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Zusammenfassung

Ein häufiges Problem im Feld der Multiagentensysteme ist die effiziente Verteilung und
Zuweisung von Resourcen unter einer Gruppe von Agenten. Diese Resourcen werden oft
als teilbare bzw. unteilbare Güter oder Objekte modelliert. In dieser Arbeit untersuchen
wir das Reachable Assignment Problem, welches von Gourves, Lesca únd Wilczyn-
ski [AAAI, 2017] eingeführt wurde. Gegeben eine Menge von Agenten, sowie eine Menge
von Objekten, eine initialen Verteilung dieser Objekte, sodass jeder Agent genau ein Ob-
jekt besitzt, die Objektpräferenzen der Agenten und einen Graphen, der kodiert, welche
Agenten Resourcen mit welchen anderen Agenten tauschen können, ist die Fragestellung
des Reachable Assignment Problems, ob eine bestimmte Zielzuweisung über eine
Sequenz von rationalen Tauschen erreichbar ist. Ein rationaler Tausch ist ein Tausch,
bei dem beide Tauschpartner eine Resource erhalten, die sie über die vorherige Re-
source präferieren. Bei der Untersuchung von Kreisen entwickeln wir einen Algorith-
mus, welcher Reachable Assignmentauf Kreisen in Opn3q Zeit löst. Desweiteren
untersuchen wir Cliquen und zeigen, dass Reachable Assignment in diesem Fall
NP-hart ist. Dies zeigen wir durch eine Reduktion vom Reachable Object Prob-
lem, welches wie Reachable Assignment konstruiert ist, jedoch hierbei die Frage ist,
ob ein bestimmter Agent durch eine Sequenz von rationalen Tauschen ein bestimmtes
Objekt erhalten kann.

Abstract

A frequent problem in the field of Multi-Agent-Systems is the efficient distribution and
allocation of resources among agents. These resources are often modelled as divisible or
indivisible goods or objects. In this work, we will investigate the Reachable Assign-
ment problem, introduced by Gourves, Lesca and Wilczynski [AAAI, 2017]. Given a set
of agents, a set of objects, an initial distribution of the objects, where each agent owns
exactly one object, knowledge of the agent’s preferences and a graph encoding which
agents can trade resources with which others, the question is whether a certain target
assignment is reachable via a sequence of rational trades. A rational trade is a trade
after which both involved agents possess an object they prefer over the object they held
before the trade. Investigating graphs that are cycles, we develop an algorithm to solve
Reachable Assignment on cycles in Opn3q time, where n is the number of agents
involved. Further we investigate into graphs that are cliques and show that Reachable
Assignment on cliques in NP-hard via a reduction from Reachable Object, which
is constructed akin to Reachable Assignment, except the question is whether a des-
ignated agent can obtain a designated object via a sequence of rational trades among
the agents.
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1 Introduction

A frequent problem in Multi-Agent-Systems is the efficient distribution of resources
among agents [Che+06]. Sometimes these resources appear as bundles, sometimes they
are indivisible objects. The field which studies procedures to allocate divisible or indi-
visible resources to agents is called Resource Allocation. One famous problem in this
field is called the house marketing problem where each of the n participating agents
initially owns one house and is able to trade these houses with other agents. House
marketing is also known in the field of economics [Sha74]. The house marketing prob-
lem is an example of a resource allocation problem with indivisible goods. Gourves et
al. [GLW17] study a generalization of the house marketing problem where agents are
only able to perform a trade of goods with agents they trust, which can be modelled in
a social network of participating agents where an edge between two agents means that
they trust each other.

We will study the case where the social network is a cycle, i.e. each agent has exactly
two other agents it can trade goods with. Afterwards we will return to a problem even
closer to the house marketing problem where each agent can swap resources with every
other agent.

1.1 A Generalization of the House Marketing Problem:
Reachability of Resource Allocations

LetN be a set of n agents and letX be a set of n indivisible objects. Each agent i P N has
a preference list ąi over a non-empty subset Xi of the set of objects X. Each preference
list is a strict ordering on Xi. The set of all preference lists is called a preference profile
ą [GLW17]. A bijection σ : N Ñ X is called an allocation or assignment. Akin to the
house marketing problem, each agent is initially assigned exactly one object. We denote
this initial assignment by σ0. Let G be a graph where there is a bijection between the set
of vertices V pGq and the set of agents N . We will use the term agents interchangeably
with the vertices of G.

We say that a trade between agents i and j is only possible if their corresponding
vertices share an edge in G and if both i and j receive an object that they prefer to their
currently assigned object. We can express this formally as

σpiq ąj σpjq (1.1)

and
σpjq ąi σpiq. (1.2)
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1 Introduction

We call such a trade a rational trade or a swap. A swap sequence is a sequence of
assignments pσs, ..., σtq where σi is the result of performing one swap in assignment σi´1
for all i P ts`1, s`2, ..., tu. We call an assignment σ reachable if there exists a sequence
of swaps pσ0, ..., σq. For an agent i, an object x is reachable if there exists an assignment
σt and a swap sequence pσ0, ..., σtq such that σtpiq “ x. We will now state the problem
descriptions of Gourves et al. [GLW17] for Reachable Assignment and Reachable
Object.
Reachable Object
Input: A set of agents N , a set of objects X, a preference profile ą, a graph

G, an initial assignment σ0, an agent i and an object x.
Question: Is x reachable for i from σ0?

Reachable Assignment
Input: A set of agents N , a set of objects X, a preference profile ą, a graph

G, an initial assignment σ0 and a target assignment σ.
Question: Is σ reachable from σ0?

Gourves et al. [GLW17] have already shown that Reachable Assignment and
Reachable Object are both NP-hard on general graphs. They have shown further
that Reachable Assignment is decidable in polynomial time if G is a tree. Huang and
Xiao [HX19] showed that if the underlying graph is a path, then Reachable Object
can be solved in polynomial time. Moreover, they studied a version of Reachable
Object that allows weak preference lists, i.e. an agent can be indifferent between
different objects. Contributing to the Reachable Object problem, Saffidine and
Wilczynski [SW18] propose an alternative version of Reachable Object, which is
called Guaranteed Level Of Satisfaction, where an agent is guaranteed to obtain
an object at least as good as a target object, which is given as an input, in a sequence
of swaps pσ0, ..., σtq where in σt one cannot perform a rational trade. They show that
Guaranteed Level Of Satisfaction is co-NP-hard.

In our work, we will mainly focus on the Reachable Assignment problem for the
two special cases where G is either a cycle or a clique. A cycle is a connected graph
where each vertex has exactly two neighbors and a clique is a graph where each vertex
shares an edge with each other vertex in the graph. We will show that there exists
a polynomial-time algorithm to solve Reachable Assignment on cycles and further
prove NP-hardness for Reachable Assignment on cliques. For an example for both
graph-classes see Figure 1.1 where we display an example for a clique of size 3 which is
also a cycle of the same size and the preference profile of the displayed instance.

At the core of the hardness proof for cliques we will propose a reduction from Reach-
able Object on cliques for which NP-hardness has been shown by Bentert et al.
[Ben+19].

1.2 Introduction to Reachable Assignment on Cycles

In the following chapters we will propose a polynomial-time algorithm for Reachable
Assignment on cycles. Recall that the input of Reachable Assignment on cycles
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1.2 Introduction to Reachable Assignment on Cycles

1

3 2

1: ą

2: ą

3: ą ą

Figure 1.1: Example for Reachable Assignment on a cycle with n “ 3 and preference
lists on the right hand side. For the sake of simplicity, the target assignment
σ is simply the most preferred object of each agent. The object inside the
box is the object that the corresponding agent initially holds. An exemplary
sequence of swaps such that every agent reaches its most preferred object is
the following. First, agent 2 and 3 swap their currently held objects. Agent
3 then owns object , which it prefers the most and agent 2 owns object .
Afterwards, agent 1 can trade object to agent 2 and receive object in
return. Every agent then owns its most preferred object.

is an instance I :“ pN,X,ą, Cn, σ0, σq. We will observe that once an object is swapped
into either clockwise or counter-clockwise direction, it is impossible to swap it back into
the opposite direction. We will show that if we assign such a direction to every object,
then we can verify in polynomial time whether there is a swap sequence such that we
can reach assignment σ given that we only swap objects in the given directions. If such
a swap sequence exists we will say that the assignment of directions ”yields σ”. Further
we will formally define a set of properties that exactly describe the types of assignments
of directions which yield σ. We call these types of assignments of directions valid. The
actual algorithm that solves Reachable Assignment on cycles in polynomial time will
create a 2-SAT formula φ such that every solution of that formula corresponds to a valid
assignment of directions and vice versa. We separate the steps we have just described
into five different chapters. In Chapter 2 we will present our preliminaries and propose a
preprocessing step that simplifies preference lists. Chapter 3 is dedicated to introducing
the aforementioned assignment of directions formally. Based on this definition we will
introduce multiple related concepts that we will need throughout the other chapters.

In Chapter 4 we will propose an algorithm we call Greedy Swaps that verifies whether
an assignment of directions yields the target assignment σ. The conclusion that should
be drawn from that chapter is that an algorithm solving Reachable Assignment on
cycles must only be able to decide whether or not there is an assignment of directions
that yields σ.

In Chapter 5 we define the set of properties that describes valid direction assignments.
It will conclude with the proof that our definition of validity exactly defines the set of
assignments of directions that yield σ.

Chapter 6 shows how to construct a 2-SAT formula for which a truth assignment
can be mapped to a valid assignment of directions and show the actual algorithm that
decides Reachable Assignment on cycles in polynomial time.

Finally, in Chapter 7 we show NP-hardness of Reachable Assignment on cliques
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and end with a conclusion in Chapter 8.
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2 Preliminaries and Preprocessing

In this chapter we will introduce basic formalism in order to speak unambiguously about
the Reachable Assignment problem on cycles. First we define general concepts from
graph theory and fix our mathematical notation. We introduce two crucial preparation
steps we need to perform for every problem instance. Afterwards we extend the existing
notation to concepts widely used in our work.

We will use graph-theoretical concepts similar to Diestel [Die12]. Further let G :“
pV,Eq be a graph. Let W Ď V be a subset of V . An induced sub-graph GrW s is a
sub-graph G1 :“ pW,E 1q of G where for every edge pp, qq P E, it holds that pp, qq P E 1 if
and only if p P W and q P W .

We will further use the notation ra, bs to denote the set of integers ta, a` 1, ..., bu.

Example 1. The integer interval r3, 6s is equal to the set t3, 4, 5, 6u.

2.1 Cyclic Sequences: Formalizing Directions on a Cycle

We are now going to formalize the directions clockwise and counter-clockwise in a cycle.
Note that in every cycle there are exactly two complementary paths from one agent to
another. First we define the following function.

Definition 2.1. Let n P N be a number. We define the function hn : r0, n` 1s Ñ r1, ns
as follows:

hnpxq :“

$

’

&

’

%

1 if x “ n` 1,

n if x “ 0,

x otherwise.

Further we define the following sequence based on the number of agents n.

Definition 2.2. Given a number n and numbers 0 ă a, b ď n, then µa,b denotes a
sequence such that

µa,b “

#

pa, a` 1, ..., n, 1, 2, ..., bq if b ă a

pa, a` 1, ..., bq otherwise
(2.1)

Example 2. Let n “ 8. Then µ2,7 “ p2, 3, 4, 5, 6, 7q and µ7,2 “ p7, 8, 1, 2q.

In the following, we assign each agent a number from the integer interval r1, ns such
that for every agent named i P r1, ns its clockwise neighbour is named hnpi ` 1q and
its counter-clockwise neighbor is called hnpi ´ 1q. Now we can use cyclic sequences to
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2 Preliminaries and Preprocessing

1

23

1: ą

2: ą

3: ą ą

Figure 2.1: Example for Reachable Assignment on a cycle with n “ 3 and cyclic
sequence µ1,2 :“ p1, 2q. The sub-path drawn in black is the induced sub-path
of C3 with respect to µ1,2.

1

23

1: ą

2: ą

3: ą ą

Figure 2.2: Example for Reachable Assignment on a cycle with n “ 3 and cyclic
sequence µ2,1 :“ p2, 3, 1q. The sub-path drawn in black is the induced sub-
path of C3 with respect to µ2,1.

describe paths of Cn. Henceforth, if we write the sequence s :“ µi,j, then we will refer
to a set of agents. Note that then Cnrss, the induced sub-path of Cn by the agents in
the sequence s, is the path in Cn from agent i to agent j in clockwise direction. For an
example of how we can apply cyclic sequences to cycles see Figures 2.1 and 2.2.

2.2 Reducing Preference Lists

An important aspect of Reachable Assignment in general is that agents only agree
on swaps if they prefer the other object over the object they are currently holding.
Whenever an agent prefers an object o over the object p it is assigned in σ, then we
can simply remove o from its preference lists. This is due to the fact that once the
agent possesses o, then it cannot receive p anymore as it prefers o over p and it will, by
definition of rational trades, only receive more preferred objects in the future.

Reduction Rule 2.2.1. For every agent i with object p :“ σpiq do the following. If
there exists an object q such that

q ąi p (2.2)

then remove q from ąi.

We will assume that every instance has already been preprocessed by Reduction Rule
2.2.1.
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2.3 Initial Position of Objects

2.3 Initial Position of Objects

In this section we will introduce an important formalism we will use throughout this
work. Recall that assignments are bijections. This allows us for any assignment σ1, any
object y and the agent i with σ1piq “ y to denote i by σ´1pyq.

Note that with σ we denote the target assignment whereas σ0 denotes the initial
assignment of the instance. We will also sometimes speak about some assignment after
a sequence of i swaps as σi. If performing the i swaps of a swap sequence S, starting in
assignment σj, results in an assignment σj`i we say that S transforms σj into σj`i.

Using the concept of inverse assignments we can define a notation that allows use to
describe the set of objects that are initially held by the agents of some sub-path of cycle
Cn.

Definition 2.3. Let q and t be two objects. Let i :“ σ´10 pqq and let j :“ σ´10 ptq. Then
we define the set ∆q,t as

∆q,t :“ tx P X | σ´10 pxq P µi,ju (2.3)

and call ∆q,t the object domain of µi,j.

Note that by construction it holds that

@i, j P N.µi,j Y µj,i “ V pCnq “ N (2.4)

and thus also
@q, t P X.∆q,t Y∆t,q “ X. (2.5)
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3 Directions in a Cycle

In this chapter we will formally introduce the aforementioned assignments of directions.
We will refer to them as selections and denote them always with γ. In Section 3.1 we
will first motivate why it is resourceful to assign a specific direction to an object which
in particular means that we will not allow an object to, for example, be swapped into
clockwise and then into counter-clockwise direction. Afterwards we show in Section 3.2
that the number of times that two objects can be swapped is bounded by two. Even
more general, we will show that if two objects are assigned opposite directions then there
are at most two edges where the corresponding preference lists of the incident agents
allow a rational trade of objects.

3.1 Direction Assignments

Consider an instance I :“ pN,X,ą, G, σ0, σq and the target assignment σ. Let p be an
object, let j be the agent such that σpjq “ p and let i be the agent such that σ0piq “ p.
Since the underlying graph is a cycle, there are exactly two paths for p to get to j, its
destination. By definition, once p has been swapped, say from agent i to agent i`1 then
p is not able to return to agent i since agent i just received an object that it prefers over
p and will therefore not accept p again. Hence, if p is swapped again, then it is given
to agent i` 2 and the argument can be repeated for agent i` 1. As there are only two
paths between agents i and j, there are also only two directions, namely clockwise and
counter-clockwise. We will henceforth code these directions into a binary number such
that we say that the direction of p is equal to 1 if p is swapped in clockwise direction
and equal to 0 if p is swapped in counter-clockwise direction. We will now generalize
this for every object as follows:

Definition 3.1. Let I :“ pN,X,ą, Cn, σ0, σq be an instance of Reachable Assign-
ment on cycle Cn. Let γ be a function that assigns each object in X a number in t0, 1u.
We call such a function a selection of I.

Let further p be an object. Then γppq denotes the direction that p is assigned by γ.

Given a selection we will now formalize the distance of two objects or an object and
an edge relative to a given selection.

Definition 3.2. Let γ be a selection and let q be an object. Let q1 be another object
and let e be an edge. The distance of q and q1 is defined as follows.

distγpq, q
1
q :“

#

|∆pq, q1q| γpqq “ 1

|∆pq1, qq| otherwise
(3.1)

15



3 Directions in a Cycle

We say that q1 is closer to q than q2 with respect to selection γ if distγpq, q
1q ă distγpq, q

1q.
Let e be incident to agents i and j. Let σ0piq be closer to q than σ0pjq. The distance of
q and e is defined as follows.

distγpq, eq :“

#

|∆pq, σ0piqq| γpqq “ 1

|∆pσ0piq, qq| otherwise
(3.2)

We say that edge e is closer to q than edge f with respect to selection γ if distγpq, eq ă
distγpq, fq.

Example 3. Let n “ 8 and let I :“ pN,X,ą, C8, σ0, σq be an instance of Reachable
Assignment on cycle C8. Let further R be an arrangement of two objects x2 and
x4 that assigns x2 to agent 3 and x4 to agent 6. Let γ be a selection that assigns
x2 to clockwise direction and let γ1 be a selection that assigns x2 to counter-clockwise
direction. To compute distances distγpx2, x4q and distγ1px2, x4q we first need to compute
the corresponding object domains. The cyclic sequence of 3 and 6 in clockwise direction is
p3, 4, 5, 6q. The cyclic sequence of 3 and 6 in counter-clockwise direction is p3, 2, 1, 8, 7, 6q.
Since we are not interested in the actual object domains and just in their size, it is
sufficient to compute the size of the cyclic sequences, which is equal to the size of the
corresponding object domain. Therefore in the case where x2 is assigned clockwise
direction the distance of x2 and x4 is equal to 4 and in the case where x2 is assigned
counter-clockwise direction the distance of x2 to x4 is equal to 6.

3.2 Properties of Objects in a Direction-Assignment

Now that we have formally defined selections we are interested in using that definition
to formally speak about the position of a set of objects, the paths of an object to its
destination with respect to the assigned direction in a selection γ and the intersection
of these paths, given two objects.

3.2.1 Object Positions Relative to a Direction-Assignment

The following definition will enable us to speak more generally of the position of a set
of objects on a cycle.

Definition 3.3. Let O :“ to1, ..., omu Ď X be a set of objects and let A Ď N be a set of
agents. Let further hold that |O| “ |A|. We call every bijective relation R P O ˆ A an
arrangement of the objects in O or an arrangement of the objects o1, ..., om if for every i
it holds that, oi is on the preference list of Rpoiq.

If further

@i.Rpoiq “ σ´10 poiq,

then we say that R is the initial arrangement of O.

16



3.2 Properties of Objects in a Direction-Assignment

Example 4. Recall the setup in Figure 1.1. In this scenario, R :“ tp1, q, p2, qu is an
arrangement of and since appears on the preference list of agent 1 and appears
on the preference list of agent 2. Further R1 :“ tp1, q, p2, qu is an initial arrangement
since the initially assigned object of agent 1 is and the initially assigned object of agent
2 is . Lastly R2 :“ tp1, q, p2, qu is not an arrangement at all since does not appear
on the preference list of agent 2 which means that can never be assigned to agent 2 in
a rational trade.

An arrangement is a more general version of an assignment. We could, for example,
express σ0 as the initial arrangement of the set X, which is the set of objects in a
given instance of Reachable Assignment on cycles. Note that we do not allow an
assignment where an agent holds an object it could never receive, since it is not on that
agent’s preference list. An arrangement is useful when we are only interested in partial
information about an assignment σi, especially information about the position of just a
subset of objects. The next definition is useful when we are given arrangements R0 and
R1 of two distinct sets of objects O0 and O1 and want to express a property for every
arrangement where the objects in O0 are positioned according to R0 and the objects in
O1 are positioned according to R1.

Definition 3.4. Let R0 and R1 be the arrangements of two sets of objects O0 and O1.
Let further Ai denote the set of the agents of Ri for i P t0, 1u. We call R0 Y R1 a joint
arrangement of O0 and O1 with respect to R0 and R1 if and only if

pO0 XO1q Y pA0 X A1q “ H. (3.3)

Note that if equation 3.3 is not satisfied, then R0YR1 is not an arrangement according
to the definition above. The equation simply expresses that the union of both sets of
objects as well the union of both sets of agents must be distinct which ensures that
R0 YR1 remains a bijection.

3.2.2 Remaining Paths of Objects

In this subsection we will start to talk about paths of objects. Given some selection
we have already seen that each object is assigned one of two complementary paths on
the cycle. Further we introduced selections which assign one of those two paths to each
object. We are now interested in describing the sub-path P that an object, that is
currently assigned to some agent i, has to pass in order to get to its destination. The
agent i does not necessarily have to be the agent that the object was assigned to in the
initial assignment σ0. This can be formalized as follows.

Definition 3.5. Let γ be a selection for instance I. Let R be a arrangement of an
object o. Let further i :“ Rpoq and let j be the agent which is the destination of o, i.e.
σ´1poq. Let I :“ µi,j and J :“ µj,i. Then we define the path of o in arrangement R as

ξRγ poq :“

#

CnrIs if γpoq “ 1

CnrJs otherwise
(3.4)

17



3 Directions in a Cycle

p

σ´1ppq

σ´10 ppq

Figure 3.1: An object p with its path marked in red. It has already been moved from
its initial position σ´10 ppq. Its current position can be described with an
arrangement R.

If R is the initial arrangement of o we can also write Pγpoq, i.e. the path an object
attempts to get to its destination if it was assigned direction γpoq. We will then call
Pγpoq the path of o given selection γ.

Let p be another object such that γpoq ‰ γppq. Let R1 be a joint arrangement of o and
p with respect to arrangements R and S. and let i :“ Rpoq and j :“ Sppq. We define
the shared path of o and p in arrangement R1 as

ξR
1

γ po, pq :“ ξRγ poq X ξ
S
γ ppq (3.5)

Examples for paths and shared paths can be found in Figures 3.1 and 3.2.

3.2.3 Deriving the Bounded Number of Swaps between Objects

In this sub-section we will show that if two objects o and p are assigned opposite direc-
tions by some selection γ, then there either exist at most two edges where o and p can be
swapped according to the corresponding preference lists of the agents that perform the
swap or γ does not yield target assignment σ. This is the main-result of this chapter.

For the proofs in the rest of this chapter and in subsequent chapters we are going to
need the following notion of the path that two objects move towards on until they meet
at an edge or reach their destinations.

Definition 3.6. Let γ be a selection for instance I and let p and q be two objects with
γppq ‰ γpqq. Let R be a arrangement of p and q. Let P be the path from Rppq to Rpqq
in direction γppq. Then we call P the swap space between p and q in arrangement R and
denote it as ωRγ pp, qq. We call ωRγ pp, qq connected if ξRγ pp, qq ‰ H and disconnected else.

18



3.2 Properties of Objects in a Direction-Assignment

p

σ´1ppq

q

σ´1pqq

Figure 3.2: Example for two objects p and q. Object p’s path is marked red whereas q’s
path is marked blue. The violet area at which these paths intersect is their
shared path.

To support the understanding of swap spaces visually, see Figures 3.3 and 3.4.
Before we come to the main-result of this chapter we prove the following intermediate

lemma.

Lemma 3.7. Let γ be a selection for instance I and let p and q be two objects with
γppq ‰ γpqq. If there exist a arrangement R of p and q where ξRγ pp, qq is non-empty and
there exist not exactly one edge on ξRγ pp, qq such that the corresponding preference lists
allow p and q to be swapped there then γ does not yield target assignment σ.

Proof. Let us first note that the corresponding swap space of p and q is connected. We
will first show that if their swap space is connected, then they must be swapped at some
edge on their shared path, which is non-empty, as otherwise γ does not yield the target
assignment σ. Consider an edge on the swap space where p and q meet. This could
be any edge that is also on the intersection of their paths with respect to arrangement
R. We know that they will eventually meet at some edge since this intersection is part
of their path. Let the number of swaps that were already performed be t. Let for one
of them, say p, hold σ´1t ppq “ σ´1ppq, i.e p has reached its destination. Then since we
applied reduction rule 2.2.1 we know that p ąσ´1ppq q. Further consider the case where
p and q have both not reached their destination but there is no edge on the shared path
where the corresponding preference lists allow a swap of p and q. In both cases p and q
can not be swapped. But then at least q can not continue its path to its destination in
this direction. Since q can also not change its direction we know that σ´1pqq can never
reach q and thus σ is not reachable with this selection.

Now that we showed that there has to be at least one edge on the shared path of p
and q where the objects can be swapped, we continue with the case where there is more
than one edge on their shared path where p and q can be swapped according to the
corresponding preference lists. Suppose p and q will meet at some point at one of these
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3 Directions in a Cycle

p

σ´1ppq

q

σ´1pqq

Figure 3.3: Two objects p with γppq “ 0 and q with γpqq “ 1 and their connected swap
space.

edges, let us call it e and one of the other edges f . Then since both e and f are on their
shared path at least one of p or q must have already passed f . Now consider what it
means that objects p and q can be swapped at edge f according to the corresponding
preference lists. It means that at edge f , consisting of the two agents k and l it holds:

pp ąk qq ^ pq ąl pq

Let us assume that p has already passed edge f . Then it has passed both k and l.
Now since f is on the shared path of p and q, by definition, it is also on the path of q and
thus q needs to pass agents k and l in order to get to its destination, since it also cannot
change its direction as we have seen. But since p ąk q, k will not accept q anymore as
it has already held p and thus q cannot reach its destination and γ does not yield target
assignment σ. The case where q has already passed edge f is of course symmetrical.
From this it follows that if there is less or more than one edge on the shared path of p
and q then σ is not reachable with γ. From this our statement follows.

What we have just seen is that given a selection γ and an arrangement, if the corre-
sponding swap space of two objects is connected, i.e. they will have to pass each other
eventually to get to their destinations, then there exists exactly one edge on their shared
path where the objects can be swapped or γ does not yield target assignment σ. We
will therefore define this unique edge formally such that we can refer to it later.

Definition 3.8. Let γ be a selection for instance I and let p and q be two objects with
γppq ‰ γpqq. Let there further be a arrangement R of p and q such that ξRγ pp, qq is
non-empty. Then eRγ pp, qq denotes the unique edge on ξRγ pp, qq where p and q can be
swapped. If such an edge does not exist or there are multiple such edges then eRγ pp, qq
is undefined as then σ is not reachable with γ.

Moving on, we prove that given a selection γ there exist at most two edges where two
objects can be swapped at or otherwise γ does not yield the target assignment σ.
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3.2 Properties of Objects in a Direction-Assignment

p

σ´1ppq

q

σ´1pqq

Figure 3.4: Two objects p with γppq “ 0 and q with γpqq “ 1 and their disconnected
swap space.

Proposition 3.9. Let p and q be two objects. For every selection γ there exist at most
two edges where p and q can be swapped at or γ does not yield target assignment σ.

Proof. In this proof, we will just cover the selection where p and q are assigned opposite
directions as otherwise the objects cannot be swapped at all. Let R be the initial
arrangement of p and let S be the initial arrangement of q and let T be the joint
arrangement of p and q with respect to R and S.

We will only look at the case where ωTγ pp, qq is connected since otherwise p and q
will reach their destinations before being able to meet at an edge (since their paths
do not intersect) and therefore will not swap for this γ. Using lemma 3.7 we know
that if ωTγ pp, qq is connected then there is exactly one edge e, which lies on their shared
path, where p and q can be swapped at. Assume that p and q are actually swapped
at e yielding the new assignment σi. Then we need to compute a new swap space in
arrangement T 1 where T 1ppq “ σ´1i ppq and T 1pqq “ σ´1i pqq.

Our argument will now go as follows. For p and q to perform the first swap along
edge e both of them must have at least passed one agent each. Now we will show that if
ωT

1

γ pp, qq is connected then V pCnq “ V pωT
1

γ pp, qqq. If that is true then for p and q to meet

again on swap space ωT
1

γ pp, qq they must pass n agents combined. If we repeat this for a

third arrangement T 2 then we know again that V pCnq “ V pωT
2

γ pp, qqq if T 2 is connected
with the same argument as for T 1. If p and q then are swapped again they must have
passed 2`n`n agents combined and thus at least one of them has passed more than n
agents which would mean that it has passed one agent twice, which we already know is
not possible. Thus, such a connected T 2 cannot exist and there are at most two edges
at which p and q can be swapped. We will now show the above statement: If ωT

1

γ pp, qq

is connected then V pCnq “ V pωT
1

γ pp, qqq. Recall that T 1 is the arrangement we compute
immediately after p and q are swapped. The swap space is, by definition, the path from
T 1ppq to T 1pqq in the direction of p. Further T 1ppq to T 1pqq are adjacent and the edge over
which they are adjacent is in the opposite direction of p, since p has just passed that
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3 Directions in a Cycle

edge. Therefore the path from T 1ppq to T 1pqq in the direction of p covers every agent on
the Cn. From this our statement follows.

As we did after Lemma 3.7 we will introduce notation to refer to the set of edges
where two objects p and q can be swapped at a later point.

Definition 3.10. Let p and q be two objects with initial arrangement R and let γ be a
selection. Then ER

γ pp, qq is the set of edges were p and q can be swapped according to
the preference lists of the agents incident to these edges. Proposition 3.9 tells us that if
σ is reachable then

|ER
γ pp, qq| ď 2 (3.6)

Further if γppq “ γpqq then

ER
γ pp, qq “ H. (3.7)

We will also refer to ER
γ pp, qq as Eγpp, qq if R is the initial arrangement of p and q.

Concluding this chapter, we have formally introduced the assignment of directions to
objects as selections. Further we introduced arrangements which describe the position
of a set of objects. Lastly we showed Proposition 3.9 which states that given a selection
γ, two objects can be swapped at most at two edges or otherwise γ does not yield target
assignment σ.

At the very beginning of this chapter, when we derived the notion of selections we
showed that an object, once swapped into one direction, cannot change its direction
due to the nature of preference lists. Therefore one selection represents one out of 2n

distinct assignments of directions to objects. Our task remains to find a selection that
actually yields the target assignment σ or to be sure that there exists no such selection.
We will address this in the following chapter, where we will propose a polynomial time
algorithm that decides whether for a given selection yields σ. We do so by giving an
exact characterization of all selections that yield σ. Afterwards we will show in Chapter
6 how to compute such a selection, if it exists.
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4 Why Swap Order Does Not Matter

In this chapter, we propose the algorithm Greedy Swaps and show that it decides whether
an assignment σ can be reached if objects are traded only in the directions assigned to
them by some selection γ which is the input of the algorithm. As the name already
reveals, Greedy Swaps is a greedy algorithm. It simply checks whether there is an object
that has not reached its destination and then tries to swap it according to its assigned
direction. If the swap fails, the algorithm decides that for the given selection, the target
assignment σ cannot be reached.

In Section 4.1 we will define how we can detect two objects for which we know that they
must be swapped as otherwise σ is not reachable with the given selection. Afterwards
we will take a look at a special type of selections for which we can immediately decide
whether σ is reachable or not with these selections. In Section 4.2 we will state the
Greedy Swaps algorithm and prove its correctness.

4.1 Objects In Swap Position

Given a selection γ we will say that object p walks or moves into direction γppq. An
important observation is that two objects p and q in some assignment σ1, which is not
necessarily the initial assignment σ0 or the target assignment σ, can only be swapped if
their current agents are neighbors. We observe further that p and q can only be swapped
if the directions that were assigned to them by a selection γ, must indicate that p, if it is
swapped again, will be received by the agent that is currently holding object q and that
q, if it is swapped again, will be received by the agent that is currently holding object
p. We will formalize this notion using the following definition.

Definition 4.1. Let I :“ pN,X,ą, Cn, σ0, σq be an instance of Reachable Assign-
ment on cycle Cn and let γ be selection of I. Let there further be agents i holding object
p and j holding q. Let j be i’s neighbour in clockwise direction. If γppq “ 1 “ 1´ γpqq
then we say that p and q are facing each other and if also σpiq ‰ p or σpjq ‰ q, then we
say that p and q are in swap position and denote that by ργpp, qq.

Figure 4.1 shows an example of a C3 where objects and are in swap position. Note
that in Definition 4.1 it suffices that one of the objects has not yet reached its destination.
This is because we want to ensure that if no two objects are in swap position in some
assignment σ1, then σ1 is equal to σ, the target assignment. This ensured as, if for
assignment σ1 and a selection γ there exist no two objects in swap position, then it
follows from definition 4.1 that at least one of the two following statements is true:

1. There exists no object that has not reached its destination.

23



4 Why Swap Order Does Not Matter

1,

3, 2,

γp q: counter-clockwise
γp q: counter-clockwise
γp q: clockwise

Figure 4.1: Example for two objects in swap position. We assume that none of the three
objects has reached its destination. Object is assigned clockwise direction
and will therefore pass agent 1 next on its path. Object is assigned counter-
clockwise direction and will therefore pass agent 3 next. The objects and
are therefore in swap position. Agent 2 is also a neighbor of agent 3. Further
the object assigned to agent 2, namely , and the object assigned to agent
3, namely , are also assigned opposite direction. However, the two objects
are not facing each other and are therefore not in swap position.

2. There exist no two objects that are facing each other.

These statements follow directly from the definition as they are the two statements that
must be true for two objects to be in swap position. The first statement can also be
equivalently expressed as: ”Every object has reached its destination”, which of course
means that the target assignment σ was reached. So if no two objects are in swap
position for the current assignment σ1 and not every object has reached its destination,
then the second statement must be true. Note that the second statement is equivalent
to: ”Every object is assigned the same direction”. Recall that the directions are assigned
by the selection γ. Thus, if every object is assigned the same direction in σ1, then only
assignment σ0 itself is reachable from σ0. If σ0 ‰ σ, then that means that γ does not
yield target assignment σ and otherwise every selection γ does yield σ.

4.2 Stating the Algorithm

In this section we will show that Algorithm 1 decides whether a given selection γ yields
the target assignment σ. We have already defined selections as an assignment of di-
rections to the set of objects in an instance I :“ pN,X,ą, Cn, σ0, σq of Reachable
Assignment on cycle Cn. Algorithm 1 takes a selection γ as its input and computes
whether σ can be reached with γ. In the following proposition, we will prove that de-
ciding Reachable Assignment on cycles can be reduced to finding a selection such
that Algorithm 1 returns True.

Proposition 4.2. Let I be a Reachable Assignment instance on cycle Cn. Algo-
rithm 1 returns True if and only if γ yields σ.

Proof. Assume that for a given selection γ, Algorithm 1 returns True but γ does not
yield σ. Then the algorithm has performed a sequence of swaps that yields a situation
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4.2 Stating the Algorithm

Data: Reachable Assignment instance I :“ pN,X,ą, Cn, σ0, σq on cycle
Cn and selection γ

if σ0 “ σ then
return True;

end
if Dd P t0, 1u.@o P X.γpoq “ d then

return False;
end
σ1 Ð σ0;
while Dx1, x2 P X.ργpx1, x2q do

iÐ σ1´1px1q;
j Ð σ1´1px2q;
if x1 ąj x2 and x2 ąi x1 then

Swap x1 and x2;
Update σ1;

else
return False;

end

end
return True;

Algorithm 1: Greedy Swaps

where, by definition of swap positions, either every object has reached its destination,
which is a contradiction since σ was not reached, or for every object p held by agent
i and the object q held by the neighbour of i in direction γppq, it holds: γppq “ γpqq.
Note, however, that this implies that every object in the set of objects X in I is assigned
direction γppq and therefore the Algorithm 1 returns False, a contradiction.

Now suppose that a selection γ yields assignment σ, but Algorithm 1 returns False.
Then either σ0 ‰ σ and every object is assigned the same direction, or there are two
objects p and q, which are in swap position at some edge e, but the corresponding
preference lists do not allow a swap. In the former case γ clearly does not yield σ. In the
latter case, consider the initial arrangement R of p and q and the corresponding shared
path ξRγ pp, qq for the initial assignment σ0. We know that it is defined since p and q are
in swap position at the point where Algorithm 1 returns False and thus γppq ‰ γpqq and
we know that their shared path is non-empty because p and q meet at some edge during
the execution of Algorithm 1 but have not both arrived at their destination.

Let m be the number of objects that are initially assigned to an agent on the swap
space of p and q in their initial arrangement R and are assigned direction γppq. We
will now show that q has to be swapped with exactly m´ 1 objects before q and p can
be swapped. Starting from the agent that initially holds q we can then calculate the
edge e1 where q and p meet in every swap sequence that results in reaching the target
assignment σ.

Suppose q can be swapped with more than m´ 1 objects before meeting p at edge e1.
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4 Why Swap Order Does Not Matter

Then q must either be swapped with at least one object q1 that is not initially assigned
to an agent on the swap space of q and p. This, however, means that q will meet q1 after
p, a contradiction. Otherwise q must be swapped with more objects that are initially
assigned to an agent on the swap space of q and p, than there are objects on that swap
space with the opposite direction of q, which is not possible as two objects can only be
swapped if they are assigned different directions, a contradiction. Now suppose that q
can be swapped with less than m´ 1 objects before meeting p. Then there is an object
r starting on the swap space of p and q with γprq ‰ γprq that does not swap with q.
However then q will not be able to meet p as at least r is between them, a contradiction.

Now that we know that q will swap exactly m objects before meeting p, we can also
determine the edge f where, given γ, they must necessarily meet, in every swap sequence
where objects are swapped according to the directions assigned to them by γ. Now since
we assumed that σ is reachable with selection γ, then there must be a swap sequence
where q and p must be swapped at edge f . But since p and q met, by assumption,
at edge e, either e “ f , which is a contradiction because at e the preference lists of
the incident agents do not allow a swap between p and q or otherwise p and q can not
have met at edge e, if all swaps were performed according to the directions assigned by
selection γ, contradiction.

Starting in the subsequent chapters, we will first define exactly what properties a
selection must have in order for Algorithm 1 to return True. Recall that before stating
Algorithm 1 we used the term valid to refer to a selection γ for which there exists a
swap sequence, where every object is only swapped in the direction assigned to it by γ,
which transforms σ0 to σ. Note that if Algorithm 1 returns True on γ, then we are given
such a swap sequence. Otherwise we know that such a swap sequence cannot exist for
γ. Therefore a selection is valid if and only if Algorithm 1 returns True on it. Hence,
our next goal is to define validity and show that if a selection is valid, according to that
definition, then Algorithm 1 returns True. We will attempt this in the next chapter,
Chapter 5.
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5 Characterizing The Instances That
Have a Solution

In the previous chapters we have shown that each object has exactly two possible paths
from its initial position to its destination. These paths are determined by the direction of
the first swap an object is involved in. If it is moved in clockwise direction, it is impossible
afterwards to be involved in a swap that moves it in counter-clockwise direction and
vice versa. In the last chapter we have seen that if we are assigning one of the two
possible directions to each object, then we can verify in polynomial time whether there
exists a swap sequence that transforms σ0 into σ for this assignment of directions. The
verification can be done by Algorithm 1. In this chapter, we will provide a crucial
building block for solving Reachable Assignment on cycles. In Section 5.2 we will
define a set of properties that a selection needs to fulfill in order for Algorithm 1 to
return True and then show in Section 5.3 that these properties are both necessary and
sufficient.

We will use this result to solve Reachable Assignment on cycles in Chapter 6 by
constructing selections in polynomial time that suffice the characterization presented in
this chapter or decide that it is impossible to find such a selection for a given instance
of Reachable Assignment on cycles.

5.1 A Property To Determine That Every Object Meets
At Every Edge At Most One Object

In this section we will formalize a sequence of mathematical objects on top of which we
will define valid selections in the next section. We begin by defining a set H as follows.

Definition 5.1. Let I :“ pN,X,ą, Cn, σ0, σq be an instance of Reachable Assign-
ment. Then we define

H :“ X ˆ EpCnq.

Further we call an element pp, eq of H an object-edge-pair.

Recall that each object has two complementary paths from its initially assigned agent
to its destination in target assignment σ and that the union of these paths covers the
whole cycle Cn. We will use this to formalize the following.

Definition 5.2. Let pp, eq P H be an object-edge-pair. We define the function d : H Ñ

t0, 1u which assigns the direction c to pp, eq such that e lies on the path of p from its
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5 Characterizing The Instances That Have a Solution

1

4 2

3

e

fg

h 1: x3 ą x2 ą x1
2: x1 ą x3 ą x4 ą x2
3: x4 ą x1 ą x3
4: x2 ą x3 ą x4

Figure 5.1: Example for Reachable Assignment on a C4 with edges e, f, g, h. The
candidate list of x1 in clockwise direction is Cpx1, eq :“ tx2, x3u, since the
path of x1 in clockwise direction contains only edge e. The candidate lists
of x1 in counter-clockwise direction are Cpx1, hq :“ H, Cpx1, gq :“ H and
Cpx1, fq :“ tx4u. Note that since x1 does not appear on the preference list
of agent 4, both Cpx1, hq and Cpx1, gq are empty.

initially assigned agent to its destination in target assignment σ where p is only swapped
in direction c.

Further we define the following.

Definition 5.3. Let pp, eq P H be an object-edge-pair. We define the set Cpp, eq as

Cpp, eq :“ tq P X | p and q can be swapped at eu

and call Cpp, eq the candidate list of p at edge e.

Figure 5.1 illustrates candidate lists in an example of a C4. This computation is
necessary, for example, to determine for two objects p and q whether there exists an
edge on the intersection of their paths, where p and q can be swapped.

Based on these definitions we will now formalize the following which we will use to
define valid selections in the next section.

Definition 5.4. Let γ be a selection and let pp, eq P H be an object-edge-pair. Then
we define the function fγpp, eq as follows:

fγpp, eq :“

#

|tq P Cpp, eq | γppq ‰ γpqqu|, if dpp, eq “ γppq

1, otherwise.

5.2 A Characterization of Direction Assignments that
Yield the Target Assignment

In this section we will define the exact characterization of all selections that yield the
target assignment σ. We will refer to every selection that suffices this characterization
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5.2 A Characterization of Direction Assignments that Yield the Target Assignment

1

4 2

3

1: x3 ą x2 ą x1
2: x1 ą x3 ą x2
3: x4 ą x3
4: x2 ą x3 ą x4

Figure 5.2: Example for an instance I :“ pt1, .., 4u, tx1, ..., x4u,ą, C4, σ0, σq of Reach-
able Assignment on cycle C4. Every selection γ where γpx1q “ 1 and
γpx2q “ γpx3q “ 0 is ambiguous. The edge where the ambiguity occurs is
the edge that is incident to agents 1 and 2. Agent 1 prefers both x2 and x3
over x1 and agent 2 prefers object x1 over both x2 and x3. An example for
an unambiguous selection is the selection γ1 where

γpx1q “ γpx3q “ 1 “ 1´ γpx2q “ 1´ γpx4q

Further γ1 yields target assignment σ. A sequence of swaps that transforms
σ0 into σ is ppx1, x2, x3, x4q, px1, x3, x2, x4q, px3, x1, x2, x4q, px3, x1, x4, x2qq.

as valid. Validity consists of three properties. We call them unambiguity, completeness
and harmony. We will define these first individually and then combine them to the
definition of validity.

We will start by defining unambiguity and completeness. Afterwards we state a series
of definitions that are then combined into the third property of validity, namely harmony.

Definition 5.5. Let I :“ pN,X,ą, Cn, σ0, σq be an instance of Reachable Assign-
ment on cycle Cn. We call the selection γ unambiguous if and only if

@pp, eq P H.fγpp, eq ď 1.

Definition 5.6. Let I :“ pN,X,ą, Cn, σ0, σq be a Reachable Assignment instance
on cycle Cn. We call the selection γ complete if and only if

@pp, eq P H.fγpp, eq ě 1.

Examples for Definitions 5.5 and 5.6 can be found in Figures 5.2 and 5.3. If a selection
γ is both unambiguous and complete, we say that γ is sound. We will continue by
defining two properties that are each expressed with respect to two objects to combine
these definitions into the definition of harmony afterwards. To define these, however, we
need the following definition of opposite objects.

Definition 5.7. Let d P t0, 1u be the selected direction of objects p and q for some
instance I :“ pN,X,ą, Cn, σ0, σq of Reachable Assignment on cycle Cn. Let γ be
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5 Characterizing The Instances That Have a Solution

1

4 2

3

1: x3 ą x2 ą x1
2: x1 ą x3 ą x2
3: x4 ą x3
4: x2 ą x3 ą x4

Figure 5.3: Example for an instance I :“ pt1, .., 4u, tx1, ..., x4u,ą, C4, σ0, σq of Reach-
able Assignment on cycle C4. Every selection γ where γpx1q “ γpx2q “
γpx3q “ 1 is incomplete. The edge where the incompleteness occurs is the
edge that is incident to agents 1 and 2. Agent 1 can swap x1 with agent 2 in
exchange for either x2 or x3. However, neither of these objects are assigned
the opposite direction. Hence, x1 cannot be swapped with any object at
that edge. An example for a complete selection can be found in Figure 5.2.
There, the selection γ1 is complete.

1

3 2

1: x3 ą x1
2: x1 ą x3 ą x2
3: x2 ą x1 ą x3

Figure 5.4: Example for an instance I :“ pt1, .., 3u, tx1, ..., x3u,ą, C3, σ0, σq of Reach-
able Assignment on cycle C3. For every selection where γpx1q “ 1 “
1 ´ γpx2q, x1 and x2 are incompatible. This is because x2 is not on the
preference list of agent 1. Hence, agent 1 cannot trade x1 in exchange for x2
with agent 2, as that trade is not rational.
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1

4 2

3

1: x3 ą x4 ą x2 ą x1
2: x1 ą x3 ą x2
3: x4 ą x3
4: x2 ą x3 ą x4

Figure 5.5: Example for an instance I :“ pt1, .., 3u, tx1, ..., x3u,ą, C3, σ0, σq of Reach-
able Assignment on cycle C3. Objects x1 and x4 are opposite. This is
because if x1 arrives at its destination, agent 2, then x4 cannot pass x1 as
agent 2 prefers x1 the most. This is ensured since we applied Reduction Rule
2.2.1 and the agent that prefers an object the most is also its destination,
according to target assignment σ.

1

4 2

3

e

fg

h 1: x4 ą x3 ą x2 ą x1
2: x1 ą x3 ą x2
3: x2 ą x3
4: x3 ą x4

Figure 5.6: Example for an instance I :“ pt1, .., 3u, tx1, ..., x3u,ą, C3, σ0, σq of Reach-
able Assignment on cycle C3. For every selection where γpx1q “ γpx4q “
0, x4 shields x1 in direction 0. It holds that Pγpx1q “ ph, g, fq and
Pγpx4q “ pg, f, eq. Thus, Pγpx1q X Pγpx4q “ pg, fq. However, x4 is closer
to agent 2, the destination of x1 than x1 in counter-clockwise direction. Fur-
ther, agent 4 prefers x4 over x1. Thus, x4 shields x1 in direction 0.
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5 Characterizing The Instances That Have a Solution

a selection where γppq “ γpqq “ d and let γ1 be a selection where γ1ppq “ γ1pqq “ 1 ´ d
We say that p and q are opposite if

Pγpqq Ă Pγppq

and
Pγ1ppq Ă Pγ1pqq.

Figure 5.5 demonstrates an example for Definition 5.7. The next definition is also
necessary to define harmonic selections.

Definition 5.8. Let γ be a selection and let p and q be two objects. Let c P t0, 1u
be a direction such that it holds that γppq “ γpqq “ c. If Pγppq X Pγpqq ‰ H and the
destination of q is closer to p in direction c than to q it must hold for every agent i on
Pγppq X Pγpqq:

q ąi p.

Otherwise we say that p shields q in direction c.

An example for definition 5.8 can be found in Figure 5.6. Before we continue, we state
the following about opposite objects.

Observation 5.9. If objects p and q are opposite, then there exists a direction c P t0, 1u
such that either p shields q in direction c and q shields p in direction 1´ c or vice versa
for every selection γ where γppq “ γpqq.

The next definition is the first of two definitions that we need to state in order to
define harmonic selections. But first we need the following observation.

Observation 5.10. Let P,Q be two paths on cycle Cn and let P Ă Q. Let further P´1 :“
CnzP be the complementary path to P on Cn. Then the induced graph CnrV pP

´1q X

V pQqs contains two distinct sub-paths P0 and P1.

As an example for this observation, see Figure 5.5. In this example let P be the
path p1, 2q and let Q be the path p4, 1, 2, 3q. Then P´1 “ p1, 4, 3, 2q, as constructed in
Observation 5.10. The intersection of P´1 and Q results thus in paths P0 “ p1, 4q and
P1 “ p3, 2q. The next definition uses this observation to define compatibility of objects
as follows.

Definition 5.11. Let p and q be two objects. We distinguish between two cases.
In the first p and q are opposite. Let c P t0, 1u be a direction, such that for every

selection γ where γppq “ 1´c “ 1´γpqq, according to Observation 5.10, the intersection
of the paths Pγppq and Pγpqq results in two distinct sub-paths P0 and P1. Then we say
that p and q are compatible in selection γ if and only if for every i P t0, 1u there exists
exactly one edge e P Pi such that q P Cpp, eq.

In the second case p and q are not opposite. Then we say that p and q are compatible
in a selection if and only if there exists exactly one edge e P pPγppq X Pγpqqq such that
q P Cpp, eq.
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For an example of Definition 5.11 see Figure 5.4. Based on Definitions 5.7, 5.8 and
5.11 we formalize harmonic selections as follows.

Definition 5.12. We call a selection γ harmonic if and only if for every object p there
is no object q moving in direction γppq that shields p in that direction, and every object
r with direction 1´ γppq is compatible with p.

Now that we have defined all of the above properties we can formalize validity for
selections as follows:

Definition 5.13. Let I :“ pN,X,ą, Cn, σ0, σq be a Reachable Assignment instance
on cycle Cn. We call a selection γ of that instance valid if and only if it is unambiguous,
complete and harmonic.

5.3 Showing that the Definition of Validity is Correct

In this section we will show that our definition of validity is correct, that is, it is both
necessary and sufficient for a valid selection γ to yield the target assignment σ. This will
be the main-result of this chapter. Before we state and prove the proposition, we show
the following intermediate lemma that we will use to prove the correctness of validity
afterwards.

Lemma 5.14. Let I :“ pN,X,ą, Cn, σ0, σq be an instance of Reachable Assign-
ment on cycle Cn, let γ be a selection, let pp, e0q, pp, e1q P H be two object-edge-pairs
where dpp, e0q “ dpp, e1q and let q0, q1 be objects with direction 1 ´ γppq. Let further
q0 P Cpp, e0q and let q1 P Cpp, e1q. Let h P t0, 1u be the index such that qh starts closer
to p in direction γppq than q1´h. If γ is harmonic, then eh is closer to p in direction
γppq than e1´h. If e1´h is closer to p in direction γppq than eh, then qh shields q1´h.

Proof. Considering the preference lists at edges e1´h and eh we will denote the agents
at e1´h by k and k ` 1 and the agents at eh by m and m` 1.
Suppose towards a contradiction that e1´h is closer to p than eh in direction dpp, ehq.

We distinguish between two cases. In the first case γ is harmonic. Then since qh and
q1´h are assigned the same direction, qh and q1´h are not opposite. Further qh and q1´h
cannot shield each other. Thus, it must hold that

q1´h ąk`1 qh,

because k ` 1 is on both Pγpqhq and Pγpq1´hq.
In the second case γ is not harmonic and there is some agent that will not accept q1´h

since it prefers qh more and q1´h would be shielded from its destination by qh. Therefore
we will now assume that γ is harmonic and show that then eh must be closer to p in
direction γppq than e1´h.

Since p can be swapped with q1´h at e1´h we know that

p ąk`1 q1´h
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since q1´h arrives at k` 1 and is then swapped with p. However eh is further away from
p than e1´h and in order for qh to be swapped with p at that edge we know

qh ąm p

We also know that p has already passed agent k ` 1 to get to m and that qh must at
least come to agent k´1 since otherwise q1´h could not reach its destination. Since q1´h
can be swapped with p at e1´h, its destination is at least agent k. But if qh must move
at least to k ´ 1 it also must pass k ` 1 and since p was there first we know that

qh ąk`1 p

because otherwise p would shield qh from its destination which we know cannot be true
as γ is harmonic. However, if those terms are true then

qh ąk`1 p ąk`1 q1´h ąk`1 qh,

which cannot be true as ą is a strict ordering, a contradiction.

Using these results, we will now prove that, given an instance I :“ pN,X,ą, Cn, σ0, σq
of Reachable Assignment on cycles, validity is the exact characterization of all
selections that yield the target assignment σ.

Proposition 5.15. Let I :“ pN,X,ą, Cn, σ0, σq be an instance of Reachable As-
signment on cycle Cn and let γ be a selection for that instance. Algorithm 1 returns
True on input γ if and only if γ is valid.

Proof. First we will prove that if γ is valid then Algorithm 1 returns True. Let therefore
q be an object with path P :“ Pγpqq. We will prove that if γ is valid then q is guaranteed
to pass every edge of P . Since q is arbitrarily chosen we can generalize the statement to
all objects. Now recall that Algorithm 1 simply performs a swap between two objects
that are in swap position over and over again. It only returns False if there are two
objects in swap position at edge e that cannot be swapped according to the preference
lists of the agents that are incident to e. If we prove for every object, at every edge
on its path, that the corresponding preference lists always allow a swap, we know that
Algorithm 1 returns True.

Suppose q has already passed i objects and let R be the arrangement that assigns q to
its current agent. Let Q :“ ξRγ pqq be its rest path and let Q1 be the path it has already
passed, i.e. Q1 :“ PγpqqzQ. Let ti be the object that q meets at the first edge on Q, ei,
with γpqq ‰ γptiq. Suppose q and ti cannot be swapped at ei due to the preference lists
of their agents. Then either there exists no object that q can be swapped with at edge ei
in which case γ is incomplete, a contradiction, or there exists object q1 with γpq1q ‰ γpqq
that can be swapped with q at ei but ti starts closer to q than q1. We will now show that
if ei is not an edge where q and ti can be swapped, then that leads to a contradiction.

First of all, since γ is harmonic there must be an edge f on the shared path of q and ti
with respect to their initial arrangement where ti and q can be swapped. We distinguish
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between two cases. If f is on Q1, the path q has already passed, then q has already
passed edge f and there exist two objects with direction 1´γpqq that q can be swapped
with at f . Then, γ would be ambiguous, a contradiction. Otherwise f is on Q but not
equal to ei. But then the edge where ti and q can be swapped at is further away from
q with respect to γ, than the edge where q and q1 can be swapped at, even though ti is
closer to q than q1, with respect to γ. But then due to Lemma 5.14, γ is not harmonic, a
contradiction. Thus we can conclude that q and ti can be swapped at edge ei. Since we
chose the edge ei to be arbitrary we can generalize this to all edges on Pγpqq. From this
follows that q reaches its destination. This can be generalized to all objects and thus,
as described above, Algorithm 1 returns True.

Now we will show that if γ is not valid, then Algorithm 1 returns False. Let γ be
incomplete. Then there exists an object p and an edge e on its path where there exists
no object q such that p and q can be swapped at e. Hence, if p reaches this edge there is
no object that it can be swapped with. Since this edge is on its path the current agent
can not be p’s destination and hence σ cannot be reached. Algorithm 1 therefore returns
False.

Let γ be ambiguous. Then there exist objects p, q and r and edge e on their paths
such that if p reaches e, then it can be swapped with both q and r. Say p is swapped
with q at e. Note that if p and r can be swapped at edge e then r must at least reach
both agents incident to e to get to its destination and at one of these two agents, let us
call it i it holds

p ąi r (5.1)

since p and r can be swapped there by assumption. But then r cannot be accepted
by i anymore since p has already been assigned to both of the agents before r has been
assigned to one of them and thus r cannot reach its destination. Hence, σ cannot be
reached. Algorithm 1 therefore returns False. .

Let γ be inharmonic. We distinguish between two cases. In the first case there exist
objects p and q such that q shields p from its destination. That means that p and q
walk in the same direction and q stops at its destination i before p can pass i. Since i,
however, is on Pγppq, p cannot reach its destination and σ cannot be reached. In the
second case there exist object p and q with γppq ‰ γpqq and an arrangement T of p and
q such that the corresponding shared path is non-empty but there exists no edge on that
shared path where p and q can be swapped. But if their shared path in arrangement
T is non-empty, then p and q must meet at some edge e on that path. Since e is on
their shared path at least one of p and q cannot have reached its destination when being
assigned to an agent incident to e. But since p and q cannot be swapped at e, at least
one of p and q can not reach its destination. In both cases Algorithm 1 returns False.

If γ is not valid, then it is either incomplete, ambiguous or inharmonic and thus γ
yields a False-instance of Algorithm 1, a contradiction.

In this chapter we have defined the exact characterization of selections that yield σ.
We called these types of selections valid. Afterwards we showed that a selection is valid
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according to Definition 5.13 if and only if it yields the target assignment σ. In the next
chapter we are going to solve Reachable Assignment on cycles by showing how to
construct a 2-SAT formula such that every truth assignment of that formula can be
mapped to a valid selection in polynomial time.
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Reachable Assignment On Cycles

In previous chapters we have studied the Reachable Assignment problem on cycles.
We determined that in one swap sequence an object can only be either swapped always
in clockwise or always in counter-clockwise direction on the cycle. Hence, we defined the
notion of selections, which are a direction assignment of the set of possible directions
to the set of objects X. With Algorithm 1 we stated an algorithm that can check for a
given selection in polynomial time whether there exists a swap sequence that transforms
the initial assignment σ0 to the target assignment σ with the constraint that objects are
only swapped in the directions that are assigned to them by the selection. Afterwards
we defined the exact characterization of selections for which Algorithm 1 returns True.
If a selections fulfills the set of properties that define this characterization, then we say
that the selection is valid. Validity mainly consists of the conjunction of three different
properties: unambiguity, completeness and harmony, each of which addresses a specific
constellation of a selection due to which Algorithm 1 will return False.

In this chapter we will solve Reachable Assignment on cycles by proving that if
a valid selection exists, then it can be found in polynomial time. We will find valid
selections by constructing a 2-SAT formula such that every satisfying truth assignment
of that formula corresponds to a valid selection. We will further prove that if the
constructed 2-SAT formula is unsatisfiable, then there exists no valid selection. This
chapter is structured as follows. In section 6.1 we will construct a 2-SAT formula such
that every truth assignment of that formula can be mapped in polynomial time to a
harmonic selection. In Section 6.2, we will provide a tool to extend the 2-SAT formula
to cover unambiguity and completeness. Thus, in Section 6.3 we will use these results to
construct a 2-SAT formula such that every satisfying truth assignment of that formula
corresponds to a valid selection and vice versa. Finally, we will show in that section that
the algorithm stated runs in polynomial time.

6.1 Constructing a 2-SAT formula of Constraints with
At Most Two Objects Involved

In this section we will construct a 2-SAT formula ψ such that a selection is harmonic if
and only if it corresponds to a satisfying truth assignment of ψ. This means that we use
objects interchangeably with logical variables. Further, the truth value of an object in a
satisfying truth assignment of ψ equals the direction it is assigned in the corresponding
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selection that we can derive from this truth assignment.
This will be the first of six 2-SAT formulas that we will construct whose conjunction

gives us a 2-SAT formula φ such that a selection is valid if and only if it is a satisfying
truth assignment of φ. As of the result of Chapter 5, we know that such a formula
decides Reachable Assignment on cycles. We construct the formula ψ as follows.

Construction 6.1. Let I :“ pN,X,ą, Cn, σ0, σq be an instance of Reachable As-
signment on cycle Cn. We construct the 2-SAT formula ψ as follows.

For every pair p, q of objects for which there exists a direction c, such that q shields
p in direction c for every selection γ where γppq “ c “ γpqq, we add the following term
to ψ:

#

pÑ  q if c “ 1

 pÑ q otherwise.
(6.1)

Further, for every pair p, q of objects for which there exists a direction c P t0, 1u such
that p and q are not compatible for every selection γ where γppq “ c “ 1 ´ γpqq, then
we add the following term to ψ:

#

pÑ q if c “ 1

 pÑ  q otherwise.
(6.2)

We will now prove that ψ is well-defined.

Lemma 6.2. Let I :“ pN,X,ą, Cn, σ0, σq be an instance of Reachable Assignment
on cycle Cn. Let γ be a selection. Then γ is harmonic if and only if it is a satisfying
truth assignment of ψ.

Proof. We will prove both directions of the statement by contradiction. For the first
direction suppose that γ is a harmonic selection but it does not correspond to a satisfying
truth assignment of ψ. Then there must exist a clause c in ψ such that c is not fulfilled
by the truth assignment corresponding to γ. We distinguish between two cases.

In the first case c is a clause as defined in Equation 6.1. But then there exist two
objects p and q and a direction cp P t0, 1u such that q shields p in direction cp for every
selection γ1 where γ1ppq “ cp “ γ1pqq but it holds that γppq “ cp “ γpqq. But then, by
definition, γ is not harmonic, a contradiction.

In the second case c is a clause as defined in Equation 6.2. But then there exist two
objects p and q and a direction cp P t0, 1u such that p and q are not compatible for every
selection γ where γppq “ cp “ 1´ γpqq but it holds that γppq “ cp “ 1´ γpqq. But then,
by definition, γ is not harmonic, a contradiction.

We will now show the other direction of the statement. Suppose that γ corresponds to
a satisfying truth assignment of ψ but it is not harmonic. We again distinguish between
two cases.

In the first case there exist two objects p and q and a direction cp P t0, 1u such that
q shields p in direction cp for every selection γ1 where γ1ppq “ cp “ γ1pqq. But since γ
corresponds to a satisfying truth assignment of ψ, due to the clause defined in Equation
6.1, if γppq “ cp, then γpqq “ 1´ cp and thus, p does not shield q, a contradiction.
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In the second case there exist two objects p and q and a direction cp P t0, 1u such that p
and q are not compatible in direction cp for every selection γ1 where γ1ppq “ cp “ 1´γ1pqq.
But since γ corresponds to a satisfying truth assignment of ψ, due to the clause defined
in Equation 6.2, if γppq “ cp, then γpqq “ cp and thus, p and q are compatible, a
contradiction.

6.2 Deriving a Tool to Simulate Where Two Objects
Meet Given a Direction Assignment

In this section we will derive a mathematical tool to formulate constraints, that ensure
unambiguity and completeness for a selection involving more than two objects in a 2-
SAT formula. In this section we will first propose a step to subdivide every Reachable
Assignment instance I :“ pN,X,ą, Cn, σ0q on cycle Cn into n subproblems and show
that the target assignment σ is reachable if and only if at least one of those subproblems
has a solution. Afterwards, we will show for a given subproblem how we can reliably
compute for every pair of objects p and q the edge e1 where p and q meet for the first
time if p is assigned clockwise direction and q is assigned counter-clockwise direction and
the edge e2 where p and q meet for the first time if q is assigned clockwise direction and
p is assigned counter-clockwise direction or decide that either e1 or e2 does not exist.
Based on those results we will construct a 2-SAT formula such that every satisfying truth
assignment of that formula corresponds to a valid selection and vice versa in Section 6.3.

6.2.1 Subdividing the Reachable Assignment Instance into
Subproblems

Let I :“ pN,X,ą, Cn, σ0, σq be an instance of Reachable Assignment on cycle Cn.
If the target assignment σ and the initial assignment σ0 are not equal, then we have
to perform at least one swap to reach the target assignment. Note that since a swap
happens between two agents, there exist exactly n edges where the first swap can occur.
Thus, we subdivide instance I into n subinstances I1, ..., In. A subinstance consists of
the instance I and an edge ei. We formalize the subproblem as follows.

First Swap Reachable Assignment
Input: An instance I :“ pN,X,ą, Cn, σ0, σq of Reachable Assignment and

an edge e P EpCnq
Question: Is σ reachable if the first swap is performed over edge e?

Even though we cannot predict which subinstance yields a solution, we construct the
instances I1, ..., In such that all possible edges are covered in one of the subinstances.
Thus, if we find a solution for one of these subinstances, then we have also found a
solution to the original instance I. Suppose that for a subinstance Ii, the first swap
happens at edge e with incident agents i and j “ hnpi` 1q. The object σ0piq is swapped
into clockwise direction and the object σ0pjq is swapped into counter-clockwise direction.
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Thus, in every selection γ that yields the target assignment σ as a solution to the
subinstance Ii, it must hold that

γpσ0piqq “ 1

and
γpσ0pjqq “ 0.

For an instance of First Swap Reachable Assignment with edge pi, hnpi` 1qq we
refer to the pair of objects x :“ σ0piq and y :“ σ0pjq as the guess of that instance and
denote it Φ :“ px, yq, where x is referring to the object that is swapped into clockwise
direction and y is referring to the object that is swapped into counter-clockwise direction.
For every selection γ where γpxq “ 1 “ 1 ´ γpyq, we say that γ respects the instance
of First Swap Reachable Assignment with guess Φ :“ px, yq. Further, Φ0 denotes
the object in guess Φ which is swapped in counter-clockwise position and Φ1 denotes the
object in guess Φ which is swapped in clockwise position. We also denote the unique
path of x in clockwise direction from its initial agent to its destination with Px and the
unique path of y in counter-clockwise direction from its initial agent to its destination
with Py. If we can prove that for a guess Φ and the corresponding instance of First
Swap Reachable Assignment there exists no valid selection that respects Φ, then
we say that the guess Φ is wrong.

Before concluding this section, we give some definition that we will use throughout
the rest of this work. Intuitively, these capture properties of objects which cannot be
swapped in one direction given a certain guess Φ.

Definition 6.3. Let I :“ ppN,X,ą, Cn, σ0, σq, eq be an instance of First Swap Reach-
able Assignment on cycle Cn with guess Φ :“ px, yq. Let p be an object such that
there exists at most one d P t0, 1u such that a selection γ that respects I and where it
holds that

γppq “ d

can be valid. Then we say that p is decided in direction d. Otherwise we say that p is
undecided.

Based on Definition 6.3 we will derive an important property for the candidate lists of
the guessed objects. The following Lemmas will be useful when we construct a 2-SAT
formula such that every satisfying truth assignment of that formula corresponds to a
valid selection and vice versa, by showing a few ways to show that an object is decided
in some direction. The first lemma is based on the candidate lists of the two guessed
objects.

Lemma 6.4. Let Φ :“ px, yq be a guess and let p P X be an object such that y ‰ p ‰ x.
If there exists a c P t0, 1u such that p is not in the candidate list of Φc, then p is decided
in direction c.

Proof. Let R be the initial arrangement of p and Φc. Let γ be a selection where

γppq ‰ γpΦcq.
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We distinguish between two cases. In the first case the shared path ξRγ pp,Φcq is empty.
Then, the path Pγppq of p and PγpΦcq of Φc are disjoint. Now consider a selection γ1

where
γppq “ γpΦcq.

Because P 1γppq Y Pγppq “ Cn, we now know that

P 1γpΦcq Ă P 1γppq

and thus Φc shield p from its destination in γ1. Thus, a selection γ1 where γ1ppq “ γ1pΦcq

is not valid.
In the second case the shared path ξRγ pp,Φcq is non-empty. But then since p is not

in the candidate list of Φc, there exists no edge on ξRγ pp,Φcq where p and Φc can be
swapped and thus p and Φc are not compatible in selection γ. Thus, a selection γ1 where
γ1ppq ‰ γ1pΦcq is not valid. This concludes the proof.

The second lemma focuses on the effect that decided objects have on other objects.

Lemma 6.5. Let pp, eq P H such that p P Φ, i.e, p is a guessed object. If there exists an
object q P Cpp, eq such that q is decided in direction 1´dpp, eq, then for every q1 P Cpp, eq
where q1 ‰ q it holds that q1 is decided in direction dpp, eq.

Proof. We will prove the above statement by contradiction. Thus, suppose that there
exists an undecided object q1 P Cpp, eq. We will now show that if that is the case, then
there exists no valid selection where q1 is assigned to direction 1 ´ dpp, eq and thus, by
definition, q1 is decided, which leads to a contradiction.

Suppose there exists a valid selection γ that respects Φ such that γpq1q “ 1´ dpp, eq.
However, we also know that since q is decided in direction 1´ dpp, eq, it holds for every
valid selection γ1 that γ1pqq “ 1 ´ dpp, eq and thus, also for γ. But then, by definition,
fγpp, eq ą 1 and thus, γ is not valid, a contradiction.

Lastly, the third lemma focuses on objects that are in the end held by the agents that
are neither on Px nor on Py.

Lemma 6.6. Let I :“ ppN,X,ą, Cn, σ0, σq, e
1q be an instance of First Swap Reach-

able Assignment on cycle Cn with guess Φ :“ px, yq and let x and y be non-opposite.
Let q be an object such that the destination σpqq of q is not on the union of Px and Py.
Then, for every pp, eq P H with p P tx, yu, q is decided in direction dpp, eq.

Proof. Since Px and Py only intersect at the edge e1 where x and y are initially swapped
according to the instance I of First Swap Reachable Assignment as defined above,
there exists a direction c P t0, 1u such that q is not initially assigned to an agent on the
path of guessed object Φc P tx, yu. But then, since, by assumption, the destination of q
is also not on the path of Φc for both c “ 1 and c “ 0, for the initial arrangement R of
q and Φc and every selection γ that respects Φ and where γpqq “ c, ξRγ pΦcq Ă ξRγ pqq.

However, if that is true then, by definition, Φc shields q from its destination and thus,
there exists no valid selection γ such that γpqq “ c. Therefore, q is decided in direction
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1´ c. We will now show that further there exists no pp, eq P H with p P tx, yu, such that
q is decided in direction 1´ dpp, eq. We make a case distinction over p.

In the first case p “ Φ1´c and it holds that dpp, eq “ 1´ c. However, since q is decided
in direction 1´ c, q cannot be decided in direction 1´ dpp, eq.

In the second case p “ Φc. Since ξRγ pΦcq Ă ξRγ pqq, in every γ1 where γ1pqq “ 1 ´ c,
ξRγ1pΦcq X ξ

R
γ1pqq “ H. Therefore, q is not in any candidate list of Φc and hence q cannot

be decided in direction 1´ dpp, eq. From this our statement follows.

6.2.2 Showing That the Number Of Undecided Objects in a
Candidate List of a Guessed Object is Bounded by Two

We will proceed by formalizing the candidate lists of the guessed objects in Φ and fur-
ther partition candidate lists with decided from candidate lists with undecided objects.
Afterwards, we presents a sequence of auxiliary lemmas leading up to the proposition
that the number of undecided objects in a candidate list of a guessed object is at most
two. The following definition introduces various sets of objects and candidate lists that
can be defined per guess Φ.

Definition 6.7. Let Φ :“ px, yq be a guess. We partition the set of objects X into three
subsets U,D and D0 where U is the set of undecided objects, D is the set of decided
objects that appear in at least one candidate list Cpp, eq of a guessed object p P tx, yu
with direction 1´dpp, eq and where D0 is the set of decided objects such that if an object
q P D0 appears in candidate list Cpp, eq of a guessed object p P tx, yu, then q is decided
in direction dpp, eq.

Further, let O Ď D denote the set of objects q for which there exists a guessed object
p P tx, yu such that p and q are opposite and there exists an edge e such that q P Cpp, eq
and q is decided in direction 1´ dpp, eq.

Further, let C be the set of candidate lists Cpp, eq with p P tx, yu. We partition the set
C into two subsets CD and CU where CD contains all candidate lists Cpp, eq where p is a
guessed object and which contain an object q P D and where CU contains all candidate
lists Cpp, eq where p is a guessed object and which contains at least two distinct objects
q0, q1 P U .

First we state the following observation, based on Definition 6.7.

Observation 6.8. Sets U,D and D0 are a partition of X.

We will further show under what condition CD and CU are a partition of C.

Lemma 6.9. Let Φ :“ px, yq be a guess. Then CD and CU are a partition of C or Φ is
wrong.

Proof. We prove the above statement in two steps. First we prove that CD X CU “ H.
Afterwards we prove that CD Y CU “ C or the target assignment σ cannot be reached
with guess Φ. As a result, CD and CU are partition of C or the target assignment σ
cannot be reached with guess Φ.
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According to Lemma 6.5, a candidate list Cpp, eq cannot contain two objects q0 and q1
such that q0 is decided in direction 1´dpp, eq and q1 is undecided. Therefore CDXCU “ H.

We will now prove that CD Y CU “ C or the target assignment σ cannot be reached
with guess Φ. Suppose there exists a candidate list Cpp, eq such that Cpp, eq R CD and
Cpp, eq R CU . But then, Cpp, eq neither contains undecided nor objects q such that q is
decided in direction 1´ dpp, eq. But then, by definition, Cpp, eq contains only objects in
direction dpp, eq. However, that means in every valid selection γ, for every object q in
Cpp, eq it holds that γpqq “ dpp, eq. Further, since p is a guessed object, γppq “ dpp, eq.
Thus, fγpp, eq “ 0 and γ is not valid, a contradiction. Since consequentially there exists
no valid selection, σ cannot be reached with guess Φ. Suppose no such Cpp, eq exists.
Then CD Y CU “ C.

Thus, CD and CU are partition of C or the target assignment σ cannot be reached with
guess Φ.

The following two lemmas are auxiliary lemmas for proving that the number of un-
decided objects in a candidate list of a guessed object is at most two. The next lemma
shows that every undecided objects is in exactly two candidate lists in C.

Lemma 6.10. Let Φ be a guess. For every undecided object q, there exist exactly two
candidate lists C0, C1 P C such that q P C0 and q P C1 or the target assignment σ cannot
be reached with guess Φ.

Proof. Suppose the statement is not true. Then either q appears only in one candidate
list and q is decided due to Lemma 6.4 or there exist three candidate lists C0, C1, C2 P C
such that q P C0, q P C1 and q P C2. But then there must exist a guessed object p P tx, yu
such that q is in two candidate lists of p. We make the following case distinction.

In the first case, q and p are opposite. However, since the direction of the guessed
object p is fixed and hence, there exists no valid selection γ where γpqq “ γppq, q is
decided, a contradiction.

In the second case q and p can be swapped twice on the same shared path but then,
due to Lemma 3.7, the target assignment σ cannot be reached with guess Φ and hence,
Φ is wrong.

The following lemma shows a property of the guessed objects, given that there exist
objects opposite to a guessed object whose decided paths intersect with the guessed
object’s, i.e. |O| ą 0.

Lemma 6.11. Let Φ :“ px, yq be a guess. If |O| ą 0, then the guessed objects x and y
are opposite or the guess Φ is wrong.

Proof. Let q be an object in O. That means that there exists a candidate list Cpp, eq P C
such that q P Cpp, eq, q is decided in direction 1 ´ dpp, eq and q is opposite to p. Let r
be the other guessed object. We will now show that p and r must be opposite or the
guess Φ is wrong. Note that since q is decided in direction 1´dpp, eq it must be swapped
with q at e. However, before p meets q, it is swapped with r in the first swap. Suppose
that p and r are not opposite. Then p and r are only swapped once. However, since q is

43



6 A Polynomial-Time Algorithm For Reachable Assignment On Cycles

assigned the same direction as r and r reaches its destination before it meets p a second
time, also q cannot meet p a second time and thus, there exists no valid selection that
respects this guess and hence, the guess is wrong.

We will now prove the following equality regarding the cardinality of C.

Lemma 6.12. Let Φ :“ px, yq be a guess. If x and y are opposite, then

|C| “ n` |O|

or Φ is wrong.

Proof. Let p P tx, yu be a guessed object and let r P tx, yu with p ‰ r be the other
guessed object. Suppose that p and r are opposite. We partition the set O into two
subsets, Qp and Qr, as follows: Let q be an object such that there exists a candidate list
Cpp, eq P C such that q P Cpp, eq, q is decided in direction 1 ´ dpp, eq and q is opposite
to p. Then q P Qp. Otherwise q, since it is in O, is in some candidate list Cpr, eq and
decided in direction 1´ dpr, eq. Then q P Qr.

Observe that p is swapped with r before it is swapped with any object in O because
p and r are the guessed objects in Φ. Since p and r are opposite, they need to be
swapped twice as otherwise the guess is wrong. Suppose the guess is not wrong. The
union PxYPy covers the whole cycle Cn and hence, there exist at least n candidate lists,
i.e. |C| ě n. Note that after p is swapped with r it is swapped with every object in Op

once, before reaching its destination. Since p and r are symmetric, we can derive the
following. The guessed object p is swapped with |Op| objects after it is swapped with r
the second time and guessed object r is swapped with |Or| objects after it is swapped
with p the second time. From this it follows that the number of candidate lists is equal
to n` |Op| ` |Or| “ n` |O|. This concludes the proof.

Before we come to the prove that the number of undecided objects in a candidate list
of a guessed object is at most two, we will first show in the following two lemmas how
the cardinalities of the sets CU and U are related. In the next lemma we will show an
equality involving the cardinality of CD as well as the sets D and O. We will use this
result later in our proposition that the number of undecided objects in a candidate list
of a guessed object is upper-bounded by two.

Lemma 6.13. Let Φ :“ px, yq be a guess. Then either Φ is wrong or it holds that

|CD| “ |D| ` |O|. (6.3)

Proof. We start with the following observation which is true due to O Ď D:

|DzO| “ |D| ´ |O|.

First observe that every candidate list Cpp, eq P CD contains exactly one object q P D
such that q is decided in direction 1´ dpp, eq, due to Lemma 6.5.
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Now recall that every object q P DzO is non-opposite to both guessed objects x and
y and can therefore appear in at most one candidate list of x and in one candidate list
of y, or otherwise Φ is wrong. Further, since q P DzO, object q is decided. However,
since in every valid selection that respect Φ, γpxq ‰ γpyq, q is either decided in direction
1´dpx, exq for some edge ex such that q P Cpx, exq or q is decided in direction 1´dpy, eyq
for some edge ey such that q P Cpy, eyq but not both. Thus, the number ε0 of candidate
lists Cpp, eq that contain an edge q P DzO is equal to the number of objects in DzO.

Next, recall that every object q P O is opposite to one guessed object p P tx, yu for
which there exists an edge e such that q P Cpp, eq and q is decided in direction 1´dpp, eq.
Hence q appears in two candidate list of p and in no candidate list of the other guessed
object r ‰ p, or otherwise Φ is wrong. Thus, the number ε1 of candidate lists Cpp, eq
that contain an edge q P O is equal to two times the number of objects in O.

We will now combine these results into Equation 6.3. Observe from how we calculated
ε0 and ε1, that:

|CD| “ ε0 ` ε1.

From this we can derive the following equation:

|CD| “ ε0 ` ε1 “ |DzO| ` 2|O|

which can be rewritten as

|CD| “ |D| ´ |O| ` 2|O| “ |D| ` |O|.

The following two lemmas show an inequality regarding the cardinality of CU . The
first lemma shows this inequality for the case that x and y are opposite.

Lemma 6.14. Let Φ :“ px, yq be a guess where x and y are opposite. Then,

|CU | ě |U | (6.4)

or Φ is wrong.

Proof. Since x and y are opposite, due to Lemma 6.12, the following holds:

|C| “ n` |O|

where n is the number of objects. Recall that CD and CU are a partition of C and thus,

|CD| ` |CU | “ n` |O|.

Substituting by Equation 6.3, whose correctness we proved in Lemma 6.13 yields:

|D| ` |O| ` |CU | “ n` |O|.

Further, rearranging the terms yields:

|CU | “ n´ |D|.
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Note that n “ |U | ` |D| ` |D0|, since U,D and D0 are a partition of X and hence, the
following inequality holds:

|CU | ě |U |.

This concludes our proof.

In the next lemma we will show the relationship between the cardinalities of CU and
U , given that x and y are non-opposite.

Lemma 6.15. Let Φ :“ px, yq be a guess where x and y are non-opposite. Then,

|CU | ě |U | (6.5)

or Φ is wrong.

Proof. We prove the above statement in two steps. In the first step we will show that if
x and y are non-opposite, then we can derive from the result of Lemma 6.6, that either
Φ is wrong or the following holds:

|C| ě |U | ` |D|.

Afterwards we derive the above statement from that result.
We will now prove the first step. Recall the result of Lemma 6.6, which states that

if x and y are opposite, then every object whose destination is not on the joint path
Px Y Py of x and y is in D0. Hence, if an object is in U or D, then its destination is on
PxYPy. Note further that for an object there exists as many candidate lists as there are
edges on that objects path. Thus, the number objects in U and D are upper-bounded
by the number of candidate lists of x and y. From this it directly follows that

|C| ě |U | ` |D|.

We will now show the second step. Since CD and CU are a partition of C, we can write
the above equation as follows:

|CD| ` |CU | ě |U | ` |D|.

Substituting |CD| according to Equation 6.3, whose correctness was shown in Lemma
6.13, yields:

|D| ` |O| ` |CU | ě |U | ` |D|.

Now recall that, due to Lemma 6.11, since x and y are non-opposite, |O| “ 0 or Φ is
wrong. Setting |O| “ 0 and subtracting both sides by |D| yields:

|CU | ě |U |.

This concludes our proof.

We will now conclude this section by showing that the number of undecided objects
in a candidate list of the guessed objects x and y is upper-bounded by two.
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Proposition 6.16. Let Φ :“ px, yq be a guess. Let further pp, eq P H, such that p P Φ,
i.e, p is a guessed object. The number of undecided objects in Cpp, eq is upper-bounded
by two or Φ is wrong.

Proof. We will prove the above statement by using a counting argument. We have
already shown in Lemma 6.14 and Lemma 6.15 that it holds

|Cu| ě |U |

or Φ is wrong. Further in Lemma 6.10 we showed that every undecided object is in
exactly two candidate lists Cpp, eq and Cpq, eq where p, q P tx, yu. Lastly, by definition
of CU every candidate list of Cpp, eq P CU contains at least two disjoint objects q0, q1 P U .

From this it follows that every candidate list Cpp, eq P CU contains exactly two un-
decided objects, as otherwise there exist not enough undecided objects to fill every
candidate list in CU with at least two undecided objects, since every undecided object
can be in at most two candidate lists in CU .

Now, since every candidate list in CU contains exactly two objects and since every
candidate list in CD contains zero undecided objects, the number of undecided objects
in any candidate list in C is upper-bounded by two.

6.2.3 Simulating the Edge Where Two Objects Meet Given A
Direction Assignment

In this section we will first show that, given an instance of Reachable Assignment
we can compute the number of objects moving into clockwise direction in every valid
selection. Afterwards, we will use that intermediate result to prove that if a selection
is valid, then, given two objects with a shared path P , we can compute the edge e on
P where the two objects meet in every swap sequence that transforms σ0 into σ. This
result will then allow us to construct a 2-SAT formula such that every satisfying truth
assignment corresponds to a valid selection and vice versa in Section 6.3.

Lemma 6.17. Let I :“ pN,X,ą, Cn, σ0, σq be a instance of Reachable Assignment
on cycle Cn. For the set of objects X one can calculate the number of objects moving in
clockwise and respectively counter-clockwise direction in every valid selection.

Proof. Let the variables d1, ..., dn P t0, 1u represent objects x1, ..., xn where xi moves in
clockwise direction if di “ 1 and counter-clockwise otherwise. Let further y1, ..., yn P N
denote the length of the path of an object’s initial position to its destination in clockwise
direction. Since for each edge on an object’s path in a certain direction there must be
an object moving in the opposite direction swapping the object at that edge the sum of
the lengths of the paths of the objects moving in clockwise direction must be equal to
the sum of the lengths of the paths of the objects moving in counter-clockwise direction.
So, formally, it must hold:

n
ÿ

i“1

diyi “
n

ÿ

i“1

pp1´ diqpn´ yiqq (6.6)
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This can be rewritten as:

n
ÿ

i“1

pdiyi ´ p1´ diqpn´ yiqq “ 0

Expanding the terms and reordering them yields:

n
ÿ

i“1

pdiyi ´ pn´ ndi ´ yi ` diyiqq “
n

ÿ

i“1

pdiyi ´ n` ndi ` yi ´ diyiq

“

n
ÿ

i“1

p´n` ndi ` yiq “ ´
n

ÿ

i“1

n` n
n

ÿ

i“1

di `
n

ÿ

i“1

yi “ 0

řn
i“1 n is simply n2 and Y “

řn
i“1 yi is a constant given the graph, the objects and the

assignments σ0 and σ. Then the equation can be rewritten as:

n
ÿ

i“1

di “
n2 ´ Y

n
“
n2

n
´
Y

n
“ n´

Y

n
(6.7)

Hence, the number of objects moving in clockwise direction is equal to n ´
Y

n
where

Y

n
denotes the number of objects moving in counter-clockwise direction.

We will henceforth denote the number of objects walking counter-clockwise direction
in instance I by θI or θ for short if the instance is implicitly clear. Given some direction
d P t0, 1u the following term is equal to the number of objects walking in that direction
in every valid selection:

dn` p´1qdθ (6.8)

which is equal to θ for d “ 0 and n ´ θ for d “ 1. We will now use this result to prove
the following statement which we will use to derive an important concept that will be
used later to construct a 2-SAT formula such that every satisfying truth assignment of
that formula corresponds to a valid selection and vice versa.

Lemma 6.18. Let Ii :“ ppN,X,ą, Cn, σ0, σq, e
1q be an instance of First Swap Reach-

able Assignment on cycle Cn. Let Φ :“ px, yq be the guess of Ii, let pp, eq P H be an
object-edge-pair and let q P Cpp, eq where p and q are undecided objects. Let P be the
shared path of p and q such that e P EpP q. Then, there exists an edge f on P such that
for every valid selection γ that respects Φ and for which its holds that

γppq “ dpp, eq “ 1´ γpqq,

p and q meet at edge f in the execution of Algorithm 1 on input γ.

48



6.2 Deriving a Tool to Simulate Where Two Objects Meet Given a Direction Assignment

Proof. Let Φ :“ px, yq be the guess of Ii. In the following proof we will assume that
γppq “ γpxq. The other case is symmetric with x and y and clockwise and counter-
clockwise swapped, without loss of generality.

We will first show that given the object p we can compute the constant number λpp, xq
of objects on the object domain ∆p,x that are assigned clockwise direction in every valid
selection γ where γppq “ γpxq. Afterwards we use that result and show, due to the fact
that we know that in every valid selection γ it holds that γpxq “ 1, that Sγ, as defined
above, exists.

We will now prove that for any valid selection γ where γppq “ γpxq, λpp, xq is equal
to the number of edges that y has to pass before reaching the edge ey where p and y can
be swapped. Since p is undecided and hence in the candidate list of y we know that ey
must exist and that p and y have to be swapped at ey or otherwise the target assignment
σ cannot be reached. Further we know that y has to be swapped with λpp, xq objects
(including x) before it meets p, as these are the objects on the swap space of p and y
that are assigned the opposite direction of y. Suppose that λpp, xq is not equal to the
number of edges that y has to pass before reaching ey but γ is valid. Because y has to be
swapped with λpp, xq objects and each swap amounts to one edge being passed, y and p
meet at an edge f that is not ey. However, Lemma 3.7 states that there exists exactly
one edge on the shared path of p and y in their initial arrangement where p and y can
be swapped, which is ey. Thus, p and y cannot be swapped at edge f and σ cannot be
reached and therefore γ cannot be valid, a contradiction. Since edge ey is constant for
all valid selections, so is λpp, xq.

We will now extend this result by proving that for every valid selection γ where
γppq “ γpxq, the number λpx, pq of objects on the object domain ∆x,p that are assigned
to clockwise direction is constant. Recall Equation 2.5 with adjusted variable names:

@r, t P X.∆r,t Y∆t,r “ X.

The equation states that the union of the object domain from an object r in clockwise
direction to t and the object domain from an object r in counter-clockwise direction to
t covers every object in instance Ii. So to compute λpx, pq we simply compute λpp, xq
and subtract it from the total number of objects walking in clockwise direction, that is

n´ θI (6.9)

where I is the original instance of Reachable Assignment of Ii. Further since x
and p already walk in clockwise direction we need to subtract 1 for each of them, to not
count them twice, and obtain the following result.

λpx, pq “ n´ θI ´ λpp, xq ´ 2. (6.10)

Since λpp, xq and n´ θI are constants, so is λpx, pq.
We will now show that for an object q in opposite direction to p, where the shared

path of p and q is non-empty, we can compute the edge ep where p and q meet on that
shared path, in every valid selection γ.
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Since we assumed γppq “ 1, the direction of q is counter-clockwise. We distinguish
between two cases. In the first case, q is closer to p than to x with respect to selection
γ. For γ to be valid, we know that, since q is undecided and hence in the candidate
list of x, q and x have to be swapped at some edge ex. We further know how many
objects q is swapped with after it is swapped with p and before it can be swapped with
x, namely λpx, pq. We can therefore calculate the edge ep, where p and q have to meet
and swap, such that q can meet x at edge ex. In the second case x is closer to q than
p with respect to selection γ. For γ to be valid, q and x have to be swapped at some
edge ex. We further know how many objects q is swapped with after it is swapped with
x and before it can be swapped with p, namely λpp, xq. We can therefore calculate the
edge ep, where p and q will meet after q was swapped with x at edge ex. Since λpp, xq
and λpx, pq are constant for all valid selections, so it the edge ep.

We formalize the results of lemma 6.18 as follows.

Definition 6.19. Let pp, eq P H be an object-edge-pair and let q P Cpp, eq. Let P be
the shared path of p and q such that e P EpP q. According to Lemma 6.18, there exists
an edge f on P such that for every valid selection γ that respects Φ and for which it
holds that

γppq “ dpp, eq “ 1´ γpqq,

p and q meet at edge f in the execution of Algorithm 1 on input γ. If q is closer to p
in direction dpp, eq than guessed object Φdpp,eq, then let c :“ 1 and c :“ 0 otherwise. We
denote by Spp, e, qq the tuple pf, cq. If e “ f , we say that Spp, e, qq is successful and we
say that Spp, e, qq is unsuccessful otherwise.

Based on this definition, we will prove the following two statements that we will use as
an intermediate result for the construction of a 2-SAT formula such that every satisfying
truth assignment of that formula corresponds to a valid selection and vice versa.

Lemma 6.20. Let p, q0 and q1 be three objects and let e be an edge. If Spp, e, q0q “
Spp, e, q1q, then q0 and q1 are in the same candidate list of guessed object Φdpp,eq.

Proof. Let e0 be the edge such that for every valid selection γ that respects Φ and for
which its holds that

γppq “ dpp, eq “ 1´ γpq0q,

p and q0 meet at edge e0 in the execution of Algorithm 1 on input γ, according to Lemma
6.18. Let e1 be the edge such that for every valid selection γ that respects Φ and for
which its holds that

γppq “ dpp, eq “ 1´ γpq1q,

p and q1 meet at edge e1 in the execution of Algorithm 1 on input γ, according to Lemma
6.18. By definition, if Spp, e, q0q “ Spp, e, q1q then the following statements are true.

1. Objects q0 and q1 are either both closer to p in direction dpp, eq than the guessed
object Φdpp,eq or both further from p in direction dpp, eq than Φdpp,eq.
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2. e0 “ e1.

Let pf, cq “ Spp, e, q0q “ Spp, e, q1q. We distinguish between two cases. In the first case
c “ 1. Then, according to Lemma 6.18, there exists a number λ of objects such that q0
and q1 are both swapped with exactly λ objects after being swapped with p and before
meeting guessed object Φdpp,eq, at an edge e˚0 and e˚1 respectively.

In the second case c “ 0. Then, according to Lemma 6.18, there exists a number λ of
objects such that q0 and q1 are both swapped with exactly λ objects after being swapped
with guessed object Φdpp,eq, at an edge e˚0 and e˚1 respectively, and before meeting p.

But in both cases, since λ is the same for both q0 and q1, it holds that e˚0 “ e˚1 . In
Lemma 6.18, e˚0 and e˚1 are chosen to be the edges where Φdpp,eq can be swapped with q0
and q1 respectively. Thus, q0 and q1 are in the same candidate list of Φdpp,eq.

We conclude this section with the second statement that we can derive from Lemma
6.18. We will use both of these two Lemmas to construct a 2-SAT formula such that
every selection is valid if and only if it corresponds to a satisfying truth assignment of
that formula.

Lemma 6.21. Let Φ :“ px, yq be the guess of an instance I :“ ppN,X,ą, Cn, σ0, σq, e
1q

of First Swap Reachable Assignment on cycle Cn, let pp, eq P H and let q P
Cpp, eq. If Spp, e, qq is not successful, then there exists no valid selection γ such that
γppq “ dpp, eq “ 1´ γpqq.

Proof. Let P be the shared path of p and q such that e P EpP q. If Spp, e, qq is not
successful, then, according to Lemma 6.18, there exists an edge f on P such that for
every valid selection γ that respects Φ and for which its holds that

γppq “ dpp, eq “ 1´ γpqq,

p and q meet at edge f in the execution of Algorithm 1 on input γ and e ‰ f .
Recall Lemma 3.7. According to this lemma, since f and e are on the same shared

path of p and q, there exists at most one edge of e and f where p and q can be swapped
or otherwise σ is not reachable. But if γ is valid, then Algorithm 1 finds a swap sequence
that reaches σ. Since q P Cpp, eq, it is guaranteed that p and q can be swapped at e and
therefore p and q cannot be swapped at f . Thus, there cannot exist a valid selection γ
that respects Φ and for which its holds that

γppq “ dpp, eq “ 1´ γpqq.

6.3 Constructing a 2-SAT formula of Constraints with
More Than Two Objects Involved

In this section we will construct a 2-SAT formula for First Swap Reachable As-
signment on cycles such that every selection is valid if and only if it corresponds to a
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satisfying truth assignment of that formula. We will then combine the results of n such
formulas to solve Reachable Assignment on cycles.

We will discuss the construction of φ in multiple steps and we distinguish between five
categories of objects. First we create two formulas for decided and undecided objects in
general. Then we create a 2-SAT formula for all pairwise opposite objects. Afterwards
we will create a 2-SAT formula for all objects for which there exists an edge where the
corresponding candidate list of that edge contains at least one decided object. Lastly,
we create a 2-SAT formula for all objects that are not covered by one of the previous
four categories. The conjunction of the resulting five formulas together with the 2-
SAT formula ψ, for which every satisfying truth assignment corresponds to a harmonic
selection and vice versa, will then be a 2-SAT formula such that a selection is valid if
and only if it corresponds to a satisfying truth assignment of that formula.

We start by partitioning the set H into five sets. Successively we will propose a 2-
SAT formula for every of those sets and afterwards show that the conjunction of the five
resulting formulas solves every instance of First Swap Reachable Assignment on
cycles. We start by introducing the following notation.

Definition 6.22. Let Φ :“ px, yq be a guess. Let pp, eq P H be an object-edge-pair.
Then ηopp, eq denotes the number of objects q P Cpp, eq that are opposite to p. Further
ηdpp, eq denotes the number of objects q P Cpp, eq that are decided in direction dpp, eq
and η1´dpp, eq denotes the number of objects q P Cpp, eq that are decided in direction
1´ dpp, eq.

Using this notation, we partition the set H into four sets as follows.

Definition 6.23. Let Φ :“ px, yq be a guess. We will partition the set H into four
partitions. Recall how we constructed C as the set of candidate lists Cpp, eq such that
p P tx, yu. Analogously we define HpCq as follows:

HpCq :“ tpp, eq P H | p P tx, yuu.

Further we define the sets HpCDq and HpCUq as follows:

HpCDq :“ tpp, eq P HpCq | Dq P Cpp, eq such that q is decided in direction 1´ dpp, equ,

HpCUq :“ tpp, eq P HpCq | Dq0, q1 P Cpp, eq such that q0 and q1 are undecidedu.

Further we define the set H0 as follows:

H0 :“ tpp, eq P HzHpCq | ηopp, eq ą 0u.

Further we define the set H1 as follows:

H1 :“ tpp, eq P HzpH0 YHpCqq | ηdpp, eq “ |Cpp, eq| or η1´dpp, eq ą 0u.

Lastly we define the set H2 as follows:

H2 :“ HzpH0 YH1 YHpCqq.
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Observation 6.24. The sets HpCq, H0, H1 and H2 are a partition of H and HpCDq and
HpCUq are a partition of HpCq.

The following observation will assist us to discuss the time complexity of our con-
structions. Afterwards we begin with construction the remaining 2-SAT formulas.

Observation 6.25. Let p P X be an object. Due to Lemma 3.9 an object q P X where
p ‰ q can be in at most two candidate lists of p. Therefore, the following equation holds:

ÿ

ePE

|Cpp, eq| ď 2|X|.

For the subsequent constructions recall the function fγ for a selection γ as defined in
Definition 5.4. The following construction formalizes a 2-SAT formula that assigns to
every decided object the direction in which the object is decided and thereby constructs
the 2-SAT formula fD for all objects in HpCDq.

Construction 6.26. Let Φ :“ px, yq be the guess of an instance I :“ ppN,X,ą
, Cn, σ0, σq, e

1q of First Swap Reachable Assignment on cycle Cn. Let Cpp, eq P CD
be a candidate list and let q P Cpp, eq be the object such that q is decided in direction
1 ´ dpp, eq. Let then Q :“ Cpp, eqztqu be the set of decided objects in direction dpp, eq.
We construct fD as the conjunction of

#

 q if dpp, eq “ 1

q otherwise
(6.11)

and
$

’

&

’

%

Ź

q1PQ

q1 if dpp, eq “ 1

Ź

q1PQ

 q1 otherwise.
(6.12)

We will now prove that the construction of fD is correct.

Lemma 6.27. Let Φ :“ px, yq be a guess and let Cpp, eq P CD be a candidate list.
Suppose there exists a valid selection for guess Φ. Let γ be a selection that respects Φ. If
γ is valid, then it corresponds to a satisfying truth assignment of fD and if γ corresponds
to a satisfying truth assignment of fD, then it holds that fγpp, eq “ 1.

Proof. We will prove both directions of this statement by contradiction.
First suppose that γ is valid but it does not correspond to a satisfying truth assignment

of fD. Then, there exists a clause c in fD that is not fulfilled by γ. We distinguish
between two cases.

In the first case c is a clause as in Equation 6.11. But then there exists a decided
object q in direction 1 ´ dpp, eq such that γpqq “ dpp, eq. But by definition of decided
objects, there exists no valid selection γ1 such that γ1pqq “ dpp, eq and thus, γ is not
valid, a contradiction.
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In the second case c is a clause as in Equation 6.12. But then there exists a decided
object q1 in direction dpp, eq such that γpq1q “ 1 ´ dpp, eq. But by definition of decided
objects, there exists no valid selection γ1 such that γ1pq1q “ 1´ dpp, eq and thus, γ is not
valid, a contradiction.

We will now prove the other direction of the statement. Suppose that γ corresponds to
a satisfying truth assignment of fD but fγpp, eq ‰ 1. But if γ corresponds to a satisfying
truth assignment of fD, then there exists one object q P Cpp, eq that is assigned to
direction 1´ dpp, eq in Equation 6.11 and further, due to Equation 6.12, no other object
in Cpp, eq. Thus, fγpp, eq “ 1, a contradiction.

We continue by constructing a 2-SAT formula that ensures that every pair of undecided
objects in the same candidate list of a guessed object are never assigned the same
direction. We will prove afterwards that this is correct. We construct the 2-SAT formula
fU for all objects in HpCUq as follows.

Construction 6.28. Let Φ :“ px, yq be the guess of an instance I :“ ppN,X,ą
, Cn, σ0, σq, e

1q of First Swap Reachable Assignment on cycle Cn.

Let Cpp, eq P CU be a candidate list and let q0, q1 P Cpp, eq be the two undecided
objects in Cpp, eq. Then, add to fU the term

q0 ‰ q1. (6.13)

We will now show that the construction of fU is correct.

Lemma 6.29. Let Φ :“ px, yq be a guess and let Cpp, eq P CU be a candidate list. Suppose
there exists a valid selection for guess Φ. Let γ be a selection that respects Φ. If γ is
valid, then it corresponds to a satisfying truth assignment of fU and if γ corresponds to
a satisfying truth assignment of fU , then it holds that fγpp, eq “ 1.

Proof. We will prove both directions of this statement by contradiction.

First suppose that γ is valid but it does not correspond to a satisfying truth assignment
of fU . Then there exists a clause c in fU such that c is not fulfilled in γ. Then, this
clause is the clause in Equation 6.13 and there exist two undecided objects q0, q1 P Cpp, eq
such that γpq0q “ γpq1q. However, since due to Proposition 6.16, there exists exactly
two undecided objects in Cpp, eq, either fγpp, eq “ 2, if γpq0q “ γpq1q “ 1 ´ dpp, eq or
otherwise fγpp, eq “ 0, if γpq0q “ γpq1q “ dpp, eq. In both cases, fγpp, eq ‰ 1 and thus, γ
is not valid, a contradiction.

We will now show the other direction of the statement. Suppose that γ corresponds to
a satisfying truth assignment of fU but fγpp, eq ‰ 1. However, since due to Proposition
6.16, there exists exactly two undecided objects q0, q1 in Cpp, eq and since γ corresponds
to a satisfying truth assignment of fU , γpq0q ‰ γpq1q and thus fγpp, eq “ 1, a contradic-
tion.

In the next step we construct a 2-SAT formula ϕ0 for all objects in H0.
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Construction 6.30. Let Φ :“ px, yq be the guess of an instance I :“ ppN,X,ą
, Cn, σ0, σq, e

1q of First Swap Reachable Assignment on cycle Cn. We will now con-
struct a 2-SAT formula f0 with parameter pp, eq as follows. Since pp, eq P H0, ηopp, eq ą 0.
We distinguish between two cases.

In the first case ηopp, eq ą 1. Then, add to f0pp, eq the term
#

 p if dpp, eq “ 1

p otherwise.
(6.14)

In the second case ηopp, eq “ 1. Then let q P Cpp, eq be the object in the candidate
list of p at e that is opposite to p. Let Q :“ Cpp, eqztqu. Then, add to f0pp, eq the term

$

’

&

’

%

Ź

q1PQ

ppÑ q1q if dpp, eq “ 1

Ź

q1PQ

p pÑ  q1q otherwise.
(6.15)

We further define ϕ0 as follows:

ϕ0 :“ p
ľ

pp,eqPH0

f0pp, eqq ^ ψ.

We will now show that the construction of ϕ0 is correct.

Lemma 6.31. Let Φ :“ px, yq be a guess and let pp, eq P H0. Suppose there exists a
valid selection for guess Φ. Let γ be a selection that respects Φ. If γ is valid, then it
corresponds to a satisfying truth assignment of ϕ0 and if γ corresponds to a satisfying
truth assignment of ϕ0pp, eq, then fγpp, eq “ 1.

Proof. We will show both directions of this statement by contradiction.
First suppose that γ is valid but it does not correspond to a satisfying truth assignment

of ϕ0. Then there exists an object-edge-pair pp1, e1q P H0 and a clause c in f0pp
1, e1q such

that c is not fulfilled in γ. We distinguish between two cases.
In the first case c is a term as defined in Equation 6.14. But then, there exist at

least two objects q0, q1 that are opposite to p1 and since γ is valid it holds that γpq0q “
γpq1q ‰ γpp1q but since c is not fulfilled by a truth assignment corresponding to γ,
γpp1q “ dpp1, e1q. However, then γpq0q “ γpq1q “ 1 ´ dpp, eq and thus, fγpp

1, e1q ě 2 and
γ is not valid, a contradiction.

In the second case c is a term as defined in Equation 6.15. Then either the term
in Equation 6.14 is also not fulfilled, and as shown, γ is not valid, a contradiction, or
γpp1q “ dpp1, e1q and there exist at least two objects q0, q1 such that γpq0q “ γpq1q “
1´ dpp1, e1q and thus, fγpp

1, e1q ě 2. Then, however, γ is not valid, a contradiction.
We will now show the other direction of the statement. Suppose that γ corresponds

to a satisfying truth assignment of f0 but fγpp, eq ‰ 1. Since pp, eq P H0, it holds that
ηopp, eq ą 0. We distinguish between two cases.

In the first case ηopp, eq ą 1, then γppq “ 1´ dpp, eq, according to Equation 6.14. But
then, fγpp, eq “ 1, a contradiction.
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In the second case ηopp, eq “ 1. But then, then there exists an object q P Cpp, eq
that is opposite to p and every object q1 P Cpp, eqztqu is assigned to direction dpp, eq if
p is assigned to direction dpp, eq. But then, if γppq “ 1 ´ dpp, eq, then fγpp, eq “ 1, a
contradiction or otherwise if γppq “ dpp, eq and since every satisfying truth assignment
of ϕ0 is also a satisfying truth assignment of ψ, there exists exactly one object, q, in
Cpp, eq that is assigned direction 1´ dpp, eq by the truth assignment corresponding to γ
and thus, fγpp, eq “ 1, a contradiction.

As the next step we construct a 2-SAT formula ϕ1 for all objects in H1.

Construction 6.32. Let Φ :“ px, yq be the guess of an instance I :“ ppN,X,ą
, Cn, σ0, σq, e

1q of First Swap Reachable Assignment on cycle Cn. We will now
construct a 2-SAT formula f1 with parameter pp, eq as follows. Since pp, eq P H1 either
η1´dpp, eq ą 0 or ηdpp, eq “ |Cpp, eq|.

If η1´dpp, eq ą 1 or ηdpp, eq “ |Cpp, eq|, then add to f1pp, eq the term

#

 p if dpp, eq “ 1

p otherwise.
(6.16)

We further define ϕ1 as follows:

ϕ1 :“ p
ľ

pp,eqPH1

f1pp, eqq ^ fU ^ fD.

We will now show that the construction of ϕ1 is correct.

Lemma 6.33. Let Φ :“ px, yq be a guess and let pp, eq P H1. Suppose there exists a
valid selection for guess Φ. Let γ be a selection that respects Φ. If γ is valid, then it
corresponds to a satisfying truth assignment of ϕ1 and if γ corresponds to a satisfying
truth assignment of ϕ1, then it holds that fγpp, eq “ 1 for all pp, eq P H1.

Proof. We will show both directions of this statement by contradiction.
First suppose that γ is valid but it does not correspond to a satisfying truth assignment

of ϕ1. Then there exists an object-edge-pair pp1, e1q P H1 and a clause c in f1pp
1, e1q such

that c is not fulfilled by a truth assignment corresponding to γ. Then c is a clause as
defined in Equation 6.16.

We distinguish between two cases. In the first case it holds that ηdpp
1, e1q “ |Cpp1, e1q|,

but then, according to Lemma 6.27, there exists no valid selection γ1 and an object
q P Cpp1, e1q such that γ1pqq “ 1 ´ dpp1, e1q. Thus, fγpp

1, e1q “ 0 and γ is not valid, a
contradiction.

In the second case, it holds that η1´dpp, eq ą 1. But then there exist two decided
objects q0 and q1 in direction 1 ´ dpp1, e1q. Due to Lemma 6.27, there exists no valid
selection γ1 such that γ1pq0q ‰ 1´dpp1, e1q and γ1pq1q ‰ 1´dpp1, e1q and thus fγpp

1, e1q ą 1.
Therefore, γ is not valid, a contradiction.

We will now prove the other direction of the statement. Suppose that γ corresponds to
a satisfying truth assignment of f1pp, eq but fγpp, eq ‰ 1. Since pp, eq P H1, η1´dpp, eq ą 0
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or ηdpp, eq “ |Cpp, eq|. However, if ηdpp, eq “ |Cpp, eq|, then either γppq “ dpp, eq but
then there exists no object q P Cpp, eq such that p can be swapped with q at e and thus,
γ is incomplete, a contradiction. Otherwise γppq “ 1´dpp, eq, but then according to the
definition of fγ, it holds that fγpp, eq “ 1, a contradiction.

Now suppose that η1´dpp, eq ą 0 and then, due to Equation 6.16, γppq “ 1´ dpp, eq if
γ corresponds to a satisfying truth assignment of ϕ1. Thus, by definition fγpp, eq “ 1, a
contradiction.

As the next step we construct a 2-SAT formula ϕ2 for all objects in H2.

Construction 6.34. Let Φ :“ px, yq be the guess of an instance I :“ ppN,X,ą
, Cn, σ0, σq, e

1q of First Swap Reachable Assignment on cycle Cn. We will con-
struct a 2-SAT formula f2 with parameter pp, eq P H2 as follows.

Every object in Cpp, eq is undecided and not opposite to p. First we compute Spp, e, qq
for every q P Cpp, eq. Let Q be the set of undecided objects q for which Spp, e, qq is
successful and let Q1 be the set of undecided objects q for which Spp, e, qq is unsuccessful.

If |Q| “ 0, then we add the following term to f2pp, eq.
#

 p if dpp, eq “ 1

p otherwise.
(6.17)

If Q “ tqu, then we add the following term to f2pp, eq.
#

pÑ  q if dpp, eq “ 1

 pÑ q otherwise.
(6.18)

Further we add the following term to f2pp, eq.
$

’

&

’

%

pÑ
Ź

qPQ1
pqq if dpp, eq “ 1

 pÑ
Ź

qPQ1
p qq otherwise.

(6.19)

Lastly, we define ϕ2 as follows:

ϕ2 :“ p
ľ

pp,eqPH2

f2pp, eqq ^ fU ^ fD ^ ψ.

We will now prove that the construction of ϕ2 is correct. First we will prove this
intermediate lemma that assists in proving the correctness of ϕ2.

Lemma 6.35. Let pp, eq P H2 be an object-edge-pair and let Q be the set of undecided
objects q P Cpp, eq for which Spp, e, qq is successful. Then Q can be partitioned into two
sets Q0 and Q1 and the following statement holds. There exists an i P t0, 1u such that
for every object q P Qi the following clause exists in ψ.

#

q if dpp, eq “ 1

 q otherwise.
(6.20)
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Proof. Recall that ψ is a 2-SAT formula such that every satisfying truth assignment of
ψ is a harmonic selection.

We will first demonstrate how we partition Q into Q0 and Q1. Recall the definition of
Spp, e, qq which is the tuple pf, cq, where f is the edge where q meets p and where c “ 1,
if q is closer to p in direction dpp, eq than the guessed object Φdpp,eq and c “ 0 otherwise.
Since Spp, e, qq is successful for all q P Q, the edge where q meets p is equal amongst all
q P Q. Therefore we partition Q into two sets Q0 and Q1 as follows. Let q P Q and let
pf, cq “ Spp, e, qq. Then q belongs to the partition Qc.

Now recall that since pp, eq P H2, p is undecided and thus, by definition of undecided
objects, in a candidate list of Φ1´dpp,eq. Let e˚ be the edge where p and Φ1´dpp,eq can be
swapped and which is on the same shared path of p and Φ1´dpp,eq than e. Note that this
shared path exists either before the first swap of p and Φ1´dpp,eq or after the first swap
of p and Φ1´dpp,eq.

We distinguish between two cases. In the first case, e˚ is closer to p in direction dpp, eq
than e. But since every object q1 in Q1 is closer to p in direction dpp, eq than Φ1´dpp,eq,
according to Lemma 5.14, Φ1´dpp,eq is shielded by q1 in direction 1 ´ dpp, eq. Thus, ψ
contains the clause in Equation 6.20 for q1.

In the second case, e˚ is further away from p in direction dpp, eq than e. But since
every object q0 in Q0 is further away from p in direction dpp, eq than Φ1´dpp,eq, according
to Lemma 5.14, Φ1´dpp,eq shields q0 in direction 1´ dpp, eq. Thus, ψ contains the clause
in Equation 6.20 for q0.

We can now prove that the construction of ϕ2 is correct.

Lemma 6.36. Let Φ :“ px, yq be the guess of an instance I :“ ppN,X,ą, Cn, σ0, σq, e
1q

of First Swap Reachable Assignment on cycle Cn. Suppose there exists a valid
selection for guess Φ. Let γ be a selection that respects I. For every pp, eq P H2 it holds
that, if γ is valid, then it corresponds to a satisfying truth assignment of ϕ2 and if γ
corresponds to a satisfying truth assignment of ϕ2, then fγpp, eq “ 1.

Proof. We will prove both directions of the statement by contradiction. First suppose
that γ is valid but γ does not correspond to a truth assignment of ϕ2. Then, there
exists at least one clause c in ϕ2 that is not fulfilled in γ. We distinguish between three
different types of clauses.

Suppose c is a clause as in Equation 6.17. Then it holds that

γppq “ dpp, eq.

We distinguish between two cases. In the first case, there exists an object q P Cpp, eq
such that γpqq ‰ γppq. However, since in the case of Equation 6.17, there exists no
undecided object q1 in Cpp, eq such that Spp, e, q1q is successful and since q P Cpp, eq,
also Spp, e, qq cannot be successful. But then, according to Lemma 6.21, γ is not valid, a
contradiction. In the second case there exists no object q P Cpp, eq such that γppq ‰ γpqq.
Thus, fγpp, eq “ 0, a contradiction.
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Now suppose that c is a clause as in Equation 6.18. Then there exists exactly one
q P Cpp, eq such that Sdpp,eqpp, eq is successful but it holds that

γppq “ dpp, eq “ γpqq.

This means that one of the following two things is true. Either there exists an object
q1 P Cpp, eq such that Sdpp,eqpp, eq is not successful and it holds that

γppq “ dpp, eq “ 1´ γpq1q. (6.21)

In the first case, due to Lemma 6.21, γ is not valid, a contradiction. In the second
case, there exists no q1 such that Equation 6.21 holds in which case fγpp, eq “ 0, a
contradiction.

Now suppose that c is a clause as in Equation 6.19. Then there exists an undecided
object q such that Spp, e, qq is unsuccessful but it holds that

γppq “ dpp, eq “ 1´ γpqq.

However, according to Lemma 6.21, then γ is not valid, a contradiction.

We will now prove the other direction of the statement by contradiction. Suppose
that there exists a truth assignment γ of ϕ2, but fγpp, eq ‰ 1. We will first show that
by construction of H2, there exists at least one undecided object q P Cpp, eq such that
p and q are not opposite. Afterwards, we will make a case distinction to lead the above
statement into a contradiction and thereby complete the proof.

By construction, H2 excludes the set H0 and hence all object-edge-pairs pp0, e0q such
that Cpp0, e0q contains objects that are opposite to p0. Further H2 excludes the set H1

and hence all object-edge-pairs pp0, e0q for which ηdpp, eq “ |Cpp0, e0q| or η1´dpp, eq ą 0.
Thus, for pp, eq there must exist at least one undecided object q P Cpp, eq such that p
and q are not opposite.

Let therefore Q Ď Cpp, eq be the set of undecided objects that are not opposite to p
and such that Sdpp,eqpp, eq is successful. We will now distinguish between the three cases
where |Q| “ 0, |Q| “ 1 and |Q| ą 1. In the first case |Q| “ 0. But then according to
Equation 6.17, for every truth assignment γ of ϕ2 it holds that

γppq “ 1´ dpp, eq.

Then however, by definition, fγpp, eq “ 1, a contradiction.
In the second case |Q| “ 1. But then according to Equation 6.18, for every selection

γ corresponding to a truth assignment of ϕ there exists an object q P Cpp, eq such that
it holds that

γppq “ dpp, eq “ 1´ γpqq.

Moreover, every object q1 in Cpp, eqztqu is either decided in direction dpp, eq and there
exists a term in fD that ensures that γpq1q “ dpp, eq or it is not decided but then
Spp, e, q1q is not successful. However then, according to Equation 6.19, γpq1q “ dpp, eq if
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γppq “ dpp, eq. Thus, only q is assigned direction 1 ´ dpp, eq and hence fγpp, eq “ 1, a
contradiction.

In the third case it holds that |Q| ą 1. Let therefore q0, q1 P Q such that q0 ‰ q1. We
distinguish between two cases. In the first case q0 is closer to p in direction dpp, eq than
Φdpp,eq but q1 is further away from p in direction dpp, eq than Φdpp,eq. Objects q0 and q1
are in this case of course interchangeable. Then, according to Lemma 6.35, q1 is assigned
to direction dpp, eq by every selection corresponding to a satisfying truth assignment of
ψ and, since ϕ2 includes all clauses of ψ, q1 is assigned to direction dpp, eq by every
selection corresponding to a satisfying truth assignment of ϕ2. In the second case both
q0 and q1 are both either closer to p in direction dpp, eq than Φdpp,eq or further away from
p in direction dpp, eq than Φdpp,eq. But then Spp, e, q0q “ Spp, e, q1q and, according to
Lemma 6.20, q0 and q1 are in the same candidate list of Φdpp,eq. From this it follows that
there exists a clause q0 ‰ q1 in fU and thus, exactly one of q0 and q1 are assigned to
direction 1´ dpp, eq, regardless of the assigned direction of p.

Since one of the two cases is true for every q0, q1 P Q, there exists exactly one q P Q
such that dpp, eq “ 1 ´ γpqq. Thus, by definition, fγpp, eq “ 1, a contradiction. From
this our statement follows.

After we proposed a 2-SAT formula for every object in the sets HpCq, H0, H1 and H2

we will conjunct these formulas to construct the formula φ such that every satisfying
truth assignment of φ is a valid selection and if a selection is valid, then it corresponds
to a satisfying truth assignment of φ. After we showed this in the following proposition
we will present the final theorem that shows how to solve Reachable Assignment on
cycles in polynomial time.

Proposition 6.37. Let Φ :“ px, yq be the guess of an instance I :“ ppN,X,ą, Cn, σ0, σq, e
1q

of First Swap Reachable Assignment on cycle Cn. Suppose that there exists a
valid selection with guess Φ. Let γ be a selection that respects I. Let

φ :“ p
ľ

0ďiď2

ϕiq ^ fU ^ fD ^ ψ.

Then γ is valid, if and only if it corresponds to a satisfying truth assignment of φ.

Proof. Since HpCq, H0, H1 and H2 are a partition of H, due to Observation 6.24, it holds
that every object-edge-pair pp, eq P H is either in HpCq, H0, H1 or H2. Let pp, eq P H.
We distinguish between four cases.

In the first case, pp, eq P HpCq. Moreover, HpCq is partitioned by HpCDq and HpCUq.
If pp, eq P HpCqD, then according to Lemma 6.27, if γ is valid, then it corresponds to
a satisfying truth assignment of fD and thus, by construction of φ also to a satisfying
truth assignment of φ. Further, due to Lemma 6.27, if γ corresponds to a satisfying
truth assignment of fD, then fγpp, eq “ 1. If pp, eq P HpCqU , then according to Lemma
6.29, if γ is valid, then it corresponds to a satisfying truth assignment of fU and thus,
by construction of φ also to a satisfying truth assignment of φ. Further, due to Lemma
6.29, if γ corresponds to a satisfying truth assignment of fU , then fγpp, eq “ 1.
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In the second case, pp, eq P H0. If pp, eq P H0, then according to Lemma 6.31, if
γ is valid, then it corresponds to a satisfying truth assignment of ϕ0 and thus, by
construction of φ also to a satisfying truth assignment of φ. Further, due to Lemma
6.31, if γ corresponds to a satisfying truth assignment of ϕ0, then fγpp, eq “ 1.

In the third case, pp, eq P H1. If pp, eq P H1, then according to Lemma 6.33, if γ is valid,
then it corresponds to a satisfying truth assignment of ϕ1 and thus, by construction of
φ also a truth assignment of φ. Further, due to Lemma 6.33, if γ corresponds to a
satisfying truth assignment of ϕ1, then fγpp, eq “ 1.

In the third case, pp, eq P H2. If pp, eq P H2, then according to Lemma 6.36, if γ is valid,
then it corresponds to a satisfying truth assignment of ϕ2 and thus, by construction of φ
also to a satisfying truth assignment of φ. Further, due to Lemma 6.36, if γ corresponds
to a satisfying truth assignment of ϕ2, then fγpp, eq “ 1.

Conclusively, if γ is valid, then it corresponds to a satisfying truth assignment of φ
and if γ corresponds to a satisfying truth assignment of φ, then it holds that fγpp, eq “ 1,
for all pp, eq P H. Thus, γ is sound. Further, γ is also a satisfying truth assignment of
ψ and thus, as proven in Lemma 6.2, γ is harmonic. By definition, γ is then valid.

We will now conclude this chapter by proving that Reachable Assignment on
cycles is decidable in polynomial time.

Theorem 6.38. Reachable Assignment on cycles is decidable in Opn3q time.

Proof. Let I :“ pN,X,ą, Cn, σ0, σq be an instance of Reachable Assignment on
cycle Cn. Given this instance we compute the 2-SAT formula ψ as described in Section
6.1. Constructing ψ requires to evaluate every pair of objects p and q whether p and q
are compatible and whether p shields q from its destination or whether q shields p from
its destination and thus, ψ can be constructed in Opn2q.

Afterwards we divide instance I into instances pI, eq of First Swap Reachable
Assignment for each e P EpCnq, where e denotes the edge along which the first swap
happens. This further determines the two objects x and y that are involved in the first
swap, the guess Φ :“ px, yq of the instance of First Swap Reachable Assignment.

For every such instance we proceed as follows. If there exists a candidate list Cpp, eq
of a guessed object p P tx, yu such that every objects q P Cpp, eq is decided in direction
dpp, eq, then there exists no sound selection for this guess because p cannot be swapped
with any object at edge e and thus, the guess is wrong. Otherwise we construct φ. If
there exists a satisfying truth assignment of φ, then it is valid, otherwise there exists no
valid selection as shown in Proposition 6.37. We distinguish between the two cases. In
the first case there exists a satisfying truth assignment of φ. Then, that truth assignment
corresponds to a valid selection and due to Proposition 5.15, there exists a swap sequence
that transforms σ0 in to σ for instance I.

In the second case there exists no satisfying truth assignment of φ. Then, by Propo-
sition 6.37, there exists no valid selection for guess Φ.

Thus, either we find a solution for one of the n instances or there exists no solution.
Thus, we decide Reachable Assignment on cycles.
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We will now conclusively prove that the above algorithm has a time-complexity of
Opn2q. Constructing φ, we iterate over the set of objects and for every object p of
those objects, in worst-case, add as many clauses to the respective sub-formulas of φ as
there are objects in the candidate lists of p. Recalling Observation 6.25, this number
is bounded by 2|X| where |X| is the number of objects. Thus, constructing φ takes at
most Opn2q-time. From this also follows that the number of clauses in φ is smaller than
cn2 where c P N is some constant. Thus, φ can be constructed and solved in Opn2q-time.
Since we create at most n formulas φ for each of the n possible guesses, the overall
time-complexity of our algorithm is Opn3q.
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7 NP-hardness of Reachable
Assignment on Cliques

In this chapter we will prove that Reachable Assignment is NP-hard on cliques.
To do so, we will adapt the reduction of Reachable Object of general graphs to
Reachable Assignment on general graphs by Gourves et al. [GLW17].

Theorem 7.1. Reachable Assignment is NP-hard on cliques.

Proof. Gourves et al. [GLW17] already propose a reduction of Reachable Object
of general graphs to Reachable Assignment on general graphs. We denote the
instance I of Reachable Object as the tuple pN,X,ą, G, σ0, i, xlq with agent i as
well as reachable object xl.

The strategy of Gourves et. al. is to create a copy of each agent in the original graph
and connect each agent with its copy. This creates instance I 1 :“ pN Y N 1, X YX 1,ą1

, G1, σ10, σ
1q. Sets N 1 and X 1 are copies of N and X respectively. Furthermore, the agents

in N 1 are arranged such that G1rN 1s “ K|N 1|, a clique with |N | vertices.
For each agent in the original graph it holds that they prefer the object the most that

their copy initially holds. Furthermore, they do not contain any object that is initially
held by another copy in their preference lists and the copies, except for the copy i1 of i
accept every object but xl. However, i1 prefers xl the most.

If xl then moves towards i, it cannot pass any agent in N 1 because the only agent that
would accept xl is i1 but only i itself is connected to i1. Once xl has reached i every agent
in N swaps its current object with its copy in N 1, receiving its most preferred object.
Note that now only i1 holds its most preferred object among the copies.

These however are organized by Gourves et al. [GLW17] in such a way that they can
get their most preferred object from some other copy.

We adapt this reduction to prove NP-hardness for Reachable Assignment on
cliques. Bentert et al. [Ben+19] already proved NP-hardness for Reachable Object
on cliques . To this end, we add all of the missing edges between the original vertices
and the copies.

We will show that xl is reachable for i in G if and only if every agent in G1 can reach
its most preferred object.

Suppose xl is reachable for i. Then, the object xl must have only visited agents from
G so far. To show this suppose it was not true and there exists an agent from G,
u P N such that u ‰ i, that held xl and swapped it with any copy. We constructed the
preference lists of the copies in such a way that xl only appears on the preference list of
the copy of i. Further the preference list of the copy of i only contains the object xl and
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the object that i prefers the most. However, then the only agent that can swap xl with
the copy of i is i itself. Thus, there cannot exist such an agent u ‰ i, a contradiction.

We now showed that if xl is reachable for i, then the object xl must have only visited
agents from G so far. That means that the copy of u in N 1, u1, still holds the most
preferred object of u. The preference lists are organized in such a way that u only
accepts one copied object, the object initially held by u1. The object u1 however accepts
every object but xl. Hence there is no way for u to swap xl to any of the copies,
contradiction. Since xl is reachable for i but has so far visited only agents from G we
proceed by swapping xl, held by i with the object initially held by i1. The object xl is
the most preferred object of i1 and i1’s object the most preferred object of i. Since the
assignment amongst the other copies has not changed we can now let each other agent
from G swap their with their copy, hence receiving their most preferred object. Note
that by now every agent in G possesses their most preferred object.

As in the original reduction by Gourves et al. [GLW17] the preference lists of the
copies are constructed such that each of the copies can receive their most preferred
object from another copy. Thus, after that procedure, every agent in G1 reached their
most preferred object.

Now suppose every agent is in possession of its most preferred object after some
sequence of swaps. Then we know also that i1 has received xl, since that is i1’s most
preferred object. Since the only agent that would accept the object originally held by i1

is i we know that i must have been swapping xl to i1 and hence was in possession of it
at one point. Furthermore, as mentioned before there is no way for xl to reach any of
the copies unless i1 but then only in exchange with agent i. Hence, xl was reachable for
i in G.
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8 Conclusion

In this work, we have investigated a generalization of the house marketing problem, a
problem that stems from the field of Multi-Agent-Systems. This field studies, amongst
other things, the efficient and fair distribution of resources among agents.

The generalization we studied here is called Reachable Assignment and was pro-
posed by Gourves et al. [GLW17]. It is known to be NP-hard on general graphs. We
have studied the problem of Reachable Assignment on two classes of graphs, namely
cycles and cliques. For cycles we showed that there exists a Opn3q-time algorithm and
for cliques we showed NP-hardness.

An open question remaining with regard to the Reachable Assignment problem
is whether Reachable Assignment can be solved efficiently for several other graph
classes. Recall that the key to solving Reachable Assignment on trees [GLW17] and
on cycles was to exploit the number of unique paths an object can be swapped along.
Finding graph classes in which this number is bounded and solving Reachable As-
signment for these graph classes is a natural next step for further research. Moreover,
since cycles are paths with one additional edge, it seems promising to investigate the pa-
rameterized complexity of Reachable Assignment with respect to the feedback edge
number of the input graph next. Other possibilities are parameters of the preference
profile as studied by Bentert et al. [Ben+19] for Reachable Object or to consider
generalized settings such as allowing ties in the preference lists, as studied by Huang
and Xiao [HX19] for Reachable Object.
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