
Algorithms for
Finding Highly Connected Subgraphs

Bachelorarbeit

vorgelegt

der Fakultät IV – Elektrotechnik und Informatik,

Fachgebiet Algorithmik und Komplexitätstheorie,

der Technischen Universität Berlin

von Christopher Hannusch

Berlin, den 02.05.2017

Erstgutachter: Prof. Dr. Rolf Niedermeier

Zweitgutachter: Prof. Dr. Stephan Kreutzer

Betreuer: Manuel Sorge und Hendrik Molter

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig so-
wie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten
Quellen und Hilfsmittel angefertigt habe.

Die selbstständige und eigenhändige Anfertigung versichert an Eides statt:

Ort, Datum Unterschrift

2

Zusammenfassung

Highly Connected Subgraph ist ein Problem aus der Familie der dichten Teilgraph-
probleme und ist NP-schwer. Gegeben einen Graph und eine natürliche Zahl k, soll ein
Teilgraph mit exakt k Knoten gefunden werden, in dem jeder Knoten mindestens bk2c+1
Nachbarn hat. Um dies zu erreichen, entwickeln und optimieren wir Algorithmen und
testen ihre Performance in der Praxis. Von den drei getesteten Algorithmen löst der
Algorithmus für den Parameter degeneracy nicht nur die meisten Instanzen schneller
als die anderen beiden Algorithmen für die Parameter h-Index und Kantenisolierung,
sondern auch schneller als die NP-Schwere dieses Problems nahelegen würde.

Zusätzlich dazu erforschen wir einige Eigenschaften von Highly Connected Sub-
graph, hauptsächlich wie viele aufeinanderfolgende (bezüglich der Anzahl Knoten in
der Lösung k)

”
Nein“-Instanzen zwischen zwei

”
Ja“-Instanzen von Highly Connec-

ted Subgraph liegen können. Wir haben herausgefunden, dass dies mindestens fünf
sein können. Wir haben außerdem obere Schranken für k basierend auf der degeneracy
beziehungsweise dem h-Index eines Graphen gefunden oder optimiert.

Abstract

Highly Connected Subgraph is a problem from the family of dense subgraph prob-
lems and is NP-hard. Given a graph and a natural number k, we want to find a sub-
graph with exactly k vertices such that all vertices in this subgraph have at least bk2c+1
neighbors. In order to do this, we design and optimize some algorithms and test their
performance in practice. Of the three tested algorithms, the algorithm for parameter
degeneracy solves most instances not only faster than the other algorithms for parame-
ter h-index and edge isolation, but also significantly faster than the NP-hardness of this
problem would suggest.

Additionally, we research on some properties of the highly connected subgraph prob-
lem, mainly how many consecutive (in terms of solution size k) “no”-instances can be
between two “yes”-instances of Highly Connected Subgraph. We found out that
this number is at least five. We also found or optimized upper bounds for k based on
the degeneracy and the h-index of a graph.

3

Contents

1 Introduction 5
1.1 Related work . 5
1.2 Our contributions . 6

2 Preliminaries 6
2.1 Graph theory . 6

2.1.1 Graph parameters . 7
2.1.2 Highly connected graphs . 8

2.2 Decision and optimization problems . 8
2.3 Search-tree algorithms . 9
2.4 Parameterized complexity . 10

3 Properties of highly connected subgraphs 11
3.1 Gaps . 11

4 Algorithms 13
4.1 General concept and properties of algorithms 13
4.2 Algorithm for parameter “degeneracy” . 14
4.3 Algorithm for parameter “h-Index” . 16
4.4 Algorithm for parameter “edge isolation” 17
4.5 Reduction, pruning and branching rules 18

4.5.1 Reduction rules . 18
4.5.2 Pruning rules . 18
4.5.3 Branching rules . 21

5 Implementation details and experimental results 24
5.1 Implementation details . 24
5.2 Test data and environment . 24
5.3 Test results . 25
5.4 Conclusion . 30

6 Summary and outlook 30

Literature 31

4

1 Introduction

The problem of finding relatively dense clusters1 or communities in graphs occurs in
many natural applications, for example in biology [SUS07] and social networks. As an
example of an application in a social network, one could be interested in groups of people
where each person knows many of the others in the group, making it possible to show an
advertisement to only a few persons per group. Assuming they tell their friends about
it, this would probably help to minimize marketing costs and maximize profit.

As a special case of dense clusters, highly connected graphs are graphs where each ver-
tex is a neighbor of more than half of all vertices [HS00]. In this thesis, we present some
algorithms to find highly connected subgraphs (HCS), an NP-hard problem [HKS15,
Theorem 1], and give results on their performance in practice.

Formally, the problem is defined as follows:

Highly Connected Subgraph
Input: An undirected graph G = (V,E) and a k ∈ N.
Question: Is there a subgraph G′ = (V ′, E′) of G such that |V ′| = k and

∀v ∈ V ′ : deg(v) ≥ bk2c+ 1?

Here, deg(v) denotes the degree of the vertex v, that is the number of neighbors of v.

1.1 Related work

The paper “Finding highly connected subgraphs” [HKS15] and the PhD thesis by Manuel
Sorge [Sor17, Section 7] directly cover the problem of finding highly connected subgraphs
and contain summaries of related work this subsection is partly based on.

Hartuv and Shamir developed an algorithm that splits a graph into highly connected
components [HS00]. In an article of Falk Hüffner et al. [Hü+14], an algorithm is pre-
sented that tries to minimize the number of edges that have to be deleted in order to
obtain such highly connected components.

Cliques2 are highly connected subgraphs and therefore HCS can be seen as a relaxation
of the clique problem [PYB13]. The problem of finding subgraphs of order k such that
each vertex has degree at least k− s, also called s-plexes, is similar to both Clique and
Highly Connected Subgraph [MNS09]. Furthermore, 0.5-quasi-cliques, where each
vertex has degree at least k−1

2 , are very similar to highly connected subgraphs [LW08].
For the example problem of marketing in social networks mentioned above, where the

graph changes over time as people become friends and unfriend each other, there is a
paper about enumerating cliques in such graphs [Him+16].

The density of a graph is defined as 2·|E|
|V |·(|V |−1) [KS15], so instead of requiring a min-

imum degree like in the highly connected subgraph problem, the average degree of the
vertices is more important in some of the dense subgraph problems.

1A set of vertices that is connected by many edges.
2Subgraphs where each vertex is adjacent to each other vertex.

5

1.2 Our contributions

We contributed to the research on highly connected subgraphs mainly by optimizing
algorithms that solve this problem (Section 4) and testing how they perform in prac-
tice (Section 5). The algorithm for parameter degeneracy (Section 4.2) performs best
in practice, compared to the algorithm for parameter h-index and edge isolation. Ad-
ditionally, all of the algorithms perform significantly better than expected considering
their complexities.

We also researched whether the existence of a highly connected subgraph implies
the existence of highly connected subgraphs of other orders (Section 3.1). If there is
a highly connected subgraph with an even number of vertices k, then also a highly
connected subgraph of order k−1 exists. However, the non-existence of highly connected
subgraphs of at least five consecutive orders does not imply the non-existence of larger
highly connected subgraphs, which makes the optimization problem of finding the largest
highly connected subgraph more complex in terms of practical running time.

Additionally, we found or optimized some upper bounds for the order k of highly
connected subgraphs based on some parameters of the graph, namely the degeneracy
(k ≤ 2d− 1, Theorem 3.2) and the h-index (k ≤ 2h− 1, Theorem 3.3).

2 Preliminaries

In this section we will present the theoretical background including definitions and
notations concerning graph theory (Section 2.1), decision and optimization problems
(Section 2.2), search-tree algorithms (Section 2.3), and parameterized complexity (Sec-
tion 2.4).

2.1 Graph theory

In the following we present all necessary graph theoretical definitions used in this thesis.
We use a notation similar to the one used in the book “Graph theory” of Reinhard
Diestel [Die00].

Definition 2.1 (Graph). Let V be a set and E be a set of subsets of size two of V .
Then G = (V,E) is a graph, where V is the set of vertices and E is the set of edges.

Notation. Let G = (V,E) be a graph. For the order of G we write n := |V | and for
the number of edges we write m := |E|.

Definition 2.2 (Neighborhood and degree). Let G = (V,E) be a graph, v ∈ V
and V ′ ⊆ V .

• The (open) neighborhood NG(v) := {u ∈ V | {u, v} ∈ E} is the set of vertices that
are adjacent to v.

• NG[v] := NG(v) ∪ {v} is the closed neighborhood of v.

6

• The (open) neighborhood of a set NG(V ′) := ∪v∈V ′NG(v)\V ′ consists of all neigh-
bors of vertices in the set without the set itself.

• The closed neighborhood of a set is consistently defined as NG[V ′] := NG(V ′) ∪ V ′.

• The degree degG(v) is the number of neighbors of v, that is degG(v) := |NG(v)|.

We typically omit the subscript G if it is not ambigious.

Definition 2.3 (Subgraph). Let G = (V,E) be a graph. A graph G′ = (V ′, E′) with
V ′ ⊆ V and E′ ⊆ E is a subgraph of G.

Definition 2.4 (Induced subgraph). Let G = (V,E) be a graph and G′ = (V ′, E′)
be a subgraph of G. We call G′ = G[V ′] an induced subgraph of G if and only if
∀u, v ∈ V ′ : {u, v} ∈ E ⇐⇒ {u, v} ∈ E′. This means that G′ contains all edges
between vertices in V ′ that are in G.

Notation. Let G = (V,E) be a graph, v ∈ V and V ′ ⊆ V . As an abbreviation, we
write G− v := G[V \{v}] and G− V ′ := G[V \V ′].

Definition 2.5 (Path). Let G = (V,E) be a graph and u, v ∈ V . A path P
from v0 = u to vl = v is a subgraph of G such that V (P) := {v0, . . . , vl} and
E(P) := {{v0, v1}, . . . , {vl−1, vl}}. The set path(u, v) is the set of all paths from u to v.
The length of P is len(P) := |V (P)| − 1.

Definition 2.6 (Connected components). Let G = (V,E) be a graph. G is connected
if ∀u, v ∈ V : path(u, v) 6= ∅. A connected component of G is a maximum induced
subgraph H of G such that H is connected.

Definition 2.7 (Diameter). Let G = (V,E) be a graph. The diameter of G is
max{min{len(P) | P ∈ path(u, v)} | u, v ∈ V } if G is connected, else it is ∞.

Definition 2.8 (Cut and minimum cut). Let G = (V,E) be a graph. A cut C is
a subset of E such that there exist A,B ⊂ V with A ∪ B = V and A ∩ B = ∅
and ∀a ∈ A : ∀b ∈ B : ∀P ∈ path(a, b) : E(P) ∩ C 6= ∅. A minimum cut of a graph G
is the smallest cut C ⊆ E.

This basically means that C splits the vertices into two subsets that are only connected
by edges in C. Note that the definition of minimum cut also works for graphs that are
not connected. In this case, C = ∅.

2.1.1 Graph parameters

There are some graph parameters that are useful for complexity analysis of some of the
graph algorithms presented in this thesis.

Definition 2.9 (Degeneracy). Let G = (V,E) be a graph. The degeneracy d ∈ N is the
smallest natural number such that there is an ordering (an antisymmetric, transitive and
total relation) �⊆ V ×V such that ∀v ∈ V : |{u | {u, v} ∈ E ∧u � v}| ≤ d. This means
that every vertex v has at most d neighbors that are earlier in the ordering [LW70].

7

One can compute the degeneracy by repeatedly removing one of the vertices with the
lowest degree until the graph is empty. Let vi be the vertex removed in the ith iteration
and Gi := G − {v1, . . . , vi−1}. The degeneracy then is max{degGi

(vi) | 1 ≤ i ≤ n}.
This computation can be done in O(n2) time: Computation of the degree is doable in
O(n+m) time and therefore also in O(n2) time and finding and removing of the vertex
with the lowest degree and updating the degree of the other vertices is in O(n) time
and is repeated O(n) times. We will use this approach later in one of the search-tree
algorithms for solving HCS.

The h-index, named after Jorge E. Hirsch, was originally defined as the largest num-
ber h of publications of a scientist that were cited at least h times [Hir05]. However,
this can be seen as a graph problem and therefore we define the h-index on graphs as
follows:

Definition 2.10 (H-index). Let G = (V,E) be a graph. The h-index h ∈ N is the
largest natural number such that |{v ∈ V | deg(v) ≥ h}| ≥ h. This means there are h
vertices with degree at least h.

One can compute the h-index as follows: Let v1, . . . , vn be ordered such that
∀i, j ∈ {1, . . . , n} : i < j → deg(vi) ≥ deg(vj). The h-index then is i − 1, where i is the
smallest number such that deg(vi) < i. This computation can be done in O(n+m) time
since computing the degree is in O(n + m) time and sorting can be done using bucket
sort in O(n) time.

2.1.2 Highly connected graphs

In the following we formally define highly connected graphs and subgraphs.

Definition 2.11 (Highly connected). Let G = (V,E) be a graph. G is highly connected

if ∀v ∈ V : deg(v) ≥ b |V |2 c + 1. A highly connected subgraph of order k ∈ N of G is an
induced subgraph with exactly k vertices that is highly connected.

Notation. We say that W is a solution of the highly connected subgraph problem if
G[W] is a highly connected subgraph.

2.2 Decision and optimization problems

A decision problem formally is the problem to decide whether a word is contained in a
language. More abstract, this means answering a question (e.g. “Is there a solution of
size k?”) for a given input instance (the “word”), where the word is in the language if
and only if the answer is “yes”. For example, one can decide whether there is a highly
connected subgraph H of order exactly k of a graph G. Here, (G, k) is the instance of
the problem and H is the solution. In some cases, we are only interested in the existence
of a solution, not the solution itself, meaning we only require an algorithm to output
“yes” or “no”.

8

An optimization problem is the problem of finding the smallest or largest solution to
a problem or just the corresponding input instance. Typically, we want to optimize a
natural number, e.g. finding the largest k such that there is a highly connected subgraph.

Both types of problems are strongly related to each other. By solving the decision
problem or the optimization problem, one can often solve the other problem. For exam-
ple, if one can find the maximum independent set3, then one can also answer “yes” to the
question whether the graph has an independent set of at most that maximum size and
“no” for larger independent sets. And the other way around, one can find the maximum
by iterating from 0 to |V | and outputting i as the maximum size of an independent set
if there is an independent set of size i but none of size i+ 1.

However, the approach of solving the decision problem by finding the optimum value
as described above for Independent Set does not work for all decision problems and
HCS is one of these. A graph can have no highly connected subgraph of order k, but
one of order k − 1 and one of order k + 1. For more details on this, see Section 3.1.

2.3 Search-tree algorithms

A search tree is a tree where the vertices represent partial solutions to a given problem,
also called solution candidates, and the edges to children of a vertex represent different
decisions one can make in order to find a solution. In our case, this is for example adding
or not adding a vertex to a solution candidate. By recursively branching into all the
children, a search-tree algorithm can find a solution if one exists, or output that there
is no solution.

There can be rules to cut some children off from the tree depending on the current
state. If branching into a child is guaranteed to not find a solution, the algorithm does
not need to branch into that child. The rules to determine this are called pruning rules.
Rules that define the structure of a search tree by generating the children of a vertex are
called branching rules. We will see both a simple and a more advanced branching rule
in Section 4.5.3. There are also reduction rules that can reduce the size of an instance
of a problem before or during the actual search-tree algorithm is executed.

Definition 2.12 (Reduction rule). Let S be the set of instances of our problem and
g : S → N determine the size of an instance. A reduction rule is a function rr : S → 2S

such that there exists a solution for s ∈ S if and only if there exists a solution for an
s′ ∈ rr(s) and

∑
s′∈rr(s) g(s′) ≤ g(s).

A reduction rule reduces the size of an instance or splits it into several smaller in-
stances. For example, we can split a graph into connected components for our HCS
problem. The size of an instance of HCS could be for example n+m.

Definition 2.13 (Pruning rule). Let S be the set of partial solutions of our problem
and g : S → N the number of search tree vertices that are descendents of the vertex

3A set of vertices that are pairwise not connected.

9

corresponding to s ∈ S. A pruning rule is a function pr : S → S such that there
exists a solution for s ∈ S if and only if there exists a solution for pr(s) and such that
g(pr(s)) ≤ g(s).

Definition 2.14 (Branching rule). Let S be the set of partial solutions of our problem.
A branching rule is a function branch : S → 2S such that there exists a solution for
s ∈ S if and only if there exists an s′ ∈ branch(s) such that there is a solution for s′.

Note that our definitions of these different types of rules also include the definition
of their correctness. However, they do not include the complexity. By these definitions,
an algorithm that solves a problem is also a reduction rule, pruning rule, and branching
rule. So, in order to make sense, the rules should have a lower time complexity than
the algorithm itself and should not solve the problem in general. For the HCS problem,
we only allow reduction, pruning and branching rules with polynomial time complexity.
We explicitly do not include this in the definitions since there may be problems where
rules with higher complexity may be beneficial.

Some rules are cheap in terms of complexity and running time in practice, some are
expensive. Therefore, there often is a trade-off between having a larger search tree and
doing more work per vertex to reduce the size of the search tree. For example, it may
be beneficial to apply some pruning rules only in every second level of the search tree.

2.4 Parameterized complexity

In contrast to analyzing the complexity of an algorithm based only on the size of the
input, in parameterized complexity we consider other parameters or properties of the
input, for example the degeneracy of a graph.

There is a class FPT of problems that are fixed-parameter tractable, meaning their
complexity is upper-bounded by f(p) · poly(|X|), where p is a parameter of the in-
stance, f is a computable function, and |X| is the size of instance X. For example,
Vertex Cover4 is in FPT for parameter solution size k. One could recursively pick an
arbitrary edge and branch on the two incident vertices, which implies a time complexity
of O(2k · poly(n)).

The class XP contains all problems that are solvable in polynomial time in the size of
the input for a fixed parameter p. Clearly, FPT ⊆ XP. It is currently unknown whether
FPT ⊂ XP or FPT = XP, but it is widely believed that XP contains problems that are
not in FPT.

Since the running time is polynomial if the parameter is fixed, problems in FPT can
often be solved efficiently for small parameters, but problems in XP \ FPT can still have
high complexities even for small fixed parameters. For example, a problem that can be
solved in O(2p · n2) time is efficiently solvable for p = 4, but a problem in O(np) time
may be impractical to solve for large n even if p is as small as 4.

For more details on parameterized complexity and algorithms, refer to the literature
[Cyg+15].

4Is there a set of vertices V ′ of size k such that every edge is incident to at least on vertex in V ′?

10

3 Properties of highly connected subgraphs

Highly connected subgraphs have some interesting properties. Some of them are impor-
tant for finding efficient algorithms and for proving their correctness, like the following
one, which is essential for the algorithm for the parameter “degeneracy” in Section 4.2.

Theorem 3.1 (Diameter, [HS00, p. 177]). The diameter of a highly connected graph is
at most two.

Proof. Any two vertices u and v have at least bn2 c + 1 neighbors in the graph. Since
there are only n − 2 other vertices in the graph, it follows that N(v) ∩ N(u) 6= ∅.
Therefore, there exists a vertex w that is neighbor of both vertices and the path
({u,w, v}, {{u,w}, {w, v}}) has length two. Since this is true for any two vertices, it
follows that a highly connected graph has a diameter of at most two.

The next two properties give us an upper bound for the order of highly connected
subgraphs in a given graph.

Theorem 3.2 (Degeneracy and subgraph order, [HKS15]). The order of a highly con-
nected subgraph is at most 2d− 1, where d is the degeneracy of the graph.

Proof. From the definition of the degeneracy it follows that in any subgraph there is a
vertex that has degree at most d. Therefore, d ≥ bk2c+ 1, where k is the order of the

highly connected subgraph. Since d = b2d−12 c+ 1, k = 2d− 1 is the maximum possible
order of a highly connected subgraph.

Theorem 3.3 (h-index and subgraph order). The order of a highly connected subgraph
is at most 2h− 1, where h is the h-index of the graph.

Proof. For a subgraph to be highly connected there have to be k vertices of degree at
least bk2c + 1. Setting k := 2h − 1 gives us a minimum degree of h. According to the
definition of h-index, a graph with an h-index of h can have 2h − 1 or more vertices of
degree h. This is also the maximum since larger k would require k > h vertices of degree
larger than h and therefore the h-index of the graph would be larger than h, which is a
contradiction.

3.1 Gaps

Another property of highly connected subgraphs is the fact that - for example - there
can be highly connected subgraphs of orders 3 and 5, but none of order 4 in a given
graph. The following property is helpful if we know that a highly connected subgraph
of an even order exists.

Theorem 3.4 (Relation between even and odd orders). If a graph G has a highly
connected subgraph of order k = 2n for n ∈ N, then G also has a highly connected
subgraph of order k − 1.

11

Proof. Let H be a highly connected subgraph with an even number of vertices. Then
it holds that b |H|2 c+ 1 = b |H|−12 c+ 2. Since every vertex in H has degree b |H|2 c + 1,
removing an arbitrary vertex v from H reduces the degree of all other vertices by at
most one. Therefore, H − v is highly connected.

Note that this also implies that if there is no highly connected subgraph of an odd
order k, then there is no highly connected subgraph of order k + 1.

Now we formally define gaps between orders for which highly connected subgraphs
exist.

Definition 3.5 (Gap). Let G be a graph and k1, k2 ∈ N with k2 ≥ k1 + 2. We say
that there is a gap of size k2 − k1 − 1 if there exist highly connected subgraphs of G of
order k1 and k2, but for all k′, k1 < k′ < k2, there is no highly connected subgraph of G
of order k′.

Note that it follows from Theorem 3.4 that k2 is always an odd number, since if it was
an even number, then there would also be a highly connected subgraph of order k2 − 1.

Gaps of size one are easy to find in theory and do exist in some graphs in practice.
It is currently unknown how large gaps can be or if there even is a limit. If there is a
limit `, one can use this for determining if there is a highly connected subgraph of a
given order k: If there are no highly connected subgraphs of order k − ` − 1 ≤ k′ < k,
then there is no highly connected subgraph of order k.

Research on this topic resulted in finding graphs with gaps of size five. Therefore, this
approach may not be very helpful in practice, even if there is a limit, since directly finding
a highly connected subgraph of order k may be faster than searching for subgraphs of at
least six orders smaller than k. However, when looking for highly connected subgraphs
of all possible orders, one would be able to stop searching after no highly connected
subgraphs were found for more than the gap size limit consecutive orders.

The graph (a) displayed in Figure 1 is a simple example of a graph with a gap of
size one. The more complicated graph (b) has a gap of size three since it has highly
connected subgraphs of orders 3 and 7, but none of orders 4, 5, and 6. The graph (c) on
the right is an example of a graph with a gap of size five.

The test whether highly connected subgraphs of orders 3 to |V | exist was done us-
ing one of the algorithms for the highly connected subgraph problem. For graph (a),
this can however be easily seen since the set {1, 2, 3} induces a highly connected sub-
graph of order 3 and the whole graph is highly connected, but removing one arbitrary
vertex always results in a graph where at least one vertex has less than b42c+1 neighbors.

The graphs (a) and (b) were found by adding edges and vertices to graphs that were
almost highly connected. Graph (c) was obtained by starting with the vertices 1 to 10
arranged in two columns, then for vertically and horizontally “adjacent” vertices an edge
was added. Then diagonal edges were added similar to graph (b) and the rest was just

12

1 2

3 4

5

(a) A graph with HCS of orders 3 and 5,
but none of order 4.

1 2

3 4

5 6

7

(b) A graph with HCS of orders 3 and 7,
but none of orders 4, 5, and 6.

1

3

5

7

9

2

4

6

8

10

11

(c) A graph with HCS of orders 3, 4, 5,
and 11, but none of orders 6 to 10.

Figure 1: Examples for graphs with gaps.

adding edges until every vertex has degree six by cleverly guessing and avoiding patterns
that would add highly connected subgraphs.

4 Algorithms

In this section we will present some algorithms for finding highly connected subgraphs.
We will also show reduction, pruning and branching rules to potentially optimize the
running time of the algorithms in practice. For implementation details and actual per-
formance in practice, see Section 5.

The algorithms for the parameters degeneracy and edge isolation have already been
presented in the cited documents, while the algorithm for parameter h-index and the
reduction, pruning, and branching rules were newly developed by us.

4.1 General concept and properties of algorithms

The algorithms presented in this section are search-tree algorithms that take a graph
and a natural number k as input and in each node of the search tree, they have a set of

13

vertices that they have chosen to be in a possible solution and a set of possible vertices
to choose next in order to obtain a solution.

Notation. Let G = (V,E) be a graph and k be the order of the highly-connected
subgraph. Then W ⊆ V with |W | ≤ k is the set of vertices the algorithm has currently
chosen and X ⊆ (V \W) is the set of candidate vertices which might be put into W .

An algorithm may add vertices to W or X which are in none of these two sets, for
example the neighbors of vertices it has added to W . A property that implies that this
does not happen is needed for some of the pruning and branching rules to be applicable.

Definition 4.1 (Non-growing branch). An algorithm is in a non-growing branch
(W,X, . . .) if for all nodes (W ′, X ′, . . .) in the subtree of the search tree with root
(W,X, . . .) it holds that W ′ ⊆ (W ∪X) and X ′ ⊆ X.

Whether a branch is non-growing can be determined by analyzing the algorithm and
may depend not only on the location in the code, but also on some parameters. We will
see an example of this in the algorithm for parameter degeneracy in Section 4.2.

4.2 Algorithm for parameter “degeneracy”

Algorithm 1 and its complexity is based on the fact that a vertex v with the lowest
degree in a graph G has at most d neighbors, where d is the degeneracy of G, and when
it is removed, another vertex v′ with minimum degree in G− v has at most d neighbors
and so on.

vs

s1

s2

s3

s4

s′1

s′2

s′3

(a) Step 1: Select vertex
with minimum degree
(e.g. vs).

vs

s1

s2

s3

s4

s′1

s′2

s′3

(b) Step 2: Select neighbors
S of vs.

vs

s1

s2

s3

s4

s′1

s′2

s′3

(c) Step 3: Select vertices
from N(S)\N [vs] (only
one in this case).

Figure 2: Visualization of algorithm for parameter “degeneracy” for k = 5. The vertices s1 to
s4 are direct neighbors of vs and s′1 to s′3 are neighbors of neighbors of vs.

14

Algorithm 1: Algorithm for parameter “degeneracy”. [Sor17, p. 141]

Input: A graph G = (V,E) with degeneracy d and a k ∈ N.
Output: True, if there is a highly connected subgraph of G of order k, false

otherwise.
begin

while G is not empty do
vs := a vertex of minimum degree in G
foreach S ∈ subsets(vs, N(vs), vs, i), bk2c+ 1 ≤ i ≤ min(|N(vs)|, k− 1) do

if branch recursive(S ∪ vs, N(S)\N [vs]) = true then
return true

G := G− vs
return false

Function subsets(W,X, vs, i)
if i = 0 then

return {W\vs}
/* Apply pruning rules here. Non-growing branch if and only if

|W |+ i = k. */

B := branch(W,X)
return {subsets(W ′, X ′, vs, i− (|W ′| − |W |)) | (W ′, X ′) ∈ B}

Function branch recursive(W,X)
if |W | = k then

return true if G[W] is highly connected, false otherwise

/* Apply pruning rules here. This is always a non-growing

branch. */

B := branch(W,X)
foreach (W ′, X ′) ∈ B do

if branch recursive(W ′, X ′) = true then
return true

return false

The algorithm picks a vertex vS with minimum degree in G and for all subsets S of
the neighborhood of vS , the algorithm tests for all subsets S′ of the neighborhood of S
excluding the closed neighborhood of vS whether G[{vS} ∪ S ∪ S′] is highly connected.
The sets S and S′ are determined using branching and pruning rules. This algorithm is
visualized in Figure 2 for parameter k = 5.

The function subsets returns all subsets of N(vs) of size i if called with parameters
(vs, N(vs), vs, i) and if i ≤ |N(vs)|, given that the branching rule is correct and only
adds at most i vertices to W .

The time complexity of this algorithm is O(2d ·nd+O(1)) [Sor17, p. 140] and it is there-
fore in XP. Since |N(vS)| ≤ d, there are O(2d) subsets of N(vS). There are n vertices in
the graph, all of them are picked once to be vS . For each of theseO(2d·n) subsets S, there
are less than n vertices in N(S)\N [vS]. Combined with the fact that k ≤ 2 · d− 1 (The-
orem 3.2), this gives us O(nd) subsets of the neighborhood. Finally, we need O(nO(1))

15

time to test whether a subset induces a highly connected subgraph.
To show the correctness of this algorithm, it suffices to show that it tests all possible

subgraphs of order k that can be highly connected. From Theorem 3.1 follows that
we only have to consider neighbors and neighbors of neighbors of a vertex. Since the
algorithm does exactly that, it is obviously correct.

4.3 Algorithm for parameter “h-Index”

The following algorithm is based on the assumption that vertices with high degree are
more likely to be in a highly connected subgraph. Therefore, it prefers the h vertices
with highest degree when branching over the neighbors of already chosen vertices, where
h is the h-index of the graph.

Algorithm 2: Algorithm for parameter “h-index”.

Input: A graph G = (V,E) and a k ∈ N.
Output: True, if there is a highly connected subgraph of G of order k, false

otherwise.
begin

while G is not empty do
v1, . . . , vn := vertices in G, ordered from highest to lowest degree
h := h-index of G
if h = 0 then

return false

Vh := {v1, . . . , vh}
if br(G[N [N [v1]]], Vh, {v1}, N(v1)) = true then

return true
G := G− v1

return false

Function br(G,Vh,W,X)
if |W | = k then

return true if G[W] is highly connected, false otherwise

/* Apply pruning rules here. Never a non-growing branch. */

if X = ∅ then
return false

if X ∩ Vh 6= ∅ then
Pick a vertex v ∈ X ∩ Vh.

else
Pick a vertex v ∈ X.

return br(G,Vh,W ∪ {v}, N(W ∪ {v})) ∨ br(G− v, Vh,W,X\{v})

Algorithm 2 iteratively picks and removes the vertex v1 with highest degree until the
h-index h of the graph is zero or the graph is empty. In each iteration, it computes the
set Vh of the h vertices with highest degree in G and recursively picks a vertex v out of

16

the neighbors X in G[N [N [v1]]] of the picked vertices W and tests whether there is a
solution with or without this vertex. If the intersection of X and Vh is not empty, v is
picked out of this intersection.

This algorithm is obviously correct: If there is no highly connected subgraph of order k,
it can only output false. If there is one, then it will find it because all subsets of V
that can be a solution are tested. Only vertices in N [N [v1]] have to be considered for
the diameter of a highly connected subgraph is at most two (Theorem 3.1).

The time complexity of this algorithm is trivially O(n2·h−1+O(1)) due to the fact
that k ≤ 2 · h− 1 (Theorem 3.3) and it is therefore in XP.

A potential optimization for this algorithm is to use the branch recursive function of
the degeneracy algorithm for k − |W | < bk2c + 1, since in this case every vertex in any
possible highly connected subgraph has to be in N [W] (if it was not, then it could not
have bk2c+ 1 neighbors).

4.4 Algorithm for parameter “edge isolation”

There is a single-exponential fixed-parameter algorithm for the parameter edge isola-
tion γ, which is the size of the cut between the set W that induces the highly connected
subgraph G[W] and the set V \W , that runs in O(4γ ·n2+(k ·n+γ) ·n ·m) time [HKS15,
p. 7]. We use an implementation of this algorithm by Falk Hüffner for comparison of the
running time in practice. Note that γ is likely to be large in some real-world applications
and that we have to set γ to a potentially large value, but smaller than m, since this
algorithm is designed to solve the following problem:

Isolated Highly Connected Subgraph
Input: An undirected graph G and k, γ ∈ N.
Question: Is there a highly connected subgraph of G of order k that is γ-isolated?

The algorithm iteratively picks one vertex v ∈ V , sets W := {v}, recursively branches
into the two cases of adding a vertex out of N(W) to W and removing it from the graph,
and if there was no solution containing v, it removes v from G. It stops branching when
|W | = k or the number of edges in the original input graph from the set W to already
removed vertices exceeds γ. This limits the height of the search tree to at most k + γ
[HKS15, p. 7].

However, most of the optimizations for this more specific problem do not
work for the problem Highly Connected Subgraph since we have to

set γ := min(m− d (b
k
2
c+1)·k
2 e, k · (n− k)).

Note that this algorithm does not use the fact that the diameter of a highly connected
subgraph is at most two, meaning it may consider vertices even if the longest of the
shortest paths from them to the vertices in W is longer than two.

For more details about the algorithm and its reduction rules, refer to the cited docu-
ment or Section 7.4.2. of “Be Sparse! Be Dense! Be Robust! Elements of Parameterized
Algorithmics” [Sor17].

17

4.5 Reduction, pruning and branching rules

In this subsection, we will present some rules that may reduce the running time of the
algorithms in practice. Not all rules are applicable in general since some of them require
non-growing branches (Definition 4.1).

4.5.1 Reduction rules

In this subsection, we present a simple reduction rule based on the fact that the minimum
cut of a highly connected subgraph is at least bk2c+ 1.

Reduction Rule 4.2. If the size of the minimum cut |C| of a graph is smaller
than bk2c+ 1, then split the graph into subgraphs G[A] and G[B] (see Definition 2.8)
and repeat this recursively for both subgraphs until no minimum cut of size smaller
than bk2c+ 1 exists or the set has less than k vertices. Then call the algorithm for each
of these subgraphs.

Proof of correctness. The size of a minimum cut of a highly connected graph is at
least bk2c+ 1. Therefore, a graph with a smaller minimum cut cannot be highly con-
nected and we can safely split it into two subgraphs.

We now need to show that this reduction also reduces the size of our instance as re-
quired by the definition of reduction rules. If we use n + m as a measurement for the
size of an instance, then the sum of the sizes of the two subgraphs is clearly smaller than
the size of the input instance.

Finally, the time complexity is polynomial since minimum cut can be solved in
O(n ·m+ n2 · log(n)) time with the Stoer-Wagner algorithm [SW97] for edge-weighted
undirected graphs - in our case, we can simply set each edges weight to 1 - and the min-
imum cut can be applied less than n times for a graph with n vertices since its vertices
can be split into at most n distinct subsets.

Note that this rule also splits the graph into connected components for the number of
edges between them is zero, so putting the connected components in either A or B with
at least one connected component per set gives a minimum cut of size zero.

Also note that there is an obvious reduction rule that returns false - or, formally, the
empty set - if the order of the graph is strictly smaller than k.

4.5.2 Pruning rules

In this section, we will present some pruning rules for search-tree algorithms for finding
highly connected subgraphs.

The following pruning rule removes a vertex v from X if it is connected to less vertices
in the partial solution W than necessary to have bk2c + 1 neighbors in a subgraph of
order k, even if all other added vertices are neighbors of v.

Pruning Rule 4.3. Remove v ∈ X from G if it is adjacent to strictly less than
bk2c+ 2− k + |W | vertices in W .

18

Proof of correctness. Let v be a vertex that is adjacent to less than bk2c+ 2− k + |W |
vertices in W . If v is in a highly connected subgraph of order k, it has at least bk2c+ 1
neighbors. If there is a solution that is a superset of W , then let W ′ ⊇W be any solution
of size k. Then v can be adjacent to at most k − |W | − 1 vertices in W ′\W . So v is
adjacent to strictly less than bk2c+ 2− k+ |W |+ (k− |W | − 1) = bk2c+ 1 vertices in W ′,

but every vertex in G[W ′] has degree at least bk2c+ 1, which is a contradiction. Else,
if there is no solution that is a superset of W , then removing any vertex from X won’t
give us any additional solution. Therefore, the algorithm finds a solution after applying
this pruning rule if and only if it finds a solution without applying this pruning rule.

The time complexity of this rule is O((n+m)·log(n)) since for all O(n) vertices v ∈ X,
for the neighbors of v (O(m) in total) has to be tested whether they are in W . The
test whether a set contains an element is in O(log(n)). Removing O(n) vertices from a
graph is in O((n+m) · log(n)).

Pruning Rule 4.4. If |W ∪X| < k and the algorithm is in a non-growing branch, then
discard the current branch.

This rule is obviously correct, therefore a formal proof is omitted. The time complexity
of this rule is O(1) if the sizes of the sets are stored as variables, which can be done
easily without adding any time complexity to the operations that modify the sets.

The next rule tests whether all vertices v ∈W have enough neighbors to be in a highly
connected subgraph if all k − |W | vertices that may be added to W are neighbors of v.

Pruning Rule 4.5. If there is a vertex v ∈W such that |N(v)∩W | < bk2c+1−k+ |W |,
then discard the current branch.

Proof of correctness. Let v ∈W be a vertex such that |N(v) ∩W | < bk2c+ 1− k + |W |.
Let W ′ be a solution of size k. Then there are k − |W | vertices in W ′\W and
bk2c+ 1− k + |W |+ (k − |W |) = bk2c+ 1. If v is adjacent to all of the vertices in W ′\W ,

then |N(v) ∩W ′| = |N(v) ∩W |+ k − |W | < bk2c+ 1. So W cannot be a subset of any
solution of size k.

The running time of this rule is clearly in O(n+m · log(n)) and the proof is equivalent
to the proof for the complexity of Pruning Rule 4.3, except that we do not have to
remove the vertices from G.

The following pruning rule tests if all vertices in W can have at least bk2c+1 neighbors
based on W ∪X.

Pruning Rule 4.6. If there is a vertex v ∈ W such that |N(v) ∩ (X ∪W)| < bk2c + 1
and the algorithm is in a non-growing branch, then discard the current branch.

Proof of correctness. Any solution W ′ ⊃W , if one exists, is a subset of W ∪X, so v has
to have at least bk2c+ 1 neighbors in W ∪X.

The time complexity of this pruning rule is O(n+m · log(n)). The proof is equivalent
to the one for Pruning Rule 4.5.

19

The next pruning rule removes vertices whose open or closed neighborhood is a subset
of the open or closed neighborhood of a vertex v, if v is not part of any solution, which
is trivially known when branching into W ∪ {v} resulted in no solution.

Pruning Rule 4.7. Let v /∈ W be a vertex. If there is no solution W ′ ⊃ W such
that v ∈W ′, then remove all vertices u ∈ X with the following property from the
graph: ((N(u) ∩ Y) ⊆ (N(v) ∩ Y)) ∨ (N [u] ∩ Y) ⊆ (N [v] ∩ Y)). Here, Y denotes the set
of all vertices that can be in X or W in the descendents of the current search-tree vertex
and is at most X ∪W for non-growing branches. Else, Y is at most V .

Proof of correctness. We will prove the correctness by contradiction. Let us assume
there is no solution W ′ ⊇ W ∪ {v}, but a solution W ′′ ⊇ W ∪ {u} and N(u) ⊆ N(v).
Obviously, we can just replace u by v in W ′′ to obtain a solution W ′ ⊇W ∪ {v}.

Now let us assume the same, but with N [u] ⊆ N [v] instead of N(u) ⊆ N(v). Because
N [u] ⊆ N [v], there is an edge between u and v. However, since v is not in the solution,
this edge is not in the highly connected subgraph induced by W ′′. So we can remove
this edge from the graph G and then N(u) ⊆ N(v), which we have already proved.

We now have to prove that, given that the algorithm is in a non-growing branch, we
can use the intersection of the neighborhoods with X ∪W instead of the neighborhoods
itself. Since X ∪W contains all vertices that may be in a solution W ′ ⊃ W , we can
simply call the HCS algorithm with G[X ∪W], which effectively does the same as the
intersection with X ∪W .

Finally, the time complexity of the rule is clearly polynomial. A more detailed analysis
and an idea for an algorithm that computes this rule can be found in the following
text.

vs

n1

n2

1

2

3n3

Figure 3: A graph with vertices n1 and n2 that share the same open neighborhood.

Considering the degeneracy-algorithm and the graph displayed in Figure 3, let us
assume that n1 was picked first as neighbor of vs. Clearly, no highly connected subgraph
containing these two vertices exists. Instead of picking n2 next, we can remove it because
it has the same open neighborhood as n1. Additionally, we can remove n3 since its
neighborhood is a subset of the neighborhood of n1.

The else-case - where the algorithm is not in a non-growing branch - is easier and faster
to compute, since one has to compute the subset relations between the vertices only at

20

the beginning and when the graph is permanently modified, for example in the outer
loop of the degeneracy algorithm where the vertex with the lowest degree is removed.
However, in this case the pruning rule may not remove many vertices in real-world
applications.

The first case additionally requires to update the relations when vertices are removed
from the set of candidates X or from the graph. This can be done by storing which
vertices have to be removed from the graph such that N(u) ⊆ N(v) or N [u] ⊆ N [v],
which are just the vertices in N(u)\N(v) or N [u]\N [v], respectively. When a vertex
is removed from the graph or from X, the pairs to be added to the relations can be
determined by a simple lookup.

More formally, we need for each relation a function relation pairs : V → 2V
2

that
maps a vertex v to all the pairs (u,w) that are not in the relation because of v. If the
number of vertices in N(u)\N(w) or N [u]\N [w], respectively, is zero after v is removed,
then we can add (u,w) to the relation. In practice, one could store the pairs that are
not in the relation and the number of vertices mentioned before together and let the
function return pointers to these locations, where the number effectively is a reference
count. We additionally need a function that maps a vertex v to all locations of pairs
that contain v - including pairs that are already in the relation -, which is used to update
the relations when v is removed.

With these optimizations, the update is inO(n·log(n)) since | relation pairs(v)| ∈ O(n)
for any vertex v, the number of pairs containing v is also in O(n), and insertion and
deletion of elements in an AVL tree, which can be used as underlying data structure for
a relation, is in O(log(n)) [Sed83].

Note that there may be a similar pruning rule using graph isomorphism that removes
a vertex u if there is no solution W ′ ⊃ W such that v ∈ W ′ and v /∈ W and there is an
automorphism h : V → V such that h(v) = u. However, such a pruning rule would not
have polynomial time complexity unless graph isomorphism is in P.

4.5.3 Branching rules

The branching rules discussed in this section take a pair (W,X) as input, where W is
the set of chosen vertices and X the set of candidate vertices, and compute new pairs of
the same type, which can be interpreted as children in the search tree.

Branching Rule 4.8 (Default branching rule). Pick a vertex v out of X and return
the two partial solutions with and without v, as shown in Algorithm 3.

Algorithm 3: A simple branching rule.

Function branch(W,X)
Pick a v ∈ X.
return {(W,X\{v}), (W ∪ {v}, X\{v})}.

Proof of correctness. If there is no solution for the instance (W,X), then there clearly is
neither a solution for (W∪{v}, X\{v}) that additionally contains an arbitrary v ∈ X nor

21

a solution for (W,X\{v}) that does not contain v. If there is no solution that contains
v ∈ X and no solution that does not contain v, there is also no solution to (W,X). The
time complexity is clearly polynomial.

One can potentially optimize this branching rule by returning
{(W ∪ {vk}, X\{v1, . . . , vk}) | k ∈ {1, . . . , |X| − k + |W |+ 1}} for an arbitrary subset
{v1, . . . , v|X|−k+|W |+1} ⊆ X. This is the same as recursively applying the branching rule
to (W,X\{v}) and cutting off (W,X\{v}) when |X| is smaller than k − |W |.

The following branching rule chooses a vertex v out of W and adds neighbors of v
until v has bk2c+ 1 neighbors in W . The vertex v is chosen such that it has the smallest
number of possibilities to choose from its neighbors. If this is not possible because all
vertices in W already have enough neighbors, it falls back to default branching with the
optimization mentioned above.

Branching Rule 4.9. Pick a vertex v out of W such that the number of possibilities
to add bk2c+ 1− |N(v) ∩W | neighbors of v is minimal, then pick the neighbors of v, as
shown in Algorithm 4.

Algorithm 4: A more advanced branching rule.

Function branch(W,X)

W ′ := {w ∈W | |N(w) ∩W | < bk2c+ 1}
if W ′ is non-empty then

Y := arg minv∈W ′
(|N(v)∩X|
b k
2
c+1−|N(v)∩W |

)
Pick a vertex v ∈ Y such that |N(v) ∩X| is maximal.
Z := N(v) ∩X
r := bk2c+ 1− |N(v) ∩W |

else
Z := X
r := 1

return {(W ∪ {vk}, X\{v1, . . . , vk}) | k ∈ {1, . . . , |Z| − r + 1}} for an
arbitrary subset {v1, . . . , v|Z|−r+1} ⊆ Z.

This branching rule requires that Pruning Rule 4.6 was already applied to W and X
to assure the validity of the parameters for the binomial coefficient.
W ′ is the set of vertices in W that do not already have bk2c + 1 neighbors

in W . Y is the set of vertices w ∈ W with the smallest number of pos-
sibilities to add vertices w1, ..., wb k

2
c+1−|N(w)∩W | ∈ X ∩ N(w) to W such that

|N(w) ∩ (W ∪ {w1} ∪ . . . ∪ {wb k
2
c+1−|N(w)∩W |})| = b

k
2c+ 1. Z is the set of neighbors

we will choose vertices from and r is the number of vertices we want to add.

Proof of correctness. If W ′ is empty, then we simply fall back to Branching Rule 4.8,
recursively applied to the first pair of the result of Branching Rule 4.8.

22

For the case where W ′ is non-empty, we basically pick a vertex v out of W ′. If there
is a solution W ′′ ⊃ W , then v has at least bk2c+ 1 neighbors in W ′′. Therefore, we can

safely test all subsets of size r = bk2c+ 1− |N(v) ∩W | of neighbors of v and there is at
least one subset S such that S ∪W ⊆ W ′′. If there is no solution W ′′ ⊃ W , then the
branching rule obviously cannot add an additional solution because all returned solution
candidates are supersets of W .

The time complexity for this rule is clearly polynomial, with the computation of W ′,
Y , and Z being in O((n+m) · log(n)) time (refer to the proof for Pruning Rule 4.3) and
the time complexity to compute the returned set being in O(n · log(n)).

In this simple version of the branching rule we only add one vertex in each step
and then recompute Y and Z. However, this recomputation may not be necessary in
the r − 1 following steps. In case r > 1, one can set r to r − 1 in the next step because
the vertex v from the previous step may still be one of the vertices with the lowest
number of possibilities to add its neighbors. However, the added neighbor can have less
possibilities to add its neighbors to W . Therefore, in Section 5.3 it will be tested which
of the two variants perform better in practice. We call the simple version Branching
Rule 4.9.1 and the modified version 4.9.2.

This branching rule may significantly decrease the number of possibilities that have
to be checked. Let us assume that we have to add r neighbors of a vertex v and
there are b ≥ r neighbors of v in X. There are

(
b
r

)
possibilities to choose these r

neighbors. We choose the vertex with the lowest number of possibilites first. So instead
of checking

(|X|
k−|W |

)
possible solutions that contain W as a subset, we pick vj , r ≤ j ≤ b,

out of these b vertices and for vj we choose r − 1 vertices out of {v1, ...vj−1} and for all
of these combinations, we choose k − |W | − r vertices out of {vj+1, ..., vb} ∪ (X\N(v)).

This gives us the formula
∑b

i=r

(
i−1
r−1
)
·
(|X|−i
k−|W |−r

)
. However, this is the number of

possibilities if we apply the branching rule once for r steps and then switch back
to the default branching rule. Analyzing this is relatively complex and does not tell
us much about the performance in practice, therefore a more detailed analysis is omitted.

There is an optimization for both branching rules that forces that there are enough
vertices left in the candidate set X such that |X ∪W | ≥ k in the next step or after the
r vertices are added to W , respectively. For example, if for Branching Rule 4.9 Z = X
and r = 1, then in the next step there is a branch with X = ∅, which cannot be a
solution if |W | 6= k. So we can safely remove some vertices from Z for Branching
Rule 4.9 or force X to be of a minimum size for Branching Rule 4.8. For Branching
Rule 4.8, we simply return {(W ∪{v}, X\{v})} if |X|+|W | = k. For Branching Rule 4.9,
we remove δ := k − |W | − r − |X\Z| vertices from Z if δ > 0. These changes to the
branching rules are obviously correct since we only discard branches that cannot lead to
a solution.

23

5 Implementation details and experimental results

In this section, we give some details on the implementation (Section 5.1), the test data
and environment (Section 5.2), and present the results of our tests (Section 5.3).

5.1 Implementation details

In this subsection, we will give some details on the implementation of the algorithms
and the rules.

All code was written in C++, with exception of some code used by the implemen-
tation by Falk Hüffner, which was written in C. For information about the complexity
of operations on C++ containers, refer to Table 1. The code was compiled using the
Microsoft compiler included in Microsoft Visual Studio 2013.

The source code is available on the website of the Chair of Algorithmics and Com-
plexity Theory (http://www.akt.tu-berlin.de/menue/software/).

The graph used by the algorithms for parameters degeneracy and h-index was imple-
mented as a set of vertices, where each vertex has its own set of neighbors.

We avoided copying whole containers as much as possible because we assumed it to be
very costly due to cache misses - since more space would be needed - and the overhead
of the copying itself, so almost all operations on containers were accesses and updates
of elements, insertions, and deletions and these updates were undone on returning from
a function.

For the implementation of Pruning Rule 4.3 the number of neighbors in W of vertices
in X was stored together with these vertices in a std::map and updated each time a
vertex was added to or removed from W . For Pruning Rule 4.5, Pruning Rule 4.6,
and Branching Rule 4.9 the number of neighbors of chosen vertices in the set of chosen
vertices, that is |N(v) ∩ W | for v ∈ W , was stored together with these vertices and
updated each time W was modified. The number |N(v)∩X| for v ∈W used in Pruning
Rule 4.6 and Branching Rule 4.9 was stored and updated in a similar way. The optimized
version of Branching Rule 4.8 was used and was implemented by simply iterating over
the set of candidates X and only considering vertices that are greater than the current
vertex based on the ordering of the C++ std::map - the keys are ordered ascendingly
according to the C++ standard and iteration over a std::map is in this order, too.

We implemented the optimization for the h-index algorithm that called the
branch recursive function of the degeneracy algorithm as mentioned in Section 4.3.

5.2 Test data and environment

We used graphs from the article “A Graph Modification Approach for Finding Core-
Periphery Structures in Protein Interaction Networks” by Sharon Bruckner et al. [BHK15].
The graphs vary in all parameters and include both sparse and dense graphs. The set
of test graphs is split into a set of 30 small to medium graphs with up to 1045 vertices

24

http://www.akt.tu-berlin.de/menue/software/

Container \ Operation Insertion Search Deletion

std::vector O(1)* O(n) O(n)
std::set O(log(n)) O(log(n)) O(log(n))
std::map O(log(n)) O(log(n)) O(log(n))

Table 1: Complexities of operations on C++ containers according to the C++ documentation
(* means average case).

and 4590 edges and a set of two large graphs with more than 2000 vertices and 20000
edges. The exact numbers are shown together with the results in Tables 2 and 3.

The performance tests were done using an Intel Core i7-3930K processor with 3.2 GHz.
Multiple tests were run in parallel to simulate real-world applications where often multi-
ple tasks are executed concurrently and therefore there may be for example more cache
misses in the shared cache than in a single-threaded test. This also has the effect that
simultaneous multithreading is used like in most real-world applications. We spawned
at most 11 threads since this processor supports 12 and we wanted to have some reserves
such that unrelated tasks do not interfer with our tests. Each algorithm was given a
time limit of ten minutes per instance of a graph G and a subgraph order k.

The results may differ slightly in a single-threaded test. However, this was not feasible
in our case since the total running time would have been several days.

5.3 Test results

We ran several tests for comparison of the algorithms and the pruning and branching
rules. We did not test Reduction Rule 4.2 and Pruning Rule 4.7 because they do not
look promising since the conditions needed to apply them successfully may occur very
rarely in practice. In the comparison tests of the algorithms, for the algorithms for
parameters d and h Pruning Rules 4.3, 4.4, 4.5, and 4.6 were applied and Branching
Rule 4.9.2 was used. The algorithm for parameter γ was used with all its optimizations
that have been implemented by Falk Hüffner.

Table 2 shows several parameters of the graphs and the number of instances for which
the algorithms ran more than one or ten minutes per graph. The degeneracy algorithm
was slow only for one of these graphs, namely Graph 2181, which has a degeneracy of
41. Consistently with the time complexity of this algorithm, which is O(2d · nd+O(1)),
the degeneracy appears to be the most important factor for the running time. However,
this algorithm performs much better than one would expect when only considering its
complexity.

For the h-index algorithm, the h-index and the number of vertices and edges appear
to be almost equally important.

The running time of the algorithm for the parameter edge isolation may also depend
on more parameters than only n and m. Considering only the number of vertices and
edges, the results are inconsistent: Graph 3676 has more vertices and edges than graph
502, but the edge isolation algorithm performs better for it. The lower degeneracy of
graph 3676 may explain this behaviour, but this makes estimating the running time

25

based on the graph parameters even harder.

Graph No. n m d h #Results ≥ 1 min #Results ≥ 10 min

Alg. d Alg. h Alg. γ Alg. d Alg. h Alg. γ

27 32 183 10 13 0 2 0 0 0 0

122 57 186 15 15 0 5 0 0 0 0

131 52 118 6 9 0 0 0 0 0 0

139 100 306 7 13 0 2 0 0 1 0

166 811 4590 11 35 0 10 12 0 10 8

329 104 281 9 12 0 5 0 0 1 0

398 83 818 19 27 0 4 20 0 4 19

447 43 244 12 15 0 4 0 0 4 0

462 57 398 14 20 0 6 7 0 6 3

472 32 184 11 13 0 4 0 0 1 0

480 30 164 11 12 0 5 0 0 0 0

502 46 518 20 24 0 6 12 0 6 3

775 61 354 11 16 0 2 6 0 2 0

776 47 291 10 15 0 0 3 0 0 0

777 40 265 10 15 0 0 0 0 0 0

778 38 137 7 10 0 0 0 0 0 0

781 33 49 3 5 0 0 0 0 0 0

790 38 45 2 4 0 0 0 0 0 0

910 31 71 5 6 0 0 0 0 0 0

932 30 106 8 10 0 0 0 0 0 0

1403 32 42 3 5 0 0 0 0 0 0

2181 150 2294 41 50 4 14 47 2 14 46

3674 1045 2907 12 26 0 12 7 0 12 3

3676 229 785 9 18 0 4 0 0 3 0

3677 415 2122 15 28 0 7 20 0 5 18

3682 61 226 10 12 0 5 0 0 1 0

3697 34 64 4 6 0 0 0 0 0 0

3700 33 26 2 3 0 0 0 0 0 0

3723 381 3294 21 42 0 27 33 0 25 32

3729 49 109 7 9 0 0 0 0 0 0

Total
4 124 167 2 95 132

(0.7%) (22.1%) (29.8%) (0.4%) (17.0%) (23.6%)

Table 2: Parameters of test graphs and number of results that took longer than one or ten
minutes to compute.

Graph No. n m d h #Results ≥ 1 min #Results ≥ 10 min

Alg. d Alg. h Alg. γ Alg. d Alg. h Alg. γ

5634 2046 25023 30 81 21 44 52 15 43 52

5737 2198 21635 44 81 41 77 80 34 75 74

Total
62 121 132 49 118 126

(43.7%) (85.2%) (93.0%) (34.5%) (83.1%) (88.7%)

Table 3: Parameters of large test graphs and number of results that took longer than one or
ten minutes to compute.

26

The results for large graphs shown in Table 3 are consistent with the results and
observations for the smallers graphs in Table 2, except for the h-index algorithm which
appears to run faster for graphs with lower degeneracy since both graphs have the same
h-index and roughly the same number of vertices and edges, but the h-index algorithm
is slower for the graph with larger degeneracy.

10−3 10−2 10−1 100 101 102
0

20

40

60

80

100

Time in seconds

P
er

ce
n
ta

ge
of

in
st

an
ce

s
so

lv
ed

Alg. for param. d
Alg. for param. h
Alg. for param. γ
At least one alg.

Figure 4: Comparison between algorithms for test graphs.

10−3 10−2 10−1 100 101 102
0

20

40

60

80

100

Time in seconds

P
er

ce
n
ta

ge
of

in
st

an
ce

s
so

lv
ed

Alg. for param. d
Alg. for param. h
Alg. for param. γ
At least one alg.

Figure 5: Comparison between algorithms for large test graphs.

Figure 4 shows the percentage of instances solved per algorithm, accumulated over
time. Additionally, a line for “At least one algorithm” shows how many instances were
solved by at least one algorithm, which implies that running all three algorithms in
parallel would solve this instance within this time. The degeneracy algorithm performs

27

much better than the other two algorithms in general, but some instances were solved
faster by one of the other algorithms. About 34% of the instances were solved within one
millisecond by the degeneracy algorithm and 85% within 10 milliseconds. The h-index
algorithm solved about 20% less instances in the same time. The algorithm for parameter
edge isolation needs relatively much time to solve even small instances, but solves only
about 10% less instances than the h-index algorithm within 3 seconds.

For the large graphs from Table 3 the algorithm for parameter degeneracy clearly
performs best in practice, as seen in Figure 5. All three algorithms are relatively slow
even for small k. This may be due to the sorting by degree that has to be done before
searching for highly connected subgraphs in the degeneracy and h-index algorithms. The
edge isolation algorithm needs about one second to even find small highly connected
subgraphs, while the other two algorithms find them within 30 to 40 milliseconds. Note
that the degeneracy algorithm solves all instances faster than the other algorithms for
these two graphs - in contrast to the smaller graphs, where it was slower on some
instances.

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
10−3

10−2

10−1

100

101

102

Solution size k

T
im

e
in

se
co

n
d

s

Alg. for param. d
Alg. for param. h
Alg. for param. γ

Figure 6: Duration for different orders k for graph 2181.

Figure 6 shows the relation between k and the running time for graph 2181. For
the “yes”-instances 3 ≤ k ≤ 67, the degeneracy and the h-index algorithm perform
roughly the same, with the degeneracy algorithm being slightly faster in most of the
instances. However, the algorithm for the parameter edge isolation performs far worse
than the other two for these k. The h-index algorithm could not solve the other instances
68 ≤ k ≤ 81, which are “no”-instances, within ten minutes, while the edge isolation
algorithm solves them in under ten seconds per instance. Particularly interesting is the
pattern in the running time of the algorithm for parameter degeneracy. For even k, the
running time for k and k + 1 is about the same. This is most likely due to the fact

28

that bk2c+ 1 = bk+1
2 c+ 1 for even k and therefore the pruning rules may remove almost

the same vertices from the graph and so the search trees may look very similar for both
k.

10−3 10−2 10−1 100 101 102
0

20

40

60

80

100

Time in seconds

P
er

ce
n
ta

ge
o
f

in
st

an
ce

s
so

lv
ed

Pr. Rules 4.3, 4.5, and 4.6
Pruning Rule 4.3
Pruning Rule 4.5
Pruning Rule 4.6

Without pruning rules

Figure 7: Comparison between Pruning Rules 4.3, 4.5, and 4.6 for the algorithm for parameter
degeneracy. Pruning Rule 4.4 was always applied since it is computable with negligible
overhead.

10−3 10−2 10−1 100 101 102
0

20

40

60

80

100

Time in seconds

P
er

ce
n
ta

ge
of

in
st

an
ce

s
so

lv
ed

Branching Rule 4.8
Branching Rule 4.9.1
Branching Rule 4.9.2

Figure 8: Comparison between Branching Rules 4.8, 4.9.1 and 4.9.2 for the algorithm for pa-
rameter degeneracy.

Figure 7 shows the differences in the running time of the algorithm for parameter
degeneracy when different pruning rules were applied. Pruning Rule 4.4 was always
applied since it has negligible overhead and is therefore not explicitly mentioned in the

29

following.
Applying all three pruning rules performs best in general, but the performance is

only slightly worse when only Pruning Rule 4.5 is applied. Pruning Rules 4.3 and 4.6
improved the performance not as much as Pruning Rule 4.5, but applying them made
the algorithm solve several percent more instances in the same time compared to the
algorithm without pruning rules.

Given this result, we applied these three pruning rules when we compared the different
algorithms.

Figure 8 shows a comparison between the branching rules, again for the algorithm
for parameter degeneracy. For this test, Pruning Rules 4.3 to 4.6 were applied. Clearly,
there is not much difference between the running times of the different branching rules in
this test. However, Branching Rule 4.9.2, where the possibilities were only recomputed
when r neighbors have been added, is slightly faster than the other two in general.
Remind that r is the number of neighbors of the picked vertex v that have to be added
such that v has bk2c+ 1 neighbors in the partial solution.

5.4 Conclusion

The denegeracy algorithm performs best for almost all tested instances. This result is
however not surprising since the complexity of this algorithm is lower than the com-
plexities of the other two. Additionally, the algorithm for parameter edge isolation was
originally designed for a more specialized problem and only a special case of this problem
that is also almost the worst case solves the more general highly connected subgraph
problem.

Pruning Rules 4.3 to 4.6 should always be applied and Branching Rule 4.9.2 should
be used to get the best performance in practice.

The algorithms perform significantly better than expected considering their complex-
ity. A possible explanation for this is that for vertices with relatively low degree the
number of their neighbors of neighbors is likely small compared to the number of ver-
tices n. Therefore, the number of possible subgraphs containing these vertices may often
be significantly smaller than the upper bound for worst-case graphs used for the time
complexity analysis. For dense graphs, it is likely that there are superpolynomial many
subsets that induce a highly connected subgraph and therefore it is likely to find one of
them relatively fast if the input is a “yes”-instance.

6 Summary and outlook

The results of this work are mainly that we found out that the algorithm for parameter
degeneracy (Section 4.2) performs best in practice (Section 5.3), although it is relatively
simple compared to the other algorithms for parameter h-index and edge isolation, and
- as more theoretical results - that we found upper bounds for the order k of highly
connected subgraphs (Section 3) and gaps of size five (Section 3.1).

The algorithms only solve the decision problem, meaning they stop after finding the
first highly connected subgraph. One may be interested in finding all or distinct highly

30

connected subgraphs. In the worst case, there are exponentially many highly connected
subgraphs. However, finding distinct highly connected subgraphs only increases the
running time by a linear factor since one can iteratively remove a highly connected sub-
graph from the graph and search for the next one in the modified graph. This approach
would for example work for the marketing problem in social networks mentioned in the
introduction.

The reduction and pruning rules (Section 4.5) may also be applicable for other algo-
rithms and - with little modifications - for similar dense subgraph problems.

The existence of a limit of gap sizes is a very specific, yet interesting question that
may be answered in future research and may lead to further understanding of graphs
and graph problems.

Literature

[BHK15] S. Bruckner, F. Hüffner, and C. Komusiewicz. “A Graph Modification Ap-
proach for Finding Core–Periphery Structures in Protein Interaction Net-
works”. In: Algorithms for Molecular Biology 10.16 (2015) (cit. on p. 24).

[Cyg+15] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized algorithms. Vol. 3. Springer,
2015 (cit. on p. 10).

[Die00] R. Diestel. Graph Theory. Springer-Verlag New York, 2000 (cit. on p. 6).

[Him+16] A.-S. Himmel, H. Molter, R. Niedermeier, and M. Sorge. “Enumerating max-
imal cliques in temporal graphs”. In: Proceedings of the 2016 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Min-
ing, (ASONAM ’16). IEEE Computer Society, 2016, pp. 337–344 (cit. on
p. 5).

[Hir05] J. E. Hirsch. “An index to quantify an individual’s scientific research out-
put”. In: Proc. National Academy of Sciences 102.46 (2005), pp. 16569–
16572 (cit. on p. 8).

[HKS15] F. Hüffner, C. Komusiewicz, and M. Sorge. “Finding Highly Connected Sub-
graphs”. In: G.F. Italiano et al. (Eds.): SOFSEM 2015, LNCS 8939 (2015),
pp. 254–265 (cit. on pp. 5, 11, 17).

[HS00] E. Hartuv and R. Shamir. “A clustering algorithm based on graph connec-
tivity”. In: Information Processing Letters 76.4 (2000), pp. 175 –181 (cit. on
pp. 5, 11).

[Hü+14] F. Hüffner, C. Komusiewicz, A. Liebtrau, and R. Niedermeier. “Partitioning
biological networks into highly connected clusters with maximum edge cov-
erage”. In: IEEE/ACM Transactions on Computational Biology and Bioin-
formatics 11.3 (2014), pp. 455–467 (cit. on p. 5).

31

[KS15] C. Komusiewicz and M. Sorge. “An Algorithmic Framework for Fixed–
Cardinality Optimization in Sparse Graphs Applied to Dense Subgraph
Problems”. In: Discrete Applied Mathematics 193 (2015), pp. 145–161 (cit.
on p. 5).

[LW08] G. Liu and L. Wong. “Effective Pruning Techniques for Mining Quasi–
Cliques”. In: Machine Learning and Knowledge Discovery in Databases, Eu-
ropean Conference, ECML/PKDD 2008, Antwerp, Belgium, September 15-
19, 2008, Proceedings, Part II. 2008, pp. 33–49 (cit. on p. 5).

[LW70] D. R. Lick and A. T. White. “k-degenerate graphs”. In: Canadian Journal
of Mathematics 22 (1970), pp. 1082–1096 (cit. on p. 7).

[MNS09] H. Moser, R. Niedermeier, and M. Sorge. “Algorithms and Experiments for
Clique Relaxations—Finding Maximum s-Plexes”. In: Proceedings of the 8th
International Symposium on Experimental Algorithms (SEA ’09). Vol. 5526.
LNCS. Springer, 2009, pp. 233–244 (cit. on p. 5).

[PYB13] J. Pattillo, N. Youssef, and S. Butenko. “On clique relaxation models in
network analysis”. In: Eur. J. Operational Research 226.1 (2013), pp. 9–18
(cit. on p. 5).

[Sed83] R. Sedgewick. Algorithms. Addison-Wesley, 1983 (cit. on p. 21).

[Sor17] M. Sorge. “Be Sparse! Be Dense! Be Robust! Elements of Parameterized
Algorithmics”. PhD thesis. Technische Universität Berlin, 2017 (cit. on pp. 5,
15, 17).

[SUS07] R. Sharan, I. Ulitsky, and R. Shamir. “Network-based prediction of protein
function”. In: Mol. Syst. Biol. 3.88 (2007) (cit. on p. 5).

[SW97] M. Stoer and F. Wagner. “A Simple Min Cut Algorithm”. In: Journal of the
ACM 44.4 (1997), pp. 585–591 (cit. on p. 18).

32

	Introduction
	Related work
	Our contributions

	Preliminaries
	Graph theory
	Graph parameters
	Highly connected graphs

	Decision and optimization problems
	Search-tree algorithms
	Parameterized complexity

	Properties of highly connected subgraphs
	Gaps

	Algorithms
	General concept and properties of algorithms
	Algorithm for parameter ``degeneracy''
	Algorithm for parameter ``h-Index''
	Algorithm for parameter ``edge isolation''
	Reduction, pruning and branching rules
	Reduction rules
	Pruning rules
	Branching rules

	Implementation details and experimental results
	Implementation details
	Test data and environment
	Test results
	Conclusion

	Summary and outlook
	Literature

