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Zusammenfassung

Graphparameter werden heutzutage intensiv untersucht, da ihre Berechnung sehr kom-
plex und ressourcenintensiv, aber dafür auch sehr verbreitet, sind. Basierend auf der
Arbeit von Schröder [Sch] erweitern wir die hierarchische Struktur, die Graphparame-
terhierarchie, die als Werkzeug verwendet werden kann, um alternative Berechnungsme-
thoden zu finden. Mit dem Ziel, die Graphparameterhierarchie so effizient wie möglich
zu erweitern, haben wir sie um die folgenden sechs Parameter erweitert: twin cover num-
ber, edge clique cover number, neighborhood diversity, modular-width, c-closure und
twin-width. Wir haben eine Methode eingeführt, die jede Beziehung in der Hierarchie
bestimmt und gleichzeitig die Menge der zu erfüllenden Bedingungen minimiert. Dabei
haben wir die sechs genannten Parameter untersucht und sind auch auf einige interessan-
te Zusammenhänge zwischen verschiedenen Arten von Parametern gestoßen.

Abstract

Graph parameters are highly investigated, since their computation is very complex and
resource intensive but also very common these days. Based on the work by Schröder
[Sch], we further develop the hierarchical structure called the graph parameter hierarchy,
which can be used as a tool to find alternative methods of computation. With the goal
of expanding the graph parameter hierarchy as efficient as possible, we extented it by the
following six parameters: twin cover number, edge clique cover number, neighborhood
diversity, modular-width, c-closure and twin-width. We introduced a method which
determines every relation in this hierarchy while minimazing the amount of conditions
needed to be fulfilled. While doing so, we investigated the six mentioned parameters and
also encountered some interesting connections between different types of parameters.
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Chapter 1

Introduction

Researchers like Li et al. [Li+20] have thoroughly investigated the computation of NP-
hard problems, since the computation of huge amounts of data and information is very
common these days. With direct solutions being very resource-heavy, alternative meth-
ods have been sought after in order to increase efficiency. One particular method is the
use of parametrized algorithms, which use other parameters than the input size. In par-
ticular for graph parameters, it is very common to relate them to each other, since they
are often used to approximate each other. For example, consider the chromatic number,
which is NP-hard to compute. Rather than optimizing for the chromatic number, a
similar parameter like degeneracy can be used, since the degeneracy can be used as an
upper limit of chromatic number while being computable in linear time.

But, it can be quite unintuitive to find these relations between parameters. Relations
like between chromatic number and degeneracy are well known, but there are many
other parameters that could bound the chromatic number, such as the feedback vertex
number. Though, with the huge amount of different graph parameters, trying to check
every possible relation is not desirable. Thus, an interest in a graph parameter hierarchy
has recently evolved.

With a graph parameter hierarchy, it is possible to determine close relations through
transitivity, which makes finding more relations less of a guessing game. The result is a
collection of graph parameters which can be used as a tool. By having such a hierarchy
as a basis, it is easier to start more in-dept research, since false relations can be dismissed
earlier, as well as speed up research, since results can be found easier by investigating
similar related parameters. For instance, consider the boxicity of a graph. Next, we
want want to know whether modular-width upper bounds boxicity. So instead of having
to directly determine the relation between boxicity and modular-width, we already know
that if modular-width does not upper bound to chordality, then is also does not upper
bound boxicity, since boxicity upper bounds chordality.

1.1 Related Work

There have already been several instances of making a hierarchy for graph parameters.
This paper could be considered as a follow-up paper on the graph parameter hierarchy
developed by Schröder [Sch]. The focus therein was to provide a complete parameter
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10 CHAPTER 1. INTRODUCTION

hierarchy, where as many relations between the parameters as possible are determined.
On that note, complex relations themselves may have already been investigated.

Bonnet et al. [Bon+21] showed many results related to the twin-width of a graph.
Additionally, Gajarský et al. [GLO13] already formed a smaller parameter hierarchy
around the modular-width, which can be implemented as well. Not only research on
relations but also characteristics of parameters themselves are useful in this paper. For
instance, Terry et al. [TWY] showed specific characteristics for the genus of a graph,
which helped in completing the hierarchy.

1.2 Our Contribution

Our goal is to expand the graph parameter hierarchy build up by Schröder [Sch]. For
this purpose, we studied the following six parameters: twin cover number, edge clique
cover number, neighborhood diversity, modular-width, c-closure and twin-width.

We precisely locate each of their position within the graph parameter hierarchy. For
this, instead of investigating every possible relation, we developed method to reduce the
amount of necessary proofs. Thus, we present interesting results for each parameter.
We investigate in chapter 3 the twin cover number which upper bounds distance to
cluster. In chapter 4 we investigate edge clique cover number, neighborhood diversity and
modular-width together. We discover that edge clique cover number only upper bounds
neighborhood diversity which upper bounds boxicity while modular-width upper bounds
max diameter of components. Additionally, we highlight in chapter 5 that c-closure is
upper bounded by minimum feedback edge set and in chapter 6 that twin-width is upper
bounded by distance to planar. As the main result, we expanded the graph parameter
hierarchy by these six parameters, as seen in Figure 1.1.
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Figure 1.1: A Hasse graph displaying the graph parameter hierarchy expanded by pa-
rameters in darkgray. Note that the relation between chordality and maximum clique
as well as chordality and c-closure is currently unknown.





Chapter 2

Preliminaries

In this section, we provide notations and definitions used in the following chapters.

Graph Theory. We define G = (V,E) as an undirected graph where V is the set of
vertices and E ⊆ {{v, w}|v, w ∈ V, v ̸= w} is the set of edges. Furthermore, we denote
commonly used expressions.

V (G) is the vertex set V of G = (V,E).

E(G) is the edge set E of G = (V,E).

G[V ′] is the subgraph induced by V ′ in G.

Ḡ is complement graph to G, that is, Ḡ = (V, Ē), Ē = {{v, w}|v, w ∈ V }\E.

distG(v, w) is the distance between two vertices v, w in a graph G.

NG(v) is the (open) neighborhood of vertex v in G, that is, {w ∈ V (G)|{v, w} ∈ E(G)}.

NG(V
′) is the (open) neighborhood of a vertex set V ′ in G, that is,

⋃
v∈V ′ NG(v)\V ′

EV,W is the edge set between two vertex sets V and W , that is:

{{v, w} ∈ E(G)|v ∈ V,w ∈ W}

We call the edge set complete if EV,W = {{v, w}|v ∈ V,w ∈ W}. Additionally, we
say that two subsets V ′,W ′ ⊆ V are adjacent if their vertices are pairwise adjacent
and disjoint if the edge set is empty. A k-partition of a graph G is the partitioning of
V (G) into k mutually exclusive subsets of vertices denoted as (V1, . . . , Vk). A subset
V ′ ∈ V (G) is called a module if its neighborhood NG(V

′) is equal to NG(v)\V ′, for each
v ∈ V ′.

We define a trigraph as a graph where an edge between two vertices is either a
black edge or a red edge. A contraction on a graph or a trigraph is the contraction
of two vertices v, w where each shared adjacent (by a black edge) vertex u ∈ N(v) ∩
N(w) is connected by a black edge and each not shared adjacent vertices u ∈ (N(v) ∪
N(w))\(N(v)∩N(w)) is connected by a red edge. Additionally, incident red edges stay
as red edges.
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14 CHAPTER 2. PRELIMINARIES

Graph Parameter Hierarchy. A graph parameter is a function f : G → R where
G is the set of all finite graph and which returns a real number. We say that a param-
eter p upper bounds a parameter q if there is a non-decreasing function fp,q such that
fp,q(p(G)) ≥ q(G) for all graphs G while we say that if p does not upper bound q, q is
unbounded in p.

We say that a parameter p strictly upper bounds parameter q if p upper bounds q
and p is unbounded in q. Thus, we call p an upper bound for q and q a lower bound
for p. Additionally, we call parameters p and q incomparable if neither parameter upper
bounds the other and equal if both of them upper bound each other.

Throughout the paper, we also make use of characteristics of the hierarchy.
For parameters a, b, c, d:

Lemma 2.1. If a upper bounds b and b upper bounds c, then a also upper bounds c.

Proof. We know that there are non-decreasing functions f and g such that f(a) ≥ b and
g(b) ≥ c. Note that g(f(a)) ≥ g(b) ≥ c shows the claimed transitivity.

Lemma 2.2. If a upper bounds b, b upper bounds c, a does not upper bound d and d
does not upper bound c, then b and d are incomparable.

Proof. If b would upper bound d, then by the transitivity shown in Lemma 2.1, d upper
bounds c which is a contradiction. Similar, if d upper bounds b, then a upper bounds d
which is also a contradiction. Thus, b and d are incomparable.

We introduce two hidden parameter p0 and p∞ with p0 being upper bounded by any
parameter and p∞ upper bounding any parameter in case there are no known lower or
upper bounds.

Reduced Hierarchy. In a hierarchy, given a parameter b, we form a sub-hierarchy
where parameters incomparable by Lemma 2.2 are removed. Note that these are the
parameters which are incomparable to an upper and a lower bound for b.

Local Maxima. For a parameter b with its lower bounds C, local maxima are param-
eters, that are incomparable to b, upper bound every c ∈ C and have either no known
upper bounds or are only upper bounded by parameters which upper bound b.

Local Minima. For a parameter b with its upper bounds A, local minima are param-
eters, that are incomparable to b, are upper bounded by every a ∈ A and have either no
known lower bounds or only upper bound parameters which are upper bounded by b.

Lemma 2.3. In a reduced hierarchy and for a parameter b, any parameter d which upper
bounds a local minimum is incomparable to b if d does not upper bound every lower bound
for b. Analogically, if d is upper bounded by a local maximum, d is incomparable to b if
d is not upper bounded by every upper bound a of b.
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Proof. With Lemma 2.1 d cannot be upper bounded by b, since a local minimum is
incomparable to b. Additionally, if d does not upper bound every lower bound for b,
then they contradict, since any parameter upper bounding b also upper bounds any lower
bounds for b. Analogically, d cannot upper bound b if d is upper bounded by a local
maximum, and is incomparable if it is not upper bounded by every upper bound for b.
Thus, d is incomparable to b.

In order to expand the parameter hierarchy by a parameter b, we first determine its
upper bounds a and lower bounds c while trying to identify as many possible related
parameters by transitivity (Lemma 2.1). It is left to determine incomparability to any
other parameter.

We use the previous step to form a reduced hierarchy for b. Note that in this reduced
hierarchy any unknown related parameter d is (1) upper bounded by a potential local
maximum and upper bounds every lower bound for b, or (2) upper bounds a potential
local minimum and is upper bounded by every upper bound for b. In case of (1) and (2),
we know with Lemma 2.2 that d is incomparable to b while in case of either only (1) or
only (2), we know with Lemma 2.3 that d is incomparable to b. Thus, by proving that
every potential local extremum is indeed incomparable to b, we have determined every
relation for parameter b.

In the following we provide definitions for our investigated parameters.

Twin Cover Number. An edge {v, w} is a twin edge if vertices v and w have the
same neighborhood excluding each other (NG(v)\{w} = NG(w)\{v}). The twin cover
number tcn(G) of a graph G is the size of a smallest set V ′ ⊆ V (G) of vertices such that
every edge in E(G) is either a twin edge or incident to a vertex in V ′.

Edge Clique Cover Number. The edge clique cover number eccn(G) of a graph G
is the minimum number of complete subgraphs required such that each edge is contained
in at least one of them.

Neighborhood Diversity. The neighborhood diversity nd(G) of a graph G is the
smallest number k such that there is a k-partition (V1, . . . , Vk) of G, where each subset
Vi, i ∈ [k] is a module and is either a complete set or an independent set.

Modular-width. The modular-width mw(G) of a graph G is the smallest number h
such that a k-partition (V1, . . . , Vk) of G exists, where k ≤ h and each subset Vi, i ∈ [k]
is a module and either contains a single vertex or for which the modular-subgraph G[Vi]
has a modular-width of h. Since G[Vi] might have a k-partition as well, we also call any
further induced subgraph a modular-subgraph of G.

c-Closure. The c-closure cc(G) of a graph G is the smallest number c such that any
pair of vertices v, w ∈ V (G) with |NG(v) ∩ NG(w)| ≥ c is adjacent. That is, whenever
two vertices share at least c common neighbors, then they are neighbors themselves.
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Twin-width. A contraction sequence is a sequence of contractions which as a result
leaves only one vertex. The width of a contraction sequence s is determined by the
highest degree of red edges of a vertex in any point of the sequence. The twin-width
tww(G) of a graph G is the smallest width of every contraction sequence of G.

We also provide definitions for the following parameters and graphs, which we will
encounter throughout the paper.

Clique. A clique graph is a graph with n vertices and a complete edge set, that is,
E = {{v, w}|v, w ∈ V, v ̸= w}.

Cluster. A cluster graph is a graph of disjoint cliques.

Independent Set. A independent set graph is a graph with n vertices and an empty
edge set.

Planar. A planar graph is a graph that can be drawn on a plane without any edge
crossings.

Interval. A interval graph is a graph that can be formed from a set of intervals on a
real line, where vertices are formed by intervals with each intersection bein represented
by an edge.

Chordal. A chordal graph is a graph where every induced cycle in the graph has
exactly three vertices.

Perfect. A perfect graph is a graph where the chromatic number of every induced
subgraph is equal to the size of the largest clique of that subgraph. Note that a perfect
graph cannot have an induced cycle of length 5 or more.

Bipartite. A bipartite graph is a graph whose vertices can be divided into two inde-
pendent sets.

Distance to. The distance to a graph class H of a graph G = (V,E) is the size of a
smallest set Vd ⊆ V of vertices such that G[V \Vd] ∈ H.

Vertex Cover Number. The vertex cover number of a graph G is the size of a
smallest set V ′ ⊆ V (G) of vertices such that every edge in E(G) is adjacent to a vertex
in V ′.

Clique Cover Number. The clique cover number of a graph G is the minimum
amount of cliques in G needed to contain every vertex in V (G).



17

Feedback Edge Number. The feedback edge number of a graph G is the size of a
smallest set E′ ⊂ E(G) of edges such that any cycle contains an edge e, with e ∈ E′

Bisection Width. The bisection width of a graph G is the size of a smallest set
E′ ⊂ E(G) of edges such that removing E′ from E splits G into two equal halves of
components, that is, a graph equal to a disjoint union of two equal graphs.

Maximum Degree. The maximum degree of a graph G is the highest degree of a
vertex in V (G).

Genus. The genus of a graph G is the smallest number γ such that G can be drawn
on a sphere with γ handles without any edge crossings.

Euler Genus. The euler genus of a graph G is the smallest number k, such that G
can be drawn on a sphere without crossings using k

2 handles or k crosscaps.

Domination Number. The domination number of a graph G is the size of a smallest
set V ′ ⊆ V (G) of vertices such that any vertex is either in V ′ or adjacent to vertex in
V ′ (dominating set).

Domatic Number. The domatic number of a graph G is the biggest number k such
that there is a k-partition (V1, . . . , Vk) of G, where each Vi is a dominating set.

Maximum Clique. The maximum clique of a graph G is the size of the biggest clique
in G.

Clique-width. The clique-width of a graph G is the minimum number of labels re-
quired to construct G, using the following 4 operations:

� Creation of a new vertex v with label i

� Disjoint union of two labeled graphs G and H

� Joining by an edge every vertex labeled i to every vertex labeled j, where i ̸= j

� Renaming label i to label j

Boxicity. The boxicity of a graph G is the minimum amount of interval graphs re-
quired, such that their intersecten results in G.

Chordality. The chordality of a graph G is the minimum amount of chordal graphs
required, such that their intersecten results in G.





Chapter 3

Twin Cover Number

In this chapter, we determine the position of the twin cover number in the graph pa-
rameter hierarchy. To do this, we first reduce the graph parameter hierarchy, by proving
for its upper bounds (vertex cover number) and its lower bounds (distance to cluster).
Then, we can determine every potential local extrema as seen in Figure 3.2. By proving
that each of these potential local maxima (distance to clique) and potential local minima
(maximum clique, domatic number, distance to disconnected and distance to co-cluster)
are indeed incomparble, we have proven with Lemma 2.2 and Lemma 2.3 that there
are no further upper and lower bounds for twin cover number in this hierarchy, since
any undetermined parameter within a reduced parameter hierarchy is related to a local
extrema.

3.1 Upper Bounds

We prove for upper bounds for twin cover number in the following.

Observation 3.1. Vertex Cover Number strictly upper bounds Twin Cover Number.

Proof. Note that a clique of size n has a twin cover number of 0 and a vertex cover
number of n− 1. Hence, twin cover number does not upper bound vertex cover.

Note that each vertex cover is by definition also a twin cover, as each edge is incident
to a vertex in the vertex cover. Thus, vertex cover number strictly upper bounds twin
cover number.

3.2 Lower Bounds

We prove for lower bounds for twin cover number in the following.

Theorem 3.2. Twin Cover Number strictly upper bounds Distance to Cluster.

Proof. We show that twin cover number is not upper bounded by distance to cluster.
Consider the class of graphs G = (V,E) consisting of a clique VC ∈ V of size n where
the vertex set V1 of half of the vertices vi ∈ VC , i = 1, . . . , ⌊n2 ⌋ are adjacent to a single
vertex vs ∈ V . Let vertex set V2 = V \(V1 ∪{vs}) contain the other vertices of the clique
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vs

Figure 3.1: Given a clique with size n = 5 and vertex vs with V1 in blue and V2 in red.
Note that EV1,V2 is complete and that, considering vs, none of these edges are twin edges.

VC . It is apparent that the distance to clique and therefore the distance to cluster is 1 as
removing vs results in a clique. Note that the edge set EV1,V2 is complete with no twin
edges (Figure 3.1). Thus, the twin cover set Vtc has to contain the entirety of V1 or V2

due to the fact that if a vertex vi ∈ V1 and vj ∈ V2 are both not contained in Vtc, then
the edge {vi, vj} is neither a twin edge nor covered by Vtc. Thus, the twin cover number
is at least min(|V1|, |V2|) = ⌊n2 ⌋ and cannot be upper bounded by distance to cluster.

Next, we show that a graph H with a twin cover of size k has a distance to cluster
of at most k. Note that removing the twin cover set Wtc with |Wtc| = k, a subgraph
H ′ = H[V (V )\Wtc] with only twin edges is left. Given that vertices left only have
incident twin edges, connected vertices are always true twins and we can conclude that
every connected component of H ′ has to be a clique, and therefore H ′ forms a cluster
graph. Thus, twin cover number strictly upper bounds distance to cluster.

3.3 Incomparability

Considering each previously discovered bound, we form a reduced hierarchy of twin
cover number as seen in Figure 3.2. We discover that distance to clique is the only
potential local maximum. Thus, we prove that the potential local maximum is indeed
incomparable to twin cover number in the following.

Observation 3.3. Twin Cover Number is incomparable to Distance to Clique.

Proof. Note that twin cover number is upper bounded by vertex cover number and
therefore by Lemma 2.1 cannot upper bound distance to clique.

We have shown in the proof of Theorem 3.2 that the twin cover number is not upper
bounded by distance to clique. Hence, twin cover number is incomparable to distance
to clique.

It remains to show that every potential local minimum (maximum clique, domatic
number, distance to disconnected and distance to clique) is indeed incomparable to twin
cover number.

Observation 3.4. Twin Cover Number is incomparable to Maximum Clique, Domatic
Number and Distance to Disconnected.
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Figure 3.2: Reduced parameter hierarchy for twin cover number (darkgray). We show
proven local minima (gray rectangles) and local maxima (gray hexagons).
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Proof. Note that twin cover number upper bounds clique-width and therefore by Lemma 2.1
cannot be upper bounded by maximum clique, domatic number or distance to discon-
nected.

Next, we show that twin cover number does not upper bound maximum clique,
domatic number or distance to disconnected. Consider a clique of size n. The twin cover
number is 0, while by its definition maximum clique is n, domatic number is n as every
vertex on its own covers every vertex and distance to disconnected is n − 1 as every
incedent edge of a single vertex, which are n − 1 edges, has to be deleted to isolate a
vertex. Hence, twin cover number is incomparable to maximum clique, domatic number
and distance to disconnected.

Proposition 3.5. Twin Cover Number is incomparable to Distance to Co-Cluster.

Proof. Note that the twin cover number upper bounds distance to cluster and therefore
by Lemma 2.1 cannot be upper boundedby distance to co-cluster.

Next, we show that twin cover number does not upper bound distance to co-cluster.
Consider a graph consisting of two disjoint cliques of size n > 1. The twin cover number is
0 as all edges are twin edges. Since a co-cluster graph can only be either one component
or a single independent set, of two disjoint cliques of size n > 1 an entire clique has
to be removed, thus distance to co-cluster is at least n. Hence, twin cover number is
incomparable to distance to co-cluster.

Since every potential local extremum is indeed a local extremum, with Lemma 2.2
and Lemma 2.3 we have determined every relation involving twin cover number in the
graph parameter hierarchy.



Chapter 4

Edge Clique Cover Number,
Neighborhood Diversity and
Modular-width

In this chapter, we determine the position of multiple parameters at once (edge clique
cover number, neighborhood diversity and modular-width). To do this, we determine
their internal relation and then prove upper and lower bounds for each individual param-
eter while making use of their transitivity to safe some proofs. Since edge clique cover
number upper bounds neighborhood diversisity which upper bounds modular-width, we
determine upper bounds for edge clique cover number (distance to clique), then up-
per bounds for neighborhood diversity (vertex cover number) and upper bounds for
modular-width (twin cover number). For lower bounds we determine lower bounds for
modular-width (max diameter of components and clique-width), then lower bounds for
neighborhood diversity (boxicity) and no lower bounds for edge clique cover number.

It remains to prove incomparability for any other parameter. We can form a re-
duced hierarchy for each parameter to determine each potential local extrema. We show
a united reduced hierarchy in Figure 4.2. By proving that each of these potential lo-
cal maxima (vertex cover number, distance to cluster, distance to co-cluster and twin
cover number) and potential local minima (domination number, distance to perfect and
chordality) are indeed incomparable, we have proven with Lemma 2.2 and Lemma 2.3
that there are no more upper and lower bounds for edge clique cover number, neighbor-
hood diversity or modular-width, since any undetermined parameter within a reduced
parameter hierarchy is related to a local extrema.

4.1 Internal Relation

We prove for relations between edge clique cover number, neighborhood diversity and
modular-width.

Theorem 4.1. Edge Clique Cover Number strictly upper bounds Neighborhood Di-
versity.

23
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Proof. Note that given two independent sets of size n whose vertices are pairwise adja-
cent, the edge clique cover number is n2 while the neighborhood diversity is 2

Next, we show that given a graph G = (V,E) with edge clique cover number k,
the neighborhood diversity is at most 2k. Note that the neighborhood diversity is the
minimum number of sets given a l-partition into modules and cliques or independent
sets. Consider a edge-clique cover set S = C1, . . . , Ck and every atomic intersection
Ii =

⋂
Si\

⋂
S̄i, S̄i = S\Si, where Si is any combination of items from S. Observe that

each intersection Ii is a module and a clique with vertices v ∈ Ii having a common
neighborhood NG(v) = NG(Ii) =

⋂
Si Ii. Thus, every vertex v ∈ Ci covered by the

edge-clique cover set S can be partitioned into the module Ii ∈ I. For vertices w ∈
V \

⋃
Ci we know that each vertex w has to be isolated, as else incident edges would

have meant coverage by the edge-clique cover, and therefore can be partitioned into
additional module and an independent set. With |I| ≤ 2k, we conclude that G can
be partitioned into at most 2k + 1 modules and a clique or independent set. Hence,
edge-clique cover strictly upper bounds neighborhood diversity.

Note that Gajarský, J. et al. [GLO13] showed that neighborhood diversity strictly
upper bounds modular-width.

4.2 Upper Bounds

Since determining upper bounds also determines upper bounds for further lower bounds,
we start with highest, that is, the edge clique cover number.

4.2.1 Edge Clique Cover Number

We prove for upper bounds for edge clique cover number.

Proposition 4.2. Distance to Clique strictly upper bounds Edge Clique Cover Num-
ber.

Proof. Note that given two cliques of size n, the distance to clique is n, while edge clique
cover number is 2. Hence, edge clique cover number does not upper bound distance to
clique.

Next, we show that given a graph G = (V,E) with distance to clique k has an edge
clique cover number of at most

(
k
2

)
+k+1. For the distance set Vd, the amount of cliques

needed to cover all edges in E(G[Vd]) is at most the number of possible edges
(
k
2

)
. In

addition, for each vertex v ∈ Vd, incident edges towards vertices u ∈ Vcl = V \Vd can
be covered with a single clique. Finally, it is left to cover edges of the clique E(G[Vcl])
which can be covered by one last clique. Thus, the edge clique cover number is at most(
k
2

)
+k+1. Hence, distance to clique strictly upper bounds edge clique cover number.

4.2.2 Neighborhood Diversity

We prove for upper bounds for neighborhood diversity.

Proposition 4.3. Vertex Cover Number strictly upper bounds Neighborhood Diver-
sity.
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100 010 001

000 001 010 011 100 101 110 111

Figure 4.1: Given a vertex cover of size n = 3 (red), with a permutaion of 23 = 8 different
possible neighborsets as shown by their binary value.

Proof. Note that given a clique of size n, the neighborhood diversity is 1, while vertex
cover number is n−1. Hence, neighborhood diversity does not upper bound vertex cover
number.

Next, we show that a graph G = (V,E) with a vertex cover of size k has a neighbor-
hood diversity of at most k + 2k. Given a vertex cover Vvc ⊆ V means that the vertices
in V ′ = V \Vvc form an independent set which furthermore can be split into multiple
independent sets. Observe that there are 2k subsets of Vvc and that vertices v ∈ V ′ with
the same neighborhood NG(v) ⊂ Vvc can form a module and an independent set. Thus,
vertices in V ′ can be partitioned into at most 2k different modules (see for example
Figure 4.1), while an additional k modules for each single vertex in Vvc can be added,
summarizing to a neighborhood diversity of at most k+2k. Hence, vertex cover strictly
upper bounds neighborhood diversity.

4.2.3 Modular-width

For upper bounds for modular-width, Gajarský, J. et al. [GLO13] showed that twin
cover number strictly upper bounds modular-width.

4.3 Lower Bounds

Since determining lower bounds also determines lower bounds for further upper bounds,
we start with the lowest, that is, the modular-width.

4.3.1 Modular-width

We first prove for some charateristics of modular-width.

Lemma 4.4. The Modular-width of a path P with length n > 3 is n.

Proof. Note that given any graph G with V (G) ≥ 2, mw(G) ≥ 2. For any set S of
2 ≤ k < n vertices in V (P ), there is at least one vertex v ∈ NP (S) with S ⊈ NP (v).
Thus, a n-partition of subsets of size 1 is necessary, that is, the modular-width is n.

Lemma 4.5. Given any graph G, mw(G) = mw(Ḡ).
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Proof. Let the mw(G) = h ≥ k and let there be a k-partition (V1, . . . , Vk) such that
for each i ∈ [k] it holds that Vi is a module in G and G[Vi] has a modular-width of at
most h. Observe that the edge set EVi,Vj is either complete or empty in order for Vi and
Vj to be modules. Consider the same k-partition for Ḡ. Since Vi and Vj are modules,
EVi,Vj is either complete or empty, therefore ĒVi,Vj is also either complete or empty,
meaning Vi and Vj are still modules. Analogically, each further k-partition for G[Vi] is
also applicable for each further induced Ḡ[Vi]. Hence, mw(G) = mw(Ḡ).

We prove for lower bounds for modular-width.

Proposition 4.6. Modular-width strictly upper bounds Clique-width.

Proof. We know that given a path P of length n > 3, as shown in Lemma 4.4, the
modular width is n. Note that the clique-width of a path is 3 and therefore clique-width
cannot upper bound modular-width.

Courcelle et al. [CMR00] showed that given any graph G of clique-width cw(G) =
max(cw(H)), where H is a representative graph of a modular-subgraph of G, that is, a
graph where each module is represented by a vertex adjacent to other vertices if their
modules are adjacent as well. We know that cw(H) is at most |V (H)| and that |V (H)|
is at most mw(G). Hence, mw(G) ≥ cw(G). Thus, modular-width strictly upper bounds
clique-width.

Theorem 4.7. Modular-width strictly upper bounds Max Diameter of Components.

Proof. We show that max diameter of components cannot upper bound modular-width.
Consider the complementary graph P̄ of a path of length n > 4. Observe that any
two vertices v, w have a non-empty shared neighborhood NP̄ (v) ∩ NP̄ (w) ̸= ∅. Thus,
the max diameter of components is at most 2. We have proven in Lemma 4.4 that the
modular-width of a path of length n > 3 is n. Additionally, it is stated in Lemma 4.5
that the modular-width of a complement graph is equal to the original graph. Hence,
the modular-width of P̄ is also n.

Next, we show that given a graph G with modular-width h, the max diameter of
components is at most h. Let d be the maximum diameter of any connected component
in G and let v, w be two vertices with distG(v, w) = d. Let (V1, . . . , Vk), k ≤ h be
a k-partition of G or a modular-subgraph of G such tha Vi is a module, with G[Vi]
having a modular-width of at most h. Note that vertices v and w must be in the same
connected component and must at some point be in different modules of a modular-
subgeraph G′. Since the distance between vertices between each adjacent module is 1,
we construct a representative graph H of G′, where modules Vi, Vj ⊆ V (G′), i ̸= j are
represented by a vertices v′i, v

′
j ∈ V (H), with {v′i, v′j} ∈ E(H), if Vi and Vj are adjecent.

Observe how for vertices vi ∈ Vi and vj ∈ Vj , distG(vi, vj) = distH(v′i, v
′
j). Thus, since

the max diameter of components of H is at most |H|, with |H| ≤ h, the max diameter
of components of G is at most h. Hence, modular-width strictly upper bounds max
diameter of components.

4.3.2 Neighborhood Diversity

We first prove for some charateristics of neighborhood diversity.
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Lemma 4.8. The Neighborhood Diversity of a Path P with length n > 3 is n.

Proof. Note that V (P ) is neither an independent set nor a clique. For any set S of
2 ≤ k < n vertices, there is at least one vertex v ∈ NP (S) with S ⊈ NP (v). Thus,
a n-partition of subsets of size 1 is necessary, meaning, the neighborhood diversity is
n.

We prove for lower bounds for neighborhood diversity.

Theorem 4.9. Neighborhood Diversity strictly upper bounds Boxicity.

Proof. Note that given a path of length n > 3. The boxicity is 1 while Lemma 4.8 states
that the neighborhood diversity is n.

Next, we show that given a graph G = (V,E) with neighborhood diversity of k,
its boxicity is at most k + k2. Recall that the boxicity of a graph G is the minimum
amount of interval graphs needed to intersect to form G. We construct interval graphs
Gi = (V,Ei) such that for each pair u, v ∈ V it holds that {u, v} ∈ E if and only if
{u, v} ∈ Ei for all i. Note that each such interval graph has to contain all edges E and
for each pair of vertices u, v with {u, v} /∈ E there needs to be at least one interval
graph Gi wtih {v, w} /∈ Ei. We can now construct interval graphs for certain modules
and pairs of modules using the following methods.

With a k-partition (V1, . . . , Vk) where each subset is a module and a clique or an
independent set, we may construct an interval graph Gi = (V,Ei) for each module. If
Vi is an independent set, then all vertices in V \Vi form a clique, while all vertices v ∈ Vi

form an independent set which are adjacent to V \Vi. If Vi is a clique, then we do not
require an additional interval graph.

Next, we construct an interval graph Gij = (V,Eij) for each pair Vi, Vj that is non-
adjacent, meaning the edge set EVi,Vj is empty. In this case, each vertex set VothV \(Vi∪
Vj), Vi and Vj forms a clique while Vi and Vj will be adjacent to Voth. As both cliques
Vi and Vj can independently (without overlapping each other) intersect with Voth, Gij

will be an interval graph.
Observe that any edge in G is contained in all constructed interval graphs. It remains

to show that each pair of non-adjacent vertices is non-adjacent in at least one interval
graph. Consider any pair v, w ∈ V with {v, w} /∈ E. If v and w belong to the same
module Vi then this module is an independent set and by construction {v, w} /∈ Ei. If v
and w belong to different modules Vi and Vj , then these two modules are non-adjacent
and by construction {v, w} /∈ Eij . Hence, the intersection of each Gi and each Gij , which
summarizes to a maximum of k+ k2 interval graphs, does form G. Thus, neighborhood
diversity strictly upper bounds boxicity.

4.4 Incomparability

Considering each previously discovered bounds, we form a reduced hierarchy for each
parameter. We show a united reduced hierarchy in Figure 4.2.

Since each local maxima is determined by the upper bounds for the lower bounds for
a parameter we start with the lowest, that is, the modular-width.
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Figure 4.2: United reduced parameter hierarchy for edge clique cover number, neigh-
borhood diversity and modular-width (darkgray). We show proven local minima (gray
rectangles) and local maxima (gray hexagons).
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vs

Figure 4.3: Three cliques of size m = 3 with one vertex vi (red) in each clique being
adjacent to vs. Observe that each vertex vi as well as vertex vs can only form a module
on their own.

4.4.1 Local Maxima

We prove for potential local maxima (distance to cluster and distance to co-cluster) of
modular-width.

Proposition 4.10. Modular-width is incomparable to Distance to Cluster.

Proof. Note that modular-width is upper bounded by neighborhood diversity and there-
fore cannot upper bound distance to cluster since distance to cluster and neighborhood
diversity are incomparable.

Next, we show that modular-width is not upper bounded by distance to cluster.
Consider the class of graph G = (V,E) with n cliques Vi ∈ V of size m > 1 and where
a single vertex of each clique vi,1 ∈ Vi is adjacent to a single vertex vs ∈ V (Figure 4.3).
The distance to cluster is 1 since removing vs results in a cluster graph. While vs has
to form its own module, as else a common neighborhood is not possible, each clique will
have to be partitioned into 2 modules Vi,1, with {v ∈ Vi,1|{v, vs} ∈ E}, and Vi,2, with
{w ∈ Vi,2|{w, vs} /∈ E}, meaning that the modular-width is 2n + 1. Hence, modular-
width is incomparable to distance to cluster.

Proposition 4.11. Modular-width is incomparable to Distance to Co-Cluster.

Proof. We have already shown in Proposition 4.10 that modular-width is incomparable
to distance to cluster. Observe that distance to cluster of G is equal to distance to
co-cluster of Ḡ. At the same time, we have already proven that modular-width of Ḡ
is equal to modular-width of G. Hence, modular-width is incomparable to distance to
co-cluster.

Thus with Lemma 2.3, we know that modular-width does not have any further known
upper bounds. We now proceed with the only potential local maximum (twin cover) of
the neighborhood diversity.

Proposition 4.12. Neighborhood Diversity is incomparable to Twin Cover Number.
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Proof. Note that the neighborhood diversity upper bounds clique-width and therefore
by Lemma 2.1 cannot be upper bounded by distance to perfect.

Next, we show that neighborhood diversity does not upper bound twin cover number.
Consider n disjoint cliques of size m > 1. Since each clique has to be its own module
and a clique, the neighborhood diversity is atleast n while the twin cover number is 0
since each edge is a twin edge. Hence, neighborhood diversity is incomparable to twin
cover number.

Thus with Lemma 2.3, we know that neighborhood diversity does not have any
further known upper bounds. We now proceed with the only potential local maxima
(vertex cover number) of the edge clique cover number.

Proposition 4.13. Edge Clique Cover Number is incomparable to Vertex Cover Num-
ber.

Proof. Note that the edge clique cover number is upper bounded by distance to clique
and therefore by Lemma 2.1 cannot upper bound vertex cover number.

Next, we show that edge clique cover number is not upper bounded by vertex cover
number. Consider a star with n leaves. It is apparent that vertex cover number is 1
while edge clique cover number is n. Hence, edge clique cover number is incomparable
to vertex cover number.

Thus with Lemma 2.3, we know that edge clique cover number does not have any
further known upper bounds.

Since each local minima is determined by the lower bounds for the upper bounds for
a parameter we start with the highest, that is, the edge clique cover number.

4.4.2 Local Minima

We prove for potential local minima (domination number and distance to perfect) of
edge clique cover number.

Proposition 4.14. Edge Clique Cover Number is incomparable to Domination Num-
ber.

Proof. Note that the edge-clique cover number upper bounds clique-width and therefore
by Lemma 2.1 cannot be upper bounded by domination number.

Next, we show that edge clique cover number does not upper bound domination num-
ber. Consider an independent set of size n. It is apparent that edge clique cover number
is 0 while domination number is n. Hence, edge clique cover number is incomparable to
domination number.

Proposition 4.15. Edge Clique Cover Number is incomparable to Distance to Perfect.

Proof. Note that the edge clique cover number upper bounds clique-width and therefore
by Lemma 2.1 cannot be upper bounded by distance to perfect.

Next, we show that edge clique cover number does not upper bound distance to
perfect. Consider the graph class of five cliques V1, . . . , V5, each of size n, which form a
cycle by having vertex sets Vi and Vi+1 (V6 = V1) be adjacent. The edge clique cover
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Figure 4.4: Observe how the modular-width of graph Ḡ (left) is 2, since each connected
component is of size 2; Also observe that the instance of the graph with two missing
edges (right) between pairs vi, wi and vj , wj (blue) is not a chordal graph, since there is
an induced cycle viwivjwj (red)

number is 5 by forming a clique around each Vi ∪ Vi+1 to cover the edge set EVi,Vi+1

as well while given that a perfect graph cannot contain an induced cycle of length 5,
distance to perfect has to be at least n since if there is at least one vertex from each of
the five cliques left, then these five vertices form a cycle of length 5. Hence, edge clique
cover number is incomparable to distance to perfect.

Thus with Lemma 2.3, we know that edge clique cover number does not have any
further known lower bounds. Since neighborhood diversity has no potential local min-
ima, we proceed with the only potential local minima (chordality) of the neighborhood
diversity.

Theorem 4.16. Modular-width is incomparable to Chordality.

Proof. Note that modular-width upper bounds clique-width and therefore by Lemma 2.1
cannot be upper bounded by chordality.

Next, we show that modular-width cannot upper bound chordality. Consider the
graph class of a clique of size 2n with a perfect matching removed, that is, Gn = (V,E) =
({vi, wi|i ∈ [n]}, {{vi, vj}, {vi, wj}, {wi, wj}|i ̸= j ∈ [n]}). Since the complement graph
Ḡn is a perfect matching (Figure 4.4, left), its modular width is 2, and by Lemma 4.5,
Gn also has a modular-width of 2.

It remains to show that the chordality of G is n. Recall that the chordality is the
minimum number of chordal graphs needed whose intersection is Gn. Note that each
such chordal graph has to contain all edges Ei ⊆ E and for each pair of vertices u, v
with {u, v} /∈ E there needs to be at least one chordal graph which does not contain
{v, w}.

Assume toward contradiction that there are two pairs vi, wi and vj , wj with i ̸= j
such that a chordal graph contains neither {vi, wi} nor {vj , wj}. Then, it contains the
induced cycle viwivjwj (Figure 4.4, right), a contradiction to being a chordal graph.
Hence, for each pair vi, wi a seperate chordal graph is needed and the chordality is n.
Thus, modular-width is incomparable to chordality.

Thus with Lemma 2.3, we know that modular-width does not have any further known
lower bounds.
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Since every potential local extremum is indeed a local extremum, with Lemma 2.2
and Lemma 2.3, we have determined every relation involving edge clique cover number,
neighborhood diversity and modular-width in the graph parameter hierarchy.



Chapter 5

c-Closure

In this chapter, we determine the position of the c-closure in the graph parameter hierar-
chy. Consider, that the relation between c-closure and chordality is currently unknown.
Thus, we ignore it in this section. We prove for the upper bounds for c-closure (maxi-
mum degree and feedback edge set), since there are no known lower bound for c-closure.
Hence, we make use of p0, that is the parameter that is upper bounded by any other
parameter. Note that since p0 is currently the only lower bound for c-closure, the orig-
inal hierarchy is equal to the reduced hierarchy of c-closure. Thus, we can determine
every potential local extrema as seen in Figure 5.1. By proving that each of these poten-
tial local maxima (vertex cover number, distance to clique, bisection width and genus),
and potential local minima (distance to disconnected, domatic number, maximum clique
and boxicity) are indeed incomparable, we have proven with Lemma 2.2 and Lemma 2.3
that there are no more upper and lower bounds for c-closure, since any undetermined
parameter within a reduced parameter hierarchy is related to a local extrema.

5.1 Upper Bounds

We prove for upper bound for c-closure in the following.

Proposition 5.1. Maximum Degree strictly upper bounds c-Closure.

Proof. Note that given a clique of size n, the c-closure is 0, while the maximum degree
is n− 1. Hence, c-closure does not upper bound maximum degree.

Next, we show that a graph G with a maximum degree of k has a c-closure of at
most k. Note that c-closure only restricts vertices with at least c neighbors. Thus, if
the maximum degree is k, then the c-closure is at most k + 1. Thus, maximum degree
strictly upper bounds c-closure.

Theorem 5.2. Feedback Edge Number strictly upper bounds c-Closure.

Proof. Note that given a clique of size n, the c-closure is 0, while the feedback edge
number is at least n− 2, since any three vertices can form a cycle of which at least one
edge has to be in the feedback edge. Hence, c-closure does not upper bound feedback
edge number set.

33
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Figure 5.1: ”Reduced” parameter hierarchy for c-closure (darkgray). Since c-closure
has no known lower bounds, it is equal to the original hierarchy. We show proven local
minima (gray rectangles) and local maxima (gray hexagons). Note that the relation
between c-closure and chordality is currently unknown, thus we ignore it in this case.

Next, we show that a graph G with a feedback edge number of k has a c-closure of at
most k+ 2. Recall, that a feedback edge set F is a set containing edges such that every
cycle of G contains at least one edge of the feedback edge set. Note that a graph with
c-closure of c ≥ 1 contains two vertices va and vb with |NG(va)∩NG(vb)| = c− 1. Thus,
there are atleast c− 1 different paths between va and vb, therefore

(
c−1
2

)
different cycles,

since any two of these paths form a cycle. We know that each cycle has to contain an
edge within F and if of two paths p1, p2 there is no edge in F , then there is a cycle
formed by p1 and p2 that is not covered by F . Thus, the feedback edge number is atleast
c − 3, meaning that given a feedback edge number of k, the c-closure can be at most
k + 3. Hence, feedback edge number strictly upper bounds c-closure.

5.2 Incomparability

Since there are no lower bounds for c-closure the reduced hierarchy is equal to the
original hierarchy as seen in Figure 5.1. We discover, that vertex cover number, distance
to clique, bisection width and genus are the potential local maxima. Thus, we prove
that the potential local maxima are indeed incomparable to c-closure in the following.
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Proposition 5.3. c-Closure is incomparable to Vertex Cover Number.

Proof. Note that c-closure is upper bounded by maximum degree and therefore by
Lemma 2.1 cannot upper bound vertex cover number.

Next, we show that vertex cover number does not upper bound c-closure. Consider
the graph class Gn of an independent set VIS of size n adjacent to two vertices va and
vb which are adjacent to the independent set. The vertex cover number is 2 while the c-
closure is at least n+1 since va and vb have a shared neighborhood NGn(va)∩NGn(vb) =
VIS of size n, while being non-adjacent. Hence, vertex cover number is incomparable to
c-closure.

Proposition 5.4. c-Closure is incomparable to Distance to Clique.

Proof. Note that c-closure is upper bounded by maximum degree and therefore by
Lemma 2.1 cannot upper bound distance to clique.

Next, we show that distance to clique does not upper bound c-closure. Consider the
graph class of a clique VCL of size n adjacent to two vertices va and vb. The distance
to clique is 1, as either removing va or vb induces a clique while c-closure is n+ 1, since
va and vb have a shared neighborhood NGn(va) = NGn(vb) = VV L of size n, while being
non-adjacent. Hence, distance to clique is incomparable to c-closure.

Proposition 5.5. c-Closure is incomparable to Bisection Width.

Proof. Note that c-closure is upper bounded by maximum degree and therefore by
Lemma 2.1 cannot upper bound distance to clique.

Next, we show that distance to clique does not upper bound c-closure. Since we
showed in Proposition 5.4 that a single connected component in graph G has an un-
bounded c-closure, we know that a disjoint union of two equal graphs also has an un-
bounded c-closure while the bisection width is therefore 0. Hence, bisection width is
incomparable to c-closure.

Proposition 5.6. c-Closure is incomparable to Genus.

Proof. Note that c-closure is upper bounded by maximum degree and therefore by
Lemma 2.1 cannot upper bound distance to clique.

Next, we show that distance to clique does not upper bound c-closure. Consider the
graph class Gn of an independent set VIS of size n adjacent to two disconnected vertices
va and vb. It is apparent, that Gn is a planar graph, since on a plane, we can draw an
infinit amount of independent paths between two vertices va and vb. Hence, the genus is
0. The c-closure of Gn is at least n+1, since to va and vb having a shared neighborhood
NGn(va) ∩NGn(vb) = VIS of size n, while being non-adjacent. Hence, distance to clique
is incomparable to c-closure.

It remains to show that every potential local minimum (distance to disconnected,
domatic number, maximum clique and boxicity) is indeed incomparable to c-closure in
the following.

Observation 5.7. c-Closure is incomparable to Distance to Disconnected, Domatic
Number and Maximum Clique.
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Proof. Note that maximum clique, domatic number and distance to disconnected are
upper bounded by vertex cover number and therefore by Lemma 2.1 cannot upper bound
c-closure.

Next, we show that c-closure does not upper bound maximum clique, domatic number
or distance to disconnected. Consider a clique of size n. The c-closure is 0 as all vertices
are connected, while by its definition maximum clique is n, domatic number is also n as
every vertex on its own is a domatic partition and distance to disconnected is n − 1 as
every edge of a single vertex, which are n−1 edges, has to be deleted to isolate a vertex.
Hence, c-closure is incomparable to maximum clique, domatic number and distance to
disconnected.

Proposition 5.8. c-Closure is incomparable to Boxicity.

Proof. Note that boxicity is upper bounded by vertex cover number and therefore by
Lemma 2.1 cannot upper bound c-closure.

Next, we show that c-closure does not upper bound boxicity. Consider a fully sub-
divided clique of size n, that is, a clique Kn where any edge {u,w} ∈ E(Kn) is replaced
by an additional vertex v and edges {u, v}, {v, w}. Given that the graph is subdivided,
c-closure is 2, since any two vertices can only share either a subdived vertex v, a common
endpoint of the original clique u/w, or no neighbors. Additionaly, as shown by Chandran

et al. [CMS11] the boxicity of a fully subdivided clique of size n is at least (log2 log2 n)+1
2 .

Hence, boxicity is incomparable to c-closure.

Since every potential local extremum is indeed a local extremum, with Lemma 2.2 and
Lemma 2.3 we have determined every relation involving c-closure in the graph parameter
hierarchy.



Chapter 6

Twin-width

In this chapter, we determine the position of the twin-width in the graph parameter
hierarchy. We prove for the upper bounds for twin-width (clique-width, genus and
distance to planar), since there are no known lower bound for twin-width. Hence, we
make use of p0, that is the parameter that is upper bounded by any other parameter.
Note that, since p0 is the only lower bound for twin-width, the original hierarchy is
equal to the reduced hierarchy of twin-width. Thus, we can determine every potential
local extrema as seen in Figure 6.2. Since clique-width has no other lower bounds, we
know that there are no potential local minima for twin-width, thus no possible lower
bounds. By proving that each of these potential local maxima (distance to interval,
distance to bipartite, clique cover number, maximum degree and bisection width) are
indeed incomparable, we have proven with Lemma 2.3 that there are no more upper
bounds for twin-width, since any undetermined parameter within a reduced parameter
hierarchy is related to a local extrema.

We prove some characteristics of twin-width in the following.

Lemma 6.1. Given any graph G, tww(G) = tww(Ḡ), where Ḡ is the complement of G.

Proof. Let graph G have a sequence s with width k = tww(G). Consider that when
contracting two vertices v, w a red edge towards vertex u only appears if {v, u} /∈ E(G)∧
{w, u} ∈ E(G) or {v, u} ∈ E(G) ∧ {w, u} /∈ E(G), or if one of edges {v, u}, {w, u} is
already a red edge. Thus every contraction in Ḡ results in as many red edges in G.
Thus, every red edge during s in G between vertices is present in s on Ḡ, meaning that
the width of sequence s on graph Ḡ is k as well. Thus, tww(Ḡ) ≤ k and since G is also
the complement of Ḡ, tww(G) = tww(Ḡ).

6.1 Upper Bounds

We prove for the upper bounds for twin-width in the following.

Proposition 6.2. Clique-width strictly upper bounds Twin-width.

Proof. Consider a grid graph Gn = (V,E) of size n×n with vx,y ∈ V , x, y ∈ [n], being ad-
jacent to vx±1,y ∈ V and vx,y±1 ∈ V . Consider the sequence s which contracts each vertex
of the left-most row x′ < n with its adjacent vertex in row x′+1, that is vertices vx′,y with
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(a)
grid of

size 4× 4
(b)

s after 2 steps;
max red degree of 4

(c)
s after n steps;
grid of size 3× 4

Figure 6.1: Observe how a grid trigraph of size n×m (a) can be contracted with a width
of at most 4 (b) to a smaller grid trigraph of size n− 1×m (c). Note that the width of
a sequence on a trigraph is greater or equal that of its equivalent normal graph.

vx′+1,y to v′x′+1,y. Since |NGn(v
′
x′+1,y)| ≤ 4 (NGn(v

′
x′+1,y) ⊆ {vx,y+1, vx+1,y±1, vx+2,y})

and since the red degree of any other not contracted vertex vx,y is at most 2 (Figure 6.1),
the width of s is at most 4 and it remains a path trigraph of length n. With twin-width
of a path being at most 2, graph Gn has a twin-width of at most 4. Dawar and Sankaran
[DS] showed that grid graphs (including square grid graphs) have unbounded clique-
width. Thus, twin-width cannot upper bound clique-width.

Next, Bonnet et al. [Bon+22] showed that every graph G with clique-width k has
a twin-width of at most 2k+1 − 1. Hence, clique-width strictly upper bounds twin-
width.

Proposition 6.3. Genus strictly upper bounds Twin-width.

Proof. Terry et al. [TWY] showed that a clique of size n ≥ 3 has a genus of ⌈ (n−3)(n−4)
12 ⌉

while the twin-width is 0. Hence, twin-width does not upper bound genus.
Recall that for a graph G the euler genus is the smallest number k, such that G can

be drawn on a sphere without crossings using k
2 handles or k crosscaps. Since genus is

the smallest number γ such that G can be drawn on a sphere without crossings with γ
handles, we know that k ≤ 2γ.

Bonnet et al. [BKW22] showed that for every graph G with euler genus k, the twin-
width of G is at most 205k + 583 ≤ 510γ + 583. Hence, genus strictly upper bounds
twin-width.

Theorem 6.4. Distance to Planar strictly upper bounds Twin-width.

Proof. Note that a clique of size n has a twin-width of 0 and a distance to planar of
n− 4. Hence, twin-width does not upper bound distance to planar.

Next, we show that a graph G = (V,E) with a distance to planar k, has a twin-width
of at most 9·2k+2k−1. Let the distance set be Vd ⊆ V and the planar set be Vp = V \Vd.
Note that the subgraph G[Vp] is a planar graph and therefore has a twin-width of at
most 9 as shown by Hliněný [Hli].
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Consider the sequence s for G[Vp] with width of at most 9. We construct a new
sequence s′ similar to s which only contracts vertices v ∈ Vp with equal neighborhood
in Vd in order to prevent any red edges between Vd and Vp.

Let there be a label λ(v) and a type t(v′) for each v ∈ Vp. Initially let λ(v) = v and
t(v) = NG(v) ∩ Vd. We construct the sequence s′. If ”s contracts vertices v and w into
u”, then we contract each vertices x and y into z if and only if t(x) = t(y), λ(x) = v
and λ(y) = w. We set for vertecis z, λ(z) = u, and change for each left vertex u′, with
λ(u′) = v or λ(u′) = w into λ(u′) = u.

Observe how within sequence s′ there are no red edges between Vp and Vd and that
with |Vd| = k there are at most 2k different types. Note that for each label λ there at
most 2k vertices since each unique type points to at most a single vertex with label λ.
Thus during s′, the width is at most 2k − 1 within vertices of the same label. We also
know that each vertex v is adjacent to a vertex w only if in s the corresponding vertices
of λ(v) and λ(w) are adjacent. Thus, the degree dv of any vertices v ∈ Vp during s is
increased to at most 2k · dv +2k − 1. Note that since each contraction in s may result in
multiple matching contractions in s′, the degree of a contracted vertex during s′ may be
at most doubled. We can also say that the red degree increases at the same rate since
in s′ red edges cannot appear between vertices of different labels, if the corresponding
vertices in s do not have a red edge. Hence, with width s being at most 9, the sequence
s′ has a width of at most 2∗(2k ·9+2k−1) and it remains a trigraph with 2k+k vertices.
Note that the twin-width of a trigraph with n vertices is at most n− 1 since that is the
maximum possbile degree. Thus, the twin-width of G is at most 2 · (2k · 9 + 2k − 1) and
distance to planar strictly upper bounds twin-width.

6.2 Incomparability

Since there are no lower bounds for twin-width the reduced hierarchy is equal to the
original hierarchy as seen in Figure 5.1. We discover, that distance to interval, distance
to bipartite, clique cover number, maximum degree and bisection width are the potential
local maximum. Thus, we prove that the potential local maxima are indeed incomparable
to twin-width in the following.

Observation 6.5. Twin-width is incomparable to Distance to Interval.

Proof. Note that twin-width is upper bounded by clique-width and therefore by Lemma 2.1
cannot upper bound distance to interval.

Next, we show that twin-width is not upper bounded by distance to interval. Bonnet
et al. [Bon+21] showed that interval graphs have unbounded twin-width, meaning that
there is an interval graph with twin width k and since it is an interval graph, a distance
to interval of 0. Hence, twin-width is incomparable to distance to interval.

Proposition 6.6. Twin-width is incomparable to Distance to Bipartite.

Proof. Note that twin-width is upper bounded by clique-width and therefore by Lemma 2.1
cannot upper bound distance to bipartite.
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Figure 6.2: ”Reduced” parameter hierarchy for twin-width (darkgray). Since twin-width
has no known lower bounds, it is equal to the original hierarchy. We show proven local
maxima (gray hexagons).
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Next, we show that twin-width is not upper bounded by distance to bipartite. Con-
sider a d-dimensional hypercube graph, that is a graph G constructed by duplicating
itself d-times starting form a single vertex while also connecting each vertex with its
duplicate. It is known that any hypercube graph is bipartite, since each duplicate can
be colored with the opposite color, thus distance to bipartite is 0. Observe that the
twin-width of a graph is at least the lowest possible red degree after the first contraction
which is at least 2d− 4, since the coordinates differ in at least one dimemsion except for
the first two dimensions. Hence, twin-width is incomparable to distance to bipartite.

Proposition 6.7. Twin-width is incomparable to Clique Cover Number.

Proof. Note that twin-width is upper bounded by clique-width and therefore by Lemma 2.1
cannot upper bound minimum clique cover.

Next, we show that twin-width is not upper bounded by minimum clique cover. Con-
sider the complement Ḡ of a d-dimensional hypercube graph G as seen in Proposition 6.6,
that is a graph Ḡ with a minimum clique cover of at most 2, since G is bipartite. Note
that Lemma 6.1 states that the twin-width of the complement graph Ḡ is equal to the
twin-width of graph G. Thus, the twin-width of Ḡ is 2d− 4 as well. Hence, twin-width
is incomparable to minimum clique cover.

Proposition 6.8. Twin-width is incomparable to Maximum Degree.

Proof. Note that twin-width is upper bounded by clique-width and therefore by Lemma 2.1
cannot upper bound maximum degree.

Bonnet et al. [Bon+21] showed that the twin-width of cubic graphs is unbounded,
meaning that there is a cubic graph with twin width k while per definition cubic graphs
have a maximum degree of 3. Hence, twin-width is incomparable to maximum degree.

Observation 6.9. Twin-width is incomparable to Bisection Width.

Proof. Note that twin-width is upper bounded by clique-width and therefore by Lemma 2.1
cannot upper bound bisection width.

Next, we show that twin-width is not upper bounded by bisection width. Consider
two equal connected components with twin-width n. It is known that the bisection
width of two equal connected components is 0 while the twin-width is the highest twin-
width of all connected components. Thus, the twin-width is n. Hence, twin-width is
incomparable to bisection width.

Since there are no potential local minima, there are currently no known lower bounds
for twin-width. Since every potential local maxima is indeed a local maxima and with
Lemma 2.3, we have determined every relation involving twin-width in the graph pa-
rameter hierarchy.





Chapter 7

Additional Relations

We consider a gap left behind in the hierarchy by Schröder [Sch] between degeneracy
and boxicity.

Proposition 7.1. Degeneracy is incomparable to Boxicity.

Proof. Note that boxicity is upper bounded by distance to clique and therefore by
Lemma 2.1 cannot upper bound degeneracy.

Next, we show that degeneracy does not upper bound boxicity. Consider the graph
class Gn of a fully subdivided clique of size n. Let V1 ∈ V (Gn) be the vertices of the
original clique and V2 = V \V1. Note that degeneracy is the smallest number k such
that any subgraph G[V ′] contains a vertex with degree at most k. Observe how for any
subgraph G[V ′], V ′ either contains a vertex v ∈ V2, in which case degree of v is at most
2, or does not contain a vertex v ∈ V2, in which case only vertices w ∈ V1 are contained
with degree 0, since NGn(w) ⊆ V2. Thus, the degeneracy of Gn is 2. Additionaly, as
shown by L. Sunil Chandran et al. [CMS11] the boxicity of a fully subdivided clique of

size n is at least (log2 log2 n)+1
2 . Hence, degeneracy is incomparable to boxicity.

The gap left between chordality and maximum clique remains open.
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Chapter 8

Conclusion

In this thesis, we extented the graph parameter hierarchy by the following six parameters:
twin cover number, edge clique cover number, neighborhood diversity, modular-width,
c-closure and twin-width. With the goal of reducing the number of necessary proofs as
much as possible, we determined for all parameters almost every relation possible by
comparing them with selceted parameters, such that the resulting relations effectively
cover any other parameter as well. For this, we introduced a method using local ex-
trema and proved that their determined existence covers any parameter and, as a result,
expanded the graph parameter hierarchy, as seen in Figure 1.1. The only two questions
left are whether chordality and c-closure as well as chordality and maximum clique are
incomparable or not.

Since most of the added relations were previously unknown, we discovered for each
parameter some interesting relations such as twin cover number strictly upper bounding
distance to cluster, since twin cover was primarly studied in relation with parameters
between tree-width/neighborhood diversity and clique-width. The edge clique cover
number is also surprisingly only directly related to distance to clique and neighborhood
diversity. While neighborhood diversity and modular-width are very similar, it is in-
teresting to see their difference by having only neighborhood diversity upper bounding
boxicity. We found out, that the c-closure is upper bounded by the feedback edge number
set, and even though planar graphs have a bounded twin-width, the twin-width being
upper bounded by distance to planar was a lot more complex than initially thought.

There are many possible methods to further improve and maintain the graph param-
eter hierarchy. For instance, it should be considered that adding new parameters along
with current research is important to keep it up to date. Simirlarly already published
research like from Bonnet et al. [Bon+21] would also contribute to the hierarchy.

Since each expansion of the parameter hierarchy relies on the previously found rela-
tions, it is also important to try to keep the hierarchy complete as each potential relation
may increase the efficiency of inserting even more parameters, similar to what Schröder
[Sch] did.

While the graph parameter hierarchy itself contains a lot of different parameters, it
is also of note that most parameters have specific edge cases in which they are easily
bounded. By forcing additional constraints, we may achieve a different type of hierarchy.
For instance, consider a graph parameter hierarchy on only connected graphs for which
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parameters like edge clique cover number and clique cover number have a bounding
relation.

Finally, we should note the complexity of each relation. Even though we managed
to construct relations between most of the parameters, we ignored the improtance of
scale, as whether there was a linear or exponential bound did not impact the hierarchy.
It would be interesting to study which bounds are linear, polynomial or exponential.
Ideally, these classifications are acompanied by tight examples, that is, if we show that
fp,q(p(G)) ≥ q(G) for all graphs G, then there should be a graph G′ with q(G′) =
fp,q(p(G)).
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