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Abstract

Within the realm of graph theory and algorithmics, we investigate opinion diffusion on
influence networks. Agents of an influence network update their opinions such that they
are in agreement with the majority of their neighborhood. Recent research on binary
influence networks did reveal that finding an update sequence maximizing the occurrence
of an opinion in an influence network can be done in polynomial time. We study the
computational complexity of this problem for non-binary influence networks. In this
thesis, we prove that finding such an opinion maximizing sequence for three opinions is
NP-complete. Further, this is shown for the case of influence networks with a maximum
degree of at least seven as well as planar influence networks.

Kurzzusammenfassung

Im Rahmen der Graphentheorie und Algorithmik untersuchen wir die Meinungsver-
breitung auf Einflussnetzwerken. Ein Agent eines Einflussnetzwerkes aktualisiert seine
Meinung, sodass er in Übereinstimmung mit der Mehrheit seiner Nachbarschafft steht.
Kürzliche Untersuchungen auf binärer Einflussnetzwerken ergaben, dass das Finden einer
Updatesequenze, welche das Vorkommen eine Meinung in einem Einflussnetzwerkes max-
imiert, in polynomieller Zeit erreicht werden kann. Wir untersuchen die Komplexität
dieses Problems für nicht-binäre Einflussnetzwerke. In dieser Arbeit beweisen wir, dass
das Finden einer meinungsmaximierenden Sequenz für drei Meinungen NP vollständig
ist. Ebenso zeigen wir dies für Einflussnetzwerke mit einem maximalen Kantengrad von
sieben sowie für planare Einflussnetzwerke.
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1 Introduction

Today, the importance of communication increases rapidly over time. With the rise of
social networking over the last few decades exchanging information, ideas or opinions
over large distances and short time periods was never that easy. With big companies
like Twitter and Facebook we have created massive digital social networks. However,
social networks are not limited to the digital infrastructure. Analog social networks do
exist, where humans living in a city can be interpreted as vertices and there is an edge
between two people when they are neighbors, friends or colleagues. For social networks
we are interested in the opinion on certain topics of the members of the network. When
making a decision, people tend to consider the opinion of like-minded individuals (see
e.g. the survey of Grandi [Gra17]). We investigate a model for opinion diffusion, where
agents may update their opinion such that the opinion is in agreement with the majority
of their neighborhood. This model was first investigated for a binary set of opinions by
Goles and Olivos [GO80]. In this thesis, we investigate opinion diffusion for non-binary
sets of opinions. An example for a binary set of opinions on a social network is, whether
someone likes the operation system Linux. In comparison, for a set of opinions of size
three, one may choose from a list of operation systems including the the choices of Linux,
iOS or Windows. For someone interested in a specific opinion, the maximum number
of agents with a specific opinion in a network may be important. It is known that
one can compute the best-case outcome for the presented model of opinion diffusion in
polynomial time for a binary set of opinions [BE17]. In this thesis, we investigate the
computational complexity for a set of opinions of size three.

1.1 Related Work

For opinion diffusion there is a lot of literature on different aspects and for different fields
of science (see [Gra17] for a recent survey). The work of Goles and Olivos [GO80] shows
that a synchronous update sequence converges to a stable state with period of two for a
binary set of opinions. Yildiz et al. [Yil+13] describes stubborn agents influencing there
neighbors. These are agents that are ignorant about the opinions of their neighbors
and do never change their opinion. The concept of stubborn agents is closely related
to permanently stable agents, which are described in Section 2.2.1. Also, the work of
Chierichetti, Kleinberg, and Oren [CKO13] is closely related to our thesis. They describe
discrete preference games consisting of agents in a finite metric space, where these agents
need to decide on their opinion. The edges between these agents are weighted, thus our
setup can be seen as a special case of discrete preference games. In a somewhat related
paper, opinion diffusion on preference profiles is described by Faliszewski et al. [Fal+18].
In a paper by Katona, Zubcsek, and Sarvary [KZS11], the influential power of agents in
a social network is described. The influence of an agent in a social network is depending
on the degree of the corresponding vertex as well as the size of the surrounding cluster.
Opinion manipulation in weighted networks for non-discrete opinions is described in the
paper of Silva [Sil16]. The concept is somewhat similar to the non-discrete majority
update rule described in Section 2.1.1. The opinion diffusion of a binary set of opinions
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with constrains is described in the paper of Botan, Grandi, and Perrussel [BGP]. The
main problem in this paper is to minimize the amount of exchanged information in the
influence network.

1.2 Results of the Thesis

In this thesis, we prove that finding an update sequence maximizing the number of
vertices with a specific opinion is NP-complete for three opinions. We do this by reducing
3Sat to this problem. Further, we show that this problem remains NP-complete for
planar graphs and graphs such that each vertex has at most seven neighbors. On the
positive side, we prove that finding such an update sequence can be done in polynomial
time for paths and cycles.
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2 Preliminaries

In this chapter we formally introduce the main concepts and definitions used in the
thesis: influence networks, update rules and update sequences.

2.1 Model and Notation

An (undirected) influence network—InfNet for short—is a pair (G, ◦) with G = (V,E)
being an (undirected) graph such that |V | = n and |E| = m. Also, ◦ : V → O is an
opinion function describing the initial opinion of each vertex for a set of opinions O.
If |O| = 2, then we use the set of opinions O := {0, 2}. We say a vertex v is black if
◦(v) = 2 and white if ◦(v) = 0. If |O| = 3, then we use the set of opinions O := {0, 1, 2}.
We say a vertex v is black if ◦(v) = 2, gray if ◦(v) = 1 and white if ◦(v) = 0.
We denote the neighborhood of a vertex v ∈ V by N(v) := {u ∈ V | {u, v} ∈ E}. The
degree of v—the number of neighbors—is denoted with deg(v), which can also be denoted
by |N(v)|. The maximum degree in the graph G is denoted by4(G) := maxv∈V (deg(v)).
We use Vi,◦ = {v ∈ V | ◦(v) = i} for the set of vertices mapped to opinion i ∈ O for the
opinion function ◦. Note, that each vertex has exactly one opinion, thus for |O| = 3 we
have V0,◦∪̇V1,◦∪̇V2,◦ = V .

2.1.1 Update Rules

There are different ways to consider updating the opinion of vertices in an influence
network. We declare two update rules.

For the discrete majority update rule a vertex updates its opinion to the opinion
shared by the majority of the neighborhood. The vertex keeps the current opinion if
there is no majority opinion. For this update rule we introduce the function maj(v, ◦):

maj(v, ◦) =

{
q, if |{w ∈ N(v) | ◦(w) = q}| > |N(v)|

2

◦(v), otherwise.

For the non-discrete majority update rule we compute the mean value of the opinions
of the neighborhood of v. The mean value is∑

w∈N(v) ◦(w)

|N(v)|
.

We choose the opinion closest to this value. However, when there are two closest opinions,
then we choose the opinion closest to the opinion of v. Afterwards, we update v to this
opinion. An example for both update rules can be found in Figure 1.
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Figure 1: An example such that the discrete majority update rule and the non-discrete
majority update rule behave different for the vertex b. For the discrete majority
update rule the vertex b remains black, because there is no opinion shared by
the majority of the neighborhood. For the non-discrete majority update rule
the vertex b updates to gray. The mean value of the opinions of the neighbors
of b is 0.5. The opinion white (0) and gray (1) have the same distance to the
value, but gray is closer to black (2). For that reason b updates to gray.

2.1.2 Update Process

During an update process a set of vertices gets updated according to a chosen update
rule. The opinion ◦(v) of a vertex v may change during an update. We refer to the or-
dering of updating vertices in an influence network (G, ◦) as update sequence. An update
sequence σ is a sequence of subsets of V where the i-th subset corresponds to the set of
vertices getting updated at step i. We denote by ◦[G, σ, z] the opinion function resulting
from ◦ after z update steps following the sequence σ. Further, we denote by ◦[G, σ] the
opinion function after |σ| steps. We declare three properties for update sequences.

An update sequence is a synchronous update sequence, when every vertex updates
simultaneously in each update step. Therefore, we denote a synchronous update se-
quence σ with σ = (V, ..., V ).

An update sequences is an asynchronous update sequence, when in each update
step only one vertex updates. Each element of an asynchronous update sequence σ is a
singleton of an element of V .

An update sequence is a balanced asynchronous update sequence, when the se-
quence is an asynchronous update sequence and every vertex v can only update, when
all other vertices of the influence network did update at least as often as v. In order
to create such an update sequence, we create a list, which contains all vertices in an
arbitrary order. This list dictates the order of the update sequence. We iterate through
the list and append a singleton of the current vertex to the update sequence. After one
iteration, we create a permutation of this list and iterate through this list all over again.
We allow a balanced asynchronous update sequence to end at any point of this list.
Hence, an update sequence σ does not need to fulfill the property that |σ| mod |V | = 0.

For a given InfNet (G, ◦) we say the vertex v is stable when ◦(v) = maj(v, ◦). The graph
G is stable if and only if all v ∈ V are stable. Further, we say that the update sequence
σ is stable if and only if for all v ∈ V the property ◦[G, σ](v) = maj(v, ◦[G, σ]) holds.

13



S

(a) An example of a permanently stable vertex
S in an influence network. The vertex S
does not update to gray, because S shares
an edge with at least five white vertices,
which are hidden in the illustration.

S

(b) The same permanently stable vertex S
such that the white vertices in his neigh-
borhood are shown in the illustration.

Figure 2: A permanently stable vertex S with hidden majority neighborhood on the
left side and with visible majority neighborhood on the right side. We use
the symbol S in illustrations to reduce the number of vertices and increase
readability.

2.2 Graph Notation

In this section, we define some graph notations. We introduce permanently stable ver-
tices to improve readability and planar graphs as an important graph property.

2.2.1 Permanent Stable

We introduce a type of vertices whose opinion does not change for any update sequence—
permanently stable vertices. A vertex is permanently stable when there is no update
sequence σ such that ◦(v) 6= ◦[G, σ, z](v) for any z ∈ [0, |σ|]. An arbitrary vertex v in an
influence network can be declared permanently stable when the majority of his neighbors
have the same opinion and these vertices are only connected to v or each other.
In our illustrations, we label permanently stable vertices by S. For that reason, we can
hide part of the neighborhood of a permanently stable vertices to highlight other aspects
of an illustration.
For the discrete majority update rule an arbitrary vertex v can be easily made perma-
nently stable by adding a set of |N(v)| + 1 vertices with opinion ◦(v) to the graph and
connect each vertex of the cluster to v. The size of this cluster exceeds the initial size
of N(v), thus maj(v, ◦[G, σ, z]) = ◦(v) for every sequence σ and z ∈ [0, |σ|]. Also, the
majority of v′ ∈ N(v) fulfills the property maj(v′, ◦[G, σ, z]) = ◦(v′) = ◦(v), because
these added vertices are stable by definition. An illustration describing the usage of the
label S is shown in Figure 2.
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Figure 3: On the left side a K4 is illustrated such that the graph is not planar embedded.
On the right side the same K4 is illustrated such that the graph is planar
embedded.

2.2.2 Planar Graph

We introduce planarity of graphs which is an important graph property. A planar graph
is a graph which can be embedded in the plane such that there are no edges crossing.
An example of a planar embedded graph can be found in Figure 3.

2.3 Problems

In the following we declare the definitions of the problems used in this paper. Par-
ticular, we will introduce 3Sat (Garey and Johnson [GJ99, LO2]) and Planar 3Sat
(Lichtenstein [Lic77]).

2.3.1 3SAT

The problem 3Sat is a variant of the boolean satisfiability problem SAT, where the
instances contain only clauses—disjunctions of literals—with exactly three literals each.
A literal is either a variable (also referred as positive literal) or the negation of a variable
(also referred as negative literal).

3Sat
Input: A set U of variables and a collection C of clauses over U such that every

clause contains three literals.
Question: Is there a boolean assignment δ : U → {>,⊥} for every x ∈ U such

that every clause c ∈ C evaluates to >.

Without loss of generality, we assume that our 3Sat instances do not contain a vari-
able appearing either only positively or only negatively. Setting such a variable to true
(or false respectively) will always be part of a satisfying assignment if such an assign-
ment exists. Therefore, we simply remove these variables and clauses containing those
variables.
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x1
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Figure 4: The formula graph G(φ) for a Planar 3Sat instance with
C := {(x1, x2, x3), (x1, x3, x4), (x2, x3, x4)} and U := {x1, x2, x3, x4}.

2.3.2 Planar 3Sat

The problem of Planar 3Sat is a variation of 3SAT such that the corresponding
formula graph is planar.

Planar 3Sat
Input: A set U of variables, a collection C of clauses over U such that every

clause contains three literals and a planar formula graph G(φ).
Question: Is there a boolean assignment δ : U → {>,⊥} for every x ∈ U such

that every clause c ∈ C evaluates to >.

The formula graph G(φ) for some boolean formula φ is defined as following:

G(φ) := (U ∪ C, {{u, c} ∈ U × C | u ∈ c})

The visual representation of a formula graph can be found in Figure 4.
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3 Complexity of Finding an Optimistic Update Sequence

With asynchronous update sequences there is a huge variation in possible outcomes.
For various reasons, one might be interested in maximizing the number of vertices for
a given opinion. In the work of Bredereck and Elkind [BE17] an update sequence max-
imizing the number of black vertices for a set of opinions of size two is defined as a
optimistic update sequence. We generalize the declaration of an optimistic update se-
quence. Instead, we say that an update sequence maximizing the number of vertices for
a given opinion q is an optimistic update sequence. Note, that we use the opinion q = 2
(black) as preferred opinion. For a given InfNet (G, ◦) and update rule an optimistic
update sequence σ has the following properties:

• σ is asynchronous, thus each update step is a singleton,

• ◦[G, σ] is stable, thus maj(v, ◦[G, σ]) = ◦[G, σ](v) for each vertex v, and

• there is no stable update sequence σ′ such that ◦[G, σ′] contains more vertices with
the preferred opinion than ◦[G, σ].

We formally define the decision problem Optimistic Update Sequence:

Optimistic Update Sequence
Input: An undirected InfNet (G, ◦) with G = (V,E), a set of opinions O, an

opinion function ◦ : V → O, a preferred opinion q ∈ O and a number k.
Question: Is there an asynchronous and stable update sequence σ such that |{v ∈

V | ◦[G, σ](v) = q}| ≥ k?

Computing an optimistic update sequence σ for an opinion function ◦ : V (G)→ O such
that |O| = 2 can be achieved in O(n ·m) time as shown by Bredereck and Elkind [BE17].
For the preferred opinion black and non-preferred opinion white the algorithm for |O| = 2
has two phases:

1. While there is an unstable white vertex v, append it to σ and update ◦(v) to black.

2. While there is an unstable black vertex v, append it to σ and update ◦(v) to white.

For all influence networks (G, ◦) with |O| = 2 the property ◦[G, σ] = ◦[G, σ∗] holds for
every other update sequence σ∗ maximizing the number of black vertices. That is, every
optimistic update sequence produces the same outcome. Unfortunately, this property
does not hold for |O| = 3. An example for this is shown in Figure 5. Further, we
observed that there are instances as shown in Figure 6, where changing the opinion of
a vertex in order to stabilize a black vertex may lead to removing other black vertices.
Hence, we must decide whether to update a non-preferred vertex which can lead to
updating black vertices later on. This indicates that Optimistic Update Sequence
is computational complex in case of three opinions. Indeed, we show the containment
in NP in Section 3.1 and NP-hardness in Section 3.2.
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0 1

Figure 5: A graph example for which there are two update sequences σ = [0] and σ′ = [1]
such that ◦[G, σ] 6= ◦[G, σ′] but |{v ∈ V | ◦[G, σ](v) = 2}| = |{v ∈ V |
◦[G, σ′](v) = 2}|.

3.1 NP-membership

The problem Optimistic Update Sequence is in NP when for an update sequence
σ we can determine in polynomial time whether the amount of black vertices is equal
to or exceeds the value of a given number k. We compute ◦[G, σ], which can be done
in O(|σ| · m) time, because in each step of σ we compute the majority opinion of the
vertex updating in this step. In order to compute the majority opinion, we need to visit
at most m edges. Afterwards, we verify that

|{v ∈ V | ◦[G, σ](v) = q}| ≥ k.

We calculate the number of black vertices in O(n) time by iterating through all vertices
and incrementing a counter for each black vertex for ◦[G, σ].
When the number of black vertices is equal to k or exceeds k, then we have a YES-
instance. Otherwise, we have a NO-instance. Each step of the verification runs in poly-
nomial time, thus the overall running time is polynomial. Hence, Optimistic Update
Sequence is in NP.

3.2 NP-hardness

In order to prove NP-hardness we show that

3Sat �p Optimistic Update Sequence.

For our polynomial-time reduction from 3Sat to Optimistic Update Sequence we
make use of two kinds of gadgets: clause gadgets and variable gadgets. The clause
gadgets represent the clauses of a 3Sat instance while the variable gadgets represent the
variables of a 3Sat instance. In the following we will define both gadgets, explain the
connection between the two gadget structures and describe the constructed Optimistic
Update Sequence instance.

3.2.1 Variable Gadget

The idea of the variable gadget is to construct a gadget with a black vertex bxi for each
variable xi such that this black vertex remains black when either all xi or all x̄i are
assigned to true.
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b2

b

Figure 6: An example for Optimistic Update Sequence where we need to decide
whether to update one black vertex to gray or two black vertices to white.
When we update the vertex a first, then the vertex b0 is stable but the vertices
b1 and b2 are unstable and will turn white. However, when b gets updated
first, then the vertices b1 and b2 are stable but the vertex b0 is unstable and
will turn gray.

Gadget Structure

For each variable xi ∈ U , we create two white vertices called x>i and x⊥i . The vertex x>i
represents the collection of all positive literals xi. The vertex x⊥i represents the collection
of all negative literals x̄i. We connect the vertices x>i and x⊥i to a common black vertex bxi
as well as a common, permanently stable gray vertex. An example for a variable gadget
is shown in Figure 7.

Connection

For each positive literal xi we connect the vertex x>i to one gray vertex from each clause
gadget corresponding to a clause that contains xi. Similarly, for each negative literal x̄i
we connect the vertex x⊥i to one gray vertex from each clause gadget corresponding
to a clause that contains x̄i. The vertices x>i and x⊥i of this gadget need to have an
odd number of neighbors. Initially, the majority of the neighborhood of x>i and x⊥i
needs to be gray. However, when one gray neighbor updates to white, then the majority
of the neighborhood needs to be white. Thus, we add white vertices to the influence
network and connect them to x>i . The number of these added white vertices is equal to
the number of gray vertices from the clause gadgets having an edge to x>i subtracted
by one. As a result, the initial neighborhood of x>i is a gray majority neighborhood.
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x>i

S

bxi

x⊥i

xi

xi

x̄i

x̄i

x̄i

variable gadget
clause gadgets

Figure 7: A variable gadget for xi where each positive literal is connected to x>i and each
negative literal to x⊥i .

Accordingly, we add white vertices to x⊥i in relation to the number of negative literals x̄i.

Properties

The vertices x>i and x⊥i are the sole neighbors of the black vertex bxi . In order for bxi
to remain black for any stable update sequence at least one of both neighbors needs to
change its opinion. Hence, one of both neighbors must change opinion to gray while the
other remains white.

3.2.2 Clause Gadget

The idea of the clause gadget is to construct a gadget such that all vertices of the gadget
update to white when at least one literal of the clause is assigned to true. We refer to
the clause gadget for the clause c ∈ C as CG(c).

Gadget Structure

For every clause c ∈ C, we create a gray vertex for each literal; i.e., for the literals xi,
xj and xk and the clause c we label the corresponding gray vertices with xci , x

c
j and

xck. We connect these vertices to each other with edges. Additionally, for each size-two
combination chosen from xci , x

c
j and xck we create a permanently stable white vertex and

connect the newly created vertex with the two chosen gray vertices.

Connection

After we have created all clause gadgets, we create the black vertex b0. For each clause
gadget we choose one gray vertex and connect it to b0. For each of these gray vertices,
we create another permanently stable white vertex and connect this vertex to the gray
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b0

S

S xc11 xc12

x̄c13

S

S S

S

x̄c21 x̄c22

xc23

S

S S

S

Figure 8: An example for the structure of clause gadgets and the connection to the black
vertex b0 for the example C := {(x1, x2, x̄3), (x̄1, x̄2, x3)} and U := {x1, x2, x3}.

vertex. Further, for each vertex connected to the vertex b0 we add another permanently
stable gray vertex and connect it to b0. For each positive literal xi from the clause c, we
connect the vertex xci to x>i from the variable gadget. For each negative literal x̄i from
the clause c, we connect the vertex x̄ci to x⊥i from the variable gadget. The construction
of the clause gadgets is shown in Figure 8.

Properties

The black vertex b0 has a neighborhood of size 2|C| only containing gray vertices. In
order to remain black, we need to balance the neighborhood such that

|{v ∈ N(b0) | ◦(v) = 1}| = |C| = |{v ∈ N(b0) | ◦(v) = 0}|.

The vertex b0 is connected to |C| permanently stable gray vertices. Therefore, in order
for b0 to remain black and become stable we need to update the remaining vertices to
white. These vertices are the gray vertices of the clause gadgets. The vertex b0 remains
black when all these vertices update to white and remain white for the final outcome of
the update sequence.

For each literal xi all gray vertices xci for c ∈ C are unstable with a white majority
neighborhood. However, the vertex x>i is unstable with a gray majority neighborhood.
When we update any xci , then x>i becomes stable. Instead, when we update x>i first,
then all xci become stable. Further, when a particular xci updates before x>i , then the
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Figure 9: An example for a full construction of variable gadgets and clause gadgets for
U := {x1, x2, x3} and C := {(x1, x2, x3), (x̄1, x̄2, x̄3), (x̄1, x2, x̄3)}.

majority of the neighborhood of x>i consists of permanently stable white vertices. As a
result, the vertex x>i cannot update to gray afterwards.

3.2.3 Correctness of the Reduction

In Figure 9 we have an example of an influence network constructed by using the re-
duction from 3Sat to Optimistic Update Sequence. We show that a Optimistic
Update Sequence instance is a YES-instance if and only if the corresponding 3Sat
instance is a YES-instance. If this is the case, then

3Sat �p Optimistic Update Sequence.

⇒:
Let (U,C) be a YES-instance of 3Sat with x1, ..., xn ∈ U and c1, ..., cm ∈ C such that
|U | = n and |C| = m. Let δ : U → {>,⊥} be a boolean assignment such that every
c ∈ C contains at least one literal assigned to true. Let (G, ◦) be the Optimistic

23



Update Sequence instance constructed from (U,C) as described above. We show
that there is a sequence σ such that ◦[G, σ] satisfies |{v ∈ V | ◦(v) = 2}| ≥ n+ 1.
We define U1, U2 ⊆ U with U1 ∪ U2 = U , U1 := {xi ∈ U | δ(xi) = >} and U2 := {xi ∈
U | δ(xi) = ⊥}. Since σ assigns every variable with either true or false, it holds that
U1 ∩ U2 = ∅.
We construct the update sequence σ with the following steps:

1. for each xi ∈ U1 append {x⊥i } to σ,

2. for each xi ∈ U1 append {xci} for every c ∈ C that contains xi to σ,

3. for each xi ∈ U1 append singletons of all white vertices connected to x⊥i to σ,

4. for each xi ∈ U2 append {x>i } to σ,

5. for each xi ∈ U2 append {x̄ic} for every c ∈ C that contains x̄i to σ,

6. for each xi ∈ U2 append singletons of all white vertices connected to x>i to σ.

For each clause c ∈ C there is at least one literal which is assigned to true. Hence, for
each clause gadget CG(c) there is at least one gray vertex such that the corresponding
variable is an element of U1. For that reason, each clause gadget contains at least one
vertex which is part of σ after these six steps. Also, each vertex {x⊥i } for xi ∈ U1

did change opinion to gray. Further, we update the white vertices in the neighborhood
of such a vertex {x⊥i }. Thus, the vertex cannot update to white afterwards when the
remaining neighbors update to white. The same procedure is done for all xi ∈ U2 in the
third and fourth step. At this point each clause contains at least one white literal and
the black vertices of all variable gadgets are stable. Afterwards we continue the update
sequence with the following step:

• We append singletons of all unstable gray vertices from all clause gadgets to σ.

For ◦[G, σ] we make the following observations:

• every clause gadget CG(i) for i ∈ [0,m] consists of stable white vertices,

• the black vertex b0 is connected to m white vertices and m permanently stable
gray vertices, thus is stable,

• for each xi ∈ U the vertices x>i and x⊥i have different non-preferred opinions and
are stable,

• for all xi ∈ U the black vertex bxi is connected to a white vertex and a gray vertex,
thus is stable, and

• all vertices are stable.
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The update sequence σ is an update sequence on (G, ◦) resulting in a stable outcome
such that b0 as well as all bxi for xi ∈ U are black. This concludes that there is an
update sequence σ satisfying

|{v ∈ V | ◦(v) = 2}| ≥ n+ 1.

In the end, whenever the 3Sat instance is a YES-instance, then the Optimistic Up-
date Sequence instance is a YES-instance.

⇐:
Let (U,C) be a 3Sat instance with x1, ..., xn ∈ U and c1, ..., cm ∈ C such that |U | = n
and |C| = m. Let (G, ◦) be the Optimistic Update Sequence instance constructed
from (U,C) as described above. We show that there is a truth assignment δ : U → {>,⊥}
such that every clause c ∈ C contains at least one literal assigned with true when there
is a stable update sequence σ with [G, σ] satisfying |{v ∈ V | ◦(v) = 2}| ≥ n+ 1.

Assume that there is a σ such that [G, σ] satisfies |{v ∈ V | ◦(v) = 2}| ≥ n+ 1 but the
3Sat instance is no YES-instance. For every fulfilling Optimistic Update Sequence
instance we observe the following properties for (G, ◦):

1. There is no sequence σ such that [G, σ] contains more than n+ 1 black vertices,

2. There is no sequence σ such that [G, σ] contains black vertices besides the initial
black vertices,

3. For a stable sequence σ such that b0 remains black all connected vertices from
clause gadgets are white,

4. All vertices in all clause gadgets are white, and

5. For a stable sequence σ and a variable xi ∈ U when bxi is black then either x>i or
x⊥i is gray, while the other vertex is white.

For Property 1 and Property 2:
We assume that there are more than n + 1 black vertices. Therefore, there must be a
vertex which did update to black first. This vertex needs a black majority neighbor-
hood, thus only a vertex in the neighborhood of the initial black vertices can update
to black. The neighbors of the black vertex b0 are either permanently stable or have a
neighborhood containing more than one non-black vertex while only having one black
vertex in their neighborhood. Hence, none of these vertices updates to black first. The
neighborhood of any black vertex bxi consists of x>i and x⊥i . Both have at least three
neighbors with only one of them being a black vertex, thus none of these update to black
first either. As a result, there is no update sequence σ such that [G, σ] contains more
than n + 1 black vertices. This implies that there is no vertex besides the initial black
vertices which can update to black. Consequently, Property 2 holds.

For Property 3:
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Because of Property 1 and Property 2 the vertex b0 is black for any sequence σ such
that [G, σ] satisfies |{v ∈ V | ◦(v) = 2}| ≥ n + 1. Therefore, maj(b0, ◦[G, σ]) = 2. The
m permanently stable vertices in the neighborhood of b0 do not update to another opin-
ion and no vertex can update to black. Hence, in order to remain black the remaining
neighbors need to update to white. This implies that Property 3 holds.

For Property 4:
Because Property 3 holds, each clause gadget contains at least one vertex which updates
to white. The clause gadget is constructed in a way such that whenever at least one
vertex updates to white, then for a stable update sequence the remaining gray vertices
updates to white as well. Additionally, none of these vertices can update to gray after-
wards, because the majority of the neighborhood is permanently stable and white. As
a result, Property 4 holds.

For Property 5:
Due to Property 1 and Property 2 each vertex bxi for xi ∈ U is black for any sequence
σ such that [G, σ] satisfies |{v ∈ V | ◦(v) = 2}| ≥ n + 1. Hence, the neighborhood of
bxi needs to contain as many gray vertices as white vertices. Also, the neighborhood
consists of only x>i and x⊥i . Either x>i or x⊥i remains white while the other updates to
gray. As a result, Property 5 holds.

To summarize, all initially black vertices remain black, all vertices in the clause gadgets
update to white, and for any xi ∈ U the vertices x>i and x⊥i have different non-preferred
opinions for ◦[G, σ]. Therefore, we assign each variable xi ∈ U in the corresponding
3Sat instance (C,U) with truth values as follows:

• When ◦(x>i ) = 0, then we assign the variable xi to true.

• When ◦(x⊥i ) = 0, then we assign the variable xi to false.

The 3Sat instance is a YES-instance, when all clauses contain a positive literal assigned
to true or a negative literal assigned to false. This is the case, when each clause gadget
in the corresponding Optimistic Update Sequence instance is connected to a white
vertex from a variable gadget.

Let us assume, that there is a clause gadget which is not connected to a white vertex
from any variable gadget but all vertices in the clause gadget are white. For the Op-
timistic Update Sequence instance we found an optimistic update sequence such
that all n+ 1 black vertices remain black for a stable outcome. As a result, Property 4
holds. Therefore, for each clause gadget at least one gray vertex needed to update to
white. This indicates, that for each clause gadget one gray vertex is connected to a
white vertex from a variable gadget. Further, the gray vertex of the clause gadget can-
not be connected to a x>i or x⊥i that is finally gray. The only chance of such a vertex
to become gray is that no gray neighbor from the clause gadgets has yet updated to
white. However, then the gray vertices of the clause gadget did not update to white.
This is a contradiction to our assumption, that finally all clause gadgets contain only
white vertices. As a result, each clause contains a literal assigned with true. Thus, the
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3Sat instance is a YES-instance. If and only if the Optimistic Update Sequence
instance (G, ◦) constructed from a 3Sat instance (U,C) is a YES-instance, then (U,C)
is a YES-instance as well.

With ”⇒” and ”⇐”, we have shown that 3Sat �p Optimistic Update Sequence.
As a result, Optimistic Update Sequence is NP-hard. In Section 3.1, we have
shown that Optimistic Update Sequence is in NP. Altogether, this proves that Op-
timistic Update Sequence is NP-complete.

We note that the optimistic update sequences for the instances resulting from the re-
duction from 3Sat to Optimistic Update Sequence update each vertex at most
once. Thus, the update sequence is a balanced asynchronous update sequence. As a re-
sult, Optimistic Update Sequence is even NP-complete for balanced asynchronous
update sequences.
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4 Complexity on Restricted Graph Classes

In Section 3.2 we have shown that Optimistic Update Sequence is NP-complete. In
this section we investigate Optimistic Update Sequence in case of restricted influ-
ence networks. In particular, we consider planar influence networks as well as influence
networks with constant degree. Also, we investigate influence networks without cycles.
We focus on whether Optimistic Update Sequence is still hard for these restrictions.

4.1 Constant Degree

An influence network (G, ◦) with constant degree is a network such that the maximum
degree 4(G) is limited to c for some constant c ∈ N. There are NP − complete graph
problems such that the problem is easy for limiting the maximum degree of graphs to
a constant c. For the example of Clique, there is an algorithm solving the problem
in polynomial time for for small values of c. (see Garey and Johnson [GJ99, p. 84]).
In the following sections, we investigate the time complexity of Optimistic Update
Sequence for small values of 4(G).

4.1.1 Polynomial Time Complexity

We show, that Optimistic Update Sequence for an influence network (G, ◦) with
4(G) < 3 is easy. First, we restrict 4(G) to 1.

In such an influence network G the connected components in G contain either one single
vertex or two vertices sharing an edge. We can compute the maximum number of black
vertices for two connected components separately. All components with only one vertex
are stable. Consequently, we cannot update vertices in these components. All compo-
nents with two vertices not containing a black vertex can be updated arbitrary. When
a connected component contains a black vertex, then the other vertex is either black
or can update to black. In order to maximize the number of black vertices, we update
all vertices sharing an edge with a black vertex. Afterwards, all vertices are stable. We
can compute an optimistic update sequence for a connected component in O(1) time.
Further, the number of connected components in G is upper bounded by the number
of vertices n. As a result, computing an optimistic update sequence σ for 4(G) can be
done in O(n) time.

Now, we show that Optimistic Update Sequence is still easy for in case of4(G) = 2.
For a connected component G′ ⊆ G with 4(G′) = 2 we know that G′ is either a cycle
or a path. An illustration for updating vertices in a cycle can be found in Figure 10.

Let us assume, that G′ is a cycle. Each vertex v ∈ G′ satisfies |N(v)| = 2. At first, we
update all unstable vertices with black majority neighborhood to black. By updating
these vertices, we notice that an unstable vertex with black majority neighborhood has
two black neighbors. Further, any unstable vertex v has two neighbors with the same
opinion differing from ◦(v). After updating all unstable vertices with black majority
neighborhood we cannot update additional vertices to black. From there on, we want
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a b b0 c b1 d b2

Figure 10: An example of a cyclic graph where we can update d to make b1 and b2 stable.
On the other side, we cannot manipulate b or c to stabilize b0. The vertex b
is stable for all non-preferred opinions of the neighbor a.

to minimize the number of black vertices updating to any non-preferred opinion. For
that reason, we investigate whether we can manipulate the graph such that an unstable
black vertex does not update. However, an unstable black vertex b has a neighborhood
of two vertices sharing the same non-preferred opinion. We know, that these vertices
cannot update to black. Let us assume, that for b the neighbor x updates to the other
non-preferred opinion. However, the vertex x has exactly one black neighbor. Therefore,
x is stable, which is a contradiction to the assumption. Accordingly, this holds for the
other neighbor of b. Consequently, there is no update sequence such that an unstable
black vertex remains black after we did update all unstable vertices with black majority
neighborhood. Summarizing, after updating all unstable vertices with black majority
neighborhood we can safely update all other unstable vertices. We visit every vertex at
most twice and need polynomial time to do so. Thus, computing an optimistic update
sequence σ can be done in polynomial time, more specific in O(n) time.

We have shown, that Optimistic Update Sequence is easy for cycles. A path con-
tains exactly two vertices with one neighbor each. The remaining vertices have a neigh-
borhood of size two each. In the following, we show that we can reduce each graph which
is a paths to a graph which is a cycle. Therefore, in the end of the reduction each vertex
shall have exactly two neighbors. We add a P6 to a given path and create edges between
the initial path and the P6 such that the resulting graph is a cycle. Therefore, we create
edges between the vertices of the path with just one neighbor and the vertices of the
P6 with just one neighbor. We show that the number of black vertices for an optimistic
update sequence on the initial set of vertices remains the same.

The vertices for a given path with only one neighbor are labeled as s and t. We add
the P6 to the graph such that for graphs the vertex s has the same opinion at the end
of a stable optimistic update sequence. The same goes for t. For cycles we have shown
that a vertex v is unstable when both neighbors have the same opinion and this opinion
is different from the opinion of v. We use this property to make the vertices of the P6

permanently stable and change the size of the neighborhood of s and t such that the
majority opinion of the neighborhood does not change. In Figure 11 we have shown an
example for the reduction.

We begin the reduction by adding six vertices to the graph.

• We add the vertex s1, which has the same opinion as the neighbor of s.

• We add the vertex s2, which has a opinion differing from the opinion of s and s1.

• We add the vertex s3, which has the same opinion as s2.
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• We add the vertex t1, which has the same opinion as the neighbor of t.

• We add the vertex t2, which has a opinion differing from the opinion of t and t1.

• We add the vertex t3, which has the same opinion as t2.

These vertices have no neighbors yet. Therefore, we create the following edges.

• We add an edge between s and s1, s1 and s2 as well as an edge between s2 and s3.

• Similarly, we add an edge between t and t1, t1 and t2 as well as an edge between
t2 and t3.

• Further, we add an edge between s3 and t3.

Each vertex in this graph has exactly two neighbors. Clearly, the vertices s2, s3, t2 and
t3 are stable. Further, the vertex s1 is stable and remains to be stable even if the vertex
s updates. This also holds for the relation between t1 and t. As a result, the update
sequence does not contain singletons of the newly added vertices. The graph is a cycle,
thus we can compute the optimistic update sequence by just appending singletons of all
non-black vertices with black majority neighborhood. Afterwards, we append singletons
of the remaining unstable vertices. This can be done in polynomial time. We show that
the vertices s and t have the same opinion for the path and the cycle constructed from
the reduction from this path.

In the path, the vertex s updates when the sole neighbor of s has a different opinion.
We label the neighbor with a. However, when a is unstable, then a may update first and
s remains stable. As a result, we know that s updates, when a does not update first.

In the cycle, the vertex s updates if both neighbors have the same opinion and this
opinion is different from the opinion of s. By definition the vertex s1 has the same
opinion as a. Further s1 is stable by definition. However, the vertex a may be unstable.
If a is unstable and updates before s does, then s becomes stable without updating.
Otherwise, s updates to the opinion of s1. As a result, we know that s updates when a
does not update first.

In the end, in both graphs the vertex s has the same opinion at the end of an stable
optimistic update sequence. This also holds for t as well. The remaining vertices of the
path have the same neighborhood as the corresponding vertices in the reduction to a
cycle. Consequently, the number of black vertices in the path is equal to the number of
black vertices in the cycle subtracted by the number of black vertices in the added P6.
As a result, we have shown, that we can reduce every path to a cycle for Optimistic
Update Sequence. In terms of time complexity, we visit every vertex constantly often
to compute an optimistic update sequence and need polynomial time to do so. Thus,
computing an optimistic update sequence can be done in polynomial time for cycles and
paths; more specific in O(n) time.
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s1 s2 s3 t2t3 t1

Figure 11: An example for a reduction from a path to a cycle.

4.1.2 NP-hardness

We show, that Optimistic Update Sequence is NP-hard for 4(G) = 7. We show
this by modifying the reduction from Section 3.2. We want the modified instance to
have properties as follows:

• Each vertex has at most seven neighbors.

• There is an optimistic update sequence σ such that the number of black vertices
is at least k, if and only if there is a truth assignment satisfying the formula of the
corresponding 3Sat instance.

All clause gadgets are connected to a common neighbor—the black vertex b0. As a
result, the degree of b0 is lower bounded by some function depending on |C|. Further,
the variable gadgets have vertices whose degree is bounded by the occurrence of a literal
in the clauses. In the following, we explain the modification done in these gadgets.

Clause Gadget

We recap the idea of the clause gadget. It ensures that all vertices of the gadget update
to white when at least one literal of the corresponding clause is assigned to true.

Gadget Structure

In the previous clause gadget, we used the black vertex b0 to connect all clause gadget
to this vertex. However, the size of the neighborhood of b0 is twice as big as the number
of clauses in C. Instead of creating an edge from each clause gadget to b0, we create a
black vertex for each clause gadget separately. We label the black vertex for the clause
gadget CG(i) with bci . We connect the vertex bci to a permanently stable gray vertex
and one gray vertex from the clause gadget CG(i). To this end, each clause gadget has
four gray vertices instead of three. The first three vertices still represent the literals.
The new gray vertex is used to reduce the maximum degree 4(CG(i)). In the initial
version of the clause gadget, we randomly selected a gray vertex which is connected to
bci . However, instead of connecting a random selected gray vertex to bci , we connect this
fourth gray vertex to bci . The four gray vertices are connected in a circular structure to
each other. For each pair of gray vertices sharing an edge, we add a permanently stable
white vertex to the clause gadget and connect it to both gray vertices. An example for
the new clause gadget can be seen in Figure 12.
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Figure 12: An example of two clause gadgets for the constant degree reduction. Each
clause gadget is connected to another black vertex.

Properties

We observe that the maximum degree of a clause gadgets CG(i) is reduced to five.

When at least one of the gray vertices turns white, then the remaining gray vertices are
unstable with a white majority neighborhood. Therefore, the clause gadget still works
in the same way as in the previous version described in Figure 8.

Variable Gadget

We recap the idea of the variable gadget. A variable gadget for the variable xi contains
a black vertex bxi such that the black vertex only remains black when x>i and x>i have
different opinions. The size of the neighborhood of the vertices x>i and x⊥i needs to be
reduced for a graph with constant degree. In order to reduce the number of neighbors
for these vertices, we introduce three new gadgets which are used instead of the variable
gadget: the connector gadget, the merge gadget and the switch gadget.
The connector gadget is connected to a maximum of four vertices from clause gadgets
that represent xi respectively. Further, the connector gadget ensures that these vertices
always have the same opinion for every stable optimistic update sequence.
The merge gadget is connected to up to two connector gadgets and will ensure that
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the xi representing vertices from the clause gadgets connected to these two connector
gadgets always have the same opinion for every stable optimistic update sequence.
The switch gadget is connected to a merge gadget for xi and another merge gadget for
x̄i and will ensure that the merge gadget for xi and the merge gadget for x̄i correspond
to different opinions.

Connector gadget

The connector gadget is connected to up to four xi representing vertices from clause
gadgets. The idea of the connector gadget is that all the connected vertices from the
clause gadgets always have the same opinion. Thus, we construct the connector gadget
such that the number of black vertices in the connector gadget is maximized when all
connected vertices from the clause gadgets have the same opinion.

Note, that we may use multiple connector gadgets and merge gadgets for every literal.
We use an index z to label specific vertices in the connector gadgets. We use this labeling
to clarify, which gadgets are connected to each other. The first connector gadget uses
z = 0. Further, we increment z by two for every new connector gadget.

Gadget Structure

At first we create the two white vertices w(xi, z) and w(xi, z + 1). We connect both of
them to a common permanently stable gray vertex. Further, we create the two black
vertices a(xi, [z, z + 1]) and b(xi, [z, z + 1]). The vertex a(xi, [z, z + 1]) is connected to
w(xi, z), w(xi, z+1) and two permanently stable gray vertices. The vertex b(xi, [z, z+1])
is connected to w(xi, z), w(xi, z + 1) and three permanently stable white vertices. An
example for a connector gadget can be found in Figure 13.

Connection

The vertex b(xi, [z, z + 1]) has two outgoing edges to two black vertices from a merge
gadget. The white vertices w(xi, z) and w(xi, z + 1) are connected to two gray vertices
from the clause gadgets each. That is, instead of being connect to a variable gadget,
the gray vertices of the clause gadgets are connected to the white vertices of connector
gadgets. However, one connector gadget can be connected to at most four xci . Therefore,
we use multiple connector gadgets, if needed. Additionally, when there are less then four
xci left, then we create additional gray vertices and connect them to the connector gadget.

Properties

The maximum degree of a connector gadget is seven, because b(xi, [z, z + 1]) has the
highest degree with deg(b(xi, [z, z + 1])) = 7.

For the connection between an vertex xci from the clause gadget CG(c) and the vertex
w(xi, z) from the connector gadget, we observe that xci is unstable with a white majority
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neighborhood. Also, w(xi, z) is unstable with a gray majority neighborhood. However,
if xci updates to white before w(xi, z) updates to gray, then both vertices are stable.
The vertex xci cannot update to gray after updating to white due to the structure of the
clause gadget. Also, the vertex w(xi, z) cannot update to gray after xci updated to white,
because w(xi, z) is connected to a permanently stable gray vertex, a permanently stable
white vertex and two black vertices. In order for w(xi, z) to update to gray, both black
vertices would need to update to gray. However, the vertex b(xi, [z, z+1]) cannot update
to gray, because the neighborhood of b(xi, [z, z + 1]) consists of four permanently stable
white vertices in a neighborhood of size seven. As a result, the vertices xci and w(xi, z)
are stable after xci updates to white. Similarly, when w(xi, z) updates to gray before xci
updates, then w(xi, z) cannot turn white afterwards, because the vertex is connected
to two gray vertices and two black vertices. However, the vertex xci can still update to
white if another gray vertex in the clause gadget updates to white. In order for w(xi, z)
to update to white after updating to gray however, both black vertices would need to
update to white. The vertex a(xi, [z, z + 1]) cannot update to white, because it has two
permanently stable gray vertices with a neighborhood of size four.

We constructed the connector gadget such that only one of the two black vertices of the
connector gadgets can remain black. In the following we describe all possible combina-
tions of opinions for w(xi, z) and w(xi, z+1) and the consequences for the black vertices.
When w(xi, z) and w(xi, z+ 1) update to gray, then the black vertex a(xi, [z, z+ 1]) up-
dates to gray and b(xi, [z, z + 1]) remains black. When w(xi, z) and w(xi, z + 1) remain
white, then a(xi, [z, z+1]) remains black and b(xi, [z, z+1]) updates to white. However,
when just one of the two white vertices update to gray and the other remains white,
then a(xi, [z, z+ 1]) updates to gray and b(xi, [z, z+ 1]) updates to white. Summarizing,
one black vertex remains black in a connector gadget if all four connected clause gadget
vertices have the same opinion. No black vertex remains black in a connector gadget if
at least one of the four connected clause gadget vertices has a different opinion. As a
result, for all optimistic update sequences in each connector gadget at least one black
vertex remains black.

Merge Gadget

The idea of the merge gadget is to combine two connector gadgets such that the both
connector gadgets have the same opinion. Further, the merge gadget is constructed such
that we can also combine two merge gadgets to ensure that the two combined merge
gadgets have the same opinion. In order to do so, a merge gadget consists of two separate
parts. We label the connected vertices from the two connector gadgets with b(xi, [l1, l2])
and b(xi, [l2 + 1, l3]) with l1, l2, l3 ∈ N and l1 < l2 < l3.

Graph Structure

The first part is labeled withA(xi, [l1, l3]) and the second part is labeled withB(xi, [l1, l3]).
Both parts are connected to the vertices b(xi, [l1, l2]) and b(xi, [l2 + 1, l3]) from the con-
nector gadgets. For A(xi, [l1, l3]), we create the gray vertex g(xi, [l1, l3]). This vertex
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Figure 13: A connector gadget connected to four clause gadgets on xi representing ver-
tices. The connector gadget is connected to a merge gadget via two edges
from the vertex b(xi, [0, 1]).

is connected to b(xi, [l1, l2]) and b(xi, [l2 + 1, l3]) from the connector gadgets. Further,
g(xi, [l1, l3]) is connected to a permanently stable gray vertex and two permanently sta-
ble white vertices. Additionally, g(xi, [l1, l3]) is connected to a gray vertex, which is
connected to another gray vertex which is connected to the black vertex a(xi, [l1, l3]).
The vertex a(xi, [l1, l3]) is also connected to g(xi, [l1, l3]).

For B(xi, [l1, l3]), we create the black vertex b(xi, [l1, l3]), which is connected to two per-
manently stable white vertices as well as to the vertices b(xi, [l1, l2]) and b(xi, [l2 + 1, l3]).
An example for a merge gadget is shown in Figure 14.

Connection

The merge gadget is constructed such that we can either combine two connector gadgets
or merge gadgets. As a result, we construct the part of B(xi, [l1, l3]) for two scenarios.
In the first scenario, the vertex b(xi, [l1, l3]) is connected to a gray vertex from the switch
gadget. We label the gray vertex with x>i , because it has a similar functionality as the
vertex in the variable gadget with the same label. Note, that when the merge gadget
represents the negative literal x̄i instead, the black vertex is labeled b(x̄i, [l1, l3]) and
is connected to x⊥i instead. In the second scenario however, the vertex b(xi, [l1, l3])
is connected to another merge gadget with two outgoing edges. In this case, we add
three permanently stable white vertex instead of two permanently stable white vertices
to B(xi, [l1, l3]) and connect them to b(xi, [l1, l3]). An example for the first scenario is
shown in Figure 14. An example for the second scenario is shown in Figure 15.
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Figure 14: An example of an merge gadget which combines the two connector gadget on
the vertices b(xi, [0, 1]) and b(xi, [2, 3]). The first part of the merge gadget is
A(xi, [0, 3]). The second part is B(xi, [0, 3]), which is also connected to the
gray vertex x>i from a switch gadget

Properties

The maximum degree of a merge gadget is seven, because amongst others the vertex
g(xi, [l1, l3]) has the highest degree with deg(g(xi, [l1, l3])) = 7.

For the connector gadgets, we observe that the vertices b(xi, [l1, l2]) and b(xi, [l2 + 1, l3])
can either remain black or update to white. We observe the behaviour of the merge
gadget for all combinations of opinions for the incoming connector gadget vertices. There
are three possible combinations for the vertices b(xi, [l1, l2]) and b(xi, [l2 +1, l3]) from the
connector gadgets. First, the vertices b(xi, [l1, l2]) and b(xi, [l2 + 1, l3]) remain black.
Second, the vertices b(xi, [l1, l2]) and b(xi, [l2 +1, l3]) update to white. Third, only one of
these two vertices updates to white. There are further cases, because these two vertices
can either remain black or update to white.

When b(xi, [l1, l2]) and b(xi, [l2+1, l3]) remain black, then the vertex b(xi, [l1, l3]) remains
black, but a(xi, [l1, l3]) updates to gray. This behaviour for A(xi, [l1, l3]) is not obvious,
thus we go through the update steps. The vertex g(xi, [l1, l3]) is connected to two gray
vertices, two white vertices and three black vertices. As a result, the vertex g(xi, [l1, l3])
is stable and remains gray. Then the vertex a(xi, [l1, l3]) updates to gray, because the
neighborhood consists of two gray vertices.

When b(xi, [l1, l2]) and b(xi, [l2 + 1, l3]) update to white, then the vertex b(xi, [l1, l3])
updates to white, but a(xi, [l1, l3]) remains black. Again, we observe the gray vertex
g(xi, [l1, l3]). Now, the vertex has four white neighbors, two gray neighbors and one black
neighbors. As a result, the vertex g(xi, [l1, l3]) updates to white. The vertex a(xi, [l1, l3])
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b(xi, [0, 3])

S S S

b(xi, [0, 1])

connector gadgets

b(xi, [2, 3])

a(xi, [0, 7])

A(xi, [0, 7])

b(xi, [0, 7])

B(xi, [0, 7])

B(xi, [0, 3])

Figure 15: The second part of a merge gadget, labeled with B(xi, [0, 3]), is connected to
black vertices of two incoming connector gadgets;b(xi, [0, 1]) and b(xi, [2, 3]).
The vertex b(xi, [0, 3]) is connected to three permanently stable white vertices
instead. Additionally, B(xi, [0, 3]) is connected to another merge gadget on
the outgoing edges.

has one white neighbor and one gray neighbor now, thus is stable and remains black.

When just one of the two vertices b(xi, [l1, l2]) and b(xi, [l2 + 1, l3]) updates to white and
the other remains black, then a(xi, [l1, l3]) updates to gray and b(xi, [l1, l3]) updates to
gray. This implies, that for this merge gadget, we maximize the number of black vertices,
when b(xi, [l1, l2]) and b(xi, [l2 + 1, l3]) have the same opinion.

Switch Gadget

The switch gadget essentially keeps the functionality of the variable gadget with some
perks to the structure. The switch gadget for the variable xi is connected to one merge
gadget for xi and one merge gadget for x̄i. We want the vertices of the two merge gadgets
to have differing opinions. Therefore, the vertex bxi shall remain black if and only if the
vertices of the connected merge gadgets have different opinions. Otherwise, bxi updates
to a non-preferred opinion. The vertex bxi updates to white if both neighbors are white.
If both neighbors are gray, then bxi updates to gray.

Graph Structure

For the switch gadget structure we use a similar structure as for the variable gadget.
However, the vertex x>i is connected to two permanently stable white vertices instead
of a varying number of white vertices. The same holds for x⊥i . Also, x>i is connected
to just one vertex from a merge gadget, instead of all xci from clause gadget CG(c) for
c ∈ C. Again, this also holds for x⊥i . Further, the initial opinion of x>i and x⊥i is gray.
An example for a switch gadget is shown in Figure 16.

Properties

The maximum degree of a switch gadget is five, because x>i has the highest degree with
deg(x>i ) = 5.
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x>i

bxi

x⊥i

b(xi, [0, 2
y])

B(xi, [0, 2
y])

b(x̄i, [0, 2
y′ ])

B(x̄i, [0, 2
y′ ])

Figure 16: An example of a switch gadget connected to a merge gadget for xi and a
merge gadget for x̄i. The vertices b(xi, [0, 2

y]) and b(xi, [0, 2
y′ ]) can be either

white or black. If b(xi, [0, 2
y]) is black, then the vertex x>i updates to white.

The idea is that just one of both merge gadget vertices remains black and the
other updates to white.

We label the vertices from the merge gadgets with b(xi, [0, z]) and b(x̄i, [0, z
′]). The value

of z is the number of connector gadgets for the literal xi in the graph and the value of z′

is the number of connector gadgets for the literal x̄i. For the merge gadgets, we observe
that the vertices b(xi, [0, z]) and b(x̄i, [0, z

′]) can either remain black or update to white.
Therefore, we check the behaviour of the switch gadget for all combinations of opinions
for the incoming merge gadget vertices. When b(xi, [0, z]) and b(x̄i, [0, z

′]) remain black,
then x>i and x⊥i remain gray. As a result, bxi updates to gray. When b(xi, [0, z]) and
b(x̄i, [0, z

′]) update to white, then x>i and x⊥i update to white. In this case, bxi updates
to white. However, when just one of the two vertices b(xi, [0, z]) and b(x̄i, [0, z

′]) updates
to white and the other remains black, then either x>i or x⊥i update to white while the
other one remains gray. Hence, bxi remains black.

Combination

We have introduced the base functionalities of the connector gadget, merge gadget and
switch gadget. Now, we explain how they interact with each other in full detail and how
they connect to the clause gadgets.

For a variable xi, we connect the gray vertices xci for all c ∈ C to connector gadgets such
that each connector gadget is connected to four gray vertices xci . Note, that there may be
connector gadgets connected to less then four gray vertices. In this case, we just add gray
additional gray vertices to these connector gadgets. Further, the number of connector
gadgets for any variable xi ∈ U is supposed to be 2y for a y ∈ N. Otherwise, we add more
connector gadgets until the number of connector gadgets can be described by 2y for some
y ∈ N. This number of connector gadgets is necessary in order to combine all connector
gadgets to each other via merge gadgets. As mentioned before, the two black vertices of a
connector gadget are labeled with a(xi, [z, z+1]) and b(xi, [z, z+1]) for some z ∈ N. The
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use of the index z is described in Section 4.1.2. For every second connector gadget we
add a merge gadget to the graph, thus we have 2y−1 merge gadgets in the graph. Sorted
by the index z, we always connect two connector gadgets to one merge gadget. The
two parts of the merge gadget combining the connector gadgets with the black vertices
b(xi, [0, 1]) and b(xi, [2, 3]) are labeled A(xi, [0, 3]) and B(xi, [0, 3]). Further, we add 2y−2

additional merge gadgets to the graph in order to combine the previously created merge
gadgets. From there on, we always combine the new created merge gadgets in pairs of
two to another merge gadget until there is only one merge gadget left without outgoing
edges. So far, the structure of the combination of merge gadgets can be observed in
Figure 17. In the end, the remaining merge gadget is connected to the switch gadget
for the variable xi. An example for the connection between the clause gadget, connector
gadget, merge gadget and switch gadget for the variable xi is shown in Figure 18.

We observe the structure and the relation to the number of stable black vertices for
a stable outcome. We know, that each connector gadget and merge gadget has two
black vertices. Previously, we have shown that for any update sequence σ at most one
black vertex can remain black for each connector gadget and merge gadget. When all
connector gadget and merge gadgets have a black vertex for a stable graph, then all the
white vertices w(xi, j) for j ∈ 2y+1 must finally have the same opinion. When just the
vertex w(xi, 1) has a different opinion, then at least y additional black vertices update to
a non-preferred opinion. Both black vertices update to a non-preferred opinion for the
connector gadget containing the vertex w(xi, 1). Further, all black vertices from merge
gadgets such that the label indicates a connection to w(xi, 1) update to a non-preferred
opinion as well;i.e., the vertex b(xi, [0, 3]) updates to white because the range of [0, 3]
contains 1. In the end, both black vertices update for the connector gadget containing
w(xi, 1) and both black vertices update for y − 1 merge gadgets. When updating all
these vertices, then the vertex bxi from the switch gadget may remain black for some
instances. However, for this vertex to remain black, we updated y vertices with y > 1.
As a result, an optimistic update sequence σ updates exactly one vertex for each merge
gadget and connector gadget.

When the corresponding 3Sat instance is a YES-instance, then there is a black vertex
in the final outcome ◦[G, σ] for each merge gadget, connector gadget, clause gadget and
switch gadget. For the 3Sat reduction in Section 3.2 we use the parameter k = n + 1
with n being the number of variables in the 3Sat instance. We remember, in order
for the Optimistic Update Sequence instance to be a YES-instance the number of
black vertices in the final outcome must be at least k . However, for the constant degree
reduction from 3Sat, we update the value to

k = |V2,◦| −#mergeGadgets−#connectorGadgets,

where |V2,◦| is the number of black vertices in the Optimistic Update Sequence
instance. We observe, that there are n switch gadgets and m clause gadgets, thus

|V2,◦| − n−m
2

= #mergeGadgets−#connectorGadgets,
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b(xi, [0, 1])

b(xi, [2, 3])

b(xi, [4, 5])

b(xi, [6, 7])

connector gadgets

A(xi, [0, 3]) B(xi, [0, 3])

A(xi, [4, 7]) B(xi, [4, 7])

A(xi, [0, 7]) B(xi, [0, 7])

A(xi, [0, 15]) B(xi, [0, 15])

Figure 17: An example of connector gadgets combined by merge gadgets. Further, we
combine the merge gadgets in a tree-like structure.

where n is the number of variables and m is the number of clauses for the 3Sat instance
used to construct the Optimistic Update Sequence instance. We transform this
equation to

k =
|V2,◦|+ n+m

2
.

When the 3Sat instance is a YES-instance, then the Optimistic Update Sequence
instance satisfies

|{v ∈ V | ◦[G, σ](v) = q}| ≥ |V2,◦|+ n+m

2

for the preferred opinion q = 2.

We have reduced 3Sat to Optimistic Update Sequence such that each vertex in
the influence networks (G, ◦) has at most seven neighbors. In the end, Optimistic
Update Sequence is trivially still NP-hard for 4(G) = 7. Also, Optimistic Up-
date Sequence is still in NP for constant degree. Altogether, Optimistic Update
Sequence is NP-complete for a constant degree of seven and above. However, for the
range of 4(G) = 3 up to 4(G) = 6, the complexity still remains open.
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4.2 Complexity on Planar Graphs

In the previous section, we have shown that Optimistic Update Sequence is NP-hard
for constant degree of at least seven. In this section, we show that Optimistic Update
Sequence is still hard for the class of planar graphs. Therefore, we reduce Planar
3Sat to Optimistic Update Sequence. Particularly, we show for the reduction used
in the case of constant degree, that the Optimistic Update Sequence instance has
a planar embedding for all instances of Planar 3Sat.

For every Planar 3Sat instance, there is a corresponding formula graph G(φ) such
that G(φ) has a planar embedding. The definition of formula graphs is denoted in
Section 2.3.2. The edges of the formula graph are only between clause vertices and
variable vertices. Thus, the graph is bipartite. In order to show that there is a planar
graph for the corresponding Optimistic Update Sequence instance, we replace the
vertices of the formula graph with gadgets used in Section 4.1.2.

First, we replace the clause vertices with clause gadgets. We know, that the clause
gadget has a planar embedding, thus the graph is still planar. An example for the
replacement of clause vertices is shown in Figure 19. Second, we replace the variable
vertices with connector gadgets. We use multiple connector gadgets to replace a single
variable vertex, because each connector gadget is connected to at most four vertices from
the clause gadgets. The structure of connector gadgets is described in Section 4.1.2. We
note, that the connector gadget has a planar embedding. An example for a formula graph
after replacing the variable vertices is shown in Figure 20. Afterwards, we use multiple
merge gadgets and one switch gadget for each variable as described in Section 4.1.2. We
observe, that the merge gadget has a planar embedding as well as the switch gadget.
The merge gadget is described in Section 4.1.2 and the switch gadget is described in
Section 4.1.2. Due to the treelike structure of merge gadgets and connector gadgets to
each other, there are no edges crossing between these gadgets. Also, for each variable
there is an embedding such that the edges between the switch gadget and both merge
gadgets do not cross. An example for the planarity of the connection between connector
gadgets and merge gadgets can be observed in Figure 17. Another example is Figure 18.

Let us assume, that there is no embedding such that the graph is planar. Therefore,
there is a crossing between two edges. We have shown, that all involved gadgets have
a planar embedding. Further, there is a planar embedding for the connection between
connector gadgets, merge gadgets and the switch gadget for each variable. As a result,
the needs to be a crossing between two of the remaining edges. However, only the edges
between connector gadgets and clause gadgets are left. We did not rearrange these
edges when replacing the vertices from the initial formula graph, thus these edges are
planar by definition. This is a contradiction to the assumption, that there is no planar
embedding for the graph. As a result, the influence network constructed by replacing
the vertices of the formula graph does not violate planarity. Therefore, we have shown
Planar 3Sat �p Optimistic Update Sequence. In the end, Optimistic Update
Sequence is still NP-complete for planar graphs.
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c1

c2

x1

x2

x3

no crossing edges

(a) An example for a formula graph G(φ) for a Planar 3Sat instance with four clauses and
three variables.

x3 x̄2

x1

S

S S S

bc1

S

clause gadget for c1

x̄3 x2

x̄1

S

S S S

bc2

S

clause gadget for c2

x1

x2

x3

no crossing edges

(b) An example for the formula graph G(φ) after replacing clause representing vertices with
clause gadgets.

Figure 19: A formula graph still has a planar embedding after replacing clause repre-
senting vertices with clause gadgets.
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CG(c1)

CG(c2)

no crossing edges

w(x1, 0)

w(x1, 1)

w(x2, 0)

w(x2, 1)

w(x3, 0)

w(x3, 1)

connector gadgets

Figure 20: The formula graph G(φ) after replacing the variables with connector gadgets.
Afterwards, we combine the connector gadgets with merge gadgets and finally
a switch gadget for each variable. In Figure 18 we show the connection
between connector gadgets, merge gadgets and switch gadgets.
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4.3 Complexity on Trees

Motivated by the fact that many graph problems become computational tractable when
the graph does not contain cycles (see Cygan et al. [Cyg+15]), we analyze the complexity
of Optimistic Update Sequence for trees. A tree is a connected component such
that this connected component contains no cycle. Briefly, we introduce the following
terms: root, parent, child and leaf. We assign some vertex of the tree as root. In an
orientated tree, this vertices is the only vertex without incoming edges. However, we
just observe undirected graphs, thus the purpose of the root is for us to orientate ourself
in the tree. For an arbitrary vertex v a vertex x is considered child of v, if both vertices
are connected by an edge and the distance of v to the root is smaller then the distance
of x to the root. Also, the vertex v is considered parent of x. A leaf is a vertex such
that the vertex has no children.

The work of Bredereck and Elkind [BE17] shows, that for an optimistic update sequence
each vertex updates at most twice for a binary set of opinions. When this property still
holds for three opinions on trees then the problem may become easy. First, we need to
introduce the definition of patterns.

Pattern

We denote the ordered list of all update steps of a specific vertex v for the update
sequence σ as pattern of v. Further, we split the list in two parts.

• An ordered list of all opinions of v before the last update in σ, and

• the opinion of v for [G, σ].

The pattern of v is written as P (v) = (q1q2 | q3) with q1, q2, q3 ∈ O, when the vertex has
the initial opinion q1, updates to q2 and then updates to q3;i.e., a black vertex v which
updates to gray and then updates to white has the pattern P (v) = (bg | w).

Counterexample

There is an example of a tree such that there is vertex with a pattern of size four. The
example is shown in Figure 21. In the following, we describe the updates of the instance
to show, that there are instances with at least three updates for a single vertex. We note
that the program ODAT (see Section 5) contains the example as instance so that we can
load the sequence as separat file for visual assistance. The vertex b0 remains black, when
the vertex v is white at the end of the update sequence. The vertex b1 remains black,
when the vertex x is gray at the end of the update sequence. The vertex b2 remains
black, when the vertex x3 updates to white. In order to do so, the vertex x needs to
update to white.

The vertex x has three white neighbors, three gray neighbors and one black neighbors.
First, we update v to white due to the white majority neighborhood of v. This leads to x
having a white majority neighborhood as well. Now, we update x to white. The vertex x3
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v

x

x1 b1 x3

b2

x4 x5 x6

v0

v1

v2

b0

Figure 21: A counterexample to prove, that there is a tree instance such that the pattern
(gwg | w) is necessary to maximize the number of black vertices. The pattern
of v is (gwg | w) and the pattern of x is (gw | g).

has a white majority neighborhood now, thus we update the vertex x3. The vertex v
has five white neighbors, one gray neighbor and one black neighbor now. However, we
need to update x to gray for b1 to become stable. We update the vertices x4 and x5 to
gray. Also, we update the vertices v0, v1 and v2 to gray. As a result, the vertex v has a
gray majority neighborhood and we update v to gray again. We note, that the current
pattern of vertex v is (gw | g). With this, the vertex x has four gray neighbors, thus
x updates to gray. As a result, the vertex b1 is stable. The vertex x6 updates to gray
and becomes stable. In order for b0 to remain black, the vertex v needs to update to
white again. We update the children of v0, v1 and v2 to the opinion white. Afterwards,
we also update v0, v1 and v2 to the opinion white. With this, the vertex v has a white
majority neighborhood and updates to white, thus b0 is stable. All vertices are stable
and the graph contains the maximum of three black vertices.

For |O| = 2, each vertex updates at most twice. However, in this example the vertex v
has the pattern (gwg | w), thus has changed opinion three times. Therefore, we cannot
adapt this property to Optimistic Update Sequence for a set of three opinions.
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5 Opinion Diffusion Assistance Tool

The Opinion Diffusion Assistance Tool (ODAT) is designed for constructing influence
networks and simulating update sequences. In this section, we briefly describe the major
functionalities of ODAT. Further, the software also contains an operation manual for
more detailed explanation and a list of all commands and interactions possible.

First, the program is started by using the following command:

java -jar ODAT.jar [-console]

When starting the program with the optional flag -console enabled, then a console
version is started instead. However, the use of the software is mainly focused on the
visual representation of update sequences and manipulation of sequences by the user.
Therefore, the console version has fewer functionalities. The program comes with a
few test instances. The folder examples contains files for influence networks. The folder
scripts contains a few example for scripts and the folder sequence contains a few examples
for sequences. With a script, we can define a fixed set of commands to interact with
the influence network. For example, we can create a fixed set of vertices, add edges and
change their opinions. The program enables us to save the sequence of the currently
observed instance. Later, we can reload the sequence.

5.1 Update Sequences

The program contains algorithms to compute synchronous updating sequences, asyn-
chronous updating sequences, balanced asynchronous updating sequences and optimistic
update sequences.

Synchronous

Following the definition of synchronous update sequences in Section 2.1.2, when we use
the synchronous update mode of the software, then we update all vertices of the current
influence network simultaneously. The synchronous update sequence does not necessary
terminate. Thus, when we observe an influence network such that a synchronous update
sequence converges to a stable outcome with period two, then the program detects this.
When the user uses the fast-forward button to skip the update sequence to a stable
outcome, then the sequence stops after finding the periodic behavior. We can still use
the forward button to alternate between the two sets of opinions.

Asynchronous

Following the definition of the asynchronous update sequences in Section 2.1.2, when
we use the asynchronous update mode of the software, then we update one vertex of
the current influence network at each step. In the program the update sequences only
include update steps, when the corresponding vertex is unstable at the given moment.
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Figure 22: Screenshot of the interface of the program Opinion Diffusion Assistance Tool
(ODAT).

Balanced Asynchronous

In the balanced asynchronous update mode of the program, we use the characteristic
of the balanced asynchronous update sequence defined in Section 2.1.2. The program
creates a list containing the ID’s of all vertices and randomly shuffles the list. Afterwards,
singletons of the vertices are appended to the update sequence. Doing this, the program
follows the order of the shuffled list. The process terminates, when a full iteration
through the list does not lead to an update step such that the opinion of any vertex
changes.

Optimistic Update

When the optimistic update mode is selected, the program computes an optimistic
update sequence for a preferred opinion. However, the correctness of the algorithm is
limited to networks with |O| = 2 since we have not found an usable algorithm to compute
an optimistic update sequence for three or more opinions. We can change the preferred
opinion to q ∈ O for the optimistic update mode with the command preferred color(q).

5.2 Program Layout

In Figure 22 we can observe the four major parts of the GUI: the graph canvas, the
command line, the statistic panel and the control panel.

Graph Canvas

The graph canvas shows a visual representation of the currently loaded influence network
and represents the opinions with different colors.
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Command Line

With the command line we can manipulate the influence network, update sequences,
manually change opinions, update the position of vertices, and change the update rule
and update mode. The full list of commands and results are documented in the operation
manual, which can be accessed by clicking on the Help tab.

Statistic Panel

The small panel on the right side of the user interface provides us some information
about the currently loaded influence network. We can access the number of vertices, the
number of edges, and the distribution of opinions in the network.

Control Panel

With the small control panel at the bottom of the user interface we interact with the
update sequence for the current network. From left to right we have five buttons: fast-
backward, backward, play/stop, forward, fast-forward.
With the forward button we go one step of the sequence for given update rule and
mode. For an influence network (G, ◦) after z steps after pressing the forward button
the graph canvas shows the opinion function ◦[G, σ, z + 1]. However, when pressing the
backward button instead the graph canvas shows the opinion function ◦[G, σ, z − 1].
With the fast-forward button we skip to ◦[G, σ, |σ|]. Using the fast-backward button
shows the opinion function for ◦[G, σ, 0]. When using the play/stop button we start a
thread which periodically invokes the underlying function called by the forward button.
While navigating through the update sequence, we can invoke commands to update the
opinion of a specific vertex to observe the results of the manipulation.
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6 Conclusion and Outlook

We investigated the problem of finding an update sequence that maximizes the number
of vertices with the preferred opinion in an influence network for the discrete majority
update rule. While the problem was known to be easy for a binary set of opinions, we
proved NP-completeness for three opinions. Further, we showed that the problem is
still NP-hard for planar graphs and graphs with a maximum degree of at least seven.
However, for a maximum degree of at most two we can compute an optimistic update
sequence in polynomial time. The computational complexity for a maximum degree for
the range of three to six is still unknown.

We investigated Optimistic Update Sequence on acyclic graphs, however we could
not verify whether one can find an optimistic update sequence in polynomial time. We
have shown, that there are tree instances such that it is necessary for a vertex to update
at least tree times in order to maximize the number of vertices with preferred opinion. In
further research of Optimistic Update Sequence on trees, it is important to inves-
tigate, whether there are vertices, which need to update four times or even more often.
For the example in Figure 21 we have used the subtree of v0 including the vertex itself to
update v three times. We can continue this structure to allow a vertex to update as often
as desired. However, we still need to prove whether it is necessary to update the same
vertex more often. Further, we need an exponential number of vertices in comparison
to the number of updates for a selected vertex.

In this thesis, we mainly focused on the discrete majority update rule. However, the
computational complexity of Optimistic Update Sequence for the non-discrete ma-
jority update rule is still unknown. For reference, the non-discrete majority update rule
is defined in Section 2.1.1. The complexity of finding an optimistic update sequence for
this update rule is still unknown. One may modify the construction in Figure 9 to show
that Optimistic Update Sequence is still hard for the non-discrete majority update
rule. We could change the values of the opinion black to 1 and the value of the opinion
of gray to 2. The black vertices would still remain black for a equal number of white
and gray vertices in the neighborhood. However, we need to modify the clause gadgets
and some vertices of the variable gadgets, because a balance between gray and white
vertices in the neighborhood would lead to the vertex updating to black.

We have proven NP-completeness for Optimistic Update Sequence, however we
have not talked about the computational complexity of the problem. The brute-force
attempt of computing the optimistic update sequence needs O(n|σ|) time. For the brute-
force algorithm we try all combinations of choosing one vertex in each update step until
the influence network is stable for a given maximum sequence size of |σ|. Whether
Optimistic Update Sequence is fixed-parameter tractable is still unknown. Some
interesting parameters for further research on fixed-parameter tractability are the length
of the update sequence |σ|, the number of initially unstable vertices, the number of ver-
tices n as well as the number of edges m.

A key element to construct the reduction from 3Sat to Optimistic Update Sequence
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is the use of permanently stable vertices. In a social environment an agent with such
behavior is one such that the agent influences the opinion of his neighbors, but does
not get influenced himself. Another variation of uncommon behavior is an agent that
updates to the opposite opinion of the majority of the neighborhood; an anti-agent.
For a non-binary set of opinions, we need to define the opposite opinion first. For the
non-discrete majority update rule, we compute the mean value of the opinions of the
neighborhood. We compute the distance of the mean value to the opinion of the anti-
agent. If the opinion of the anti-agent has a higher value than the mean value, then
we choose the opinion closest to the value received by adding the mean value to the
opinion of the anti-agent. Otherwise, we choose the opinion closest to the value received
by subtracting the opinion of the anti-agent by the mean value.

Finally, we introduced asynchronous update sequences as well as synchronous update
sequences. An asynchronous update sequence updates singletons. A synchronous up-
date sequence updates all vertices simultaneously. We introduce a variation of update
sequences such that we update a selected set of vertices in one update step. In a syn-
chronous update sequence there is the possibility of two neighbors to update to the
opinion of each other, effectively resulting in the swap of their opinions. When using
this variation of update sequences for Optimistic Update Sequence instead, we
could stabilize more black vertices for some instances by swapping the opinion of two
adjacent vertices.
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