
Technische Universität Berlin
Fakultät 4 - Elektrotechnik und Informatik

Institut für Softwaretechnik und Theoretische Informatik
Fachgebiet Algorithmik und Komplexitätstheorie

Bachelor Thesis

Graph Degree Anonymization:
Lower Bounds and Heuristics

Author:
Clemens Hoffmann
(332772)

Supervisors:
Prof. Dr. Rolf Niedermeier

Dr. Sepp Hartung

André Nichterlein

March 15, 2014

Abstract. Due to the large interest in analyzing social network structures
for scientific and market researches, the anonymization of data sets is of large
interest in recent research. Given a simple graph G, the NP-hard k-degree
anonymization problem asks for a supergraph G′ with a minimum amount of
edge additions, such that each vertex degree occurs at least k times. Focusing
power law distributed social network graphs, we present various polynomial-
time heuristics for k-degree anonymization, based on the dynamic program-
ming algorithm of Liu and Terzi. All the graph degree anonymization heuris-
tics work in two phases: Phase 1 is to compute and k-anonymize the degree
sequence of the input graph. In Phase 2, the k-anonymous degree sequence
is realized as a supergraph of the input graph. While the heuristic of Liu and
Terzi has been shown to be optimal if the solution is very large, we examine
its usability for rather small real-world instances. As we were not able to
k-anonymize any of the degree sequences of the social network graphs used
within this work such that realization is possible in Phase 2, we modified
the algorithm of Liu and Terzi in an algorithm engineering process in several
steps. Furthermore, we introduce several degree sequence realization heuris-
tics which solve Phase 2 of the graph anonymization process and compare
these heuristics regarding to effectiveness and running-time. Using these al-
gorithms, we were able to optimally k-degree-anonymize many large social
network graphs with > 100.000 vertices and k = 200 in less than an hour.

Abstrakt. Datensätze sozialer Netzwerke sind als Quelle wissenschaftlicher
Forschungen sowie Marktforschungen von großer Bedeutung. Um die Pri-
vatheit der Nutzer zu schützen oder Datenschutzrichtlinien zu erfüllen, ist
die Anonymisierung solcher Datensätze notwendig und Gegenstand aktueller
Forschungen. Die vorliegende Arbeit beschäftigt sich mit der k-Grad-
Anonymisierung von Graphen sozialer Netzwerke, die in der Regel poten-
zverteilt sind. Gegeben ein einfacher Graph G und ein Parameter k, ist nach
einem Supergraphen von G gefragt, in dem jeder Knotengrad mindestens
k mal auftritt. Die in dieser Arbeit behandelten Algorithmen zur Lösung
dieses Problems basieren auf einem dynamischen Zwei-Phasen-Algorithmus
von Liu und Terzi. In Phase 1 wird die zum Graph gehörende Gradsequenz
k-anonymisiert, so dass jeder Grad mindestens k mal in der anonymisierten
Sequenz auftritt. In der zweiten Phase wird die anonymisierte Sequenz als
Supergraph von G realisiert. Da die in Phase 1 mit dem Algorithmus von
Liu und Terzi errechneten k-anonymen Gradsequenzen für die Graphen aus
dem verwendeten Test-Set nicht realisierbar sind, wird dieser Algorithmus
in einem Algorithm Engineering Prozess erweitert, so dass die Wahrschein-
lichkeit für die Realisierbarkeit der berechneten Lösungssequenzen in Phase
2 zunimmt. Darüber hinaus werden für Phase 2 verschiedene Heuristiken zur
Realisierung der k-anonymen Gradsequenz als Supergraph des Eingabegraphen

2

vorgestellt und anhand von Effektivität und Laufzeit verglichen. Mit Hilfe
dieser Algorithmen konnten einige sehr große Instanzen mit > 100.000 Knoten
und k = 200 innerhalb von einer Stunde optimal gelöst werden.

3

Contents

1 Introduction 5
1.1 Motivation . 5
1.2 Content of this Work . 6
1.3 Related Work . 7
1.4 Preliminaries . 8

2 Computation of Realizable k-anonymous Degree Sequences 8
2.1 Computing k-anonymous Degree Sequences 9
2.2 Considering the Maximum Degree Raise 11
2.3 The Characterization of Erdős and Gallai 13
2.4 Limitations of Degree Sequence Anonymization Algorithms 15

3 Data Reduction Rules 16

4 Concept and Realization of Degree Block Sequences 18
4.1 Extracting Information from Initial and Solution Block Sequences 19
4.2 Computing Mappings between Vertices and DegMod 20

5 Greedy Graph Constructor Algorithm 21

6 Implementation and Experimental Results 25
6.1 Implementation . 25
6.2 Results . 26
6.3 Conclusion and Outlook . 29

4

a b

cd

e

f

a b

cd

e

f

Figure 1: Graph G0 and a 2-anonymous Graph G′0 with a minimum amount of edge-
additions.

1 Introduction

1.1 Motivation

Nowadays, communication and knowledge platforms such as social networks are playing
a more and more important role. Such networks are used by more than a billion people to
communicate, retrieve information and share content [Fac13]. They supplement or even
replace conventional forms of communication. As social networks contain a lot of infor-
mation about its users, the analysis of implicitly and explicitly contained information
is quite interesting for research. For instance, references between users and additional
information such as interests, behavior and trends can be analyzed. This means that
data from social networks become a more and more important source for scientific and
market researches. In order to comply with data privacy laws and to protect the privacy
of each user, exported data sets often need to be anonymized before being handed out or
processed. There are three different privacy categories: identity disclosure prevents an
adversary to reveal the real identity of members within a network. Link disclosure hides
sensitive relationships between members and content disclosure hides information asso-
ciated with each member. Within this work, we focus on identity disclosure in terms of
k-anonymity. The subject of k-anonymity is to modify the original data, such that each
entity cannot be distinguished from at least k − 1 other entities within the data while
losing as less information as possible. Within this work, social networks are modeled as
undirected graphs. Its vertices represent network members and its edges represent social
relationships between those.
Backstrom et al. [BDK11] have shown that renaming all members within a network is
not sufficient in order to assure that the identity of a member cannot be revealed. With
additional knowledge such as the number of relationships between certain members,
their real identity can be revealed. Furthermore, Hay et al. [Hay+07] demonstrated that
structural analogies like the number of relationships of a member determine whether its
identity can be revealed with additional knowledge. For instance, if there is a vertex with
a unique amount of links, one can easily determine its real identity when the amount of
its links is known. In order to prevent an attacker from revealing the identity of a vertex,
we work on the subject of degree anonymization. A network is k-degree-anonymous if
each vertex degree occurs at least k times. Although this process does not provide perfect
privacy (e.g. the structure of a vertex’ neighborhood can be unique), it is subject of
active researches and forms a fair trade-off between privacy and practicability [LT08].

5

⇒ 0,1,1,2
Phase 1⇒ 1,1,2,2

Phase 2⇒

graph G initial degree k-anonymized realization

and k = 2 sequence D degree sequence D′ of D′ in G

Figure 2: A simple example for the 2-Phase heuristic offered by [LT08].
Phase 1: Anonymization of the degree sequence D of the input graph G such
that each resulting number occurs at least k times. Phase 2: Realization of
the k-anonymized degree sequence D′ as a super-graph of G.

There are various strategies to provide degree anonymity, such as removing vertices or
edges. Within this work, we focus on the strategy to add as few edges as possible in order
to transform the input graph to a k-degree anonymous graph, which has been introduced
by Liu and Terzi [LT08]. Figure 1 illustrates a Graph G0 and a 2-anonymous supergraph
G′0, which is the result of such a graph degree anonymization process. This problem of
k-degree anonymity is known to be NP-hard but can be solved in polynomial time if
the solution is very large [Har+13]. However, the solution size of real-world instances
is usually rather small. Examining the usability of the algorithm of Liu and Terzi for
power-law distributed social network graphs with rather small solutions, we recognized
that none of our test graphs could be k-degree anonymized. In the following, we present
various enhancements and modifications of this algorithms which increase the chances
on successfully solving the k-degree-anonymization problem for power-law distributed
graphs.

1.2 Content of this Work

The graph k-degree anonymity problem introduced by Liu and Terzi is defined as follows:

Graph k-degree anonymity
Input: A graph G = (V,E), a positive integer k ≤ |V | and a positive integer s.
Question: Is there a graph G′ = (V,E ′) with E ′ = E ∪ S and |S| = 2s such that

the degree of each vertex v ∈ V occurs at least k times?

Figure 2 illustrates the concept of k-degree anonymizing a graph by transferring the
graph problem into a number problem and realizing the computed solution within the
graph. Phase 1 of this procedure is to k-anonymize the degree sequence of the input
graph, which stores the degree of each vertex, with minimal cost. This procedure is
covered in Section2. Subsequently, the resulting k-anonymous degree sequence is realized
as a supergraph of the input graph in Phase 2, which is covered in Section4 and Section5.
For both phases, we present various strategies and implementations. In order to solve
Phase 1, we first introduce the dynamic programming algorithm of Liu and Terzi [LT08]
which computes a k-anonymous degree sequence in polynomial-time. As our experiments

6

revealed that the k-anonymous solution degree sequences of our test instances computed
by this algorithm could not be realized as supergraphs of the input graph, we present
a slight modification of this heuristic which is supposed to increase the likelihood of
realizability in Section 2.2. Furthermore, we present the characterization of Erdős
and Gallai [EG60] in Section 2.3, which a necessary constraint for the realizability of
degree sequences. As the running time and the amount of solutions of these heuristics
depend on the size of the initial degree sequence, we introduce data reduction rules in
Section 3. Since our algorithms were ineffective for all tested social network instances,
we bring up another approach for Phase 1 in Section 4. Instead of working on degree
sequences, we present the concept of computation and anonymization of degree block
sequences. This concept has been introduced by Hartung et al. [HHN14]. In Section 5,
we also introduce various strategies for realizing k-anonymous degree sequences and
degree block sequences, which relates to Phase 2. In Section 6, we finally sum up the
results of our experiments and compare the miscellaneous realization strategies.

1.3 Related Work

The subject of anonymizing data sets is of large interest in recent research. The con-
cept of k-anonymity has been introduced by Samarati and Sweeney [SS98] for tables
as a protection against linking external data against so called quasi-identifiers which
were believed to be anonymous. Quasi identifiers are attributed such as postal code or
birth date which can be used for exploiting the identity of an entity. Instead of remov-
ing fields which directly identify any individual such as name, social security number
or phone number, a table has been called k-anonymous if each set of quasi-identifiers
can be found at least k times within the table. This subject has further been stud-
ied by Sweeney [Swe02]. Meyerson and Williams [MW04] proofed that making a rela-
tion k-anonymous by removing as few entities as possible is NP-hard. Similar concepts
have been introduced for providing anonymity for social networks modeled as graphs.
Backstrom et al. [BDK11] have shown that renaming all vertices within a graph is not
sufficient. With additional knowledge such as the number of relationships between cer-
tain members, their real identity can be revealed. Furthermore, Hay et al. [Hay+07]
demonstrated that structural analogies within the graph determine whether its identity
can be revealed with additional knowledge. Thus, [Hay+07] introduced the concept of
k-candidate anonymization, meaning that for each structural query over a graph, there
exist at least k vertices which match this query. The concept of making a graph k-
anonymous such that each vertex degree occurs at least k times has been introduced
by Liu and Terzi [LT08] as k-degree anonymity. This concept is less strong than the
proposed definition of k-candidate anonymity, as the structure of vertices’ neighbor-
hoods may still be unique. Thus, the graph-anonymization problem has been defined
that given a graph G, it asks for a k-degree anonymous graph G′ such that the number
of graph-modifications is minimal. Additionally, [LT08] provided simple and efficient
polynomial-time heuristic algorithms which are based on the anonymization and real-
ization of degree sequences. Hartung et al. [Har+13] proved that this heuristic is optimal
if the amount of edges to add is larger than ∆4. Bredereck et al. [Bre+13] introduced

7

the problem of making a graph k-degree-anonymous by removing as few vertices as pos-
sible from the input graph. This problem has also proved to be NP-hard even for trees.
However, the number of vertices to delete from a power law distributed graph has been
shown to be rather low.

1.4 Preliminaries

Throughout this work we consider simple undirected graphs without self-loops and
multi-arcs. Formally, a graph G = (V,E) consists of the edge set E and the vertex
set V = {v1, . . . , vn}. Unless explicitly defined otherwise, n denotes the number of ver-
tices. The vertex degree of a vertex u ∈ V is the amount of vertices which are adjacent
to u and is denoted by deg(u). The maximal vertex degree within a graph is denoted
by ∆.
A degree sequence D = (d1, . . . , dn) is a sequence of positive integers. A degree sequence
DG is referred to as the corresponding degree sequence to G such that there is a bijective
mapping between the entries in DG and the degrees of the vertices in G. We omit
subscripts if the graph is clear from the context. A degree sequence D′ is derived from
D if d′i ≥ di for all 1 ≤ i ≤ n. We denote a degree sequence D′ as realizable if
and only if there is a graph G′ such that there is a bijective mapping between the
degrees of the vertices of G′ and the entries of D′. A degree sequence D′ is realizable
within a graph G if the resulting graph G′ is a supergraph of G. A difference sequence
D∆ = D′−D = (d′1− d1, . . . , d

′
n− dn) results from subtracting two degree sequences D′

and D, whereas d′i ≥ di for all i ∈ {1, . . . , n}. An entry d∆
i ∈ D∆ denotes the amount of

edges which have to be added to vi, such that deg(vi) equals d′i.
The distance between two degree sequences D′ and D is the sum over all entries of
the difference sequence D′ −D and denotes the anonymization cost for an input degree
sequence D and the solution degree sequence D′. It is denoted by distance(D′, D). For
0 ≤ p ≤ q ≤ n and t ≥ db, the function cost(D, p, q, t) computes the distance between the
degree sequence (d′p = t, . . . , d′q = t) and the degree sequence (dp, . . . , dq). The amount
of affected vertices in D′ is the Hamming distance between D′ and D and is equal to the
amount of entries d′i > 0 within D∆. The maximum raise within two degree sequences
D′ and D is a largest entry in D′ −D.
A graph G is k-anonymous if for each vertex degree deg(vi), i ∈ {1, . . . , n}, there are
at least k − 1 other vertices vj such that deg(vj)=deg(vi). The term of anonymity can
also be applied to degree sequences: A degree sequence D is k-anonymous if the value
of each entry di occurs at least k times within the degree sequence.

2 Computation of Realizable k-anonymous Degree
Sequences

The procedure of making a graph k-anonymous is performed in two phases. This section
covers Phase 1 of the graph anonymization procedure which is to compute a k-anonymous
degree sequence from the input graph as illustrated in Figure 1. We present various

8

polynomial-time algorithms which compute k-anonymous degree sequence of an input
degree sequence. Regarding the graph degree anonymization process, the computed so-
lution degree sequence is optimal if it can be realized within the input graph in Phase 2.
However, the distance between the input degree sequence and the k-anonymous solution
degree sequence forms a lower bound for the graph k-degree anonymization. The first
algorithm presented in Section 2.1 computes a k-anonymous degree sequence with min-
imal cost, that is the distance between the initial degree sequence and the k-anonymous
solution degree sequence is minimal and even. This is a necessary constraint as adding
an edge to the graph increases the degree of two vertices by one. Our tests revealed that
for each of our social network instances, the computed solution degree sequence could
not be realized as a supergraph in Phase 2. The most obvious reason for the lack of
realizability is that these instances are power law distributed, e.g. there are very few
vertices with a relatively large degree and many vertices with a rather low degree. We
observed that a lot of edges have to be added between the vertices with a unique high
degree, whereas the vertices with low degrees remain unchanged. Hence, the amount of
affected vertices is often smaller than the maximum raise and thus the solution degree se-
quence cannot be realized. We enhance the algorithm by an additional constraint which
ensures that the amount of affected vertices is larger than the maximum raise within the
solution degree sequence. An algorithm which implements this constraint is introduced
in Section 2.2. As the solution degree sequences computed by this algorithm were not
realizable too, we adopt the characterization of Erdős and Gallai [EG60] which checks
if a degree sequence is realizable. We show how this characterization can be integrated
into Phase 1 of the anonymization process. In Section 2.3, we introduce a modification
for this characterization, which takes realizability within the input graph into account.

2.1 Computing k-anonymous Degree Sequences

Before computing a k-anonymous degree sequence as part of the graph degree anonymiza-
tion process, we need to compute the ascending ordered initial degree sequence D of
the input graph G by counting the degree for each vertex. The decision problem of
k-anonymizing a degree sequences is defined as follows:

k-Degree Sequence Anonymity (k-DSA)
Input: Two positive integers k and s, and a degree sequence D = (d1, . . . , dn)

with d1 ≤ d2 ≤ . . . ≤ dn.
Question: Is there a k-anonymous degree sequence D′ = (d′1, . . . , d

′
n) with di ≤ d′i

for all 1 ≤ i ≤ n such that
∑n

i=1 d
′
i − di = 2s ?

Obviously, we can find a minimal distance k-anonymous degree sequence D′ by comput-
ing k-DSA for increasing s ∈ {0, . . . , n2}, until an algorithm for k-DSA reports (D, k, s)
to be a YES-instance. The cost of anonymization is the distance between D′ and D,
which is exactly 2s. We present Algorithm 1, which is a dynamic programming algo-
rithm developed by Hartung et al. [Har+13] because it forms the basis of Algorithm 2
introduced in Section 2.2.

9

Algorithm 1: Summary. The algorithm uses a two-dimensional boolean table T with
n · (2s+ 1) entries, each initialized with false. An entry T [i, j], 1 ≤ i ≤ n, 0 ≤ j ≤ 2s is
true if and only if the subsequence (d1 . . . , di) can be transformed into a k-anonymous
subsequence (d′1, . . . , d

′
i) such that

∑i
t=1 d

′
t−dt = j. Thus, if T [n, j] is true for an even j,

then D is transformable into a k-anonymous degree sequence D′ such that the difference
between D′ and D is exactly j. Having computed T once, D′ can be computed by a
backtracking algorithm from T . The basic idea of the dynamic programming algorithm
is to fragment the input degree sequence into k-anonymous subsequences of length < 2k.
If an entry of the degree sequence is part of a k-anonymous subsequence with length
≥ 2k, then this subsequence can be divided into several k-anonymous subsequences with
length < 2k.

Algorithm 1: Computation of the table. For i < k, set T [i, j] to false, as there is
no k-anonymous degree sequence with less than k elements. For k ≤ i < 2 · k, set T [i, j]
to true if and only if there is a t ∈ {di, . . . ,∆2}, such that the cost of setting the first i
entries in D to t is exactly j. In this case, (d′1 = t, . . . , d′i = t) forms the corresponding
solution degree sequence. For i ≥ 2k, set T [i, j] to true if and only if there is a
t ∈ {di, . . . ,∆2} and an l ∈ {k, . . . , 2k−1}, such that T [i− l, j− cost(D, i− l+1, i, t)] =
true. In this case, (d′i−l+1 = t, . . . , d′i = t) forms the corresponding solution degree
subsequence. Then, the total cost of making (d1, . . . , di) k-anonymous is exactly j then.
If T [n, j] = true for even j, then there is a k-anonymous degree sequence D′ with
d′i ≥ di for all i ∈ {1, . . . , n} which might be realizable. The dynamic programming
algorithm terminates and D′ is computed by a backtracking algorithm based on the
entries in T . Starting off with i := n, the algorithm searches a t ∈ {di, . . . ,∆2} and
an l ∈ {k, . . . , 2k − 1}, such that T [i− l, j − cost(D, i− l + 1, i, t)] is true. Note that
during each step, there might be more than one such t and l which can lead to different
solution degree sequences. A combination of t and l is heuristically selected during each
step of the backtracking. The corresponding subsequence is (d′i−l+1 = t, . . . , d′i = t). Set
i to i− l and j to j − cost(D, i− l + 1, i, t) and repeat this procedure while i > k.

Lemma 1. Algorithm 1 solves k-Degree Sequence Anonymity in O(nsk∆) time
[Har+13].

Limitations. Our experiments with power-law distributed social network graphs re-
vealed that the k-anonymous degree sequences computed by Algorithm 1 cannot be
realized within the input graphs. One reason for this is that power law graphs have
many vertices with a low degree and very few vertices with a relatively high and unique
degree. In order to make the degree sequence of a power law graph k-anonymous, a
few entries have to be raised by a relatively huge amount, whereas most other vertices
with a low or average degree remain unchanged. Hence, we need to add a lot of edges
to a few vertices, whereas there are not enough other vertices that these edges can be
made adjacent to. Figure 3 illustrates Graph G1 demonstrating this issue for k = 2.
The initial degree sequence of G1 is D1 = (1, 1, 1, 3) and the computed degree sequence
is D′1 = (1, 1, 3, 3). This solution is not realizable because it is not possible to raise the

10

a

b c d

Figure 3: Graph G1 = (V1, E1), D(G1) = (1, 1, 1, 3)

degree of one vertex from 1 to 3 without raising the degree of at least two other vertices.
In general, if the maximum raise is larger than the amount of affected vertices within
a solution degree sequence D′, then D′ cannot be realized. Hence, the algorithm is not
suitable as part of the graph degree anonymization process. This issue led to adding the
requirement that the amount of affected vertices is larger than the maximum raise to
the k-Degree Sequence Anonymity problem.

2.2 Considering the Maximum Degree Raise

We introduce k-Degree Sequence Anonymity 2 which is a slight modification of
k-Degree Sequence Anonymity. It ensures that the amount of affected vertices
within a computed k-anonymous degree sequence is larger than the maximum raise.

k-Degree Sequence Anonymity 2(k-DSA2)
Input: Two positive integers k and s, and a degree sequence D = (d1, . . . , dn)

with d1 ≤ d2 ≤ . . . ≤ dn.
Question: Is there a k-anonymous degree sequence D′ = (d′1, . . . , d

′
n) with di ≤ d′i

for all 1 ≤ i ≤ n such that
∑n

i=1 d
′
i−di = 2s and the amount of affected

vertices is larger than the maximum raise within D′ ?

By slightly modifying Algorithm 1, we can prevent the algorithm from computing k-
anonymous degree sequences whose amount of affected vertices is lower than the maxi-
mum degree raise. Algorithm 2 is an enhancement of Algorithm 1, which solves k-De-
gree Sequence Anonymity 2 heuristically, meaning that computed solutions might
not be optimal regarding anonymization cost.

Algorithm 2: Concept. Algorithm 2 uses tables Ty with n · (2s + 1) · n entries each,
where Ty[i, j, x] is true if and only if there is a degree sequence (d′1, . . . , d

′
i) such that the

anonymization cost is exactly j, the amount of affected vertices is at least x and the
maximum raise is less than y. If an entry Ty[n, j, x] is true for an even j, then there is
such a degree sequence D′ which might be realizable and the algorithm terminates.

Algorithm 2: Computation of the table. The computation itself is similar to the
computation of the table within Algorithm 1. Within this paragraph, the function
affectedVertices(D, p, q, t) computes the amount of affected vertices for a degree sequence
D and two positive integers 1 ≤ p ≤ q ≤ n, when the entries {dp, . . . , dq} are raised to t.
For each y ∈ {1, . . . ,∆2} a new table Ty is created. We are not computing more than
∆2 tables as there is no entry larger than ∆2 in the solution degree sequence [HHN14].

11

a

b c d e

Figure 4: Graph G2 = (V2, E2), D2 = (2, 2, 3, 3, 4), D′2 = (2, 2, 4, 4, 4)

Hence, the maximum raise within D′ is ∆2. Within a table Ty, we iterate over each
j ∈ {0, . . . , 2s} and x ∈ {0, n}. For 0 ≤ i < k we set Ty[i, j, x] to false as there is
no k-anonymous degree sequence containing less than k entries. For k ≤ i < 2k we set
Ty[i, j, x] to true if and only if there is a t ∈ {di, . . . ,∆2}, such that the cost of setting
the first i entries in D is exactly j, whereas the amount of affected vertices is a least x
and the maximum raise is less than y. For i ≥ 2k, set T [i, j, x] to true if and only if
there is a t ∈ {di, . . . ,∆2} and an l ∈ {k, . . . , 2k−1}, such that T [i− l, j−cost(D, i− l+
1, i, t), x− affectedVertices(D, i− l + 1, i, t)] = true and max(t− di−l+1, . . . , t− di) < y.
If Ty[n, j, x] = true for an even j, a solution degree sequence D′ can be generated by a
backtracking algorithm similar to Algorithm 1, such that the amount of affected vertices
is larger than the maximum degree raise and the total cost of anonymization is even.
Note that this algorithm might not compute optimal results reagrding to anonymization
cost, as it minimizes the maximum degree raise while keeping anonymization cost as
low as possible. This means that there still a solution degree sequence with a larger
maximum raise might provide lower anonymization cost in rare cases.

Lemma 2. Algorithm 2 runs in O(n2sk∆4) time.

Proof. For each table Ty, y ∈ {1, . . . ,∆2}, we iterate over at most 2s · n2 entries. For
each entry, we need perform at most k · ∆2 lookups. This results in a running time of
O(n2s∆4k).

Our experiments revealed that computing k-anonymous degree sequences whose number
of affected vertices is larger than the maximum raise did not improve the realizability of
the computed k-anonymous degree sequences. Besides the huge increase of running time
and memory consumption, we could not realize the few instances that could be processed
by Algorithm 2 in decent time. The main issue for the lack of realizability is illustrated
by graph G2 shown in Figure 4. The initial degree sequence is D2 = (2, 2, 3, 3, 4) and
for k = 2 the solution degree sequence computed by Algorithm 2 is D′2 = (2, 2, 4, 4, 4).
The amount of affected vertices is 2 which is larger than the maximum raise which is
1. Besides the fact that both vertices with degree 3 are already adjacent, D′2 cannot
be realized even if we do not claim G′2 to be a supergraph of G2. This shows that the
additional property for the amount of affected vertices and the maximum raise within a
computed solution degree sequence does not guarantee that this solution degree sequence
is realizable. However, the lower bounds computed by Algorithm 2 was larger than the
ones computed by Algorithm 1. Our next step in the algorithm engineering process is
to integrate the characterization of Erdős an Gallai [EG60] into the degree sequence
anonymization process.

12

a b

c d

e

f g

h i

Figure 5: Graph G3 = (V3, E3), D3 = (1, 1, 1, 1, 3, 3, 3, 3, 4)

2.3 The Characterization of Erdős and Gallai

In order to identify degree sequences as not realizable, we can use the characterization
of Erdős and Gallai [EG60]. Given a descending sorted degree sequence D, the outcome
of the characterization is true if and only if the degree sequence is realizable. The
characterization is defined as follows for a degree sequence D = (d1, . . . , dn) where
di ≥ dj for all 1 ≤ i ≤ j ≤ n and

∑n
i=1 di is even.

∀r ∈ {1, . . . , n} :
r∑

i=1

dr ≤ r(r − 1) +
n∑

i=r+1

min(di, r)

The characterization determines whether a degree sequence D is realizable by checking
how many edges need to be added to the first r vertices on the left side of the inequality.
The sum on the right side specifies the amount of edges that can be added among the
first r vertices and between the first r vertices and the remaining n − r vertices. If for
each r the value on the left side is at most the sum on the right side, then D is realizable
as enough edges can be added between the first r vertices and the least n − r vertices,
such that the degree of of each vertex vi = di for all 1 ≤ i ≤ r.
We can use the characterization in order to verify the realizability of a solution degree
sequence D′ in two ways. First, we can use D′ as input in order to identify solutions
which cannot be realized even if the resulting graph was not restricted to be a super-
graph of the input graph. For instance, the solution sequence for graph G2 illustrated
in Figure 4 is not realizable. Furthermore, we can use the difference sequence D′ −D
as input where D is the initial degree sequence. In this way, solutions which cannot be
realized as a supergraph G′ of the input graph G = (V,E) can be recognized. As we do
not remove edges from the input graph, D′−D is the degree sequence of vertex degrees
of a graph G′′ = (V,E ′′) such that the degree sequence of G′ = (V,E ∪E ′′) is D′. If the
outcome of the characterization using the difference sequence as input is not true, then
there is no such graph G′′ and we cannot realize the solution degree sequence within the
input graph G. Otherwise, D′ might be realizable within G. As existing edges within
G might prevent the realization and the characterization does not consider the graph
structure, realization can fail and the characterization might give a false positive. Fig-
ure 5 demonstrates an instance where the outcome of the characterization is true for the
2-anonymous degree sequence D′3 = (1, 1, 1, 1, 3, 3, 4, 4, 4) and the difference sequence
D′3 − D3. However, D′3 cannot be realized as a supergraph of G3: We need to add an
edge between two degree-three-vertices in order to create two degree-four-vertices, but
each pair of degree-three-vertices is already adjacent.

13

ab

c

d

e f
g

h

Figure 6: Graph G4 = (V4, E4), D4 = (1, 1, 1, 2, 3, 3, 3, 4)

In order to improve the verification of realizability, we enhance the characterization
of Erdős and Gallai such that the sum of the right side is reduced when we cannot
add edges due to already existing edges. Therefore, we additionally store the initial
degree di and the solution degree d′i of each of the difference sequence’s entries d′i − di.
Algorithm 1 illustrates our modification of the characterization. Among the first r
entries, we check all mappings between these entries and the vertices in G with the
vertex degree of the entries’ initial degree and seek for a mapping, such that the sum of
adjacencies among these vertices is minimal (line 7-16). For each edge in this mapping
we subtract two from r(r − 1) on the right side of the inequality as we cannot add
another edge in order to raise the vertex degree of the endpoints of this edge (line 13-
14). The computation of the second sum (line 18-31) is as follows: For each of the
least n − r entries’ initial degree, we iterate over the set of vertices whose degree is
equal to the entry’s initial degree (line 22). For each such vertex vj, we seek for a
mapping between the first r initial degrees (d1, . . . , dr) of the degree sequence and the
vertices with this degree {v1, . . . , vr} (line 25-26), such that vj is adjacent to as less
vertices as possible from this set. If this sum of non-adjacent vertices is smaller than the
minimum of dj and r, we subtract min(min(dj, r)− subsum, 0) from the sum. However,
we need to restrict this procedure: If an entry’s initial degree is equal to another entry’s
solution degree, then we cannot reduce the regarding summand (line 20). Graph G4

illustrated in Figure 6 is such an instance. We can realize D′4 = {2, 2, 2, 3, 3, 4, 4, 4} if
we add the edges {{d, e}, {f, h}, {c, g}}. However, the advanced characterization fails
without the restriction: Leaving out the vertices which remain unchanged, the difference
sequence is {1, 1, 1, 1, 1, 1}, the corresponding initial degrees are {3, 3, 2, 1, 1, 1} and the
corresponding solution degrees are {4, 4, 3, 2, 2, 2}. However, for r = 2, the check would
find out that all degree-3-vertices are adjacent, and subtract 2 from r(r−1) on the right
side. This would be wrong: When we first add the edge {e, f}, the degree of vertex e
becomes 3. The set of vertex-3-degrees includes vertex e then, which is not adjacent to
the other vertices with degree 3. This means that we cannot subtract 2 if the initial
degree of an entry equals a solution degree of any another entry. The following pseudo
code shows the functionality of the advanced Erdős Gallai characterization.

14

Algorithm 1 Pseudocode of Advanced Erdős and Gallai Characterization.

1: procedure ErdosGallaiAdvanced(G = (V,E), D, D′)
2: D∆ ← descending sorted difference sequence D′G −DG

3: r ← 1
4: while r < n do
5: leftsum←

∑r
i=1 d

∆
i

6: rightmul← r(r − 1)
7: for all i ∈ {1, . . . r} do
8: if di 6∈ D′ then
9: minsub ← 0

10: for all v ∈ V such that deg(v) = di do
11: sub ← 0
12: for j ∈ {i + 1, . . . r} do
13: if 6 ∃u ∈ V such that deg(u) = dj and u, v not adjacent then
14: sub← sub + 2

15: minsub← min(minsub, sub)

16: rightmul← rightmul− minsub

17: rightsum← 0
18: for all i ∈ {r + 1, . . . n} do
19: rightsum← rightsum + min(r, d∆

i)
20: if di 6∈ D′ then
21: maxNonAdjacent ← 0
22: for all v ∈ V such that deg(v) = di do
23: nonAdjacent ← 0
24: for all j ∈ {1, . . . r} do
25: if ∃u ∈ V such that deg(u) = dj and u, v not adjacent then
26: nonAdjacent ← nonAdjacent + 2

27: maxNonAdjacent← min(maxNonAdjacent, nonAdjacent)

28: if r ≤ d∆
i and maxNonAdjacent < r then

29: rightsum← rightsum− (r − maxNonAdjacent)
30: else if r > d∆

i and maxNonAdjacent < d∆
i then

31: rightsum← rightsum− (d∆
i − maxNonAdjacent)

32: if leftsum < rightsum then
33: return not realizable
34: return realizable

2.4 Limitations of Degree Sequence Anonymization Algorithms

Within this section, we show the limitations of using the presented degree sequence
anonymization heuristics in Phase 1 of the graph anonymization process. First of all, we
can use Algorithm 1 or Algorithm 2 in order to compute k-anonymous solution degree
sequences with minimal cost and test these sequences for realizability with the advanced
characterization of Erdős and Gallai. In order to ensure that the input graph cannot
be turned into a k-anonymous graph with cost of s meaning that it is correct to con-

15

tinue the degree anonymization process with larger cost, it is necessary to verify that
each possible solution degree sequence with distance(D′, D) = s cannot be realized
using the characterization of Erdős and Gallai. As the backtracking algorithm used to
compute the solution degree sequence based on the dynamic programming table com-
putes exponentially many of these degree sequences with cost of s, we were not able
to perform these checks in polynomial-time. Because our approach is to k-anonymize a
graph in polynomial-time, we had to abort the anonymization process after decent time
as increasing the cost might give non-optimal results. Within the algorithm engineering
process, we encounter two strategies to solve this problem. The first approach is to
decrease the size of the input degree sequence using data reduction rules, which is dis-
cussed in Section3. The second approach is not to distinguish between the vertices of the
same degree. This led to the concept of degree block sequences, where an entry stands
for the amount of vertices of a specific degree. As the development of an algorithm
for k-anonymizing such a degree block sequence goes beyond the scope of this bachelor
thesis, this subject has been worked out by Hartung et al. [HHN14]. Hence, we use the
algorithm for anonymizing degree block sequences as a black box and concentrate on
the realization of k-anonymous degree block sequences in Section 4 and Section 5.

3 Data Reduction Rules

Using Algorithm 1 or 2, the amount of solution degree sequences which can be generated
with minimal cost can be very large. We provide two Data Reduction Rules, which
reduce the size of the input degree sequence such that the table used within the algorithm
is reduced in size and the amount of solution degree sequences is reduced. Furthermore,
decreasing the size of the degree sequence also improves the performance and reduces the
memory consumption of Algorithm 1 and 2, as the running-time depends on the amount
of entries within a degree sequence. Within this section, a degree block ci denotes the
amount of vertices within a graph with deg(v) = i.

Rule 1. If the size of a block ci is at least 2s + k, then remove all but 2s + k entries of
this block.

Lemma 3. Rule 1 is correct.

Proof. Within computation of a k-anonymous degree sequence D′, 2s determines the
distance of an initial and a solution degree sequence. It is clear that at most 2s entries
can be modified. If the degree of p ≤ 2s vertices with a specific degree is raised, then
we only raise the least p entries of this degree. If there are more than q > 2s entries
of a specific value, then we will not modify the value of the first q − 2s entries. As
there need to remain at least k entries, we remove the first b− k entries from the degree
sequence.

Rule 2. If Rule 1 was applied such that there is at least one block bi with size 2s + k,
then remove all but k + 2(k − 1) entries of each other block.

16

s
100 200 500 1000 5000 10000 20000

k

2 1.347 1.547 2.147 3.147 11.147 21.147 41.147
5 3.051 3.251 3.851 .4851 12.851 22.851 42.851
10 5.331 .5531 6.131 7.131 15.131 25.131 45.131
20 9.156 9.356 9.956 10.956 18.956 28.956 48.956
50 18.538 18.738 19.338 20.338 28.338 38.338 58.338
100 31.197 31.397 31.997 32.997 40.997 50.997 70.997
200 38.872 52.569 53.169 54.169 62.169 72.169 92.169

Table 1: Size of the degree sequence of graph cit-Patents (3.774.768 vertices, ∆ = 793)
after applying Data Reduction Rule 1 and 2.

Lemma 4. Rule 2 is correct.

Proof. If a block c has size i < k, then either all i vertices within this block need to be
raised to the next block d which is not empty or k − i vertices of the previous block b
need to be raised to block c. In the latter case, the block b needs to contain at least
2k− 1 vertices, such that after raising at most k− 1 vertices to block c there are still at
least k vertices left in block b. As it might be necessary to raise the degree of at most 2s
vertices in order to increase the amount affected vertices, there is one large block e with
size 2s + k left. If more than i > k vertices need to be raised for affecting vertices, then
there are 2s ≥ i vertices in the large block whose degree can be raised by one. If i < k
vertices need to be raised, then it might not be optimal to raise the degree of i vertices
of block e: If the block following e is empty, then raising the degree of i vertices of block
e forms a new block with i < k degrees. As we ensure that the size of each large block
is reduced to k + 2(k − 1), then there are k − 1 vertices left in each such block which
can be used to increase the amount of affected vertices.

Using both Data Reduction Rule 1 and 2 decreased the size of power law distributed
input degree sequence enormously. Table 1 shows the size of the reduced degree sequence
of graph cit-Patents, which has 3.774.768 vertices, 16.518.947 edges and a maximum
degree of 793. The downside of using these Data Reduction Rules for decreasing the size
of the input degree sequences for Algorithm 1 or 2, we need to compute a reduced degree
sequence for each increasing s, as the data reduction rules depend on the parameter
s. The anonymization process then has to be restarted from scratch. Furthermore, if
Algorithm 1 or 2 computes a k-anonymous solution degree sequence using data reduction
rules and these degree sequences cannot be realized, then the degree anonymization
process cannot be continued while increasing the cost s: If realization fails because of
existing edges to degrees of the block with size 2s+ k, then selecting vertices of another
degree within Data Reduction Rule 1 which form the large block might succeed. As
neither Algorithm 1 nor Algorithm 2 compute realizable degree sequences for the graphs

17

a

b c

d a

b c

d

(0, 1, 1, 1)
(0, 0, 0, 4)

Step 1⇒
{(1, 3, 1),
(2, 3, 1)}

Step 2⇒ {(b, 3), (d, 3)} Step 3⇒ G′

initial and 3-anonymous extracted concrete vertex realization

block sequence B and B′ information selection set of B′ in G

in DegMod Vmod

Figure 7: The three steps of degree block sequence realization.

in our test set, using the data reduction rules consequently did not improve the chances
on realizability.

4 Concept and Realization of Degree Block Sequences

In this section, we introduce the concept of representing a degree sequence as a degree
block sequence. Additionally, we introduce a strategy to extract information necessary
to realize a k-anonymous block sequence within the input graph. The concept of degree
block sequences has been used for degree sequence anonymization by Hartung et al.
[HHN14]. This algorithm uses a slightly modified version of the Advanced Characteriza-
tion of Erdős and Gallai in order to check the realizability of computed sequences. The
main advantage of degree block sequences is that we the amount of computed solution
degree block sequences can be reduced drastically compared to Algorithm 1 and 2 by
using data reduction rules and lower bound heuristics. Furthermore, the size of a degree
block sequence depends on the maximum degree of a graph instead of the number of
its vertices. As many large power law distributed graphs have a rather low maximum
degree, using degree block sequences is more efficient regarding to memory usage. How-
ever, additional steps are required when realizing a k-anonymous degree block sequence
as a supergraph of the input graph. We split this realization process into three major
steps. In Step 1, we determine how many vertices of a certain degree need to be mod-
ified by adding a certain amount of edges. This step is discussed in Section 4.1. In
Step 2 discussed in Section 4.2, we heuristically select concrete vertices. This step can
also be performed for k-anonymous degree sequences computed by Algorithm 1 or 2, if
the mapping between the entries in the degree sequence and the vertices in the input
graph has not been determined before the anonymization process. In Step 3 discussed
in Section 5, we add edges between the selected vertices such that their degrees com-
ply with the k-anonymous degree block sequence. Figure 7 illustrates an overview of
realizing degree block sequences. As previously mentioned, we are using the dynamic
programming algorithm from [HHN14] as a black box. Within this section, we refer to
this algorithm as Algorithm 3.

18

a b

cd

e

Figure 8: Graph G5 = (V5, E5), k = 2, D5 = (1, 2, 2, 2, 3)

Notation. A block sequence is denoted as BG = (b0, . . . , b∆). An entry bi ∈ B stores
the amount of vertices with degree i. We can compute a block sequence from the input
graph by counting the degrees of its vertices. Furthermore, a degree sequence can be
transformed to a block sequence. For all 0 ≤ i ≤ ∆, an entry bi is computed by counting
the entries of a degree sequence whose value is i. A k-anonymous block sequence is
denoted as B′G = (b′0, . . . , b

′
∆). A block sequence B′ is k-anonymous, if each b′i ∈ B′ is

either 0 or at least k. A k-anonymous block sequence B′ derives from an initial block
sequence B, if

∑∆
i=0 b

′
i − bi = 0, meaning that the amount of vertices represented by B

and B′ needs to be equal. Furthermore, for all 1 ≤ r ≤ ∆: b′r − br ≤
∑r−1

i=0 br − b′r.

4.1 Extracting Information from Initial and Solution Block
Sequences

Once a k-anonymous block sequence B′ is computed, we need to determine how many
vertices of a certain degree within the input graph need to be modified, such that B′ is
the corresponding block sequence of the resulting k-anonymous graph. This information
is stored as a sequence of triples, each of which contains the initial degree, the temporary
solution degree and the amount of vertices whose degree is raised from this initial to
solution degree. We denote this sequence as DegMod. This sequence is computed by
comparing the initial degree block sequence B to the solution degree block sequence B′

entry by entry. For each 0 ≤ i ≤ ∆, if bi > b′i, then we know that the degree of bi − b′i
vertices with degree i needs to be increased. The temporary solution degree for these
vertices is the first index j > i such that b′j > 0. Hence, we add (i, j, bi− b′i) to DegMod
and set bj to bj + (bi − b′i).

Example 4.1. The initial block sequence of Graph G5 shown in Figure 8 is B =
(0, 1, 3, 1), meaning that there is one vertex of degree 1, three vertices of degree 2 and
one vertex of degree 3 in the input graph. The 2-anonymous block sequence computed
by Algorithm 3 is B′ = (0, 0, 3, 2) meaning that one edge needs to be added between
the vertex with degree 1 and a vertex with degree 2. Hence, the computed sequence is
DegMod = ((1, 2, 1), (2, 3, 1)) meaning that the degree of a vertex with degree 1 needs
to be raised from 1 to 2 and the degree of a vertex with degree 2 needs to be raised
from 2 to 3. The sequence DegMod forms the basis of Step 2, where concrete vertices
are selected for each entry.

Example 4.2. Graph G6 illustrated in Figure 9 has the initial block sequence B =
(2, 2, 0, 4)). For k = 3, the solution block sequence is B′ = (0, 3, 0, 5). The degree raise

19

a

b c

d

e

f g

h

Figure 9: Graph G6 = (V6, E6), B6 = (2, 2, 0, 4), k = 3

sequence DegMod must necessarily contain the entries (0, 1, 2) and (1, 3, 1), meaning
that the degree of one vertex with degree 1 needs to raised to 3 and both vertices with
degree 0 need to be added one edge-vertex-adjacency to. This is realizable if we add
the edges {6, 7} and {6, 8}. If the degree raise sequence contained (0, 1, 1) and (0, 3, 1)
instead, the maximum raise of 3 was larger than the amount of affected vertices which
is 2 and there is no vertex assignment such that this sequence is realizable.

4.2 Computing Mappings between Vertices and DegMod

After computing the degree raise sequence DegMod which stores information about how
many vertices a of a certain degree p need to be raised to a specific target degree q > p,
we need to compute a mapping between the vertices of the input graph and the entries
in DegMod. The entries (p1, q1, a1), . . . , (pm, qm, am) are sorted in ascending order, such
that pi < pj for all i < j. The positive integer m denotes the number of entries in
DegMod. The sequence is processed in the order specified. For each entry (pi, qi, ai)
we need to select ai vertices of degree pi, whose degree needs to be raised to qi. These
vertices are stored alongside the target degree in a set Vmod. Note that for finding a
bijective mapping between the entries of a k-anonymous degree sequence D′ and the
vertices of the input graph, DegMod can simply be computed by comparing the initial
degree sequence D to D′: For each i ∈ {1, . . . , n}, if d′i > di then a triple (di, d

′
i, 1) is

added to DegMod.
The set Vmod is computed as follows. If the amount of vertices of degree pi equals ai,
then all of these vertices alongside their initial degree pi and the target degree qi are
added to Vmod. Otherwise, if bpi < ai, then there are not enough vertices which initially
have degree pi. However, then at least ai − bpi vertices have been selected to be raised
to pi in a previous step. Hence, we need to select at least ai − bpi of these vertices and
raise them to qi instead of pi. Otherwise, we need to raise ai vertices of degree pi to qi
and there are enough vertices in the input graph with degree pi, meaning that we need
to select ai of these vertices. We introduce three strategies to arrange this selection.
Selection Strategy 1 checks for each vertex of degree pi, to how many vertices in Vmod

this vertex is adjacent. The vertices with the fewest neighbors in this set are selected,
as adjacencies between the vertices in Vmod usually lower the chances on realizability.
Selection Strategy 2 sums for each vertex of degree pi the degrees of all its neighbors.
If a vertex is mainly connected to low-degree vertices, the sum is rather low and these
vertices are preferred then. Selection Strategy 3 is a randomized strategy, which selects
any ai vertices of degree pi.
As the set Vmod is empty when we start the selection procedure, Selection Strategy
1 cannot distinguish between the vertices available in the beginning of the selection

20

process. In order to improve the computed solution after all entries of DegMod have
been processed, we reiterate the computed set Vmod. For each vertex in Vmod, we count
the number of neighbors within this set. If this number is larger than 0, we try to swap
the vertex for another vertex of the same initial degree which is not yet in Vmod and
which has less neighbors within this set. For some instances, we achieved improvements
regarding to realizability if we repeat this step until no vertices can be swapped any
more. This modification of Strategy 1 is referred to as Strategy 1 Refined.

5 Greedy Graph Constructor Algorithm

This section covers the realization of a k-anonymous degree sequence respectively block
sequence, which is part of Phase 2 of k-anonymizing a graph. The input of the graph
constructor algorithm is a set of vertices Vmod and the target degree of each vertex in
this set. Before performing the graph construction process, Vmod needs to be computed
according to Section 4.2. The procedure of realizing degree (block) sequences described
within this section is also referred to as graph construction. We introduce several strate-
gies which differ in the order edges are added to the vertices within the set Vmod and proof
that the graph construction process always succeeds if the amount of vertices within this
set is larger than 2 ·∆4 + ∆2 + 1.
The basic idea of our graph construction procedure is to add edges to the input graph
G = (V,E) until the degree of each vertex v ∈ Vmod has reached its target degree. We
denote the target degree of a vertex vi ∈ Vmod as ti. The procedure of graph construction
is done in two steps. In Step 1, for each pair of non-adjacent vertices u, v ∈ Vmod, we add
an edge between u and v if the vertex degree of both u and v (still) needs to be raised.
We implemented three strategies, which differ in the order these vertices are selected.
Step 2 is performed if there are still vertices left, whose degree could not be increased
to its desired degree in Step 1. This can occur if some vertices within Vmod are already
adjacent before Step 1 or if an edge has previously been added between these vertices.
In order to realize the k-anonymous (block) sequence, we try to remove an added edge
{s, t} in order to add two other edges {s, u} and {t, v}, where u, v ∈ Vmod and the degree
of both u and v needs to be increased.

Details. Algorithm 2 illustrates the pseudo code of Greedy Graph Constructor. In
Step 1, the algorithm checks for each vertex vi ∈ Vmod whether it has already reached its
target degree ti. If it has not, and if there are at least ti other vertices vj ∈ Vmod such
that deg(vj) 6= tj and vi is not adjacent to vj, we select ti of these vertices and add an
edge {vi, vj} for each selected vertex vj (line 5-12). Otherwise, if there are less than ti
vertices within Vmod which are not adjacent to vi and which have not yet reached their
target degree, we add an edge between vi and each of these vertices. As we are not able
to raise the degree of vi to its target degree in Step 1, we try to correctly solve the graph
construction in Step 2.
The order in which the selected vertices are processed has a strong effect on realizability.
We implemented three different strategies which differ in the order in which the vertices

21

within Vmod are processed. Processing Strategy 1 has turned out to be the most effective
strategy regarding to realizability. It first processes the vertices where the difference
between the target degree and the initial degree is largest. Additionally, we implemented
an enhanced version of this strategy which changes the processing order after each added
edge. As adding an edge decreases the difference between initial and solution degree of
two vertices, the difference of other vertices might become larger than the difference
of the most recently processed vertices. The downside of this modification referred to
as Processing Strategy 1 Refined is a slight increase of running-time, however this gave
slightly better results for some instances regarding to realizability.
Processing Strategy 2 first processes the vertices whose amount of adjacent vertices
within Vmod is largest. Processing Strategy 3 is a randomized strategy, which processes
the vertices within Vmod in random order. If Strategy 3 is used, we recommend perform-
ing the graph construction process several times if it was not successful.
Our experiments revealed that Processing Strategy 2 and 3 did not achieve better results
than Processing Strategy 1 for any of the tested instances. Furthermore, the running-
time of Processing Strategy 3 is much larger than the one of Processing Strategy 1.
Hence, we omit presenting the experimental results for these strategies.

Step 2 of graph construction process is performed if there is at least one vertex vi ∈ Vmod

such that deg(vi) 6= ti. We distinguish between two cases. In case one, there are at least
two vertices vi, vj ∈ Vmod, such that vi and vj have not yet reached their target degree
(line 13-23). In order to increase deg(vi) and deg(vj), the algorithm tries to remove a
previously added edge {s, t} and adds two edges {s, vi} and {t, vj} instead. This step
is repeated as long as there exist such vertices vi, vj, s, t. In case two, there is exactly
one vertex vi where deg(vi) 6= ti (line 24-31). The difference between deg(vi) and the
target degree must be even, as

∑n
i=1 ti−deg(vi) is even before any edges are added due

to the degree anonymization algorithm. Furthermore, each added edge reduces this
sum by exactly 2. Similarly to case one, we try to remove a previously added edge
{s, t} in order to add {s, vi} and {t, vi}. This procedure increases the degree of vi
by 2 and we repeat this step until deg(vi) = ti and there is at least one such edge
{s, t}. If ti = deg(vi) for all vi ∈ Vmod then graph construction was successful and the
resulting graph is k-anonymous (line 32). The set of added edges is the solution set.
Otherwise, there is still at least one vertex left which has not reached its target degree
and Greedy Graph Constructor Algorithm is not able to realize the k-anonymous degree
(block) sequence with the used strategies for vertex selection and vertex processing in
Step 1. We need to remove all added edges and repeat the graph construction process
with another vertex selection strategy described in Section 4.2. Furthermore, we can use
another vertex processing strategy in Step 1 of the graph construction process. However,
the k-anonymous sequence might not be realizable at all within the input graph. In
this case, graph construction will fail with each combination of vertex selection and
processing strategies. Our experiments revealed that in this case a slight modification
of the parameter k can result in computation of realizable degree block sequences (see
Section 6 for details).

22

Algorithm 2 Pseudocode of Greedy Graph Constructor.
1: procedure Greedy Graph Constructor(G = (V,E), Vmod)
2: Vtodo ← Vmod

3: Vtouched ← ∅
4: S ← ∅
5: while ∃u, v ∈ Vtodo such that {u, v} /∈ E ∪ S do // Step 1: adding edges
6: S ← S ∪ {{u, v}}
7: Vtouched ← Vtouched ∪ {u, v}
8: tu ← tu − 1, tv ← tv − 1
9: if tu = 0 then

10: Vtodo ← Vtodo \ u
11: if tv = 0 then
12: Vtodo ← Vtodo \ v
13: while ∃u, v ∈ Vtodo and ∃s, t ∈ Vtouched such that {s, t} ∈ S and {{s, u}, {t, v}} /∈ E do
14: // Step 2: adding edges by reconnecting if at least two vertices left in Vtodo

15: S ← S \ {{s, t}}
16: S ← S ∪ {{s, u}}
17: S ← S ∪ {{t, v}}
18: Vtouched ← Vtouched ∪ {u, v}
19: tu ← tu − 1, tv ← tv − 1
20: if tu = 0 then
21: Vtodo ← Vtodo \ u
22: if tv = 0 then
23: Vtodo ← Vtodo \ v
24: while ∃u ∈ Vtodo and ∃s, t ∈ Vtouched such that {s, t} ∈ S and {{s, u}, {t, u}} /∈ E do
25: // Step 2: adding edges by reconnecting if exactly one vertex left in Vtodo

26: S ← S \ {{s, t}}
27: S ← S ∪ {{s, u}}
28: S ← S ∪ {{t, u}}
29: tu ← tu − 2
30: if tu = 0 then
31: Vtodo ← Vtodo \ u
32: if Vtodo = ∅ then
33: E ← E ∪ S
34: return S
35: else
36: return Realization not successful

Lemma 5. Greedy Graph Constructor runs in O(n4) time.

Proof. Adding edges in Step 1 is performed in O(∆2 · n) time: There are O(n) vertices
in Vmod as the graph consists of n vertices. As the maximum degree in a k-anonymous
degree sequence is at most ∆2 [HHN14], we add up to O(∆2) edges to each vertex in
Vmod. Hence, Step 1 runs in O(n∆) time.
Reconnecting edges in Step 2 can be done in O(n4) time. There are O(n) vertices

23

in Vmod which have not yet reached their target degree after Step 1. Hence, there
are O(n ∗ (n − 1)/2) pairs of such vertices. Furthermore, O(n · (n − 1)/2) edges have
been added previously. For each pair of vertices vi, vj within Vmod which have not
yet reached the target degree, the algorithm tries to remove an added edge {s, t} in
order to perform the reconnection. In order to find such an edge {s, t}, we need to
process at most all previously added edges. In summary, one iteration is performed in
O(n ∗ (n− 1)/2)2 = O(n4) time.

Lemma 6. Greedy Graph Constructor successfully constructs a k-anonymous graph G′

if Vmod contains at least 2 ·∆4 + ∆2 + 1 vertices.

Proof. We denote the set of vertices, whose degree has already been raised by adding at
least one edge, by Vtouched. The set of vertices, whose degree has not reached its target
degree yet, is denoted as Vtodo. Initially, Vtodo = Vmod and Vtouched is empty.
The target degree of any vertex in Vmod is at most ∆2, as the maximum degree within
a k-anonymous degree (block) sequence computed by either Algorithm 1 or 2 or the
algorithm of Hartung et al. is ∆2 [HHN14]. Hence, the vertex degree of any vertex in
Vtodo is at most ∆2− 1. If Vtodo contains at least ∆2 vertices, at least two vertices vi and
vj in this set are not adjacent. In this case, the algorithm adds an edge between such a
pair of vertices in Step 1. Both vertices then are contained in Vtouched.

If Step 1 cannot be performed and Vtodo contains at least two vertices, the algorithm is
able to remove a previously added edge in order to add two edges in Step 2 if the size
of Vtouched is at least (∆2 − 2) · (∆2 − 1) + 2: For two vertices u1, u2 ∈ Vtodo, there are
two vertices s, t ∈ Vtouched, such that neither s nor t are adjacent to both u1 and u2.
The vertices u1 and u2 are adjacent to at most ∆2 − 2 vertices in Vtouched each, as the
maximum degree of vertices in Vtodo is ∆2 − 1 and u1 and u2 are already adjacent. In
the worst case, u1 and u2 are adjacent to the same ∆2 − 2 vertices in Vtouched, and each
such vertex is adjacent to ∆2 − 1 other vertices in Vtouched. If Vtouched contains at least
(∆2 − 2) · (∆2 − 1) + 2 vertices, there is always at least one pair of vertices s, t which is
adjacent and neither s nor t is adjacent to both u1 and u2.
Otherwise, if Vtodo contains exactly one vertex u, we need to remove a previously added
edge {s, t} in order to add the edges {s, u} and {t, u}. To make sure that this procedure
can be performed, neither s nor t may be adjacent to u. If Vtouched contains at least
(∆2 − 1)2 + 1 vertices, then there are at least two adjacent vertices s, t which are not
adjacent to u, as u is adjacent to at most ∆2 − 1 vertices in Vtouched and each of these
vertices is adjacent to at most ∆2 − 1 other vertices in Vtouched. If there are two more
vertices in Vtouched, then these vertices have to be adjacent to each other but not to u.
Hence, reconnection can be performed.
In summary, Greedy Graph Constructor Algorithm successfully solves an instance if
Vmod initially contains at least ∆2 + (∆2 − 1)2 + 1 = ∆4 −∆2 + 2 vertices.

24

6 Implementation and Experimental Results

Within this section, we present the implementation and the experimental results for
degree block anonymization and graph construction. As previously mentioned, we used
the degree block sequence anonymization implementation of [HHN14] as a black box.
Hence, we do not provide further details of their implementation within this work.
Furthermore, we don’t consider experimental results for Algorithm 1 and 2 within this
section, as we were not able to realize k-anonymous solution sequence computed by these
algorithms. The focus of our experiments was to rate the various strategies for graph
realization.
All of our software was written in Java 7 and runs under the OpenJDK runtime envi-
ronment 1.7.0 25. The experimental tests were processed on Intel Xeon E5-1620 3.6GHz
machines with 64GB memory under the Debian GNU/Linux 6.0 operating system. Our
test suite consists of five Co-author and Citation Networks graphs from the 10th DIMACS
challenge, eight network graphs from the Stanford Large Network Dataset Collection
and eleven coauthor networks derived from the DBLP dataset, which was generated on
February 2012 following the documentation from http://dblp.uni-trier.de/xml/. Table
2 provides some statistics of the used graphs. The integer n denotes the amount of
vertices within a graph and m denotes the amount of edges. The maximum degree is
denoted by ∆.

6.1 Implementation

Our implementation was written in Java 7 using the OpenJDK environment. The pro-
gram reads various command line arguments such as input graph file, k, logging level,
output file, vertex selection and processing strategy and a flag which enables data reduc-
tion rules for the degree block sequence anonymization. Input graphs are read as text
files and stored as an array of adjacency set: For each vertex, there is a Hash Set which
represents the set of adjacent vertices. As we use 32-bit integers to reference a vertex,
we decided to use the Trove library 3.03 which offers Hash Sets of native data types
instead of storing Integer Objects, which use at least 8 Bytes of memory each. Thus, we
were able to store even very large social network graphs with decent usage of memory.
Furthermore, querying the graph data structure in order to add and remove edges or to
determine the degree of a vertex can be done in O(1). The dynamic programming Algo-
rithm 1 and 2 presented in Section 2.1 were implemented using tables of BitSets. As the
tables’ size depends on the amount of vertices of the input graph and each entry stores a
Boolean value, using BitSets turned out to be quite efficient with regard to running-time
and memory usage. However, as none of the resulting k-anonymous degree sequences
of our test graphs could be realized, we omit further results within this section. The
dynamic programming algorithm used to compute k-anonymous block sequences has
been programmed with Java 7, but was used as a black box. Hence, we do not offer
further implementation details of the implementation within this work. Other entities
such as degree raise sequences and sets of selected vertices are stored as ArrayLists of
integers or classes which store several integers. The graph construction implementation

25

Table 2: Statistics about the used graphs within our experiments.

Social network graphs
Graph n m ∆

DIMACS graphs
coAuthorsCiteseer 227.320 814.134 1.372
coAuthorsDBLP 299.067 977.676 336
coPapersCiteseer 434.102 16.036.720 1.188

Stanford social networks

cit-HepPh 34.546 420.877 846
cit-Patents 3.774.768 16.518.947 793
com-Amazon 334.863 925.872 549
com-DBLP 317.080 1.049.866 343
facebook-combined 4.039 88.234 1.045

coAuthor networks

graph authorFilter thres 02 1.146 2.652 99
graph authorFilter thres 03 699 1.224 71
graphConference 5.599 8.492 53
graph conferenceFilter thres 01 11.133 27.255 149
graph conferenceFilter thres 02 2.917 4.066 65
graph conferenceFilter thres 03 1.248 1.348 43
graph thres 01 715.633 2.511.988 804
graph thres 02 282.831 640.697 201
graph thres 03 167.006 293.796 123
graph thres 04 112.949 168.524 88

uses HashMaps and HashSets, which store information about added edges. Hence, per-
forming a lookup whether an edge has been added during graph construction can be
done in O(1).

6.2 Results

Testing method. Our experimental tests were done as follows. For each of the tested
input graphs and each k ∈ {2, 3, 4, 5, 10, 20, 50, 100, 200}, we first computed a set of
k-anonymous degree block sequences using the degree block anonymization algorithm
of Hartung et al. [HHN14]. If the anonymization did not finish within 20 minutes, we
aborted the anonymization process and continued with another graph or the next value
for k. The degree block anonymization implementation is limited to compute at most 500
k-anonymous degree block sequences. Moreover, the anonymization can be started using
internal data reduction rules, which improves running-time and reduces the amount of
computed solutions for some instances. We tried to realize each solution as a supergraph
of the input graph with Selection Strategy 1 and Selection Strategy 1 Refined (see
Section 4.2 for details) together with each Processing Strategy introduced in Section 4.
The randomized Selection Strategy 3 was run at most twenty times for each instance,
which turned out to be a good trade-off between running-time and effectiveness. If the
realization process did not finish after at most 30 minutes, we aborted the process.

26

Table 3: Results for degree block anonymization. For each graph and each k, the first
entry of each column is the amount of computed k-anonymous degree block
sequences using internal data reduction rules within 20 minutes. The second
entry is the amount of computed k-anonymous degree block sequences without
using internal data reduction rules using internal data reduction rules. If an
entry is 0, then the anonymization process has been aborted after 20 minutes.

Graph
Parameter k

2 3 4 5 10 20 50 100 200
coAuthorsCiteseer 118 | 500 500 | 500 500 | 500 0 | 0 0 | 0 500 | 0 0 | 0 0 | 0 0 | 0
coAuthorsDBLP 3 | 500 500 | 500 500 | 500 500 | 500 500 | 500 500 | 500 0 | 0 0 | 0 1 | 1
coPapersCiteseer 500 | 0 1 | 1 1 | 1 5 | 16 1 | 64 1 | 1 1 | 1 1 | 1 2 | 0
cit-HepPh 500 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0
cit-Patents 500 | 500 0 | 0 10 | 120 1 | 1 2 | 2 0 | 0 0 | 0 0 | 0 0 | 0
com-Amazon 12 | 500 500 | 0 0 | 0 0 | 0 0 | 0 0 | 0 500 | 0 500 | 0 500 | 500
facebook-combined 118 | 500 9 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0
graph authorFilter thres 02 24 | 48 2 | 10 30 | 210 58 | 58 65 | 65 1 | 96 0 | 0 1 | 1 1 | 1
graph authorFilter thres 03 2 | 12 19 | 57 60 | 60 74 | 74 78 | 78 11 | 11 3 | 3 1 | 1 1 | 1
graphConference 1 | 8 5 | 25 333 | 333 121 | 242 500 | 500 500 | 500 500 | 500 1 | 1 1 | 1
graph conferenceFilter thres 01 2 | 20 17 | 59 2 | 20 246 | 246 500 | 500 500 | 500 500 | 500 1 | 91 1 | 1
graph conferenceFilter thres 02 2 | 2 2 | 2 1 | 2 5 | 10 18 | 18 13 | 13 1 | 1 1 | 1 1 | 1
graph conferenceFilter thres 03 1 | 1 2 | 2 2 | 2 7 | 7 5 | 5 4 | 4 1 | 1 1 | 1 1 | 1
graph thres 01 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 0 | 0 500 | 0 1 | 0
graph thres 02 1 | 1 1 | 1 15 | 1 1 | 1 2 | 2 500 | 500 1 | 1 1 | 1 1 | 1
graph thres 03 5 | 30 40 | 40 76 | 151 312 | 500 500 | 500 500 | 500 1 | 1 1 | 1 1 | 1
graph thres 04 11 | 44 79 | 79 102 | 102 1 | 1 49 | 49 1 | 1 1 | 1 1 | 1 1 | 1

Results. Depending on the parameter k, we were able to compute 200-anonymous
degree block sequences for most of the graphs in our test set. We observed that the
number of vertices and the maximum degree have the largest impact on running-time
of the algorithm. Hence, most graphs with a large maximal degree mostly could not
be k-anonymized within 20 minutes for a k ≥ 5. Furthermore, we observed that if
anonymization takes much time or the resulting degree block sequences are not realiz-
able for an instance (G, k), then slightly modifying the parameter k often has a great
impact on the following realization procedure.

For the degree sequence realization procedure, selecting vertices randomly (Selection
Strategy 3) was the best strategy for most instances of our test set. Even with 20 ran-
domized passes, this strategy was superior to each other selection strategy in average
and could realize up to 37.0% of the instance in our test set. However, the average
time for realizing a degree block sequence (319.5s) is about 50% larger than the one of
Selection Strategy 1. Selecting vertices which have the fewest common neighbors within
the selection (Selection Strategy 1) turned out to be the fastest realization strategy
while being almost as effective as the randomized strategy regarding to realizability.
Improving this selection as long as no vertices can be swapped for other ones with fewer
neighbors within the selection (Selection Strategy 1 Refined) even increased the amount
of successful realization for some instances while increasing the running-time by about
5%. Selecting vertices whose neighbors have the lowest degree (Selection Strategy 2)
turned out to be the most ineffective strategy, while average running-time is similar to
the one of Selection Strategy 1. In theory, Selection Strategy 1 should be superior to any

27

Table 4: Results for degree block anonymization using internal data reduction rules. The
entries indicate how many k-anonymous degree block sequences were computed
within 20 minutes. If an entry is 0, then the anonymization process has been
aborted after 20 minutes.

Selection Strategy Processing Strategy Realizable Instances Average Running Time (s)
1 1 33.0% 57.6
1 1 ref. 34.6% 203
2 1 32.4% 55.1
2 1 ref. 34.0% 208
3 1 36.5% 189
3 1 ref. 37.0% 319

1 ref. 1 33.1% 59.6
1 ref. 1 ref. 34.8% 203.6

other strategy as existing edges between the selected vertices in the input graph lower
the chances on realizability. If there is no such edge at all, then a selection is perfect
and realizable due to the usage of the characterization of Erdős and Gallai within the
anonymization process. However, for most instances we were not able to compute a
vertex selection set where no vertices are adjacent. Hence, the strategy is a heuristic in
this case and there might be better selections.

The strategy which determines the order of adding edges between the selected vertices
(Processing Strategy) has a very large impact on realizability. As mentioned in Sec-
tion 5, firstly processing vertices whose difference between initial and target degree is
the largest (Processing Strategy 1) turned out to be the most effective strategy regard-
ing to realizability. Refining this strategy by recalculating the order after each added
edge (Processing Strategy 1 Refined) even improves the chances on realizability for some
instances. In average, using Processing Strategy 1 Refined increased the amount of real-
ized degree sequences by about 5% but also increased the running-time by 70% to 350%,
depending on the used selection strategy. In contrast, firstly processing the vertices
which have the most neighbors within the set of selected vertices (Processing Strategy
2) turned out to be very ineffective and realization failed for most instances. Randomly
processing vertices (Processing Strategy 3) turned out to be even more ineffective. This
seems logical as due to the power law distribution of the tested graphs and their degree
sequences, there are very few vertices whose degree needs to raised by a large amount
and there are quite many vertices which must be raised by a rather small amount. If
last-named vertices are processed first, then there are not enough vertices left which the
high-degree vertices can be made adjacent to and realization fails. Moreover, for power
law distributed graphs, the amount of affected vertices within a k-anonymous degree
(block) sequence was almost equal to the maximum raise. Hence, vertices which need
many edges to be added consequently need to be processed at first. We omit presenting
the experimental results of Processing Strategy 2 and 3, as Processing Strategy 1 was
superior regarding to effectiveness and running-time for any tested instance.

28

6.3 Conclusion and Outlook

Using the degree block anonymization algorithm of Hartung et al. [HHN14] and the
heuristic graph construction algorithms introduced within this paper, we were able to
make many social network graphs k-degree anonymous. Due to our memory efficient
implementations for graph data structures and running-time optimized heuristics, we
could even successfully k-anonymize power law distributed social network graphs with
> 100000 vertices and k = 200 in less than 30 minutes. However, if the solution size is
very large, anonymizing and realizing degree block sequences often becomes inefficient
and could not be performed within this time. Further improvements in effectiveness of
realizing k-anonymous degree block sequences could be achieved by revising the graph
construction process. One approach could be to swap selected vertices for previously
unselected ones during the graph construction, if it fails due to existing edges. Fur-
thermore, improving Step 2 of the graph construction process by a more advanced local
search heuristic might also improve chances on realizability. Least, solving the graph
construction problem by reformulating the (block) degree sequence realization problem
as an f -factor problem (see [Har+13] for details) could be implemented for realizing
k-anonymous degree sequences as a supergraph of the input graph. The f -factor prob-
lem can be solved in polynomial-time. Additionally, an instance is a yes-instance, if and
only if the (block) degree sequence is realizable as a supergraph of the input graph.
As for many instances the computed k-anonymous degree block sequences could not be
realized using any combination of strategies, the degree block sequence anonymization
algorithm of [HHN14] might be enhanced such that it validates those solutions as not
realizable.

29

References

[BDK11] Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. “Wherefore Art Thou
R3579X?: Anonymized Social Networks, Hidden Patterns, and Structural
Steganography.” In: Commun. ACM 54.12 (Dec. 2011), pp. 133–141.

[Bre+13] Robert Bredereck, Sepp Hartung, André Nichterlein, and Gerhard Woegin-
ger. “The Complexity of Finding a Large Subgraph under Anonymity Con-
straints.” In: Proceedings of the 24th International Symposium on Algorithms
and Computation (ISAAC ’13). Vol. 8283. LNCS. Springer, 2013, pp. 152–
162.

[EG60] P. Erdős and T. Gallai. “Graphs with Prescribed Degrees of Vertices (in
Hungarian).” In: Math. Lapok 11 (1960), pp. 264–274.

[Fac13] Facebook. Facebook Reports Third Quarter 2013 Results. Oct. 30, 2013.

[Har+13] Sepp Hartung, André Nichterlein, Rolf Niedermeier, and Ondrej Suchý. “A
Refined Complexity Analysis of Degree Anonymization on Graphs.” In: Pro-
ceedings of the 40th International Colloquium on Automata, Languages and
Programming (ICALP ’13). Vol. 7966. LNCS. Springer, 2013, pp. 594–606.

[Hay+07] Michael Hay, Gerome Miklau, David Jensen, Philipp Weis, and Siddharth
Srivastava. Anonymizing Social Networks. Tech. rep. SCIENCE, 2007.

[HHN14] Sepp Hartung, Clemens Hoffmann, and André Nichterlein. “Improved Upper
and Lower Bound Heuristics for Degree Anonymization in Social Networks.”
In: (2014).

[LT08] Kun Liu and Evimaria Terzi. “Towards identity anonymization on graphs.”
In: Proc. ACM SIGMOD International Conference on Management of Data.
SIGMOD ’08. ACM, 2008, pp. 93–106.

[MW04] Adam Meyerson and Ryan Williams. “On the Complexity of Optimal K-
anonymity.” In: Proceedings of the Twenty-third ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems. PODS ’04. ACM,
2004, pp. 223–228.

[SS98] Pierangela Samarati and Latanya Sweeney. “Generalizing Data to Provide
Anonymity when Disclosing Information (Abstract).” In: Proceedings of the
Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems. PODS ’98. ACM, 1998, pp. 188–.

[Swe02] Latanya Sweeney. “K-anonymity: A Model for Protecting Privacy.” In: Int.
J. Uncertain. Fuzziness Knowl.-Based Syst. 10.5 (Oct. 2002), pp. 557–570.

30

Technische Universität Berlin
Fakultät IV – Elektrotechnik und Informatik
Institut für Softwaretechnik und Theoretische Informatik

Name: Hoffmann, Clemens
Matrikelnummer: 332772

Eidesstaatliche Erklärung zur Bachelor­Arbeit

Hiermit erkläre ich, dass ich die vorliegende Arbeit

Graph Degree Anonymization: Lower Bounds and Heuristics

selbstständig und eigenhändig sowie ohne unerlaubte fremde Hilfe und ausschließlich unter
Verwendung der aufgeführten Quellen und Hilfsmittel angefertigt habe.

Datum: __________ Unterschrift: _________________

31

	Introduction
	Motivation
	Content of this Work
	Related Work
	Preliminaries

	Computation of Realizable k-anonymous Degree Sequences
	Computing k-anonymous Degree Sequences
	Considering the Maximum Degree Raise
	The Characterization of Erdos and Gallai
	Limitations of Degree Sequence Anonymization Algorithms

	Data Reduction Rules
	Concept and Realization of Degree Block Sequences
	Extracting Information from Initial and Solution Block Sequences
	Computing Mappings between Vertices and DegMod

	Greedy Graph Constructor Algorithm
	Implementation and Experimental Results
	Implementation
	Results
	Conclusion and Outlook

