conclude that |S ∩ V | ≤ k. As S ∩ V is a feedback
vertex set in Genv[V ] = G, it follows that FVS(G) ≤ k.

⇒: Let S ⊂ V (G) be a feedback vertex set in G with |S| ≤ k. We claim that S ′ := S ∪
{ai | i ∈ {0, . . . , nG − 1}} is a feedback vertex set in Genv. By construction S ′ is a

feedback vertex set in Genv[V ] = G and Genv[V (K
(i)
3 )] for every i ∈ {0, . . . , nG−1}.

As moreover V (K
(i)
3 ) ∩ V (K

(j)
3 ) = ∅ for every i 6= j, any remaining cycle C

in Genv − S ′ must contain at least one vertex v ∈ V \ S ′ and one vertex w ∈
{bi, ci} for some i ∈ {0, . . . , nG − 1}. Since in Genv − S ′ it holds true that, for
every i ∈ {0, . . . , nG − 1}, deg(bi) = 2, it follows that if bi ∈ V (C) also ci ∈ V (C)
since {bi, ci} ∈ E(Genv−S ′). But as deg(ci) = 1 in Genv−S ′′, there cannot be any
cycle through ci in Genv − S ′ concluding that bi, ci /∈ V (C).

We are now ready for the proof of Theorem 3.1.
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3 The Feedback Vertex Set Problem on Hamiltonian Graphs

Proof of Theorem 3.1. As Feedback Vertex Set on Hamiltonian graphs is trivially
contained in NP , the proof follows immediately by Lemma 3.3, Lemma 3.4 and the
fact that Feedback Vertex Set is known to be NP -complete on general graphs
[Kar72].

3.2 4-regular planar Hamiltonian graphs.

Speckenmeyer [Spe88] showed that Feedback Vertex Set remains NP -complete on
planar graphs with maximum degree four. We are not aware of a known result proving
that Feedback Vertex Set remains NP -complete on 4-regular planar graphs. In
this section we will prove an even stronger claim, namely that Feedback Vertex Set
remains NP -complete when restricted to 4-regular planar Hamiltonian graphs.

Theorem 3.5. Feedback Vertex Set on 4-regular planar Hamiltonian graphs with
known Hamilton-cycle is NP -complete.

The proof of Theorem 3.5 will be done in two major steps. As a first step we prove
that Feedback Vertex Set remains NP -complete on 4-regular planar graphs, by two
consecutive polynomial-time many-one reductions. The second step will be the proof
of Theorem 3.5. The proof follows by a polynomial-time many-one reduction from the
class of 4-regular planar graphs, that was inspired by a reduction given by Fleischner,
Sabidussi, and Sarvanov [FSS10] and Fleischner and Sabidussi [FS03].

We emphasize that, throughout the rest of this chapter, our input graphs will be
tacitly assumed to contain no degree-one vertex. The following observation shows that
we can assume this without loss of generality.

Lemma 3.6. Let G be a graph with FVS(G) ≤ k for some k ∈ N and let v ∈ V (G)
with deg(v) = 1. Then,

FVS(G) ≤ k ⇐⇒ FVS(G− {v}) ≤ k.

Thus we can construct a graph G′ from G in O(nG) time, where G′ has no degree-one
vertex, without changing the size of a minimum feedback vertex set in G.

Proof. Let v ∈ V (G) with deg(v) = 1. Then v cannot be part of any cycle in G.
Let S ⊂ V (G) be a feedback vertex set in G with v ∈ S. Then S \ {v} is also a
feedback vertex set in G. As we can determine the degree-one vertices in G in O(nG)
time, we can construct a graph G′ without degree-one vertices in O(nG) time from G
such that FVS(G) ≤ k ⇐⇒ FVS(G′) ≤ k for every k ∈ N.

As mentioned above, our first goal will be the proof of the following.

Theorem 3.7. Feedback Vertex Set on 4-regular planar graphs is NP -complete.

10



3.2 4-regular planar Hamiltonian graphs.

As an intermediate step towards a proof of Theorem 3.7, we will show that Feedback
Vertex Set remains NP -complete on planar graphs with minimum degree three and
maximum degree four. We denote the class of graphs with minimum degree three and
maximum degree four by G4

3 := {G = (V,E) | 3 ≤ deg(v) ≤ 4 for every v ∈ V }. We will
then get rid of the remaining degree-three vertices by introducing so-called H-insertion-
chains (see Definition 3.19), which will keep the cardinality of feedback vertex sets in the
resulting graph polynomially dependent on the input, and thus prove that Feedback
Vertex Set remains NP -complete on 4-regular planar Hamiltonian graphs.

Theorem 3.8. Feedback Vertex Set on planar graphs of minimum degree three
and maximum degree four is NP -complete.

Theorem 3.8 extends the following result due to Speckenmeyer [Spe88].

Theorem 3.9 (Speckenmeyer [Spe88]). Feedback Vertex Set on planar graphs of
maximum degree 4 is NP -complete.

A key
”
ingredient“ to most of the proofs in this section —i.e. the proof of Theorem 3.8

and most importantly the proof of Theorem 3.5—will be what we call H-insertions,
where H will denote a specific graph (see Figure 3.2a). These H-insertions play a
fundamental role in ensuring the regularity of our constructed graphs and getting rid
of degree-two and degree-three vertices, while having a well understood and

”
not too

heavy“ impact on the cardinality of feedback vertex sets. Roughly speaking, an H-
insertion on two given vertices u, v in some graph G results in a new graph G′ by a
disjoint union of G with what we call an H-graph, connecting u and v to H, and thus
augmenting their degree in the graph G′ (see Figure 3.2b). A formal definition of H-
insertions reads as follows.

Definition 3.10 (H-insertion). Let G be a graph and u, v ∈ V (G) be two distinct
vertices. Let H be the auxiliary graph on seven vertices as illustrated in Figure 3.2a.
An H-insertion on u, v results in a graph G′ by a disjoint union of G and the auxiliary
graph H (maybe after relabelling the vertices in V (H)), and subsequently connecting v1

with u and v7 with v as illustrated in Figure 3.2b.

As we will use H-insertions in the construction of graphs G′ ∈ G4
3 from our input

graphs G (and later on in the construction of 4-regular graphs), it is of particular interest
to understand the influence of H-insertions on the topology of the input graphs, and to
analyze how they affect the cardinality of feedback vertex sets in G. The next lemma
quantifies the impact of H-insertions on the degrees of the involved vertices, and shows
that if two vertices u, v ∈ V (G) lie on some common face given an embedding of G, then
an H-insertion on u, v can be carried out in a way that the resulting graph stays planar.

Lemma 3.11. Let G be a plane graph and let u, v ∈ V (G) be two distinct vertices on a
common face F of the given embedding of G with deg(u) = k = deg(v) for some k ∈ N.
Let G′ denote the graph resulting from an H-insertion on u, v in G. Then, G′ can be
constructed in constant time after reading G, and in G′ it holds true that deg(u) =
k + 1 = deg(v) and deg(v) = 4 for every v ∈ V (H). Moreover, the H-insertion can be
carried out in a way that G′ stays planar.

11



3 The Feedback Vertex Set Problem on Hamiltonian Graphs

v1

v2

v3

v6

v4

v5

v7

(a) Plane auxiliary graph H.

G

u v1 v7 v

(b) H-insertion.

Figure 3.2: H-graph and an H-insertion. The dashed (red) edges in Figure 3.2a denote
the edges that will connect the H-graph to G after an H-insertion as can
be seen in Figure 3.2b (thick (red) edges connecting u, v1 and v7, v). The
(orange) thickly drawn vertices highlight a feedback vertex set of size three
in H. Figure 3.2b shows a detail of G after performing an H-insertion on two
distinct degree-three vertices denoted by u, v. The dashed edges highlight
some of the possible remaining edges in G.

Proof. As u and v have k neighbors in G ⊂ G′ and one new neighbor in H, namely v1

and v7 respectively, it follows easily that deg(u) = k + 1 = deg(v). As u and v lie
on a common face F given the planar embedding of G and since H, as can be seen
in Figure 3.2a, is a planar graph, the H-insertion can be carried out by embedding H

”
inside“ the face F and thus keeping G′ planar. The H-insertion can be carried out

in constant time after reading G by adding seven new vertices and fifteen edges to G,
namely V (H), E(H) and the two edges connecting H to G (after possible relabelling of
the vertices in H.

The next two lemmata analyze the cardinality of a minimum feedback vertex set in
the H-graph, and quantify the impact of H-insertions on the cardinality of feedback
vertex sets in G.

Lemma 3.12. Let H be the graph as defined in Figure 3.2a. Then it holds true
that FVS(H) ≥ 3.

Proof. Note that {v1, v4, v6} is a feedback vertex set of size three in H as highlighted
in Figure 3.2a by the (orange) thickly drawn vertices. We need to prove that FVS(H)
cannot be less than three. To this end, note that (v1, v2, v3, v1) and (v4, v5, v7, v4) are
two vertex-disjoint cycles in H. Thus at least one vertex in each of H0

1 := {v1, v2, v3}
and H1

1 := {v4, v5, v7} has to be contained in a feedback vertex set of H, concluding
that FVS(H) ≥ 2. The same argument leads to the fact that at least one vertex in each
of H0

2 := {v1, v2, v4, v7} and H1
2 := {v3, v6, v5}, and one in each of H0

3 := {v1, v3, v5, v7}
and H1

3 := {v2, v6, v4} must be contained in a feedback vertex set of H. The only pairs

12



3.2 4-regular planar Hamiltonian graphs.

of vertices in H satisfying these conditions, are {v3, v4} and {v2, v5}. It can be easily
verified that neither of both sets is a feedback vertex set in H, thus FVS(H) > 2.

Lemma 3.13. Let G be a graph and let u, v ∈ V (G) be two distinct vertices. Let G′ be
the graph obtained from G by an H-insertion on u, v. Then,

FVS(G) ≤ k ⇐⇒ FVS(G′) ≤ k + 3

for every k ∈ N.

Proof. Recall that by Lemma 3.12 FVS(H) ≥ 3 and that {v1, v4, v6} is a feedback vertex
set of size three in H.

⇒: Let S be a feedback vertex set in G. We claim that S ′ := S ∪ {v1, v4, v6} is
a feedback vertex set in G′. Since S ′ is a feedback vertex set in G′[V ] = G
and G′[V (H)] ∼= H, any remaining cycle in G′ − S ′ must contain one vertex
in V (H) \ V (S ′) = {v2, v3, v5, v7} and one vertex in V (G) \ V (S ′). Note that by
construction only the vertex v7 ∈ {v2, v3, v5, v7} may have a neighbor in V (G).
As G′[{v2, v3, v5, v7}] is isomorphic to a path of length four, any remaining cycle
containing a vertex in {v2, v3, v5, v7} must contain the whole path (v7, v5, v3, v2).
But as deg(v2) = 1, v2 cannot be part of any cycle, thus concluding that G′ − S ′
is acyclic, and hence S ′ is a feedback vertex set of G′ with |S ′| ≤ k + 3.

⇐: Let S ′ be a feedback vertex set with |S ′| ≤ k + 3. By construction it holds true
that H ⊂ G′ with FVS(H) ≥ 3. Let SH := S ′ ∩ H. Since S ′ is a feedback
vertex set of H ⊂ G′, it holds true that |SH | ≥ 3. Moreover V (H) ∩ V (G) = ∅,
thus S := S ′ \ SH must be a feedback vertex set in G′[V (G)] = G with |S| =
|S ′| − |SH | ≤ (k + 3)− 3 = k.

Iterative use of Lemma 3.13 yields the following.

Corollary 3.14. Let G be a graph and let m ∈ N with m < nG. Let G′ be the graph
resulting from G by m many H-insertions. Then,

FVS(G) ≤ k ⇐⇒ FVS(G′) ≤ k + 3 ·m

for every k ∈ N.

The main idea behind the proof of Theorem 3.8 is to connect two different degree-two
vertices u, v in our input graph G by H-insertions, keeping the graph planar, and hence
reducing the number of degree-two vertices in the input graph while keeping its maximal
degree upper-bounded by four. To guarantee that the resulting graph stays planar, we
need u and v to lie on a common face given an embedding of G (see Lemma 3.11). As
in general the number of degree-two vertices is not even, and as they do not need to
lie on a common face, we will need to add degree-two vertices to G without affecting
the cardinality of feedback vertex sets in G. It turns out that Feedback Vertex Set
is robust under

”
subdividing edges“, which enables it to add degree-two vertices to the

13



3 The Feedback Vertex Set Problem on Hamiltonian Graphs

input graph G lying on any desired face without affecting the cardinality of feedback
vertex sets. This realization will play a key-role in the proofs of Theorem 3.7 and
Theorem 3.5. We will prove an even stronger claim, namely that we can assume the
feedback vertex sets of our input graph G to contain no degree-two vertex.

Lemma 3.15. Let G be a connected graph with at least one vertex v ∈ V (G) with deg(v) ≥
3, and let S ⊂ V (G) be a feedback vertex set of G. If there is u ∈ S with deg(u) =
2, then we can find w ∈ V (G) in O(|V (G)| + |E(G)|) time with deg(w) ≥ 3 such
that (S ∪ {w}) \ {u} is again a feedback vertex set in G.

Proof. Let u ∈ S with deg(u) = 2. LetN(u) = {w1, w2} for two distinct vertices w1, w2 ∈
V (G). If deg(w1) = 2 = deg(w2), then we set S := (S ∪ {w1}) \ {u}. Then S is still
a feedback vertex set in G as any cycle through u has to pass through w1. Relabel w1

as u and vice-versa, and use the same argument iteratively until there is w ∈ N(u)
with deg(w) ≥ 3 which is guaranteed as G is connected and contains at least one vertex
of degree at least three. By the same reasoning as above we can set S := (S ∪ {w})\{u}.
Then S is still a feedback vertex set in G as any cycle through u needs to pass through w.
The proof moreover suggests an algorithmic approach to find w—namely start a breadth-
first search from u, then the first vertex with degree larger than two in the breadth-first
search will be w.

A direct consequence of Lemma 3.15 is the following.

Corollary 3.16. Feedback Vertex Set stays invariant under subdivision of edges.

We are now ready to prove Theorem 3.8.

Proof of Theorem 3.8. Let G be a planar graph of maximum degree four. Then a
(straight-line) planar embedding of G can be computed in polynomial time as shown by
De Fraysseix, Pach, and Pollack [DPP90]. Denote by D2 := {v | v ∈ V (G), deg(v) = 2}
the set of degree-two vertices in G. Choose an arbitrary vertex v ∈ D2 and let {v, u} ∈
E(G) be an edge incident to v. Subdivide the edge by a new vertex z. Then deg(z) = 2 =
deg(v) and both vertices lie on some common face of G given a planar embedding. Note
that the introduction of z does not affect the cardinality of feedback vertex sets in G due
to Corollary 3.16. Now construct G′ by an H-insertion on v, z. By Lemma 3.11, G′ is a
planar graph and deg(v) = 3 = deg(z). Finally we can construct a planar graph G′ ∈ G4

3

from G by |D2| subdivisions of edges and subsequent H-insertions as just described. The
construction can be done in O(|D2|) time after reading G, as H-insertions and subdi-
viding edges can be done in constant time. The use of Lemma 3.11 and Corollary 3.14
together with Theorem 3.9 concludes the proof.

We will use Theorem 3.8 together with a polynomial-time many-one reduction from
the class of planar graphs of minimum degree three and maximum degree four to the
class of 4-regular planar graphs in order to prove Theorem 3.7. The proof will be done
in two steps. As a first step we will reduce the number of degree-three vertices per face
(given some planar embedding of our input graph) to at most one, by consecutively

14



3.2 4-regular planar Hamiltonian graphs.

connecting degree-three vertices in common faces by H-insertions. As a second step we
will introduce the notion of H-insertion chains which will be used to connect degree-
three vertices in our input graph G that do not share a common face, reducing the
number of degree-three vertices in G while keeping the resulting graph planar. This will
then result in a 4-regular planar graph.

The next lemma proves that, given some planar graph G ∈ G4
3 , we can construct a

planar graph G′ that has at most one degree-three vertex per face (that is not the canon-
ical outer-face) while keeping the cardinality of feedback vertex sets in G′ polynomially
dependent on the input.

Lemma 3.17. Let G ∈ G4
3 be a plane graph with known faces F := {F1, . . . , Ff} ∪

{Fo}, where Fo denotes the canonical outer-face. Let D3 := {v | v ∈ V (G), deg(v) =
3} denote the set of degree-three vertices in G. Suppose there is an i ∈ {1, . . . , f}
with |V (Fi) ∩ D3| ≥ 2. Then we can construct a planar graph G′ ∈ G4

3 with f+8d many
faces and |D3| − 2d many degree-three vertices, by d many H-insertions in polynomial
time from G, where d := |V (Fi ∩D3)| div 2.

Proof. Let G be a plane graph, and let Fi ∈ F , for some i ∈ {1, . . . , f}, be a face
of G with {v1, . . . , vk} ⊆ V (Fi) ∩ D3 for some 1 < k ≤ |V (Fi)|; hence deg(vj) = 3 for
every j ∈ {1, . . . , k}. Suppose without loss of generality that v1, . . . , vk are in cyclic
order, otherwise relabel them such that they are (see Figure 3.3a). For Fi 6= Fo cyclic
order means that there is a path through V (Fi) that visits the vertices v1 . . . , vk in the
given order (v1, . . . , vk). Since the minimum degree in G is three, the face Fi has to be
a cycle in G, and thus a cyclic order must exist and can be calculated in polynomial
time on G. To see this choose a vertex in V (Fi) and relabel it as v1 in G. Then
run once through the cycle V (Fi) and relabel the vertices in the order visited which
can altogether be done in O(|V (Fi)| · |E(G)|) time. Let d := (k div 2) and pair the
vertices v1, . . . , vk up as follows: {(vr, vr+1) | r ∈ {1, . . . , k − 1} ∩ (2N + 1)}; meaning
that we always pair up two consecutive vertices with respect to the cyclic order such
that every vertex is part of exactly one of the d many pairs, except for maybe vk,
which is left out in the case of k mod 2 = 1 (see v5 in Figure 3.3b). Now for each
pair (vr, vr+1), r ∈ {1, . . . , k − 1} ∩ (2N + 1) iteratively make altogether d many H-
insertions on vr, vr+1 in G. By iterative use of Lemma 3.11 the H-insertions can be
carried out in a way that G′ stays planar. To see this, note that after each iteration the
remaining pairs still lie on a common face due to their choice respecting the cyclic order
(see Figure 3.3b for planar embedded H-insertions given a cyclic order). After the H-
insertions, Lemma 3.11 guarantees that deg(vr) = 4 = deg(vr+1) in G′. As H-insertions
do not give rise to degree-two or degree-three vertices, the above described procedure
produces a plane graph G′ ∈ G4

3 from G reducing the number of degree-three vertices
by 2d ≥ 2. The number of faces in the embedding grows by 8d since eight new faces
arise for each H-insertion. To see this, note that each H-insertion splits the face Fi
into two faces by connecting two vertices of Fi, and H itself adds seven new faces now
embedded inside Fi (see Figure 3.2b and Figure 3.2a). By construction it is clear that
the faces Fj for j 6= i are not changed. This construction can be done in polynomial
time as a single H-insertion can be carried out in constant time after reading G and the
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v2v3

v4 v5

(a) Cyclic Order in a face.

v1

v2v3

v4 v5

H

H

(b) H-insertion given cyclic order.

Figure 3.3: Cyclic order and H-insertions. Both Figures illustrate the same face in a
graph G with five degree-three vertices. The (red) H-Box is a schematic
representation of the plane H-graph where the (red) thick edges are the
edges arising from the insertion as the (red) thick edges in Figure 3.2b. The
dashed edges denote edges with vertices in other faces of G.

planar embedding can be updated in parallel to the H-insertions in polynomial time,
as only O(nG) many new faces arise. Alternatively, a planar embedding of G′ can be
computed in polynomial time on G′ after completing the H-insertions as we know by
construction that G′ is planar [HT74; MM96].

Iterative use of Lemma 3.17 yields a planar graph G′ with at most one degree-three ver-
tex per face for some given embedding. Note that there might exist another embedding
of G′ where two vertices of degree-three might still lie on a common face. As Lemma 3.17
needed a planar embedding in the first place, it is worth noting that Hopcroft and Tar-
jan [HT74] presented an algorithm that tests whether a graph is planar in linear time,
and suggested slight modifications to the algorithm, such that a planar embedding can
be computed in linear time (see also [MM96]). We will thus assume without loss of
generality that the planar graphs we are given are plane.

In a next step we will prove that we can connect degree-three vertices that do not
share a common face, keeping the resulting graph planar and reducing the number of
degree-three vertices. To this end, we will introduce what we will call H-chains and
H-insertion chains. Our intermediate results towards this proof will need the planar
embeddings of our graphs to be straight-line embeddings. The following result due to
De Fraysseix, Pach, and Pollack [DPP90] shows that we may assume our embeddings to
be straight-line embeddings, also known as Fáry-embeddings, without loss of generality,
as they can be computed in polynomial time.

Theorem 3.18 (De Fraysseix, Pach, and Pollack [DPP90, Theorem 1]). Any plane graph
with n vertices has a straight-line embedding on the 2n-4 by n-2 grid. The embedding
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3.2 4-regular planar Hamiltonian graphs.

can be computed in O(n2) time.

Additionally, we will need the y-coordinates of our embeddings to be pairwise distinct.
To avoid the discussion of corner-cases we will moreover assume the vertices in the em-
beddings to be in general position in R2, meaning that no three vertices are on a line.
Unfortunately we were not able to find literature proving that y-monotone graph draw-
ings, or graph-drawings with vertices in general position, can be computed in polynomial
time on G. At this point we want to emphasize that the assumption of a y-monotone
drawing with vertices in general position only simplifies the argument in our proof, as
we do not have to deal with case distinctions or corner-cases. We will come back to this
at the point where the assumptions on the embeddings are needed, and discuss how they
may have been omitted in the proofs.

From now on it will be assumed that the embeddings we are given are straight-line
embeddings in R2, that the vertices are in general position, and that the drawings are y-
monotone, meaning that the y-coordinates are pairwise distinct. Given some vertex v
we will write y(v) to refer to the y-coordinate of the embedding of v.

Definition 3.19 (H-insertion chain on u, v and H-chain.). Let G be a plane graph
with faces F := {F1, . . . , Fk} and let u ∈ F1, v ∈ F2 be two different vertices. Denote
by `vu the line segment in R2 connecting u and v and by `e, the straight-line embedding
of e ∈ E(G) in R2. Let Ec := {e | `vu ∩ `e 6= ∅, e ∈ E(G)} be the edges in G whose
embedding intersects `vu. Note that the intersection of `vu ∩ `e cannot have the coordinates
of another vertex in G that is already embedded in R2, as we supposed the vertices to be
in general position. Moreover let Ec = {e1, . . . , em} be sorted by increasing y-coordinates
of the intersection points of `vu ∩ `ei for every i ∈ {1, . . . ,m} and m := |Ec|. Now
introduce a subdivision vertex zi for each edge ei ∈ Ec such that the coordinates of zi in
the embedding of G in R2 are given by the coordinates of the intersection-point `vu ∩ `ei
(see the (orange) diamond-shaped vertices in Figure 3.4).

An H-insertion chain connecting u, v in G gives rise to a graph G′ by m+1 consecutive
H-insertions on the vertices given by the pairs (u, z1), (z1, z2), . . . , (zm−1, zm), (zm, v). A
schematic example of an H-insertion chain is depicted in Figure 3.4. If Ec = ∅ (thus
there are no subdivision nodes zi), the H-insertion chain is just an H-insertion on u, v.
Let VH :=

⋃m+1
i=1 V (Hi) ∪ {z1, . . . , zm} ∪ {u, v} where Hi denote the respective H-graphs

needed for the m+ 1 many H-insertions. Then we call the induced graph Hc := G′[VH ]
the resulting H-chain.

The assumption that the vertices in the given embedding are in general position is
only needed to avoid that the vertices zi, introduced in Definition 3.19, would have
coordinates coinciding with the coordinates of some other vertex; thus avoiding that `vu
and `ei intersect in a vertex of ei. Hence we could have omitted the assumption on
general position and, if needed, shift the vertices of ei by some amount ε > 0 such that
they do not lie on another edge and without affecting the planarity of our graph, which
is possible as the number of vertices and edges of G is finite. Note that the definitions
of H-insertion chains and the H-chain do not need the embedding of the graph to be y-
monotone at first.
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v
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H

H
H

H
H

Figure 3.4: H-insertion chain on u, v. The figure shows a detail of some plane graph G ∈
G4

3 . The (orange) diamond-shaped vertices correspond to the subdivision
vertices zi at the intersection points as explained in Definition 3.19. The
(blue) H-boxes schematically denote plane embeddings of H-graphs arising
from the H-insertions. The thickly drawn parts together with the (orange)
diamond-shaped vertices induce the H-chain. The dashed edges denote re-
maining edges to other vertices of the graph.

The next two lemmata show that, given some input graph G ∈ G4
3 , we can carry out

H-insertion chains such that the resulting graph stays planar while reducing its number
of degree-three vertices, which again does not need the assumption on the embedding
to be y-monotone.

Lemma 3.20. Let G be a plane graph with f ∈ N many faces, and let u, v be two
distinct vertices in G. The graph G′ resulting from an H-insertion chain on u, v is
planar and has f + 8d many faces, where d ≤ f denotes the number of H-insertions
needed in the construction. Moreover G′ can be constructed in polynomial time from G
with |V (G′)| ∈ O(nG).

Proof. Given an embedding of G, the coordinates of the
”
subdivision“ vertices needed

in the construction of the H-insertion chain (the diamond-shaped (orange) vertices in
Figure 3.4) can be computed in polynomial time on G. To see this note that their
coordinates can be calculated by solving less than nG many linear equation systems
(consisting of two linear equations in two variables) and checking four inequalities (as
we only have line segments) which is altogether solvable in O(nG) time. Sorting the
coordinates by increasing y-coordinates is feasible in O(|E(G)| · log |E(G)|) time. As at
most f many H-insertions are needed to construct the H-insertion chain, the number of
faces in the embedding of G′ is upper-bounded by f + 8f ∈ O(nG), as each H-insertion
gives rise to eight new faces as explained in the proof ofLemma 3.17. An inductive
use of Lemma 3.11 for each of the at most f many H-insertions in the definition of
H-insertion chains, yields that the resulting H-chain can be embedded in such a way
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3.2 4-regular planar Hamiltonian graphs.

that G′ is a plane graph (see Figure 3.4). As f < nG, and as each of the at most f
many H-insertions can be done in constant time after reading G, the H-insertion chain
can be done in O(nG) time. Finally, G′ is altogether constructible in polynomial time
from G with V (G′) = nG + 7d+ (d− 1) ≤ 9nG where 7d vertices arise from the d many
H-insertions and d− 1 many

”
subdivision“ vertices are constructed.

Lemma 3.21. Let G ∈ G4
3 be a plane graph with faces F := {F1, . . . , Ff}. Let D3 :=

{v | v ∈ V (G), deg(v) = 3} denote the set of degree-three vertices in G. Suppose there
are different i, j ∈ {1, . . . , f} with u ∈ Fi ∩ D3 6= ∅ and v ∈ Fj ∩ D3 6= ∅. Then we can
construct a planar graph G′ ∈ G4

3 with f ≤ f ′ ≤ f + 8f faces and (|D3| − 2) degree-three
vertices by an H-insertion chain connecting u, v in polynomial time from G.

Proof. Let i, j ∈ {1, . . . , f} such that V (Fi) ∩ D3 6= ∅ and V (Fj) ∩ D3 6= ∅; hence there
are ui ∈ V (Fi) and uj ∈ V (Fj) such that deg(ui) = 3 = deg(uj). Let G′ denote the
graph resulting from G by an H-insertion chain connecting u and v. By Lemma 3.20 the
graph G′ is plane with f ≤ f ′ ≤ f + 8f faces and can be constructed in polynomial time
from G. Note that by construction for every

”
subdivision“ vertex z introduced by the

H-insertion chain we have deg(z) = 4 in G′ (see Definition 3.19 and Figure 3.4). Now
by Lemma 3.11 the vertices in the H-graphs have degree four in G′ thus keeping the
maximum degree of G′ upper-bounded by four. As no other new vertices are introduced,
no degree-three or degree-two vertex arises from an H-insertion chain. Finally deg(u) =
4 = deg(v) in G′ concluding that G′ has (|D3| − 2) many degree-three vertices.

As we want to give a polynomial-time many-one reduction from the class of planar
graphs with minimum degree three and maximum degree four to the class of 4-regular
planar graphs by a construction using H-chains, we need to ensure that the construction
can be performed in polynomial time from G. As the number of H-insertions needed
in an H-insertion chain depends on the number of faces in G, and as we want to use
subsequent H-insertion chains, we need to prove that the resulting faces are altogether
polynomially upper-bounded by the number of faces in our input graph G. Roughly
speaking, we want to show that H-insertion chains can be carried out in a way that
subsequent H-insertion chains do not need to pass through

”
many“ faces created by

previously performed H-insertion chains. This is where the assumption that our em-
beddings are y-monotone will be helpful. Note that a naive iterative use of Lemma 3.21
would result in a graph with O(9nG · f) faces.

The next lemma states that, given our assumptions on the embedding, two H-insertion
chains on different vertices can be carried out in a way that they do not

”
cross“; meaning

that the graph stays planar and the two H-chains are disjoint.

Lemma 3.22. Let G be a plane graph with faces F := {F1, . . . , Ff}. Let ui, vi ∈ V (G) be
different vertices for i ∈ {1, . . . , k}, k ≤ nG. Then (maybe after relabelling the ui, vi), we
can construct a plane graph G′ by k many H-insertion chains connecting ui, vi in G for
every i ∈ {1, . . . , k} in polynomial time on G, such that the resulting H-chains denoted
by Hc

i are vertex disjoint and no two different H-chains have crossing edges. Moreover,
the total number of resulting faces in G′ is upper-bounded by f + 8kf , and |V (G′)| ∈
O(n2

G).
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u1

v1 u2

v2
H

H
H

H
H

H

H

H

Figure 3.5: Two H-chains as in Lemma 3.22. The H-Boxes schematically denote H-
graphs and the diamond-shaped vertices the subdivision vertices of the re-
spective H-chains.

Proof. As the y-coordinates of the vertices in the given embedding of G are pairwise
distinct, we can order them in a strictly decreasing way in O(nG log nG) time. Let Φy :=
(v0, . . . , vnG−1) be an enumeration of the vertices with respect to the strict ordering,
meaning that y(vi) > y(vj) if i < j. Let D3 = {u1, v1, . . . , uk, vk} ⊂ Φy be relabelled with
respect to the strict ordering, meaning that y(ui) > y(vi) for i ∈ {1, . . . , k} and y(vi) >
y(ui+1) for i ∈ {1, . . . , k − 1}. Let G′ be the graph resulting from G by k H-insertion
chains on ui, vi in G for each i ∈ {1, . . . , k} and denote the corresponding H-chains
by Hc

i . Due to the strict ordering in D3 we can subsequently embed every Hc
i in R2 in

a way that y(vi) ≤ y(v) ≤ y(ui) for every v ∈ V (Hc
i ) and every i ∈ {1, . . . , k}. As the

edges of the H-chains can moreover be embedded as straight-lines, and by construction it
holds true that minv∈V (Hc

i ){y(v)} = y(vi) > y(ui+1) = maxv∈V (Hc
i+1){y(v)} for every i ∈

{1, . . . , k− 1}, the embeddings of the resulting H-chains do not have crossing edges (see
Figure 3.5). As a direct consequence, the subsequent embedding of H-chains Hc

i only
affects the number of faces given by the initial embedding of G, meaning that the number
of resulting faces arising from embedding an H-chain Hc

i does not depend on previously
embedded H-chains Hc

j for any j < i. This argument together with Lemma 3.20 for
each of the k many H-insertion chains yields that the number of faces in G′ is upper-
bounded by f + 8kf and that the graph G′ is planar embeddable. It holds moreover
true by construction that |V (G′)| ≤ nG + 8k ∈ O(n2

G), and hence, after construction,
a plane straight-line embedding of G′ can be calculated in polynomial time on G by
Theorem 3.18. Altogether, we conclude that G′ is constructible in polynomial time
from G.

If we would not have a y-monotone embedding, then the above reasoning on why
consecutive H-insertion chains are not affected by each other would not hold. We
want to argue that the assumption is not necessary, yet useful as we do not have to
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3.2 4-regular planar Hamiltonian graphs.

make case-distinctions or deal with corner cases. To see this, assume that we are
given a simple straight-line embedding. Then, order the degree-three vertices by de-
creasing y-coordinates and subsequently by decreasing x-coordinate in the cases where
the y-coordinates are equal. Now proceed as in the proof of Lemma 3.22 with the only
difference being that if the y-coordinates of two vertices u, v are equal, then we have to
embed the H-graphs such that the y-coordinates of their vertices are bigger than y(u)
and y(v), in order to guarantee that subsequent H-chains do not intersect the previous
ones. Thus, one has to argue why this is always a possible construction. This would
need an adapted definition of H-chains, as then we could not look at the intersections
of the direct line `uv with the embedding of edges as we have done in Definition 3.19. We
would then again need to argue using

”
small ε-shifts“. Note that such a proof would

be rather technical, which has lead to our decision on the assumptions for the graph
embeddings.

We are now ready to prove the construction needed in the proof of Theorem 3.7.

Lemma 3.23. Let G ∈ G4
3 be a plane graph and let F := {F1, . . . , Ff} denote its faces.

Then we can construct a 4-regular planar graph G′ with

FVS(G) ≤ k ⇐⇒ FVS(G′) ≤ k + 3
m

2

in polynomial time from G, where m denotes the number of H-insertions needed in the
construction of G′, which is polynomially dependent on G.

Proof. LetG be a planar graph. A planar straight-line embedding with known faces F :=
{F1, . . . , Ff} ∪ {Fo} can be computed in polynomial-time from G, where Fo denotes the
canonical outer-face that may not be a cycle and does not need to be known explicitly
[thm˙strlineemb; HT74; MM96]. Recall that we assumed the given embedding to
be y-monotone and that the vertices are in general position. Given the embedding, use
Lemma 3.17 to reduce the number of degree-three vertices for every face Fi with i ∈
{1, . . . , f} to one. Note that after each iteration no new faces with multiple degree-three
vertices can arise, therefore it suffices to apply Lemma 3.17 for each of the f initial
faces once, where f ≤ nG. The resulting graph G′ is by construction planar and the
number of faces in G′ is upper-bounded by f ′ ≤ f + 8fnG < 9n2

G. A planar straight-line
embedding of G′ can now be constructed in polynomial-time from G′ thus in polynomial-
time on G; altogether yielding that G′, as well as a known planar embedding of G′, can
be constructed in polynomial time on G. As less than nG many H-insertions are needed,
we conclude that |V (G′)| ∈ O(n2

G).
Let D3 := {v | deg(v) = 3} ⊂ G′ denote the set of degree-three vertices in G′. Then

by construction it holds true that |Fi ∩ D3| ≤ 1 for every i ∈ {1, . . . , f ′}. Let d3 :=
|D′3| ≤ f ′ denote the number of degree-three vertices in G′, and note that d3 ∈ 2N
as G′ ∈ G4

3 . Now order the vertices in D3 = {v1, . . . , vd3} by strictly decreasing y-
coordinates in O(d3 log d3) time. Apply Lemma 3.22 together with Lemma 3.21 in order
to produce a 4-regular plane graph G′′ in polynomial time from G′. As we need d3

many H-insertion-chains, Lemma 3.22 yields that the number of faces in G′′ is upper-
bounded by f ′ + 8d3f

′ ∈ O(n3
G) and |V (G′′)| ∈ O(n2

G′) = O(n4
G), concluding that
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3 The Feedback Vertex Set Problem on Hamiltonian Graphs

altogether G′′ can be constructed in polynomial time from G. As finally the number of
H-insertions needed to construct G′′ from G is altogether upper-bounded by some m ∈
O(n4), Corollary 3.14 concludes the proof.

We have now gathered all the
”
machinery“ needed for a proof of Theorem 3.7. We

have proven that, given a planar graph G ∈ G4
3 , we can construct a planar 4-regular

graph G′, by connecting the degree-three vertices in G′ by H-chains while keeping the
cardinality of feedback vertex sets in G′ polynomially dependent on the input. Thus
we have given a polynomial-time many-one reduction from Feedback Vertex Set
on planar graphs of minimum degree three and maximum degree four to Feedback
Vertex Set on 4-regular planar graphs.

Proof of Theorem 3.7. By Theorem 3.8 we know that Feedback Vertex Set is NP -
complete on planar graphs with mininum degree three and maximum degree four. By
Lemma 3.23 we can construct a 4-regular planar graph G′ from a planar graph G ∈ G4

3

in polynomial time by f(nG) inductive H-insertions such that FVS(G) ≤ k ⇐⇒
FVS(G′) ≤ k + f(nG) where f ∈ O(xp) for some fixed p ∈ N. Finally, the fact that
Feedback Vertex Set on 4-regular planar graphs is contained in NP concludes the
proof.

In a last step we use Theorem 3.7 to prove the main result of this section—namely
Theorem 3.5—stating that Feedback Vertex Set remains NP -complete on 4-regular
planar Hamiltonian graphs.

The proof will be done via a polynomial-time many-one reduction from Feedback
Vertex Set on 4-regular planar graphs; the reduction is highly inspired by the work of
Fleischner and Sabidussi [FS03] and Fleischner, Sabidussi, and Sarvanov [FSS10]. The
construction of the Hamiltonian graph will rely on what we will call L-insertions, which
are very similar to H-insertions and turn out to have analogous properties.

Definition 3.24 (Ladderlike-graph L and L-insertion on u,w). We define the Ladderlike-
graph L to be the graph on ten vertices as depicted in Figure 3.6a. Let G be a graph
and let u,w ∈ V (G) be two different vertices. Then an L-insertion on u,w results in
a new graph G′ by a disjoint union of G with L (maybe after relabelling the vertices
in V (L)) and subsequently connecting u to both v1 and v2, and w to both v′1 and v′2 as
illustrated in Figure 3.6b.

Analogously to the H-insertions, we will prove some properties on L-insertions quan-
tifying their impact on the cardinality of feedback vertex sets and the topology of the
input graphs.

Remark. Note that L is a planar graph, and given a plane graph G and two vertices v, w
on a same face, an L-insertion on v, w can be carried out in such a way that the resulting
graph G′ stays planar by embedding L planar

”
inside“ that face.

Lemma 3.25. Let G be a graph, and let L be the Ladderlike-graph from Definition 3.24.
Let G′ be the graph resulting from an L-insertion connecting two different vertices u, v ∈
V (G). Then,

FVS(G) ≤ k ⇐⇒ FVS(G′) ≤ k + 4
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v1
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v3

v4

v′3

v′4

v′1

v′2

v5 v′5

(a) L the Ladderlike-graph.

G

v1

v2

v′1

v′2

u w

(b) L-insertion connecting u,w.

Figure 3.6: The Ladderlike-graph L from Definition 3.24 and an L-insertion on u,w. In
Figure 3.6a the (orange) thickly drawn vertices denote a feedback vertex set
in L and the (red) dashed vertices indicate the edges arising after an L-
insertion (see the (red) thick edges in Figure 3.6b). In Figure 3.6b a detail of
a graph G after an L-insertion on u,w is shown. The (red) thick edges show
the new edges arising from the L-insertion while the dashed edges denote
some of the possible edges in G.

for every k ∈ N.

Proof. First note that L has a feedback vertex set of cardinality at least four as the
disjoint subgraphs induced by v1, . . . , v5 and v′1, . . . , v

′
5 each have a feedback vertex set

of size at least two, respectively. It is easy to see that I := {v1, v4, v
′
3, v
′
2} is a feedback

vertex set of size four in L (see in Figure 3.6a the (orange) thickly drawn vertices).
Now L− I is exactly the two induced disjoint paths given by (v2, v5, v3) and (v′4, v

′
5, v
′
2).

⇒: Let S ⊂ V (G) be a feedback vertex set in G with |S| ≤ k for some k ∈ N. We
claim that S ′ := S ∪ I is a feedback vertex set in G′. In order to see this, note
that S ′ is a feedback vertex set in G′[V (G)] = G and G′[V (L)] ∼= L. Therefore, any
remaining cycle C in G′−S ′ must contain at least one vertex in V (L). As L− I is
composed of two disjoint paths, either the path (v2, v5, v3) or the path (v′4, v

′
5, v
′
1)

must be part of C. As deg(v3) = 1 = deg(v′4), neither path can be part of C,
thus S ′ is a feedback vertex set in G′.

⇐: Let S ′ be a feedback vertex set in G′ with |S ′| ≤ k + 4. Since |S ′ ∩ V (L)| ≥ 4
as FVS(L) ≥ 4, and since V (L) ∩ V (G) = ∅, we can conclude that |S ′ ∩ V (G)| ≤
k + 4− 4 = k, and thus S ′ ∩ V (G) is a feedback vertex set of size k in G.

The next lemma proves that, given a 4-regular planar graph, we can construct a 4-
regular planar Hamiltonian graph by consecutive L-insertions in polynomial time. The
ideas behind Lemma 3.26 and its proof are similar to, and inspired by the previous work
done by Fleischner, Sabidussi, and Sarvanov [FSS10, Lemma 2.3]. We will first determine
a 2-factor Q = {Q1, . . . , Qp} of G for some p < nG, which is a set of disjoint 2-regular
subgraphs Qi ⊆ G such that

⋃p
i=1 V (Qi) = V (G). We will then extend Q inductively
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Q1
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q1
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(a) 2-factors Q1 and Q2.

Q1

Q2

Q1,2

q1

q2

z1

z2

x1

x2

L

(b) Construction of Q1,2 by an L-insertion.

Figure 3.7: The thick edges denote the edges of the 2-factors Q1, Q2 and Q. The double
edge represents the edge between q1 and q2 in G that will be part of Q.
The vertices x1 and x2 are neighbors of q1 and q2 respectively, and lie on
a common face. The (orange) diamond-shaped vertices z1 and z2 represent
newly introduced subdivision vertices on which we make an L-insertion (see
Figure 3.7b). The (red) edges and vertices next to L highlight the ladderlike-
graph and new edges resulting from an L-insertion. Dashed edges represent
all the remaining edges in G of the vertices that are part of either 2-factor.

to a 2-factor Q′ having one component less than Q, by L-insertions as can be seen in
Figure 3.7a. This will then result in a 4-regular Hamiltonian graph. Note that for 4-
regular graphs such a 2-factor Q always exists [Mul92]. Moreover, determining a 2-factor
(if it exists) can be done in O(nG) time by Petersen’s method [FS03, Proposition 2.1].

Lemma 3.26. Let G be a 4-regular plane graph of order nG. Then we can construct
a 4-regular plane Hamiltonian graph G′ from G with d < nG many L-insertions in
polynomial-time from G. Moreover, it holds true that

FVS(G) ≤ k ⇐⇒ FVS(G′) ≤ k + 4d

for every k ∈ N.

Proof inspired by Fleischner, Sabidussi, and Sarvanov [FSS10, Lemma 2.3]. Determine a
2-factor Q = {Q1, . . . , Qp} of G for some p ∈ N, which can be done in polynomial time
on G. Now, if p = 1, then Q consists of only one component, namely Q1. Since Q1

is by construction 2-regular, it is a cycle; and since V (Q) = V (G) it follows that G is
Hamiltonian.
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3.3 k-regular Hamiltonian graphs.

Otherwise let Q1, Q2 ∈ Q be two different components such that there are q1 ∈ V (Q1)
and q2 ∈ V (Q2) with {q1, q2} ∈ E(G). In order to determine Q1 and Q2, construct GQ :=
(VQ, EQ) where VQ := {ti | Qi ∈ Q} and EQ := {{ti, tj} | E(G) ∩ {q, q′ | q ∈ V (Qi), q

′ ∈
V (Qj)}}, the graph obtained by contracting each component Qi ∈ Q to a single vertex.
One can think of GQ as a graph having the components of the 2-factor as vertices, which
are connected by an edge if the respective components are connected by an edge in G.
Let ET be a spanning tree of the graph GQ. Now we may choose Q1 and Q2 such that
the corresponding vertices in GQ are connected by an edge, hence such that {t1, t2} ∈
ET . This whole construction can be done in polynomial time on G as was shown by
Fleischner, Sabidussi, and Sarvanov [FSS10, Lemma 2.3] (see also [FS03, Proposition
2.1]). As G is 4-regular, Q1 and Q2 must be cycles in G. Now let {q1, x1} ∈ E(Q1)
and {q2, x2} ∈ E(Q2) be such that x1, x2 lie on a common face in G, and subdivide
these edges by introducing respective new vertices z1 and z2 (see Figure 3.7a). Note
that due to Corollary 3.16 this does not affect the cardinality of feedback vertex sets
in G. Now construct a plane graph G′ from G by an L-insertion on z1, z2 and recall that
this yields deg(z1) = 4 = deg(z2) and deg(v) = 4 for every v ∈ V (L); thus G′ is again 4-
regular. Update the 2-factor Q′ := (Q ∪ {Q1,2})\{Q1, Q2}, where Q1,2 is constructed as
suggested by Figure 3.7b with V (Q1,2) = V (Q1) ∪ V (Q2) ∪ V (L). By construction Q′

is a 2-factor of G′ with |Q′| = |Q| − 1 and G′ is a plane 4-regular graph. Repeat this
procedure |ET | ≤ nG many times until |Q′| = 1, while keeping G′ 4-regular and plane.
Finally G′ is a 4-regular planar Hamiltonian graph obtained from G by d := |ET | many
L-insertions. Inductive use of Lemma 3.25 yields FVS(G) ≤ k ⇐⇒ FVS(G′) ≤ k+ 4d,
concluding the proof.

We are finally ready to prove Theorem 3.5.

Proof of Theorem 3.5. As we can find a planar embedding of a graph G in polyno-
mial time (Theorem 3.18), the proof follows directly by a polynomial-time many-one
reduction from Feedback Vertex Set on 4-regular planar graphs and Theorem 3.7
together with Lemma 3.26 and the fact that Feedback Vertex Set on 4-regular
planar Hamiltonian graphs is trivially contained in NP .

3.3 k-regular Hamiltonian graphs.

Having considered Feedback Vertex Set on 4-regular (planar) Hamiltonian graphs,
a natural question would be whether Feedback Vertex Set remains NP -complete
restricted to k-regular Hamiltonian graphs for every k ∈ N. Li and Liu [LL99] showed
that Feedback Vertex Set is polynomial-time solvable for 3-regular graphs.

Theorem 3.27 (Li and Liu [LL99]). Feedback Vertex Set on 3-regular graphs is
polynomial-time solvable.

As the class of 3-regular Hamiltonian graphs is a subclass of the general 3-regular
graphs we conclude the following.
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3 The Feedback Vertex Set Problem on Hamiltonian Graphs

Corollary 3.28. Feedback Vertex Set on 3-regular Hamiltonian graphs is polynomial-
time solvable.

It turns out that the class of 3-regular graphs is a particular case, as we will show that
Feedback Vertex Set is NP -complete on k-regular Hamiltonian graphs for every
fixed k ≥ 4. We will prove this result via inductive polynomial-time many-one reductions
from Feedback Vertex Set on (k + 1)-regular Hamiltonian graphs to Feedback
Vertex Set on k-regular Hamiltonian graphs, knowing that Feedback Vertex Set
is NP -complete on 4-regular Hamiltonian graphs as a special case of Theorem 3.5. We
will prove a slightly stronger claim, namely that Feedback Vertex Set remains NP -
complete on k-regular Hamiltonian graphs of even degree for every k ≥ 4. The reason
why we will be looking at graphs of even degree, is that the construction we want to
use in the reductions needs the degree of the vertices to be even. This comes from the
fact that we want to pair up vertices and subsequently connect them by introducing a

”
gadget“ similar to most of our previous proofs.

Theorem 3.29. Feedback Vertex Set on k-regular Hamiltonian graphs of even
order with known Hamilton-cycle is NP -complete for every fixed k ≥ 4.

The proof of Theorem 3.29 will be done in two major steps. As a first step we will
prove the statement for the special case k = 5. This intermediate step is necessary, as in
the second step we will inductively reduce Feedback Vertex Set on (k + 1)-regular
graphs of even order to Feedback Vertex Set on k-regular graphs of even order,
which will then conclude the proof as any 5-regular graph is of even order. The proof
of this special case uses already all of the needed ideas for the proof of Theorem 3.29,
and it highlights why a case distinction into graphs of even and odd order is necessary
in our construction.

Theorem 3.30. Feedback Vertex Set is NP -complete on 5-regular Hamiltonian
graphs with known Hamilton-cycle.

The proof follows by a polynomial-time many-reduction from the class of 4-regular
Hamiltonian graphs. The construction in the reduction will need a special case of graphs
that we will call parachute-like graphs (subsequently denoted by Pk). Parachute-like
graphs will play a key-role in the proof of Theorem 3.29. One can think of the parachute-
like graph Pk as the graph resulting from two disjoint copies U and W of the complete
graph Kk, such that each vertex in U has a 1-to-1 correspondence to a vertex in W , that
is, they are connected by an edge. Moreover, each vertex in U is connected to an apex-
vertex û and each vertex in W to another apex-vertex ŵ (see the schematic Figure 3.8).

Definition 3.31 (Parachute-like graph of order k.). A parachute-like graph of order k,
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Kk Kk

û ŵ

Figure 3.8: Parachute-like graph. The vertices û and ŵ represent the apex-vertices. The
ellipses schematically represent a Kk, where dashed edges indicate missing
edges that have not been drawn explicitly. The bend edges between the
two Kk’s represent the edges between U and W in Definition 3.31 that are
in 1-to-1 correspondence.

denoted by Pk := (V p, Ep), is a graph on 2k + 2 vertices given by:

V p := U ] W ] {û, ŵ}, where

U := {ui | i ∈ {1, . . . , k}}, and W := {wi | i ∈ {1, . . . , k}}, and

Ep := EU ] EW ] Eû ] Eŵ ] EUW , where

EU := {{ui, uj} | ui, uj ∈ U, i 6= j}, EW := {{wi, wj} | wi, wj ∈ W, i 6= j},
Eû := {{û, ui | ui ∈ U, i ∈ {1, . . . , k}}, Eŵ := {{ŵ, wi | wi ∈ W, i ∈ {1, . . . , k}}, and

EUW := {{ui, wi} | ui ∈ U,wi ∈ W, i ∈ {1, . . . , k}}.

The vertices û and ŵ will be referred to as the apex-vertices of Pk.

Remark. It is clear by construction that for a parachute-like graph Pk of order k ∈ N,
every vertex v ∈ V (Pk) \ {û, ŵ} has degree k + 1, and deg(û) = k = deg(ŵ).

The main idea behind parachute-like graphs is that, given a Hamiltonian graph G
and a Hamilton-cycle C in G, we can connect a parachute-like graph to two consecutive
vertices in the cycle in order to augment their degree in the graph, while keeping the
resulting graph Hamiltonian and controlling its maximal vertex degree. This procedure
will be referred to as parachute-apexing (see Figure 3.9) and is defined as follows.

Definition 3.32 (Parachute-apexing on u, v given Pk). Let G be a graph and u,w ∈
V (G) be two different vertices. Let Pk be a parachute-like graph of order k ∈ N with
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G

uw

W

û

U

ŵ

Pk

Figure 3.9: Parachute-apexing on u,w given Pk. The apex-vertices are denoted by û, ŵ
and respectively connected by a thick (red) edge to every vertex in either of
the two complete components U and W (as given in Definition 3.31) in Pk
represented by thick (red) ellipses. The thick (red) double edge between the
two ellipses in Pk denotes the one-to-one connection between vertices in U
and W . Dashed edges represent some of the possible missing edges in G.

apex-vertices û, ŵ. We define the graph G′ resulting from parachute-apexing on u, v
given Pk by:

V (G′) := V (G) ] V (Pk), and

E(G′) := E(G) ] E(Pk) ] {{u, û}, {w, ŵ}}.

See Figure 3.9 for a schematic illustration of parachute-apexing on u,w.

Analogously as for the H-insertions, we need to analyze the impact of parachute-
apexing on the topology of the input graph G and the cardinality of feedback vertex sets
in G. The following lemmata and their proofs are very similar to the ones in Section 3.2.

Lemma 3.33. Let G be a Hamiltonian graph with known Hamilton-cycle C and u,w ∈
V (G) such that u,w are neighbors in C with deg(u) = k = deg(w) for some k ∈ N. Let Pk
be a parachute-like graph of order k with apex-vertices û, ŵ. Let G′ denote the graph
obtained by parachute-apexing on u,w, then G′ is Hamiltonian, deg(u) = k+1 = deg(w)
and deg(v) = k + 1 in G′ for each v ∈ V (Pk). The construction can be done in O(k2)
time.

Proof. Let C = (v0, . . . , u, w, . . . , vnG
, v0) denote a Hamilton-cycle in G. Let u1, . . . , uk ∈

U ⊂ Pk, as well as w1 . . . , wk ∈ W ⊂ Pk be as in Definition 3.31. We give an explicit
Hamilton-cycle in G′:

C ′ := v0PCu � (û, u1, . . . , uk, wk, . . . , w1, ŵ) � wPCv0,

which is obviously a possible construction as the needed adjacency of vertices is given.
Since NG′(u) \ NG(u) = {û}, it follows that deg(u) = k + 1, and analogously it follows
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thatdeg(w) = k + 1, as well as deg(û) = k + 1 and deg(ŵ) = k + 1. Note that for
every v ∈ V (Pk) \ {û, ŵ} it holds true by construction that deg(v) = k + 1. The
construction is feasible in O(k2) time after reading G as 2k+ 2 vertices and O(k2) many
edges are added to G, concluding the proof.

Lemma 3.34. Let Pk be a parachute-like graph of order k ∈ N for some k ≥ 4, and
let û and ŵ denote its apex-vertices. Then it holds true that FVS(Pk) ≥ 2(k − 1).

Proof. Let V (Pk) = U ∪ W ∪ {û, ŵ} as given by Definition 3.31. As a first step,
note that P [U ∪ {û}] ∼= Kk+1. Together with k ≥ 3, this yields that FVS(Pk[U ∪
{û}]) ≥ k − 1. Analogously one can show that FVS(Pk[W ∪ {ŵ}]) ≥ k − 1, and
since U ∩ W = ∅, it follows that FVS(Pk) ≥ 2(k − 1). It is easy to verify that I :=
{û, u1, u2, . . . , uk−2, ŵ, w3, w4, . . . , wk} is a feedback vertex set in Pk of cardinality 2(k−
1), as Pk−I is composed of two disjoint paths of length two, namely (uk−1, uk) and (w1, w2).
Note that the given feedback vertex set of order 2(k − 1) needed the assumption that k ≥
4.

The next lemma quantifies the impact of parachute-apexing on the cardinality of
feedback vertex sets in a G.

Lemma 3.35. Let G be a graph, and let u,w ∈ V (G) be two different vertices. Let Pk
be a parachute-like graph of order k ∈ N for some k ≥ 4, and let û, ŵ denote its apex-
vertices. Let G′ be the graph resulting from G by parachute-apexing on u,w. Then,

FVS(G) ≤ n ⇐⇒ FVS(G′) ≤ n+ 2(k − 1)

for every n ∈ N.

Proof. Let V (Pk) = U ∪ W ∪ {û, ŵ} as in Definition 3.31. As introduced in the proof
of Lemma 3.34, let I := {û, u1, . . . , uk−2, ŵ, w3, . . . , wk} be a feedback vertex set of
cardinality 2(k − 1) in Pk.

⇒: Let S ⊂ V (G) be a feedback vertex set in G of size n ∈ N. We claim that S ′ :=
S ∪ I is a feedback vertex set in G′. By construction S ′ is a feedback vertex
set in G′[V (G)] and in G′[V (Pk)]. Moreover, {û, ŵ} ⊂ V (G′) separates G′[V (Pk)]
from G′[V (G)] and thus there cannot be any cycle in G′− I through both compo-
nents, concluding that S ′ is a feedback vertex set in G′ with |S ′| ≤ |S|+ 2(k − 1).

⇐: Let S ′ ⊂ V (G′) be a feedback vertex set in G′ with |S ′| ≤ n + 2(k − 1). Then S ′

must contain at least 2(k − 1) vertices in V (Pk). Let I ′ := S ′ ∩ V (Pk), and
let S := S ′ \ I ′. Since V (Pk) ∩ V (G) = ∅ it holds true that S = S ′ ∩ V (G).
Therefore S is a feedback vertex set in G′[V (G)] = G with |S| = |S ′|−|I ′| ≤ n.

Note that parachute-apexing on two vertices u, v will augment their degrees by one, re-
spectively. Hence, parachute-apexing on two vertices of degree k gives rise to two vertices
of degree k+ 1. The main idea behind the proof of Theorem 3.30 (and Theorem 3.29) is
to pair up the vertices in a given k-regular Hamiltonian graph, and conecutively perform
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3 The Feedback Vertex Set Problem on Hamiltonian Graphs

K5 K5

û ŵ

u1 w1

u2 w2

u3 w3

u4 w4

u5 w5

(a) Gad-graph.

G

ŵû

(b) Gad-insertion.

Figure 3.10: The Gad-graph and a Gad-insertion on û, ŵ. The thick (orange) vertices
labelled with û, ŵ denote the common vertices to Gad and G. The thick
edges in Figure 3.10a highlight isomorphisms to K5. The thick (red) unla-
belled vertices and edges in Figure 3.10b denote the vertices and edges in
the Gad-graph that are distinct from the vertices in G. Dashed edges high-
light some of the possible missing edges in G while all other edges denote
edges that are part of the respective graphs.

parachute-apexing on the pairs in order to construct a k+ 1-regular Hamiltonian graph.
Unfortunately, this is not possible if the graph has odd order, as then one vertex will
be left out in the pairing procedure. We will thus introduce a derived version of the
parachute-like graph of order five that will be referred to as the Gad-graph. The Gad-
graph is a

”
gadget“ that will only be used to augment the vertex degree of the vertex

that is left out during the pairing procedure.

Definition 3.36 (Gad-insertion on u,w). Let the auxiliary graph Gad be defined as
follows:

V (Gad) := {û, ŵ, ui, wi, | i ∈ {1, 2, 3, 4, 5}}, and

E(Gad) := {{ui, uj}, {wi, wj} | i, j ∈ {1, 2, 3, 4, 5}, i 6= j}∪
{{u1, w1}, {u2, w2}, {u3, w3}, {û, u4}, {ŵ, u5}, {ŵ, w4}, {ŵ, w5}}.

Let G be a graph with vertices labelled such that V (G) ∩ V (Gad) = {û, ŵ}, where û, ŵ
are two different vertices. Then a Gad-insertion on û, ŵ results in a new graph G′ :=
G ∪ Gad. The Gad-graph and a schematic Gad-insertion are depicted in Figure 3.10a
and Figure 3.10b respectively.

Observation 1. It is clear by construction that for the Gad-graph from Definition 3.36
it holds that deg(wi) = 5 = deg(ui) for every i ∈ {1, 2, 3, 4, 5}, as well as deg(ŵ) = 3
and deg(û) = 1 (see Figure 3.10a).
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3.3 k-regular Hamiltonian graphs.

Essentially the Gad-graph and the Gad-insertion share the same properties as the
parachute-like graphs and parachute-apexing. We will again analyze the impact of Gad-
insertions on the topology of a given graph G and the cardinality of a minimum feedback
vertex set in G. The statements are similar, and their proofs are mostly analogous to
the respective ones concerning parachute-like graphs.

Lemma 3.37. Let G be a Hamiltonian graph and C a Hamilton-cycle in G. Let û, ŵ ∈
V (G) be vertices such that û and ŵ are neighbors in C with deg(û) = 4 and deg(ŵ) = 2.
Let Gad be defined as in Definition 3.36 with V (G) ∩ V (Gad) = {û, ŵ}. Let G′ denote
the graph obtained by a Gad-insertion on û, ŵ in G. Then G′ is Hamiltonian, deg(û) =
5 = deg(ŵ) and deg(v) = 5 for each v ∈ V (G′[V (Gad)]). The construction can be done
in constant time after reading G.

Proof. Let C = (v0, . . . , û, ŵ, . . . , vnG
, v0) denote a Hamilton-cycle in G. Let V (Gad) =

{û, ŵ, ui, wi | i ∈ {1, 2, 3, 4, 5}} as given by Definition 3.36. We give an explicit Hamilton-
cycle in G′ by

C ′ := v0PCû � (û, u4, u5, u1, u2, u3, w3, w2, w1, w5, w4, ŵ) � ŵPCv0,

which is obviously a possible construction. Since NG′(û) \ NG(û) = {u4}, it follows
that deg(û) = 4 + 1 = 5 and analogously it follows that deg(w) = 5. The construction
is feasible in constant time after reading G as exactly ten vertices and 27 edges need to
be added.

Lemma 3.38. Let G denote a graph, let Gad denote the auxiliary graph from Defini-
tion 3.36 and let û, ŵ ∈ V (G) ∩ V (Gad) be two different vertices (maybe after rela-
belling V (G)). Let G′ be the resulting graph from a Gad-insertion on û, ŵ. Then,

FVS(G) ≤ k ⇐⇒ FVS(G′) ≤ k + 6

for every k ∈ N.

Proof. Analogously to the argument in the proof of Lemma 3.35, note that Gad has two
disjoint subgraphs isomorphic to K5 and thus FVS(Gad) ≥ 6. Additionally it is easy to
verify that I := {u4, u5, w4, w5, u1, w2} is a feedback vertex set in Gad of size six, where
the vertices ui, wi and edges between them are defined as in Definition 3.36. Note that the
vertices û and ŵ cannot be part of a minimum feedback vertex set in Gad as Gad−{û, ŵ}
still has two disjoint subgraphs isomorphic to K5 and thus FVS(Gad− {û, ŵ}) ≥ 6.

⇒: Let S ⊂ V (G) be a feedback vertex set in G with FVS(S) ≤ k. We claim
that S ′ := S ∪ I is a feedback vertex set in G′. By construction S ′ is a feedback
vertex set in G′[V (G)] ∼= G and in G′[V (Gad)] = Gad. Moreover, {u4, u5, w4, w5}
separates G′[V (Gad)] from G′[V (G)] and thus there cannot be any cycle in G′−S ′
through both components. Hence S ′ is a feedback vertex set in G′ with |S ′| ≤
|S|+ 6.
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3 The Feedback Vertex Set Problem on Hamiltonian Graphs

⇐: Let S ′ ⊂ V (G′) be a feedback vertex set in G′ with |S ′| ≤ k+ 6. Then S ′ contains
at least six vertices in V (Gad)\{û, ŵ}. Let I ′ := S ′ ∩ V (Gad) and let S := S ′ \I ′.
Now as V (Gad) ∩ V (G) = {û, ŵ}, it holds true that I ′ ∩ V (G) = ∅ and thus S
must still be a feedback vertex set in G′[V (G)] ∼= G with |S| = |S ′| − |I ′| ≤ k.

We are now ready to give the polynomial-time many-one reduction needed for the proof
of Theorem 3.30. As mentioned above, the main idea lies in pairing up the vertices in a
given Hamiltonian graph with respect to its Hamilton-cycle, and subsequently perform
parachute-apexing on the constructed pairs. If the order of the graph is odd, then one
vertex will be left-out in the pairing procedure. Only in that case we will make use of
the Gad-insertion.

Lemma 3.39. Let G be a 4-regular Hamiltonian graph and C a Hamilton-cycle in G.
Then, we can compute a 5-regular Hamiltonian graph G′ with

FVS(G) ≤ k ⇐⇒ FVS(G′) ≤ f(k, nG),

in polynomial time from G, where

f(k, nG) :=

{
k + 4nG, if nG mod 2 = 0,

k + 4(nG − 1) + 6, if nG mod 2 = 1.

Proof. Let C := (v0, . . . , vnG−1, v0) be a Hamilton-cycle inG, and let k ∈ N with FVS(G) ≤
k.

Case 1: nG mod 2 = 0. Pair the vertices in C up in nG

2
pairs of the form P :=

{(vi, vi+1) | i ∈ {0, . . . , nG − 1} ∩ (2N)}. This can be done in O(nG) time. We will
refer to the pairs as P := (p1, . . . , pnG

2
). For the sake of readability we relabel the

pairs such that pi = (ui, wi) for every i ∈ {1, . . . , nG

2
}. Let P j

5 be parachute-like graphs
of order five for each j ∈ {1, . . . , nG

2
}. We will construct the graph with the needed

properties stated in Lemma 3.39 inductively. To this end, let G0 := G and for 1 ≤ i <
nG

2
suppose that a Hamiltonian graph Gi with deg(uj) = 5 = deg(wj) and deg(v) =

5 for every v ∈ V (P j
5 ) and every j ∈ {0, . . . , i} was already constructed. Now we

construct Gi+1 from Gi by parachute-apexing on (ui+1, wi+1) = pi+1 ∈ P given P i+1
5

(see Definition 3.32). Lemma 3.33 guarantees that Gi+1 is Hamiltonian (by inductive
construction), as well as that deg(uj) = 5 = deg(wj) and deg(v) = 5 for every v ∈ V (P j

5 )
and for every for every j ∈ {0, . . . , i + 1}. Finally set G′ := GnG

2
. Then, the inductive

use of Lemma 3.33 in the construction of Gi guarantees that G′ is Hamiltonian and 5-
regular. As G′ was constructed by parachute-apexing on distinct vertices in G altogether
less than nG many times, inductive use of Lemma 3.35 yields that FVS(G′) ≤ k + nG

2
·

2(5−1) = k+4nG. As parachute-apexing given parachute-like graphs of order five can be
done in constant time after reading G (special case of Lemma 3.33), we can construct G′

in O(nG) time after reading G concluding the proof of Case 1.
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3.3 k-regular Hamiltonian graphs.

Case 2: nG mod 2 = 1. As in Case 1, pair up the vertices in C until vnG
is the only

vertex left that has not been paired. Let P := {(vi, vi+1) | i ∈ {0, . . . , nG − 1} ∩ (2N)}
denote the pairs. As in Case 1, construct Gi inductively by parachute-apexing on the
pairs given by P . Denote the resulting graph from the last induction step by Ĝ. By the
same reasoning as in Case 1, Ĝ is Hamiltonian, it can be constructed in O(nG) time,
and for each vertex v ∈ V (Ĝ) with v 6= vnG

it holds true that deg(v) = 5. Moreover,

FVS(Ĝ) ≤ k +
nG − 1

2
· 2(5− 1) = k + 4(nG − 1). (3.1)

By construction of Ĝ we implicitly constructed a Hamiltonian cycle Ĉ in Ĝ (see the
proof of Lemma 3.33), hence Ĉ is a known Hamilton-cycle in Ĝ. Now let v ∈ V (Ĝ)
be a neighbor of vnG

with respect to the cycle Ĉ. Subdivide the edge {v, vnG
} by a

new vertex z. By Corollary 3.16 this does not affect the feedback vertex set of Ĝ.
Now deg(z) = 2 and deg(vnG

) = 4 and they are neighbors in Ĉ. Relabel z by û and vnG

by ŵ and let Gad be the graph as in Definition 3.36 such that V (Gad) ∩ V (G) = {û, ŵ}.
Construct G′ by a Gad-insertion on û, ŵ. By Lemma 3.37, the resulting graph G′ is
Hamiltonian with deg(û) = 5 = deg(ŵ) and thus G′ is 5-regular. By Lemma 3.38 it
follows that FVS(G′) ≤ FVS(Ĝ) + 6. Together with Inequality 3.1 this yields

FVS(G′) ≤ k + 4(nG − 1) + 6 (3.2)

As the Gad-insertion can be done in constant time after reading Ĝ (and the cycle Ĉ),
we can contruct G′ in polynomial-time from G, concluding the proof of Case 2.

We are now ready to prove Theorem 3.30.

Proof of Theorem 3.30. By Theorem 3.7, it is known that Feedback Vertex Set
is NP -complete on 4-regular planar Hamiltonian graphs with known Hamilton-cycle.
Together with the polynomial-time many-one reduction from Lemma 3.39, and the fact
that Feedback Vertex Set is contained in NP for the class of 5-regular Hamiltonian
graphs, we can conclude the proof.

In a next step we will use Theorem 3.30 to inductively prove Theorem 3.29. The proof
works analogously to the proof of Case 1 in Lemma 3.39 as we will only be looking at
graphs of even order, as can be seen by the following observations.

Observation 2. The parachute-like graph of order k ∈ N, denoted by Pk, fulfills |V (Pk)| ∈
2N. Thus the number of vertices in Pk is even.

Observation 3. Let G be a graph with an even (odd) number of vertices and v, w ∈ V (G)
two different vertices, then the graph G′ obtained by parachute-apexing on v, w given
some parachute-like graph Pk of order k ∈ N, has an even (odd) number of vertices.

Remark. Observation 3 states that the parity of the order of a graph is invariant under
parachute-apexing.

The following lemma is a natural generalization of Lemma 3.39 to graphs of even
order.
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3 The Feedback Vertex Set Problem on Hamiltonian Graphs

Lemma 3.40. Let G be a k-regular Hamiltonian graph with V (G) ∈ 2N and C be a
Hamilton-cycle in G for some k ≥ 5. Let P j

k denote parachute-like graphs of order k for
each j ∈ {1, . . . , nG

2
}. Then a (k + 1)-regular Hamiltonian graph G′ can be constructed

in polynomial-time from G by parachute-apexing given P j
k such that

FVS(G) ≤ p ⇐⇒ FVS(G′) ≤ p+ nG(k − 1)

for every p ∈ N.

Proof. As V (G) ∈ 2N the proof is analogous to the proof of Case 1 in Lemma 3.39 (it
follows by inductive use of Lemma 3.33 and Lemma 3.35) and can be readily generalized
to this case.

Observation 4. If the graph G in the construction of Lemma 3.40 has an even number
of vertices, then it follows by Observation 3 that the resulting graph G′ has an even
number of vertices.

We are now ready to prove Theorem 3.29. The proof will be done by induction
over k ∈ N. As the same proof-scheme will be used in later chapters, we will now give a
detailed proof that easily generalizes to the problems analyzed in the following chapters.

Proof. Proof of Theorem 3.29 We prove the statement by induction on k ∈ N. Induction
base: Let k = 5. Then by Theorem 3.30 Feedback Vertex Set is NP -complete
on 5-regular Hamiltonian graphs of even order with known Hamilton-cycle.

Induction step: Let k ≥ 5 and denote by HCk the set of tuples (G, C ′), where G is
a k-regular Hamiltonian graph of even order and C ′ a Hamilton-cycle in G. Suppose
that Feedback Vertex Set is NP -hard on HCk . Let

Red : HCk → HCk+1, G = (V,E) 7→ G′ = (V ′, E ′),

where G′ is the graph resulting from Lemma 3.40. By Lemma 3.40, the function Red is
well-defined and can be evaluated in time polynomial in |V (G)|. Moreover, Lemma 3.40
proves that FVS(G) ≤ k ⇐⇒ FVS(G′) ≤ f(k,G) for some polynomial-time function f .
Thus it follows that Feedback Vertex Set is NP -hard on HCk+1.

The claim now follows by induction on k ≥ 5 and the fact that Feedback Ver-
tex Set on k-regular Hamiltonian graphs of even order with known Hamilton-cycle is
trivially contained in NP for every k ∈ N.

3.4 k-Hamiltonian-ordered graphs.

As mentioned in the introduction, the concept of k-Hamiltonian ordered graphs (origi-
nally named k-ordered Hamiltonian graphs), was introduced by Ng and Schultz [NS97]
as a new strong Hamiltonian property. For completion and as a reminder, we give a
definition of k-Hamiltonian ordered graphs.
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3.4 k-Hamiltonian-ordered graphs.

Definition 3.41 (Ng and Schultz [NS97]). A graph G is called k-Hamiltonian ordered
if for every sequence v1, . . . , vk of k distinct vertices in G, there exists a Hamilton-cycle
that encounters v1, . . . , vk in that order.

A direct consequence from Definition 3.41 is that every Hamiltonian graph is also 3-
Hamiltonian ordered. To see this, note that if G is Hamiltonian, there is a cycle C
visiting every vertex in G, and note that every three points on a cycle can be visited
in any desired order by varying the starting vertex of the cycle and the

”
direction“ in

which the cycle traverses the vertices.

Observation 5. Every Hamiltonian graph is 3-Hamiltonian ordered.

A result due to Ng and Schultz [NS97] shows that k-ordered graphs, and thus k-
Hamiltonian ordered graphs, are (k − 1)-connected. Hence our following results in the
study of the computational complexity of Feedback Vertex Seton k-Hamiltonian
ordered graphs hold true for (k − 1)-connected Hamiltonian graphs as well.

Theorem 3.42 (Ng and Schultz [NS97]). Let G be a k-ordered graph for some k ∈ N
with k ≥ 3. Then G is (k − 1)-connected.

In this section, we will prove that Feedback Vertex Set remains NP -complete
when restricted to k-Hamiltonian ordered graphs for every fixed k ≥ 3.

Theorem 3.43. Feedback Vertex Set on k-Hamiltonian-ordered graphs with known
Hamilton-cycle is NP -complete for every k ≥ 3.

Note that the property for a graph to be k-Hamiltonian ordered is way more restrictive
than being Hamiltonian, and yet Theorem 3.43 shows that it does not affect the compu-
tational complexity of Feedback Vertex Set on a high level. The proof will be given
by induction on k, reducing Feedback Vertex Set on (k + 1)-Hamiltonian ordered
graphs to Feedback Vertex Set on k-Hamiltonian ordered graphs, and using the fact
that Feedback Vertex Set is known to be NP -complete on 3-Hamiltonian-ordered
graphs as given by Theorem 3.1 together with Observation 5.

Ng and Schultz [NS97] have proven the following, which will play a key-role for the
graph construction of our polynomial-time many-one reduction.

Theorem 3.44 (Ng and Schultz [NS97]). Let G be a graph of order n ≥ 3 and let k be
an integer with 3 ≤ k ≤ n. If

deg(x) + deg(y) ≥ n+ 2k − 6

for every pair x, y of nonadjacent vertices in G, then G is k-Hamiltonian ordered.

The main idea in our construction will be, given some k-Hamiltonian ordered graph G,
to construct a graph satisfying the needed properties in Theorem 3.44 for k + 1, and
thus guaranteeing it to be (k + 1)-Hamiltonian ordered. The graph in the construction
will be denoted by chap (G) and referred to as the chapiteau-closure of G. The idea
for the name comes from the fact that the illustration given by Figure 3.11 resembles a

”
chapiteau“, which is the french word for circus tent.
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G

KnG

û ŵ

Figure 3.11: Chapiteau-closure of G. The thick (orange) vertices labelled with û, ŵ de-
note the apex-vertices given in Definition 3.45. The thick (light-blue) ellipse
and the filled (light-blue) vertices denote vertices in KnG

. The dashed edges
in KnG

and G indicate some of their missing edges. All other edges illustrate
edges in chap (G).

Definition 3.45 (Chapiteau-closure of G). Let G be a graph of order nG and let KnG+2

denote the complete graph on nG + 2 vertices. The chapiteau-closure of G, denoted
by chap (G), is defined by

V (chap (G)) := V (G) ] V (KnG
) ] {û, ŵ}, and

E(chap (G)) := E(G) ] E(KnG
)]

{{x, v}, {û, v}, {ŵ, v}, {û, ŵ} | x ∈ V (G), v ∈ V (KnG
)},

and is schematically depicted in Figure 3.11. We will refer to û and ŵ as the apex-vertices
of chap (G).

The following lemma proves that, given a k-Hamiltonian ordered graphG, the chapiteau-
closure chap (G) fulfills the prerequisites in order to apply Theorem 3.44. Thus, chap (G)
is (k + 1)-Hamiltonian ordered.

Lemma 3.46. Let G be a k-Hamiltonian ordered graph for some k ∈ N with k ≥ 3.
Then, chap (G) is a (k+ 1)-Hamiltonian ordered graph and can be constructed in O(n2

G)
time from G.

Proof. That chap (G) is (k + 1)-Hamiltonian ordered follows directly by Observation 5
and Theorem 3.44 as mentioned above. To construct chap (G) it suffices to add a vertex-
disjoint KnG+2 to G, and add O(n2

G) many edges respectively, which can altogether be
done in O(n2

G) time.

The next lemma quantifies the impact of the chapiteau-closure on the cardinality of
feedback vertex sets in the input graph.
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3.4 k-Hamiltonian-ordered graphs.

Lemma 3.47. Let G be a graph of order nG ≥ 3, and let chap (G) denote its chapiteau-
closure. Then,

FVS(G) ≤ k ⇐⇒ FVS(chap (G)) ≤ k + nG

for any k ∈ N.

Proof. Recall that by construction chap (G) − V (G) ∼= KnG+2. Moreover, it holds true
that FVS(KnG+2) ≥ nG as nG ≥ 3. Denote the apex-vertices of chap (G) by û and ŵ
respectively.

⇒: Let S ⊂ V (G) be a feedback vertex set in G with |S| ≤ k. Let S ′ := {v | v ∈
V (KnG+2) \ {û, ŵ}}. Then S ′ is by construction a feedback vertex set of size nG
in chap (G)[V (KnG+2)]. It is easy to verify that S ∪ S ′ is a feedback vertex set
in chap (G) as û and ŵ are not connected to any vertex in V (G). Thus, we conclude
that FVS(chap (G)) ≤ |S|+ |S ′| ≤ k + nG.

⇐: Let S ′ ⊂ V (chap (G)) be a feedback vertex set in chap (G) with |S ′| ≤ k+nG . The
set S ′ is by construction a feedback vertex set in chap (G)[V (G)] = G. As there
has to be U = S ′ ∩ V (KnG+2) with |U | ≥ nG and U ∩ V (G) = ∅, it holds true
that S := S ′ \ U is a feedback vertex set in chap (G)[V (G)] = G with |S| ≤ k.

We are now able to prove Theorem 3.43. The proof follows by induction on k ≥ 3 and
is analogous to the proof of Theorem 3.29.

Proof of Theorem 3.43. The proof follows by induction on k ≥ 3. To see this, note that
if Feedback Vertex Set on k-Hamiltonian-ordered graphs is known to be NP -hard,
then Lemma 3.46 and Lemma 3.47 give rise to a polynomial-time many-one reduction
from Feedback Vertex Set on k-Hamiltonian ordered graphs to Feedback Ver-
tex Set on (k + 1)-Hamiltonian ordered graphs, concluding that the latter problem
is NP -hard. As Feedback Vertex Set on k-Hamiltonian ordered graphs is trivially
contained in NP , the induction start for k = 3, proven as Theorem 3.1, together with
Observation 5 concludes the proof.

As mentioned in the beginning of this section, a direct corollary to Theorem 3.43 due
to Theorem 3.42 is given by the following.

Corollary 3.48. Feedback Vertex Set is NP -complete on k-connected Hamiltonian
graphs with known Hamilton-cycle, for every k ∈ N.
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4 The 3-Coloring problem on
Hamiltonian graphs

The problem of deciding whether a graph can be colored with at most k colors for
some integer k, such that no two adjacent vertices share a same color, can be traced
back to the 19th century and is claimed to be one of the oldest known graph theoretic
problems [Kub04]. Since then, graph-coloring problems can be found in many different
applications: Marx [Mar04] highlights a deep connection to scheduling problems, whereas
Chaitin [Cha82] makes use of graph coloring techniques for register allocations. Lewis
[Lew15] highlights numerous other applications. Over the past decades many variations
of graph coloring problems have been thoroughly analyzed on a broad variety of graph
classes. The problem of deciding whether a graph G is 3-colorable turned out to be of
particular interest, and can be stated as follows.

3-Coloring
Input: An undirected graph G.
Question: Is there a coloring c : V (G) → {1, 2, 3} such that for all {v, w} ∈

E(G)⇒ c(v) 6= c(w) ?

The 3-Coloring problem was one of the first problems that have been proven to beNP -
complete [GJ90]. Many results analyzing the algorithmic complexity of graph-coloring
problems on a multitude of graph-classes followed [Abo+17; Dai80; FS03; Krá+01], as
well as exact exponential-time algorithms solving them [BE05; BK97].

In this chapter we will analyze the computational complexity of 3-Coloring on
Hamiltonian graphs and restricted subclasses thereof—namely k-regular Hamiltonian
graphs and k-ordered Hamiltonian graphs. In the first section we will prove that 3-
Coloring remains NP -complete on Hamiltonian graphs. In the second section we
will prove that 3-Coloring remains NP -complete on k-regular Hamiltonian graphs
for every k ≥ 4 by an inductive use of polynomial-time many-one reductions. We will
conclude the chapter in the third section with a proof that 3-Coloring remains NP -
complete when restricted to k-Hamiltonian ordered graphs, for every k ≥ 3. Note that
the presented results are readily generalised to the general Coloring, and k-Coloring
problems with k ≥ 3.

4.1 General Hamiltonian graphs.

It is commonly known that 3-Coloring is NP -complete on general graphs [GJ90]. As
a first result in this chapter we prove that 3-Coloring remains NP -complete on (pla-
nar) Hamiltonian graphs, via a polynomial-time many-one reduction from 3-Coloring
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G

v0v1

v{0,1}

Figure 4.1: A schematic Hamiltonian closure of a graph G. The diamond-shaped (red)
vertices denote the vertices in Vedges. The thick (red) edges denote the edges
in EC as in Definition 4.2, and they highlight a Hamilton-cycle in the Hamil-
ton closure of G. The dashed edges and the dashed ellipse represent some of
the possible edges in G.

on general graphs. Note that in the reduction construction, a Hamilton-cycle will be
explicitly constructed.

Theorem 4.1. 3-Coloring on Hamiltonian graphs with known Hamilton-cycle is NP -
complete.

The idea behind the reduction is similar to the one provided in the proof of Theo-
rem 3.1; its proof, as well as the proofs of the necessary intermediate lemmata, work
analogously to the ones in Chapter 3. Given a graph G and a fixed enumeration of its
vertices, we will pair up the vertices and construct a graph G′, by adding a vertex for
each pair, and connecting it to the both vertices of the pair. This will naturally guar-
antee G′ to be Hamiltonian (see Figure 4.1). We will refer to the resulting graph G′ as
the Hamiltonian closure of G, as its construction seems to be a canonical way to extend
a graph such that it becomes Hamiltonian. The Hamiltonian-closure of G will then by
construction be 3-colorable if and only if the underlying graph G is.

Definition 4.2 (Hamiltonian closure of a graph). Let G = (V,E) be a connected graph,
and let Φ := (v0, . . . , vnG−1) with vi ∈ V for all i ∈ {0, . . . , nG − 1}, and vi 6= vj for
every i 6= j, denote an enumeration of V . The Hamiltonian closure of G (through Φ),
denoted by G′ = (V ′, E ′), is :

V ′ =V ] Vedges, where

Vedges := {v{i,i+1} mod nG
| i ∈ {0, . . . , nG − 1}} and,

E ′ =E ] EC, where

EC := {{vi, v{i,i+1}}, {v{i,i+1}, vi+1} | i ∈ {0, . . . , nG − 2}}∪
{{vnG−1, v{nG−1,0}}{v{nG−1,0}, v0}}.

A schematic construction of G′ from G is visualized in Figure 4.1.
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The proof of Theorem 4.1 now follows immediately from the following two lemmata
that are similar to Lemma 3.3 and Lemma 3.4,and whose statements have already been
discussed above.

Lemma 4.3. The Hamiltonian closure of a graph G = (V,E), denoted by G′ = (V ′, E ′),
is Hamiltonian, and can be constructed in polynomial time from G.

Proof. We claim that C := (v0, v{0,1}, . . . , v{nG−1,v0}, v0) is by construction a Hamilton-
cycle in G′. To see this, note that {vi, v{i,i+1} mod nG

} ∈ V (G′) for every i ∈ {0, . . . , nG−
1}, proving that C is a cycle in G′. As moreover V ′ = V (C), the cycle C visits every
vertex in V ′ exactly once. It is clear that the construction in Definition 4.2 can be
realized in polynomial time in |V (G)| as G′ can be constructed from G by adding nG
many new vertices and 2nG many new edges.

Lemma 4.4. Let G = (V,E) be a graph. Then G is 3-colorable if and only if the
Hamiltonian closure of G denoted by G′ = (V ′, E ′) is 3-colorable.

Proof. Let V ′ = V ∪ Vedges as in Definition 4.2.

⇒: Suppose G is 3-colorable and let c : V → {1, 2, 3} be a 3-coloring of G. Then we
claim that c′ : V ′ → {1, 2, 3} defined by

c′(v) = c(v) if v ∈ V , and
c′(ve) ∈ {1, 2, 3} \ {c(w) | w ∈ N(ve)} if ve ∈ Vedges,

is a well-defined 3-coloring onG′. Since c′ is a 3-coloring on the induced graphG′[V ]
with V ⊂ V ′, and since every vertex v{i,i+1} mod nG

∈ Vedges has exactly two neigh-
bors, namely vi, v(i+1) mod nG

∈ V , the set {1, 2, 3} \ {c(v) | v ∈ N(v{i,i+1} mod nG
)}

is not empty; hence c′ is well-defined. Moreover, this concludes that the extension
of c′ on Vedges remains a 3-coloring by construction, proving that c′ is a 3-coloring
on G′.

⇐: Suppose G′ has a 3-coloring c′. By construction G is a subgraph of G′, hence the
restricted coloring c := c′|V is a 3-coloring on the induced subgraph G′[V ] = G,
concluding the proof.

We are now ready for the proof of Theorem 4.1.

Proof of Theorem 4.1. By Lemma 4.3 and Lemma 4.4, together with the fact that 3-
Coloring is known to be NP -hard on general graphs (see [GJ90]), prove that 3-
Coloring is NP -hard on Hamiltonian graphs. Since 3-Coloring on Hamiltonian
graphs is trivially contained in NP , it follows that 3-Coloring on Hamiltonian graphs
is NP -complete.

Having shown that 3-Coloring remains NP -complete on Hamiltonian graphs, we
will now prove that 3-Coloring remains NP -complete even when restricted to planar
Hamiltonian graphs. Dailey [Dai80] showed that 3-Coloring remains NP -complete
when restricted to 4-regular planar graphs. We will use this result in order to prove that
3-Coloring remains NP -complete on planar Hamiltonian graphs, via a polynomial-
time many-one reduction.
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4 The 3-Coloring problem on Hamiltonian graphs

Theorem 4.5. 3-Coloring is NP -complete on planar Hamiltonian graphs.

The reduction will use an analogous construction and an analogous argumentation to
the reduction in the proof of Lemma 3.26, that we needed for the proof of Theorem 3.5.
We emphasize again that the ideas behind the proof are inspired by the work due to
Fleischner, Sabidussi, and Sarvanov [FSS10, Lemma 2.3]. The main idea of the proof is to
determine a 2-factor Q of G, and iteratively

”
shrink“ it to a 2-factor Q′ consisting of only

one component. This then implies that the underlying graph is Hamiltonian. The used
construction has to leave the planarity and 3-colorability of G invariant, guaranteeing
that the resulting graph will be a planar Hamiltonian graph.

The proof of Theorem 4.5 follows at once from the following lemma and the fact that
3-Coloring is known to be NP -complete on 4-regular planar graphs [Dai80].

Lemma 4.6. Let G be a 4-regular planar graph. Then we can construct a planar Hamil-
tonian graph G′, such that G′ is 3-colorable if and only if G is 3-colorable, in polynomial
time from G.

As the proof of this lemma works analogously to the proof of Lemma 3.26, we will only
give an outline and spare some details that may be found in the proof of Lemma 3.26
and the proof due to Fleischner, Sabidussi, and Sarvanov [FSS10, Lemma 2.3].

Proof. As in the proof of Lemma 3.26: determine a 2-factorQ ofG, and letQ1, Q2 ∈ Q be
two different components such that there are q1 ∈ V (Q1) and q2 ∈ V (Q2) sharing an edge
in G (see Figure 3.7a). Now let xi ∈ V (Qi) such that {qi, xi} ∈ E(Qi) for each i ∈ {1, 2}
and such that x1 and x2 lie on a common face given an embedding of G. Note that until
now the construction is identical to the one in the proof of Lemma 3.26. Now let G′ be the
graph constructed from G by adding one vertex z to G, and subsequently connecting z
to x1 and x2. Note that G′ is 3-colorable if and only if G is 3-colorable, as deg(z) =
2. Update the 2-factor: Q′ := (Q ∪ {Q1,2}) \ {Q1, Q2}, where V (Q1,2) := V (Q1) ∪
V (Q2) ∪ {z} and E(Q1,2) := (E(Q1) ∪ E(Q2) ∪ {{z, x1}, {z, x2}}) \ {{x1, q1}, {x2, q2}}.
By construction, Q′ is a 2-factor of G′ with one component less than Q. Repeating
this procedure |Q| many times leaves a planar Hamiltonian graph G′ that is 3-colorable
if and only if G is. As the whole construction can be done in polynomial time (see
Lemma 3.26), this concludes the proof.

Note that the only difference to the proof of Lemma 3.26 is that we do not need to
introduce subdivision vertices, and that the L-insertion is replaced by adding a single
vertex connecting two adjacent components in G that are given by the Q-factor. Also
note that we needed the graphs in the construction to be 4-regular, as this guarantees
the existence of a 2-factor as was shown by Petersen (see Mulder [Mul92, Theorem 2]
for a reference), and is a needed property in the proof of Lemma 3.26 and the proof due
to Fleischner, Sabidussi, and Sarvanov [FSS10, Lemma 2.3].
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4.2 k-regular Hamiltonian graphs

4.2 k-regular Hamiltonian graphs

There have been several previous results on the computational complexity of 3-Coloring
on subclasses of regular graphs [Dai80; FS03]. By Brooks’ Theorem [Bro41] it follows
that 3-Coloring is polynomial-time solvable on 3-regular graphs.

Theorem 4.7 (Brooks’ Theorem [Bro41]). Every graph G with maximum degree ∆ has
a ∆-Coloring unless either (i) G contains K∆+1 or (ii) ∆ = 2 and G contains an
odd cycle.

As |V (K4)| = 4, and as the graphs that are isomorphic to K4 are the only 3-regular
graphs on four vertices, we can identify whether a given graph G is a K4 by verifying
whether V (G) = 4. Hence a direct consequence to Theorem 4.7 yields the following.

Corollary 4.8. 3-Coloring on 3-regular Hamiltonian graphs is polynomial-time solv-
able.

Fleischner and Sabidussi [FS03] showed that 3-Coloring remains NP -complete on 4-
regular Hamiltonian graphs.

Theorem 4.9 (Fleischner and Sabidussi [FS03, Proposition 2.1]). 3-Coloring is NP -
complete on 4-regular Hamiltonian graphs with known Hamilton-cycle.

In this section we follow the spirit of these results, and prove that, for any fixed inte-
ger k ≥ 4, 3-Coloring remains NP -complete on k-regular Hamiltonian graphs. This
shows that restricting k-regular graphs to be Hamiltonian in addition, does not affect
the tractability of 3-Coloring. We will use Theorem 4.9 as the base case for induc-
tive polynomial-time many-one reductions from 3-Coloring on k-regular Hamiltonian
graphs to 3-Coloring on (k + 1)-regular Hamiltonian graphs, proving the following.

Theorem 4.10. 3-Coloring on k-regular Hamiltonian graphs with known Hamilton-
cycle is NP -complete for every fixed k ≥ 4.

For the reductions we will need a general construction that, given a k-regular Hamil-
tonian graph, constructs a (k + 1)-regular Hamiltonian graph, while leaving the 3-
colorability property invariant. For this purpose, given some graph G, we introduce
what we will call the stacked graph of G, that turns out to have the desired proper-
ties. An intuitive but informal construction of a stacked graph can be thought of as
follows: Given some Hamiltonian graph G that is embedded with its vertices lying on
an

”
outer-cycle“, the stacked graph G′ results from two disjoint copies of G, namely G

and G∗,
”
stacking“ G∗ on top of G, rotating it counter-clockwise, and then connecting

the vertices in the cycle of G∗ to the vertices in the cycle of G embedded straight below
them (see Figure 4.2a).

Definition 4.11 (Stacked graph of G). Let G = (V,E) be a Hamiltonian graph and
without loss of generality let V (G) := {v0, . . . , vnG−1} be an enumeration of the vertices
induced by the known Hamilton-cycle C, thus C = (v0, . . . , vnG−1, v0). Construct G′ :=
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(b) Hamilton-cycle in the stacked graph.

Figure 4.2: Stacked graph G′ of a graph G, and a Hamilton-cycle in G′. The subgraph
denoted by G∗ is a copy of G. The dashed edges denote possible edges in G
and G∗, while the (black) edges forming the ellipses highlight the Hamilton-
cycles in G and G∗ respectively. The thick (red) edges in Figure 4.2a rep-
resent the edges in Estack. In Figure 4.2b a Hamilton-cycle in the stacked
graph is highlighted by a tube (orange) marking the edges of the cycle.

(V ′, E ′) from G as follows:

V ′ = V ] V ∗, where V ∗ := {v∗ | v ∈ V } and,

E ′ = E ] E∗ ] Estack, where E∗ := {e∗ | e ∈ E} and,

Estack := {{vi, v∗i+1 mod nG
} | i ∈ {0, . . . , nG − 1}}.

The resulting graph G′ will be referred to as the stacked graph of G, and is illustrated
in Figure 4.2a.

Similar to the scheme of our previous results, we will now prove that the stacked
graph inherits our desired properties: that the stacked graph of a k-regular Hamiltonian
graph G is indeed (k+ 1)-regular Hamiltonian, that it can be constructed in polynomial
time from G, and that the stacked graph of G is 3-colorable if and only if G is.

Lemma 4.12. Let G = (V,E) be a k-regular Hamiltonian graph with k ∈ N such
that k ≥ 4. Denote by C a Hamilton-cycle in G. Then, the stacked graph G′ = (V ′, E ′)
of G is a (k + 1)-regular Hamiltonian graph and can be constructed in polynomial time
from G.

Proof. Let V ′ = V ∪ V ∗ as described in Definition 4.11. The construction in Defini-
tion 4.11 of G′ from G can be performed in O(max {|V (G)| , |E(G)|}) time, as the vertex
set V ∗ is a relabelled copy of V and the construction of the edges E∗ and Estack can be
done in O(|E(G)|) and O(|V (G)|) time respectively.
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4.2 k-regular Hamiltonian graphs

Now let V (G) = {v0, . . . , vnG−1} be the enumeration induced by C, meaning that the
cycle can be written as C := (v0, . . . , vnG−1, v0). Then C is also a Hamilton-cycle
in G′[V ] = G. Denote by C∗ := (v0∗, . . . , v∗nG−1, v

∗
0) the respective Hamilton-cycle in

the induced (copied) graph G′[V ∗] ∼= G. Then,

C ′ = (v0, v1, . . . , vnG−1, v
∗
0, v
∗
1, . . . , v

∗
nG−1, v0)

is a Hamilton-cycle in the stacked graph G′ (see Figure 4.2b). In order to see this, note
that {vnG−1, v

∗
0}, {v∗nG−1, v0} ∈ E(G′). Moreover as G′[V ] = G and G′[V ∗] ∼= G are

both k-regular, and since for every vertex v ∈ V there exists exactly one vertex w∗ ∈ V ∗
(and vice-versa) with {v, w∗} ∈ E(G′), it follows that deg(v) = k + 1 for every v ∈ V ′,
concluding that G′ is (k + 1)-regular.

Lemma 4.13. Let k ∈ N and let G = (V,E) be a k-regular graph of order nG. Then, G
is 3-colorable if and only if the stacked graph G′ = (V ′, E ′) is 3-colorable.

Proof. Let V ′ = V ∪ V ∗ and E ′ = E ∪ E∗ ∪ Estacked be as in Definition 4.11.

⇒: Suppose G is 3-colorable and let c : V → {1, 2, 3} be a 3-coloring of G. We claim
that c′ is a 3-coloring in G′ where c′ : V ′ → {1, 2, 3} is defined as follows:

c′(v) = c(v), for all v ∈ V , and

c′(v∗) = c(v), for all v∗ ∈ V ∗.

By construction, c′ is a 3-coloring in the induced graphs G′[V ] = Gand G′[V ∗] ∼= G.
For every edge {v, w∗} ∈ Estack it holds true that c′(v) 6= c′(w∗), which concludes
that c′ is a 3-coloring on G′. To see this, note that otherwise c′(v) = c′(w∗) would
imply that c′(v) = c′(w). As {v, w} ∈ E(G) ⊂ E(G′), this would be a contradiction
to c′ being a 3-coloring on G′[V ].

⇐: Suppose that G′ is 3-colorable, and let c′ be a 3-coloring of G′. By construction,
the graph G is a subgraph of G′. Therefore, the restricted coloring c := c′|V is

a 3-coloring on the induced graph G′[V ] = G, concluding the proof.

Recall that Definition 4.11 is applicable to general graphs, and transforms k-regular
Hamiltonian graphs into (k + 1)-regular Hamiltonian graphs for arbitrary but fixed k ∈
N. This will be the key to the inductive proof of Theorem 4.10. Also note that the
construction of a stacked graph needs a known Hamilton-cycle in the original graph G.
The proof is analogous to the inductive proof of Theorem 3.29 and can readily be adapted
to this case. For completion we will give a general outline of the proof.

Proof of Theorem 4.10. Note that 3-Coloring on k-regular Hamiltonian graphs is triv-
ially contained in NP . The statement for k = 4 forms the base case of our induction
and follows by Theorem 4.9. Let k ≥ 4 and define

Red : HCk → HCk+1, G = (V,E) 7→ G′ = (V ′, E ′),

where G′ is the stacked graph of G using similar notation as in the proof of Theorem 3.29.
By Lemma 4.12, the function Red is well-defined and can be evaluated in time polynomial
in |V (G)|. The proof now follows by Lemma 4.13 and induction on k.
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4.3 k-ordered Hamiltonian graphs.

In this section we will prove that 3-Coloring remains NP -complete when restricted
to k-ordered Hamiltonian graphs for every fixed k ≥ 3.

Theorem 4.14. 3-Coloring is NP -complete on k-ordered Hamiltonian graphs with
known Hamilton-cycle for arbitrary but fixed k ∈ N.

Unfortunately, we were not able to prove that 3-Coloring remains NP -complete
when restricted to k-Hamiltonian ordered graphs, as opposed to the other problems that
we analyze throughout thesis. Recall that, as stated in Chapter 3, a result due to Ng and
Schultz [NS97] shows that every k-Hamiltonian ordered graph is (k − 1)-connected (see
also Theorem 3.42). Note moreover that k-Hamiltonian ordered graphs are trivially k-
ordered and Hamiltonian. Hence, the class of k-Hamiltonian ordered graphs is a subclass
of the (k − 1)-connected and k-ordered Hamiltonian graphs. Aboulker et al. [Abo+17]
proved that 3-Coloring remains NP -complete on k-connected graphs, and we prove
that 3-Coloring remains NP -complete on k-ordered Hamiltonian graphs. This raises
the question whether 3-Coloring remains NP -complete, or becomes polynomial-time
solvable on the finer class of k-Hamiltonian ordered graphs,.

The proof of Theorem 4.14 will be done by induction on k ∈ N that, on a high level,
will be analagous to the proof of Theorem 3.43. We will give a polynomial-time many-
one reduction from 3-Coloring on k-ordered Hamiltonian graphs to 3-Coloring
on (k + 1)-ordered Hamiltonian graphs, using the statement for 3-Coloring on 3-
ordered Hamiltonian graphs as induction base. To this end, recall that by Observation 5
every Hamiltonian graph is 3-Hamiltonian-ordered (and hence 3-ordered Hamiltonian),
which combined with Theorem 4.1 yields the following.

Corollary 4.15. 3-Coloring is NP -complete on 3-Hamiltonian-ordered (and thus 3-
ordered Hamiltonian) graphs with known Hamilton-cycle.

The just mentioned reductions will rely on a construction that, when applied to k-
ordered Hamiltonian graphs, gives rise to (k + 1)-ordered Hamiltonian graphs. Proving
that a graph G is (k + 1)-ordered by verifying that, given an arbitrary ordering of
length (k + 1), there is a cycle in G with respect to the ordering, turned out to be
very fastidious. This is why we will give an

”
indirect“ proof. It turns out that the

property of being k-ordered is qualitatively related to the so-called k-linkage property
as highlighted in a survey done by Faudree [Fau01]. Apparently, for our purposes, k-
linkage is a graph-property that is easier to verify. This motivates the introduction of
k-linked graphs.

Definition 4.16 (k-linked [Fau01, Definition 3]). For any 1 ≤ k ≤ nG

2
, a graph G of

order nG is k-linked if given any collection of k pairs of vertices L = {{xi, yi} | 1 ≤ i ≤ k},
there are k vertex disjoint paths (except possibly for endvertices) Pi such that Pi is a
path from xi to yi.

The three following results that were listed by Faudree [Fau01, Theorem 15], prove that
the properties of being k-ordered, k-connected or k-linked are qualitatively related. Note
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Figure 4.3: A 3-stacked graph G�3
. The three ellipses denote the three disjoint copies

of G—namely G�3
[V j]—here denoted by Gj for j ∈ {1, 2, 3}. The thick

(red) edges are the edges in Estack between G1 and G2, as well as G2 and G3.
For clarity reasons, the edges between G1 and G3 are drawn as disconnected
dashed (red) edges

”
through infinity“.

that the first of the three following statements was already encountered as Theorem 3.42
in Chapter 3; for completion we will recall it.

Theorem. Let G be a k-ordered graph for some k ∈ N, k ≥ 3. Then G is (k − 1)-
connected.

Theorem 4.17 (Bollobás and Thomason [BT96]). Let G be a 22k-connected graph for
some k ∈ N, k ≥ 3. Then G is k-linked.

Theorem 4.18. Let G be a k-linked graph for some k ∈ N, k ≥ 3. Then G is k-ordered.

If, given a k-ordered graph G, we construct a 22(k + 1)-connected graph G′, Theo-
rem 4.17 together with Theorem 4.18 conclude that G′ is (k+1)-ordered. This motivates
the definition of what we will call p-stacked graphs (see Figure 4.3), as they turn out to
be highly-connected depending on p ∈ N, and are thus guaranteed to be highly-ordered
by construction. Intuitively, the p-stacked graph is obtained by taking p disjoint copies
of a given graph G, and connecting vertices in different copies by an edge if the

”
relative

vertices“ in the original graph are connected by an edge.
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4 The 3-Coloring problem on Hamiltonian graphs

Definition 4.19 (p-stacked graph). Let G = (V,E) be a graph of order nG, and let p ∈
N>0. Then, the p-stacked graph, denoted by G�p

, is:

V �p

:=

p⋃
i=1

V i, where

V i := {vi | v ∈ V } for each i ∈ {1, . . . , p}, and

E�p

:=

p⋃
i=1

Ei ∪ Epstack, where

Ei := {{ui, vi} | {u, v} ∈ E} for each i ∈ {1, . . . , p}, and

Epstack := {{vi, wj} | {v, w} ∈ E, i, j ∈ {1, . . . , p}, i 6= j}.

Figure 4.3 gives a schematic example of a 3-stacked graph G�3
.

We will now prove that the construction of p-stacked graphs gives rise to polynomial-
time many-one reduction from 3-Coloring on k-ordered Hamiltonian graphs to 3-
Coloring on (k + 1)-ordered Hamiltonian graphs. In a first step we prove that, given
a Hamiltonian graph G, G�p

is again Hamiltonian, and that it holds true that G�p
is 3-

colorable if and only if G is. Again, we would like to mention that we followed this same
scheme of intermediate proof steps in several of our previous proofs.

Lemma 4.20. Let G = (V,E) be a k-ordered Hamiltonian graph with known Hamilton-
cycle C for some k ≥ 3. Then the p-stacked graph G�p

is Hamiltonian and can be
constructed in O(p · (|V |+ |E|)) time from G.

Proof. That G�p
is again Hamiltonian is obvious by construction (see Figure 4.3 for a 3-

stacked graph, and see Figure 4.2b for a similar construction with highlighted Hamilton-
cycle). Let C0 := (v0, . . . , vnG−1, v0) be a cycle in G. Then, the following is a Hamilton-
cycle in G�p

:
C := (v1

0, . . . , v
1
nG−1, v

2
0, . . . v

p−1
nG−1, v

p
0 . . . , v

p
nG−1, v

1
0),

as can be easily verified (see Lemma 4.12 for a similar argumentation). To construct G�p

from G, construct p disjoint copies of G as suggested in Definition 4.19, and add the
edges {ui, vj} for every {u, v} ∈ E(G) and every i, j ∈ {0, . . . , p} with i 6= j, which can
be altogether performed in O(p · (|V |+ |E|)) time.

Lemma 4.21. Let G be a graph and let p ∈ N>0 be some integer. Then, G is 3-colorable
if and only if G�p

is 3-colorable.

Proof. ⇒: Let c : V (G) → {1, 2, 3} be a 3-coloring of G. Define c′ : V (G�p
) →

{1, 2, 3} as follows:

c′(vi) = c(v) for i ∈ {1, . . . , p}, and the respective v ∈ V (G).

We claim that c′ is a 3-coloring of G�p
. To see this, note that G�p

[V i] ∼= G
for every i ∈ {1, . . . , p}, and c′|V i = c, which means that c′ induces a 3-coloring
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4.3 k-ordered Hamiltonian graphs.

on the p many disjoint subgraphs G�p
[V i]. Hence it suffices to prove that the

coloring of the vertices forming the edges in Epstack does not violate the 3-coloring
property, where Epstack is defined as in Definition 4.19. To this end, let vi ∈ V i

and wj ∈ V j with {vi, wj} ∈ Epstack for some i, j ∈ {1, . . . , p}. By construction,
it holds true that {vi, wi}, {vj, wj} ∈ E(G�p

), with respective vj, wi ∈ V (G�p
).

Since c′(wi) = c′(wj) and c′(vi) 6= c′(wi), as well as c′(vj) 6= c′(wj), it holds true
that c′(vi) 6= c′(wj). Roughly speaking, this means that the edge {vi, wj} does not
violate the 3-coloring property. Since the edge was an arbitrary edge in Epstack, c′

is a 3-coloring on G�p
.

⇐: This follows immediately from the fact thatG is isomorphic to an induced subgraph
of G�p

, namely G ∼= G�p
[V 1].

To conclude Theorem 4.14, we need to prove that, given a k-ordered graph, G�p

is (k + 1)-ordered.

Lemma 4.22. Let G be a k-ordered graph for some k ∈ N, k ≥ 3. Then G�p
is (k+ 1)-

ordered.

We will prove Lemma 4.22 by first proving that, given a k-ordered graph G, G�p

is p(k − 1)-connected using Menger’s Theorem (see Theorem 4.23) [Die12]. Then, for p
large enough, G�p

is (k + 1)-linked as guaranteed by Theorem 4.17. We will finally use
Theorem 4.18, stating that k-linked graphs are known to be k-ordered, to conclude the
proof.

Theorem 4.23 (Menger’s Theorem [Die12]). Let G be a graph. Then, G is k-connected
if and only if for any two distinct vertices x, y ∈ V (G) there exist k pairwise vertex-
disjoint paths (except for maybe the end-vertices) connecting x and y in G.

We will now show that, given a k-ordered graph G, there are p(k − 1) many disjoint
paths between any two vertices in G�p

, which then combined with Menger’s theorem
yields the following.

Lemma 4.24. Let G be a k-ordered graph. Then, G�p
is p(k − 1)-connected.

Proof. As G is k-ordered, Theorem 3.42 yields that G is (k−1)-connected. We prove that
given two distinct vertices x, y ∈ V (G�p

), there are p(k− 1) disjoint paths connecting x
and y in G�p

. By Theorem 4.23, we conclude that G�p
is p(k− 1)-connected. There are

two cases for x and y to consider.

Case 1: x = vji and y = v`i for some i ∈ {0, . . . , nG−1} and j, ` ∈ {1, . . . , p} with j 6= `.
Intuitively, this means that x and y represent the

”
same vertex in a different copy of G“,

which are by construction not connected by an edge. Without loss of generality we
may assume that i = 0, hence x = vj0 and y = v`0. By construction of G�p

it holds
true that N(vj0) = N(v`0). As by Theorem 3.42, G�p

[V m] ∼= G is (k − 1)-connected
for every m ∈ {1, . . . , p}, we conclude that |NG(v)| ≥ (k − 1) for every v ∈ V (G), and
thus |N(w)| ≥ p(k−1) for every w ∈ V (G�p

) by construction of G�p
. As N(vj0) = N(v`0),

this concludes that there are at least p(k − 1) disjoint paths connecting vj0 and v`0.
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4 The 3-Coloring problem on Hamiltonian graphs

Case 2: x = vji and y = v`m for some i,m ∈ {0, . . . , nG − 1} and j, ` ∈ {1, . . . , p}
with i 6= m. Without loss of generality we may assume that i = 0, m = 1 as well
as j = `; hence x = vj0 and y = vj1. To see this, note that as N(v`1) = N(vj1) we
may as well

”
exchange“ v`1 and vj1 by relabelling them accordingly, and then look at vj1

instead. We know that G�p
[V j] ∼= G is (k− 1)-connected, thus there are at least (k− 1)

disjoint paths in G�p
[V j] connecting vj0 and vj1. Analogously there are (k − 1) disjoint

paths P q
1 , . . . , P

q
k−1 connecting vq0 to vq1 in G�p

[V q] for every q ∈ {1, . . . , p}. Note that by
construction P q

i and P `
m are disjoint for every i,m ∈ {1, . . . , k−1}, and q, ` ∈ {1, . . . , p}

except if i = m and q = ` both hold true, since then P q
i and P `

m are equal. As N(vj0) =
N(vq0) and N(vj1) = N(vq1) for every q ∈ {1, . . . , p}, we may exchange the end-vertices
of every path P q

i to be vj0 and vj1 respectively. Thus we have found alltogether p(k − 1)
disjoint paths (except for the end-vertices) connecting vj0 and vj1. By Theorem 4.23 this
concludes the proof.

As mentioned above, we need p to be large enough to ensure that G�p
is (k+1)-linked.

The following observation states that we can compute the needed integer p in linear time,
which is obviously true as we only need to solve the inequality p(k − 1) ≥ 22(k + 1) to
get the desired p.

Observation 6. Given a k-ordered graph G for some k ≥ 3, we can compute pk ∈ N>0

in linear time in k, such that pk(k − 1) ≥ 22(k + 1). Then, by Lemma 4.24, G�pk

is 22(k + 1)-connected.

The proof of Lemma 4.22 is a direct consequence of Observation 6 together with
Theorem 4.17 and Theorem 4.18.

Proof of Lemma 4.22. Let G be a k-ordered graph. By Observation 6, we can com-
pute pk ∈ N>0 in linear time on k such that G�pk is 22(k + 1)-connected. Applying
Theorem 4.17 yields that G�pk is (k + 1)-linked. By Theorem 4.18, G�pk is (k + 1)-
ordered.

We are now ready to prove Theorem 4.14. The proof goes analogously to the proof of
Theorem 3.29, which is why we only give an outline of the proof and spare some details.

Proof. For the special case of k = 3, the statement follows by Corollary 4.15. Let k ≥ 3
be arbitrary but fixed, and assume that 3-Coloring is known to be NP -hard on k-
ordered Hamiltonian graphs. Given a k-ordered Hamiltonian graph G, we may com-
pute pk ∈ N>0 in linear time on k ∈ N by Observation 6, and subsequently construct
a (k + 1)-ordered Hamiltoninan graph G�pk in polynomial-time from G by Lemma 4.20
and Lemma 4.22. By Lemma 4.21, it holds true that G�pk is 3-colorable if and only
if G is 3-colorable. Thus, 3-Coloring remains NP -hard on (k + 1)-ordered Hamilto-
nian graphs. The proof now follows by induction on k and the fact that 3-Coloring
on k-ordered Hamiltonian graphs is trivially contained in NP .

A direct corollary to Theorem 4.14 is the following.

Corollary 4.25. 3-Coloring is NP -complete on k-connected Hamiltonian graphs with
known Hamilton-cycle, for every k ∈ N.
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5 The Independent Set Problem on
Hamiltonian Graphs

The problem of deciding whether a graph contains an independent set of size k for some
integer k can be stated as follows.

Independent Set
Input: An undirected graph G, an integer k ∈ N.
Question: Is there a set I ⊆ V (G) with |I| = k such that for all v, w ∈ I, it holds

true that {v, w} /∈ E(G)?

Many variations of Independent Set, such as Maximum independent set, which
is the problem of finding an independent set of maximum size in a graph, have many
different practical applications. Van Bevern et al. [Van+15] mention relations of the
Independent Set problem to several scheduling-problems, and Verweij and Aardal
[VA99] highlight applications in map labelling. Over the time, there have been many
different results regarding Independent Set. There have been a multitude of results
giving upper-bounds for maximum independent sets in numerous graph classes [Für87;
Min80]. As an NP -complete problem [Kar72], Independent Set is widely believed to
be intractable; many polynomial-time approximation algorithms [Bak83; FRS94], as well
as exact exponential-time algorithms [JYP88; TT77] have been developed. The com-
putational complexity of Independent Set has been extensively studied on numerous
different graph classes [Ale+08; AP89; FSS10; Kar72].

In this chapter we will analyze the computational complexity of Independent Set
on Hamiltonian graphs and restricted subclasses thereof—namely k-regular Hamilto-
nian graphs and k-ordered Hamiltonian graphs. We will prove that Independent Set
remains NP -complete on k-regular Hamiltonian graphs, as well as on k-Hamiltonian
ordered graphs for every fixed k ≥ 3. As a special case we will prove that Indepen-
dent Set remains NP -complete even when restricted to planar 5-regular Hamiltonian
graphs. In the first section, we prove that Independent Set remains NP -complete
on general Hamiltonian graphs. The second section is dedicated to the proof of the
NP -completeness of Independent Set on k-regular Hamiltonian graphs for k ≥ 3..
We will conclude the chapter in the third section with a proof that Feedback Vertex
Set remains NP -complete on k-Hamiltonian ordered graphs for every k ≥ 3.

Throughout this chapter we will write α(G) ≥ k if G has an independent set of size
at least k ∈ N.

51



5 The Independent Set Problem on Hamiltonian Graphs

G

KnG

Figure 5.1: Fully-connected Hamiltonian closure of G. The graph G is represented by
a dashed ellipse where the dashed lines denote possible edges in G. The
(red) diamond-shaped vertices represent the vertices in Vedges and the (red)
thin and thick edges represent the edges in Efc. The edges between vertices
in Vedges are drawn thickly in order to highlight the isomorphism between the
induced graph G(fc)[Vedges] and KnG

.

5.1 General Hamiltonian graphs.

Karp [Kar72] showed that Independent Set is NP -complete on general graphs.

Theorem 5.1 (Karp [Kar72]). Independent Set on general graphs is NP -complete.

As a first result in this chapter we will give a simple polynomial-time many-one reduc-
tion from Independent Set on general graphs to Independent Set on Hamiltonian
graphs, yielding the following.

Theorem 5.2. Independent Set on Hamiltonian graphs with known Hamilton-cycle
is NP -complete.

In order to prove Theorem 5.2 we use a modified version of Definition 4.2 given in
Chapter 4 that will be referred to as fully-connected Hamiltonian closure of a graph.
One may think of the fully-connected Hamiltonian closure of G as the graph obtained
by adding a disjoint KnG

, and connecting every vertex in KnG
to every vertex in G (see

Figure 5.1).

Definition 5.3 (Fully-connected Hamiltonian closure of a graph.). Let G = (V,E) be a
graph and let Φ := (v0, . . . , vnG−1) with vi ∈ V for every i ∈ {0, . . . , nG−1}, where vi 6= vj
if i 6= j, be an enumeration of the vertices. The fully-connected Hamiltonian closure of G
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5.1 General Hamiltonian graphs.

(through Φ), denoted by G(fc) = (V(fc), E(fc)), is:

V(fc) :=V ] Vedges, where

Vedges := {ui | i ∈ {0, . . . , nG − 1}} and,

E(fc) :=E ] Efc, , where

Efc := {{ui, w} | i ∈ {0, . . . , n− 1}, w ∈ V }∪
{{v, w} | v, w ∈ Vedges, v 6= w}.

Note that G(fc)[Vedges] is isomorphic to KnG
. A schematic example of a fully-connected

Hamiltonian closure of a graph G is given in Figure 5.1.

Analogously to our proof schemes and methods in the proofs of Theorem 3.1 and
Theorem 4.1 in the previous chapters, we will prove that, given a graph G, the graph G(fc)

is Hamiltonian, and that the size of its independent sets is polynomially dependent on G,
as well as on the size of independent sets in G. This will then give rise to a polynomial-
time many-one reduction from Independent Set on general graphs to Independent
Set on Hamiltonian graphs.

Lemma 5.4. The fully-connected Hamiltonian closure G(fc) of a graph G is Hamiltonian
and can be constructed in polynomial time from G. Moreover, an explicit Hamilton-cycle
can be given in O(

∣∣V (G(fc))
∣∣) time after construction of G(fc).

Proof. Denote by G′ the Hamiltonian closure of G as defined in Definition 4.2. We
know by construction that V (G′) = V (G(fc)) and E(G′) ⊂ E(G(fc)), and thus G′ ⊂ G(fc).
Since G′ is known to be Hamiltonian (Lemma 4.3) and G(fc)[V (G′)] = G(fc), it follows

that G(fc) is Hamiltonian. After reading G, G(fc) can be constructed in O(|V (G)|2)
time by adding |V (G)| vertices—namely Vedges)—and connecting them each to the alto-
gether 2 |V (G)| vertices in G(fc). Note that as V (G′) = V (G(fc)) a Hamilton-cycle in G′

(see Lemma 4.3) is also a Hamilton-cycle in G(fc) that can be given in O(
∣∣V (G(fc))

∣∣)
time.

Lemma 5.5. Let G = (V,E) be a graph and denote by G(fc) = (V(fc), E(fc)) the fully-
connected Hamiltonian closure of G. Then G has an independent set of cardinality k ∈ N
if and only if G(fc) has an independent set of cardinality k.

Proof. Let V(fc) := V ∪ Vedges be as in Definition 5.3. For k = 1 the statement is trivially
true, hence we assume that k ≥ 2.

⇒: Suppose G has an independent set I ⊂ V of cardinality k. Since E(G(fc)[V ]) =
E(G), it follows that I is an independent set of cardinality k in G(fc).

⇐: Suppose I ′ ⊂ V(fc) is an independent set of cardinality k in G(fc). Since k ≥ 2,
and as N(v) ∪ {v} = V(fc) for every v ∈ Vedges, it holds true that I ′ ∩ Vedges = ∅.
Thus I ′ ⊂ V = V (G) and therefore I ′ is an independent set of cardinality k
in G(fc)[V ] = G.
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5 The Independent Set Problem on Hamiltonian Graphs

We are now ready to prove Theorem 5.2.

Proof of Theorem 5.2. The many-one polynomial-time reduction from Independent
Set on general graphs to Independent Set on Hamiltonian graphs given by Lemma 5.4
together with Lemma 5.5, and the fact that Independent Set on general graphs
is NP -hard (Theorem 5.1), yield that Independent Set is NP -hard on the class of
Hamiltonian graphs with known Hamilton-cycle. Since Independent Set is trivially
contained in NP , this concludes the proof.

5.2 k-regular planar Hamiltonian graphs.

The computational complexity of Independent Set has already been studied on some
subclasses of regular Hamiltonian graphs. Fleischner, Sabidussi, and Sarvanov [FSS10]
showed that Independent Set remains NP -complete when restricted to planar 3-
regular Hamiltonian graphs.

Theorem 5.6 (Fleischner, Sabidussi, and Sarvanov [FSS10, Proposition 2.1]). Inde-
pendent Set is NP -complete on planar 3-regular Hamiltonian graphs with known
Hamilton-cycle.

Fleischner, Sabidussi, and Sarvanov [FSS10] showed moreover that the same holds true
for a specific subclass of planar 4-regular Hamiltonian graphs, yielding the following.

Theorem 5.7 (Fleischner, Sabidussi, and Sarvanov [FSS10, Proposition 4.3]). Inde-
pendent Set is NP -complete on planar 4-regular Hamiltonian graphs with known
Hamilton-cycle.

This raises the question whether Independent Set remains NP -complete on pla-
nar 5-regular Hamiltonian graphs. We answer this question by giving a polynomial-time
many-one reduction proving that Independent Set remains indeed NP -complete on
planar 5-regular Hamiltonian graphs.

Theorem 5.8. Independent Set is NP -complete on 5-regular planar Hamiltonian
graphs.

The proof of Theorem 5.8 will be done via a polynomial-time many-one reduction
from Independent Set on planar 3-regular Hamiltonian graphs. To this end, we
introduce a

”
gadget“-graph that we will be referring to as the T -graph. We then define

T -insertions analogously to the previously defined H-insertions and L-insertions, and,
in the same vein, prove analogous properties adapted to the Independent Set problem
(see Definition 3.10 and Definition 3.24 respectively).

Definition 5.9 (T -graph and T -insertion). We define the T -graph to be a graph on 24
vertices with V (T ) := {û, ŵ, t1, . . . , t10, p1 . . . , p10, b1, b2} as given by Figure 5.2a. The
distinct vertices û and ŵ will be referred to as the apex-vertices of T . Let G be a graph,
and let u,w ∈ V (G) be two distinct vertices in G. A T -insertion on u,w results in
a new graph G′ by a disjoint union of G and T (maybe after relabelling V (T )), and
subsequently connecting u to û and w to ŵ (see Figure 5.2b).
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5.2 k-regular planar Hamiltonian graphs.
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(a) Plane auxiliary graph T .
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û ŵ
T

(b) T -insertion.

Figure 5.2: T -graph and a T -insertion. The apex-vertices in T are denoted by û, ŵ. The
thick dashed (red) edges in Figure 5.2a denote the edges that will connect
the T -graph to G after performing a T -insertion as can be seen in Figure 5.2b
(thick (red) edges connecting u, û and w, ŵ). The (orange) thickly drawn
vertices in Figure 5.2a highlight an independent set of size seven in T , while
the (blue) thick edges highlight a Hamilton-path in T . Figure 5.2b shows
a schematically drawn detail of G after a T -insertion has been performed
on two distinct connected degree-four vertices denoted by u and w. The
two connected (purple) triangles schematically illustrate the T -graph. The
dashed edges highlight some of the possible remaining edges in G.

Observation 7. It can be seen in Figure 5.2a that deg(v) = 5 for every v ∈ V (T ) \
{û, ŵ} and deg(û) = deg(ŵ) = 4. Moreover P := (û, t1, . . . , t10, b1, b2, p1, . . . , p10, ŵ) is a
Hamilton-path in T , meaning that it is a path with V (P ) = V (T ) (see the (blue) thick
highlighted path in Figure 5.2a).

The following two lemmata summarize some properties of the T -graph and T -insertions
in a graph G that disclose their influence on the size of independent sets in G.

Lemma 5.10. Let T be as in Definition 5.9. Then T has no independent set of size
eight, and there is an independent set I ⊆ V (T ) with |I| = 7.

Proof. An independent set as stated in the lemma is given by I := {û, t2, t8, b1, p1, p4, p10}
as can be easily verified (see Figure 5.2a). To see this, let T ′1 := T [{û, t1, . . . , t10, b1}]
and T ′2 := T [{ŵ, p1, . . . , p10, b2}], and note that T can be constructed by a disjoint union
of T ′1 and T ′2 and subsequently connecting b1 and b2. Moreover note that T ′1

∼= T ′2. Let T1

be the graph obtained from T ′1 by connecting û with b1. By a simple case distinction it
follows that α(T1) ≤ 3, and thus α(T ′1) ≤ 4 where an independent set of cardinality four
in T ′1 must contain both û and b1. As T ′1

∼= T ′2, this yields that an independent set of
cardinality four in T ′2 must contain b2 and ŵ, yielding the claim. Another way to see
this would be via verification using a simple brute-force algorithm.

Lemma 5.11. Let G be a graph and let u,w ∈ V (G) be two distinct vertices in G
with {u,w} ∈ E(G). Let T be the graph as defined in Definition 5.9 with apex-vertices û, ŵ.
Let G′ be the graph resulting from a T -insertion on u,w. Then,

α(G) ≥ k ⇐⇒ α(G′) ≥ k + 7
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5 The Independent Set Problem on Hamiltonian Graphs

for every k ∈ N.

Proof. Recall that α(T ) ≤ 7 by Lemma 5.10.

⇐: Suppose that α(G′) ≥ k + 7 and let I ′ ⊂ V (G′) be an independent set of G′

with |I ′| ≥ k+7 for some k ∈ N. By Lemma 5.10 we know that |I ′ ∩ V (G′[V (T )])| ≤
7. As by construction V (G′[V (T )]) ∩ V (G) = ∅, it follows that I := I ′ \
V (G′[V (T )]) is an independent set in G′[V (G)] = G with |I| ≥ |I ′| − 7 ≥ k.

⇒: Suppose that α(G) ≥ k and let I ⊆ V (G) be an independent set with |I| ≥
kfor some k ∈ N. Note that |I ′ ∩ {u,w}| ≤ 1 as {u,w} ∈ E(G). Without
loss of generality assume that u /∈ I ′, else relabel u and w in G accordingly.
We claim that I ′ := I ∪ {û, t2, t8, b1, p1, p4, p10} is an independent set in G′.
As E(G′) ∩ {v, w | v ∈ V (G), w ∈ {û, t2, t8, b1, p1, p4, p10}} = {u, û}, where u /∈ I,
and as {û, t2, t8, b1, p1, p4, p10} is an independent set in T (see Lemma 5.10), we
conclude that I ′ is an independent set in G′ with |I ′| ≥ k + 7.

An inductive use of Lemma 5.11 yields the following.

Corollary 5.12. Let G be a graph and let ui, wi ∈ V (G) be different vertices in G
with {ui, wi} ∈ E(G) for every i ∈ {1, . . . ,m} and some m ∈ N with m ≤ nG

2
.

Let Ti ∼= T be graphs isomorphic to T as defined in Definition 5.9 with correspond-
ing apex-vertices ûi, ŵi for every i ∈ {1, . . . ,m}. Let G′ be the graph resulting from m
consecutive T -insertion on ui, wi respectively. Then,

α(G) ≥ k ⇐⇒ α(G′) ≥ k + 7m

for every k ∈ N.

In a next step, we analyze the influence of T -insertions on the topology of G. We
prove that T -insertions can be carried out in a way that, given a planar graph G, the
resulting graph G′ stays planar and can be constructed in polynomial time from G.

Lemma 5.13. Let G be a plane Hamiltonian graph with some Hamilton-cycle C =
{v0, . . . , vnG−1, v0}. Let vi, vi+1 mod nG

∈ V (G) be two distinct vertices that are neighbors
with respect to C for some i ∈ {0, . . . , nG − 1}. Let T be as in Definition 5.9 with
apex-vertices û, ŵ. Then the graph G′ resulting from a T -insertion on vi, vi+1 mod nG

is a
planar Hamiltonian graph that can be constructed in constant time after reading G.

Proof. As vi, vi+1 mod nG
are neighbors in C, {vi, vi+1 mod nG

} ∈ E(G). Thus vi, vi+1 mod nG

lie on some common face F in a given planar embedding of G. Construct G′ from G
by a T -insertion on vi, vi+1 mod nG

in a way that the T -graph is planar embedded
”
in-

side“ their common face F . Note that this is possible since T is a planar graph (see
Figure 5.2a for a planar embedding of T ). By Observation 7, we know that P :=
(û, t1, . . . , t10, b1, b2, p1 . . . , p10, ŵ) is a Hamilton-path in T and thus

C ′ := v0PCvi � (û, t1, . . . , t10, b1, b2, p1 . . . , p10, ŵ) � vi+1 mod nG
PCv0
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5.2 k-regular planar Hamiltonian graphs.

is by construction a Hamilton-cycle in G′. Note that the construction is possible
as {vi, û}, {vi+1 mod nG

, ŵ} ∈ E(G′). As T has a fixed number of vertices and edges,
the construction of G′ from G can be done by adding constant many vertices and edges
to G, concluding the proof.

We have now proven that, given a planar graph G, we can construct a planar graph G′

by T -insertions such that the size of independent sets in G′ is polynomially dependent
on G, as well as on the size of independent sets in G. We will now use nG many T -
insertions in order to construct a planar 5-regular Hamiltonian graph G′ from a given
planar 3-regular Hamiltonian graph G, which will complete the reduction. To this end,
let G be Hamiltonian graph, and let C be a Hamilton-cycle in G. Then the intuitive
idea is to connect every two consecutive vertices u, v ∈ V (G) along the cycle C in G by
a T -insertion, while embedding the T -graph inside a face that contains the edge {u, v}.
As every vertex in G has degree two, and the T -insertions give rise to two new neighbors
for every vertex in G, the resulting graph is planar 5-regular Hamiltonian, proving
Theorem 5.8.

Observation 8. LetG be a graph and let u,w ∈ V (G) be two distinct vertices with deg(u) =
deg(w) = k. Let G′ be the graph resulting from a T -insertion on u,w, then deg(u) =
(k + 1) = deg(w) in G′ and deg(v) = 5 for every v ∈ V (G′[V (T )]).

Observation 8 is obvious by construction and can easily be seen in Figure 5.2b. We
are now ready to prove Theorem 5.8 by a polynomial-time many-one reduction from
Independent Set on planar 3-regular Hamiltonian graphs.

Proof of Theorem 5.8. Let G be a planar 3-regular Hamiltonian graph with Hamilton-
cycle C = (v0 . . . , vnG−1, v0). Construct G′ from G by inductive, altogether nG many, T -
insertions on vi, vi+1 mod nG

for every i ∈ {0, . . . , nG − 1}. As every vertex v ∈ V (C)
will be part of two T -insertions, Observation 8 and an inductive use of Lemma 5.13
yield that G′ is a planar 5-regular Hamiltonian graph that can be constructed in O(nG)
time from G. Applying Corollary 5.12 yields α(G) ≥ k ⇐⇒ α(G′) ≥ k + 7nG. As
by Theorem 5.6, Independent Set is known to be NP -complete on planar 3-regular
Hamiltonian graphs with known Hamilton-cycle, and since Independent Set on 5-
regular planar Hamiltonian graphs is contained in NP , this concludes the proof.

Theorem 5.8 implies that Independent Set remains NP -complete on 5-regular
Hamiltonian graphs. In line with the previous chapters, we will extend this statement
by proving that Independent Set remains NP -complete on k-regular Hamiltonian
graphs for every fixed k ≥ 3.

Theorem 5.14. Independent Set is NP -complete on k-regular Hamiltonian graphs
with known Hamilton-cycle for every fixed k ≥ 3.

In order to prove Theorem 5.14, we will need the Definition 4.11 of stacked graphs
(see Figure 4.2a) that have been introduced in Chapter 4. Recall that given a k-regular
Hamiltonian graph G, the stacked graph G′ of G is (k + 1)-regular Hamiltonian. Thus,
if we prove that the size of independent sets in G′ is polynomially dependent on G
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5 The Independent Set Problem on Hamiltonian Graphs

and the size of independent sets in G, we have proven that the construction of stacked
graphs gives rise to a polynomial-time many-one reduction from Independent Set
on k-regular Hamiltonian graphs to Independent Set on (k+ 1)-regular Hamiltonian
graphs.

Lemma 5.15. Let G be a k-regular Hamiltonian graph, and let C be a Hamilton-cycle
in G. Let G′ denote the stacked graph of G. Then it holds true that

α(G) ≥ n ⇐⇒ α(G′) ≥ 2n

for every n ∈ N.

Proof. Let G = (V,E) and let V (G′) = V ∪ V ∗ as given in Definition 4.11.

⇒: Let I ⊆ V (G) denote an independent set of G with |I| ≥ n for some n ∈ N.
Let I∗ := {v∗ | v ∈ I} ⊂ V ∗. Then I∗ is by construction an independent set
in G′[V ∗] ∼= G. We claim that I ′ := I ∪ I∗ is an independent set in G′. Note
that I ∩ I∗ = ∅ and |I ′| ≥ 2n. By construction, I ′ is an independent set in G′[V ] =
G and in G′[V ∗]. Suppose that there are v, w ∈ I ′ such that {v, w} ∈ E(G′), then
neither {v, w} ∈ E(G′[V ]) nor {v, w} ∈ E(G′[V ∗]). Thus we may assume without
loss of generality that v ∈ I and w = u∗ ∈ I∗ for some u∗ ∈ V ∗. By construction
of G′, it holds true that {v, u∗} ∈ E(G′) ⇒ {v, u} ∈ E(G), where u denotes the
respective vertex in V (see Definition 4.11). But this is a contradiction to I being
an independent set of G, since by construction of I ′ it holds true that v, u ∈ I.

⇐: Let I ′ ⊂ V (G′) be an independent set in G′ with α(G′) ≥ 2n. Let I := I ′ ∩ V
and I∗ := I ′ ∩ V ∗, and note that I ∩ I∗ = ∅. By construction it holds true
that |I| ≥ nor |I∗| ≥ n. As I is an independent set in G and I∗ is an independent
set in G′[V ∗] ∼= G it follows that α(G) ≥ max {|I| , |I∗|}, and thus α(G) ≥ n.

As mentioned above, recall that by Lemma 4.12 from Chapter 4: given a k-regular
Hamiltonian graph G, the stacked graph G′ is (k + 1)-regular Hamiltonian and can be
constructed in polynomial time from G for any k ∈ N (see Figure 4.2b for a schematic
illustration of a Hamilton-cycle in G′). The proof goes analogously to the proof of
Theorem 3.29. For completion we will give an outline of the proof.

Proof of Theorem 5.14. Note that Independent Set on k-regular Hamiltonian graphs
is trivially contained in NP . The statement for k = 4 forms the base case of our
induction, and follows by Theorem 5.7. Let k ≥ 4 and define

Red : HCk → HCk+1, G = (V,E) 7→ G′ = (V ′, E ′),

where G′ is the stacked graph of G using similar notation as in the proof of Theorem 3.29.
By Lemma 4.12, the function Red is well-defined and can be evaluated in time polynomial
in |V (G)|. The proof now follows by Lemma 5.15 and induction on k.
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5.3 k-Hamiltonian-ordered graphs.

5.3 k-Hamiltonian-ordered graphs.

In this section, we will prove that Independent Set remains NP -complete when re-
stricted to k-Hamiltonian ordered graphs for every fixed k ≥ 3. We emphasize again that
the property of being k-Hamiltonian ordered is way stronger than simple hamiltonicity;
it requires graphs to be highly-connected and contain many different Hamilton-cycles.

Theorem 5.16. Independent Set is NP -complete on k-Hamiltonian ordered graphs
with known Hamilton-cycle for every k ≥ 3.

The main scheme of the proof of Theorem 5.16 will be analogous to the proof of
Theorem 3.43: by induction on k, using polynomial-time many-one reductions from
Independent Set on k-Hamiltonian ordered graphs to (k + 1)-Hamiltonian ordered
graphs. In this case, the general construction that gives rise to (k + 1)-Hamiltonian
ordered graphs turns out to be very simple. Given a k-Hamiltonian ordered graph G,
we construct G′ by adding a disjoint K3 and connecting every vertex in G to the three
vertices of K3. This particular kind of construction will be needed in the chapters to
come, which is why we will define it more generally.

Definition 5.17 (Product graph G ∗ H). Let G and H be two disjoint graphs. The
product graph G∗H arises from a disjoint union of G and H and subsequently connecting
every vertex in G to every vertex in H.

We will prove that constructing G∗K3 gives rise to a polynomial-time many-one reduc-
tion from Independent Set on k-Hamiltonian ordered graphs to (k + 1)-Hamiltonian
ordered graphs.

Lemma 5.18. Let G be k-Hamiltonian-ordered for some k ∈ N. Then G∗K3 is (k+1)-
Hamiltonian-ordered and can be constructed in constant time after reading G.

Proof. It is clear that G ∗K3 is Hamiltonian if G is Hamiltonian (see Figure 5.3b), and
that it can be constructed in constant time after reading G. Let V (K3) := {x1, x2, x3} ⊂
V (G∗K3) be a labelling of the vertices in K3. Let Ord = (u0, . . . , uk) ∈ V (G∗K3)k+1 be
an ordering of length (k+ 1) in G ∗K3. Note that k+ 1 < nG + 3 as G is k-Hamiltonian
ordered. Let V (Ord) := {v | v ∈ Ord} denote the set of vertices that occur in Ord.
There are two cases to consider:

Case 1: V (Ord) ∩ V (K3) = ∅. Since G is k-Hamiltonian-ordered there is a cycle C in
(G ∗K3)[V (G)] with respect to (u0, . . . , uk−1). Suppose uk is visited by C between u0

and uk−1, then we can write C = (u0, . . . , v, uk, w, . . . , uk−1, . . . , u, u0) for some u, v, w ∈
V (G). Then

C ′ := u0PCv � (v, x1, w) � wPCu � (u, x2, uk, x3, u0)

is by construction a Hamilton-cycle in G ∗K3 with respect to Ord.
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5 The Independent Set Problem on Hamiltonian Graphs

G

K3

(a) The graph G ∗K3. (b) Hamilton-cycle in G ∗K3.

Figure 5.3: G ∗ K3 and a Hamilton-cycle in G ∗ K3. The dashed edges represent some
of the possible edges in G. In Figure 5.3a the (red) diamond-shaped vertices
are the vertices of K3 and the thick (red) edges are the edges of K3 while
the thin (red) edges represent the edges from G to K3. The (orange) tube
in Figure 5.3b highlights a Hamilton-cycle in G ∗K3.

Case 2: V (Ord) ∩ V (K3) 6= ∅. Let Ord′ = (û0, . . . , ûk) where ûi = ui if ui /∈ V (K3)
and is left out if ui ∈ V (K3). Thus V (Ord′) := {v | v ∈ Ord′} ⊆ V (G), and Ord′ has
length at most k. Now as G is k-Hamiltonian-ordered there is C in (G ∗K3)[V (G)] with
respect to Ord′. As x1, x2, x3 are connected to every vertex in G ∗K3 we can extend C
to a cycle visiting the xi in any desired order and between any two desired consecutive
vertices in C; thus we can extend C to a Hamilton-cycle in G ∗K3 with respect to Ord,
concluding the proof.

In a last step, we quantify the relation between the size of independent sets in G
and G ∗K3.

Lemma 5.19. Let G be a graph. Then,

α(G) ≥ k ⇐⇒ α(G ∗K3) ≥ k

for every k ∈ N.

Proof. Since G = (G∗K3)[V (G)], it holds true that any independent set I ⊂ V (G) in G
is an independent set in G∗K3. Note that for every graph H it holds true that α(H) ≥ 1,
hence we may assume that k > 1. Let I ′ be an independent set in G ∗K3 with |I ′| ≥ 2.
Then V (K3) ∩ I ′ = ∅ as any vertex in V (K3) is connected to every other vertex in G∗K3.
Hence I ′ ⊂ V (G) = V (G∗K3)\V (K3) and as (G∗K3)[V (G)] = G this concludes that I ′

is an independent set in G.

We are now ready to prove Theorem 5.16. The proof goes analogously to the proof of
Theorem 3.29 which is why we only give an outline.

Proof of Theorem 5.16. The proof follows by induction on k ≥ 3. To see this, note that
if Independent Set on k-Hamiltonian-ordered graphs is known to be NP -hard, then
Lemma 5.18 and Lemma 5.19 give rise to a polynomial-time many-one reduction from
Independent Set on k-Hamiltonian ordered graphs to Independent Set on (k +
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5.3 k-Hamiltonian-ordered graphs.

1)-Hamiltonian ordered graphs, concluding that the latter problem is NP -hard. As
Independent Set on k-Hamiltonian ordered graphs is trivially contained in NP , the
induction start for k = 3, proven as Theorem 5.2, together with Observation 5 conclude
the proof.

A direct corollary to Theorem 5.16, due to Theorem 3.42, reads as follows.

Corollary 5.20. Independent Set is NP -complete on k-connected Hamiltonian graphs
with known Hamilton-cycle for every k ∈ N.
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6 The Clique Problem on Hamiltonian
Graphs

The problem of deciding whether a graph contains a clique of size k for some integer k
can be stated as follows.

Clique
Input: An undirected graph G, an integer k ∈ N.
Question: Is there a set K ⊆ V (G) with |K| = k such that for all v, w ∈ I, it

holds true that {v, w} ∈ E(G)?

Clique is part of the famous NP -complete problems that have been studied by Karp
[Kar72] in the very beginnings of computational complexity theory. There have been
countless results concerning cliques in graphs, such as upper-bounds for the maximal
cliques in several graph-classes, as well as characterisations of graph-classes by excluded
clique-minors [Kur30; MM65]. Pardalos and Xue [PX94] gathered many different re-
sults on cliques in graphs, and highlighted many applications for some variations of the
Clique problem. Abu-Khzam et al. [Abu+05] point out applications in computational
biology, while Bag, Ruj, and Sakurai [BRS15] give applications for

”
proof-of-work“ in

cryptocurrencies. As an NP -complete problem, Clique is widely believed to be in-
tractable. This has lead to the development of many polynomial-time approximation
algorithms, as well as exact exponential-time algorithms [CP90; Öst02; PX94]. The
computational complexity of Clique, and variations thereof, restricted to numerous
graph-classes, have been extensively studied in the past few decades [Che+06; ES11;
Fei+91].

In this chapter we will analyze the computational complexity of Clique on Hamilto-
nian graphs and restricted subclasses thereof—namely k-regular Hamiltonian graphs and
k-ordered Hamiltonian graphs. We will prove that Clique remains NP -complete when
restricted to k-Hamiltonian ordered graphs for every fixed k ≥ 3. Clique is trivially
polynomial-time solvable on k-regular Hamiltonian graphs.

Throughout this chapter we will write ω(G) ≥ k if G has a clique of size at least
k ∈ N. Without loss of generality we assume the input graphs to have ω(G) > 3, as it
can be verified in polynomial time (by a simple brute-force algorithm) whether a graph
contains a clique of order at least three.

6.1 General Hamiltonian graphs.

Karp [Kar72] showed that Clique is NP -complete on general graphs.
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6 The Clique Problem on Hamiltonian Graphs

Theorem 6.1 (Karp [Kar72]). Clique on general graphs is NP -complete.

As a first result in this chapter we will give a simple polynomial-time many-one re-
duction from Clique on general graphs to Clique on Hamiltonian graphs, yielding the
following result.

Theorem 6.2. Clique on Hamiltonian graphs with known Hamilton-cycle is NP -
complete.

In order to prove Theorem 6.2, we make use of Definition 4.2 from Chapter 4; that is
the Hamiltonian closure of a graph. The idea is that, given a graph G, the Hamiltonian
closure G′ of G is known to be Hamiltonian and the relation between the size of cliques
in G and G′ is by construction easily understood.

Lemma 6.3. Let G be a graph, and let G′ denote the Hamiltonian closure of G. Then,

ω(G) ≥ k ⇐⇒ ω(G′) ≥ k

for every k ≥ 3.

Proof. Since we have assumed that ω(G) > 3, and since by construction G ⊂ G′, we only
need to prove the claim for k ≥ 4. Let G be a graph with ω(G) ≥ k ≥ 4. As G ⊂ G′,
it follows immediately that ω(G′) ≥ k. Note that for any vertex v ∈ V (G′) \ V (G)
it holds by construction true that deg(v) = 2, and thus v can only be part of cliques
of size at most 3 in G′. Therefore, for any clique K ⊂ G′ with |V (K)| ≥ 4 it follows
that V (K) ⊂ V (G). As G′[V (G)] = G, this concludes the proof.

Recall that by Lemma 4.3, for any graph G, the Hamiltonian closure is Hamiltonian
and can be constructed in polynomial time from G.

Proof of Theorem 6.2. Lemma 4.3 together with Lemma 6.3, and the fact that Clique
is known to be NP -hard on general graphs by Theorem 6.1, prove that Clique is NP -
hard on Hamiltonian graphs. Since Clique on Hamiltonian graphs is trivially contained
in NP , it follows that Clique is NP -complete on Hamiltonian graphs.

6.2 Planar and k-regular Hamiltonian graphs.

In this section we argue that Clique can be solved in polynomial time when restricted
to k-regular Hamiltonian graphs as well as when restricted to planar graphs.

Theorem 6.4. Clique is polynomial-time solvable on any subclass of planar Hamilto-
nian graphs.

Proof. A well-known characterisation of planar graphs, known as the Theorem of Kura-
towski (Wagner), states that planar graphs are exactly the graphs that do not contain K5

or K3,3 as a (topological) minor (see for example [Die12, Theorem 4.4.6] for a reference).
This yields that, given a planar graph G, there is no subgraph H ⊂ G with H ∼= K5.
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6.3 k-Hamiltonian-ordered graphs.

Note that K5 is a minor of Kt for every t ≥ 5, concluding that there is no H ⊂ G
with H ∼= Kt for every t ≥ 5. Thus, we conclude that ω(G) ≤ 4. A naive brute-force
algorithm testing whether G contains a clique of size k for every k ∈ {2, 3, 4} runs
in O(n4

G) time.

Theorem 6.5. Clique is polynomial-time solvable when restricted to k-regular Hamil-
tonian graphs for any fixed k ∈ N.

Proof. Note that for any complete graph Kt with t ∈ N it holds true that deg(v) = (t−1)
for every v ∈ V (Kt). If G is a k-regular graph for some fixed k ∈ N, this yields that G
cannot contain cliques of order k + 2 or higher as subgraphs. This means that there is
no H ⊆ G such that H ∼= Kt for any t ≥ k + 2. Hence G may only contain cliques of
order at most k + 1. A naive brute-force algorithm testing whether G contains a clique
of size p for every p ∈ {2, . . . , k + 1} runs in O(n

(k+1)
G ) time. As k was arbitrary but

fixed (and not part of the input), this concludes the proof.

6.3 k-Hamiltonian-ordered graphs.

This section is dedicated to the proof of the following.

Theorem 6.6. Clique on k-Hamiltonian ordered graphs is NP -complete for every k ≥
3.

We will prove Theorem 6.6 by induction on k using polynomial-time many-one reduc-
tions from Clique on k-Hamiltonian ordered graphs to Clique on (k+ 1)-Hamiltonian
ordered graphs. The proof will be completely analogous to the proof of Theorem 5.16,
by using the same construction. Given a k-Hamiltonian ordered graph G, we will con-
struct G ∗K3 which is known to be (k + 1)-Hamiltonian ordered by Lemma 5.18. Note
that the relation between the sizes of cliques in G and G∗K3 is obvious by construction.
We will however give a proof for completion.

Lemma 6.7. Let G be a graph. Then,

ω(G) ≥ k ⇐⇒ ω(G ∗K3) ≥ k + 3

for every k ≥ 3.

Proof. Recall that V (G) ∩ V (K3) = ∅ by construction of G ∗K3.

⇒: Let K ⊆ G be a clique in G with |V (K)| ≥ k. As G ⊂ G∗K3 and V (K) ∩ V (K3) =
∅, it follows that K ∗K3 ⊆ G ∗K3 since every vertex in K3 is connected to ever
other vertex in G ∗K3. Note that K ∗K3 is by construction a complete subgraph
of G ∗K3 with |V (K ∗K3)| = |V (K)|+ |V (K3)| ≥ k + 3.

⇐: Let K ′ ⊆ G∗K3 be a clique with |V (K ′)| ≥ k+3. Let K := (G∗K3)[V (K ′)]−K3.
Then K is by construction a clique, as every induced subgraph of a complete graph
is again complete. By construction, V (K) ⊆ V (G) and thus K is a clique in G
with |V (K)| ≥ |V (K ′)| − |V (K3)| ≥ k.

65



6 The Clique Problem on Hamiltonian Graphs

The inductive proof of Theorem 6.6 goes analogously to the proof of Theorem 3.43.

Proof of Theorem 6.6. The proof follows by induction on k ≥ 3. To see this, note that
if Clique on k-Hamiltonian-ordered graphs is known to be NP -hard, then Lemma 6.7
and Lemma 5.18 give rise to a polynomial-time many-one reduction from Clique on k-
Hamiltonian ordered graphs to Clique on (k+1)-Hamiltonian ordered graphs, conclud-
ing that the latter problem is NP -hard. As Clique on k-Hamiltonian ordered graphs is
trivially contained in NP , the induction start for k = 3, proven as Theorem 6.2, together
with Observation 5 concludes the proof.

A direct corollary to Theorem 6.6, due to Theorem 3.42, is given by the following.

Corollary 6.8. Clique is NP -complete on k-connected Hamiltonian graphs with known
Hamilton-cycle for every k ∈ N.
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7 The Treewidth Problem on
Hamiltonian Graphs

In recent years, the notion of treewidth has gained a lot of interest, as it turned out
to play a fundamental role in several important and very deep graph-theoretic results
[RS86; RS90]. A formal definition of the treewidth of a graph uses the notion of a so-
called tree decomposition of a graph. Intuitively, a tree decomposition partitions a graph
into a

”
tree-like“ structure. Formal definitions for treewidth and treedecomposition read

as follows.

Definition 7.1 (Tree decomposition Diestel [Die12]). Let G be a graph, T a tree and
VT : V (T ) → 2V (G), where 2V (G) denotes the powerset of V (G). The pair (T , VT ) is
called a tree decomposition of G if it satisfies the following three conditions:

(TD1)
⋃
t∈V (T ) VT (t) = V (G).

(TD2) For every edge {v, w} ∈ E(G), there is t ∈ V (T ) such that v, w ∈ VT (t).

(TD3) Let t1, t3 ∈ V (T ) and P a path in T connecting t1 and t3, then VT (t1) ∩
VT (t3) ⊂ VT (t2) for all t2 ∈ V (P).

The images of VT will be referred to as bags.

Definition 7.2 (Width and treewidth Diestel [Die12]). Let G be a graph and (T , VT )
be a tree decomposition. Then the width of (T , VT ) is defined as

width(T , VT ) := max
t∈T

(|VT (t)| − 1).

The treewidth of G is defined as

tw(G) := min
(T ,VT )

width(T , VT );

the minimal width over every possible tree decomposition of G.

Determining the treewidth of a graph has many different practical applications be-
side its numerous applications in graph-theory. Bodlaender [Bod94] gathered countless
results regarding the treewidth of graphs, and highlighted many practical applications,
such as in evolution theory and natural language processing. It turns out that many
intractable problems become polynomial-time solvable when restricted to graph classes
of bounded treewidth [AP89; BK08; Bod97]. Unfortunately, the problem of deciding
whether a graph G has treewidth k for some integer k is intractable. This decision
problem, formally known as Treewidth, can be stated as follows.
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7 The Treewidth Problem on Hamiltonian Graphs

Treewidth
Input: An undirected graph G, an integer k ∈ N.
Question: Is there a tree decomposition (T , VT ) of G such that width(T , VT ) = k?

Arnborg, Corneil, and Proskurowski [ACP87] have shown that Treewidth is NP -
complete on general graphs. However, when k is a fixed constant, Treewidth can be
solved in linear time [Bod96]. The computational complexity of Treewidth has been
studied restricted to numerous graph classes [BT97; KK95; Klo96].

In this chapter we will prove that Treewidth remains NP -complete on Hamiltonian
graphs, as well as on k-Hamiltonian ordered graphs for every fixed k ≥ 3.

Throughout this chapter we will write tw(G) ≤ k if G has tree-width at most k for
some k ∈ N.

7.1 General Hamiltonian graphs.

As mentioned above, Treewidth is known to be NP -complete on general graphs
[ACP87]. We will use this result to prove that Treewidth remains NP -complete
on Hamiltonian graphs.

Theorem 7.3. Treewidth is NP -complete on Hamiltonian graphs with known Hamilton-
cycle.

The proof of Theorem 7.3 will be done via a polynomial-time many-one reduction
from Treewidth on general graphs. Before we embark on the proof of Theorem 7.3, we
cover some helpful definitions and lemmata regarding tree decompositions and treewidth
that were inspired by Diestel [Die12]. A notion that we will need later on are the so-
called adhesion sets. An adhesion set refers to the intersection of two bags in a tree
decomposition.

Definition 7.4 (Adhesion set). Let G be a graph. Let (T , VT ) be a tree decomposition
of G and let {t1, t2} ∈ E(T ). Then VT (t1) ∩ VT (t2) is called the adhesion set of VT (t1)
and VT (t2).

One notable property of adhesion sets is that they function as separators in the un-
derlying graph.

Remark. The name adhesion set comes from the fact that VT (t1) ∩ VT (t2) separates⋃
t∈V (T1) VT (t) from

⋃
t∈V (T2) VT (t) inG, where T1, T2 are the two components of T − {t1, t2}.

A particular result regarding tree decomposition and adhesion sets that will be of
special interest in proving that Treewidth is NP -complete on Hamiltonian graphs,
can be stated as follows.

Lemma 7.5 (Diestel [Die12, Lemma 12.3.4]). Let G denote a graph and let (T , VT ) be
a tree decomposition of G. Any set of vertices I ⊂ V (G) that is not contained in a bag
of (T , VT ) contains two vertices that are separated by an adhesion set of (T , VT ) in G.
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7.1 General Hamiltonian graphs.

Remark. It is worth noting that we call two vertices u, v separated in G by some set X ⊂
V (G), if it holds true that u, v /∈ X, and every path connecting u and v contains a vertex
in X.

For the mentioned reduction we will make use of the product graph G ∗KnG
, which

turns out to be Hamiltonian by construction. To this end, recall Definition 5.17 of the
product graphs.

Lemma 7.6. Let G be a graph of order nG. Then, the product graph G ∗KnG
is Hamil-

tonian.

Proof. We prove this lemma by explicitly giving a Hamilton-cycle in G ∗KnG
. To this

end, let {u0, . . . , unG−1} be an enumeration of the vertices in KnG
. A Hamilton-cycle

in G ∗KnG
is then given by

C = (v0, u0, v1, u1, . . . , vnG−1, unG−1, v0),

as can be easily verified.

In a last step towards the proof of Theorem 7.3, we quantify the relation between the
treewidth of G ∗KnG

and zhe treewidth of G.

Lemma 7.7. Let G denote a graph. Then,

tw(G) ≤ k ⇔ tw(G ∗KnG
) ≤ nG + k

for every k ∈ N.

Proof. ⇒: Let (T , VT ) be a tree decomposition of G, such that width((T , VT )) =
tw(G) ≤ k for some k ∈ N. Now construct (T ′, V ′T ) with T ′ := T and V ′T (t) :=
VT (t) ∪ V (KnG

) for every t ∈ V (T ′). Then (T ′, V ′T ) is a tree decomposition of G ∗KnG
.

To see this it suffices to verify the tree decomposition axioms from Definition 7.1:

•
⋃
t∈V (T ′) V

′
T (t) = V (G ∗KnG

) holds by construction.

• Let {u, v} ∈ E(G ∗KnG
) then u, v ∈ V ′T (t) for some t ∈ V (T ′). This holds obvi-

ously true for {u, v} ∈ E((G ∗KnG
)[V (G)]) and {u, v} ∈ E((G ∗KnG

)[V (KnG
)]),

since VT (t) ⊂ V ′T (t) and V (KnG
) ⊂ V ′T (t) for every t ∈ V (T ′). Therefore,

let {u, v} ∈ E(G∗KnG
) with u ∈ V (G) and w ∈ V (KnG

). Then there is t ∈ V (T ′)
such that u ∈ VT (t) ⊂ V ′T (t) and hence by construction also w ∈ V ′T (t).

• Let P be a path in T ′ connecting t1, t2 ∈ V (T ′), and recall that T ′ = T . Then,
since (T , VT ) is a tree decomposition of G, (VT (t1) ∩ VT (t2)) ⊂ VT (t) for every t ∈
V (P). Hence it holds true that for all t ∈ V (P), V ′T (t1) ∩ V ′T (t2) = (VT (t1) ∩
VT (t2)) ∪ V (KnG

) ⊂ VT (t) ∪ V (KnG
) = V ′T (t).
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7 The Treewidth Problem on Hamiltonian Graphs

As (T ′, V ′T ) is a tree decomposition of G ∗ KnG
, it holds true that tw(G ∗ KnG

) ≤
width((T ′, V ′T )), where width((T ′, V ′T )) = max

t∈V (T ′)
(|V ′T (t)|−1) = max

t∈V (T )
(|VT (t)|−1)+nG ≤

k + nG.
⇐: Let (T ′, V ′T ) be a tree decomposition of G ∗ KnG

such that width((T ′, V ′T )) =
tw(G ∗ KnG

) ≤ k + nG, and define (T , VT ) := (T ′, V ′T ∩ V (G)), where VT (t) = (V ′T ∩
V (G))(t) := V ′T (t) ∩ V (G) for every t ∈ V (T ′). Then (T , VT ) is by construction a tree
decomposition of G. Suppose for the sake of contradiction that width((T , VT )) > k.
Then there is t̂ ∈ V (T ) with

∣∣VT (t̂)
∣∣ ≥ k + 2. Let I := VT (t̂) ∪ V (KnG

) and note
that |I| ≥ nG + k + 2. Since width((T ′, V ′T )) ≤ k + nG, there cannot be a t′ ∈ T ′ such
that I ⊂ V ′T (t′). By Lemma 7.5, there must be two distinct vertices v, w ∈ I and two
vertices t′v, t

′
w ∈ V (T ′) with {t′v, t′w} ∈ E(T ′), such that v and w are separated by the

adhesion set A := V ′T (t′v) ∩ V ′T (t′w) in G ∗KnG
. Let T ′1 and T ′2 be the two components

of T ′−{t′v, t′w}, and without loss of generality we may assume that t′v ∈ V (T ′1 ) and t′w ∈
V (T ′2 ). Now there may hold exactly one of the following three cases for the dependencies
of v and w:

(i) v, w ∈ V (KnG
). This cannot be true as there is t′0 ∈ V (T ′) such that V (KnG

) ⊂
V ′T (t′0) (this follows as a special case from Lemma 7.5). But as v, w /∈ A since they
are separated by A, it follows that V (KnG

) 6⊂ A and thus v, w are not separated
by A in G ∗KnG

.

(ii) v ∈ V (KnG
), w ∈ VT (t̂). This cannot be true as {v, w} ∈ E(G∗KnG

) and by (TD2)
from Definition 7.1 there is t′0 ∈ V (T ′) such that v, w ∈ V ′T (t′0) which is again a
contradiction to v, w being separated by A in G ∗KnG

.

(iii) v, w ∈ VT (t̂). Now this means that v, w are contained in the same bag VT (t̂) ⊆
V ′T (t̂) ⊂ I. Without loss of generality assume that t̂ ∈ V (T ′1 ). As v, w are separated
by A in G ∗ KnG

it must hold true that V (KnG
) ⊆ A ⊆ V ′T (t′v). Hence we can

conclude that V ′T (t̂) 6⊂ V ′T (t′v), as otherwise |V ′T (t′v)| ≥ k + 2 + nG which would
be a contradiction to tw((T ′, V ′T )) ≤ k + nG (note that this implies that t̂ 6= t′v).
Thus there is a vertex x ∈ V ′T (t̂) \ V ′T (t′v) ⊂ VT (t̂). Now since A separates v, w
in G ∗ KnG

it must hold that V (KnG
) ∩

⋃
t∈V (T ′

1 ) V
′
T (t) = ∅. But since there is

an edge {x, u} ∈ E(G ∗KnG
) for every u ∈ V (KnG

), there must be a t′u ∈ V (T ′2 )
with u, x ∈ V ′T (t′u) due to (TD2) from Definition 7.1. Finally this is a contradiction
to (TD3) from Definition 7.1 as x /∈ V ′T (t′v), hence x /∈ A but x ∈ V ′T (t̂) ∩ V ′T (t′u).

As none of the three cases are possible, the assumption that width(T , VT ) > k must
have been false, concluding the proof.

We are now ready to prove Theorem 7.3 via a polynomial-time many-one reduction
from Treewidth on general graphs.

Proof of Theorem 7.3. Since Treewidth on Hamiltonian graphs is trivially contained
in NP , and since Treewidth on general graphs is known to be NP -complete [ACP87],
the polynomial-time many-one reduction due to Lemma Lemma 7.7 and Lemma 7.6
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7.2 k-Hamiltonian-ordered graphs.

reducing Treewidth on general graphs to Treewidth on Hamiltonian graphs with
known Hamilton-cycle concludes the proof.

7.2 k-Hamiltonian-ordered graphs.

In this section, we prove that Treewidth remains NP -complete when restricted to k-
Hamiltonian ordered graphs.

Theorem 7.8. Treewidth is NP -complete on k-Hamiltonian-ordered graphs for ev-
ery k ≥ 3.

The proof is completely analogous to the proof of Theorem 5.16 and uses the ex-
act same construction as needed in the polynomial-time many-one reductions for the
inductive proof of Theorem 5.16. Given a k-Hamiltonian ordered graph we will con-
struct G ∗K3 for which we have already proven that it is (k + 1)-Hamiltonian ordered
(see Lemma 5.18). A slight adaption to Lemma 7.7 then yields the following.

Corollary 7.9. Let G denote a graph. Then,

tw(G) ≤ k ⇐⇒ tw(G ∗K3) ≤ k + 3

for every k ∈ N.

Thus, given a k-Hamiltonian ordered graph G, G ∗K3 is (k+ 1)-Hamiltonian-ordered
and can be constructed in polynomial time from G, where tw(G ∗ KnG

) is linearly
dependent on tw(G). This gives rise to a polynomial-time many-one reduction proving
Theorem 7.8. The proof goes analogously to Theorem 3.43, which is why we only provide
a general outline.

Proof of Theorem 7.8. The proof follows by induction on k ≥ 3. To see this, note
that if Treewidth on k-Hamiltonian-ordered graphs is known to be NP -hard, then
Lemma 5.18 and Corollary 7.9 give rise to a polynomial-time many-one reduction from
Treewidth on k-Hamiltonian ordered graphs to Treewidth on (k + 1)-Hamiltonian
ordered graphs, concluding that the latter problem is NP -hard. As Treewidth on k-
Hamiltonian ordered graphs is trivially contained in NP , the induction start for k = 3,
proven as Theorem 7.3, together with Observation 5 conclude the proof.

A direct corollary to Theorem 7.8, due to Theorem 3.42, is given by the following.

Corollary 7.10. Treewidth is NP -complete on k-connected Hamiltonian graphs with
known Hamilton-cycle for every k ∈ N.
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8 Conclusion

We have shown, that theNP -complete problems Feedback Vertex Set, 3-Coloring,
Independent Set, Clique and Treewidth remain NP -complete when restricted to
Hamiltonian graphs. Even for finer restrictions, as to k-Hamiltonian ordered graphs,
all of the studied problems remain intractable. As the property of being k-Hamiltonian
ordered can be seen as a strong Hamiltonian property, this indicates that, from a compu-
tational complexity point of view, hamiltonicity may not be as restrictive as one might
think. Except for Treewidth, we proved that further restrictions on the vertex degrees
do not affect the tractability of the studied problems either.

The reductions we gave proving that Independent Set and Clique remain NP -
complete on Hamiltonian graphs were fpt-reductions, yielding that Independent Set
and Clique remain W [1]-hard on Hamiltonian graphs (see [Pap03] for definitions of
FPT and W [1]). The same holds true for Independent Set and Clique on k-
Hamiltonian ordered graphs. In the proofs of other results, such as that Feedback
Vertex Set remains NP -complete on planar 4-regular Hamiltonian graphs, we were
not able to give parametrized reductions, raising the question whether Feedback Ver-
tex Set may be fixed parameter tractable on planar 4-regular Hamiltonian graphs.
Similar questions arise for some of the other studied problems, motivating further study
of their computational complexity on a finer scale.

We have shown that 3-Coloring remains NP -complete on k-ordered Hamiltonian
graphs, as well as on k-connected graphs. In contrast to the other studied problems, we
were not able to give a reduction proving that 3-Coloring remains NP -complete when
restricted to the finer class of k-Hamiltonian ordered graphs. This raises the question
whether 3-Coloring becomes be polynomial-time solvable on k-Hamiltonian ordered
graphs, or whether it remains intractable.

At this point we want to conjecture that similar results hold true for Dominating
Set, which is the problem of deciding whether a graph contains k vertices whose neigh-
borhoods cover the whole graph. We think that by similar techniques as the ones used
in this thesis, namely by the inductive use of polynomial-time many-one reductions re-
lying on similar constructions as the ones we have given, Dominating Set remains
NP -complete when restricted to k-Hamiltonian ordered, as well as to k-regular graphs
for every k ≥ 3. Some first results of our research in that direction lead moreover to the
conjecture that this might even hold true for planar 3-regular Hamiltonian graphs.

Finally, given that all of the studied problems remain NP -complete on Hamiltonian
graphs, a natural question to ask is: What are classical problems that become non-
trivially tractable on Hamiltonian graphs?
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