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Abstract

We consider the approach to wildlife corridor design presented by Fluschnik and Keller-
hals [CiE ’21]. They utilize graph theory to model fragmented habitats. In their frame-
work, vertices represent patches of land separated by man-made barriers such as mo-
torways. Edges represent potential locations for wildlife crossings, also called green
bridges, spanning the barriers. Additionally, their approach takes into account that the
habitats of different species may encompass different subsets of the disconnected land
areas. Given a cost budget and a connectivity requirement, the objective is to select
places to build wildlife crossings such that the habitat of each species is reconnected in
a way that fulfills the connectivity requirement.

We focus on connectivity requirements enforcing dense solutions in the sense that
animals can reach any area of their habitat by crossing a small number of green bridges.
In particular, we study the 2-Diam GBP problem introduced by Fluschnik and Keller-
hals [CiE ’21]. We identify special cases that permit exact polynomial-time algorithms,
as well as NP-hard special cases. We pay particular attention to cases where the graph
is planar, has low maximum degree, or where all habitats are small. As a byproduct, we
obtain positive answers for two questions regarding the related 1-Reach GBP problem
left open in a paper by Herkenrath et al. [IJCAI ’22]. Moreover, we contribute to the
understanding of the parameterized complexity of 2-Diam GBP. Lastly, we introduce
(2, 2)-Closed GBP, a variant of 2-Diam GBP, and conduct a similar analysis as for
2-Diam GBP.

Zusammenfassung

Wir befassen uns mit dem von Fluschnik und Kellerhals [CiE ’21] vorgestellten An-
satz zur Gestaltung von Wildtierkorridoren. Die genannten Autoren bedienen sich der
Graphentheorie, um fragmentierte Habitate zu modellieren. In ihrem Modell stellen die
Knoten Landstriche dar, die durch künstliche Barrieren wie z. B. Autobahnen getrennt
sind. Die Kanten stellen mögliche Standorte für Grünbrücken dar, welche die künstlichen
Barrieren überspannen. Darüber hinaus berücksichtigt der Ansatz, dass Habitate ver-
schiedener Tierarten unterschiedliche Teilmengen der getrennten Landstriche umfassen
können. Bei einem vorgegebenem Kostenbudget und einer Verknüpfungsanforderung be-
steht das Ziel darin, Orte für den Bau von Grünbrücken auszuwählen, sodass der Le-
bensraum jeder Tierart unter Berücksichtigung der Verknüpfungsanforderung wieder
verbunden ist.

Wir konzentrieren uns auf Verknüpfungsanforderungen, die dichte Lösungen in dem
Sinne vorschreiben, dass Tiere jeden Bereich ihres Lebensraums über eine geringe Zahl
von Grünbrücken erreichen können. Insbesondere untersuchen wir das von Fluschnik und
Kellerhals [CiE ’21] eingeführte 2-Diam GBP-Problem. Wir identifizieren Spezialfälle,
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die exakte Polynomialzeitalgorithmen zulassen, sowie NP-schwere Spezialfälle. Besonde-
res Augenmerk richten wir auf Fälle, in denen der zugrundeliegende Graph planar ist,
einen niedrigen Maximalgrad hat oder in denen alle Habitate von geringer Größe sind.
Als ein Nebenergebnis erhalten wir positive Antworten auf zwei Fragen zum verwand-
ten 1-Reach GBP-Problem, die in einer Arbeit von Herkenrath u. a. [IJCAI ’22] offen
gelassen wurden. Des Weiteren tragen wir zum Verständnis der parametrisierten Kom-
plexität von 2-Diam GBP bei. Zuletzt führen wir mit (2, 2)-Closed GBP eine Variante
von 2-Diam GBP ein und betreiben eine ähnliche Analyse wie für 2-Diam GBP.
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Chapter 1

Introduction

Lias [KW21], a creature of pride and strength, dwells within lush and vibrant forests,
where he mostly remains hidden from the oblivious eyes of humans. But when glimpsed,
he is a sight to behold, with his luxuriant fur and sleek muscular frame. His keen senses
and sharp teeth make him the unrivaled apex predator of his expansive territory along
the Danube river. He is not just any feline, but a lynx, one of the most unlikely animals
to be encountered in Germany due to its masterful stealth and great rarity.

He is no ordinary lynx either, for he undertook a long and treacherous journey from
his birthplace in the Swiss Jura Mountains, crossing many obstacles, including hazardous
motorways, to reach his current domain, where no lynx has lived for over a century. Yet,
Lias is faced with heartache and even humans have noticed. His vast kingdom seems
eerily empty, as far and wide there are no female lynxes, who tend to be much more
hesitant about crossing obstacles [DPL21].

To help Lias and animals of many different species in all kinds of predicaments caused
by man-made obstacles, measures to increase the permeability of these obstacles need
to be taken. The greater aim of this is to preserve endangered species, prevent genetic
decline caused by inbreeding, restore biodiversity, facilitate seasonal animal migration,
and aid animals in adapting to climate change [Ben03; CK15; HZ09]. Lynxes in par-
ticular are classified as critically endangered by the German Federal Agency for Nature
Conservation, with habitat fragmentation explicitly cited as a cause [Mei+20].

Dedicated overpasses, underpasses, and a variety of further structures like nets and
poles allow animals to cross streets more easily and safely [SRR15], which also contributes
to protecting humans from wildlife-vehicle collisions [MVM10]. Simplifying, we refer to
all of these structures as green bridges. A critical property in the design of wildlife
corridors is the distance between habitat patches and the number of obstacles that need
to be crossed between them [Bro+15; New93]. Hence, it seems desirable to place green
bridges such that every animal can reach any part of its habitat by traversing only a few
green bridges, resulting in densely connected habitats. A natural question is where to
build green bridges to achieve dense connection of habitats while keeping financial costs
low.

A framework to tackle this question has been developed by Fluschnik and Kellerhals
[FK21]. They define three classes of computational problems, each representing a dif-
ferent demand on habitat connectivity. Algorithms for these problems can be used to
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compute optimal locations for green bridges under the respective connectivity constraint.
To obtain the best results possible even when considering heavily fragmented habitats
of various species at once, yielding a myriad of options, efficient algorithms need to be
found. As almost all problems defined by Fluschnik and Kellerhals [FK21] are compu-
tationally hard, more precisely NP-hard, there is little hope to find general algorithms
that reliably construct exact optimum solutions with reasonable runtime performance.

However, full generality is not required for deciding where to best place green bridges
in real-world scenarios. For example, since specific geographic areas are (slightly curved)
planes on the earth’s surface, data on fragmented habitats and potential locations for
green bridges can be expected to be planar.

In this thesis, we study input data restrictions for problems defined by Fluschnik and
Kellerhals [FK21], focusing on problems that require habitats to be connected densely.
Moreover, we define and study a new class of problems that can be seen as a combination
of two problem classes introduced by Fluschnik and Kellerhals [FK21].

1.1 Problem Definition

We consider the following problem families.1

Problem: Π Green Bridges Placement with Costs (Π GBP-C)

Input: An undirected graph G with edge costs c : E(G) → N0, a set H of habitats
where H ⊆ V (G) for every habitat H ∈ H, and an integer k ∈ N.

Question: Is there an edge subset F ⊆ E(G) with
∑

e∈F c(e) ≤ k such that for every
habitat H ∈ H it holds that H ⊆ V (G[F ]) and

Π ≡ d-Reach: G[F ]d[H] is connected?
Π ≡ d-Closed: G[F ]d[H] is a clique?

Π ≡ ℓ-Diam(eter): diam(G[F ][H]) ≤ ℓ?
Π ≡ (d, ℓ)-Closed: diam(G[F ]d[H]) ≤ ℓ?

We refer to the respective unit cost versions by writing Π GBP instead of Π GBP-C.
The problem family of (d, ℓ)-Closed GBP is newly defined here, whereas the other three
problem families are taken from Fluschnik and Kellerhals [FK21]. We actively study 2-
Diam GBP and (2, 2)-Closed GBP in this thesis. Nevertheless, due to equivalences
between the problems under some input restrictions, we also obtain results that can be
directly transferred to 1-Reach GBP, 2-Reach GBP, and 2-Closed GBP.

The relationship of the abstract problems to the concrete issue of placing green
bridges is as follows. Each vertex of the input graph G represents a patch of land
bordered by barriers such as railroad tracks and motorways. Two vertices are adjacent
if it is possible to build a green bridge connecting the corresponding patches. The
individual problems can be characterized by the assumptions about animal movement
behavior and connectivity requirements associated with them.

1The d-th power Gd of a graph G is a graph with the same vertex set as G and an edge set satisfying
the property that two distinct vertices are adjacent in Gd if and only if their distance in G is at most d.
Further definitions relating to graph theory can be found in Section 2.1.
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For 2-Diam GBP the assumption about animal movement is that animals do not
travel through patches that are not part of their habitat. The requirement on connec-
tivity is that each animal must be able to move from any patch of its habitat to any
other patch of its habitat by crossing at most two green bridges.

For (2, 2)-Closed GBP the assumption regarding the movement of animals is that
animals move by making hops. A hop is a short journey in which an animal travels from
one patch of its habitat to another patch of its habitat by visiting at most one patch in
between. The patch visited in between can be a non-habitat patch. The connectivity
requirement of (2, 2)-Closed GBP is that each animal must be able to travel from any
patch of its habitat to any other patch of its habitat by making at most two hops.

1.2 Related Work

Herkenrath [Her21] and Herkenrath et al. [Her+22] study restrictions for 1-Reach GBP
with a focus on restricted habitat structure. Other computational approaches to link
multiple fragmented habitats have also been explored [Lai+11; LeB+13].

The need to “connect fragmented habitats” appears in a wide range of application
areas, usually in the form of a special case of 1-Reach GBP. These areas include
computer networks [Cho+07], social networks [AAR10], graph drawing [Bra+12], com-
binatorial auctions [CDS04], reconfigurable computing [Fan+08], vacuum technology
[DK95], and structural biology [Aga+13], with Chockler et al. [Cho+07] calling for al-
gorithms that connect habitats at small diameter. The wide range of occurrences has
been pointed out by Chen et al. [Che+15]. Another problem concerned with connecting
more than one habitat is Steiner Forest [BHM11], a generalization of the well-known
Steiner Tree problem.

There are several related problems where the task is to connect only a single “habi-
tat”. Plesnik [Ple81] shows NP-hardness of connecting one habitat at minimum diameter
given a cost budget. Schoone, Bodlaender, and Van Leeuwen [SBVL87] study adding no
more than k edges to a graph such that the resulting graph does not have a diameter
greater than a given integer ℓ. This problem is W[2]-hard with respect to the solution
size k if ℓ = 2 [Fra+15]. Gouveia [Gou98] studies a one-habitat version of (2, 2)-Closed
GBP-C where the graph induced by the habitat must be a star with a given vertex as
its center.

1.2.1 2-Diam GBP

Fluschnik and Kellerhals [FK21] study the parameterized complexity2 of 2-Diam GBP
with respect to the parameters solution size k and number of habitats r. Moreover, they
consider the combined parameters k + r and ∆ + r where ∆ is the maximum degree of
the input graph G.

Theorem 1.1 ([FK21]). 2-Diam GBP is fixed-parameter tractable with respect to k but
admits no kernel of size polynomial in k unless NP ⊆ coNP/poly.

2Definitions relating to parameterized complexity can be found in Section 2.2.



12 CHAPTER 1. INTRODUCTION

Theorem 1.2 ([FK21]). 2-Diam GBP is NP-hard even if r = 1.

Theorem 1.3 ([FK21]). 2-Diam GBP admits a kernel of size polynomial in k + r.

Theorem 1.4 ([FK21]). 2-Diam GBP admits a kernel of size polynomial in r + ∆.

Jansson, Levcopoulos, and Lingas [JLL21] give a polynomial-time approximation
algorithm for 2-Diam GBP-C with an approximation factor of

((
q
2

)
− q + 2

) (
q
2

)
where

q = maxH∈H |H|. Moreover, heuristic algorithms for 2-Diam GBP on cliques are studied
in multiple papers [ÖLD17; OR11; OR16]. Besides finding a small solution F , the aim
of these heuristic algorithms is for the maximum degree of G[F ] to be low.

Gionis et al. [Gio+17] consider a variant of 2-Diam GBP called SparseStars where
an edge subset F is a solution if for each H ∈ H the graph G[F ][H] contains a spanning
star. Note that this implies that diam(G[F ][H]) ≤ 2 for every solution F and every habi-
tat H ∈ H. They give a polynomial-time approximation algorithm for SparseStars.
Herrendorf [Her22] studies the parameterized complexity of SparseStars with respect
to the parameters solution size |F |, number of edges removed |E(G)| − |E(G[F ])|,
and feedback edge number of G[F ]. Korach and Stern [KS08] examine a variant of
SparseStars which additionally requires that the solution F induces a spanning tree
of G.

1.2.2 2-Diam GBP with Habitats of Size at Most Three

The following has been shown independently by multiple authors.

Theorem 1.5 ([Fan+08; Her+22; Hos+12]). 2-Diam GBP is NP-hard even if each
habitat has size at most three and G is a clique.

Herkenrath et al. [Her+22] and Korach and Stern [KS03] identify special cases that
can be solved in polynomial time.

Theorem 1.6 ([Her+22]). 2-Diam GBP-C can be solved in polynomial time if G is
plane and each habitat induces a triangle which is the boundary of a face.

Theorem 1.7 ([Her+22]). 2-Diam GBP-C can be solved in polynomial time on graphs
of maximum degree three if each habitat induces a triangle.

Theorem 1.8 ([KS03]). 2-Diam GBP-C can be solved in linear time if each habitat
has size at most three and there exists a solution F that induces a spanning tree of G.

Hosoda et al. [Hos+12] examine approximability. They show that the optimization
version of 2-Diam GBP3 with habitats of size at most three and G being a clique is
APX-complete and that it admits no polynomial-time (2 − ϵ)-approximation algorithm
for any ϵ > 0 unless the unique games conjecture fails. However, they also show that a
polynomial-time 2-approximation algorithm exists.

3The task of the optimization version is to find an edge subset F ⊆ E(G) of minimum size such that
for every habitat H ∈ H it holds that H ⊆ V (G[F ]) and diam(G[F ][H]) ≤ 2.
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1.2.3 (2, 2)-Closed GBP with Habitats of Size at Most Two

To the best of our knowledge, (2, 2)-Closed GBP-C has not been studied before.
However, if every habitat has size two, then (2, 2)-Closed GBP-C coincides with the
2-Path Network problem introduced by Dahl and Johannessen [DJ04].

Theorem 1.9 ([DJ04]). (2, 2)-Closed GBP-C is NP-hard even if G is a clique and
every habitat has size two.

Theorem 1.10 ([DJ04]). (2, 2)-Closed GBP-C can be solved in polynomial time if
every habitat has size two and habitats are pairwise disjoint.

Various authors study heuristic algorithms for (2, 2)-Closed GBP-C with habitats
of size two [Bar+13; Cĺı+19; DJ04; RR02].

1.3 Our Contributions and the Structure of This

Thesis

Like the previous work done by Fluschnik and Kellerhals [FK21] and Herkenrath et al.
[Her+22], we exclusively study exact algorithms under structural restrictions or within
the framework of parameterized algorithms.

The research part of this work is divided into two parts, with the first (Chapter 3)
being on 2-Diam GBP and the second (Chapter 4) being on (2, 2)-Closed GBP.
Each of these chapters opens with a section providing general reduction rules for the
corresponding problem (Sections 3.1 and 4.1). When we consider hardness, we almost
always do so for the respective unit cost versions, whereas we provide algorithms for the
edge-weighted versions. For 2-Diam GBP we study two restrictions in particular depth.

The first of these two restrictions is bounded maximum degree (Section 3.2). We
give a linear-time algorithm for 2-Diam GBP-C on graphs of maximum degree at most
three. For maximum degree five and above, we show that 2-Diam GBP is NP-hard
even if each habitat has size at most three. This leaves the case where input graphs have
maximum degree at most four as a gap. We close this gap for the more restricted case
where in addition to the input graph having maximum degree at most four it holds that
each habitat has size at most three, which can be solved in polynomial time. Thus, for
2-Diam GBP with habitats of size at most three we obtain a full dichotomy regarding
maximum degree, thereby answering an open question from Herkenrath et al. [Her+22].

The second restriction we closely examine is bounded maximum habitat size com-
bined with planarity of input graphs (Section 3.3). We prove that 2-Diam GBP-C on
planar graphs can be solved in polynomial time if each habitat has size at most three.
This resolves another question from Herkenrath et al. [Her+22]. On the other hand, we
show that 2-Diam GBP on planar graphs is NP-hard even if each habitat has size at
most four (and the maximum degree of the input graph is at most five). These results
constitute a further dichotomy.

Subsequently, we briefly explore additional structural parameterizations of 2-Diam
GBP (Section 3.4), including the feedback edge number and vertex cover number.
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For (2, 2)-Closed GBP we do not focus on particular complexity dichotomies as
much as for 2-Diam GBP. Because of this, the chapter on (2, 2)-Closed GBP is more
conventionally divided in a section on tractability (Section 4.2) and a section on in-
tractability (Section 4.3). Among other findings, we show that (2, 2)-Closed GBP
is NP-hard even on planar graphs of maximum degree at most four with each habitat
having size at most two.

We summarize our findings in Figures 1.1 and 1.2.
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Results for 2-Diam GBP
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Figure 1.1: Overview of our results regarding 2-Diam GBP. For each of the parame-
ters shown on the bottom side, we represent its computational complexity with respect
to the parameter values shown on the left side using red and green bars. The de-
picted hardness-results (red) refer to the problem version without edge costs, whereas
the tractability-results (shades of green) refer to the problem version with edge costs.
In the following, p. and h. stand for “polynomial-time solvability” and “NP-hardness”,
respectively. (i) p.: [Sec. 3.2.2]; h.: [Sec. 3.2.3]. (ii) p.: [Sec. 3.2.1]; h.: [Sec. 3.2.3].
(iii) p.: [Sec. 3.3.1]; h.: NP-hard even on graphs of maximum degree five [Sec. 3.3.2].
(iv) p.: [Sec. 3.4.1]; h.: [Sec. 3.4.4]. (v) p.: [Sec. 3.4.1]; h.: [Sec. 3.4.4]. (vi) p.: trivial;
h.: [FK21] (vii) p.: [Sec. 3.4.1]; h.: [Sec. 3.4.4]. (viii) h.: NP-hard even if each habitat
has size at most three [Her+22], [Sec. 3.4.3]. (ix) [Sec. 3.4.2], but there exists no poly-
nomial kernel unless NP ⊆ coNP/poly [Prop. 3.84]. (x) [Sec. 3.4.1], but there exists no
polynomial kernel unless NP ⊆ coNP/poly [Prop. 3.84].
∗(If each habitat has size at most three) †(On planar graphs)
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Results for (2, 2)-Closed GBP
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Figure 1.2: Overview of our results regarding (2, 2)-Closed GBP. For each of the pa-
rameters shown on the bottom side, we represent its computational complexity with
respect to the parameter values shown on the left side using red and green bars.
The depicted hardness-results (red) refer to the problem version without edge costs,
whereas the tractability-results (shades of green) refer to the problem version with
edge costs. In the following, p. and h. stand for “polynomial-time solvability” and
“NP-hardness”, respectively. (i) p.: [Sec. 4.2.1]; h.: [Sec. 4.3.4]. (ii) p.: [Sec. 4.2.1];
h.: [Sec. 4.3.4]. (iii) p.: trivial; h.: [Sec. 4.3.4]. (iv) p.: [Sec. 4.2.1]; h.: [Sec. 4.3.1].
(v) p.: [Sec. 4.2.1]; h.: [Sec. 4.3.1]. (vi) p.: trivial; h.: [Sec. 4.3.3] (vii) h.: [Sec. 4.3.3].
(viii) See the note§ below. (ix) [Sec. 4.2.2], but there exists no polynomial kernel unless
NP ⊆ coNP/poly [Prop. 4.16]. (x) [Sec. 4.2.2], but there exists no polynomial kernel
unless NP ⊆ coNP/poly [Prop. 4.16].
§(In this thesis, we prove that (2, 2)-Closed GBP is NP-hard on graphs with distance
to clique two [Sec. 4.3.2]. Dahl and Johannessen [DJ04] show that the version with edge
costs is NP-hard even on cliques. As a side note, we mention that the version without
edge costs, however, can be solved in polynomial time on cliques. The reason for this is
that the edge set of any spanning star of G[

⋃
H∈HH] is a solution.)

∗(If each habitat has size at most two) †(On planar graphs) ‡(The number of cycles of
length at most six is denoted by #C≤6.)



Chapter 2

Preliminaries

In this chapter, we introduce basic notation and definitions. For an extensive introduc-
tion to graph theory, see, e.g., Diestel [Die17]. For more information on parameterized
complexity, refer to the standard textbooks [Cyg+15; DF13; FG06; Nie06].

Sets. We use N := {1, 2, 3, . . . } to denote the natural numbers without zero and N0 :=
N ∪ {0}. For sets X1, . . . , Xn, Y we write X1 ⊎ · · · ⊎ Xn = Y if X1 ∪ · · · ∪ Xn = Y
and X1 ∩ · · · ∩ Xn = ∅. For sets X,Y we define the symmetric difference X△Y :=
(X \ Y ) ∪ (Y \X). For a set X, we denote the set of two-element subsets of X by [X]2.

2.1 Graph Theory

A (finite) graph is a pair G = (V,E) with a finite vertex set V and edge set E ⊆ [V ]2.
We also denote the vertex set of a graph G by V (G) and the edge set by E(G). For an
edge e ∈ E(G), we call the vertices in e the endvertices of e.

Subgraphs. Let G be a graph. A subgraph H of G is a graph with V (H) ⊆ V (G) and
E(H) ⊆ E(G). To express that H is a subgraph of G, we write H ⊆ G. If H is a subgraph
of G, then we say that G contains H. Given a vertex subset U ⊆ V (G), the induced
subgraph G[U ] of G on U is the graph with vertex set U and edge set {e ∈ E(G) | e ⊆ U}.
We say that U induces G[U ]. Moreover, we define G − U := G[V (G) \ U ]. Given an
edge subset F ⊆ E, the induced subgraph G[F ] of G on F is the graph with vertex set
{v ∈ V (G) | ∃e ∈ F. v ∈ e} and edge set F . We say that F induces G[F ]. Moreover, we
define G− F := (V (G), E(G) \ F ).

Intersection and Union of Graphs. The intersection G∩H of two graphs G and H
is the graph with vertex set V (G)∩V (H) and edge set E(G)∩E(H). The union G∪H of
two graphs G and H is the graph with vertex set V (G)∪V (H) and edge set E(G)∪E(H).

Paths and Cycles. A path P is a graph with vertex set {v1, . . . , vn} and edge set
{{vi, vi+1} | i ∈ {1, . . . , n− 1}} where n ≥ 2. The vertices v1 and vn are the endvertices
of P . We call a path with endvertices v1 and vn a (v1, vn)-path and denote it by Pn. The

17
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length of a path is the number of edges it has. (Note that the length of a Pn is n − 1
and not n.) We obtain a cycle by adding the edge {v1, vn} to a (v1, vn)-path with n ≥ 3
and denote it by Cn. The length of a cycle is the number edges it has. A cycle of length
three is called a triangle. If a graph C is a cycle, then we call an element e ∈ [V (C)]2

with e /∈ E(C) a chord of C. If a cycle C is a subgraph of a graph G and E(G) contains
no chord of C, then C is chordless in G.

Connectedness. Let G be a graph. We say that G is connected if G contains a (u, v)-
path for any two vertices u, v ∈ V (G). A connected subgraph C ⊆ G is a component
of G if no graph C ′ ⊆ G with C ̸= C ′ and C ⊆ C ′ exists. A vertex subset X ⊆ V (G)
separates the vertex subsets A ⊆ V (G) and B ⊆ V (G) in G if for every vertex a ∈ A and
every vertex b ∈ B it holds that there is no component C ⊆ G − X with a, b ∈ V (C).
A vertex subset X ⊆ V (G) separates G if there are two vertices a, b ∈ V (G) \ X such
that X separates {a} and {b}. The graph G is k-connected for a k ∈ N if there is no
vertex subset X ⊆ V (G) with |X| ≤ k such that X separates G.

Distance and Diameter. Let G be a graph. The distance distG(u, v) between vertices
u, v ∈ V (G) in G is the length of a shortest (u, v)-path in G. We write distG(u, v) = 0
if u = v holds. We write distG(u, v) = ∞ if there is no (u, v)-path in G. The diameter
of G, denoted by diam(G), is the largest distance between any two vertices of G.

Vertex Degree and Neighborhoods. Let G be a graph. An edge e ∈ E(G) is
incident to a vertex v ∈ V (G) if v is an endvertex of e. We say that two vertices
u, v ∈ V (G) are adjacent or neighbors if {u, v} ∈ E(G). The degree degG(v) of a vertex
v ∈ V (G) in G is the number of vertices adjacent to v. A vertex v ∈ V (G) with
degG(v) = 0 is isolated in G. We say that a graph G is cubic if for every v ∈ V (G) it
holds that degG(v) = 3. The maximum degree ∆(G) of graph G is defined as ∆(G) :=
max{degG(v) | v ∈ V (G)}. The open neighborhood NG(v) of a vertex v ∈ V (G) in G is
the set of vertices adjacent to v. The closed neighborhood NG[v] of a vertex v ∈ V (G)
in G is defined as NG[v] := NG(v) ∪ {v}.

Power Graph and Wide Neighborhoods. The k-th power Gk of graph G is the
graph with vertex set V (G) and edge set {{u, v} ∈ [V (G)]2 | distG(u, v) ≤ k}. The
open k-neighborhood Nk

G(v) of a vertex v ∈ V (G) in G is defined as Nk
G(v) := NGk(v).

The closed k-neighborhood Nk
G[v] of a vertex v ∈ V (G) in G is defined as Nk

G[v] :=
Nk

G(v) ∪ {v}. The k-neighborhood of a vertex subset U ⊆ V (G) in G is defined as
Nk

G[U ] :=
⋃

u∈U Nk
G[u].

Forests, Trees, Stars, and Claws. A forest F is a graph that contains at most one
(u, v)-path for any two vertices u, v ∈ V (F ). A tree is a connected forest. A star is a
tree of maximum diameter at most two. If a vertex of a star has degree larger than one,
then it is the center vertex of the star. A claw is a star with three edges. A graph is
claw-free if it does not contain a claw as an induced subgraph.
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Empty Graph, Clique, Bipartite Graph. The empty graph is the graph with an
empty vertex set. A clique K is a graph with edge set [V (K)]2. We call a graph B
bipartite if there are sets X,Y with X ⊎ Y = V (B) such that E(B) ⊆ {{x, y} | x ∈
X ∧ y ∈ Y }.

Series-Parallel Graphs. A series-parallel graph G is a graph with two distinguished
vertices denoted by xG and yG obtained by the following rules.

• A path P with a vertex set of size two is series-parallel and the two distinguished
vertices xP and yP are the two vertices of P .

• Let G and H be vertex-disjoint series-parallel graphs. If we set xG := xH and
yG := yH , then the graph I := G ∪H is series-parallel with xI := xG = xH and
yI := yG = yH . (This is called parallel composition.)

• Let G and H be vertex-disjoint series-parallel graphs. If we set yG := xH , then
the graph I := G ∪ H is series-parallel with xI := xG and yI := yH . (This is
called series composition.)

Weighted Graphs. A vertex-weighted graph is a pair (G, c) where G is a graph and
c : V (G) → Z is a function assigning a cost to every vertex in V (G). An edge-weighted
graph is a pair (G, c) where G is a graph and c : E(G) → Z is a function assigning
a cost to every edge in E(G). Given an edge subset F ⊆ E(G), we use the notation
c(F ) :=

∑
e∈F c(e).

Graph Isomorphism. A graph G is isomorphic to a graph H if there is a bijective
function f : V (G) → V (H) such that for each pair of vertices u, v ∈ V (G) it holds that
{u, v} ∈ E(G) if and only if {f(u), f(v)} ∈ E(H).

Planarity. Let G be a graph. Let π be a function that assigns a unique point π(v) ∈ R2

to every vertex v ∈ V (G) and an arc π({u, v}) ⊆ R2 to every edge {u, v} ∈ E(G)
such that the arc π({u, v}) has the endpoints π(u) and π(v) and does not contain any
point π(w) with w ∈ V (G) \ {u, v}. If no point p ∈ R2 exists such that p is an interior
point of two arcs π(e) and π(e′) with distinct e, e′ ∈ E(G), then π is a planar embedding
of G. We call G planar if a planar embedding of G exists. Given a planar embedding π
of G, the pair D := (U,F ) with U := {π(v) | v ∈ V (G)} and F := {π(e) | e ∈ E(G)}
is a drawing of G. Although a drawing D of G is not formally a graph, we refer to the
elements of U as vertices, to the elements of F as edges, and generally do not strictly
distinguish between G and its drawing D. A plane graph is a drawing of some graph.
If G is plane, then the contiguous areas of R2 \ (V (G) ∪

⋃
E(G)) are the faces of G.1 A

face f is an inner face if a disk d ⊆ R2 exists such that f is contained in d. If a face f is
not an inner face, then we call it an outer face. If G is plane, then a cycle C ⊆ G is the
boundary of a face f (regarding G) if f is both a face of G and one of the contiguous
areas of R2 \ (V (C) ∪

⋃
E(C)).

1The notation
⋃

X for a collection X of sets is only used inside this paragraph for better readability.
It is defined as

⋃
X :=

⋃
X∈X X and gives a “flattened” version of X .
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Treewidth. A tree decomposition of a graph G is a pair (T,X ) where T is a tree and
X = (Xt)t∈V (T ) is a family of vertex sets Xt ⊆ V (G) such that

• V (G) =
⋃

t∈V (T )Xt,

• for each edge e ∈ E(G) there is a vertex t ∈ V (T ) with e ⊆ Xt, and

• for each vertex v ∈ V (G) it holds that the induced graph T [{t ∈ V (T ) | v ∈ Xt}]
is a tree.

The members of X are called bags. The width of a tree decomposition (T,X ) is the
number max{|Xt| − 1 | t ∈ V (T )}. The treewidth of a graph G is the smallest width of
all tree decompositions of G.

Independent Set, Vertex Cover, and Feedback Edge Set. Let G be a graph.
An independent set of G is a vertex subset S ⊆ V such that for every edge {u, v} ∈ E(G)
it holds that u /∈ S or v /∈ S. A vertex cover of G is a vertex subset S ⊆ V such that
for every edge {u, v} ∈ E(G) it holds that u ∈ S or v ∈ S. A feedback edge set of G is
an edge subset F ⊆ E(G) such that G− F is a forest.

Some Graph Parameters. Let G be a graph. The vertex cover number of G is the
size of a minimum size vertex cover of G. The feedback edge number of G is the size of
a minimum size feedback edge set of G. The distance to clique of G is the minimum
number of vertices that need to be deleted for G to become a clique. The distance to
bipartite of G is the minimum number of vertices that need to be deleted for G to become
bipartite.

2.2 Parameterized Complexity

Let Σ be a finite alphabet. A parameterized problem Π is a set Π ⊆ Σ∗ ×N of pairs. An
element (x, k) ∈ Σ∗×N is called an instance of Π. The number k is the parameter of the
instance (x, k). If there is a computable function f : N → N and an algorithm A that
decides for any instance (x, k) of Π whether (x, k) ∈ Π using f(k) · |x|O(1) time, then Π
is fixed-parameter tractable.

Reduction Rule. Instances (x, k) and (x′, k′) of Π are equivalent if (x, k) ∈ Π if and
only if (x′, k′) ∈ Π. A reduction rule R for problem Π is a polynomial-time algorithm
that receives an instance (x, k) of Π as input and produces an instance (x′, k′) of Π as
output. We say that reduction rule R is correct if (x, k) and (x′, k′) are equivalent.

Kernel. A (problem) kernel K for problem Π is a polynomial-time algorithm that
receives an instance (x, k) of Π as input and produces an instance (x′, k′) as output such
that |x′| ≤ g(k) and k′ ≤ g(k) for some computable function g : N → N. We call g the
size of K. If g is polynomial, then K is a polynomial kernel.
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Polynomial Parameter Transformation. Let Π and Π′ be two parameterized prob-
lems. An instance (x, k) of Π and an instance (x′, k′) of Π′ are equivalent if (x, k) ∈ Π
if and only if (x′, k′) ∈ Π′. A polynomial parameter transformation from Π to Π′ is a
polynomial-time algorithm that receives an instance (x, k) of Π as input and produces
an equivalent instance (x′, k′) of Π′ as output such that k′ ≤ p(k) for some polynomial
function p : N→ N.

Existence of Polynomial Kernels. Let Π,Π′ be two parameterized problems with
the property that the unparameterized versions of Π and Π′ are NP-complete. If there
is a polynomial parameter transformation from Π to Π′ and Π′ admits a polynomial
kernel, then Π also admits a polynomial kernel [BTY11]. We use this fact later to
show the nonexistence of polynomial kernels for some parameterized problems under the
complexity-theoretic assumption that NP ⊆ coNP/poly is not true, which is considered
very likely.





Chapter 3

2-Diam GBP

3.1 Preprocessing

In this section, we define and analyze reduction rules for later usage. We consider an
instance I = (G, c,H, k) of 2-Diam GBP-C. Let n := |V (G)| and let m := |E(G)|.
Moreover, let q := maxH∈H |H| be the size of the largest habitat. Whenever a reduction
rule modifies the edge set E(G) and there is no specification given on how the cost
function c changes, we assume that c is adjusted in the most immediate way.

Reduction Rule 3.1. If for a vertex v ∈ V (G) there is no habitat H ∈ H with v ∈ H,
then delete v.

Observation 3.2. Reduction Rule 3.1 is correct and can be applied exhaustively in
O(n + m + rq) time.

Proof. Let I ′ be the instance of 2-Diam GBP-C obtained from I by application of
Reduction Rule 3.3. Then, a solution to I is a solution to I ′ and vice versa.

To achieve the stated running time, we do the following. For every habitat H ∈ H
and every vertex v ∈ H, we mark the vertex v. This takes O(rq) time. Then, we
iterate through all vertices v ∈ V (G) deleting every unmarked vertex. This takes O(n)
time.

Reduction Rule 3.3. If for an edge e ∈ E(G) there is no habitat H ∈ H with e ⊆ H,
then delete e.

Observation 3.4. Reduction Rule 3.3 is correct and can be applied exhaustively in
O(n + m + rq2) time.

Proof. Let I ′ = (G′, c′,H′, k′) be the instance of 2-Diam GBP-C obtained from I by
application of Reduction Rule 3.3. We show that I is a yes-instance if and only if I ′

is a yes-instance. Let e ∈ E(G) be the edge deleted in the application of Reduction
Rule 3.3.

(⇒) Let F be a solution to I. We claim that F ′ := F \ {e} is a solution to I ′.
Clearly, c(F ′) ≤ k′. Assume towards a contradiction that there is a habitat H ∈ H with
vertices u, v ∈ H such that distG[F ′][H](u, v) > 2. Since distG[F ][H](u, v) ≤ 2, this implies
that e ⊆ H, a contradiction.

23
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(⇐) Let F be a solution to I ′. Then, F is also a solution to I.
To achieve the stated running time, we do the following. For every habitat H ∈ H

and every pair of vertices u, v ∈ H with {u, v} ∈ E(G), we mark the edge {u, v}. This
takes O(rq2) time. Then, we iterate through all edges e ∈ E(G) deleting every unmarked
edge. This takes O(m) time.

Reduction Rule 3.5. If a habitat e ∈ H induces a P2, then first set k := k− c(e), after
that set c(e) := 0, and finally delete the habitat e from H.

Observation 3.6. Reduction Rule 3.5 is correct and can be applied exhaustively in
O(n + m + r) time.

Proof. Let I ′ = (G′, c′,H′, k′) be the instance of 2-Diam GBP-C obtained from I by
application of Reduction Rule 3.5. We show that I is a yes-instance if and only if I ′ is a
yes-instance. Let e ∈ H be the habitat deleted in the application of Reduction Rule 3.5.

(⇒) Let F be a solution to I. We claim that F is also a solution to I ′. Clearly,
it holds that diam(G′[F ][H]) ≤ 2 for every H ∈ H′. Thus, we only need to show that
c′(F ) ≤ k′. Because of diam(G[F ][e]) ≤ 2, it holds that e ∈ F . Hence,

c′(F ) = c′(F \ {e}) = c(F \ {e}) = c(F ) − c(e) ≤ k′.

(⇐) Let F ′ be a solution to I ′. We claim that F := F ′∪{e} a solution to I. Clearly,
it holds that diam(G[F ][H]) ≤ 2 for every H ∈ H. It is left to show that c(F ) ≤ k. It
holds that

c(F ) = c(F \ {e}) + c(e)

= c′(F \ {e}) + c(e)

= c′(F ) + c(e)

≤ k′ + c(e)

= k.

Since the most time-consuming action is to iterate through all habitats, the linear
running time is immediate.

Reduction Rule 3.7. If for a habitat H ∈ H it holds that G[H] is a P3, then delete H
from H and extend H by the edge set of G[H].

Observation 3.8. Reduction Rule 3.7 is correct and can be applied exhaustively in
O(n + m + r) time.

Proof. Let I ′ = (G′, c′,H′, k′) be the instance of 2-Diam GBP-C obtained from I by
application of Reduction Rule 3.7. We show that I is a yes-instance if and only if I ′

is a yes-instance. Let H ∈ H be the habitat deleted in the application of Reduction
Rule 3.7.

(⇒) Let F be a solution to I. We claim that F is also a solution to I ′. Assume
towards a contradiction that F is not a solution to I ′. Then, for one of the edges
e ∈ E(G[H]) it holds that e /∈ F . This implies that diam(G[F ][H]) = ∞, a contradiction
to F being a solution to I.
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(⇐) Let F be a solution to I ′. We claim that F is also a solution to I. Assume
towards a contradiction that F is not a solution to I. Then, for one of e ∈ E(G[H]) it
holds that e /∈ F . This implies that diam(G[F ][e]) = ∞, a contradiction to F being a
solution to I ′

Since the most time-consuming action is to iterate through all habitats, the linear
running time is immediate.

Most algorithms in this thesis are based on constructing a solution F for the input
instance I. In this context, it is desirable to define procedures that can add edges to the
solution F that is being constructed. Such a procedure is not technically a reduction
rule since it slightly changes the problem 2-Diam GBP-C by adding the condition that
certain edges need to be included in a solution. To keep things more uniform and simple,
we nevertheless refer to a procedure that fixes an edge to be included in the solution F
as a reduction rule.

Reduction Rule 3.9. If for an edge e ∈ E(G) there is a habitat H ∈ H with e ⊆ H
such that e is not contained in a triangle in G, then fix e ∈ F .

Observation 3.10. Reduction Rule 3.9 is correct and can be applied exhaustively in
O(n + m + rq3) time.

Proof. Let {u, v} = e ∈ E(G) be the edge fixed to be included in F in the application
of Reduction Rule 3.9. Assume towards a contradiction that there is a solution F̃ to I
with e /∈ F̃ . By definition of 2-Diam GBP-C, there is a (u, v)-path of length at most
two in G[F̃ ]. Since e /∈ F̃ , this implies that there is a vertex w ∈ V (G) such that
{u,w}, {w, v} ∈ E(G). Therefore, G[{u, v, w}] is a triangle in G, a contradiction to the
edge e not being contained in a triangle in G.

To achieve the stated running time, we do the following. For every habitat H ∈ H
and every pair of vertices u, v ∈ H with {u, v} ∈ E(G), perform the following actions.
Check whether there is a third vertex w ∈ H such that G[{u, v, w}] is a triangle. If no
such vertex w exists, then fix {u, v} ∈ F .

The following reduction rule deletes components of small size in polynomial time. Be-
cause of how we will use this reduction rule, we are interested in eliminating components
having at most six vertices.

Reduction Rule 3.11. Let C ⊆ G be a component of G with |V (C)| ≤ 6. If there is a
habitat H ∈ H with vertices u, v ∈ H such that u ∈ V (C) and v ∈ V (G)\V (C), then re-
turn a trivial no-instance. Let HC ⊆ H be the set of all habitats H ∈ H with H ⊆ V (C).
Search for a minimum cost local solution FC ⊆ E(C) satisfying diam(C[FC ][H]) ≤ 2
for every H ∈ HC . If no local solution has been found during the search, then return
a trivial no-instance. Otherwise, delete C from G, delete every habitat in HC from H,
and set k := k − c(FC).

Observation 3.12. Reduction Rule 3.11 is correct and can be applied exhaustively in
O(n + m + rq) time.
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Proof. Let C be the component of G with |V (C)| ≤ 6 selected in the application of
Reduction Rule 3.11. If there is a habitat H ∈ H with vertices u, v ∈ H such that
u ∈ V (C) and v ∈ V (G) \ V (C), then it holds that diam(H) = ∞ implying that I is a
no-instance.

If no local solution exists, then there is a habitat H ∈ H such that diam(C[H]) > 2.
From diam(C[H]) > 2 it follows that diam(G[H]) > 2 and hence I is a no-instance.

In the case where a minimum cost local solution FC was found, let I ′ := (G′,H′, c′, k′)
be the instance of 2-Diam GBP-C obtained from I. We show that I is a yes-instance
if and only if I ′ is a yes-instance. (⇒) Let F be a solution to I. Then, F \ E(C) is a
solution to I ′. (⇐) Let F be a solution to I ′. Then, F ∪ FC is a solution to I.

To achieve the stated running time, we can use the following approach. Using depth-
first search we can create a table T1 mapping each vertex v ∈ V (G) to the component
C ⊆ G with v ∈ V (C) in O(n + m) time. Using table T1 we can determine for each
habitat H ∈ H whether there are vertices u, v ∈ H and a component C ⊆ G such that
u ∈ V (C) and v ∈ V (G) \ V (C) in overall O(rq) time. Moreover, using table T1 we
can create another table T2 mapping each component C ⊆ G to the set containing all
habitats H ∈ H with H ⊆ V (C) in O(rq) time. Clearly, the number of components
C ⊆ G is in O(n). Since we only consider components having at most six vertices, it
follows that all potential local solutions can be constructed in O(n) time. As for each
habitat H ∈ H there is only one component C ⊆ G with H ⊆ V (C), checking which
potential local solutions are valid takes O(r) time. (We use table T2 to quickly find the
habitats corresponding to each component when doing these checks.) Taken together,
the time needed for exhaustive application of Reduction Rule 3.11 is O(n+m+ rq).

3.2 On Graphs of Low Maximum Degree ∆

3.2.1 A Polynomial-Time Algorithm for ∆ ≤ 3

We show that 2-Diam GBP-C on graphs of maximum degree at most three is solvable
in linear time. We consider an instance I = (G,H, c, k) of 2-Diam GBP-C.

Proposition 3.13. 2-Diam GBP-C on graphs of maximum degree at most three can
be solved in O(|V (G)| + |E(G)| + |H|) time.

We take a constructive approach, i.e., we try to find a solution F of minimum cost.
We use multiple reduction rules. These reduction rules simplify the instance to a point
where a minimum cost solution of the entire instance can be constructed by combining
local minimum cost solutions. We then use this property to obtain F .

We describe the application of the first three reduction rules before giving some more
detail on the general idea that we will follow in the further course of this proof. First,
we use a reduction rule that helps us to apply some of the succeeding reduction rules in
linear time.

Reduction Rule 3.14. If a habitat H ∈ H with |H| > 10 exists, then return a trivial
no-instance.

Observation 3.15. Reduction Rule 3.14 is correct.
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Proof. Assume towards a contradiction that I is a yes-instance and there is a habitat
H ∈ H with |H| > 10. Then, it holds that diam(G[H]) ≤ 2. Let v ∈ H be a vertex
included in H. It holds that |N2

G[v]| > 10. But since ∆(G) ≤ 3, it also holds that

|N2
G[v]| ≤ 1 +

∑
u∈NG(v)

|NG[u] \ {v}| ≤ 1 +
∑

u∈NG(v)

3 ≤ 10.

This is a contradiction.

Clearly, Reduction Rule 3.14 can be applied in linear time. Let q := maxH∈H |H| be
the size of the largest habitat. After the application of Reduction Rule 3.14, it holds
that q ≤ 10. We recall two reduction rules.

Reduction Rule 3.3 (Restated). If for an edge e ∈ E(G) there is no habitat H ∈ H
with e ⊆ H, then delete e.

Reduction Rule 3.9 (Restated). If for an edge e ∈ E(G) there is a habitat H ∈ H
with e ⊆ H such that e is not contained in a triangle in G, then fix e ∈ F .

Since q ≤ 10, both Reduction Rules 3.3 and 3.9 can be exhaustively applied in linear
time by Observations 3.4 and 3.10. The following holds after exhaustive application of
Reduction Rules 3.3 and 3.9.

Observation 3.16. Every edge of G is contained in a triangle in G or fixed to be
included in the solution F .

Therefore, if we choose for one triangle Q ⊆ G which edges of Q to add to F , then
this choice may only influence which edges of any other triangle contained in G need to
be added to F . Due to ∆(G) ≤ 3, the triangles in G are not well connected. Ideally,
there is a set S of small subgraphs of G with the properties that (1) each triangle of G is
included in one of these subgraphs and (2) for each subgraph S ∈ S the choice of which
edges of S to add to F can be made independently. Based on this, we will first introduce
the concept of super-triangles and then the concept of areas.

As a preparation, we remove some subgraphs of G that would hinder our approach.
If a graph G′ is isomorphic to the graph depicted in Figure 3.1a1, then we refer to G′

as a G×
4 . If a graph G′ is isomorphic to the graph depicted in Figure 3.1a2, then we

refer to G′ as a G×
6 . We exhaustively apply Reduction Rule 3.11, which has the effect

of deleting all components of G with a vertex set of size at most six. This can be done
in linear time due to q ≤ 10 and Observation 3.12. After the exhaustive application of
Observation 3.12, the following holds.

Observation 3.17. The graph G contains no G×
4 and no G×

6 .

If a graph G′ is isomorphic to the graph depicted in Figure 3.1b1, then we refer to G′

as a G✓
4 . If a graph G′ is isomorphic to the graph depicted in Figure 3.1b2, then we refer

to G′ as a G✓
6 .

Definition 3.18. We call a subgraph S ⊆ G of G a super-triangle if S is a G✓
4 or a G✓

6 .

For our idea to work, it is important that the edge sets of super-triangles do not
intersect. This is what we show next.
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(a1) Depiction of a G×
4 . (a2) Depiction of a G×

6 .

(b1) Depiction of a G✓
4 . (b2) Depiction of a G✓

6 .

Figure 3.1: (a1)&(a2) None of these two graphs is included as a subgraph in G (Obser-
vation 3.17). (b1)&(b2) A subgraph S ⊆ G of G is a super-triangle if and only if S is a
G✓

4 or a G✓
6 (Definition 3.18).

v1

v3

v2

v4 v5 v6

(a)

v1

v2

v3

v4

v5

v6 v7

(b)

Figure 3.2: Illustration to the proof of Observation 3.19. The edges of S1 are black and
thin. The edge set of S2 contains some of the black thin edges and all red thick edges.
(a) First case, i.e., S1 is a G✓

4 . (b) Second case, i.e., S1 is a G✓
6 .

Observation 3.19. Let S1, S2 ⊆ G be two super-triangles. Then, it holds that E(S1) ∩
E(S2) = ∅.

Proof. Assume towards a contradiction that there are two super-triangles S1, S2 ⊆ G
with E(S1) ∩ E(S2) ̸= ∅. We distinguish two cases.

First case: Super-triangle S1 is a G✓
4 (see Figure 3.2a). Let V (S1) = {v1, . . . , v4}

and E(S1) = [V (S1)]
2 \ {{v1, v4}}. We try to derive the structure of S2. Since G

contains no G×
4 , it holds that {v1, v4} /∈ E(G). It follows that V (S2) ⊈ V (S1). Hence,

w.l.o.g. (by symmetry) there is a vertex v5 ∈ V (G) such that {v4, v5} ∈ E(S2). As every
super-triangle is 2-connected, there is a (v4, v5)-path P ⊆ S2 such that {v4, v5} /∈ E(P ).
From ∆(G) ≤ 3 it follows that there is a (v1, v5)-path P ⊆ S2 with {v4, v5} /∈ E(P ).
Since every super-triangle’s longest chordless cycle has length at most four, it follows
that {v1, v5} ∈ E(S2). Observe that V (S2) ⊈ V (S1) ∪ {v5} must hold. Hence, there is
a vertex v6 ∈ V (G) with {v5, v6} ∈ E(S2). Because of ∆(G) ≤ 3, the vertex set {v5}
separates S2. Thus, S2 is not 2-connected, a contradiction to S2 being a super-triangle.

Second case: Super-triangle S1 is a G✓
6 (see Figure 3.2b). Let V (S1) = {v1, . . . , v6}

and E(S1) = [{v1, v2, v3}]2 ∪ [{v4, v5, v6}]2 ∪ {{v2, v4}, {v3, v5}}. We try to derive the
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structure of S2. Since G contains no G×
6 , it holds that {v1, v6} /∈ E(G). It follows that

V (S2) ⊈ V (S1). Hence, w.l.o.g. (by symmetry) there is a vertex v7 ∈ V (G) such that
{v6, v7} ∈ E(S2). As every super-triangle is 2-connected, there is a (v6, v7)-path P ⊆ S2

such that {v6, v7} /∈ E(P ). From ∆(G) ≤ 3 it follows that there is a (v1, v7)-path P ⊆ S2

with {v6, v7} /∈ E(P ). Therefore, S2 contains a chordless cycle of length at least five.
Because every super-triangle’s longest chordless cycle has length at most four, this is a
contradiction to S2 being a super-triangle.

The following definition is useful because every triangle in G is included in an area.

Definition 3.20. We call a subgraph A ⊆ G an area if

• A is a super-triangle or

• A is a triangle and there is no super-triangle S ⊆ G with A ⊆ S.

We show that the edge sets of all areas in G are pairwise disjoint.

Observation 3.21. Let A1, A2 ⊆ G be two distinct areas. Then, it holds that E(A1) ∩
E(A2) = ∅.

Proof. We distinguish three cases.

First case: The areas A1 and A2 are both super-triangles. Then, the statement
follows from Observation 3.19.

Second case: The areas A1 and A2 are both triangles. Assume towards a contradic-
tion that E(A1) ∩ E(A2) ̸= ∅. Then, A1 ∪ A2 is a G✓

4 , a contradiction to A1 and A2

being distinct areas.

Third case: The area A1 is a triangle and the area A2 is a super-triangle. Since
A2 contains no edge {u, v} ∈ E(A2) such that degA2

(u) ≤ 2 and degA2
(v) ≤ 2, it

follows that |E(A1) ∩ E(A2)| ̸= 1. As G contains no G×
4 and no G×

6 , it holds that
|E(A1) ∩ E(A2)| ≠ 2. From the definition of areas it follows that |E(A1) ∩ E(A2)| ≠ 3.
Thus, E(A1) ∩ E(A2) = ∅.

Before moving on to the main algorithm, we apply one last reduction rule. It ensures
that a solution F always exists. (After the application of the reduction rule, the set
E(G) is a solution.)

Reduction Rule 3.22. If there is a habitat H ∈ H with diam(G[H]) > 2, then return
a trivial no-instance.

The correctness directly follows from the definition of 2-Diam GBP. Since for every
habitat H ∈ H it holds that |H| ≤ 10, the graph G[H] can be constructed in constant
time and the diameter of G[H] can also be computed in constant time. This yields an
overall linear running time for Reduction Rule 3.22.

Next, we describe the main algorithm. Let Ffixed be the set of edges fixed to be
included in the solution F during the application of Reduction Rule 3.9. For every area
A ⊆ G and every habitat H ∈ H, let ĒH,A := E(G[H])\E(A) be the set of outside edges
of A with respect to H.
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u v

(a) First case.

u v

(b) Second case.

u v

(c) Third case.

u x v

(d) Fourth case.
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v

(e) Fifth case.
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y

z

v

(f) Sixth case.

Figure 3.3: Illustration of the cases occurring in the case distinction in Lemma 3.24.

Algorithm 1 Algorithm for deciding pre-processed instances of 2-Diam GBP-C on
graphs of maximum degree at most three.

Let F be initially equal to Ffixed. For each area A ⊆ G find a minimum cost edge set
FA ⊆ E(A) with Ffixed∩E(A) ⊆ FA such that for all habitats H ∈ H with H∩V (A) ̸= ∅
it holds that diam(G[ĒH,A ∪ FA][H]) ≤ 2 and add FA to F . If c(F ) ≤ k, then return
yes. Otherwise, return no.

We remark that during the application of the algorithm a set FA can always be found
because we have previously applied Reduction Rule 3.22. In the following let F be the
solution constructed by Algorithm 1. For each area A ⊆ G, let FA be the edge set that
Algorithm 1 has found for A. Moreover, let FH,A := ĒH,A ∪ FA.

Observation 3.23. Let H ∈ H be a habitat and let u, v ∈ H be two distinct vertices.
Let Pu,v

≤2 be the set of (u, v)-paths of length at most two in G[H]. If there is an area
A ⊆ G with P ⊆ A for all P ∈ Pu,v

≤2 , then it holds that distG[F ][H](u, v) ≤ 2.

Proof. By definition of Algorithm 1, it holds that diam(G[FH,A][H]) ≤ 2. Since FA ⊆ F ,
this implies that diam(G[ĒH,A ∪ F ][H]) ≤ 2. It follows that distG[ĒH,A∪F ][H](u, v) ≤ 2.
As E(P ) ∩ ĒH,A = ∅ for every P ∈ Pu,v

≤2 , it follows that distG[F ][H](u, v) ≤ 2.

Lemma 3.24. The set F constructed by Algorithm 1 is a solution.

Proof. Let H ∈ H be a habitat and let u, v ∈ H be vertices included in H. It suf-
fices to show that distG[F ][H](u, v) ≤ 2. Because of Reduction Rule 3.22, it holds that
distG[H](u, v) ≤ 2. Hence, there is a at least one (u, v)-path of length at most two in
G[H]. Let Pu,v

≤2 be the set of (u, v)-paths of length at most two in G[H]. We do a case
distinction on Pu,v

≤2 . For a depiction of all six cases, see Figure 3.3.
First case: The set Pu,v

≤2 contains one path of length 1 and no path of length 2
(see Figure 3.3a). Then, the edge {u, v} is not part of a triangle in G[H]. Because of
Observation 3.16, it follows that {u, v} ∈ F . Hence, distG[F ][H](u, v) ≤ 2.
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Second case: The set Pu,v
≤2 contains one path of length 1 and one path of length 2

(see Figure 3.3b). Then, the union of the two paths in Pu,v
≤2 is a triangle. Since each

triangle is contained in an area, it follows that there is an area A ⊆ G with P ⊆ A for
every path P ∈ Pu,v

≤2 . Using Observation 3.23 we get distG[F ][H](u, v) ≤ 2.

Third case: The set Pu,v
≤2 contains one path of length 1 and two paths of length 2

(see Figure 3.3c). Then, the union of the three paths in Pu,v
≤2 is a G✓

4 . Hence, there again
is an area A ⊆ G with P ⊆ A for every path P ∈ Pu,v

≤2 . Using Observation 3.23 we get
distG[F ][H](u, v) ≤ 2.

Fourth case: The set Pu,v
≤2 contains no path of length 1 and one path of length 2.

Let x ∈ H be the unique vertex with {u, x}, {x, v} ∈ E(G) (see Figure 3.3d). Assume
towards a contradiction that distG[F ][H](u, v) > 2. W.l.o.g. (by symmetry) it holds that
{u, x} /∈ F . Because of Observation 3.16, there is a triangle Q ⊆ G[H] such that
{u, x} ∈ E(Q). As each triangle is contained in an area, it follows that there is an area
A ⊆ G with Q ⊆ A. By definition of Algorithm 1, it holds that diam(G[FH,A][H]) ≤ 2.
Hence, distG[FH,A][H](u, v) ≤ 2. Since the path P ∈ Pu,v

≤2 is the only (u, v)-path of length
at most two in G[H], it follows that {u, x} ∈ F , a contradiction.

Fifth case: The set Pu,v
≤2 contains no path of length 1 and two paths of length 2. Let

x, y ∈ H be the two distinct vertices with {u, x}, {x, v} ∈ E(G) and {u, y}, {y, v} ∈ E(G)
(see Figure 3.3e). Since Pu,v

≤2 contains no path of length one, it holds that {u, v} /∈ E(G).
We distinguish between the cases that {x, y} ∈ E(G) and {x, y} /∈ E(G). First, we
consider the case that {x, y} ∈ E(G). Then, the graph A := G[{u, v, x, y}] is a G✓

4 .
Therefore, A is an area. As for every P ∈ Pu,v

≤2 it holds that P ⊆ A, it follows from
Observation 3.23 that distG[F ][H](u, v) ≤ 2. This concludes the proof for the case that
{x, y} ∈ E(G).

Now let {x, y} /∈ E(G). Assume towards a contradiction that distG[F ][H](u, v) >
2. Then, it holds w.l.o.g. (by symmetry) that {u, x}, {u, y} /∈ F (see Figure 3.4a) or
{u, x}, {y, v} /∈ F (see Figure 3.4c).

Let us consider the case that {u, x}, {u, y} /∈ F . Because of Observation 3.16, each
of the edges {u, x} and {u, y} is contained in a triangle in G[H]. Due to ∆(G) ≤
3 and {u, v}, {x, y} /∈ E(G), it follows that there exists a vertex z ∈ H such that
{u, z}, {x, z}, {y, z} ∈ E(G) (see Figure 3.4b). The graph A := G[{u, x, y, z}] is a G✓

4 .
Therefore, A is an area. By definition of Algorithm 1, it holds that diam(G[FH,A][H]) ≤
2. Hence, distG[FH,A][H](u, v) ≤ 2. But since each (u, v)-path of length at most two
in G[H] contains the edge {u, x} or {u, y}, it holds that distG[FH,A][H](u, v) > 2, a
contradiction.

Finally, we look at the case that {u, x}, {y, v} /∈ F . Because of Observation 3.16,
each of the edges {u, x} and {y, v} is contained in a triangle in G[H]. Due to ∆(G) ≤ 3
and {u, v}, {x, y} /∈ E(G), it follows that there are distinct vertices z1, z2 ∈ H such
that {u, z1}, {x, z1} ∈ E(G) and {y, z2}, {v, z2} ∈ E(G) (see Figure 3.4d). The graph
A := G[{u, v, x, y, z1, z2}] is a G✓

6 . Therefore, A is an area. By definition of Algorithm 1,
it holds that diam(G[FH,A][H]) ≤ 2. Hence, distG[FH,A][H](u, v) ≤ 2. But since each
(u, v)-path of length at most two in G[H] contains the edge {u, x} or {y, v}, it holds
that distG[FH,A][H](u, v) > 2, a contradiction.

Sixth case: The set Pu,v
≤2 contains no path of length 1 and three paths of length 2.

Let x, y, z ∈ H be the three mutually distinct vertices with {u,w}, {w, v} ∈ E(G)
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Figure 3.4: Illustration of the fifth and sixth case in the proof of Lemma 3.24. Solid edges
are included in E(G) and may be included in F . Dashed edges are included in E(G)
but not included in F . Red dotted edges are not included in E(G). (a)&(b) Fifth case,
subcase where {u, x}, {u, y} /∈ F . (b) The blue thick subgraph is a G✓

4 . (c)&(d) Fifth
case, subcase where {u, x}, {y, v} /∈ F . (d) The blue thick subgraph is a G✓

6 . (e) Sixth
case, only one of the three violet densely dotted edges can be included in E(G).

for each w ∈ {x, y, z} (see Figure 3.3f). Because of ∆(G) ≤ 3, at most one of the
edges {x, y}, {y, z}, {x, z} is contained in E(G) (see Figure 3.4e). Thus, there is a path
P ∈ Pu,v

≤2 such that for both edges e ∈ E(P ) it holds that e is not contained in a triangle
in G. Due to Observation 3.16, it follows that E(P ) ⊆ F . Hence, distG[F ][H](u, v) ≤ 2.

Lemma 3.25. No solution of lower cost than c(F ) exists.

Proof. Assume towards a contradiction that there is a solution F ′ with c(F ′) < c(F ).
Since Observation 3.16 only fixes edges that are included in every solution, it holds that
Ffixed ⊆ F ′. Thus, F and F ′ only differ by edges that are contained in triangles in G.
As each triangle is contained in an area, there is an area A ⊆ G with c(E(A) ∩ F ′) <
c(E(A) ∩ F ). As the edge sets of distinct areas do not intersect (Observation 3.21), it
holds that FA = E(A) ∩ F . Let F ′

A := E(A) ∩ F ′. Then, it holds that c(F ′
A) < c(FA), a

contradiction to Algorithm 1 selecting FA such that the cost is minimum.

The correctness of Algorithm 1 follows from Lemmas 3.24 and 3.25. It remains to
show that Algorithm 1 runs in linear time. Since ∆(G) ≤ 3, there is a constant that
bounds the size of the 3-neighborhood of every vertex v ∈ V (G) in G. Hence, for
every vertex v ∈ V (G) all areas A ⊆ G with v ∈ V (A) can be found in constant time.
Therefore, it takes O(|V (G)|) time to find all areas A ⊆ G. Because of ∆(G) ≤ 3, q ≤ 10
and because the edge sets of distinct areas do not intersect (Observation 3.21), there are
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Reduction Rule 3.28

Figure 3.5: Illustration to Reduction Rule 3.28. Subgraphs induced by habitats con-
taining the vertex u or one of the vertices u1, u2 are marked by differing colors. (a) The
butterfly graph S ⊆ G selected in the application of the reduction rule. (b) The situation
created by the reduction rule.

no more than constantly many areas A ⊆ G with H ∩ V (A) for each habitat H ∈ H.
It follows that the number of area-habitat-pairs A ⊆ G, H ∈ H with H ∩ V (A) ̸= ∅
is in O(|V (G)|). This allows for an overall linear running time. Thus, the proof of
Proposition 3.13 is finished.

3.2.2 A Polynomial-Time Algorithm for ∆ ≤ 4

In this section, we show the following.

Proposition 3.26. 2-Diam GBP-C can be solved in O(|V (G)|2 · log |V (G)|) time on
graphs of maximum degree at most four if each habitat induces a triangle.

The following problem can be solved in O(|V (G)|2 · log |V (G)|) time on claw-free
graphs [NS21].

Problem: Weighted Vertex Cover

Input: A vertex-weighted graph (G,w) and an integer k ∈ N.

Question: Is there a vertex cover S ⊆ V (G) with w(S) ≤ k?

We give a reduction to Weighted Vertex Cover on claw-free graphs. Let I =
(G, c,H, k) be an instance of 2-Diam GBP-C with maximum degree four and each
habitat inducing a triangle. Because of ∆(G) ≤ 4, it holds that each edge is contained
in at most three triangles in G. Moreover, the number of edges in G is in O(|V (G)|).
Since every habitat induces a triangle, the number of habitats is also in O(|V (G)|).
Therefore, a running time linear in the input size |I| is also linear in |V (G)|. As we will
see, the reduction to Weighted Vertex Cover only takes O(|V (G)|) time. Thus,
the asymptotic running time bound of the overall algorithm only depends on the time
needed for solving the produced instance of Weighted Vertex Cover.

Before preceding with the actual reduction to Weighted Vertex Cover, we do
some preprocessing on I. First, we exhaustively apply Reduction Rule 3.3 to delete all
non-habitat edges. By Observation 3.10, this takes |V (G)| time. As each habitat induces
a triangle, each remaining edge of G is included in a triangle in G.

Definition 3.27. A graph is a butterfly graph if it is isomorphic to the graph depicted
in Figure 3.5a. The vertex of degree four is called the center of the butterfly graph.
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Next, we exhaustively apply the following reduction rule. Doing this removes all
induced butterfly graphs.

Reduction Rule 3.28. If G contains a butterfly graph S ⊆ G as an induced subgraph,
then do the following (see Figure 3.5 for an illustration). Let V (S) = {u, x1, y1, x2, y2}
and E(S) = [{u, x1, y1}]2 ∪ [{u, x2, y2}]2. Delete u and all edges incident to u. Add
two vertices called u1 and u2. Moreover, add the edges {u1, x1}, {u1, y1}, {u2, x2}, and
{u2, y2} with the edge costs of the new edges mirroring the edge costs of the deleted edges,
i.e., c({u1, x1}) := c({u, x1}), etc. If {u, x1, y1} ∈ H, then delete {u, x1, y1} from H and
add {u1, x1, y1} to H instead. Likewise, if {u, x2, y2} ∈ H, then delete {u, x2, y2} from
H and add {u2, x2, y2} to H.

Observation 3.29. Reduction Rule 3.28 is correct.

Proof. Let I ′ = (G′, c′,H′, k′) be the instance of 2-Diam GBP-C obtained from I by
application of Reduction Rule 3.28. We show that I is a yes-instance if and only if I ′

is a yes-instance. Let f : E(G) → E(G′) be a function such that for every e ∈ E(G) it
holds that

f(e) :=



{u1, x1}, if e = {u, x1},

{u1, y1}, if e = {u, y1},

{u2, x2}, if e = {u, x2},

{u2, y2}, if e = {u, y2},

e, otherwise.

(⇒) Let F be a solution to I. We claim that F ′ := {f(e) | e ∈ F} is a solution
to I ′. Note that |F ′| ≤ k′. For every habitat H ∈ H′ with H ∩ {u1, u2} = ∅, it holds
that diam(G′[F ′][H]) ≤ 2. Since each habitat induces a triangle, there are at most two
habitats in H′ that intersect with {u1, u2}. These intersecting habitats are {u1, x1, y1}
and {u2, x2, y2}. Assume that {u1, x1, y1} ∈ H′. Then, it holds that {u, x1, y1} ∈
H. Therefore, diam(G[F ][{u, x1, y1}]) ≤ 2. By construction of I ′, this implies that
diam(G′[F ′][{u1, x1, y1}]) ≤ 2.

(⇐) Let F ′ be a solution to I ′ and let f−1 : E(G′) → E(G) be the inverse func-
tion of f . We claim that F := {f−1(e) | e ∈ F ′} is a solution to I. Note that
|F | ≤ k. For every habitat H ∈ H with u /∈ H, it holds that diam(G[F ][H]) ≤ 2.
Since ∆(G) ≤ 4 and no edge from {{z1, z2} | z1 ∈ {x1, y1} ∧ z2 ∈ {x2, y2}} is in-
cluded in E(G), there are at most two habitats in H that contain u. These habi-
tats are {u, x1, y1} and {u, x2, y2}. Assume that {u, x1, y1} ∈ H. Then, it holds that
{u1, x1, y1} ∈ H′. Therefore, diam(G′[F ′][{u1, x1, y1}]) ≤ 2. By construction of I ′, this
implies that diam(G[F ][{u, x1, y1}]) ≤ 2.

Reduction Rule 3.28 can be applied exhaustively in linear time the following way.
For each vertex u ∈ V (G) we check whether it is the center of an induced butterfly
graph. This only requires examining the neighbors of u and can be done in constant
time for each single u ∈ V (G) because of ∆(G) ≤ 4. Hence, finding all center vertices
of induced butterfly graphs takes O(|V (G)|) time. Since each application of Reduction
Rule 3.28 removes one center vertex of an induced butterfly graph and does not create
new center vertices of induced butterfly graphs, we only need to run Reduction Rule 3.28
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Figure 3.6: Illustration to the proof of Observation 3.30. Red dotted edges are not
included in E(G). The subgraphs marked in blue are induced butterfly graphs. (a) An
edge {u, v} ∈ E(G) that is contained in three triangles in G. (b)–(e) Illustration of the
four cases distinguished in the proof of Observation 3.30.

O(|V (G)|) times. As we have already identified all center vertices, a single application
of Reduction Rule 3.28 requires only constant time. Thus, all together can be done in
O(|V (G)|) time.

Moreover, we exhaustively apply Reduction Rule 3.11, which has the effect of deleting
all components of G with a vertex set of size at most six. By Observation 3.12, the time
needed for this also is in O(|V (G)|). Having carried out the reductions, we can make
the following observation.

Observation 3.30. Each edge of G is contained in at most two triangles in G.

Proof. Assume towards a contradiction that there is an edge {u, v} ∈ E(G) such that
{u, v} is contained in three triangles in G. Hence, there are three vertices x, y, z ∈
V (G) such that each of the sets {u, v, x}, {u, v, y}, {u, v, z} induces a triangle in G (see
Figure 3.6a). Let V̄ := V (G) \ {u, v, x, y, z}. Since every component in G has more than
six vertices and ∆(G) ≤ 4, there is a vertex a ∈ V̄ such that a is adjacent to a vertex in
{x, y, z}. We do a case distinction on the size of the edge set Exyz := [{x, y, z}]2 ∩E(G).

First case: It holds that |Exyz| = 0 (see Figure 3.6b). Assume w.l.o.g. (by symmetry)
that a is adjacent to x. As every edge is contained in a triangle in G, there is a vertex
b ∈ V̄ such that G[{x, a, b}] is a triangle. But then G[{u, v, x, a, b}] is an induced butterfly
graph in G, a contradiction.

Second case: It holds that |Exyz| = 1 (see Figure 3.6c). Assume w.l.o.g. (by sym-
metry) that {y, z} ∈ Exyz. By argumentation analogous to the first case, the vertex a
is not adjacent to x. (And the only vertices adjacent to x are u and v.) Thus, assume
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(a) (b)

Construction 3.31

Figure 3.7: Illustration to Construction 3.31. (a) Example graph G of the input instance
I = (G, c,H, k). The subgraphs induced by the habitats in H are marked by differing
colors. (b) Depicted in black, the graph G′ obtained from G using Construction 3.31.
For illustration, the graph G of the input instance is faintly visible in the background.

w.l.o.g. (by symmetry) that a is adjacent to y. As every edge is contained in a triangle
in G and because G contains no butterfly graph as an induced subgraph, it holds that
a is also adjacent to z. Since every component in G has more than six vertices, there
is a vertex b ∈ V̄ \ {a} such that b is adjacent to a. As, again, every edge is contained
in a triangle in G, this implies that is a further vertex c ∈ V̄ such that G[{a, b, c}] is a
triangle. But then G[{y, z, a, b, c}] is an induced butterfly graph in G, a contradiction.

Third case: It holds that |Exyz| = 2 (see Figure 3.6d). Assume w.l.o.g. (by sym-
metry) that {x, y}, {y, z} ∈ Exyz. Moreover, assume w.l.o.g. (by symmetry) that a is
adjacent to x. Then, it holds that {x, a} is not contained in a triangle in G, a contra-
diction.

Fourth case: It holds that |Exyz| = 3 (see Figure 3.6e). Then, G[{u, v, x, y, z}] is a
component of G containing less than six vertices, a contradiction.

Finally, we reduce the preprocessed instance to Weighted Vertex Cover. Note
that executing the following construction takes |O(|V (G)|)| time.

Construction 3.31. Let I = (G, c,H, k) be an instance of 2-Diam GBP-C prepro-
cessed as described above. Construct an instance I ′ = (G′, w, k′) of Weighted Vertex
Cover with k′ := k as follows (see Figure 3.7 for an illustration).

Let G′ be initially empty. For each edge e ∈ E(G), add a vertex ve to V (G′)
and set w(ve) := c(e). For each habitat {x, y, z} ∈ H, add the edges

{
v{x,y}, v{x,z}

}
,{

v{x,y}, v{y,z}
}

, and
{
v{x,z}, v{y,z}

}
to E(G′).

Observation 3.32. The graph G′ constructed in Construction 3.31 is claw-free.

Proof. Assume towards a contradiction that G′ contains an induced claw C ⊆ G′. Let
ve ∈ V (C) be the center vertex of C. Since ve is the center of an induced claw, there is a
three-element set Nind ⊆ NG′(ve) of neighbors of ve in G′ such that [Nind]2 ∩E(G′) = ∅.
Let vf , vg, vh ∈ Nind be the three elements of Nind. By construction of I ′, it follows
that for each habitat H ∈ H at most one of the three edges f , g, and h is contained in
the edge set of G[H]. By Observation 3.30, it holds that e is contained in at most two
triangles in G. Let He ⊆ H be the set containing every habitat H ∈ H with the property
that e is contained in the edge set of G[H]. It holds that |He| ≤ 2. As vf , vg, and vh
are neighbors of ve in G′, it follows that for each edge eN ∈ {f, g, h} there is a habitat
H ∈ He such that eN is contained in the edge set of G[H]. By pigeonhole principle using
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|He| ≤ 2, it follows that there is a habitat H ∈ He such that at least two of the three
edges f , g, and h are contained in the edge set of G[H], a contradiction.

Lemma 3.33. Let I ′ be the instance of Weighted Vertex Cover obtained from
a preprocessed instance I of 2-Diam GBP-C using Construction 3.31. Then, I is a
yes-instance if and only if I ′ is a yes-instance.

Proof. (⇒) Let F be a solution to I. We claim that S := {ve | e ∈ F} is a vertex
cover of G′. Note that

∑
v∈S w(v) ≤ k′. Assume towards a contradiction that there is

an edge {ve, vf} ∈ E(G′) with ve, vf /∈ S. It follows that e, f /∈ F . By construction
of I ′, there is a habitat H ∈ H with e, f ∈ E(G[H]). From e, f /∈ F it follows that
diam(G[F ][H]) = ∞, a contradiction to F being a solution to I.

(⇐) Let S ⊆ V (G′) be a vertex cover of G′ with
∑

v∈S w(v) ≤ k′. We claim that
F := {e | ve ∈ S} is a solution to I. Note that c(F ) ≤ k. Assume towards a contradiction
that there is a habitat H ∈ H with diam(G[F ][H]) > 2. Then, there are two edges
e, f ∈ E(G[H]) with e, f /∈ F . It follows that ve, vf /∈ S. But by construction of I ′, it
holds that {ve, vf} ∈ E(G′), a contradiction to S being a vertex cover of G′.

This concludes the proof of Proposition 3.26. Removing P2s and P3s with the linear-
time Reduction Rules 3.5 and 3.7 yields the following corollary.

Corollary 3.34. 2-Diam GBP-C can be solved in O(|V (G)|2 · log |V (G)|) time on
graphs of maximum degree at most four if each habitat has size at most three.

3.2.3 NP-Hardness for ∆ ≥ 5

In this section, we conduct the first of three proofs that follow a similar scheme. (With
the other two proofs being the ones conducted in Sections 3.3.2 and 4.3.4.)

Proposition 3.35. 2-Diam GBP is NP-hard even on graphs of maximum degree five
with each habitat having size at most three.

We give a polynomial-time reduction from the following NP-hard problem.

Problem: Cubic Vertex Cover
Input: A cubic graph G and an integer k ∈ N.
Question: Is there a vertex cover S ⊆ V (G) with |S| ≤ k?

For easier notation, we denote an instance of the optimization version of 2-Diam
GBP with graph G and habitat set H by (G,H) without explicitly stating that we
interpret (G,H) as an instance of the optimization version of 2-Diam GBP and not,
say, any other problem.

In the upcoming reduction, we replace each vertex of the given instance of Cubic
Vertex Cover by a graph (“vertex gadget”) and each edge by a graph (“edge gadget”).
These gadgets mimic, in a sense, the nodes and edges of the graph of the Cubic Vertex
Cover-instance. We define the gadgets in preparation for the reduction.

Definition 3.36. Let G be a graph and let v ∈ V (G) be a vertex. The vertex gadget Bv

corresponding to v is the graph with vertex set V (Bv) := {b1v, . . . , b5v} and edge set
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Figure 3.8: Illustration of vertex gadget Bv with habitat set Hv defined in Definition 3.36.
Docking edges have arrows pointing to them. (a) Every solution contains all thick blue
edges. (b) The thick red edges denote the unique solution of minimum size to (Bv,Hv).
(c) The thick red edges denote a solution to (Bv,Hv) that is not minimum but includes
all docking edges.
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Figure 3.9: Illustration of edge gadget Ae with habitat set He defined in Definition 3.37.
Docking edges have arrows pointing to them. (a) Every solution contains all thick blue
edges. (b)&(c) In each subfigure the thick red edges denote a solution of minimum size
to (Ae,He).

E(Bv) := {{b1v, b4v}} ∪
⋃4

i=1{{biv, b5v}} ∪
⋃3

i=1{{biv, bi+1
v }}. We define the habitat set

for Bv to be Hv := {{b1v, b4v}, {b2v, b5v}, {b3v, b4v}} ∪ {V (Q) | Q ⊆ Bv and Q is a triangle}.
The docking edges of Bv are {b1v, b2v}, {b2v, b3v}, and {b4v, b5v}. If a vertex is an endvertex
of a docking edge, then we call it a docking vertex. (See Figure 3.8a for an illustration.)

Docking edges are used to “glue together” vertex and edge gadgets in the reduction.
Each instance (Bv,Hv) has the unique minimum solution shown in Figure 3.8b. The
minimum solution does not contain any of the docking edges. However, as shown in
Figure 3.8c, there is a solution that contains all docking edges and is only by one edge
larger than the minimum solution.

Definition 3.37. Let G be a graph and let e ∈ E(G) be an edge. The edge gadget Ae

corresponding to e is the graph with vertex set V (Ae) := {a1e, . . . , a5e} and edge set
E(Ae) := E∗ ∪ {{a1e, a2e}, {a1e, a3e}, {a3e, a4e}, {a4e, a5e}} where the edge set E∗ is defined
as E∗ := {{a1e, a4e}, {a2e, a3e}, {a3e, a5e}}. Moreover, the habitat set for Ae is defined as
He := E∗ ∪ {V (Q) | Q ⊆ Ae and Q is a triangle}. The docking edges of Ae are {a1e, a2e}
and {a4e, a5e}. (See Figure 3.9a for an illustration.)

Each instance (Ae,He) has multiple minimum solutions. For each docking edge
there is a minimum solution containing it as shown in Figures 3.9b and 3.9c. There is
no minimum solution containing both docking edges.
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b5v

b1v b2v

b3vb4v

a3e a5e

a4e

Figure 3.10: Result of gluing together a vertex gadget Bv and an edge gadget Ae using
the docking edges {b2v, b3v} and {a1e, a2e}. The used docking edge is dashed and purple.
Unused docking edges have arrows pointing to them.

Gluing together a vertex gadget Bv and an edge gadget Ae means to select a pre-
viously unused docking edge {biv, b

j
v} ∈ E(Bv) and a previously unused docking edge

{ake , aℓe} ∈ E(Ae) and to set ake := biv and aℓe := bjv (see Figure 3.10 for an illustration).
To prevent vertex degrees from rising above five, we restrict ourselves to gluing together
vertex and edge gadgets respecting the following rule. Whenever we glue a vertex gad-
get Bv and an edge gadget Ae together, we do it in such a way that the degree of
b2v ∈ V (Bv) increases by at most one. We remark that we only ever glue together vertex
and edge gadgets and never (directly) glue together a vertex gadget and a vertex gadget
or an edge gadget and an edge gadget.

Observation 3.38. Gluing together arbitrarily many vertex and edge gadgets as de-
scribed above never results in a vertex having a degree larger than five.

Proof. Let Bv be a vertex gadget that has been glued to three edge gadgets. Then, the
degree of b2v has increased twice, each time by at most one. Hence, b2v has degree at most
five. The degrees of the vertices b1v, b3v, b4v, and b5v have each increased once. Since all
docking vertices of edge gadgets have degree at most three, the degrees of the vertices
b1v, b3v, b4v, and b5v have each increased by at most two. Thus, the vertices b1v, b3v, b4v, and
b5v all have degree at most five.

It is always possible to glue a vertex gadget and an edge gadget together at any given
pair of docking edges such that the degree of b2v ∈ V (Bv) increases by at most one. This
is because every previously unused docking edge of an edge gadget has a vertex of degree
two. We describe the reduction next.

Construction 3.39. Let I = (G, k) be an instance of Cubic Vertex Cover with
V (G) = {v1, . . . , vn}, and E(G) = {e1, . . . , em}. Construct an instance I ′ = (G′,H′, k)
of 2-Diam GBP with k′ := 5n + 4m + k as follows.

Let G′ and H′ be initially empty. For each v ∈ V (G) add the vertex gadget Bv to G′

and extend H by Hv. Then, follow the steps below for each {u, v} ∈ E(G). Select a
docking edge eu of Bu and a docking edge ev of Bv such that both docking edges have
not been used before. Add Ae to G′ such that Ae is glued to both Bu and Bv using the
selected docking edges eu and ev. Moreover, extend H by He. ⋄

Observation 3.40. The graph G′ constructed in Construction 3.39 has maximum degree
at most five.
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Observation 3.41. The set H′ constructed in Construction 3.39 only contains habitats
of size at most three.

Given a vertex gadget Bv ⊆ G′, we denote the set of docking edges of Bv by
Edock(Bv). Likewise, given an edge gadget Ae ⊆ G′, we denote the set of docking edges
of Ae by Edock(Ae). Furthermore, we use the notation Ein(Ae) := E(Ae) \ Edock(Ae) to
refer to the set of non-docking edges of Ae.

The following three observations are direct consequences of previously mentioned
facts.

Observation 3.42. Let Ae ⊆ G′ be an edge gadget and let e′ ∈ Edock(Ae) be a docking
edge of Ae. There is a subset Fe ⊆ Ein(Ae) with |Fe| ≤ 4 such that Fe∪{e′} is a solution
to (Ae,He).

Observation 3.43. Let F be a solution to the constructed instance I ′ and let Bv ⊆ G′

be a vertex gadget. Then,

|F ∩ E(Bv)| ≥

{
5, if F ∩ Edock(Bv) = ∅,
6, otherwise.

Observation 3.44. Let F be a solution to the constructed instance I ′ and let Ae ⊆ G′

be an edge gadget. Then,

|F ∩ Ein(Ae)| ≥

{
5, if F ∩ Edock(Ae) = ∅,
4, otherwise.

Lemma 3.45. Let I ′ be the instance of 2-Diam GBP obtained from an instance I of
Cubic Vertex Cover. Then, I is a yes-instance if and only if I ′ is a yes-instance.

Proof. (⇒) Let S ⊆ V (G) be a vertex cover of G with size at most k. Let S̄ := V (G)\S.
The set

FS̄ :=
⋃
v∈S̄

({{
b1v, b

4
v

}
,
{
b3v, b

4
v

}}
∪

3⋃
i=1

{{
biv, b

5
v

}})
is a union of local solutions as depicted in Figure 3.8b. The set

FS :=
⋃
v∈S

{{
biv, b

j
v

}
| i ∈ {1, 3, 5} ∧ j ∈ {2, 4}

}
is a union of local solutions as depicted in Figure 3.8c. Let e ∈ E(G) be an edge. Since S
is a vertex cover, at least one of the endvertices of e is contained in S. This implies that
at least one of the docking edges of Ae is included in FS . Thus, by Observation 3.42
there is a set Fe of size at most four such that (Fe ∪ FS) ∩ E(Ae) is a solution to
(Ae,He). We claim that F := FS̄ ∪ FS ∪

⋃m
i=1 Fej is a solution to I ′. It holds that

|F | ≤ 5 · (n − k) + 6k + 4m = k′. Since F is a union of local solutions, it holds that
diam(G[F ][H]) ≤ 2 for every H ∈ H.

(⇐) Let F be a solution to I ′. Let S′ := {v ∈ V (G) | F ∩ Edock(Bv) ̸= ∅ } and
let S′′ be a set constructed as follows. For each edge e ∈ E(G) with e ∩ S′ = ∅ add one
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of the two endvertices of e to S′′. Clearly, S := S′ ∪ S′′ is a vertex cover of G. It is
left to show that |S| ≤ k. Let EV :=

⋃n
i=1E(Bvi). By Observation 3.43 it holds that

|F∩EV | ≥ 6·|S′|+5·(n−|S′|) = 5n+|S′|. Let EE :=
⋃m

i=1Ein(Aei). Let ℓ be the number
of edge gadgets Ae ⊆ G′ with the property that F ∩Edock(Ae) = ∅. By Observation 3.44
it holds that |F ∩EE | ≥ 5ℓ+ 4 · (m− ℓ) = 4m+ ℓ. If for an edge e ∈ E(G) it holds that
e∩S′ = ∅, then F ∩Edock(Ae) = ∅. By construction of S′′, this implies that ℓ ≥ |S′′|. It
follows that |F∩EE | ≥ 4m+|S′′|. Hence, |F | = |F∩EV |+|F∩EE | ≥ 5n+|S′|+4m+|S′′|.
By rearrangement we get |S| = |S′| + |S′′| ≤ |F | − 5n− 4m ≤ k.

3.3 On Planar Graphs with Small Habitats

3.3.1 Polynomial-Time Solvable Cases

In this section, we show that 2-Diam GBP-C can be solved in polynomial time on
planar graphs if each habitat has size at most three.

Herkenrath et al. [Her+22] show that 1-Reach GBP-C is solvable in polynomial
time on plane graphs if each habitat induces a cycle which is the boundary of a face.
If we restrict each habitat to induce a triangle, then 2-Diam GBP-C is equivalent to
1-Reach GBP-C by Lemma 3.74. Hence, 2-Diam GBP-C is solvable in polynomial
time on plane graphs if each habitat induces a triangle which is the boundary of a face.
We use this fact in the proof that 2-Diam GBP-C remains polynomial-time solvable if
we drop the requirement that each induced triangle is the boundary of a face.

Proposition 3.46. 2-Diam GBP-C can be solved in O(|V (G)| · |E(G)| · |H|2 + |H|3)
time on plane graphs if each habitat induces a triangle.

Let Adec denote the polynomial-time algorithm by Herkenrath et al. [Her+22] for
solving 2-Diam GBP-C on plane graphs with each habitat inducing a triangle which is
the boundary of a face. It is not hard to deduce an algorithm Aopt that finds a minimum
cost solution to an instance of 2-Diam GBP-C from the description of Adec given by
Herkenrath et al. [Her+22] if, again, the input graph is plane and each habitat induces
a triangle which is the boundary of a face.

Let (G, c,H, k) be an instance of 2-Diam GBP-C where G is plane and each habitat
induces a triangle.

The idea behind our algorithm is to iteratively simplify the given instance of 2-
Diam GBP-C until it can be solved by algorithm Adec. Each step of simplification calls
algorithm Aopt four times. More precisely, during a simplification step we find a habitat
H ∈ H that separates the input graph such that one of the components obtained is easy
to solve with the help of Aopt. The information received by running Aopt enables us to
delete some edges from E(G) and some habitats from H if we carefully change k and
the edge costs associated with the triangle G[H]. For an example of what the result of
one step of simplification looks like, see Figure 3.11.

We will formulate the simplification step as a reduction rule. However, the reduction
rule may change the cost function such that some edges in E(G) are assigned non-positive
cost. Thus, we modify 2-Diam GBP-C for the sake of this proof by allowing the cost
function c to map to any value in Z instead of just N. From the formulation given by
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Simplification
(Reduction Rule 3.52)

Figure 3.11: (a) An instance of 2-Diam GBP-C where the graph is plane and each
habitat induces a triangle. The triangles induced by habitats are marked by differing
colors. Each edge has its cost written on it. (b) The instance of 2-Diam GBP-C
obtained after one step of simplification.

Herkenrath et al. [Her+22], it is not hard to see that Adec and Aopt can be used even if c
takes values in Z. This is because the algorithms Adec and Aopt are based on a reduction
to Maximum Weight Matching.

Problem: Maximum Weight Matching
Input: An edge-weighted graph (G,w) and an integer k ∈ N.
Task: Find a set M ⊆ E(G) of maximum weight w(M) such that for all e, e′ ∈ M it

holds that e ∩ e′ = ∅.

Edges with non-positive weight can always be omitted from a maximum weight
matching, so they can just be deleted before the actual matching algorithm is called.
Moreover, we also allow k to take any value in Z.

Throughout this proof we assume that every edge e ∈ E(G) “is part of a habitat”,
i.e., that for every e ∈ E(G) a habitat H ∈ H with e ⊆ H exists. This can be achieved
by exhaustively applying Reduction Rule 3.3 before doing anything else and then again
exhaustively applying Reduction Rule 3.3 after each simplification step. Furthermore,
we assume that G has no isolated vertices. This can similarly be achieved by exhaustively
applying Reduction Rule 3.1 at the start and then again after each simplification step.

We make some definitions allowing us to relate the positions of objects to a habitat.

Definition 3.47. Let H ∈ H be a habitat, let f in
H ⊆ R2 be the inner face of G[H], and

let fout
H ⊆ R2 be the outer face of G[H]. We say that a vertex v ∈ V (G) lies within

(outside of) H if v ∈ f in
H (v ∈ fout

H ). We say that an edge e ∈ E(G) lies within (outside
of) H if at least one of its endvertices lies within (outside of) H. We say that a habitat
H ′ ∈ H lies within (outside of) H if f in

H′ ⊊ f in
H (fout

H′ ⊊ fout
H ).

Since G is plane, for each habitat H ∈ H no edge e ∈ E(G) lies both within H
and outside of H. Likewise, no habitat H ′ ∈ H lies both within H and outside of H.



3.3. ON PLANAR GRAPHS WITH SMALL HABITATS 43

For a habitat H ∈ H we denote the set of edges lying within H by Ein
H and the set of

edges lying outside of H by Eout
H . Moreover, we use the notation EH := E(G[H]) to

denote the edges of G[H]. Note that for every habitat H ∈ H it holds that E(G) =
Ein

H ⊎EH ⊎Eout
H . Furthermore, we denote the set of habitats lying within H by Hin

H and
the set of habitats lying outside of H by Hout

H . Note that for every habitat H ∈ H it
holds that H = Hin

H⊎{H}⊎Hout
H . Also note that for every habitat H ′ ∈ Hin

H it holds that
E(H ′) ⊆ Ein

H ∪ EH and for every habitat H ′ ∈ Hout
H it holds that E(H ′) ∈ Eout

H ∪ EH .
The following observation states that we can always find a habitat H ∈ H such that

all habitats lying within H are “simple”.

Observation 3.48. Let (G, c,H, k) be an instance of 2-Diam GBP-C where G is plane,
H is nonempty, and every habitat induces a triangle. There exists a habitat H ∈ H such
that for every habitat H ′ ∈ Hin

H it holds that Hin
H′ = ∅.

Proof. Assume towards a contradiction that no such habitat exists, i.e., for every habitat
H ∈ H there is a habitat H ′ ∈ Hin

H with Hin
H′ ̸= ∅. Hence, there exists an infinite sequence

(H)i∈N of habitats in H such that for every i ∈ N it holds that Hi+1 ∈ Hin
Hi

. This means
that for every i ∈ N the inner face fi+1 of G[Hi+1] is a proper subset of the inner face fi
of G[Hi]. Since G is a (finite) graph, it holds that V (G) has finite size. Consequently,
the habitat set H ⊆ 2V (G) also has finite size. It follows that there are numbers i, j ∈ N
with i < j such that Hi = Hj . Let fi be the inner face of G[Hi] and let fj be the inner
face of G[Hj ]. By transitivity of the ⊊-relation on sets, we get fj ⊊ fi, a contradiction
to Hi = Hj .

Observation 3.48 permits the case that for every habitat H ∈ H it holds that Hin
H = ∅.

But in this case we can apply Adec to solve the instance of 2-Diam GBP-C. Furthermore,
if H is empty, then a solution is easily constructed by choosing the set of all edges with
negative cost as the solution. Thus, we can assume that a habitat defined as follows
exists.

Definition 3.49. We call a habitat H ∈ H a reduction base habitat if Hin
H ̸= ∅ and for

all H ′ ∈ Hin
H it holds that Hin

H′ = ∅.

For an example of a reduction base habitat see the habitat {v2, v3, v5} (colored pink)
in Figure 3.11a. Note that a reduction base habitat H ∈ H separates the set of vertices
within H and the set of vertices outside of H. Next, we define two types of graphs. We
use these graphs as input graphs for Aopt.

Definition 3.50. Let H ∈ H be a habitat. The basic inner graph (GH , cH) of H is an
edge-weighted graph with GH := G[Ein

H ∪ EH ] and for all e ∈ E(GH) it holds that

cH(e) :=

{
c(e), if e ∈ Ein

H ,

0, otherwise.

For an example of a basic inner graph, see Figure 3.12a. For a habitat H ∈ H we
denote by FH a set obtained as follows. Let (GH , cH) be the basic inner graph of H and
let F ′ be a solution to the instance (GH , cH ,Hin

H) of (the optimization version of) 2-Diam
GBP-C of minimum cost. Then, FH := F ′ ∩ Ein

H . Note that F ′ (and thereby FH) can
be computed by applying Aopt if H is a reduction base habitat.
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Figure 3.12: (a) The basic inner graph of habitat H := {v2, v3, v5} with regard to the
instance of 2-Diam GBP-C depicted in Figure 3.11a. Additionally, the triangles induced
by the habitats lying within H are marked by differing colors. (b) The {v2, v3}-omitting
inner graph of H.

Definition 3.51. Let H ∈ H be a habitat and let x ∈ EH . The x-omitting inner graph
(GH , cH) of H is an edge-weighted graph with GH := G[Ein

H ∪EH ] and for all e ∈ E(GH)
it holds that

cH(e) :=


c(e), if e ∈ Ein

H ,

c({e ∈ Ein
H | c(e) > 0}) + 1, if e = x,

0, otherwise.

For an example of a x-omitting inner graph, see Figure 3.12b. For a habitat H ∈ H
and an edge x ∈ EH we denote by F x

H a set obtained as follows. Let (GH , cH) be the
x-omitting inner graph of H and let F ′ be a solution to the instance (GH , cH ,Hin

H) of
(the optimization version of) 2-Diam GBP-C of minimum cost. Then, F x

H := F ′ ∩Ein
H .

Note that F ′ (and thereby F x
H) can be computed by applying Aopt if H is a reduction

base habitat.

With the notation ready, we can formulate the reduction rule.

Reduction Rule 3.52. Select a reduction base habitat H ∈ H. Set k := k+ 2 · c(FH)−∑
e∈EH

c(F e
H) and for each e ∈ EH set c(e) := c(e) + c(FH) − c(F e

H). Delete all habitats

in Hin
H from H. Delete all edges in Ein

H from E(G). Finally, restrict the cost function c
to E(G).

A single application of Reduction Rule 3.52 requires calling algorithm Aopt four times.
One call is made to compute FH and the other three calls are made to compute F e

H

for every e ∈ EH . Before proving correctness of the reduction rule, we make three
observations. The first of these observations is immediate.

Observation 3.53. An edge set F ⊆ E(G) is a solution if and only if c(F ) ≤ k and for
each habitat H ∈ H it holds that two or three edges from EH are contained in F .

Observation 3.54. Let F be a solution and let H ∈ H be a habitat. It holds that
c(FH) ≤ c(F ∩ Ein

H).
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Proof. Let (GH , cH) be the basic inner graph of H. Remember that FH is obtained
by finding a minimum cost solution F ′ to the instance I := (GH , cH ,Hin

H) of 2-Diam
GBP-C and setting FH := F ′ ∩ Ein

H . Since cH(e) = 0 for every e ∈ EH , it holds
that cH(F ′) = cH(F ′ ∩ Ein

H) = cH(FH). Because F ′ is a solution of minimum cost
to I and because F ∩ Ein

H is a solution (of indeterminate cost) to I, it follows that
cH(F ′) ≤ cH(F ∩ Ein

H). Thus, cH(FH) ≤ cH(F ∩ Ein
H). Since cH(e) = c(e) for every

e ∈ Ein
H , it follows that c(FH) ≤ c(F ∩ Ein

H).

Observation 3.55. Let F be a solution and let H ∈ H be a habitat such that there is a
unique edge x ∈ EH with x /∈ F . It holds that c(F x

H) ≤ c(F ∩ Ein
H).

Proof. Let (GH , cH) be the x-omitting inner graph of H. Remember that F x
H is obtained

by finding a minimum cost solution F ′ to the instance I := (GH , cH ,Hin
H) of 2-Diam

GBP-C and setting F x
H := F ′ ∩ Ein

H . Let y, z ∈ EH be the two distinct edges with
y, z ∈ F . We show that x /∈ F ′. Assume towards a contradiction that x ∈ F ′. Then, it
holds that

cH(F ′) = cH(x) + cH(F ′ \ {x})

= c({e ∈ Ein
H | c(e) > 0}) + 1 + cH(F ′ \ {x})

> cH(Ein
H)

= cH(Ein
H ∪ {y, z}).

But this means that Ein
H ∪{y, z} is a solution to I of lower cost than F ′, a contradiction.

Thus, because of x /∈ F ′ and cH(y) = cH(z) = 0, it follows that cH(F ′) = cH(F ′∩Ein
H) =

c(F x
H). Because F ′ is a solution of minimum cost to I and because F ∩Ein

H is a solution
(of indeterminate cost) to I, it follows that cH(F ′) ≤ cH(F ∩ Ein

H). Thus, cH(F x
H) ≤

cH(F ∩Ein
H). Since cH(e) = c(e) for every e ∈ Ein

H , it follows that c(F x
H) ≤ c(F ∩Ein

H).

Lemma 3.56. Let I ′ = (G′, c′,H′, k′) be the instance of 2-Diam GBP-C obtained from
an instance I = (G, c,H, k) of 2-Diam GBP-C by application of Reduction Rule 3.52.
Then, I is a yes-instance if and only if I ′ is a yes-instance.

Proof. In the following, let the notations Ein
H , EH , and Eout

H refer to instance I. But
note that EH ⊆ E(G′) and Eout

H ⊆ E(G′).
(⇒) Let F be a solution to I. Let H be the reduction base habitat selected in the

application of Reduction Rule 3.52. We claim that F ′ := F \Ein
H is a solution to I ′. We

will make use of the fact that the following holds.

c′(F ′) = c′(F \ Ein
H)

= c′(F ∩ (Eout
H ∪ EH))

= c(F ∩ Eout
H ) + c′(F ∩ EH)

= c(F ) − c(F ∩ Ein
H) − c(F ∩ EH) + c′(F ∩ EH)

≤ k − c(F ∩ Ein
H) − c(F ∩ EH) + c′(F ∩ EH)

We show that c′(F ′) ≤ k′. For this we distinguish two cases, one of which holds
because of Observation 3.53.
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First case: All three edges from EH are contained in F . This results in the following.

c′(F ′) ≤ k − c(F ∩ Ein
H) − c(F ∩ EH) + c′(F ∩ EH)

≤ k − c(FH) − c(F ∩ EH) + c′(F ∩ EH) (Obs. 3.54)

= k − c(FH) −
∑
e∈EH

c(e) +
∑
e∈EH

(
c(e) + c(FH) − c(F e

H)
)

= k + 2 · c(FH) −
∑
e∈EH

c(F e
H) = k′

Second case: Only two edges from EH are contained in F . Let x ∈ EH be the unique
edge that is not included in F and let y, z ∈ EH be the two distinct edges that are
included in F . This results in the following.

c′(F ′) ≤ k − c(F ∩ Ein
H) − c(F ∩ EH) + c′(F ∩ EH)

≤ k − c(F x
H) − c(F ∩ EH) + c′(F ∩ EH) (Obs. 3.55)

= k − c(F x
H) −

∑
e∈{y,z}

c(e) +
∑

e∈{y,z}

(
c(e) + c(FH) − c(F e

H)
)

= k + 2 · c(FH) −
∑
e∈EH

c(F e
H) = k′

This concludes the case distinction. From F being a solution to I and Observa-
tion 3.53, it follows that two or three edges from EH′ are contained in F for every
H ′ ∈ H. Because of the way H′ is constructed by Reduction Rule 3.52, it holds that
EH′ ⊆ E(G) \ Ein

H for every H ′ ∈ H′. This means that for every H ′ ∈ H′ two or
three edges from EH′ are contained in F \ Ein

H = F ′. Thus, F ′ is a solution to I ′ by
Observation 3.53.

(⇐) Let H be the reduction base habitat selected in the application of Reduction
Rule 3.52 and let e ∈ EH . We will make use of the following reformulations of equations.

c′(e) = c(e) + c(FH) − c(F e
H) ⇐⇒ c(e) = c′(e) − c(FH) + c(F e

H)

k′ = k + 2 · c(FH) −
∑
e∈EH

c(F e
H) ⇐⇒ k = k′ − 2 · c(FH) +

∑
e∈EH

c(F e
H)

Let F ′ be a solution to I ′. Due to Observation 3.53 one of the following two cases
holds.

First case: All three edges from EH are contained in F ′. We claim that F := F ′∪FH
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is a solution to I. We show that c(F ) ≤ k.

c(F ) = c(F ′ ∪ FH)

= c(F ′) + c(FH)

= c′(F ′ ∩ Eout
H ) + c(F ′ ∩ EH) + c(FH)

= c′(F ′ ∩ Eout
H ) +

∑
e∈EH

(
c′(e) − c(FH) + c(F e

H)
)

+ c(FH)

= c′(F ′ ∩ Eout
H ) +

∑
e∈EH

c′(e) − 2 · c(FH) +
∑
e∈EH

c(F e
H)

= c′(F ′) − 2 · c(FH) +
∑
e∈EH

c(F e
H)

≤ k′ − 2 · c(FH) +
∑
e∈EH

c(F e
H) = k

From F ′ being a solution to I ′ and Observation 3.53, it follows that two or three
edges from EH′ are contained in F ′ for every H ′ ∈ {H} ∪ Hout

H . From the definition
of FH and Observation 3.53, it follows that two or three edges from EH′ are contained
in FH for every H ′ ∈ Hin

H . Thus, for every H ′ ∈ H two or three edges from EH are
contained in F ′ ∪ FH = F . Consequently, F is a solution to I by Observation 3.53.

Second case: Only two edges from EH are contained in F ′. Let x ∈ EH be the
unique edge that is not included in F ′ and let y, z ∈ EH be the two distinct edges that
are included in F ′. We claim that F := F ′ ∪ F x

H is a solution to I. We show that
c(F ) ≤ k.

c(F ) = c(F ′ ∪ F x
H)

= c(F ′) + c(F x
H)

= c′(F ′ ∩ Eout
H ) + c(F ′ ∩ EH) + c(F x

H)

= c′(F ′ ∩ Eout
H ) +

∑
e∈{y,z}

(
c′(e) − c(FH) + c(F e

H)
)

+ c(F x
H)

= c′(F ′ ∩ Eout
H ) +

∑
e∈{y,z}

c′(e) − 2 · c(FH) +
∑
e∈EH

c(F e
H)

= c′(F ′) − 2 · c(FH) +
∑
e∈EH

c(F e
H)

≤ k′ − 2 · c(FH) +
∑
e∈EH

c(F e
H) = k

Analogously to the first case, from F ′ being a solution to I ′ and Observation 3.53, it
follows that two or three edges from EH′ are contained in F ′ for every H ′ ∈ {H}∪Hout

H .
From the definition of F x

H and Observation 3.53, it follows that two or three edges from
EH′ are contained in F x

H for every H ′ ∈ Hin
H . Thus, for every H ′ ∈ H two or three

edges from EH are contained in F ′ ∪ F x
H = F . Consequently, F is a solution to I by

Observation 3.53.
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For a single habitat H ∈ H it is possible to compute Hin
H in O(|H|) time by iterating

through all habitats H ′ ∈ H and checking whether H ′ lies within H. Thus, comput-
ing Hin

H for every H ∈ H can be done in O(|H|2) time. Having computed Hin
H for every

H ∈ H, finding a reduction base habitat or detecting that no reduction base habitat
exists in H is doable in O(|H|2) time. Each habitat in H is selected as the reduction base
habitat H in Reduction Rule 3.52 at most once. This means that Reduction Rule 3.52 is
applied at most O(|H|) times. Hence, a reduction base habitat needs to be searched for
at most O(|H|) times. The total time spent for finding reduction base habitats thereby
is in O(|H|3).

Since Reduction Rule 3.52 is applied at most O(|H|) times, algorithm Aopt is applied
at most O(|H|) times. Algorithm Adec is only applied once at the end. Since a single
application of Aopt and Adec as described by Herkenrath et al. [Her+22] has a running
time of O(|V (G)| · |E(G)| · |H|), the overall time needed for running Aopt and Adec is in
O(|V (G)| · |E(G)| · |H|2). All other actions performed by Reduction Rule 3.52 take only
linear time.

The Reduction Rules 3.1 and 3.3 are exhaustively applied once more often than
Reduction Rule 3.52 is singly applied. However, the exhaustive application of both
Reduction Rules 3.1 and 3.3 is asymptotically faster than a single application of Reduc-
tion Rule 3.52. Consequently, we do not need to further consider the time necessary
for running Reduction Rules 3.1 and 3.3. Thus, the resulting total running time is
O(|V (G)| · |E(G)| · |H|2 + |H|3). This concludes the proof of Proposition 3.46.

Removing P2s and P3s with the linear-time Reduction Rules 3.5 and 3.7 yields the
following corollary.

Corollary 3.57. 2-Diam GBP-C can be solved in O(|V (G)| · |E(G)| · |H|2 + |H|3) time
on planar graphs if each habitat has size at most three.

3.3.2 NP-Hardness

In this section, we show the following.

Proposition 3.58. 2-Diam GBP is NP-hard even on planar graphs of maximum degree
five with each habitat having size at most four.

The following problem is NP-hard [Moh01].

Problem: Planar Cubic Vertex Cover
Input: A planar cubic graph G and an integer k ∈ N.
Question: Is there a vertex cover S ⊆ V (G) with |S| ≤ k?

We give a polynomial-time reduction from Planar Cubic Vertex Cover.
For easier notation, we denote an instance of the optimization version of 2-Diam

GBP with graph G and habitat set H by (G,H) without explicitly stating that we
interpret (G,H) as an instance of the optimization version of 2-Diam GBP and not,
say, any other problem.

In the upcoming reduction, we replace each vertex of the given instance of Planar
Cubic Vertex Cover by a graph (“vertex gadget”) and each edge by a graph (“edge
gadget”). These gadgets mimic, in a sense, the nodes and edges of the graph of the
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Figure 3.13: Illustration of vertex gadget Bv with habitat set Hv defined in Defini-
tion 3.59. Docking edges have arrows pointing to them. (a) The two subgraphs induced
by the two habitats in Hv are marked by two different colors. (b) The thick red edges
denote the unique solution of minimum size to (Bv,Hv). (c) The thick red edges denote
a solution to (Bv,Hv) that is not minimum but includes all docking edges.

Planar Cubic Vertex Cover-instance. We define the gadgets in preparation for the
reduction.

Definition 3.59. Let G be a graph and let v ∈ V (G) be a vertex. The vertex gadget Bv

corresponding to v is the graph with vertex set V (Bv) := {b1v, . . . , b6v} and edge set
E(Bv) :=

⋃5
i=1{{biv, b6v}} ∪

⋃4
i=1{{biv, bi+1

v }}. We define the habitat set for Bv to be
Hv := {{b1v, b2v, b3v, b6v}, {b3v, b4v, b5v, b6v}}. The docking edges of Bv are {b1v, b2v}, {b2v, b3v}, and
{b4v, b5v}. If a vertex is an endvertex of a docking edge, then we call it a docking vertex.
(See Figure 3.13a for an illustration.)

Docking edges are used to “glue together” vertex and edge gadgets in the reduction.
(The choice of the docking edges is somewhat arbitrary. Because of symmetry, we could
use {b3v, b4v} instead of {b2v, b3v} as a docking edge.)

Each instance (Bv,Hv) has the unique minimum solution shown in Figure 3.13b.
The minimum solution does not contain any of the docking edges. However, as shown
in Figure 3.13c, there is a solution that contains all docking edges and is only by one
edge larger than the minimum solution.

Note that the degrees of docking vertices vary. Furthermore, the vertex b2v is a
docking vertex shared by two docking edges. These properties of docking vertices are
relevant when deciding how to glue together vertex and edge gadgets. The decisions
must be made carefully so that no vertex degree increases above five and the resulting
graph is planar.

We define not just one but two edge gadgets. In the reduction each edge of the
instance of Planar Cubic Vertex Cover is replaced by just one edge gadget. But
it might be necessary to replace some edges by the first edge gadget and other edges by
the second edge gadget.

Definition 3.60. Let G be a graph and let e ∈ E(G) be an edge. The straight edge
gadget Astr

e corresponding to e is the graph with vertex set V (Astr
e ) := {a1e, . . . , a7e} and
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Figure 3.14: (a)–(c) Illustration of edge gadget Astr
e with habitat set Hstr

e defined in
Definition 3.60. (d)–(f) Illustration of edge gadget Ainv

e with habitat set Hinv
e defined

in Definition 3.61. (a)–(f) Docking edges have arrows pointing to them. (a)&(d) Every
solution contains all thick blue edges. (b)&(c) In each subfigure the thick red edges
denote a solution of minimum size to (Astr

e ,Hstr
e ). (e)&(f) In each subfigure the thick red

edges denote a solution of minimum size to (Ainv
e ,Hinv

e ).

edge set E(Astr
e ) := E∗

e ∪ {{a1e, a2e}, {a1e, a3e}, {a3e, a4e}, {a4e, a5e}, {a5e, a6e}, {a6e, a7e}} where
E∗

e := {{a1e, a4e}, {a4e, a6e}, {a2e, a3e}, {a3e, a5e}, {a5e, a7e}}. The habitat set for Astr
e is Hstr

e :=
E∗

e ∪ {V (Q) | Q ⊆ Astr
e and Q is a triangle}. The docking edges of Astr

e are {a1e, a2e} and
{a6e, a7e}. (See Figure 3.14a for an illustration.)

Each instance (Astr
e ,Hstr

e ) has multiple minimum solutions. For each docking edge
there is a minimum solution containing it as shown in Figures 3.14b and 3.14c. There
is no minimum solution containing both docking edges. Again, note that the degrees of
docking vertices vary.

Definition 3.61. Let G be a graph and let e ∈ E(G) be an edge. The degree-inverting
edge gadget Ainv

e corresponding to e is obtained by letting Ainv
e be initially equal to Astr

e

and then deleting the edge {a5e, a6e} and adding the edge {a4e, a7e}. The habitat set for Ainv
e

is Hinv
e := E∗

e ∪ {V (Q) | Q ⊆ Ainv
e and Q is a triangle}. The docking edges of Ainv

e are
{a1e, a2e} and {a6e, a7e}. (See Figure 3.14d for an illustration.)

As for straight edge gadgets, each instance (Ainv
e ,Hinv

e ) has multiple minimum so-
lutions. For each docking edge there is a minimum solution containing it as shown in
Figures 3.14e and 3.14f. There is no minimum solution containing both docking edges.
Note that the degrees of docking vertices vary.

Gluing together a vertex gadget Bv and an edge gadget Ae means to select a pre-
viously unused docking edge {biv, b

j
v} ∈ E(Bv) and a previously unused docking edge
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Figure 3.15: Used docking edges are dashed and purple. Unused docking edges have
arrows pointing to them. (a) Result of gluing together a vertex gadget Bv and a straight
edge gadget Astr

e using the docking edges {b1v, b2v} and {a1e, a2e}. (b) Result of gluing
together multiple vertex and edge gadgets.

{ake , aℓe} ∈ E(Ae) and to set ake := biv and aℓe := bjv (see Figure 3.15 for an illustration).
To prevent vertex degrees from rising above five, we restrict ourselves to gluing together
vertex and edge gadgets respecting the following rule. Whenever we glue a vertex gad-
get Bv and an edge gadget Ae together, we do it in such a way that the degree of
b2v ∈ V (Bv) increases by at most one. We remark that we only ever glue together vertex
and edge gadgets and never (directly) glue together a vertex gadget and a vertex gadget
or an edge gadget and an edge gadget.

Observation 3.62. Gluing together arbitrarily many vertex and edge gadgets as de-
scribed above never results in a vertex having a degree larger than five.

Proof. Let Bv be a vertex gadget that has been glued to three edge gadgets. Then, the
degree of b2v has increased twice, each time by at most one. Hence, b2v has degree at most
five. The degrees of the vertices b1v, b3v, b4v, and b5v have each increased once. Since all
docking vertices of edge gadgets have degree at most three, the degrees of the vertices
b1v, b3v, b4v, and b5v have each increased by at most two. Thus, the vertices b1v, b3v, b4v, and
b5v all have degree at most five.

It is always possible to glue a vertex gadget and an edge gadget together at any given
pair of docking edges such that the degree of b2v ∈ V (Bv) increases by at most one. This
is because every previously unused docking edge of an edge gadget has a vertex of degree
two.

In the upcoming reduction, when we replace an edge from the graph G of the instance
of Planar Cubic Vertex Cover by an edge gadget, having defined two types of edge
gadgets will allow us to choose one of the edge gadgets. This ability to choose will enable
us to maintain planarity of the graph G′ of the constructed instance of 2-Diam GBP
while meeting the condition that for each v ∈ V (G) the degree of b2v ∈ V (Bv) increases
by at most one when gluing together a vertex and an edge gadget.

The reason that having two edge gadgets helps in maintaining planarity can be seen
by comparing Astr

e and Ainv
e in Figures 3.14a and 3.14d. In Figure 3.14a the docking

vertices having degree two (i.e., a2e and a7e) are both on one side (on the right), whereas
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(a)

(b)

Construction 3.63

Figure 3.16: Illustration to Construction 3.63. (a) Example graph G of the input instance
I = (G, k). Vertices are orange and edges are turquoise. (b) A graph G′ that can be
obtained from G using Construction 3.63. Docking edges (being both part of a vertex
and an edge gadget) are dashed and purple. Edges that are only part of a vertex gadget
are orange. Edges that are only part of an edge gadget are turquoise.

in Figure 3.14d the docking vertices having degree two are on different sides (a2e on the
right and a6e on the left). Using this we can ensure that the docking vertices of degree
two are always placed on the side they need to be on.

Construction 3.63. Let I = (G, k) be an instance of Planar Cubic Vertex Cover
with V (G) = {v1, . . . , vn}, and E(G) = {e1, . . . , em}. Construct an instance I ′ =
(G′,H′, k) of 2-Diam GBP with k′ := 5n + 7m + k as follows (see Figure 3.16 for an
illustration).

We create a plane drawing D′ of G′ by gradually making additions to D′. Whenever
we make an addition to D′, we assume that we make the additions in a reasonable manner
using the insights gained prior to this construction. Let D′ be initially a drawing of the
empty graph and let H′ be initially empty. For each v ∈ V (G) add a drawing of the
vertex gadget Bv to D′ and extend H by Hv. Then, follow the steps below for each
{u, v} ∈ E(G). Select a docking edge eu of Bu and a docking edge ev of Bv such that
both docking edges have not been used before. Next, add a drawing of Astr

e or Ainv
e to D′

such that it is glued to both Bu and Bv using the selected docking edges eu and ev.
Moreover, extend H by the corresponding set Hstr

e or Hinv
e . Finally, let G′ be the graph

corresponding to the drawing D′. ⋄

Observation 3.64. The graph G′ constructed in Construction 3.63 is planar and has
maximum degree at most five.



3.3. ON PLANAR GRAPHS WITH SMALL HABITATS 53

Observation 3.65. The set H′ constructed in Construction 3.63 only contains habitats
of size at most four.

Since the constructed graph G′ contains only one edge gadget for every edge e ∈ E(G)
of the original graph G, we can simply denote this edge gadget by Ae instead of Astr

e

or Ainv
e . Likewise, we can write He for the associated habitat set instead of Hstr

e or Hinv
e .

Given a vertex gadget Bv ⊆ G′, we denote the set of docking edges of Bv by Edock(Bv).
Likewise, given an edge gadget Ae ⊆ G′, we denote the set of docking edges of Ae by
Edock(Ae). Furthermore, we use the notation Ein(Ae) := E(Ae) \ Edock(Ae) to refer to
the set of non-docking edges of Ae.

The following three observations are direct consequences of previously mentioned
facts.

Observation 3.66. Let Ae ⊆ G′ be an edge gadget and let e′ ∈ Edock(Ae) be a docking
edge of Ae. There is a subset Fe ⊆ Ein(Ae) with |Fe| ≤ 7 such that Fe∪{e′} is a solution
to (Ae,He).

Observation 3.67. Let F be a solution to the constructed instance I ′ and let Bv ⊆ G′

be a vertex gadget. Then,

|F ∩ E(Bv)| ≥

{
5, if F ∩ Edock(Bv) = ∅,
6, otherwise.

Observation 3.68. Let F be a solution to the constructed instance I ′ and let Ae ⊆ G′

be an edge gadget. Then,

|F ∩ Ein(Ae)| ≥

{
8, if F ∩ Edock(Ae) = ∅,
7, otherwise.

Lemma 3.69. Let I ′ be the instance of 2-Diam GBP obtained from an instance I
of Planar Cubic Vertex Cover. Then, I is a yes-instance if and only if I ′ is a
yes-instance.

Proof. (⇒) Let S ⊆ V (G) be a vertex cover of G with size at most k. Let S̄ := V (G)\S.
The set

FS̄ :=
⋃
v∈S̄

(
5⋃

i=1

{{
biv, b

6
v

}})
is a union of local solutions as depicted in Figure 3.13b. The set

FS :=
⋃
v∈S

({{
b2v, b

6
v

}
,
{
b4v, b

6
v

}}
∪

4⋃
i=1

{{
biv, b

i+1
v

}})

is a union of local solutions as depicted in Figure 3.13c. Let e ∈ E(G) be an edge. Since S
is a vertex cover, at least one of the endvertices of e is contained in S. This implies that
at least one of the docking edges of Ae is included in FS . Thus, by Observation 3.66
there is a set Fe of size at most seven such that (Fe ∪ FS) ∩ E(Ae) is a solution to
(Ae,He). We claim that F := FS̄ ∪ FS ∪

⋃m
i=1 Fej is a solution to I ′. It holds that
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|F | ≤ 5 · (n − k) + 6k + 7m = k′. Since F is a union of local solutions, it holds that
diam(G[F ][H]) ≤ 2 for every H ∈ H.

(⇐) Let F be a solution to I ′. Let S′ := {v ∈ V (G) | F ∩ Edock(Bv) ̸= ∅ } and
let S′′ be a set constructed as follows. For each edge e ∈ E(G) with e ∩ S′ = ∅ add one
of the two endvertices of e to S′′. Clearly, S := S′ ∪ S′′ is a vertex cover of G. It is
left to show that |S| ≤ k. Let EV :=

⋃n
i=1E(Bvi). By Observation 3.67 it holds that

|F∩EV | ≥ 6·|S′|+5·(n−|S′|) = 5n+|S′|. Let EE :=
⋃m

i=1Ein(Aei). Let ℓ be the number
of edge gadgets Ae ⊆ G′ with the property that F ∩Edock(Ae) = ∅. By Observation 3.68
it holds that |F ∩EE | ≥ 8ℓ+ 7 · (m− ℓ) = 7m+ ℓ. If for an edge e ∈ E(G) it holds that
e∩S′ = ∅, then F ∩Edock(Ae) = ∅. By construction of S′′, this implies that ℓ ≥ |S′′|. It
follows that |F∩EE | ≥ 7m+|S′′|. Hence, |F | = |F∩EV |+|F∩EE | ≥ 5n+|S′|+7m+|S′′|.
By rearrangement we get |S| = |S′| + |S′′| ≤ |F | − 5n− 7m ≤ k.

3.4 Structural Parameterizations

3.4.1 Number of Triangles

We show that 2-Diam GBP-C is fixed-parameter tractable with respect to the number
of triangles contained in the input graph. Moreover, we identify some polynomial-time
solvable cases of 2-Diam GBP-C in a corollary.

Let I = (G,H, c, k) be an instance of 2-Diam GBP-C and let #C3 denote the
number of triangles contained in G.

Proposition 3.70. 2-Diam GBP-C can be solved in 8#C3 |I|O(1) time.

We recall two reduction rules.

Reduction Rule 3.3 (Restated). If for an edge e ∈ E(G) there is no habitat H ∈ H
with e ⊆ H, then delete e.

Reduction Rule 3.9 (Restated). If for an edge e ∈ E(G) there is a habitat H ∈ H
with e ⊆ H such that e is not contained in a triangle in G, then fix e ∈ F .

After the exhaustive application of the above two reduction rules, every edge of the
obtained graph is contained in a triangle or fixed to be included in the solution F . Thus,
it remains to decide for at most 3 ·#C3 edges which ones to add to the solution F . This
can be done by a brute-force approach, systematically checking all 23·#C3 possibilities.
This concludes the proof of Proposition 3.70.

Remark. 2-Diam GBP-C can be solved in 2t|I|O(1) time, where t is the number of edges
contained in triangles.

Since, e.g., bipartite graphs contain no odd cycles and therefore no triangles, we
obtain the following.

Corollary 3.71. 2-Diam GBP-C can be solved in polynomial time

• on bipartite graphs.

• on graphs of treewidth at most one.

• on graphs with vertex cover number at most one.
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3.4.2 Feedback Edge Number

In this section, we show that 2-Diam GBP-C is fixed-parameter tractable with respect
to the feedback edge number of the input graph. As a part of the process, we prove a
lemma that we also use later in the context of (2, 2)-Closed GBP-C. (Later usage is
the reason why we are interested in cycles of length at most six.)

Lemma 3.72. Let G be a graph. The number #C≤6 of cycles of length at most six
contained in G is upper bounded by a function only depending on the feedback edge
number of G.

Proof. Let F ⊆ E(G) be a feedback edge set of G. Let nF :=
∑6

k=0

(|F |
k

)
. We claim that

#C≤6 ≤ nF . It holds that each cycle of length at most six in G contains at least one edge
from F . Assume towards a contradiction that there are more than nF cycles of length
at most six contained in G. Then, by pigeonhole principle, there is a subset F ′ ⊆ F
such that there are two distinct cycles C1, C2 ⊆ G with E(C1) ∩ F = E(C2) ∩ F = F ′.
Let Ediff := E(C1)△E(C2) and let Gdiff := G[Ediff ]. Since C1 and C2 are distinct, it
holds that Ediff ̸= ∅. Due to E(C1) ∩ F = E(C2) ∩ F , it holds that Ediff ∩ F = ∅. Thus,
Gdiff ⊆ G−F . This implies that Gdiff is a forest. Therefore, there is a vertex v ∈ V (Gdiff)
with degGdiff

(v) = 1. Let ediffv ∈ Ediff be the unique edge in Ediff with v ∈ ediffv . Assume
w.l.o.g. that ediffv ∈ E(C1) (otherwise interchange the names of C1 and C2). Since C1

is a cycle, there is a unique edge ev ∈ E(C1) with v ∈ ev and ev ̸= ediffv . Because of
degGdiff

(v) = 1, it holds that ev /∈ Ediff . Hence, ev ∈ E(C2). Since C2 is a cycle, there is
a unique edge e′v ∈ E(C2) with v ∈ e′v and e′v ̸= ev. Because of ediffv ∈ E(C1), it holds
that e′v ̸= ediffv . As ediffv is the only edge in Ediff with v ∈ ediffv , it follows that e′v /∈ Ediff .
This implies that e′v ∈ E(C1). In summary, the edges ediffv , ev, e

′
v are included in E(C1),

pairwise distinct, and all have v as an endvertex. Thus, degC1
(v) ≥ 3, a contradiction

to C1 being a cycle.

We have seen in the previous section that 2-Diam GBP-C is fixed-parameter trac-
table with respect to the number of triangles contained in the input graph (see Propo-
sition 3.70). Using the above lemma, we get the following.

Proposition 3.73. 2-Diam GBP-C is fixed-parameter tractable with respect to the
feedback edge number of the input graph.

3.4.3 Distance to Clique

We formally prove that 2-Diam GBP and 1-Reach GBP are equivalent when restricted
to instances where habitats have size at most three. Subsequently, we use a result by
Herkenrath et al. [Her+22] showing NP-hardness of 2-Diam GBP on cliques.

For the following equivalence proof, note that every instance of 2-Diam GBP is also
an instance of 1-Reach GBP and vice versa.

Lemma 3.74. Let I = (G,H, k) be an instance of 2-Diam GBP with habitats of size at
most three. Then, I is a yes-instance of 2-Diam GBP if and only if I is a yes-instance
of 1-Reach GBP.
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Proof. (⇒) Let F be a solution to I interpreted as an instance of 2-Diam GBP. This
means that for every habitat H ∈ H it holds that diam(G[F ][H]) ≤ 2. Thus, for every
habitat H ∈ H the graph G[F ][H] is connected. It follows that F is a solution to I
interpreted as an instance of 1-Reach GBP.

(⇐) Similarly, let F be a solution to I interpreted as an instance of 1-Reach GBP.
This means that for every habitat H ∈ H the graph G[F ][H] is connected. Since every
habitat has size at most three, this implies that for every habitat H ∈ H it holds that
diam(G[F ][H]) ≤ 2. Thus, F is a solution to I interpreted as an instance of 2-Diam
GBP.

Herkenrath et al. [Her+22] show that 1-Reach GBP is NP-hard even if G is a clique
and each habitat induces a P2 or a C3. Therefore, the following holds.

Proposition 3.75. 2-Diam GBP is NP-hard even if G is a clique and each habitat
induces a P2 or a C3.

3.4.4 Vertex Cover Number

We show that 2-Diam GBP is NP-hard even on graphs with vertex cover number three,
on graphs of treewidth three, and on graphs with distance to bipartite one. Addition-
ally, we exclude the existence of polynomial kernels for 2-Diam GBP regarding some
parameterizations. We start by considering the vertex cover number.

Proposition 3.76. 2-Diam GBP is NP-hard even on graphs with vertex cover number
three.

The following proof is inspired by the proof that 1-Reach GBP is NP-hard even
on series-parallel graphs given by Fluschnik and Kellerhals [FK21]. In Sections 4.3.1
and 4.3.2, we conduct two more proofs of this kind. We give a polynomial-time reduction
from the following NP-hard problem.

Problem: Hitting Set
Input: A universe U , a set F ⊆ 2U , and an integer k ∈ N.
Question: Is there a subset U ′ ⊆ U with |U ′| ≤ k such that for every F ∈ F it holds

that F ∩ U ′ ̸= ∅?

Construction 3.77. Let I = (U,F , k) be an instance of Hitting Set with U =
{1, . . . , n} and F = {F1, . . . , Fm}. Construct an instance I ′ = (G,H, k′) of 2-Diam
GBP with k′ := 2n + k + 1 as follows (see Figure 3.17 for an illustration).

Let G be initially empty. Add the vertex set VU := {xi | i ∈ U} and the three
vertices s, t, and h. Moreover, add the edge sets E∗ := {{t, h}} ∪

⋃n
i=1{{s, xi}, {xi, h}}

and EU :=
⋃n

i=1{{xi, t}}. Finally, let H := E∗ ∪ {Z1, . . . , Zm} with Zj := {s, t, h} ∪⋃
i∈Fj

{xi} for every Fj ∈ F . ⋄

We make two observations.

Observation 3.78. The graph G constructed in Construction 3.77 has vertex cover
number three.
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s

t h

x1 . . . xi . . . xj . . . xn

Figure 3.17: Illustration to Construction 3.77. Every solution contains all thick blue
edges.

Observation 3.79. Let I ′ be a yes-instance obtained by Construction 3.77. Then,
every solution F contains all edges in E∗.

By the following lemma, we prove Proposition 3.76.

Lemma 3.80. Let I ′ be the instance of 2-Diam GBP obtained from an instance I of
Hitting Set using Construction 3.77. Then, I is a yes-instance if and only if I ′ is a
yes-instance.

Proof. (⇒) Let U ′ ⊆ U be a solution to I. We claim that F := E∗ ∪
⋃

i∈U ′{{xi, t}} is a
solution to I ′. Note that |F | ≤ 2n+k+1. Since E∗ ⊆ F , it holds that diam(G[F ][H]) ≤ 2
for every habitat H ∈ E∗. Assume towards a contradiction that there is a habitat
Zj ∈ H such that diam(G[F ][Zj ]) > 2. From E∗ ⊆ F it follows that any two vertices
u, v ∈ Zj with {u, v} ̸= {s, t} have a distance of at most two in G[F ][Zj ]. Hence,
distG[F ][Zj ](s, t) > 2. This has the consequence that no edge from {{xi, t} | i ∈ Fj} is
included in F . Therefore, Fj ∩ U ′ = ∅, a contradiction to U ′ being a solution to I.

(⇐) Let F be a solution to I ′. We claim that U ′ := {i ∈ U | {xi, t} ∈ F} is a solution
to I. Note that it follows from E∗ ⊆ F that |U ′| ≤ k. Assume towards a contradiction
that U ′ is not a solution. Then, there is an Fj ∈ F with Fj∩U ′ = ∅. Hence, no edge from
the edge set Ej := {{xi, t} | i ∈ Fj} is included in F . Since every (s, t)-path of length at
most two in G[Zj ] contains an edge from Ej , it follows that distG[F ][Zj ](s, t) > 2. Thus,
it holds that diam(G[F ][Zj ]) > 2, a contradiction to F being a solution to I ′.

We make two further observations regarding the graph constructed in Construc-
tion 3.77.

Observation 3.81. The graph G constructed in Construction 3.77 has treewidth three.

Observation 3.82. The graph G constructed in Construction 3.77 has distance to bi-
partite one.

These observations yield the following corollary.

Corollary 3.83. 2-Diam GBP is NP-hard

• even on graphs of treewidth three.
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• on graphs with distance to bipartite one.

Finally, we discuss polynomial kernels. Hitting Set parameterized by the size of the
universe U does not admit a polynomial kernel unless NP ⊆ coNP/poly [DLS14]. Since
the graph G′ constructed in Construction 3.77 only has |U | + 3 vertices, virtually every
natural graph parameter of G′ is polynomially bounded by |U |. Thus, Construction 3.77
is a polynomial parameter transformation from Hitting Set parameterized by |U | to 2-
Diam GBP parameterized by virtually any natural graph parameter. As a consequence,
we get the following.

Proposition 3.84. Unless NP ⊆ coNP/poly, 2-Diam GBP parameterized by virtually
any natural graph parameter admits no polynomial kernel.



Chapter 4

(2, 2)-Closed GBP

4.1 Preprocessing

In this section, we define and analyze reduction rules for later usage. We consider an
instance I = (G, c,H, k) of (2, 2)-Closed GBP-C.

Definition 4.1. For a habitat H ∈ H, we define the 2-habitat H2 corresponding to H
as H2 := H ∪ {x ∈ V (G) | ∃y, z ∈ H. y ̸= z ∧ x ∈ NG(y) ∩NG(z)}. We define the set of
2-habitats H2 corresponding to H as H2 := {H2 | H ∈ H}.

Intuitively, a 2-habitat H2 is the set of vertices the animals of the species modeled
by habitat H ∈ H are able to move through in the context of (2, 2)-Closed GBP-C.
The following is an adaption of Reduction Rule 3.3 to (2, 2)-Closed GBP-C.

Reduction Rule 4.2. If for an edge e ∈ E(G) there is no 2-habitat H2 ∈ H2 with
e ⊆ H2, then delete e.

Observation 4.3. Reduction Rule 4.2 is correct.

Proof. Let I ′ = (G′, c′,H′, k′) be the instance of (2, 2)-Closed GBP-C obtained from I
by application of Reduction Rule 4.2. We show that I is a yes-instance if and only if I ′

is a yes-instance. Let e ∈ E(G) be the edge deleted in the application of Reduction
Rule 4.2.

(⇒) Let F be a solution to I. We claim that F ′ := F \ {e} is a solution to I ′.
Clearly, c(F ′) ≤ k′. Assume towards a contradiction that there is a habitat H ∈ H with
vertices u, v ∈ H such that distG[F ′]2[H](u, v) > 2. Since distG[F ]2[H](u, v) ≤ 2, it follows
that there is a (u, v)-path of length at most two in G[H] such that e ∈ E(P ). But this
implies that e ⊆ H2, a contradiction.

(⇐) Let F be a solution to I ′. Then, F is also a solution to I.

The following is an adaption of Reduction Rule 3.9 to (2, 2)-Closed GBP-C. It also
adds an edge to the solution F that is being constructed.

Reduction Rule 4.4. If for an edge e ∈ E(G) there is a 2-habitat H2 ∈ H2 with
e ⊆ H2 such that e is not contained in a cycle of length at most six in G, then fix e ∈ F .

59
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e P ′

u

v

(a)

e

P ′

u

v

(b)

e P ′

u

v

(c)

Figure 4.1: Illustration to the proof of Observation 4.5. The edge e has been fixed to be
included in F in the application of Reduction Rule 4.4. The (u, v)-path P ′ has length
at most four. Each way the vertices u, v, the edge e, and the path P ′ can relate to each
other (up to symmetry by interchanging u and v) is depicted in one subfigure. In each
subfigure the edge e is contained in a cycle of length at most six.

Observation 4.5. Reduction Rule 4.4 is correct.

Proof. Let e ∈ E(G) be the edge fixed to be included in F in the application of Reduction
Rule 4.4. Assume towards a contradiction that there is a solution F̃ to I with e /∈ F̃ .
Let H2 ∈ H2 be a 2-habitat for which e ⊆ H2 holds. Let H ∈ H be the habitat
corresponding to H2. Then, there are vertices u, v ∈ H and a (u, v)-path P of length
at most two in G such that e ∈ E(P ). By definition of (2, 2)-Closed GBP-C, it holds
that dist

G[F̃ ]2
(u, v) ≤ 2. By definition of the second power of a graph, it follows that

dist
G[F̃ ]

(u, v) ≤ 4. Hence, there is a (u, v)-path P ′ of length at most four in G such that

e /∈ E(P ′). The existence of P and P ′ implies that e is contained in a cycle of length at
most six in G (see Figure 4.1). This is a contradiction.

4.2 Tractability

4.2.1 On Trees and Cycles

In this section, we show the following.

Proposition 4.6. (2, 2)-Closed GBP-C can be solved in polynomial time on graphs
where each component is a tree or a cycle.

Moreover, at the end of this section, we record some more specialized cases in a
corollary. We consider an instance I = (G,H, c, k) of (2, 2)-Closed GBP-C where
each component of G is a tree or a cycle. We recall two reduction rules.

Reduction Rule 4.2 (Restated). If for an edge e ∈ E(G) there is no 2-habitat H2 ∈ H2

with e ⊆ H2, then delete e.

Reduction Rule 4.4 (Restated). If for an edge e ∈ E(G) there is a 2-habitat H2 ∈ H2

with e ⊆ H2 such that e is not contained in a cycle of length at most six in G, then fix
e ∈ F .
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Exhaustive application of the above reduction rules results in every component of G
being an isolated vertex or a cycle of length at most six. If there is a habitat H ∈ H
with vertices u, v ∈ H such that u and v are contained in different components of G,
then diam(G) = ∞, which means that no is to be returned. If no such habitat H
exists, then for each component C of G, we can independently search for a minimum
cost local solution FC ⊆ E(C) satisfying diam(C[FC ][HC ]) ≤ 2 for every HC ∈ H with
HC ⊆ V (C). Depending on the success of finding these local solutions and their summed
cost, yes or no is to be returned.

Corollary 4.7. (2, 2)-Closed GBP-C can be solved in polynomial time

• on graphs of maximum degree at most two.

• on graphs of treewidth at most one.

• on graphs with vertex cover number at most one.

4.2.2 Parameterized by Feedback Edge Number

In this section, we show that (2, 2)-Closed GBP-C is fixed-parameter tractable with
respect to the feedback edge number f of the input graph. The proof is similar to the
proof that 2-Diam GBP-C is fixed-parameter tractable with respect to f (see Proposi-
tion 3.73). Let I = (G,H, c, k) be an instance of (2, 2)-Closed GBP-C and let #C≤6

denote the number of cycles of length at most six contained in G. We start by proving
the following proposition.

Proposition 4.8. (2, 2)-Closed GBP-C can be solved in 64#C≤6 |I|O(1) time.

We recall two reduction rules.

Reduction Rule 4.2 (Restated). If for an edge e ∈ E(G) there is no 2-habitat H2 ∈ H2

with e ⊆ H2, then delete e.

Reduction Rule 4.4 (Restated). If for an edge e ∈ E(G) there is a 2-habitat H2 ∈ H2

with e ⊆ H2 such that e is not contained in a cycle of length at most six in G, then fix
e ∈ F .

After the exhaustive application of the above two reduction rules, every edge of the
obtained graph is contained in a cycle of length at most six or fixed to be included in
the solution F . Thus, it remains to decide for at most 6 ·#C≤6 edges which ones to add
to the solution F . This can be done by a brute-force approach, systematically checking
all 26·#C≤6 possibilities. This concludes the proof of Proposition 4.8.

Remark. 2-Diam GBP-C can be solved in 2t|I|O(1) time, where t is the number of edges
contained in cycles of length at most six.

Using Lemma 3.72 we get the following.

Proposition 4.9. (2, 2)-Closed GBP-C is fixed-parameter tractable with respect to
the feedback edge number of the input graph.
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s

s′

t

x1 . . . xi . . . xj . . . xn

Figure 4.2: Illustration to Construction 4.11. Every solution contains all thick blue
edges.

4.3 Intractability

4.3.1 On Series-Parallel Graphs with Vertex Cover Num-
ber Two

We show that (2, 2)-Closed GBP is NP-hard even on series-parallel graphs with vertex
cover number at most two. Additionally, we exclude the existence of polynomial kernels
for (2, 2)-Closed GBP regarding some parameterization. We start by proving the
following proposition.

Proposition 4.10. (2, 2)-Closed GBP is NP-hard even on series-parallel graphs with
vertex cover number two.

We give a polynomial-time reduction from Hitting Set.

Construction 4.11. Let I = (U,F , k) be an instance of Hitting Set with U =
{1, . . . , n} and F = {F1, . . . , Fm}. Construct an instance I ′ = (G,H, k′) of (2, 2)-
Closed GBP with k′ := n + k + 1 as follows (see Figure 4.2 for an illustration).

Let G be initially empty. Add the vertex set VU := {xi | i ∈ U} and the three
vertices s, s′, and t. Moreover, add the edge sets E∗ := {{s, s′}} ∪

⋃n
i=1{{s′, xi}} and

EU :=
⋃n

i=1{{xi, t}}. Finally, let H := E∗ ∪ {Z1, . . . , Zm} with Zj := {s, t} ∪
⋃

i∈Fj
{xi}

for every Fj ∈ F . ⋄

We make two observations.

Observation 4.12. The graph G constructed in Construction 4.11 is series-parallel and
has vertex cover number two.

Observation 4.13. Let I ′ be a yes-instance obtained by Construction 4.11. Then,
every solution F contains all edges in E∗.

By the following lemma, we prove Proposition 4.10.

Lemma 4.14. Let I ′ be the instance of (2, 2)-Closed GBP obtained from an instance I
of Hitting Set using Construction 4.11. Then, I is a yes-instance if and only if I ′

is a yes-instance.
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Proof. (⇒) Let U ′ ⊆ U be a solution to I. We claim that F := E∗ ∪
⋃

i∈U ′{{xi, t}} is a
solution to I ′. Note that |F | ≤ n+k+1. Since E∗ ⊆ F , it holds that diam(G[F ]2[H]) ≤ 2
for every habitat H ∈ E∗. Assume towards a contradiction that there is a habitat Zj ∈ H
such that diam(G[F ]2[Zj ]) > 2. Because of E∗ ⊆ F , it holds that G[F ]2[Zj \ {t}] is a
clique. It follows that no edge from {{xi, t} | i ∈ Fj} is included in F . Therefore,
Fj ∩ U ′ = ∅, a contradiction to U ′ being a solution to I.

(⇐) Let F be a solution to I ′. We claim that U ′ := {i ∈ U | {xi, t} ∈ F} is a solution
to I. Note that it follows from E∗ ⊆ F that |U ′| ≤ k. Assume towards a contradiction
that U ′ is not a solution. Then, there is an Fj ∈ F with Fj ∩U ′ = ∅. Thus, no edge from
{{xi, t} | i ∈ Fj} is included in F . It follows that the vertex t is isolated in G[F ][Zj ].
Since for every v ∈ Zj \ {t} there is no (v, t)-path of length two in G, it holds that t is
also isolated in G[F ]2[Zj ]. This implies that diam(G[F ]2[Zj ]) = ∞, a contradiction to F
being a solution to I ′.

Finally, we discuss polynomial kernels. Hitting Set parameterized by the size of
the universe U does not admit a polynomial kernel unless NP ⊆ coNP/poly [DLS14].
Since Construction 4.11 is a polynomial parameter transformation from Hitting Set
parameterized by |U | to (2, 2)-Closed GBP parameterized by solution size k, we get
the following.

Proposition 4.15. Unless NP ⊆ coNP/poly, (2, 2)-Closed GBP parameterized by k
admits no polynomial kernel.

Since the graph G constructed in Construction 4.11 only has |U |+3 vertices, virtually
every natural graph parameter of G is polynomially bounded by |U |. This implies the
following.

Proposition 4.16. Unless NP ⊆ coNP/poly, (2, 2)-Closed GBP parameterized by
virtually any natural graph parameter admits no polynomial kernel.

4.3.2 On Graphs with Distance to Clique Two

In this section, we show the following.

Proposition 4.17. (2, 2)-Closed GBP is NP-hard even on graphs with distance to
clique two.

We give a polynomial-time reduction from Hitting Set.

Construction 4.18. Let I = (U,F , k) be an instance of Hitting Set with U =
{1, . . . , n} and F = {F1, . . . , Fm}. Construct an instance I ′ = (G,H, k′) of (2, 2)-
Closed GBP with k′ := n + k + 2 as follows (see Figure 4.3 for an illustration).

Let G be initially empty. Add the vertex set VU := {xi | i ∈ U} and the four vertices
s, s′, t, and t′. Moreover, add the edge sets E∗ := {{s, s′}, {t′, t}} ∪

⋃n
i=1{{s′, xi}},

E′ := {{s′, t′}} ∪ [VU ]2, and EU :=
⋃n

i=1{{xi, t′}}. Finally, let H := E ∪ {Z1, . . . , Zm}
where E := {{t′, t}} ∪

⋃n
i=1{{s, xi}} and Zj := {s, t} ∪

⋃
i∈Fj

{xi} for every Fj ∈ F . ⋄

We make two observations.
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Clique

s

s′

t′

t

x1 . . . xi . . . . . . xj . . . xn

Figure 4.3: Illustration to Construction 4.18. Every solution contains all thick blue
edges. Edges with both endvertices in VU are not shown.

Observation 4.19. The graph G constructed in Construction 4.18 has distance to clique
two.

Observation 4.20. Let I ′ be a yes-instance obtained by Construction 4.18. Then,
every solution F contains all edges in E∗.

By the following lemma, we prove Proposition 4.17.

Lemma 4.21. Let I ′ be the instance of (2, 2)-Closed GBP obtained from an instance I
of Hitting Set using Construction 4.18. Then, I is a yes-instance if and only if I ′

is a yes-instance.

Proof. (⇒) Let U ′ ⊆ U be a solution to I. We claim that F := E∗ ∪
⋃

i∈U ′{xi, t′} is a
solution to I ′. Note that |F | ≤ n+k+2. Since E∗ ⊆ F , it holds that diam(G[F ]2[H]) ≤ 2
for every habitat H ∈ E . Assume towards a contradiction that there is a habitat Zj ∈ H
such that diam(G[F ]2[Zj ]) > 2. Because of E∗ ⊆ F , it holds that G[F ]2[Zj \ {t}]
is a clique. It follows that no edge from {{xi, t} ∈ E(G2) | i ∈ Fj} is included in
E(G[F ]2[Zj ]). As {t′, t} ∈ F , this implies that no edge from {{xi, t′} ∈ E(G) | i ∈ Fj}
is included in F . Therefore, Fj ∩ U ′ = ∅, a contradiction to U ′ being a solution to I.

(⇐) Let F be a solution to I ′. We claim that U ′ := {i ∈ U | {xi, t′} ∈ F} is a solution
to I. Note that it follows from E∗ ⊆ F that |U ′| ≤ k. Assume towards a contradiction
that U ′ is not a solution. Then, there is an Fj ∈ F with Fj ∩ U ′ = ∅. Hence, no edge
from the edge set Ej := {{xi, t′} | i ∈ Fj} is included in F . Let v ∈ Zj \ {t} be a vertex.
There is at most one (v, t)-path of length at most two in G. As this path (if existent)
contains an edge from Ej , it follows that {v, t} /∈ E(G[F ]2[Zj ]). Hence, t is isolated
in G[F ]2[Zj ]. This implies that diam(G[F ]2[Zj ]) = ∞, a contradiction to F being a
solution to I ′.
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(a) (b)

Construction 4.23

Figure 4.4: Illustration to Construction 4.23. (a) Example graph G of the input instance
I = (G,H, k). (b) The graph G′ obtained from G using Construction 4.23.

4.3.3 On Bipartite Graphs with Only One Habitat

In this section, we show the following.

Proposition 4.22. (2, 2)-Closed GBP is NP-hard even on bipartite graphs where H
contains exactly one habitat.

Fluschnik and Kellerhals [FK21] show that 2-Diam GBP is NP-hard even if |H| = 1.
We give a polynomial-time reduction from 2-Diam GBP on instances with |H| = 1 to
(2, 2)-Closed GBP.

Construction 4.23. Let I = (G,H, k) be an instance of 2-Diam GBP with |H| = 1.
Construct an instance I ′ = (G′,H′, k′) of (2, 2)-Closed GBP with k′ := 2k as follows
(see Figure 4.4 for an illustration).

Create the graph G′ by subdividing each edge in G. More precisely, let G′ be initially
equal to G and do the following for each edge e = {x, y} ∈ E(G). Delete e from E(G′),
add a new vertex ve to V (G′), and add the edges {x, ve} and {ve, y} to E(G′). Finally,
let H′ := H.

Observation 4.24. The graph G′ constructed in Construction 4.23 is bipartite.

Lemma 4.25. Let I ′ be the instance of (2, 2)-Closed GBP obtained from an instance I
of 2-Diam GBP using Construction 4.23. Then, I is a yes-instance if and only if I ′

is a yes-instance.

Proof. (⇒) Let F be a solution to I. We claim that F ′ := {{x, ve}, {ve, y} | e =
{x, y} ∈ F} is a solution to I ′. Note that |F ′| ≤ 2k. Let H ∈ H and let x, y ∈ H. It
suffices to show that distG′[F ′]2[H](x, y) ≤ 2. Since F is a solution to I, it holds that
distG[F ][H](x, y) ≤ 2. Thus, there is an (x, y)-path P of length at most two in G[F ][H].
We consider an edge e = {a, b} ∈ E(P ). As e ∈ F , it follows that {a, ve}, {ve, b} ∈ F ′.
This implies that e ∈ E(G′[F ′]2). Therefore, P is also an (x, y)-path in G′[F ′]2[H].
Hence, distG′[F ′]2[H](x, y) ≤ 2.

(⇐) Let F ′ be a solution to I ′. We claim that F := {e = {x, y} | {x, ve}, {ve, y} ∈
F ′} is a solution to I. Note that |F | ≤ k. Again, let H ∈ H and let x, y ∈ H.
It suffices to show that distG[F ][H](x, y) ≤ 2. Since F ′ is a solution to I ′, it holds
that distG′[F ′]2[H](x, y) ≤ 2. Thus, there is an (x, y)-path P of length at most two in
G′[F ′]2[H]. We consider an edge e = {a, b} ∈ E(P ). As e ∈ E(G′[F ′]2), it follows that
{a, ve}, {ve, b} ∈ F ′. This implies that {a, b} ∈ F . Therefore, P is also an (x, y)-path
in G[F ][H]. Hence, distG[F ][H](x, y) ≤ 2.
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Figure 4.5: Illustration of vertex gadget Bv with habitat set Hv defined in Definition 4.27.
Docking edges have arrows pointing to them. (a) The vertices of each of the two habitats
are marked by two different colors. Vertices that are not included in any habitat are left
white. (b) The thick red edges denote the unique solution of minimum size to (Bv,Hv).
(c) The thick red edges denote a solution to (Bv,Hv) that is not minimum but includes
all docking edges.

4.3.4 On Planar Graphs with Habitats of Size at Most Two

In this section, we show the following.

Proposition 4.26. (2, 2)-Closed GBP is NP-hard even on planar graphs of maximum
degree four with each habitat having size at most two.

We give a polynomial-time reduction from Planar Cubic Vertex Cover.
For easier notation, we denote an instance of the optimization version of (2, 2)-

Closed GBP with graph G and habitat set H by (G,H) without explicitly stating that
we interpret (G,H) as an instance of the optimization version of (2, 2)-Closed GBP
and not, say, any other problem.

In the upcoming reduction, we replace each vertex of the given instance of Planar
Cubic Vertex Cover by a graph (“vertex gadget”) and each edge by a graph (“edge
gadget”). These gadgets mimic, in a sense, the nodes and edges of the graph of the
Planar Cubic Vertex Cover-instance. We define the gadgets in preparation for the
reduction.

Definition 4.27. Let G be a graph and let v ∈ V (G) be a vertex. The vertex gadget Bv

corresponding to v is the graph with vertex set V (Bv) := {b1v, . . . , b6v} and edge set
E(Bv) := {{b1v, b6v}, {b3v, b6v}} ∪

⋃5
i=1{{biv, bi+1

v }}. We define the habitat set for Bv to be
Hv := {{b1v, b3v}, {b3v, b5v}}. The docking edges of Bv are {b1v, b2v}, {b2v, b3v}, and {b4v, b5v}.
If a vertex is an endvertex of a docking edge, then we call it a docking vertex. (See
Figure 4.5a for an illustration.)

Docking edges are used to “glue together” vertex and edge gadgets in the reduction.
(The choice of the docking edges is somewhat arbitrary. Because of symmetry, we could
use {b3v, b4v} instead of {b2v, b3v} as a docking edge.)

Each instance (Bv,Hv) has the unique minimum solution shown in Figure 4.5b. The
minimum solution does not contain any of the docking edges. However, as shown in
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Figure 4.6: Illustration of edge gadget Ae with habitat set He defined in Definition 4.28.
Docking edges have arrows pointing to them. (a) Every solution contains all thick blue
edges. (b)&(c) In each subfigure the thick red edges denote a solution of minimum size
to (Ae,He).

b1v

b2v

a3e

a4e

a5e

a6e

a7e

a8e

b6v

b3v

b4v

b5v

Figure 4.7: Result of gluing together a vertex gadget Bv and an edge gadget Ae using
the docking edges {b1v, b2v} and {a1e, a2e}. The used docking edge is dashed and purple.
Unused docking edges have arrows pointing to them.

Figure 4.5c, there is a solution that contains all docking edges and is only by one edge
larger than the minimum solution.

Definition 4.28. Let G be a graph and let e ∈ E(G) be an edge. The edge gadget Ae

corresponding to e is the graph with vertex set V (Ae) := {a1e, . . . , a8e} and edge set
E(Ae) := E∗ ∪ {{a1e, a2e}, {a3e, a4e}, {a5e, a6e}, {a7e, a8e}} where E∗ :=

⋃6
i=1{{aie, ai+2

e }}. The
habitat set for Ae is He := E∗ ∪ {{a1e, a4e}, {a3e, a6e}, {a5e, a8e}}. The docking edges of Ae

are {a1e, a2e} and {a7e, a8e}. (See Figure 4.6a for an illustration.)

Each instance (Ae,He) has multiple minimum solutions. For each docking edge
there is a minimum solution containing it as shown in Figures 4.6b and 4.6c. There is
no minimum solution containing both docking edges.

Gluing together a vertex gadget Bv and an edge gadget Ae means to select a pre-
viously unused docking edge {biv, b

j
v} ∈ E(Bv) and a previously unused docking edge

{ake , aℓe} ∈ E(Ae) and to set ake := biv and aℓe := bjv (see Figure 4.7 for an illustration).

Construction 4.29. Let I = (G, k) be an instance of Planar Cubic Vertex Cover
with V (G) = {v1, . . . , vn}, and E(G) = {e1, . . . , em}. Construct an instance I ′ =
(G′,H′, k) of (2, 2)-Closed GBP with k′ := 3n + 7m + k as follows (see Figure 4.8 for
an illustration).
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(a)

(b)

Construction 4.29

Figure 4.8: Illustration to Construction 4.29. (a) Example graph G of the input instance
I = (G, k). Vertices are orange and edges are turquoise. (b) A graph G′ that can be
obtained from G using Construction 4.29. Docking edges (being both part of a vertex
and an edge gadget) are dashed and purple. Edges that are only part of a vertex gadget
are orange. Edges that are only part of an edge gadget are turquoise.

Let G′ and H′ be initially empty. Whenever we make an addition to G′, we assume
that we make the addition in a reasonable manner preserving the planarity of G′. For
each v ∈ V (G) add the vertex gadget Bv to G′ and extend H by Hv. Then, follow
the steps below for each {u, v} ∈ E(G). Select a docking edge eu of Bu and a docking
edge ev of Bv such that both docking edges have not been used before. Add Ae to G′

such that Ae is glued to both Bu and Bv using the selected docking edges eu and ev.
Moreover, extend H by He. ⋄

Observation 4.30. The graph G′ constructed in Construction 4.29 is planar and has
maximum degree at most four.

Observation 4.31. The set H′ constructed in Construction 4.29 only contains habitats
of size two.

The following observation says that the habitats of the constructed instance I ′ need
to be connected “locally”, i.e., for each habitat H ⊆ H′ only edges of the gadget con-
taining H are useful for connecting H. This observation is important as it implies that
in the constructed graph G′ there are no “shortcuts” to the previously discussed small
solutions for single vertex and edge gadgets.

Observation 4.32. Let Y ⊆ G′ be a gadget (vertex gadget or edge gadget) and let
{u, v} ∈ H′ be a habitat with u, v ∈ V (Y ). Then, it holds for every (u, v)-path of length
at most two in G′ that P ⊆ Y .
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Given a vertex gadget Bv ⊆ G′, we denote the set of docking edges of Bv by
Edock(Bv). Likewise, given an edge gadget Ae ⊆ G′, we denote the set of docking edges
of Ae by Edock(Ae). Furthermore, we use the notation Ein(Ae) := E(Ae) \ Edock(Ae) to
refer to the set of non-docking edges of Ae.

The following three observations are direct consequences of facts mentioned earlier.

Observation 4.33. Let Ae ⊆ G′ be an edge gadget and let e′ ∈ Edock(Ae) be a docking
edge of Ae. There is a subset Fe ⊆ Ein(Ae) with |Fe| ≤ 7 such that Fe∪{e′} is a solution
to (Ae,He).

Observation 4.34. Let F be a solution to the constructed instance I ′ and let Bv ⊆ G′

be a vertex gadget. Then,

|F ∩ E(Bv)| ≥

{
3, if F ∩ Edock(Bv) = ∅,
4, otherwise.

Observation 4.35. Let F be a solution to the constructed instance I ′ and let Ae ⊆ G′

be an edge gadget. Then,

|F ∩ Ein(Ae)| ≥

{
8, if F ∩ Edock(Ae) = ∅,
7, otherwise.

Lemma 4.36. Let I ′ be the instance of (2, 2)-Closed GBP obtained from an instance I
of Planar Cubic Vertex Cover. Then, I is a yes-instance if and only if I ′ is a
yes-instance.

Proof. (⇒) Let S ⊆ V (G) be a vertex cover of G with size at most k. Let S̄ := V (G)\S.
The set

FS̄ :=
⋃
v∈S̄

{{
b1v, b

6
v

}
,
{
b3v, b

6
v

}
,
{
b5v, b

6
v

}}
is a union of local solutions as depicted in Figure 4.5b. The set

FS :=
⋃
v∈S

(
4⋃

i=1

{{
biv, b

i+1
v

}})

is a union of local solutions as depicted in Figure 4.5c. Let e ∈ E(G) be an edge. Since S
is a vertex cover, at least one of the endvertices of e is contained in S. This implies that
at least one of the docking edges of Ae is included in FS . Thus, by Observation 4.33
there is a set Fe of size at most seven such that (Fe ∪ FS) ∩ E(Ae) is a solution to
(Ae,He). We claim that F := FS̄ ∪ FS ∪

⋃m
i=1 Fej is a solution to I ′. It holds that

|F | ≤ 3 · (n − k) + 4k + 7m = k′. Since F is a union of local solutions, it holds that
diam(G[F ][H]) ≤ 2 for every H ∈ H.

(⇐) Let F be a solution to I ′. Let S′ := {v ∈ V (G) | F ∩ Edock(Bv) ̸= ∅ } and
let S′′ be a set constructed as follows. For each edge e ∈ E(G) with e ∩ S′ = ∅ add one
of the two endvertices of e to S′′. Clearly, S := S′ ∪ S′′ is a vertex cover of G. It is
left to show that |S| ≤ k. Let EV :=

⋃n
i=1E(Bvi). By Observation 4.34 it holds that

|F∩EV | ≥ 4·|S′|+3·(n−|S′|) = 3n+|S′|. Let EE :=
⋃m

i=1Ein(Aei). Let ℓ be the number
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of edge gadgets Ae ⊆ G′ with the property that F ∩Edock(Ae) = ∅. By Observation 4.35
it holds that |F ∩EE | ≥ 8ℓ+ 7 · (m− ℓ) = 7m+ ℓ. If for an edge e ∈ E(G) it holds that
e∩S′ = ∅, then F ∩Edock(Ae) = ∅. By construction of S′′, this implies that ℓ ≥ |S′′|. It
follows that |F∩EE | ≥ 7m+|S′′|. Hence, |F | = |F∩EV |+|F∩EE | ≥ 3n+|S′|+7m+|S′′|.
By rearrangement we get |S| = |S′| + |S′′| ≤ |F | − 3n− 7m ≤ k.



Chapter 5

Epilogue

We studied the problems 2-Diam GBP and (2, 2)-Closed GBP. A strong hardness
result we obtained, especially when considering the most probable structure of real-
world data, is that 2-Diam GBP is NP-hard even on planar graphs of maximum degree
five with each habitat having size at most four. The situation is even worse for (2, 2)-
Closed GBP, as we found that (2, 2)-Closed GBP is NP-hard even on planar graphs
of maximum degree four with each habitat having size at most two.

Nevertheless, we also provided polynomial-time algorithms for some cases, most no-
tably the cases of 2-Diam GBP-C where each habitat has size at most three and the
input graph is planar or has maximum degree at most four. Moreover, we showed that
both 2-Diam GBP-C and (2, 2)-Closed GBP-C are fixed-parameter tractable with
respect to the feedback edge number.

For the problems discussed in this thesis, we note that their computational hardness
in quite heavily restricted cases can mean that they become equivalent under constraints
that allow for polynomial-time solvability.

As for future work, we most prominently leave open the question of whether 2-Diam
GBP-C can be solved in polynomial time on graphs of maximum degree at most four.
We conjecture that this case is indeed solvable in polynomial time. The idea is to
define areas similar to how we did for the case of maximum degree at most three in
Section 3.2.1. Unlike Section 3.2.1, we do not generate the global solution by naively
combining local solutions. Instead, we assume that the connections between areas have a
tree-like structure, allowing us to construct a global solution by dynamic programming.
The details of this, however, seem challenging.

Moreover, it seems worthwhile to consider the parameterized complexity of 2-Diam
GBP-C with respect to the combined parameter treewidth plus maximum degree ω+∆.
We claim that this parameterization results in fixed-parameter tractability. Given a tree
decomposition (T,X ) of the input graph G, the idea is to replace each bag Xt ∈ X by
its 2-neighborhood in G. The result also is a tree decomposition of G and the factor by
which its width increases is upper bounded by a function only depending on ∆. Having
done this, for each habitat there is a bag containing it, or otherwise the input instance is
a no-instance. This enables us to construct a solution using dynamic programming. We
further claim that by being more generous and replacing each bag by its 4-neighborhood
instead of its 2-neighborhood, the approach can also be used to show fixed-parameter
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tractability with respect to ω + ∆ for (2, 2)-Closed GBP-C.
With a formal proof of the above claim added to our results, the question of whether

2-Diam GBP-C and (2, 2)-Closed GBP-C admit fixed-parameter tractable algorithms
with respect to most of the graph parameters commonly studied would be settled (assum-
ing P ̸= NP). Nevertheless, many interesting parameterizations remain to be explored.
Especially in view of the likely structure of actual inputs, 2-Diam GBP on planar graphs
parameterized by the number of habitats seems to be one of them.
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[OR16] Melih Onus and Andréa W. Richa. Parameterized Maximum and Average
Degree Approximation in Topic-Based Publish-Subscribe Overlay Network
Design. In: Computer Networks 94 (2016), pp. 307–317 (cit. on p. 12).

[Ple81] J. Plesnik. The Complexity of Designing a Network with Minimum Diameter .
In: Networks 11.1 (1981), pp. 77–85 (cit. on p. 11).

[RR02] Celso C. Ribeiro and Isabel Rosseti. A Parallel GRASP Heuristic for the
2-Path Network Design Problem. In: Proceedings of the Eighth European
Conference on Parallel Processing, Euro-Par 2002. Springer, 2002, pp. 922–
926 (cit. on p. 13).

[SBVL87] A. A. Schoone, H. L. Bodlaender, and J. Van Leeuwen. Diameter Increase
Caused by Edge Deletion. In: Journal of Graph Theory 11.3 (1987), pp. 409–
427 (cit. on p. 11).

[SRR15] Daniel J. Smith, Rodney van der Ree, and Carme Rosell. Wildlife Crossing
Structures. In: Handbook of Road Ecology. Wiley, 2015. Chap. 21, pp. 172–
183 (cit. on p. 9).

http://dx.doi.org/10.1109/TNET.2011.2144999
http://dx.doi.org/10.1109/TNET.2011.2144999
http://dx.doi.org/10.1016/j.comnet.2015.10.023
http://dx.doi.org/10.1016/j.comnet.2015.10.023
http://dx.doi.org/10.1016/j.comnet.2015.10.023
http://dx.doi.org/10.1002/net.3230110110
http://dx.doi.org/10.1007/3-540-45706-2_131
http://dx.doi.org/10.1007/3-540-45706-2_131
http://dx.doi.org/10.1002/jgt.3190110315
http://dx.doi.org/10.1002/jgt.3190110315
http://dx.doi.org/10.1002/9781118568170.ch21
http://dx.doi.org/10.1002/9781118568170.ch21

	Introduction
	Problem Definition
	Related Work
	2-Diam GBP
	2-Diam GBP with Habitats of Size at Most Three
	(2,2)-Closed GBP with Habitats of Size at Most Two

	Our Contributions and the Structure of This Thesis

	Preliminaries
	Graph Theory
	Parameterized Complexity

	2-Diam GBP
	Preprocessing
	On Graphs of Low Maximum Degree Δ
	A Polynomial-Time Algorithm for Δ ≤ 3
	A Polynomial-Time Algorithm for Δ ≤ 4
	NP-Hardness for Δ ≥ 5

	On Planar Graphs with Small Habitats
	Polynomial-Time Solvable Cases
	NP-Hardness

	Structural Parameterizations
	Number of Triangles
	Feedback Edge Number
	Distance to Clique
	Vertex Cover Number


	(2,2)-Closed GBP
	Preprocessing
	Tractability
	On Trees and Cycles
	Parameterized by Feedback Edge Number

	Intractability
	On Series-Parallel Graphs with Vertex Cover Number Two
	On Graphs with Distance to Clique Two
	On Bipartite Graphs with Only One Habitat
	On Planar Graphs with Habitats of Size at Most Two


	Epilogue
	Bibliography

