
Technische Universität Berlin
Electrical Engineering and Computer Science
Institute of Software Engineering and Theoretical Computer Science
Algorithmics and Computational Complexity (AKT)

On Fair and Envy-Free Allocations
Respecting Acyclic Social Networks

Bachelorarbeit

von Hanno Arnoldi (365785)

zur Erlangung des Grades
”
Bachelor of Science“ (B. Sc.)

im Studiengang Computer Science (Informatik)

Erstgutachter: Prof. Dr. Rolf Niedermeier
Zweitgutachter: Prof. Dr. Markus Brill

Betreuer: Dr. Robert Bredereck,
Andrzej Kaczmarczyk,
Prof. Dr. Rolf Niedermeier

2. Mai, 2019

Eidesstattliche Erklärung / Statutory Declaration

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie
ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten
Quellen und Hilfsmittel angefertigt habe.

I hereby declare that the thesis submitted is my own, unaided work, complete with-
out any unpermitted external help. Only the sources and resources listed were used.

Arnoldi, Hanno Place, Date

2

Zusammenfassung

Diese Arbeit konzentriert sich auf die Entwicklung von Algorithmen für die Suche von
fairen Allokationen. Eine Grundvoraussetzung einer fairen Allokation, in dieser Arbeit,
ist das Konzept der Neidfreiheit. Für eine neidfreie Allokation muss der Agent seine
erhaltenen Ressourcen höher wertschätzen, als die Ressourcen die einem beliebigen an-
deren Agenten zugeteilt wurden. Häufig existieren jedoch keine nicht-trivialen neidfreien
Allokationen, sodass es häufig NP-schwer ist zu entscheiden, ob eine neidfreien Alloka-
tion existiert oder nicht. Bei Einbeziehung der sozialen Beziehungen der Agenten erhal-
ten wir ein lokaleres Konzept der Neidfreiheit, die sogennante Graph-Neidfreiheit. In
Graph-neidfreien Allokationen vergleicht ein Agent seine erhaltenen Ressourcen nur mit
den Ressourcen seiner Nachbarn. Aus diesem Grund muss für eine Graph-neidfreie Al-
lokation nur gelten, dass jeder Agent seine erhaltenen Ressourcen höher wertschätzt als
die Ressourcen seiner Nachbarn. Folgerichtig wird das Konzept der Graph-Neidfreiheit
anstelle der allgemeinen Neidfreiheit genutzt.
Es werden gerichtete azyklische Graphen genutzt, um die sozialen Beziehungen der Agen-
ten darzustellen. Der Grund ist, das hierarchische Strukturen häufig durch azyklische
Graphen dargestellt werden. Azyklische Graphen haben zusätzlich den weiteren Ef-
fekt, dass das Problem einfacher wird. Die Nutzung von zusätzlichen Fairnesskriterien
soll außerdem triviale Allokationen verhindern. Als zusätzliche Fairnesskriterien wur-
den in dieser Arbeit egalitarian rank fairness und half-feedback envy-freeness eingeführt.
Diese werden in der Arbeit später genauer erläutert. Diese Arbeit analysiert die Berech-
nungskomplexität von Allokation die Graph-neidfrei sind und zusätzlich eine der beiden
eben eingeführten Fairnesskriterien erfüllen.

Abstract

In this thesis we focus on the development of Algorithms for the search of fair allocations.
One natural criterion for fairness, in this thesis, is the concept of envy-freeness. For an
allocation to be envy-free it is required that every agent values its resources at least as
much as the resources of all other agents. Non-trivial envy-free allocations often do not
exist, so that deciding whether an envy-free allocations can often be NP-hard. Taking
into account the social networks of the agents, it is possible to obtain a more local con-
cept of envy-freeness, the so called graph-envy-freeness. In a graph-envy-free allocation
an agent compares the received resources only with its peers. Thus, for an allocation
to be graph-envy-free every agent has to value the received resources at least as much
as the resources received by its peers. Hence, we use the concept of graph-envy-freeness
instead of general envy-freeness.
Directed acyclic graphs are used to represent the social networks of the agents. Acyclic
graphs are often used to represent hierarchical structures and have the additional effect,
that the problem is simplified. We also introduce additional fairness criteria to prevent
trivial allocations. In this thesis we work with the additional fairness criteria egalitarian

3

rank fairness and half-feedback envy-freeness. These will be described later in this thesis.
We analyze the computational complexity for allocation that are graph-envy-free and
either egalitarian rank fair or half-feedback envy-free.

4

Contents

1 Introduction and Motivation 7

2 Basics and Models 15
2.1 Graphs . 15
2.2 Allocation & Bundle . 16
2.3 Graph-Envy-Freeness . 16
2.4 Fairness Concepts Beyond Envy-Freeness 17
2.5 Fairness Problems Handled in this Thesis 19
2.6 Common Computational Problems . 20

3 Paths 21
3.1 Allocations With Respect to Egalitarian Rank Fairness 21

3.1.1 Identical 0/1 Preferences on a Path 21
3.1.2 Identical Preferences on a Path 24

3.2 Allocations With Respect to Half-Feedback Envy-Freeness 27
3.2.1 Identical 0/1 Preferences on a Path 27
3.2.2 Identical Preferences on a Path 30
3.2.3 0/1 Preferences on a Path . 32

4 Trees & DAGs 35
4.1 Allocations With Respect to Egalitarian Rank Fairness 35

4.1.1 Identical 0/1 Preferences on a Tree & DAG 35
4.2 Allocations With Respect to Half-Feedback Envy-Freeness 42

4.2.1 Identical 0/1 Preferences on a Tree & DAG 42
4.2.2 0/1 Preferences in a Tree & DAG 42

5 Conclusion 45

Literature 49

5

1 Introduction and Motivation

The question how to allocate limited resources to a group of agents occurs frequently. It
appears in economics and computer science from different perspectives. The problem of
resource allocation, for example, is often discussed in a subcategory of economics, namely
social choice theory [1]. In computer science, problems of resource allocation appear
often in context of artificial intelligence [2], operations research [3], multiagent systems
[4] and electronics commerce [5]. Some examples for multiagent resource allocations
are airport traffic management [6], public transport [7], network routing [8], industrial
procurement via agents [9], allocation of food [10] and fair and efficient exploitation of
Earth Observation Satellites [11], [12].

Depending on the different scenarios, there can be a huge variety of allocation prob-
lems [13]. Below we discuss some aspects:

What is the nature of given resources? Are they divisible or indivisible?
Historically, the first academic article concerning resource allocation was published

by Hugo Steinhaus [14]. In the article, Steinhaus analyzes the distribution of divisible
resources. To help to visualize it he is using a cake that can be cut arbitrarily. Thus,
these kind of problems are often called “cake cutting.”
However, not every resource can be divided. For example, this is the case when kids get
different presents and these have to be divided. Presents such as clothes, for example
a jacket, cannot be divided. Motivated by this example, in this thesis we focus on
indivisible resources.

What is the nature of the mechanism that leads to the allocation?
We distinguish between two forms of mechanisms: a centralized and a decentralized

form. In the centralized mechanism one authority receives all preferences of the agents
and computes the allocation.
On the contrary, in the decentralized mechanism, the agents compute the allocation
themselves, as a result of a negotiation. We apply centralized mechanisms to solve our
problems.

A visual example for a centralized mechanism would be when a teacher asks the
children what toys they want and distributes the toys to the children. The decentralized
way is when the teacher gives the group toys and they have to divide them themselves.

7

1 Introduction and Motivation

How do the agents express their preferences?
If people have to evaluate something, then too many details are often seen as a hin-

drance. Thus, the way to evaluate something is often restricted. The same holds for
preferences as preferences are also a kind of evaluation where people express how much
they like something.
Preferences are expressed additively, monotonically, and numerically. Thus, the value of
a single resource is always a nonnegative integer. The value of a set of resources equals
the sum of all the values of the resources in the set. We call a set of resources a bundle.
In this thesis we work with two special cases of preferences, which are identical and 0/1
preferences. Preferences are called identical if every agent shares the same values for
the resources and 0/1 if the agents can only express whether a resource is liked or not.
These two properties build the four variants of preference restrictions, that is, additive,
identical, 0/1, and identical 0/1 preferences.

For example if you have to feed animals of the same species in a zoo, then these animals
usually have the same preferences concerning the food they like more or less. This is an
example for identical preferences. But if they were animals of different species, then they
would have different preferences for the food and thus have additive preferences. The
preference is additive, since the animals can choose not to eat the food and therefore
additional food never has a negative impact.
When people work in a shift system, then a workday is usually divided into morning, day
and night shifts. The 0/1 preference can be used to express which shifts they want and
which they reject. Since every worker lives his own live, the individual availability can be
different. Thus, their preferences of different shifts can be different as well. Therefore,
the employer can try to divide the shifts as fairly as possible.

What is the nature of the graphs used in this thesis?
In this thesis we use graphs to represent the relations between agents. Relations

between agents can often be of a hierarchical nature. Since hierarchical structures are
often represented in an acyclic manner, we use acyclic graphs in this thesis. Also another
technical reason is that deciding the existence of a graph-envy-free allocation in a cyclic
graph is in general, an NP-hard task. For acyclic graphs, strong graph-envy-freeness
allocations might even not exist [15]. An explanation of graph-envy-freeness is given in
the next paragraph.

How to measure the quality of an allocation?
In this thesis we focus on fair allocations. One natural criterion for fairness is the

concept of envy-freeness. If we give presents to children, then we automatically try to
be fair, so they do not fight over them. Children usually do not fight if they like their
present more than the presents of the other children. Hence they do not envy each other.
Therefore, an allocation is called envy-free if every agent values its bundle the same or
higher than the bundles of all other agents. A bundle of an agent is the set of resources
the agent receives with an allocation. Since allocations with the restriction of general

8

A B E

C D

Figure 1.1: The social network for the scenario in Example 1.1.

envy-freeness frequently do not exist, we focus on graph-envy-freeness in this thesis. As
mentioned in the paragraph above, we focus on graph-envy-freeness in acyclic graphs.
Further, we want the allocations to be complete, since an allocation which allocates
nothing to every agent is always envy-free. This holds because the value for every
agent’s bundle is the same as the bundle of every other agent.

Unfortunately, the restriction of graph-envy-freeness and completeness is not suffi-
cient to ensure a fair allocation, see Example 1.1 which comes in the next paragraph.
In order to refine our criteria, we add two further concepts to graph-envy-freeness and
completeness. Our objective is to construct a new perception of a fair allocation. The
justification of the concepts is depicted in the following examples.

Scenario

In our scenario we talk about the distribution of resources, in form of supplies, to
schools. In the following example we consider three stages of education: elementary,
middle, and high school. Students from an elementary school will go to a middle school
later in their lives. Then, the elementary school students will have the same resources as
the middle school students have today. Thus, while they are elementary students they
do not envy middle school students. The same relationship holds for the elementary
school students and the high school students as well as for the middle school students
and the high school students. However, students of a higher stage of education can be
envious of students from a lower stage of education. This results from the fact that
once a student has completed an educational stage he cannot go back. We also, fix that
students can only be envious when their schools are located geographically close. This
is because students that live far away from each other do not meet each other and thus
do not envy one another.

Example 1.1. Our scenario includes one high school A, one middle school B, and three
elementary schools C,D, and E. The high school A is located near the middle school B,
and the elementary school C. The middle school B is located near the elementary
schools C,D, and E. Based on this information, the social network in Figure 1.1 is
generated.

A council of a city, where the schools A,B,C,D, and E are located, receives a donation
for the schools in the form of supplies for the computer lab. The donation consists of
one electronic whiteboard, one computer, and five calculators. Now the council has to
decide how it wants to allocate the donations fairly between the schools. Since all the
schools are in the same need of the supplies, they evaluate the supplies in the same way.

9

1 Introduction and Motivation

Item Electronic whiteboard Computer Calculator
Value of a supply 6 3 1

Table 1.1: The values of the supplies used in Example 1.1.

A B E

C D

Agent Resources Value
A Electronic whiteboard, Computer, Calculator × 5 14
B,C,D,E 0

Figure 1.2: A graph-envy-free allocation.

The utility values of these supplies are shown in Table 1.1.

The council decides that a fair allocation of the supplies means that the basic require-
ment for the allocation is to be graph-envy-free. The table in Figure 1.2 and Table 1.2a
show possible graph-envy-free allocations. The reason why the sole criterion of graph-
envy-freeness is not sufficient is because both allocations are graph-envy-free but most
people would say that Table 1.2a shows a fairer allocation than the allocation depicted
in Figure 1.2. This is because the the allocation in Figure 1.2 allocates all resources to
a single agent and Table 1.2a spreads the resources among the agents.

Thus, the council applies two concepts egalitarian rank fairness and half-feedback
envy-freeness, that represents its perception of fairness. The egalitarian welfare of an
allocation is the value of the smallest valued of a bundle in the allocation. An allocation
is egalitarian rank fair if the egalitarian welfare is maximized and then the number, of
bundles which are valued the same as the value of the egalitarian welfare, is minimal.
If we only maximize the egalitarian welfare without minimizing the number of bundles
evaluated the same as the value of the egalitarian welfare, then we might get an al-
location depicted in Table 1.2a instead of the allocation depicted in Table 1.2b. The
allocation depicted in Table 1.2a is not considered fair, since the agent A receives all the
remaining resources, if the egalitarian welfare cannot be raised. The allocation depicted
in Table 1.2b the agents C and D receive the remaining resources. Thus we prevent the
cases where one agent receives all the remaining resources. The Tables 1.2 and 1.3 and
the table in Figure 1.2 depict the bundle and its value for each school.

A peer of an agent a is every agent b he compares himself with, if an arc (a, b) exists.
An allocation is half-feedback envy-free if every peer of an agent has at least a bundle
of half the value (rounded down) of the value of the agent’s bundle. The allocation
depicted in Table 1.2b does not fulfill the criteria for half-feedback envy-freeness. This
is due to the bundle of A. Its value (of six) is more than double the value of the bundle
of C (two).

With an allocation depicted in Table 1.3a the criteria for half-feedback envy-freeness
are satisfied. Comparing the allocation resulting from the criteria of egalitarian rank

10

Agent Resources Value
A Electronic whiteboard, Calculator × 2 8
B Computer 3
C Calculator 1
D Calculator 1
E Calculator 1

(a) An allocation with solely maximized egalitarian welfare.

Agent Resources Value
A Electronic whiteboard 6
B Computer 3
C Calculator × 2 2
D Calculator × 2 2
E Calculator 1

(b) A possible allocation of resources with the given resources.

Agent Resources Value
A Electronic whiteboard 6
B Computer 3
C Calculator × 2 2
D Calculator 1
E Calculator 1

(c) A possible allocation with four calculators instead of five calculators.

Table 1.2: Allocations with respect to egalitarian rank fairness.

fairness Table 1.3a and half-feedback envy-freeness Table 1.2b the value of the bundles of
C and of D have changed., While optimizing for the criteria of egalitarian rank fairness
both bundles have the same utility value two. But to fulfill the criteria of half-feedback
envy-freeness the bundle of C has to be valued three and the bundle of D has to be
evaluated only one Table 1.3a. It is so because A with a bundle valued six is located
close to C.

To show that the existence of a fair allocation optimizing the criteria of egalitarian
rank fairness does not always imply the existence of a fair allocation fulfilling the criteria
for half-feedback envy-freeness we use another example.

If we had four instead of the five calculators mentioned above, then an allocation
optimizing the criteria of egalitarian rank fairness is still possible, as demonstrated in
Table 1.2c. This is because there always exists an allocation optimizing the criteria
of egalitarian rank fairness if there exists a graph-envy-free allocation. We notice that
egalitarian rank fairness optimizes the criteria of egalitarian welfare and rank. On the
contrary half-feedback envy-freeness only decides whether an allocation fulfills the cri-
teria or not.

Indeed half-feedback envy-freeness is impossible, because the supply electronic white-
board with a value of six has to be allocated to A and due to that B and C have to

11

1 Introduction and Motivation

Agent Resources Value
A Electronic whiteboard 6
B Computer 3
C Calculator × 3 3
D Calculator 1
E Calculator 1

(a) A possible allocation of resources with the given resources.

Agent Resources Value
A Electronic whiteboard 6
B Computer 3
C Calculator × 3 3
D Calculator 1
E Calculator 0

(b) A unfair allocation with four calculators instead of five calculator.

Table 1.3: Allocations with respect to half-feedback envy-freeness.

get a bundle valued at least three. Since B has a bundle valued three D and E both
have to get a bundle valued at least one. This is not possible since the only remaining
unassigned supply is a single calculator valued one thus either the bundle of D or of
E fails to fulfill the criteria for half-feedback envy-freeness as it is shown in Table 1.3b
for E.

Results
Finding a (weakly/strongly) graph-envy-free allocation can lead to some trivial cases

[15]. Thus, we use additional concepts to evaluate the fairness of an allocation. We
use acyclic graphs since in cyclic ones there might not exist a strongly graph-envy-free
allocation and for weakly graph-envy-freeness with cyclic graphs the problem is often
NP-hard. One insight of this thesis is that a problem for a strong graph-envy-free
allocation is at least as complex as for a weak graph-envy-free allocation.
Another finding is that if resources can be given arbitrary positive integers as values,
then the problem is NP-hard even for identical preferences. Therefore, the restriction
on preferences is important for the complexity of the problem.
All results are visually collected in Tables 5.1 and 5.2 in Chapter 5.

Related Work
As the basic concepts of this thesis is not completely new there already exist researches

in a similar direction. In the papers [15]–[21] a social network over agents is assumed
and envy-freeness for each agent is defined in relation to their neighborhood. This is
because envy-freeness without constraints in itself is often already too strong. Chen
and Shah [22] also assume that agents do not know what the other agents received in
the allocation. There the goal is goal a bit different. The main goal is to study what

12

hiding information implies for the agents. This thesis is strongly related to “Envy-Free
Allocations Respecting Social Networks” [15]. This is due to the fact that this thesis is
a continuation of the paper.

13

2 Basics and Models

In this chapter we provide the basic concepts, definitions and models we use in this
thesis. We use graphs to represent the relations between agents, use bundles to show
which resources are allocated to which agent, and use different concepts to define what
we understand by a fair allocation. All necessary notions are formally defined in this
chapter. As we mentioned before some of the following concepts are not new and were
already dealt with similarly, for example in “Handbook of computational social choice”
[23] and the papers [15]–[21] In the section below we introduce our graph notation.

2.1 Graphs

A directed graph G = (V,E) consists of a set V of vertices and a set E of arcs. By N(v)
we denote the (out-)neighborhood of a vertex v ∈ V , that is, the set W ⊂ V of vertices,
such that for each vertex w ∈ W an arc a = (v, w) ∈ E from vertex v to vertex w exists.
An undirected graph G′ = (V ′, E ′) consists of a set V ′ of vertices and a set E ′ of edges.
Edges are undirected and thus an edge e ∈ E ′ between two vertices v, w ∈ V ′ can be
written as a set {v, w} and not as a tuple like an arc.

An arc a = (v, w) is an outgoing arc for vertex v and an ingoing arc for vertex w. A
vertex that has only ingoing arcs is called a sink and a vertex that has only outgoing arcs
is called a source. A isolated vertex u is a sink as well as a source. If an arc a = (v, w)
exists, vertex v is a parent of vertex w. In addition vertex w is a child of vertex v.

In this thesis we focus on graphs without cycles. A directed graph G = (V,E) has
a cycle if a subgraph H = (W,F) exists where set W ⊆ V and set F ⊆ E, such that
W = {v1, . . . , vn} and F = {(vn, v1), (vi, vi+1) | 1 ≤ i ≤ n − 1}. Subgraph H is a cycle
of length n.

Since we will talk about graph-envy-free allocations with respect to G, we define
directed graph classes we deal with.
One directed graph class we focus on in this thesis is the class of DAGs (directed acyclic
graph). DAGs are the least restricted graphs we focus on. A DAG is, as the name
implies, a directed graph without a cycle.

The next graph class is a bit more restricted and consists of trees. A tree is a directed
graph without a cycle where every vertex has an indegree of one or zero.

The last graph class we work with is a directed path. A directed acyclic graph G =
(V,E) with V = {v1, . . . , vn} is a path if E = {(vi, vi+1) | 1 ≤ i ≤ n − 1}. In a path
vertex v1 is a source and vertex vn is a sink. A path is the most restricted class used in
our thesis.

15

2 Basics and Models

In the following sections we are defining some concepts for allocation problems we
need.

2.2 Allocation & Bundle

We consider the setting with a finite set of agents A = {a1, a2, . . . , an} and a finite set
of resources R = {r1, r2, . . . , rm} that are indivisible.

Definition 2.1. An allocation of a set of resources R to a set of agents A is a mapping
π : A → 2R. For every a, a′ ∈ A we call π(a) the bundle of a under π. The bundles π(a)
and π(a′) are disjoint for all distinct a and a′. We require that for every resource r ∈ R,
r is allocated to a bundle such that the allocation is complete.

Our definition ensures that every resource can only be assigned to one agent.
There are different methods to model preferences of agents over resources. We focus

on the preferences expressed numerically.

Definition 2.2. A preference relation � is called additive over all subsets of R if there
is a utility function u : R → {0} ∪N such that for every X, Y ⊆ R it holds that X � Y
if and only if u(X) ≤ u(Y), where u(X), for every X ⊆ R, is defined as

∑
r∈X u(r).

An additive preference relation is called monotonic, if and only if every value of the
utility function is non-negative. We restrict the preferences in this work to be additive
and monotonic. Moreover, we call them 0/1 if the utility function maps to zero or one
for every agent. An agent ai ∈ A has a utility function uai . We call the preferences
identical if every agent has the same utility function. Thus for identical preferences we
get a family of utility functions U(u, |A|) with |A| utility functions that are identical
to u. We call resources trivial that are evaluated zero by every agent. The agents
preferences are unary encoded by the utility function uai : R → N, ai ∈ A.

2.3 Graph-Envy-Freeness

As we focus on graph-envy-free allocations in this thesis, we first want to formally define
what graph-envy-freeness is.

Definition 2.3. Let A be a set of agents, R be a set of resources and G = (A, E)
be a directed graph. We call an allocation π weak graph-envy-free (GEF) with respect
to G if for each pair of distinct agents a, a′ ∈ A it is true that when a′ ∈ N(a), then
ua(π(a)) ≥ ua(π(a′)). By the replacement of the ≥ with >, we obtain the definition of
a strong graph-envy-free (sGEF) allocation.

When we talk about strong or weak graph-envy-free allocations in this thesis, we omit
“with respect to the graph G” when G is clear from the context.

16

2.4 Fairness Concepts Beyond Envy-Freeness

One weakness of the concept of weak graph-envy-free allocations is that an allocation π
which allocates nothing to each agent is always weak graph-envy-free. Thus, we have the
restriction that an allocation has to be complete, as mentioned above in Definition 2.1.
Even with this restriction, there still exist trivial cases. One of these trivial cases occurs,
for example, for agents embedded in a tree. An allocation π is weak graph-envy-free
even for a single non-empty bundle consisting of all resources that are given to some
source-agent of the tree [15].

Therefore, we need an additional concept of fairness to ensure a fair allocation of
resources. Our proposals are discussed in the next section.

2.4 Fairness Concepts Beyond Envy-Freeness

One aspect we need for our definition of fairness is the egalitarian welfare.

Definition 2.4. The egalitarian welfare E(π) of an allocation π is defined as the smallest
value of a bundle in π, that is E(π) = mina∈A(ua(π(a))).

In our work, the happiness of an agent a ∈ A is depicted by the utility value of its
bundle ua(π(a)). Agents with a value of E(π) of their bundle are called unhappy agents.
Another aspect of our fairness criteria is rank.

Definition 2.5. The rank R(π) of an allocation π is defined as the number of agents
with a bundle of valued E(π), that is, R(π) = |{a ∈ A | ua(π(a)) = E(π)}|.

Intuitively the rank of an allocation π is the number of unhappy agents.
Since the rank of an allocation π is the number of minimal valued bundles in π, there

has to exist at least one agent who has a bundle of value E(π). Hence, we have the
following observation.

Observation 2.6. The rank of an allocation is always greater than zero.

The definition of our first new fairness concept, that we call egalitarian rank fairness(ER-
F), is formally presented below.

Definition 2.7. A complete allocation π is fair with respect to egalitarian rank fairness,
if and only if there exists no other allocation π′ where E(π) < E(π′) or if E(π) = E(π′)
then R(π) > R(π′).

The reasons why the definition of egalitarian rank fairness is as it is presented in
Definition 2.7 are described in the following part Example 2.8. If we switched the
priority of the two conditions, then there could be an allocation, where one agent gets
an empty bundle even if there were enough resources for an allocation where every agent
gets at least one resource. This would be the case because the condition to minimize
the agents with the smallest utility value would be fulfilled.

17

2 Basics and Models

a

cb d

Figure 2.1: A graph for Example 2.8.

If we had only rank as condition, then the same allocation could happen.
If we had only the egalitarian welfare as condition, then there could be an allocation

where, as soon as the resources cannot be allocated to every bundle perfectly, there
could be a single bundle, where the remaining resources are allocated to. This would
be a bundle of a source-agent. Hereafter, we give an example for a weak graph-envy-
free allocation with identical 0/1 preferences with respect to ER-F presenting the issues
mentioned above.

Example 2.8. Let us focus on six resources R = {r1, r2, r3, r4, r5, r6} where u(r) = 1
for all r ∈ R, a directed acyclic graph (Figure 2.1) G = (A, E) with A = {a, b, c, d}
and E = {(a, b), (a, c), (a, d)}.

Suppose we changed the priority order. This results in maximizing the egalitarian
welfare after minimizing the rank. Then, there exists an allocation π that fulfills the
criteria with π(a) = {r1, r2, r3, r4}, π(b) = {r5}, π(c) = {r6}, π(d) = ∅ as there is only
the agent d with an empty bundle. The goal of the minimization of the rank is satisfied.
Thus, the allocation would be called fair, if the minimization of the rank is the primary
condition. The same holds if minimizing the rank is the only condition.

If there is only the maximization of the egalitarian welfare, maxπ∈P (E(π)) as a con-
dition, then there exists an allocation π that fulfills the criteria with π(a) = {r1, r2, r3},
π(b) = {r4}, π(c) = {r5}, π(d) = {r6} as the maximum egalitarian welfare is E(π) = 1.
The goal of the maximization of the egalitarian welfare is satisfied. Hence, the allocation
would be called fair, if the maximization of the egalitarian welfare is the only condition
or primary condition.

Observe that if we use our definition of fairness (Definition 2.7), then we get an
allocation π with π(a) = {r1, r2}, π(b) = {r3, r4}, π(c) = {r5}, π(d) = {r6}, which has a
broader allocation of the resources. Thus the allocation can be perceived as fair.

Therefore, we need the maximization of the egalitarian welfare as well as minimization
of the rank in the given priority order.

The definition of our second fairness concept, that we call half-feedback envy-freeness
(HF-EF), is formally presented below.

Definition 2.9. A complete allocation π is fair with respect to half-feedback envy-

freeness, if and only if it holds for every arc a = (v, w) ∈ E, that uw(π(w)) ≥
⌊
uw(π(v))

2

⌋
.

Thus, an allocation is considered fair with respect to half-feedback envy-freeness, if
and only if it holds for all child-agents, that the child-agent has a bundle of at least half

18

2.5 Fairness Problems Handled in this Thesis

a b c

Figure 2.2: A graph for Example 2.10.

a
3

b

1
c
0

Figure 2.3: A graph for an allocation with four resources.

the value of the bundle of his parent-agent.
Hereafter we have an example of a strongly graph-envy-free allocation with identical 0/1
preference relation.

Example 2.10. Let A be a set of agents, G = (A, E) be a graph depicted in Figure 2.2
and R be a set of resources with four resources that are liked by all agents. One possible
allocation is shown in Figure 2.3. The number next to a vertex represents the value of
the bundle the agent receives, who is represented by the vertex.

If we are given five resources, there exists no possible fair allocation with respect to
half-feedback envy-freeness, since the first four resources are allocated as demonstrated
in Figure 2.3. Then the last resource cannot be allocated without violating HF-EF.
Also, not allocating the resource is not an option, because our allocations have to be
complete.

2.5 Fairness Problems Handled in this Thesis

In section we define the two problems we work on in this thesis.

Egalitarian Rank Fairness (ER-F) (s)GEF-Allocation

Input: A set of agents A = {a1, a2, . . . , an}, a set of resources R =
{r1, r2, . . . , rm}, a family U = {ua1 , ua2 , . . . , uan} of agents utility func-
tions for the resources R, a directed graph G = (A, E) and two positive
integers k, l.

Question: Is there a complete and (strong) graph-envy-free allocation π where
E(π) ≥ l and R(π) ≤ k?

For the problems which are polynomial-time solvable we use an algorithm maximizing
l and then a minimizing k. If an optimization problem is polynomial-time solvable, then
the decision problem is also polynomial-time solvable, since with the maximized and
minimized upper and lower bound we can directly see, if there is an allocation for a
fixed k and l.

19

2 Basics and Models

Half-Feedback Envy-Freeness (HF-EF) (s)GEF-Allocation

Input: A set of agents A = {a1, a2, . . . , an}, a set of resources R =
{r1, r2, . . . , rm}, a family U = {ua1 , ua2 , . . . , uan} of agents utility func-
tions for the resources R and a directed graph G = (A, E).

Question: Is there a complete and (strong) graph-envy-free allocation π such that
the allocation is also half-feedback envy-free?

2.6 Common Computational Problems

As we are going to demonstrate computational hardness in this thesis, one possible way
is to show it through a polynomial-time many-one reduction. The Clique is a well
known NP-complete problem [24].

Clique
Input: An undirected graph G = (V,E) and a positive integer k.
Question: Is there a clique of size k, that is, a size-k subset of the vertices such

that they are pairwise adjacent?

Another problem we use for a polynomial-time many-one reduction is C-GEF-Alloca-
tion. Here we are assuming a variant of C-GEF-Allocation where we are assigning
resources to agents which are embedded on a cycleG = (A, E). The agents have identical
monotonic preferences for the resources. The problem is NP-hard [15].

C-GEF-Allocation (Cycle)

Input: A set A of n agents, a set R of m indivisible resources, a utility func-
tion u for all agents and a cycle G = (A, E).

Question: Is there a complete, graph-envy-free allocation π of R to A?

20

3 Paths

In the following chapter we focus on directed paths. We chose directed paths as the first
graph class, since it is the most restricted class.

Although it looks so constraint, a natural scenario to apply an allocation on a path is
for the allocation of prices after a race. The first place of the race is represented by the
source and the last place is represented by the sink as it is shown below.

1 st 2 nd . . . n th

3.1 Allocations With Respect to Egalitarian Rank
Fairness

In all the following subsections we discuss the computational complexity of Egali-
tarian Rank Fairness (s)GEF-Allocation in the case that the input graph is a
directed path. In each subsection we focus on different preference relations.

3.1.1 Identical 0/1 Preferences on a Path

We start with the most restricted preferences, which are the identical 0/1 preferences.
With identical 0/1 preferences every agent a ∈ A has the same utility function u : R →
{0, 1}. Thus, the only relevant resources from R are resources which have a utility value
u(r) = 1 | r ∈ R. Resources r′ ∈ R with a utility value of u(r′) = 0 can be allocated
arbitrarily to any agent as no agent envies any other agent these resources.

Observation 3.1. The only relevant information regarding resources in the identical
0/1 preference model for us is the cardinality of R′ : = {r ∈ R | u(r) = 1}.

Thus, because of Observation 3.1, whenever we have identical 0/1 preferences we may
assume without loss of generality that every resource r ∈ R has a utility value of one,
so that u(R) = |R|.

Weak Graph-Envy-Freeness

The goal of this subsection is to show that ER-F GEF-Allocation with the input
graph being a path and agents having identical 0/1 preferences is polynomial-time solv-
able. In order to find an egalitarian rank fair and weak graph-envy-free allocation we
provide Algorithm 0.

21

3 Paths

The idea of this algorithm is firstly to allocate the resources evenly so that every agent

receives
⌊
|R|
|A|

⌋
resources. The remaining resources are allocated such that the first

|R| − (|A|
⌊
|R|
|A|

⌋
) agents receive a single resource.

Algorithm 0:

Input:
R — a set of non-trivial resources
A = {a1, a2, . . . , an} — a set of agents
u(r) — a utility function for resources
G = (A, E) — a directed path

1 mr←
⌊
|R|
|A|

⌋
;

2 rer← (|R| −mr |A|); . variable rer for unassigned resources

3 Assign every agent ai ∈ A a label l(ai);
4 for i← 1 to |A| by 1 do
5 if i ≤ rer then
6 l(ai) = mr +1;
7 else
8 l(ai) = mr;

9 Allocate l(ai) arbitrary resources from R to every agent ai ∈ A;

Theorem 3.2. Algorithm 0 solves ER-F GEF-Allocation with the input graph being
a path and agents having identical 0/1 preferences in O(|A|) time, where A denotes the
set of agents.

Proof. It can be inferred from Observation 3.1, that the utility value of all the resources
fromR sum up to |R|. Assuming identical preferences, the maximum possible egalitarian
welfare E(π) of an allocation π is achieved when every agent receives a bundle which is
proportional. The bundle of an agent ai of an allocation π is proportional if u(π(ai)) =
u(R)
|A| . Thus we get an upper bound of |R||A| for the egalitarian welfare. Since we work with

indivisible resources the maximum egalitarian welfare has an upper bound of
⌊
|R|
|A|

⌋
. This

derives from the fact that |R| mod |A| does not always equal zero.

Lines 1 and 8 ensure that every agent receives at least
⌊
|R|
|A|

⌋
resources as follows in

line 9. In line 2, we set the variable rer for the number of the remaining resources c =

|R| − (|A|
⌊
|R|
|A|

⌋
), in order not to allocated more, than the available resources R. In

lines 6 and 9, we allocate the remaining resources c to every agent ai where 1 ≤ i ≤ c,
but only one resource to each agent. Hence by doing this, we reduce the rank by
c and therefore the rank is minimized in order for a maximum egalitarian welfare of⌊
|R|
|A|

⌋
. The allocation is weakly graph-envy-free since it holds for every agent ai that

u(π(ai)) =
⌊
|R|
|A|

⌋
+ 1 | 1 ≤ i ≤ c and u(π(ai)) =

⌊
|R|
|A|

⌋
| c < i ≤ |A|.

The reason for the runtime being O(|A|) is that the only operations depending on the

22

3.1 Allocations With Respect to Egalitarian Rank Fairness

input are the labeling (line 3) and update of the labels (line 4) that depend on the
distance of the agent to the source. For both operations we iterate through the whole
set of agents once. Since both operations are not nested and every other operation
executes in the same time regardless of the size of the input we obtain our runtime of
O(|A|).

Strong Graph-Envy-Freeness

In this subsection we show that ER-F sGEF-Allocation with the input graph be-
ing a path and agents having identical 0/1 preferences is polynomial-time solvable. In
order to find an egalitarian rank fair and strong graph-envy-free allocation we provide
Algorithm 1.
The idea of this algorithm is firstly to first ensure an initial strong graph-envy-free al-
location. Then the remaining resources are divided evenly so that every agent receives

additional
⌊

b
|A|

⌋
resources where b = |R| −

∑|A|
i=1 |A| − i. The remaining resources are

allocated so that the first |R| − (|A|
⌊

b
|A|

⌋
) agents receive a single resource.

Algorithm 1:

Input:
R — a set of non-trivial resources
A = {a1, a2, . . . , an} — a set of agents
u(r) — a utility function for resources
G = (A, E) — a directed path

1 if
∑n

i=1 n− i > |R| then
2 return;

3 Assign every agent ai ∈ A a label l(ai) where l(ai) = n− i;
4 rer← |R| −

∑n
i=1 n− i; . variable rer for unassigned resources

5 mr←
⌊

rer
|A|

⌋
; . variable mr for additional resources

6 for i← 1 to |A| by 1 do
7 l(ai)← l(ai) + mr; . update label l(ai)

8 rer← (rer−mr |A|); . update unassigned resources rer
9 for i← 1 to |A| by 1 do

10 if i ≤ rer then
11 l(ai) = l(ai) + 1;

12 else
13 l(ai) = l(ai);

14 Allocate l(ai) arbitrary resources from R to every agent ai ∈ A;

Theorem 3.3. Algorithm 1 solves ER-F sGEF-Allocation with the input graph
being a path and agents having identical 0/1 preferences in O(|A|) time, where A denotes
the set of agents.

23

3 Paths

Proof. With line 1, we check whether there are enough resources for a strongly graph-
envy-free allocation. With the initial labeling in line 3 we ensure a strongly graph-
envy-free allocation, since it holds for every agent ai that l(ai−1) > l(ai) > l(ai+1) where
2 ≤ i ≤ n−1. Since we require the allocation to be strongly graph-envy-free the maximal

egalitarian welfare of an allocation can only be
⌊

b
|A|

⌋
where b = |R|−

∑|A|
i=1 |A|− i is the

number of unassigned resources after the initial labeling. The reason for this is that we
need

∑|A|
i=1 |A| − i resources to ensure a strongly graph-envy-free allocation. We ensure

with lines 5 and 7 that every agent receives at least
⌊

b
|A|

⌋
resources in line 14. In line 8 we

update the variable rer for the number of remaining resources c = b− (|A|
⌊

b
|A|

⌋
) trying

not to allocated more than the available resources R. In lines 10 and 11 we allocate the
remaining c resources to the agents ai where 1 ≤ i ≤ c, but only one resource to each
agent. Since l(an−1) > l(an) is always true, an allocation π, resulting from line 14, has
the minimal rank R(π) = 1, because it always holds that u(π(an−1)) > u(π(an)). The

egalitarian welfare is also maximized since u(π(an)) =
⌊

b
|A|

⌋
. The allocation is strong

graph-envy-free since it holds for every agent ai that u(π(ai)) = |A|− i+
⌊

b
|A|

⌋
+ 1 | 1 ≤

i ≤ c and u(π(ai)) = |A| − i+
⌊

b
|A|

⌋
| c < i ≤ |A|. Therefore the condition for a strong

graph-envy-free allocation of u(π(ai)) > u(π(ai+1)) | 1 ≤ i ≤ |A| is always fulfilled.
The reason for the runtime being O(|A|) is that the only operations depending on the
input are the labeling (line 3), the first update of the label (line 6) and the second update
of the labels (line 9) that depend on the distance of the agent to the source. For all three
operations we iterate through the whole set of agents once. Since all three operations
are not nested and every other operation executes in the same time regardless of the size
of the input we obtain our runtime of O(|A|).

3.1.2 Identical Preferences on a Path

In the following we consider identical preferences. Thus, every agent a ∈ A has the same
utility function u : R → {0} ∪ N.

Weak Graph-Envy-Freeness

In this subsection we examine the computational complexity of ER-F GEF-Allocation
for agents having identical preferences with the input graph being a path.

Theorem 3.4. ER-F GEF-Allocation is NP-hard even if the input graph is a path
and agents having identical preferences.

Proof. In the following we show NP-hardness for ER-F GEF-Allocation with the
input graph being a path and agents having identical preferences. Therefore we use a
polynomial-time many-one reduction from C-GEF-Allocation (Cycle) (Section 2.6).

24

3.1 Allocations With Respect to Egalitarian Rank Fairness

a1

a2

. . .

an

(a) cycle

a1 a2 . . . an

(b) Path

Figure 3.2: A visualization of the first step in the Reduction 1, 2 and 3.

Reduction 1. Let I = (A,R, u,G) be an instance of C-GEF-Allocation (Cy-
cle) where A is a set of agents {a1, a2, . . . , an}, R is a set of resources {r1, r2, . . . , rm},
u : R → N ∪ {0} is the agents’ utility function and G = (A, E) is a cycle.

First, we create graph G′ as follows: We start with G′ = G. The graph G′ is then
opened by deleting the arc (an, a1), as it is depicted in Figure 3.2. Thus, we get a new
set of arcs E ′ = E\{(an, a1)} for the path G′ = (A, E ′).

We set the lower bound l on the egalitarian welfare to u(R)
|A| and the upper bound k

on the rank to n. Since we have identical preferences the family of utility functions U
consists of |A| identical utility functions u : R → N ∪ {0}.

After these steps we obtain an instance I ′ = (A,R, U,G′, k, l) of ER-F GEF-Alloca-
tion.

We show that every solution to I is also a solution to I ′:
Let us assume that there exists an allocation π for I that is a solution to C-GEF-
Allocation (Cycle). Every agent a ∈ A has to have the same value for its bundle
π(a) because for a graph-envy-free allocation in a cycle it has to hold that u(π(ai)) ≥
u(π(ai+1)) | 1 ≤ i ≤ n − 1 and also u(π(an)) ≥ u(π(a1)). Hence, the rank R(π)
of the allocation π is n because every agent has the same utility value for their bun-
dle in a cycle. Since for a graph-envy-free allocation in a path we only require that
u(π(ai)) ≥ u(π(ai+1)) | 1 ≤ i ≤ n−1, every solution to C-GEF-Allocation (Cycle)
is also a solution to ER-F GEF-Allocation with the input graph being a path and
agents having identical preferences. Because the sink agent and the source agent have
the same value for their bundle, the egalitarian welfare is maximized in a scenario of
ER-F GEF-Allocation with the input graph being a path and agents having iden-
tical preferences.

We show that every solution to I ′ is also a solution to I:
Let us assume that there exists an allocation π for I ′ that is a solution to ER-F GEF-
Allocation. Since R(π) = n, every agent has to value its bundle equally to value

25

3 Paths

E(π). Therefore it is true that u(π(a1)) = u(π(a2)) = . . . = u(π(an)). Thus, the con-
dition for graph-envy-freeness in a cycle which is u(π(ai)) ≥ u(π(ai+1)) | 1 ≤ i ≤ n− 1
and u(π(an)) ≥ u(π(a1)) is fulfilled. Thus the allocation π is also a solution for C-GEF-
Allocation (Cycle), because every agent has the same value for their bundle and,
therefore, no agent envies the bundle of his outneighbor.

The reduction can be executed in polynomial-time and thus ER-F GEF-Allocation
is NP-hard.

Strong Graph-Envy-Freeness

In this subsection we examine the computational complexity of ER-F sGEF-Alloca-
tion for agents having identical preferences with the input graph being a path.

Theorem 3.5. ER-F sGEF-Allocation is NP-hard even if the input graph is a path
and agents having identical preferences.

Proof. In the following we show NP-hardness for ER-F sGEF-Allocation with the
input graph being a path and agents having identical preferences. We use again a
polynomial-time many-one reduction from C-GEF-Allocation (Cycle) (Section 2.6).

Reduction 2. Let I = (A,R, u,G) be an instance of C-GEF-Allocation (Cycle)
whereA is a set of agents {a1, a2, . . . , an},R is a set of resources {r1, r2, . . . , rm}, u : R →
N is the agents’ utility function for the resources in R and G = (A, E) is a cycle.
This reduction works in two steps.
First we create graph G′ as follows: We start with G′ = G. The graph G′ is opened
by deleting the arc (an, a1), as it is depicted in Figure 3.2. Thus we get a new set of
arcs E ′ = E\{(an, a1)} for the path G′ = (A, E ′). Since we have identical preferences the
family of utility functions U consists of |A| identical utility functions u : R → N ∪ {0}.

In the second step we create a new set of resources R′ as follows: We add a resource
rm+i to the set of resourcesR for every agent ai. Let the utility value of the resource rm+i

be N − |A| − i where N > u(R). Finally, we obtain the set of resources R′ = R ∪
{rm+1, rm+2, . . . , rm+n}. We set the lower bound l for the egalitarian welfare to u(R)

|A| and
the upper bound k for the rank to one.

After these steps we obtain an instance I ′ = (A,R′, U,G′, k, l) of ER-F sGEF-
Allocation.

We show that every solution to I is also a solution to I ′:
Let us assume that there exists an allocation π for I that is a solution to C-GEF-
Allocation (Cycle). Every agent a ∈ A has to have the same value for their for
bundle π(a), because for a graph-envy-free allocation in a cycle it holds, that u(π(ai)) ≥
u(π(ai+1)) | 1 ≤ i ≤ n − 1 and u(π(an)) ≥ u(π(a1)). With the added resources de-
scribed in the second step of the reduction, there exists a fair and strongly graph-envy-
free allocation π′ for I ′. Here the difference between two values of bundles of adjacent

26

3.2 Allocations With Respect to Half-Feedback Envy-Freeness

agents ai, ai+1 in a path is one. Thus, for 1 ≤ i ≤ n each agent ai receives a bundle π′(ai)
that is π(ai) + rm+i. This is due to the fact that the bundles without {rm+1, . . . , rm+n}
are equal as mentioned above. For the resources {rm+i, rm+i+1 | 1 ≤ i ≤ n − 1} it
holds that they only have a value difference of one. Since for a strongly graph-envy-free
allocation in a path it only has to hold, that if u(ai) > u(ai+1) | 1 ≤ i ≤ n − 1 every
fair allocation π for a cycle can be reduced to a fair and strongly graph-envy-free alloca-
tion π′ for a path with the additional resources {rm+1, rm+2, . . . rm+n}. The egalitarian
welfare is maximized, because the difference between two values of bundles of two adja-
cent agents in a path with identical preferences is one. This is due to the fact that every
agent values its bundle without the resources {rm+1, rm+2, . . . rm+n} the same. Thus the
value difference of the bundles {π′(ai), π′(ai+1) | 1 ≤ i ≤ n− 1} is one. A rank of one is
also minimal.
We show that every solution to I ′ is also a solution to I:
Let us assume that there exists an allocation π′ for I ′ that is a solution to ER-F sGEF-
Allocation. First we swap the resources with equivalently valued resources, so that for
all the resources {rm+1, rm+2, . . . rm+n} it holds that rm+i ∈ π(ai). Then after removing
the resources {rm+1, rm+2, . . . rm+n} from the respective bundles π(a1), π(a2), . . . , π(an)

we obtain an allocation π for I where every agent has a value of u(R)
|A| for their bundle.

Therefore, it is true that u(a1) = u(a2) = . . . = u(an) = E(π) and thus, the conditions
u(ai) ≥ u(ai+1) | 1 ≤ i ≤ n− 1 and u(an) ≥ u(a1) for the cycle are fulfilled.
The reduction can be executed in polynomial-time and thus ER-F sGEF-Allocation
is NP-hard.

3.2 Allocations With Respect to Half-Feedback
Envy-Freeness

In all the following subsections we discuss the computational complexity of Half-
Feedback Envy-Freeness (s)GEF-Allocation in the case where the input graph
is a directed path. In each subsection we focus on different preference relations.

3.2.1 Identical 0/1 Preferences on a Path

As in Section 3.1 we start again with identical 0/1 preferences, since it is the most
restricted preference relation we use in this thesis. Every agent a ∈ A has the same
binary utility function u : R → {0, 1} as in Section 3.1.1.

Weak Graph-Envy-Freeness

The same Algorithm 0 as in Section 3.1.1 can be used to solve Half-Feedback Envy-
Freeness GEF-Allocation. This is due to the fact, that the maximum value differ-
ence resulting from the Algorithm 0 is one. One divided by two and rounded down is

27

3 Paths

zero. Thus the allocation resulting from Algorithm 0 fulfills the criteria for half-feedback
envy-freeness as well.

Strong Graph-Envy-Freeness

The goal of this subsection is to show that HF-EF sGEF-Allocation with the input
graph being a path and agents having identical 0/1 preferences is polynomial-time solv-
able. In order to find a half-feedback envy-free and strong graph-envy-free allocation we
provide Algorithm 2.
The idea of this algorithm is that we first check if there are enough resources available
to ensure a strongly graph-envy-free allocation. Then we search for special problematic
cases where no half-feedback envy-free allocation exists, even if there are more resources
then needed to ensure a strong graph-envy-free allocation. Afterwards we ensure an ini-
tial strong graph-envy-free allocation. Then the remaining resources are divided evenly

so that every agent receives additional
⌊

b
|A|

⌋
resources where b = |R|−

∑|A|
i=1 |A|−i. The

remaining resources are allocated such that the first c = |R| − (|A|
⌊

b
|A|

⌋
) agents receive

a single resource, with the exception of c = |A| − 1. Then the source-agent receives two
resources, whereas the others only receive one. Otherwise it will result in one of the
problematic cases.

Algorithm 2:

Input:
R — a set of non-trivial resources
A = {a1, a2, . . . , an} — a set of agents
u(r) — a utility function for resources
G = (A, E) — a directed path

1 if (n− 1) (n−1)+1
2

> |R| then
2 return;

3 else if |A| = 2 && |R| = 2 then
4 return;

5 else if |A| = 3 && |R| = 5 then
6 return;

7 Assign every agent ai ∈ A a label l(ai) where l(ai) = n− i;
8 rer← |R| − nn+1

2
; . variable rer for unassigned resources

9 mr← b rer|A|c; . variable mr for additional resources

10 for i← 1 to |A| by 1 do
11 l(ai)← l(ai) + mr; . update label l(ai)

12 rer← (rer−(mr |A|)); . update unassigned resources rer

28

3.2 Allocations With Respect to Half-Feedback Envy-Freeness

Algorithm 2: Continuation

13 if |R| = (n− 1) (n−1)+1
2

+ n− 1 then
14 l(a1) = l(a1) + 1;
15 for i← 1 to rer−1 by 1 do
16 if i ≤ rer−1 then
17 l(ai) = l(ai) + 1;

18 else
19 l(ai) = l(ai);

20 else
21 for i← 1 to rer by 1 do
22 if i ≤ rer where ai ∈ A then
23 l(ai) = l(ai) + 1;

24 else
25 l(ai) = l(ai);

26 Allocate l(ai) arbitrary resources from R to every agent ai ∈ A;

Theorem 3.6. Algorithm 2 solves HF-EF sGEF-Allocation with the input graph
being a path and agents having identical 0/1 preferences in O(|A|) time, where A denotes
the set of agents.

Proof. The minimal number of resources needed for strongly graph-envy-free allocation
with n agents are

∑n
i=1 n− i = (n−1) (n−1)+1

2
non-trivial resources. This is needed since

every agent ai needs at least a bundle valued n − i. This is because the agent an gets
nothing and each agents parent receives one more resource ending with agent a1 receiv-
ing a bundle valued n − 1. There are two exceptions where we have enough resources
for a strongly graph-envy-free allocation but where no half-feedback envy-free allocation
exists.
The first exception (mentioned in line 3) occurs when there are two resources and two
agents. For the allocation to be complete and strongly graph-envy-free both resources

must be given to agent a1. Thus we get
⌊
2
2

⌋
> 0 and the allocation is not half-feedback

envy-free. The other exception (mentioned in line 5) occurs when there are five resources
and three agents. The only allocations that are complete and strongly graph-envy-free
are the allocation π and π′. In the allocation π the agent a1 receives four resources, the
agent a2 receives one resource, and the agent a3 receives nothing. In the allocation π′ the
agent a1 receives three resources, the agent a2 receives two resource, and the agent a3
receives nothing. This is easy to verify by checking every possible allocation via a brute-
force method since the numbers are still small. Both allocations are not half-feedback
envy-free, because for π between the agents a1 and a2 it is true that

⌊
4
2

⌋
> 1 and for π′

between the agents a2 and a3 it is true that
⌊
2
2

⌋
> 0. The reason why only these two

counterexamples exist is that those are the only ones where problematic cases cannot

29

3 Paths

be avoided. This is explained in detail below.
Since we allocate the number of resources indicated by the label to the corresponding
agents, we ensure the existence of a strongly graph-envy-free allocation with the initial
labeling in 7. The allocation resulting from the algorithm is also strongly graph-envy-
free since an agent ai gets either one more or the same number of additional resources
as an agent aj when there is an arc (ai, aj) ∈ E. Thus with the original value difference
the allocation is strongly graph-envy-free (lines 11, 17 and 23).
The only situation, where a value difference of two is problematic for the criteria of
half-feedback envy-freeness is when we have two adjacent agents ai and ai+1 where ai
has a bundle valued two and ai+1 has a bundle valued zero. This is because in this

case we have
⌊
n+2
2

⌋
> n | n = 0. For every n > 0 we get

⌊
n+2
2

⌋
≤ n thus fulfilling

the criteria for half-feedback envy-freeness. Problematic situations only appear when
|R| = (n − 1)n−1+1

2
+ n − 1. This is because after the allocation of (n − 1)n−1+1

2
when

the remaining n−1 are allocated starting by a1 the last agent that receives a resource is
an−1. This results in the problematic situation where an−1 has a bundle valued two and
an a bundle valued zero. In this situation the agent a1 is given an additional resource.
This can result in a value difference of three between the agents a1 and a2. This is only
the case when |A| = 3 since in every other case a2 gets an additional resource resulting
again in a value difference of two. These two special cases have been already checked in
the beginning.
Therefore Algorithm 2 finds a solution for HF-EF sGEF-Allocation with the input
graph being a path and agents having identical 0/1 preferences, if there exists an allo-
cation fulfilling the criteria.
The reason for the runtime being O(|A|) is that the only operations depending on the
input are the labeling (line 7), the first update of the label (line 10) and the second
update of the labels (line 15 or 21) that depend on the distance of the agent to the
source. For all three operations we iterate through the whole set of agents once. Since
all three operations are not nested and every other operation executes in the same time
regardless of the size of the input we obtain our runtime of O(|A|).

3.2.2 Identical Preferences on a Path

As in Section 3.1 we focus on agents having identical preferences in the next subsection.
Thus, every agent a ∈ A has the same utility function u : R → {0} ∪ N. Hereafter we
analyze our problem of finding a half-feedback envy-free allocation for the variants of
weak graph-envy-freeness and strong graph-envy-freeness.

Weak Graph-Envy-Freeness

In this subsection we examine the computational complexity of HF-EF GEF-Alloca-
tion for agents having identical preferences with the input graph being a path.

Theorem 3.7. HF-EF GEF-Allocation is NP-hard even if the input graph is a path
and agents having identical preferences.

30

3.2 Allocations With Respect to Half-Feedback Envy-Freeness

Proof. To show NP-hardness for HF-EF GEF-Allocation with the input graph be-
ing a path and agents having identical preferences we use a polynomial-time many-one
reduction from C-GEF-Allocation (Cycle).

Reduction 3. Let I = (A,R, u,G = (A, E)) be an instance of C-GEF-Allocation
(Cycle) whereA is a set of agents {a1, a2, . . . , an},R is a set of resources {r1, r2, . . . , rm},
u : R → N is the agents utility function for the resources in R and G = (A, E) is a cycle.

This reduction works in two steps. First we create graph G′ as follows: We start with
G′ = G. The graph G′ is opened by deleting the arc between two agents (an, a1), as it is
depicted in Figure 3.2. We create a new set of agents A′ = A∪{a0}. Thus we get a new
set of arcs E ′ where E ′ = (E\{(an, a1)}) ∪ {(a0, a1)} for the path G′ = (A′, E ′). Since
we have identical preferences the family of utility functions U consists of |A| identical
utility functions u : R → N ∪ {0}.

In the second step we create a new set of resources R′ = R∪{rm+1, rm+2, . . . , rm+n+1}.
The newly added resources have a utility value of u(rm+1) = 1

1
N and u(rm+i) = 1

2i−1N −
C | 2 ≤ i ≤ n+ 1, where C = u(R)

|A| . We require that 1
2n
N − C >

∑n
i=1 u(ri).

After these steps we obtain an instance I ′ = (A′,R′, u,G′) of HF-EF GEF-Alloca-
tion.

We show that every solution to I is also a solution to I ′:
Let us assume that there exists an allocation π for I that is a solution to C-GEF-
Allocation (Cycle). Every agent ai ∈ A | i ∈ {1, 2, . . . , n} has a bundle with the
value C. Every agent ai ∈ A′ | i ∈ {0, 1, . . . , n} gets the resource rm+i+1 added to its
bundle and we obtain an allocation π′ for I ′. Hence, each agent ai ∈ A′ | 1 ≤ i ≤ n
has a bundle with the value 1

2i
N − C + C. Since the agent a0 already has bundle with

the value 1
1
N every agent ai ∈ A′ has a bundle with the value 1

2i
N . Thus it is always

true that u(ai) = 2u(ai+1) | 0 ≤ i ≤ n − 1 and the conditions for a complete, weakly
graph-envy-free and half-feedback envy-free allocation π′ are fulfilled.

We show that every solution to I ′ is also a solution to I:
Let us assume that there exists an allocation π′ for I ′ that is a solution to HF-EF
GEF-Allocation. Since 1

2n
N − C >

∑n
i=1 u(ri) it is required that the resources

{rm+1, rm+2, . . . , rm+n+1} are allocated to so that rm+i ∈ π′(ai−1) | 1 ≤ i ≤ n + 1.
Since agent a0 received the resource rm+1 it has a bundle valued N . For the alloca-
tion to be strong graph-envy-free each agent ai | 1 ≤ i ≤ n that has a bundle valued
1
2i
N − C by receiving the resource rm+i+1. Thus, the remaining resources from R′ are

allocated, so that every agent ai receives a set of additional resources valued C. Then
every agent ai | 0 ≤ i ≤ n has a bundle valued 1

2i
N and the allocation is half-feedback

envy-free. After removing the resources {rm+1, rm+2, . . . , rm+n+1} from the respective
bundles π′(a0), π

′(a1), . . . , π
′(an) and the agent a0 from A′ we obtain the allocation π

and the set of agents A for I. Every agent ai ∈ A now has a bundle valued C. There-
fore, it is true that u(π(a1)) = u(π(a2)) = . . . = u(π(an)) = E(π) and the conditions
u(π(ai)) ≥ u(π(ai+1)) | 1 ≤ i ≤ n− 1 and u(π(an)) ≥ u(a1) for the cycle are fulfilled.

31

3 Paths

The reduction can be executed in polynomial-time and thus HF-EF GEF-Alloca-
tion is NP-hard.

Strong Graph-Envy-Freeness

In this subsection we examine the computational complexity of HF-EF sGEF-Alloca-
tion for agents having identical preferences with the input graph being a path.

Theorem 3.8. Even HF-EF sGEF-Allocation for identical preferences in a path
is NP-hard.

Proof. The same proof as in HF-EF GEF-Allocation with the input graph being
a path and agents having identical preferences can be applied here as well. This is
because in the proof above every agent ai receives a bundle valued 1

2i
N . Thus, for every

arc (ai, ai+1) ∈ E ∧ a, b ∈ A it holds that u(π(ai)) > u(π(ai+1)). Therefore the proof is
also applicable for the variant of strongly graph-envy-freeness.

3.2.3 0/1 Preferences on a Path

In the following we have 0/1 preferences. Every agent ai ∈ A has its own utility function
uai : R → {0, 1}. If a resource r ∈ R is valuated zero by every agent a ∈ A the resource
can be allocated arbitrarily. Thus we only focus on resources, which are valuated as one
by at least one agent.

Observation 3.9. There is no resource r ∈ R that is valuated zero by every agent
a ∈ A.

Weak Graph-Envy-Freeness

The goal of this subsection is to show that HF-EF GEF-Allocation with the input
graph being a path and agents having 0/1 preferences is polynomial-time solvable. In
order to find a half-feedback envy-free and weak graph-envy-free allocation we provide
Algorithm 3.
The idea of this algorithm is that the agents get assigned one resource after another.
The order depends on the distance to the source. The procedure starts with the source-
agent and continues on to the sink-agent. Then the procedure starts again with the
source-agent. This continues until all resources are assigned.

32

3.2 Allocations With Respect to Half-Feedback Envy-Freeness

Algorithm 3:

Input:
R — a set of non-trivial resources
A = {a1, a2, . . . , an} — a set of agents
U = {u1, u2, . . . , un} — a family of agents’ utility functions for resources
G = (A, E) — a directed path

1 while there exists unassigned resources do
2 for i← 1 to |A| by 1; . Loop through the agents

3 do
4 Assign a liked and unassigned resource rj to agent ai;

Theorem 3.10. Algorithm 3 solves HF-EF GEF-Allocation with the input graph
being a path and agents having 0/1 preferences in O(|A||R|) time, where A denotes the
set of agents and R denotes the set of resources.

Proof. Theorem 3.10 is proven by induction.
The base case we choose is for R = ∅. With R = ∅ the allocation that is complete,
weakly graph-envy-free and also half-feedback envy-free is the allocation that allocates
nothing to every agent. Since the set of resources is empty and there are no resources left
to allocate the allocation is complete. No agent envies another agent since every agent
receives no resource. For the same reason the allocation is also half-feedback envy-free.
The algorithm with R = ∅ does not execute the while loop in line 1. Thus, the empty
allocation is obtained by our algorithm. Hence, the proof is correctly applicable for the
base case.
Our inductive assumption is that Algorithm 3 finds a complete, weakly graph-envy-free
and half-feedback envy-free allocation with k iterations. In each iteration a single re-
source is assigned to an agent. The allocation that is found also has a maximum value
difference of one between bundles of ai and of ai+1 from the viewpoint of ai+1 where
1 ≤ i ≤ n− 1.
For the inductive step we show that there is also a complete, weakly graph-envy-free
and half-feedback envy-free allocation for k + 1 iterations. In each iteration a single re-
source is assigned to an agent. The allocation is complete since the allocation obtained
with k iterations is complete and then in the k + 1th iteration the k + 1th resource is
allocated. The reason is that in each iteration a single resource is allocated. The allo-
cation with k iterations is weakly graph-envy-free. We assume that after the additional
iteration the allocation is not weakly graph-envy-free. For this to happen, a pair of
agents (a, b) ∈ E ∧ a, b ∈ A needs to have the same value for their bundle. Then b must
receive the next resource in the k + 1th iteration. This is impossible, since the agent a
receives a liked resource in the kth iteration such that a has a bundle valued one more
than b. If the agent b receives a resource in the k + 1th iteration they have the same
value for their bundle.
Lastly the allocation is also half-feedback envy-free since the allocation with k iterations
is half-feedback envy-free and the value difference is maximal one, from the viewpoint

33

3 Paths

of b. After the k+ 1th iteration the value difference is at most one. The value difference
between the bundles of b and of c where (b, c) ∈ E ∧ b, c ∈ A is maximal one from
the viewpoint of c. This is because the value difference between b and c in the kth
iteration was zero and now after the (k + 1)th iteration is at most one. One divided
by two and then rounded down is zero, hence the allocation stays half-feedback envy-free.
Therefore the allocation obtained by Algorithm 3 is a solution to HF-EF GEF-Alloca-
tion with the input graph being a path and agents having 0/1 preferences.
The reason for the runtime beingO(|A||R|) is that in the worst case only the last agent an
likes the resources r ∈ R. Every other agent values every resource as zero. Thus for
every single resource we have to iterate through the whole set of agents resulting in
O(|A||R|).

34

4 Trees & DAGs

In this chapter we focus on the remaining two graph classes we study, namely trees and
DAGs. The reason for combining these two graph classes in one chapter is due to the
fact that some cases have the same solution.

4.1 Allocations With Respect to Egalitarian Rank
Fairness

In all the following subsections we discuss the computational complexity of Egalitar-
ian Rank Fairness (s)GEF-Allocation. As we are analyzing less restricted graph
classes, compared to paths, we get new insights into their computational complexity. For
some problems with the same preference relations the runtime increases by changing the
input graph. In the case of the ER-F sGEF-Allocation with agents having identical
0/1 preferences, the computational complexity changes accordingly to the input graph.
If the input graph is a DAG it becomes NP-hard, while the problem with the input
graph being a path is polynomial-time solvable.

4.1.1 Identical 0/1 Preferences on a Tree & DAG

As in Section 3.1 we start again with agents having identical 0/1 preferences, since it is
the most restricted preference relation we use in this thesis. Every agent a ∈ A has the
same binary utility function u : R → {0, 1} as in Section 3.1.1.

Weak Graph-Envy-Freeness on a Tree & DAG

In this subsection, we show that ER-F GEF-Allocation with the input graph be-
ing a DAG and agents having identical 0/1 preferences is polynomial-time solvable. In
order to find an egalitarian rank fair and weak graph-envy-free allocation we provide
Algorithm 4.
The idea of this algorithm is firstly to allocate the resources evenly such that every agent

receives
⌊
|R|
|A|

⌋
resources. The remaining resources are allocated such that |R|−(|A|

⌊
|R|
|A|

⌋
)

agents with the smallest distance to a source receive a single resource.

35

4 Trees & DAGs

Algorithm 4:

Input:
R — a set of non-trivial resources
A = {a1, a2, . . . , an} — a set of agents
u(r) — a utility function for resources
G = (A, E) — a DAG

1 mr←
⌊
|R|
|A|

⌋
;

2 Assign every agent ai ∈ A a label l(ai) where l(ai) = mr;
3 rer← |R| − (mr |A|); . rer is the number of unassigned resources

4 for each ai ∈ A do
5 aDisti ←source dist(G, ai); . source dist is a function to determine

the longest distance to the source

6 Aj ← {ai ∈ A | aDisti = j}; . group the agents by their distance to

the source agent

7 while rer > 0 do
8 for j ← 1 to max(aDisti) by 1 do
9 if |Aj| > rer then

10 update |Aj| arbitrary labels l(ai)← l(ai) + 1 where ai ∈ Aj;
11 else
12 update every label l(ai)← l(ai) + 1 where ai ∈ Aj;
13 rer−|Aj|;

14 Allocate l(ai) arbitrary resources from R to every agent ai ∈ A;

Theorem 4.1. Algorithm 4 solves ER-F GEF-Allocation with the input graph being
even a DAG and agents having identical 0/1 preferences in O(|A|) time, where A denotes
the set of agents.

Proof. As we mentioned in the proof for Theorem 3.2, the maximum egalitarian wel-

fare E(π) of an allocation π has an upper bound of
⌊
|R|
|A|

⌋
. The minimal rank is |A| − c

where c = (|A|
⌊
|R|
|A|

⌋
) since , except for c resources, the other resources are needed to

ensure the egalitarian welfare of
⌊
|R|
|A|

⌋
. Thus, the optimal allocation has an egalitarian

welfare of
⌊
|R|
|A|

⌋
and a rank of |A| − c.

Lines 1 and 2 ensure that every agent receives a bundle valued at least
⌊
|R|
|A|

⌋
in

line 14. In line 12 every agent ai where ai ∈ A0 ∪ . . . ∪ Aj |
∑j

k=0 |Ak| ≤ c with j being
maximal, receives an additional resource. Then the number of remaining resources is
d = c −

∑j
k=0 |Ak|. Then d arbitrary agents a ∈ Aj+1 receive an additional resource.

Thus, by doing all these steps, we reduce the rank by c. Hence Algorithm 4 generates

an allocation with a maximal egalitarian welfare of
⌊
|R|
|A|

⌋
and then a minimal rank of

36

4.1 Allocations With Respect to Egalitarian Rank Fairness

|A| − c.
To show that the allocation is weakly graph-envy-free, we consider two cases. In the

first case we look at two agents with a different distance to the source. In the second
case we look at the agents with the same distance. In the first case the allocation is
weakly graph-envy-free, since the value of a bundle from an agent a ∈ Ai from a set
with a smaller distance to the source always has a bundle valued at least as much as a
bundle from an agent b ∈ Aj | j > i from a set with a bigger distance to the source.
This is because the agents with a smaller distance to the source receive a resource before
the agents with a bigger distance to the source (line 8). In the second case, for the
agents a ∈ Ai and b ∈ Ai with the same distance to the source, the allocation is always
graph-envy-free, since they are not adjacent. This is due to the fact that the longest
distance for one agent a would be higher than for the other agent b, if an arc (b, a) ∈ E
exists. This reasoning is symmetric and also holds the other way around for (a, b) ∈ E.
Therefore, they cannot be in the same set Ai if they are adjacent.
The algorithm also works for DAGs with multiple connected components. This is due

to the reason that every agent receives a bundle valued at least
⌊
|R|
|A|

⌋
such that the

egalitarian welfare is maximized. Thus it is not relevant, whether the DAG consists
of multiple connected components. Since the rank is reduced by allocating a single
additional resource to the agents depending on their distance to a source the algorithm
also works for DAGs consisting of multiple connected components. The reason for the
runtime being O(|A|) is, that the only operations depending on the input are the labeling
(line 2), grouping the agents according to the distance to (line 4) and update of the labels
(line 8) that depend on the distance of the agent to the source. For all three operations
we go through the whole set of agents once. Since all three operations are not nested
and every other operation executes in the same time regardless of the size of the input
we obtain our runtime of O(|A|).

Since Algorithm 4 solves ER-F GEF-Allocation with the input graph being a DAG
and agents having identical 0/1 preferences in O(|A|) time it also solves the problem for
a tree since a tree is also a DAG.

Strong Graph-Envy-Freeness on a Tree

In this subsection we show that ER-F sGEF-Allocation with the input graph being
a tree and agents having identical 0/1 preferences is polynomial-time solvable. In order
to find an egalitarian rank fair and strong graph-envy-free allocation we provide Algo-
rithm 5.
The idea of this algorithm is firstly to ensure an initial strong graph-envy-free alloca-
tion. Then the remaining resources are divided evenly such that every agent receives

additional
⌊

b
|A|

⌋
resources where b = |R| −

∑n
i=1 hai with hai being the length of the

longest possible path to a sink. Afterwards, we reduce the rank as much as possible

with the remaining resources where c = |R| − (|A|
⌊

b
|A|

⌋
) is the number of remaining

resources. For this purpose we use the algorithm depicted in “A Depth-First Dynamic

37

4 Trees & DAGs

Programming Algorithm for the Tree Knapsack Problem” [25] as a blackbox.
The input for the blackbox is an integer (budget), a tree and for every vertex of the
tree two integers (cost and value). The blackbox then finds, for the given budget, the
vertices, that give the highest possible attainable value. A vertex can only be chosen if
its parent was chosen as well.
In our case every the budget is the number of remaining resources c and the tree is our
input graph G. Since we want to reduce the rank which depends on the sinks, every
sink has a value of one and a cost of one. Every other vertex has a value of zero and
a cost of one. This is due to the fact that they do not reduce the rank if they receive
a resource but have to receive a resource such that the allocation stays strongly graph
envy-free. The output of the blackbox is the set of vertices needed to reach the most
sinks in the tree with the given budget. Thus the rank is reduced as much as possible.
The function rank reduction uses the blackbox in our algorithm.

Algorithm 5:

Input:
R — a set of non-trivial resources
A = {a1, a2, . . . , an} — a set of agents
u(r) — a utility function for resources
G = (A, E) — a directed tree

1 hai is the height of the agents ai ∈ A in the tree; . the height of an agent

is the length of the longest possible path to a sink

2 if
∑n

i=1 hai > |R| then
3 return;

4 Assign every agent ai ∈ A a label l(ai) where l(ai) = hai ;
5 rer← |R| −

∑n
i=1 hai ; . rer for unassigned resources

6 mr←
⌊

rer
|A|

⌋
; . mr for additional resources

7 l(a)← l(a) + mr where a ∈ A; . update label l(a)
8 rer← (rer−(mr |A|)); . update remaining resources rer
9 Use rank reduction (rer, G) and receive an output set B;

10 for each b ∈ B do
11 increase l(b) by one;

12 Allocate l(a) arbitrary resources from R to every agent a ∈ A;
13 Function rank reduction(Budget, Tree (set of values for each agent, set of

costs for each agent))
14 return B after the use of the blackbox;

Theorem 4.2. Algorithm 5 solves ER-F sGEF-Allocation with the input graph
being a tree and agents having identical 0/1 preferences in O(|A|2) time, where A denotes
the set of agents.

Proof. With line 2, we check if there are enough resources for a strongly graph-envy-
free allocation. With the initial labeling in line 4, we ensure a strongly graph-envy-free

38

4.1 Allocations With Respect to Egalitarian Rank Fairness

allocation. The number of the resources needed is b =
∑n

i=1 hai where hai is the height
of a vertex in a tree. This is the length of the longest path to all sinks that are reachable
from it. Thus, if every agent gets a bundle valued its height, then the allocation is
strongly graph envy-free, since there is always a value difference of at least one. Since
we require the allocation to be strongly graph-envy-free the upper bound of an egalitarian
welfare of an allocation is c

|A| , while c = |R| − b is the number of remaining resources
after ensuring that the allocation is strong graph-envy-free. Since we have indivisible

resources we have a upper bound of
⌊

c
|A|

⌋
for the egalitarian welfare. Lines 6 and 7 ensure

that every agent receives a bundle valued at least
⌊

c
|A|

⌋
in the end (line 12). Hence, the

egalitarian welfare of the allocation is maximized. The then remaining resources are

d = c − (|A|
⌊

c
|A|

⌋
). As for an optimal minimization of the rank for the allocation we

use the algorithm depicted in “A Depth-First Dynamic Programming Algorithm for the
Tree Knapsack Problem” [25] as a blackbox. As the sinks of the graph have the least
value for their bundle every sink has a value of one and every other vertex has a value of
zero in the blackbox. The cost for each vertex is also one since every vertex in the path
to the sinks has to get a resource for the allocation to stay strongly graph-envy-free.
So the blackbox gives us a set of vertices, building a subgraph, of the size d with the
greatest number of sinks from the original input graph G. Since for every chosen vertex
the parent has to be chosen as well, the source is always in the set of vertices. Thus,
after assigning the remaining resources d to the agents representing the subgraph we
reduce the rank by the number of sinks. The reason for the runtime being O(|A|2) is
that the only operations depending on the input are the labeling (line 4), update of the
labels (line 11) that depend on the distance of the agent to the source and the usage
of the function rank reduction (line 9). For the operations in lines 4 and 11 we only go
through the whole set of agents once. The runtime for the function (line 9) is O(|A|2).
This is due to the reason, that the function has a runtime of O(nH) [25] where n is
the number of agents |A| and H the budget. In our case the budget can only have a
maximum value of |A|− 1 since otherwise every other agent would receive an additional
resource. Since all three operations are not nested and every other operation executes in
the same time regardless of the size of the input we obtain our runtime of O(|A|2).

Strong Graph-Envy-Freeness on a DAG

In this subsection we look into the computational complexity of ER-F sGEF-Alloca-
tion with the input graph being a DAG and agents having identical 0/1 preferences.

Theorem 4.3. ER-F sGEF-Allocation is NP-hard with the input graph being a
DAG and agents having identical 0/1 preferences.

Proof. In this subsection we show NP-hardness for ER-F sGEF-Allocation with the
input graph being a DAG and agents having identical 0/1 preferences. Therefore we use
a polynomial-time many-one reduction from Clique.

39

4 Trees & DAGs

a

cb d

e

g

f

h

eac

ebc ecd

ede
edf

eef

eeg
efg

edg egh

(a)

a b c d e f g h

eac ebc ecd ede edf edg eeg eef efg egh

(b)

Figure 4.1: (a) An undirected graph with a clique in the vertex set {d, e, f, g} (b) A
translated directed acyclic graph according to the reduction (1. step).

Reduction 4. Let I = (G, k) be an instance of Clique where G = (V,E) is an
undirected graph and k a positive integer.

We give the following reduction consisting of three steps.
In the first step, we create a graph G′ = (A, E ′) as follows. Set A of agents consists of
vertex agents represented by Av and edge agents represented by Ae in our graph G′.
Then, the vertices of graph G are vertices of the set Av of G′. Also the edges e ∈ E
of graph G are vertices of the set Ae. For the set of arcs E ′ it holds that for every
edge (a, b) ∈ E we have two arcs (a, c), (b, c) ∈ E ′ where a, b ∈ Av ∧ c ∈ Ae. An example
is shown in Figure 4.1.
In the second step, we introduce the number of resources |R| that are value one to be
Av|+ k + 1

2
k(k − 1).

In the third step, we set the lower bound l for the value of the egalitarian welfare to zero
and the upper bound p for the rank to p = |Ae| − 1

2
k(k − 1).

After three steps we obtain an instance I ′ = (A, R,G′, p, l) of ER-F sGEF-Allocation.

We show that every solution to I is also a solution to I ′:
Let S ⊆ V be a clique of size k in G. We define an allocation π where we give every
vertex agent corresponding to S a bundle valued two and every other vertex agent a
bundle valued one. We also give every edge agent, where both connecting vertex agents
have two resources in their bundle, a bundle valued one. Thus, the allocation is strongly

40

4.1 Allocations With Respect to Egalitarian Rank Fairness

graph-envy-free since every vertex agent has at least one more resource than the edge
agent the vertex agent is connect to. Firstly, no vertex agent envies edge agents who have
an empty bundle, because every vertex agent has at least one resource in their bundle.
For every edge agent who has a resource, their corresponding vertex agent Ac ⊆ Av does
not envy it, because every vertex agent in Ac has two resources. The edge agents with a
resource are the edges of the clique. The reason is that the vertex agents in Ac are the
k vertex agents who build the clique in the graph G.
The egalitarian welfare of this allocation is zero and the the rank is |Ae| − 1

2
k(k − 1).

The egalitarian welfare cannot be higher, since at least 2|Av|+ |Ae| resources are needed
for a egalitarian welfare of one. As a clique of size k is a graph with the most edges
which are 1

2
k(k−1). Therefore, the rank is reduced as much as possible. Thus, the rank

is optimal.

We show that every solution to I ′ is also a solution to I:
Suppose there is an allocation π that solves ER-F sGEF-Allocation with the input
graph being a DAG and agents having identical 0/1 preferences. The number of given
resources is |Av|+k+ 1

2
k(k−1) where Av is the set of vertex agents and k the size of the

clique. The lower bound l for the egalitarian welfare is zero, since at least 2|Av| + |Ae|
resources are needed for an egalitarian welfare of one. The upper bound p for the rank is
|E|− 1

2
k(k−1). One resource must be assigned to each agent a ∈ Av. For the remaining

k + 1
2
k(k − 1) resources we must assign k resources to agents in Av and 1

2
k(k − 1) to

agents in Ae. Thus, the rank is reduced by 1
2
k(k − 1). The reason for that being the

correct solution is that Ae represents the edges in G and Av the vertices in G. A graph
of size k can have at most 1

2
k(k−1) edges. The number 1

2
k(k−1) is due to the fact that

in a clique each pair of vertices shares an edge, so there is an edge for every two vertices
of k. So the number of edges needed in a clique of size k is

(
k
2

)
which equals 1

2
k(k − 1).

This is only the case for a clique of size k. Thus, to reduce the rank by 1
2
k(k − 1) a

clique of size k has to exist in G.
Thus, every vertex agent a ∈ Av with two resources, which are k, represents a vertex of
a clique in G and every edge agent a ∈ Ae with one resource, which are 1

2
k(k−1), repre-

sents an edge of the clique in G. Thus the 1
2
k(k− 1) edge agents and the k node-agents

build the clique with the size k.
The reduction is executed in polynomial time and hence our problem ER-F sGEF-
Allocation with the input graph being a DAG and agents having identical 0/1 pref-
erences is NP-hard.

41

4 Trees & DAGs

4.2 Allocations With Respect to Half-Feedback
Envy-Freeness

In all the following subsections we discuss the computational complexity of Half-
Feedback Envy-Freeness (s)GEF-Allocation. This is the only section, where
the case of finding a strongly graph-envy-free allocation with the addition to our fairness
concept for agents having identical 0/1 preferences is left open. The reasons for that are
explained in Chapter 5.

4.2.1 Identical 0/1 Preferences on a Tree & DAG

As in Section 3.1 we start again with agents having identical 0/1 preferences, since it is
the most restricted preference relation we use in this thesis. Every agent a ∈ A has the
same binary utility function u : R → {0, 1} as in Section 3.1.1.

Weak Graph-Envy-Freeness on a Tree & DAG

The same Algorithm 4 as in Section 4.1.1 can be used to solve Half-Feedback Envy-
Freeness GEF-Allocation. This is due to the fact, that the maximum value differ-
ence resulting from the Algorithm 4 is one. One divided by two and rounded down is
zero. Thus the allocation resulting from Algorithm 4 fulfills the criteria for half-feedback
envy-freeness.

4.2.2 0/1 Preferences in a Tree & DAG

In the following we study our problem HF-EF GEF-Allocation for agents having
0/1 preferences. Every agent a ∈ A has its own utility function ua : R → {0, 1}. If a
resource r ∈ R is evaluated zero by every agent a ∈ A the resource can be allocated
arbitrarily. Thus, we only focus on non-trivial resources.

Weak Graph-Envy-Freeness on a Tree & DAG

The goal of this subsection is to show that HF-EF GEF-Allocation with the input
graph being a DAG and agents having 0/1 preferences is polynomial-time solvable. In
order to find a half-feedback envy-free and weak graph-envy-free allocation we provide
Algorithm 6.
The idea of this algorithm is that the agents are assigned one resource after another.
The order depends on the distance to the source. The procedure starts with the agents
with shortest distance, in our case the sources, and continues on to the agents with the
longest distance. Then the procedure starts again with the agent with shortest distance.
This continues until all resources are assigned.

42

4.2 Allocations With Respect to Half-Feedback Envy-Freeness

Algorithm 6:

Input:
R — a set of non-trivial resources
A = {a1, a2, . . . , an} — a set of agents
U = {u1, u2, . . . , un} — a family of agents’ utility functions for resources
G = (A, E) — a directed tree

1 for i← 1 to |A| by 1 do
2 aDisti ←source dist(G, ai); . source dist is a function to determine

the longest distance to the source

3 For each Aj = {ai | aDisti = j}; . group the agents by their distance to

the source agent

4 while there exist unassigned resources do
5 for i← 1 to max(aDisti) by 1; . Loop through the sets of agents

6 do
7 for j ← 1 to Ai by 1; . Loop through the agents in the set

8 do
9 Assign a liked and unassigned resource rj to ever agent a ∈ aDisti;

Theorem 4.4. Algorithm 6 solves HF-EF GEF-Allocation even with the input
graph being a DAG and agents having 0/1 preferences in O(|A||R|) time, where A
denotes the set of agents and R denotes the set of resources.

Proof. We proof Theorem 3.10 by induction.
The base case we choose is for R = ∅. With R = ∅ the allocation that is complete,
weakly graph-envy-free and also half-feedback envy-free is the allocation that allocates
nothing to every agent. Since the set of resources is empty and no resources are left
to allocate the allocation is complete. No agent envies another agent since every agent
has no resource. For the same reason the allocation is also half-feedback envy-free. The
algorithm with R = ∅ does not go in the while loop in line 4. Thus, the empty allocation
is obtained by our algorithm. Hence, it works correctly for the base case.
Our inductive assumption is that Algorithm 6 finds a complete, weakly graph-envy-free
and half-feedback envy-free allocation with k iterations. In each iteration a single re-
source is assigned to an agent. The allocation that is found also has a maximum value
difference of one between bundles of ai and of ai+1 from the viewpoint of ai+1 where
1 ≤ i ≤ n− 1.
The allocation is complete since the allocation obtained with k iterations is complete
and then in the (k + 1)th iteration the (k + 1)th resource is allocated. The reason is
that in each iteration a single resource is assigned to an agent. The allocation with k
iterations is weakly graph-envy-free. We assume that after the additional iteration the
allocation is not weakly graph-envy-free. For this to happen, two adjacent agents a ∈ An
and b ∈ Am where (a, b) ∈ E ∧ n < m need to have the same value for their bundle and
b must receive the next resource in the (k+ 1)th iteration. This can never happen, since

43

4 Trees & DAGs

agent a receives a liked resource in the kth iteration such that a has a bundle valued
one more than b. If the agent b receives a resource in the (k + 1)th iteration they have
the same value for their bundle.
Lastly the allocation is also half-feedback envy-free since the allocation with k iterations
is half-feedback envy-free and the value difference is at most one, from the viewpoint
of b. After the (k + 1)th iteration the value difference is zero and the value difference
between b and its peers is at most one, and one divided by two and then rounded down
is zero. Hence, the allocation stays half-feedback envy-free.
Thus, the allocation obtained by Algorithm 6 is a solution to HF-EF GEF-Allocation
with the input graph being a DAG and agents having 0/1 preferences.
The algorithm also works for DAGs with multiple connected components. This is due
to the fact that the order of assigning the resources is only depending on the longest
possible distance to a source. Thus, there is no problem, if the input graph is a DAG con-
sisting of multiple connected components. The reason for the runtime being O(|A||R|)
is that in the worst case only the last agent in the order likes the resources r ∈ R. Every
other agent values every resource as zero. Thus for every single resource we have to go
through the whole set of agents resulting in O(|A||R|).

Since Algorithm 6 solves HF-EF GEF-Allocation with the input graph being a
DAG and agents having 0/1 preferences in O(|A||R|) time it also solves the problem for
a tree since a tree is also a DAG.

44

5 Conclusion

This thesis takes up on a call for further fairness criteria posed by “Envy-Free Alloca-
tions Respecting Social Networks” [15]. In the paper [15] it is mentioned that including
further fairness concepts to envy-freeness appears promising. The fairness concepts we
introduced and studied are egalitarian rank fairness and half-feedback envy-freeness.
This takes me to the overview of the results of this thesis.
One observation we made is that for both of our criteria egalitarian rank fairness and
half-feedback envy-freeness every time agents have additive preferences the problem of
finding a fair allocation, for both variants of graph-envy-freeness, is NP-hard.
Another result is that finding an egalitarian rank fair and strong graph-envy-free alloca-
tion is always at least as hard as finding an egalitarian rank fair and weak graph-envy-free
allocation. The same holds for half-feedback envy-freeness.
From the paper “Envy-Free Allocations Respecting Social Networks” [15] we know that
finding a strong graph-envy-free allocation is NP-hard. Thus it can be inferred that for
our case of finding a half-feedback envy-free and strong graph-envy-free allocation or an
egalitarian rank fair and strong graph-envy-free allocation is also at least NP-hard.
One more insight is that when agents having identical 0/1 preferences the same algorithm
can be used to find an allocation that is weak graph-envy-free and either egalitarian rank
fair or half-feedback envy-free.
Another finding is that egalitarian rank fairness has a strict bound and half-feedback
envy-freeness only requires that for every agent a every outneighbor has a bundle valued
at most the same and at least the half the value of a his bundle. Thus, proving NP-
hardness for egalitarian rank fairness can be easier than for half-feedback envy-freeness,
this is because for half-feedback envy-freeness it is harder to force a specific allocation.
This is the case when agents have identical 0/1 preferences, the input graph is a DAG
and the allocations has to be strong graph-envy-free. There, we have a polynomial-time
many-one reduction from Clique for egalitarian rank fairness but we only conjecture
that the problem is NP-hard for half-feedback envy-freeness.
Finally the problem of finding a half-feedback envy-free and weak graph-envy-free al-
location is easier to solve when agents have 0/1 preferences than for egalitarian rank
fairness. However finding a half-feedback envy-free and strong graph-envy-free alloca-
tion with agents having identical 0/1 preferences has more possible problematic situation
to check than for egalitarian rank fairness. For half half-feedback envy-freeness we have
two situation, where we have enough resources for a strong graph-envy-free allocation,
but there exists no allocation that is strong graph-envy-free and half-feedback envy-free.
The results of this thesis are depicted in Tables 5.1 and 5.2.
In the next paragraph we explain the cases which remained open and the reasons for
that.

45

5 Conclusion

Weak Graph-Envy-Freeness

Preferences
Graph Class

Paths Trees DAGs

identical 0/1 O(|A|)(Th.3.2) O(|A|)(Thm.4.1) O(|A|)(Thm.4.1)
identical NP-h(Thm.3.4) NP-h(Thm.3.4) NP-h(Thm.3.4)
0/1
additive NP-h(Thm.3.4) NP-h(Thm.3.4) NP-h(Thm.3.4)
Strong Graph-Envy-Freeness

Preferences
Graph Class

Paths Trees DAGs

identical 0/1 O(|A|)(Th.3.3) O(|A2|)(Thm.4.2) NP-h(Thm.4.3)
identical NP-h(Thm.3.5) NP-h(Thm.3.5) NP-h([15])
0/1 NP-h([15])
additive NP-h(Thm.3.5) NP-h(Thm.3.5) NP-h([15])

Table 5.1: Results for egalitarian rank fairness, where A denotes the set of agents.

Weak Graph-Envy-Freeness

Preferences
Graph Class

Paths Trees DAGs

identical 0/1 O(|A|)(Thm.3.2) O(|A|)(Thm.4.1) O(|A|)(Thm.4.1)
identical NP-h(Thm.3.7) NP-h(Thm.3.7) NP-h(Thm.3.7)
0/1 O(|A||R|)(Thm.3.10) O(|A||R|)(Thm.4.4) O(|A||R|)(Thm.4.4)
additive NP-h(Thm.3.7) NP-h(Thm.3.7) NP-h(Thm.3.7)
Strong Graph-Envy-Freeness

Preferences
Graph Class

Paths Trees DAGs

identical 0/1 O(|A|)(Thm.3.6)
identical NP-h(Thm.3.8) NP-h(Thm.3.8) NP-h([15])
0/1 NP-h([15])
additive NP-h(Thm.3.8) NP-h(Thm.3.8) NP-h([15])

Table 5.2: Results for half-feedback envy-freeness, where A denotes the set of agents and
R denotes the set of resources.

Agents have: additive preferences when ever agent a has a utilitiy function ua : R → N,
identical preferences when ever agent a has the same utilitiy function u : R → N,
0/1 preferences when ever agent a has a utilitiy function ua : R → {0, 1},
identical 0/1 preferences when ever agent a has the same utilitiy function u : R → {0, 1}.

Open Cases
We start with explaining why some of the problems when agents have 0/1 preferences

remained open. The main obstacles to find the allocation already start with the input
graph being a path. The justification for leaving the problem of finding an egalitarian
rank fair and weak graph-envy-free allocation with agents having 0/1 preferences open
is analyzed below. The problem is how to maximize the egalitarian welfare. One idea

46

was to allocate one liked resource at a time starting by the source-agent. However this
can lead to a situation where one of the later agents receives nothing in his iteration,
because every resource he liked was already allocated. This is the case even if this could
have be prevented by allocating a different resource to an earlier agent. The idea then
was start allocating the resources starting with the agents that only like a few resources,
in that case it is hard to ensure graph-envy-freeness.

For finding a half-feedback envy-free and strong graph-envy-free allocation, with
agents having 0/1 preferences, the problem is to find the minimal strong graph-envy-free
allocation. This is necessary, to decide whether a strong graph-envy-free allocation even
exists for a specific set of resources. There can be a minimal strong graph-envy-free
allocation for n agents with only n − 1 resources but only if all adjacent agents do not
like the same resource. However even for larger sets of resource a strong graph-envy-free
allocation does not always exist, for example if one agent does not like any resource
and has an outneighbor, then there does not exist a strong graph-envy-free allocation.
Therefore it is already hard to decide whether a strong graph-envy-free allocation exists.
For finding an egalitarian rank fair and strong graph-envy-free allocation with agents
having 0/1 preferences we have to consider both problems mentioned above.

The next open case is for finding a half-feedback envy-free and strong graph-envy-free
allocation with the input graph being a tree and agents having identical 0/1 preferences.
The problems occur, when there are more resources than needed for the minimal alloca-
tion. Then there can be pairs of adjacent agents (a, b) where agent a has a bundle valued
exactly double the bundles value of its outneighbor b after the minimal allocation. Then
the problem is, since the allocation has to be complete, how to allocated the resources,
so that the allocation stays half-feedback envy-free and strong graph-envy-free.

The last open case is for half-feedback envy-freeness with agents having identical 0/1
preferences and the input graph being a DAG regarding strong graph-envy-freeness. We
conjecture that the problem is NP-hard. The problem for the reductions we tried were
that half-feedback envy-freeness does not require strict boundaries.

Outlook
First, the open cases can be further analyzed.
Second, the studied preference relations can be to extend. One possible extension is for
the agents to have a utility function that maps to zero, one or two. The preference rela-
tions can be extended, until we find a rule that describes for which preference relations
the problem is polynomial-time solvable and when it is NP-hard.
Finally, further graph classes can be studied, for example directed funnels and directed
planar graphs. These can be interesting in the case where agents have identical 0/1
preferences and the allocation has to be strong graph-envy-free. This is the case, since
for egalitarian rank fairness the problem is NP-hard with a Dag as an input graph and
still polynomial-time solvable with the input graph being a tree.

47

Literature

[1] K. J. Arrow, Social choice and individual values. Yale university press, 2012, vol. 12
(cit. on p. 7).

[2] M. P. Wellman, “The economic approach to artificial intelligence”, ACM Comput-
ing Surveys, vol. 27, no. 3, pp. 360–362, 1995 (cit. on p. 7).

[3] W. L. Winston and J. B. Goldberg, Operations research: applications and algo-
rithms. Duxbury Press, Belmont, California, 2004, vol. 3 (cit. on p. 7).

[4] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang, M. Lemaitre, N. Maudet, J.
Padget, S. Phelps, J. A. Rodriguez-Aguilar, and P. Sousa, “Issues in multiagent
resource allocation”, Informatica, vol. 30, no. 1, 2006 (cit. on p. 7).

[5] J. Y. Bakos, “A strategic analysis of electronic marketplaces.”, MIS quarterly,
vol. 15, no. 3, 1991 (cit. on p. 7).

[6] G. Jonker, J.-J. Meyer, and F. Dignum, “Towards a market mechanism for airport
traffic control”, in Proceedings of the 12th Portuguese Conference on Artificial
Intelligence (EPIA’05), Springer, 2005, pp. 500–511 (cit. on p. 7).

[7] E. Cantillon and M. Pesendorfer, “Auctioning bus routes: The London experience”,
2006 (cit. on p. 7).

[8] R. Feldmann, M. Gairing, T. Lücking, B. Monien, and M. Rode, “Selfish routing in
non-cooperative networks: A survey”, in Proceedings of the 28th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS’03), Springer,
2003, pp. 21–45 (cit. on p. 7).

[9] A. Giovannucci, J. A. Rodriguez-Aguilar, A Reyes, F. X. Noria, and J. Cerquides,
“Towards automated procurement via agent-aware negotiation support”, in Pro-
ceedings of the 3rd International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’04), IEEE Computer Society, 2004, pp. 244–251 (cit.
on p. 7).

[10] M. Aleksandrov, H. Aziz, S. Gaspers, and T. Walsh, “Online Fair Division: Analysing
a Food Bank Problem”, in Proceedings of the 24th International Joint Conference
on Artificial Intelligence (IJCAI’15), 2015, pp. 2540–2546 (cit. on p. 7).

[11] M. Lemâıtre, G. Verfaillie, and N. Bataille, “Exploiting a common property re-
source under a fairness constraint: A case study”, in Proceedings of the 16th Inter-
national Joint Conference on Artifical Intelligence (IJCAI’99), Morgan Kaufmann
Publishers Inc., 1999, pp. 206–211 (cit. on p. 7).

49

Literature

[12] M. Lemâıtre, G. Verfaillie, H. Fargier, J. Lang, N. Bataille, and J.-M. Lachiver,
“Equitable allocation of earth observing satellites resources”, in Proceedings of the
5th ONERA-DLR Aerospace Symposium (ODAS’03), 2003 (cit. on p. 7).

[13] Y. Chevaleyre, U. Endriss, N. Maudet, et al., Allocating goods on a graph to elim-
inate envy. Institute for Logic, Language and Computation (ILLC), University of
Amsterdam, 2007 (cit. on p. 7).

[14] H. Steinhaus, “The problem of fair division”, Econometrica, vol. 16, no. 1, pp. 101–
104, 1948 (cit. on p. 7).

[15] R. Bredereck, A. Kaczmarczyk, and R. Niedermeier, “Envy-Free Allocations Re-
specting Social Networks”, in Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems (AAMAS’18), International Founda-
tion for Autonomous Agents and Multiagent Systems, 2018, pp. 283–291 (cit. on
pp. 8, 12, 13, 15, 17, 20, 45, 46).

[16] S. Bouveret and J. Lang, “Efficiency and envy-freeness in fair division of indivisible
goods: Logical representation and complexity”, Journal of Artificial Intelligence
Research, vol. 32, pp. 525–564, 2008 (cit. on pp. 12, 15).

[17] S. Bouveret, K. Cechlárová, E. Elkind, A. Igarashi, and D. Peters, “Fair division
of a graph”, in Proceedings of the 26th International Joint Conference on Artificial
Intelligence (IJCAI’17), 2017, pp. 135–290 (cit. on pp. 12, 15).

[18] R. Abebe, J. Kleinberg, and D. C. Parkes, “Fair division via social comparison”,
in Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Sys-
tems (AAMAS’17), International Foundation for Autonomous Agents and Multi-
agent Systems, 2017, pp. 281–289 (cit. on pp. 12, 15).

[19] X. Bei, Y. Qiao, and S. Zhang, “Networked fairness in cake cutting”, in Proceedings
of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17),
2017, pp. 3632–3638 (cit. on pp. 12, 15).

[20] H. Aziz, S. Bouveret, I. Caragiannis, I. Giagkousi, and J. Lang, “Knowledge, fair-
ness, and social constraints”, in Proceedings of the 32nd AAAI Conference on
Artificial Intelligence (AAAI’18), 2018 (cit. on pp. 12, 15).

[21] Y. Chevaleyre, U. Endriss, and N. Maudet, “Distributed fair allocation of indivis-
ible goods”, Artificial Intelligence, vol. 242, pp. 1–22, 2017 (cit. on pp. 12, 15).

[22] Y. Chen and N. Shah, “Ignorance is often bliss: Envy with incomplete informa-
tion”, Working paper, Harvard University, Tech. Rep., 2017 (cit. on p. 12).

[23] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D. Procaccia, Handbook of
computational social choice. Cambridge University Press, 2016 (cit. on p. 15).

[24] R. M. Karp, “Reducibility among combinatorial problems”, Complexity of Com-
puter Computations, pp. 85–103, 1972 (cit. on p. 20).

[25] G. Cho and D. X. Shaw, “A depth-first dynamic programming algorithm for the
tree knapsack problem”, Journal on Computing, vol. 9, no. 4, pp. 431–438, 1997
(cit. on pp. 38, 39).

50

	Introduction and Motivation
	Basics and Models
	Graphs
	Allocation & Bundle
	Graph-Envy-Freeness
	Fairness Concepts Beyond Envy-Freeness
	Fairness Problems Handled in this Thesis
	Common Computational Problems

	Paths
	Allocations With Respect to Egalitarian Rank Fairness
	Identical 0/1 Preferences on a Path
	Identical Preferences on a Path

	Allocations With Respect to Half-Feedback Envy-Freeness
	Identical 0/1 Preferences on a Path
	Identical Preferences on a Path
	0/1 Preferences on a Path

	Trees & DAGs
	Allocations With Respect to Egalitarian Rank Fairness
	Identical 0/1 Preferences on a Tree & DAG

	Allocations With Respect to Half-Feedback Envy-Freeness
	Identical 0/1 Preferences on a Tree & DAG
	0/1 Preferences in a Tree & DAG

	Conclusion
	Literature

