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Zusammenfassung

In dieser Arbeit befassen wir uns mit der Manipulation von zwei Wahlregeln, k-
Borda und `-Bloc, die für exzellenzbasierte Wahlen verwendet werden, in der meh-
rere zur Kandidatur Stehende gewinnen. In einer Manipulation gibt eine Gruppe
von Wählenden nach einer Strategie Stimmen ab, die nicht ihrer wahren Präferenz
entsprechen. Damit soll ein besseres Ergebnis erzielt werden. Für beide Wahlregeln
betrachten wir sowohl die allgemeine Variante, als auch die konsistente Variante,
in der alle Manipulierenden geschlossen abstimmen. Wir schlagen einen Algorith-
mus vor, der die konsistente Variante der k-Borda-Manipulation in Polynomzeit
löst. Weiterhin stellen wir die Behauptung auf, dass bestimmte Varianten von na-
hezu konsistenter Manipulation polynomzeitlösbar bleiben und entwickeln weitere
Algorithmen für die nahezu konsistente Variante der k-Borda-Manipulation.

Wir evaluieren existierende Algorithmen von Bredereck u. a. [BKN17] für die
Manipulation von `-Bloc nach Laufzeit und Effektivität. Dazu verwenden wir
Wahldaten aus der realen Welt und generieren Testdaten nach verschiedenen Ver-
teilungen. Hierbei bestätigen wir die theoretischen Laufzeiten und können sie sogar
verbessern. Obwohl die allgemeine Variante deutlich schwieriger in der Berechnung
ist, stellen wir fest, dass in beiden Varianten ähnlich viele zur Kandidatur Stehende
durch eine Manipulation ausgetauscht werden.

Abstract

In our work we consider coalitional manipulation of two different voting rules,
k-Borda and `-Bloc, that are used in excellence-based multiwinner elections. In
coalitional manipulation a group of manipulators cast untruthful votes to be bet-
ter off in the election. For both voting rules we consider the consistent variant,
where all manipulators cast exactly the same vote, and the general variant, where
consistency is not required. We propose an algorithm to solve the manipulation
problem for k-Borda in polynomial time for the consistent variant. Moreover we
conjecture that almost-consistent variants stay polynomial-time solvable and de-
velop algorithms to solve almost-consistent variants of k-Borda manipulation.

We evaluate running times and effectiveness of `-Bloc manipulation by imple-
menting algorithms from the work of Bredereck et al. [BKN17] using both real-
world data and generated test data from different distributions. We are able to
confirm and even improve the running times. Although the inconsistent variant is
more computationally demanding, we observe that the average number of candi-
dates exchanged in a winning group is roughly the same for both variants.
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1 Introduction

In social choice theory, the question whether an election can be efficiently manip-
ulated comes naturally. In the coalitional manipulation setting, a group of manip-
ulative voters casts untruthful votes to be better off as a group. This setting is
also called strategic voting.

In this work, we study algorithms for the coalitional manipulation of `-Bloc and
k-Borda multiwinner elections in shortlisting applications. The work of Bredereck
et al. [BKN17] on `-Bloc serves as an inspiration for new algorithms for manipu-
lation of k-Borda. We provide an implementation of the algorithms proposed by
Bredereck et al. [BKN17] on GitHub.

Delivering algorithms for k-Borda is relevant, because k-Borda fulfills the prop-
erties of unanimity and committee monotonicity which are desirable properties for
shortlisting applications. We describe these properties more detailed in Section
1.1. Voting rules similar to k-Borda are also used in real-world applications such
as Formula 1 racing or in the Eurovision Song Contest.

In our model of coalitional manipulation we assume that the manipulative voters
have knowledge about all other voters’ preferences. Although this is rarely the case
in real-world applications, we made this choice because our goal is to study the
complexity of manipulation itself and not the complexity of guessing other voters’
votes. For missing knowledge about the other votes we refer to Endriss et al.
[End+16], Conitzer and Sandholm [CS02], and Scheuerman et al. [Sch+19].

In our work, we consider a variant of manipulation where all manipulators cast
exactly the same vote. In real-world applications this is often the case for example
if members in a political party want to show their common agreement. Assuming
consistency among the manipulators also makes computation easier.

We now give a small overview on the aspects and difficulties of multiwinner
elections and manipulation by using an example.

Example 1. A group of five people wants to give a collective gift to their friend.
They collected a list of five ideas that could be possible candidates for a gift. Since
they only want to get three things in total, they have to make a selection from
the candidates on the list. For choosing the three candidates, they want to use a
multiwinner voting rule, which takes all of their different preferences into account,
which are shown in Figure 1.1.

Each ordering of candidates in Figure 1.1 is a linear order. For example, Anh’s
preferences are a linear order �Anh and can be written as

P �Anh C �Anh A �Anh D �Anh T.
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1 Introduction

Figure 1.1: Possible candidates for a gift: chocolate cake C, drawing utensils D,
theater tickets T , flowerpot P , photo album A. The preferences are
noted in a descending order from the most preferred to the least pre-
ferred candidate. The two first positions in every voters’ preference are
printed in bold for the use in 2-Bloc.

Anh Bob Charlie Dimi Esme
P C T T D
C P A D T
A A C A P
D T D P A
T D P C C

Figure 1.2: The scores according to the election using 2-Bloc. The candidates
whose scores are printed in bold are the winning candidates.

2-Bloc scores
theater tickets T 3
chocolate cake C 2
drawing utensils D 2
flowerpot P 2
photo album A 1

An easy variant of considering all voters’ preferences would be to let every
voter choose a fixed number of their favorite candidates. In this example we fix
two approvals per voter to be distributed to the candidates. To determine the
winners, we compute the score for every candidate by summing up how many
voters approved the candidate and choose three candidates with the highest score.
This voting rule is called 2-Bloc. We chose 2-Bloc in this example because it makes
the outcome computed interesting with regards to ties and breaking ties. For 2-
Bloc, we computed the candidates’ scores in Figure 1.2. We can see that chocolate
cake, drawing utensils and flowerpot all have two approvals each. To select the
winning candidates, we have to use a tie-breaking method.

Bredereck et al. [BKN17, pp. 15–21] showed that breaking ties is an essential
part of coalitional manipulation and in some cases already NP-hard. In Chapter 4
we evaluate our implementation of their algorithm.

To resolve the tie in our example, we use lexicographic tie-breaking, which chooses
the candidates that are first in alphabetical order. Note that in lexicographic tie-
breaking it is important to fix a predefined order. We fixed alphabetical order in
this example, but there is no great meaning behind which candidate comes first
according to the alphabet. Thus, the chocolate cake and drawing utensils are
chosen from the tied candidates. This results in chocolate cake, drawing utensils
and theater tickets winning the election. In Chapter 2 we introduce more tie-
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1 Introduction

Figure 1.3: Anh and Bob’s modified votes (left) and the new 2-Bloc scores (winning
candidates’ scores in bold). The crossed out votes are the truthful
preferences from Figure 1.1.

Anh Bob
P C C C
C A P A
A P A P
D D T T
T T D D

2-Bloc scores
photo album A 3
theater tickets T 3
chocolate cake C 2
drawing utensils D 2
flowerpot P 0

breaking rules and explain how we model multiwinner elections and manipulation
formally. We now focus on how multiwinner elections can be manipulated and
how to evaluate the outcome of a manipulation for the manipulators.

Let us come back to our example, where two people from the group try to
manipulate the election. Anh and Bob are unhappy with the decision. They
are short of money and think that drawing utensils are too expensive a gift. They
would prefer to get the flowerpot or the photo album instead of the drawing utensils
and want to find a way to manipulate the election by voting insincerely. From
discussions among their friends, Anh and Bob know the preferences of the other
voters and how they will vote. They take their friends’ votes into account to
compute how they can manipulate. In Figure 1.3 we can see their new votes and
the resulting scores.

According to the new scores, the theater tickets and the photo album win the
election together with another of the tied candidates. Due to lexicographic tie-
breaking between the chocolate cake and the drawing utensils, the new winning
group is:

{theater tickets, photo album, chocolate cake}.

Since Anh and Bob’s main goal is to push drawing utensils out of the winning
group, they strategically vote for a candidate that outperforms all tied candidates.
Their vote would be considered as insincere because they actually prefer the flow-
erpot and the chocolate cake. By ranking the photo album first, they achieve a
better outcome than if voting sincerely.

An even better outcome for Anh and Bob would be to convince another voter,
for example Dimi, to join their manipulative group. If all three of them cast votes
as shown in Figure 1.4, then they can push the flowerpot into the winning group,
which they prefer over the photo album. In this case, Anh and Bob would not
even have to vote insincerely.

As we can see in Figure 1.1, Dimi prefers drawing utensils and the photo album
over the flowerpot. Anh and Bob can only convince her to change her vote in
return for a small chocolate cake that she receives from them. Anh and Bob think
that baking another chocolate cake to bribe Dimi is still less expensive than buying
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1 Introduction

Figure 1.4: Manipulators’ votes (left) and the new 2-Bloc scores (winning candi-
dates’ scores in bold). The crossed out preference is Dimi’s truthful
preference from Figure 1.1.

Anh Bob Dimi
P C T T
C P D P
A A A D
D T P A
T D C C

2-Bloc scores
flowerpot P 3
theater tickets T 3
chocolate cake C 2
drawing utensils D 1
photo album A 1

the drawing utensils. The overall outcome for all three of the manipulative voters,
Anh, Bob, and Dimi is very good because they can internally arrange themselves.

In Chapter 2 we introduce a measure to express how strongly a voter wants a
candidate to win. To make this measure more fine-grained than the mere position
in a voter’s preference, we also allow values that differ from the positions. We
call this measure the utility of a candidate. The utility can express both Anh and
Bob’s strong preference of pushing drawing utensils out of the winning group as
well as Dimi’s slight preference of drawing utensils over the flowerpot.

1.1 Motivation

For the singlewinner setting, where only one candidate is selected as winning can-
didate, there has been a lot of research in the past years [Dav+11] [BNW11] [CS02]
[BR16] [CW16], whereas research in the multiwinner setting is still sparse. In this
thesis we focus on the multiwinner setting.

In coalitional manipulation of singlewinner voting rules, one can always assume
that the manipulative voters agree on one distinguished candidate, which they
support to win the election. For multiwinner elections, where a group of candidates
is winning, this is not the case. In this variant, already determining the possible
goal of a manipulation is non-trivial.

For multiwinner elections, Faliszewski et al. [Fal+17, p. 28] propose excellence,
diversity, and proportional representation as different goals of voting rules. In this
work we focus on excellence-based voting rules, which refers to expert evaluation
by a particular group of voters. The goal is to select a candidate group of finalists,
a so called shortlist.

In shortlisting, SNTV and `-Bloc are natural voting rules. SNTV, single non-
transferable vote (1-Bloc) is a voting rule where each voter gives one approval to
her most preferred candidate, whereas in `-Bloc each voter gives one approval to
each of her ` most preferred candidates. In k-Borda, scores are given in descend-
ing order according to the positions in each voter’s preference. Both voting rules
`-Bloc and k-Borda are interesting because their scores can be trivially computed.
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1 Introduction

Let us compare the two voting rules. One desirable property is whether our vot-
ing rules extend the selected winning group when increasing the size of a winning
group without removing anyone from it. A voting rule that fulfills this property is
called committee monotone, which is the main normative principle for shortlisting
[Fal+17, p. 36].

While k-Borda fulfills committee monotonicity, for `-Bloc, we have to consider
the choice of `. A straightforward choice of ` would be to use the same number of
approvals as candidates we want to choose, so ` = k. This variant is called Bloc.
Unfortunately, Bloc is not committee monotone, whereas k-Borda and `-Bloc (with
a fixed `) fulfill committee monotonicity.

Another desirable property of scoring rules is unanimity. Scoring rules that
select a candidate group as the only winning group if all voters select this group
as their most preferred candidates are unanimous. Rules with this property use
the whole preference profile of all voters, which is a desirable property when using
preference-based elections. This is not the case for `-Bloc, because this rule only
uses the top ` preferences from each vote. Clearly, k-Borda uses the all information
from a preference profile and is unanimous.

Consequently, k-Borda, which fulfills both unanimity and committee monotonic-
ity [Elk+17, p. 31], is a good choice in shortlisting applications. Therefore this
thesis focuses on k-Borda manipulation and considers `-Bloc manipulation only in
Chapter 4 for some experiments.

In Chapter 2 we discuss how to evaluate manipulators’ utilities in a group of
manipulative voters, as there are different ways to take the different utilities of
the manipulators into account. In Chapter 3 we propose new algorithms for the
consistent and inconsistent variant of k-Borda and in Chapter 4 we implement,
compare, and evaluate different manipulation algorithms for `-Bloc.

1.2 Related Work

Manipulation of voting rules has been studied extensively in literature, but research
on coalitional manipulation of multiwinner elections is still sparse. For basics on
manipulation in social choice theory we refer to Baumeister and Rothe [BR16] and
Conitzer and Walsh [CW16].

Research on manipulation is often motivated by the implications of the Gibbard-
Satterthwaite Theorem, which states that under a non-dictatorial voting rule and
more than three candidates, there always exist elections in which a voter can be
better off by lying about her true preference. An algorithmic approach was firstly
studied by Bartholdi et al. [BTT89] and Bartholdi and Orlin [BO91]. Since then,
computational aspects on coalitional manipulation of different singlewinner voting
rules have been studied a lot, and were firstly initiated by Conitzer et al. [CLS03].
For the k-Borda voting rule we refer to Davies et al. [Dav+11], and Betzler et al.
[BNW11], who proved that Singlewinner Borda (1-Borda) is already NP-hard for
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1 Introduction

two or more manipulators and Conitzer and Sandholm [CS02] who characterized
the exact numbers for which manipulation becomes hard.

For `-Bloc, Lin [Lin11] showed that there is a polynomial time algorithm for the
singlewinner variant.

Meir et al. [Mei+08] and Procaccia et al. [PRZ07] firstly introduced (non-
coalitional) manipulation for multiwinner elections and showed that manipulation
of Bloc remains polynomial-time-solvable. Obraztsova et al. [OZE13] extended this
result for different tie-breaking rules and provide efficient algorithms for special
cases of multiwinner scoring rules that are tractable.

Bredereck et al. [BKN17] studied coalitional manipulation of the `-Bloc rule and
deliver algorithms for tie-breaking and for various settings, for example, where all
manipulators cast the same vote. Their algorithms will serve as an inspiration for
building algorithms for coalitional manipulation of the k-Borda rule.
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2 Preliminaries

In this chapter we explain how we model multiwinner elections and manipulations.
To go through the basic definitions, we recall Example 1.

Multiwinner Elections. An Election (C, V ) consists of a set C of m candidates,
and of a multiset V of n linear orders, which are called votes and represent the
voters’ preferences.

Recalling Example 1, we have a set of candidates C = {chocolate cake C,
drawing utensils D, theater tickets T , flowerpot P , photo album A} and a set of
votes V = {�Anh,�Bob,�Dimi,�Charlie,�Esme}.

To determine possible winning candidate groups, we use a multiwinner vot-
ing rule, which is a function, that, given an election E = (C, V ) and an inte-
ger k ∈ {1, ..., |C|}, outputs a family of co-winning size-k subsets of C, called k-
excellence-groups. We use the term k-egroup as an abbreviation for k-excellence-
group to stress that we are focusing on excellence-based elections.

In this work we consider committee scoring rules, multiwinner voting rules that
assign scores to candidates based on their positions in the votes. By score(c), we
denote the total number of points that a candidate c ∈ C obtains. A committee
scoring rule outputs co-winning k-egroups with the maximum total sum of scores.

Let the rank r(c) of a candidate c be the position in a vote.
Formally, let C be a set of candidates, V a set of votes, |V | = n. Let �j∈ V be
a vote that represents a voter j with 1 ≤ j ≤ n. We use the set of predecessors
{p ∈ C | p �j c} to define the rank rj of a candidate c ∈ C as follows:

rj(c) := |{p ∈ C | p �j c}|+ 1 (2.1)

In the introductory example we use a committee scoring rule, 2-Bloc, where
the score depends on whether a candidate is among the first two positions of a
vote or not. We now define the family of `-Bloc voting rules formally, which are
a generalization of this idea, together with k-Borda which is the other family of
voting rules we focus on in this work.

• `-Bloc assigns one point to each of the top ` < |C| candidates for each vote.

• k-Borda assigns m − i points to each candidate of rank i ∈ {1, ...,m} for
each vote.
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2 Preliminaries

Figure 2.1: Scores according to the election in Example 1 using 3-Borda and 2-Bloc
(winning candidates’ scores in bold).

3-Borda scores 2-Bloc scores
theater tickets T 12 3
chocolate cake C 9 2
drawing utensils D 9 2
flowerpot P 10 2
photo album A 10 1

Figure 2.2: Utility values of the manipulators Anh, Bob, and Dimi.

Anh Bob Dimi
C 11 11 5
D 0 0 7
T 1 1 8
P 11 11 6
A 9 8 7

Note that for both voting rules, k is the parameter for the winning group size.
Recalling Example 1, 2-Bloc with three winning candidates (k = 3) outputs

multiple winning k-egroups, namely {{T, P,D}, {T, P, C}, {T,C,D}}. We chose
one winning k-egroup by lexicographic tie-breaking in the introductary example.
When using 3-Borda for the same election, there is only one winning k-egroup,
{T, P,A} as we can see in Figure 2.1.

Coalitional Manipulation. To explain how we model manipulations of multiwin-
ner elections, we recall Example 1 of Anh and Bob voting insincerely to achieve a
better outcome.

Let E = (C, V ) be an election and r the number of manipulators. For each
manipulator i ∈ {1, ..., r} we define a utility function ui : C → N that outputs a
utility value for each candidate.

Recalling Example 1 and the manipulative group of Dimi, Anh, and Bob, when
using utility functions we are able to express more fine-grained preferences in
comparison to some position in a sincere vote of a manipulator. This is possible
because of the greater range of the utility values. The candidates also do not have
to be strictly ordered.

In Figure 2.2 we give an example for utility values that complement Example 1.
We can see that Bob and Anh’s utilities are polarized between chocolate cake, flow-
erpot, and photo album and the more expensive gifts, theater tickets and drawing
utensils. In comparison to that, Dimi’s utilities vary only slightly, which indicates
that Dimi does not have such a strong preference.

13



2 Preliminaries

Figure 2.3: Evaluation values for different k-egroups and evaluation functions
(highest values in bold).

k-egroup utilitarian egalitarian candidate-wise egalitarian
{T,C,D} 44 12 6
{T,C,A} 61 20 13
{T,C, P} 65 19 12

We now extend the single manipulator’s utility function to an evaluation function
that evaluates a k-egroup for a group of manipulators. The straightforward way to
do so is summing up all utility values. This variant is called utilitarian evaluation.

We observe that pushing the flowerpot into the winning k-egroup is the best
outcome for Anh, Bob and Dimi according to utilitarian evaluation (Figure 2.3).
According to Dimi’s utility function in Figure 2.2, she prefers drawing utensils
and the photo album over the flowerpot, which means that although the group is
better off, Dimi herself is worse off. In our example, Anh and Bob have to bribe
her to balance utilities within the manipulating group.

We define two other variants of evaluating manipulator’s utilities, the egalitarian
and candidate-wise egalitarian variant, to avoid single manipulators being worse
off.

Let C be a set of candidates, S ⊆ C be a k-egroup. Let U = {u1, ..., ur} be a
family of manipulator’s utility functions where ui : C → N and i ∈ {1, ..., r}. We
define the three evaluation functions eval ∈ {util, candegal, egal} as follows:

utilU(S) :=
∑
u∈U

∑
c∈S

u(c) (2.2)

egalU(S) := min
u∈U

∑
c∈S

u(c) (2.3)

candegalU(S) :=
∑
c∈S

min
u∈U

u(c) (2.4)

The egalitarian variant considers the utility of the least satisfied candidate of a
k-egroup by summing up only this candidate’s utilities.

The evaluation values for the utilities from Figure 2.2 are depicted in Figure 2.3.
Different from the utilitarian evaluation, {T,C, P} is not the most preferred k-
egroup anymore, because Dimi’s utilities for this k-egroup are very low. Instead,
the manipulators would decide to push the photo album into the k-egroup.

The same result holds for using the candidate-wise egalitarian evaluation func-
tion. In this variant, we consider the least satisfied manipulator for every candidate
of a k-egroup (Figure 2.3). As observed by Bredereck et al. [BKN17, p. 10], we can
assume that there is a single utility function over the candidates in the utilitarian
and candidate-wise egalitarian variant.

14



2 Preliminaries

We call veval(c) the value of a candidate c ∈ C, eval ∈ {util, candegal}.

vutil(c) :=
∑
u∈U

u(c) (2.5)

vcandegal(c) := min
u∈U

u(c) (2.6)

The value of a candidate is defined for the utilitarian and candidate-wise egalitarian
variant, which simplifies the core of these problems and can be exploited by our
algorithms.

Tie-Breaking. In Example 1 we explained the necessity of tie-breaking rules and
proposed lexicographic tie-breaking to resolve tie situations. Before we introduce
two more tie-breaking methods, we formally define tie-breaking rules.

A multiwinner tie-breaking rule is a mapping that, given an election and a
family of co-winning k-egroups, outputs a single k-egroup. Candidates that are
in all winning k-egroups are called confirmed candidates C+, whereas candidates
that do not appear in any k-egroup are called rejected candidates C−. Candidates
that appear in some k-egroups are called pending candidates P .

We now formally define three families of tie-breaking rules, Flex,F eval
opt ,F eval

pess:
A tie-breaking rule F belongs to Flex if and only if ties are broken lexicograph-

ically with respect to some predefined order >F of the candidates from C. That
is, F selects all candidates from C+ and the top k− |C+| candidates from P with
respect to >F .

A tie-breaking rule F belongs to F eval
opt , we say F is an optimistic tie-breaking

rule, if and only if the evaluation function of the winning k-egroup is as high as
possible. Formally, a k-egroup S is selected such that C+ ⊆ S ⊆ (C+ ∪ P ) and
there is no other k-egroup S ′ with C+ ⊆ S ′ ⊆ (C+ ∪ P ) and eval(S ′) > eval(S).

A tie-breaking rule F belongs to F eval
pess, we say F is a pessimistic tie-breaking

rule, if and only if the evaluation function of the winning k-egroup is as low as
possible. Formally, a k-egroup S is selected such that C+ ⊆ S ⊆ (C+ ∪ P ) and
there is no other k-egroup S ′ with C+ ⊆ S ′ ⊆ (C+ ∪ P ) and eval(S ′) < eval(S).

Although lexicographic tie-breaking seems to be more simple than optimistic or
pessimistic tie-breaking, Bredereck et al. [BKN17, p. 13] showed the following

Proposition 2.1. For every tie-breaking rule F eval
bhav with bhav ∈ {opt, pess},

eval ∈ {util, candegal}, and fixed utility functions it is possible to find a tie-breaking
rule F ∈ Flex in polynomial time such that F and F eval

bhav have the same output for
all possible elections [BKN17, p. 13].

According to Proposition 2.1, when using bhav ∈ {util, candegal} it is suffi-
cient to only prove Theorem 3.1 and 3.2, and Conjecture 3.1 from Chapter 3 for
lexicographic tie-breaking.

Having tie-breaking rules and utility functions defined, we can define the strength
of a candidate.
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2 Preliminaries

Strength Order. Like Bredereck et al. [BKN17, p. 26] do in their algorithm for
consistent manipulation of `-Bloc, we also introduce a strength order >S . It sorts
the candidates in a descending order with respect to the score they receive from
the non-manipulative votes and, as a second criterion, according to their position
in >F . We say that a candidate c is stronger than candidate c′ if c >S c

′ according
to the non-manipulative votes.

The computational problem of Coalitional Manipulation is stated as fol-
lows. Let R be a multiwinner voting rule and F be a multiwinner tie-breaking
rule.

R-F-Coalitional Manipulation (R-F-eval-CM),
eval ∈ {util, egal, candegal}.
Input: An election (C, V ), an egroup-size k < |C|, r manipulators repre-

sented by their utility functions U = {u1, ..., ur} where ui : C → N
and a non-negative, integral evaluation threshold q

Question: Is there a size-r multiset W of manipulative votes over C such
that k-egroup S ⊂ C wins the election (C, V ∪W ) underR and F ,
with eval(S) ≥ q?

Maximum Weight Perfect Matchings. Let G = (V,E,w) be a weighted graph
and w : E → R be a weight function.

A matching of G is a set M ⊆ E(G) of pairwise disjoint edges. We call a
matching M perfect, if every vertex of the graph is incident to exactly one edge
of M .

The Maximum Weight Matching problem is to find a matching M such that
the total edge weight w(M) =

∑
e∈M w(e) is maximized among all matchings. In

Chapter 3 we use the Maximum Weight Bipartite Perfect Matching,
abbreviated by MWBPM, which maximizes the edge weights and also requires
every vertex of the bipartite graph G to be matched. MWBPM can be solved in
O(mn) time [DS12, p. 2].

The Knapsack Problem. In the Knapsack Problem we are given an item
set N consisting of n items j with profit pj and weight wj, and a capacity value c.
The objective is to select a subset of N such that the total profit of the selected
items is maximized and the total weight does not exceed c [KPP04, p. 2].

Whereas the general Knapsack Problem is known to be NP-complete, ver-
sions exist that are efficiently computable.

In this work we use the Exact k-Item Knapsack Problem (E-kKP), where
the number of items in a feasible solution must be exactly equal to k. This variant
can be solved in O(k2mr) time [KPP04, p. 272].
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3 Manipulation of the k-Borda Rule

In this chapter we focus on the k-Borda voting rule, which is known to be compu-
tationally hard already in the single winner case for at least two manipulators, but
solvable in polynomial time for one manipulator [BNW11] [Dav+11]. This leads
us to the variant of k-Borda manipulation where manipulators vote consistently.

In Section 3.1 we show that the consistent variant can be solved in polynomial
time in the utilitarian and candidate-wise egalitarian case.

In Section 3.2 we extend our results to a special variant of inconsistent ma-
nipulation, which we call One-Swap-CM and its generalization, which we call
Almost-Consistent-CM. Both variants are similar to the consistent variant.
Almost-Consistent-CM allows the manipulators to swap candidates in the
vote of one manipulator while the other manipulators vote consistently. In Section
3.2.2 we conjecture that Almost-Consistent-CM of k-Borda is solvable in poly-
nomial time when fixing the number of positions in the vote of one manipulator
that differs from the consistent vote that the other manipulators cast.

3.1 Consistent k-Borda Manipulation

In this section we propose an algorithm to solve the consistent variant of k-
Borda manipulation using Maximum Weight Bipartite Perfect Matching
(MWBPM), which can be solved in O(mn) time [DS12, p. 2], with m denoting the
number of edges, n denoting the number of vertices in each group. We define the
algorithm in Section 3.1.1 and prove the correctness of the algorithm separately in
Section 3.1.2.

The consistent variant of k-Borda manipulation is stated as follows:

k-Borda-F -eval-Coalitional Manipulation with consistent manipulators
for eval ∈ {util, candegal} (Consistent-CM)

Input: An election (C, V ), an egroup size k < |C|, r manipulators repre-
sented by their utility functions U = {u1, ..., ur} where ui : C → N
and a non-negative, integral evaluation threshold q.

Question: Is there a size-r multiset W of identical manipulative votes over C
such that some k-egroup S ⊂ C wins the election (C, V ∪ W )
under F with eval(S) ≥ q?

17



3 Manipulation of the k-Borda Rule

Theorem 3.1. Let m be the number of candidates, n the number of voters,
k the size of a desired egroup, and r the number of manipulators. One can solve
Consistent-CM for k-Borda in time O(m(n + r + m2(m + n))) for any eval
∈ {util, candegal} and F ∈ {Flex,F eval

opt ,F eval
pess}.

To solve Consistent-CM, the proposed Algorithm 3.1 outputs a single linear
order of candidates. In the consistent setting, a manipulation is fully described by
one linear order because all manipulators cast exactly the same vote.

We prove Theorem 3.1 for a lexicographic tie-breaking rule F ∈ Flex. This is
sufficient since, using Proposition 2.1, one can generalize the proof for the cases
of utilitarian and candidate-wise egalitarian variants. Before we describe how the
algorithm works, we introduce some concepts which are used in the algorithm.

A Candidate’s Gain and the Dropped Candidate. We define the gain of a
candidate as a mapping g from ranks to the number of additional points that the
candidate gets at that rank. We also define the maximal gain gmax. Formally, the
gain g : {1, ...,m} → N of Consistent-CM and gmax can be defined as follows:

g(x) := r · (m− x) (3.1)

gmax := max{g(1), ..., g(m)} (3.2)

For Consistent-CM we observe that gmax = r · (m− 1) = g(1). We define Hi as
the set of the i ∈ N ranks with the highest-valued gains as follows:

Hi ⊆ {1, ...,m} with |Hi| = i and ∀h ∈ Hi, j ∈ {1, ...,m}\Hi : g(h) ≥ g(j) (3.3)

For Consistent-CM, the gain is monotonically decreasing, so we have Hi =
{1, ..., i}.

We also introduce the concept of the dropped candidate, the strongest candidate
that will not be part of the winning k-egroup. When fixing a dropped candidate d
one also has to consider the additional gain g(id) that the dropped candidate gets
when being ranked at rank id by the manipulators.

3.1.1 Algorithm for Consistent k-Borda Manipulation

Algorithm 3.1. The basic idea of our algorithm is to fix certain parameters
of a solution and reduce the resulting subproblem to the MWBPM problem.
The algorithm iterates through all possible value combinations of the following
parameters:

• the dropped candidate d and

• the position id that d is ranked at by the manipulators.
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3 Manipulation of the k-Borda Rule

Fixing a combination of these two values also induces the final score z of the
dropped candidate when being ranked at id. We use z further in the definition of
our graph by partitioning candidates as follows.

The candidates that already have more than z points, or have the same amount
of points and win by tie-breaking rule F are called kept candidates C+. We denote
the number of kept candidates by t := |C+|. Let C− be the set of candidates that
cannot outperform d even when getting gmax additional points from the manip-
ulators. Let C∗ be the set of candidates with less than z points, or with score
exactly z that loose against d according to the tie-breaking rule F but can still
outperform d when getting additional points from the manipulators. We formally
define C+, C∗, and C− as follows and call C− the rejected candidates.

C+ :={c ∈ C \ {d} | scoreV (c) > z} ∪ {c ∈ C \ {d} | scoreV (c) = z and c >F d}
C∗ :={c ∈ C \ (C+ ∪ {d}) | scoreV (c) + gmax > z} (3.4)

∪ {c ∈ C \ (C+ ∪ {d}) | scoreV (c) + gmax = z and c >F d}
C− :=C \ ({d} ∪ C+ ∪ C∗)

In each iteration of the algorithm, we check if the choice of d and id is feasible.
We skip an iteration if |C+| > k or |C∗| < k− t, meaning that there are either too
many kept candidates or that there are not enough candidates that can outperform
d to form a size-k winning egroup. We then find an ordering R of candidates by
finding a matching between candidates C \ {d} and ranks M := {1, ....,m} \ {id}
in the following graph.

Let Gid
d = {C \ {d} ∪ M,E} be a bipartite graph with E = E0 ∪ E+ ∪ E−,

where E0, E+ and E− as follows:

E0 :={{c, j} | c ∈ C+ ∪ C−, j ∈M \Hk−t},
E+ :={{c, j} | c ∈ C∗, j ∈M ∩Hk−t, c outperforms d with g(j) points}, (3.5)

E− :={{c, j} | c ∈ C∗, j ∈M \Hk−t, c does not outperform d with g(j) points}.

Let f : E → R be the weight function. The weight of an edge {c, j} ∈ E is
defined as follows:

f({c, j}) =

{
veval(c) if {c, j} ∈ E+,

0 otherwise.
(3.6)

We observe, that a solution to our MWBPM-instance uniquely defines an or-
dering of candidates in C \ {d} by matching each candidate to some rank. After
finding a solution of MWBPM and the corresponding ordering R, the manipula-
tors achieve an outcome that maximizes their utilities for the choice of t if they
vote consistently with R.

For every iteration of the algorithm, we compute the evaluation function for the
resulting k-egroup S ⊆ C to pick the ordering from an iteration that maximizes
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3 Manipulation of the k-Borda Rule

Figure 3.1: The non-manipulative preference profile for Example 2 and the result-
ing Borda scores (winning candidates’ scores in bold).

v1 v2 3 v4 v5 v6 v7 v8 v9 v10 v11 v12

a a a a a a a a a b b b
b b b b c c c c c c c d
d d d d d d d d b a d c
c c c c b b b b d d e e
e e e e e e e e e e a a

s(a) = 38

s(b) = 30

s(c) = 27

s(d) = 23

s(e) = 2

the evaluation function. Note, that it is not sufficient to compare the sum of the
edge weights for every iteration, since we also have to take the value of the kept
candidates into account.

To demonstrate how the construction of the graph works, we show the following
example.

Example 2. Let C = {a, b, c, d, e} be the candidates of an election and n = 12 be
the number of non-manipulative votes. We fix k = 3 and r = 2. We consider the
distribution of non-manipulative scores by voters {v1, ..., vn} depicted in Figure 3.1.
The graph Gid

d in Figure 3.2 is constructed in the iteration t = 1 by Algorithm 3.1,
which means that candidate a is the kept candidate and b is the dropped candidate.

3.1.2 Proof of Theorem 3.1

In every solution of Algorithm 3.1, all candidates that are pushed into the k-
egroup are always ranked at positions where they have the highest-valued gains in
the votes of the manipulators. We defined these positions in Hk−t in Equation 3.3.

There might also exist different solutions, that cannot be found by Algorithm 3.1.
For our previous Example 2, Figure 3.3 shows a different consistent vote that the
manipulators could cast, which would also result in S = {a, c, d} winning the
election and cannot be found by Algorithm 3.1.

However, Algorithm 3.1 always finds a solution where the candidates that are
pushed into the k-egroup get as many points as possible, even if they could also be
ranked lower and would still win. We indeed show that the approach Algorithm 3.1
takes is sufficient in the following Lemma 3.1.

Lemma 3.1. For every optimal winning k-egroup S ⊂ C and its number t of
kept candidates there exists an ordering R that can be found by Algorithm 3.1 as
a matching in the graph in iteration t and that results in S winning the election.

Proof of Lemma 3.1. Let S ⊂ C be a k-egroup that gives the optimal outcome of
the manipulation according to eval(S). Let t be the number of kept candidates
in S. Let R be an ordering of candidates that results in S winning the election if the
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3 Manipulation of the k-Borda Rule

Figure 3.2: Example graph Gid
d for t = 1 in Algorithm 3.1 with dropped candidate b

and its position ib = 5, kept candidate C+ = {a}, and sets C∗ = {c, d},
and C− = {e}.

1 8

2 6

3 4

4 2

a

d

c

e

veval(d)

veval(c)

veval(c)

All
weights of
edges from
k− t+ 1 to
m are 0.

All
weights
of edges
from 1 to
k − t use
veval.

additional
score

candidates rank

edge weight 0

There is no edge from d to rank 2 because d cannot outperform the

dropped candidate b with 6 additional points. Candidate c can outper-

form b with either 8, 6 or 4 additional points. This is why there are

edges {c, 1}, {c, 2}, but no edge from c to 3 because 3 /∈ Hk−t. Candi-

date a is the kept candidate and only has 0-weighted edges to ranks lower

than k − t. The same holds for e because it is too weak to outperform b.

manipulators vote consistently according to R. Suppose R cannot be represented
as a matching in the respective graph Gid

d . This is only the case if some edge {ci, j}
is missing in Gid

d . By the definition of the graph, edge {ci, j} is only missing if one
of the following holds:

1. j ∈ Hk−t and candidate ci cannot outperform the dropped candidate with g(j)
additional points,

2. j /∈ Hk−t and candidate ci, that is not a kept candidate, nor a rejected
candidate, ci ∈ C∗, can outperform d with g(j) additional points, or

3. j ∈ Hk−t and candidate ci is a kept or rejected candidate, ci ∈ C+ ∪ C−.

If the first condition holds, then giving g(j) additional points to ci does not result
in pushing ci into the winning k-egroup. In this case, there must be another
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3 Manipulation of the k-Borda Rule

Figure 3.3: Two consistent votes that the manipulators could cast, which both
result in S = {a, c, d} winning the election for the iteration t = 1 and
k = 3 (winning candidates’ scores in bold). Vote 2 cannot be found
by the algorithm. Note that b is the dropped candidate and a already
outperforms b in the non-manipulative preference profile in Figure 3.1.
Vote 1 results from Example 2 when using Algorithm 3.1.

vote 1 vote 2
d d
c a
a c
e e
b b

s1(a) = 42

s1(c) = 33

s1(d) = 31

s1(b) = 30

s1(e) = 4

s2(a) = 44

s2(c) = 31

s2(d) = 31

s2(b) = 30

s2(e) = 4

candidate cg that gets pushed into the winning k-egroup with less than g(k − t)
additional points, i.e., cg is ranked at a lower position than k− t in R. Otherwise,
the number of kept candidates would differ from our assumption. We define a new
ordering R′ with the same positions of candidates, except swapping positions of ci
and cg. Voting with R′ results in the same k-egroup S because cg still gets pushed
into the k-egroup after gaining more points than before and ci is still not part of
the k-egroup because the score of ci is lower.

If the second condition holds, then giving g(j) additional points to ci results in
pushing ci into the winning k-egroup. In this case there must be another candi-
date cg that does not get pushed into the winning k-egroup with g(k−t) additional
points or more, i.e., cg is ranked at k − t or a greater position. With a similar
argument as seen before, we can swap positions of these two candidates in a new
ordering R′.

In the third case, candidate ci is a kept or rejected candidate. So either ci was
already part of the winning group, before the manipulative votes were cast, or ci
cannot be part of the winning k-egroup. This means that there must be another
candidate cg that gets pushed into the winning egroup with less than g(k − t),
i.e., cg is ranked at a lower position than k − t in R. Otherwise the dropped
candidate or the k-egroup-size would differ from our assumption. We define a new
ordering R′ with the same positions of candidates, except swapping positions of ci
and cg. Voting with R′ results in the same egroup because cg is still part of the
winning group when getting more points than before and ci is also either part or
not part of the winning group by the definition of a kept or rejected candidate.

We showed that for every ordering R we can find an R′ that results in the same
k-egroup winning and that can be represented as a matching in some of the graphs
constructed by Algorithm 3.1.
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3 Manipulation of the k-Borda Rule

Since Algorithm 3.1 always considers orderings that result in the optimal k-
egroup winning, we have to make sure that the algorithm also chooses the solution
that results in the k-egroup with the highest value of the evaluation function
winning.

Lemma 3.2. For every optimal winning k-egroup S ⊂ C, its number t of kept
candidates and an ordering R, which is the solution of Algorithm 3.1 and leads to
k-egroup S ′ ⊂ C winning with its number of kept candidates t′, eval(S ′) cannot be
lower than eval(S) in our optimal solution.

Proof of Lemma 3.2. Suppose eval(S ′) < eval(S) for the same number of kept
candidates, t = t′ and ordering R′ that is output of Algorithm 3.1 in iteration t′

and leads to S ′ winning. According to Lemma 3.1, we can find an ordering R in
the same graph that results in S winning the election. If eval(S ′) < eval(S) then
the sum of the edge weights from R′ is lower than of R. We can only assume this
because t = t′ which means that the evaluation function of the kept candidates
does not change. Hence, the algorithm for MWBPM must choose R instead of R′.

Suppose t 6= t′. For every iteration of Algorithm 3.1, an ordering with the highest
value of the evaluation function of the resulting k-egroup is found. According to
Lemma 3.1, Algorithm 3.1 can find an ordering R that leads to S winning in
a different iteration. Since the algorithm computes the winning k-egroup and
its evaluation function for every iteration, Algorithm 3.1 must choose R instead
of R′.

Proof of Theorem 3.1. Consider an instance of Consistent-CM with an election
E = (C, V ) where C is a candidate set and V is a set of non-manipulative votes,
an egroup size k, r manipulators, and a tie-breaking rule F .

From Lemma 3.1 and 3.2 we can conclude the correctness of Theorem 3.1.
To analyze the running time of Algorithm 3.1, several steps need to be consid-

ered. At the beginning, we have to compute the scores that the candidates get from
the non-manipulative voters and then sort the candidates to obtain the strength
order >S. Computing >S takes O(`n+m logm) time. We also compute the values
of all candidates, which takes O(mr). We have m possible choices of a dropped
candidate. For each such choice there are m possible values of additional scores
by the manipulators because in the consistent variant the approvals are fixed to
s ∈ {r · (m− 1), r · (m− 2), ..., 0}. This makes at most m2 possible combinations
of a dropped candidate and its score. For every of these combinations, we have to
construct the graph’s adjacency matrix which will be an input of the MWBPM
algorithm and takes O(m2) time. MWBPM can be solved in O(mn) time [DS12,
p. 2]. Summed up, the overall running time is O(m(n+ r +m2(m+ n))).
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Figure 3.4: Non-manipulative scores on the left, utilities for manipulators m1

and m2 on the right for Example 3.

s(a) = 17

s(b) = 14

s(c) = 11

s(d) = 7

s(e) = 6

s(f) = 5

um1 um2 um3

a 1 1 1
b 1 1 1
c 1 1 1
d 9 10 10
e 11 10 10
f 10 12 10

3.2 Inconsistent k-Borda Manipulation

In consistent manipulation, the manipulators are limited to certain values of ad-
ditional points that they can give to a candidate. Possible scores are in s ∈
{0, ..., r · (m − 1)} for ranks i ∈ {0, ...,m − 1}, where m denotes the number of
candidates and r the number of manipulators. For example, for two manipulators
and four candidates, only values of additional points s ∈ {0, 2, 4, 6} are possi-
ble. The limited possibilities of a manipulation in the consistent setting simplifies
computation, which was exploited in Section 3.1.

In this section we focus on a variant of inconsistent manipulation, where all
manipulators vote consistently except one manipulator, which is allowed to modify
her vote by swapping candidates. The number of positions that one manipulator
is allowed to change from the consistent vote that the other manipulators cast,
serves as a measure on how similar a manipulation is to the consistent variant.

Hence at first we consider a variant of inconsistent manipulation that allows one
swap and how to computationally solve this variant in Section 3.2.1. Afterwards,
we generalize this to a variant that allows multiple swaps in Section 3.2.2.

3.2.1 k-Borda Manipulation with One Swap

To explain the variant of k-Borda manipulation that allows one swap we start with
a small example.

Example 3. In Figure 3.4 we fix non-manipulative scores and utility functions for
three manipulators m1,m2 and m3, candidates C = {a, b, c, d, e, f}, k = 3, and
lexicographic tie-breaking.

Although d, e, f are the most favored candidates by the manipulators, not all
three of them can win in the consistent variant. Candidates e and f , that are
more favored than d can still win. Casting votes consistently, e and f get pushed
into the k-egroup, as we can see in Figure 3.5. In the consistent variant it is not
possible to give more than 9 points to all three of, d, e, and f because, as explained
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3 Manipulation of the k-Borda Rule

Figure 3.5: Consistent and inconsistent manipulations for Example 3 and the pref-
erence profile in Figure 3.4.

(a) Scores by the manipulators in the consistent case

m1 m2 m3

f f f
e e e
d d d
c c c
b b b
a a a

old score manipulative score total score
a 17 0 17
b 14 3 17
c 11 6 17
d 7 9 16
e 6 12 18
f 5 15 20

(b) Scores by the manipulators in the inconsistent case

m1 m2 m3

f f d
e e e
d d f
c c c
b b b
a a a

old score manipulative score total score
a 17 0 17
b 14 3 17
c 11 6 17
d 7 11 18
e 6 12 18
f 5 13 18

before, the score s has to be in s ∈ {0, 3, 6, 9, 12, 15}. In this case, the outcomes
for the manipulators are {a, e, f}, {a, d, f} or {a, d, e} winning the election. Their
utilities for the possible k-egroups are util({a, e, f}) = 66, util({a, d, f}) = 64 and
util({a, d, e}) = 63. Note that a can be exchanged by b or c, because they have
the same utility values.

In the inconsistent scenario, the manipulators can support d, e and f and push
all three of them into the winning k-egroup. They can do this by swapping the
first and third position in one manipulator’s vote, so the possible scores are in s ∈
{0, 3, 6, 11, 12, 13}. The evaluation value of the winning k-egroup in that case
would be util({d, e, f}) = 92. To achieve this, they can cast their votes as in
Figure 3.5.

Coalitional Manipulation with One Swap. In this variant, all manipulators
cast exactly the same vote except one manipulator. This manipulator is allowed
to choose two ranks i, j, such that 1 ≤ i ≤ j ≤ m, and to swap the candidates
on these ranks. The vote she casts has the same candidate on rank i as the other
manipulators on rank j and vice versa. We now formally define the variant that
allows one swap.
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3 Manipulation of the k-Borda Rule

k-Borda-F -eval-Coalitional Manipulation with One Swap for eval ∈
{util, candegal} (One-Swap-CM)

Input: An election (C, V ), an egroup size k < |C|, r manipulators repre-
sented by their utility functions U = {u1, ..., ur} where ui : C → N
and a non-negative, integral evaluation threshold q.

Question: Is there a size-r multiset W of manipulative votes over C such
that (r−1) manipulators vote according to �, a linear order on C,
and one manipulator votes according to �i,j, that is emerging from
swapping positions i, j in � for two fixed ranks i, j, such that 1 ≤
i ≤ j ≤ m , and some k-egroup S ⊂ C wins the election (C, V ∪W )
under F with eval(S) ≥ q?

Let r, ri,j : C → {1, ...,m} be two rank functions defined in Equation 2.1 of � and
�i,j respectively. For two candidates c, d ∈ C and any other candidate e ∈ C\{c, d}
the following holds:

r(c) = i = ri,j(d),

r(d) = j = ri,j(c),

r(e) = ri,j(e).

To solve One-Swap-CM, we can reuse the idea of finding a matching on a
bipartite graph with candidates and positions from Algorithm 3.1.

Theorem 3.2. Let m be the number of candidates, n the number of voters, k the
size of a desired egroup, and r the number of manipulators. One can solve One-
Swap-CM in time O(m(n+ r+m4(m+ n))) for any eval ∈ {util, candegal} and
F ∈ {Flex,F eval

opt ,F eval
pess}.

Proof. We propose an algorithm for One-Swap-CM that reuses the idea from
Algorithm 3.1.

Algorithm 3.2. The algorithm iterates through all possible value combinations
of the following parameters:

• two ranks i, j, such that 1 ≤ i ≤ j ≤ m, that are swapped by one manipula-
tor,

• the dropped candidate d, and

• the position id that d is ranked at by (r − 1) manipulators.

We now define a gain mapping gi,j. For each rank it assigns the number of addi-
tional points that a candidate gets at that rank.

Let gi,j : {1, ...,m} → N be as follows:

gi,j(x) :=


r(m− x)− (j − i) if x = i,

r(m− x) + (j − i) if x = j,

r(m− x) otherwise.

(3.7)
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We define Hk−t as the set of the k− t ranks with the highest-valued gains from gi,j
and gmax as in Equation 3.2. Note that gi,j might not be monotonically decreasing,
so we do not necessarily have Hk−t = {1, ..., k − t}.

Fixing these values allows us to compute the final score z of the dropped can-
didate and the sets C+, C−, and C∗ as defined in Equations 3.4. Note that the
computation of z might also depend on the ranks i and j, so z := gi,j(id).

We skip an iteration if |C+| > k or |C∗| < k− t. We denote the number of kept
candidates by t = |C+|.

Let Gid
d = (V \ {d} ∪M,E) be a graph with M = {1, ...,m} \ {id}, edges E =

E0 ∪ E+ ∪ E− defined in Equation 3.5, and edge weights defined in Equation 3.6
in the definition of Algorithm 3.1. We now solve the MWBPM problem on Gid

d

to obtain the order �. By the choice of i and j that are fixed in every iteration,
we also obtain �i,j.

For every iteration we find orderings � and �i,j and compute the winning k-
egroup and its evaluation function. The algorithm chooses the orderings such the
evaluation function is maximized.

Correctness. We first ensure that every optimal k-egroup S ⊂ C is considered
by Algorithm 3.2. To show this we make sure that for every optimal S, there
are �,�i,j that can be found by our algorithm, such that voting with �,�i,j

results in S winning. This means that � can be respresented in the graph Gid
d for

an iteration of Algorithm 3.2 using the gain function gi,j. The second ordering �i,j

can be obtained by swapping i and j in � which are fixed in the iteration.
In Algorithm 3.2 we ensure by the definition of the graph Gid

d that the candidates
that get pushed into the k-egroup always get ranked at the ranks with the highest
gain. Although the new mapping gi,j might not be monotonically decreasing, Hk−t
contains the ranks with the highest gain.

Let S ⊂ C be a k-egroup with an optimal outcome of One-Swap-CM according
to eval(S). Let �,�i,j be orderings that result in S winning if (r−1) manipulators
vote with � and one manipulator votes with �i,j. Suppose that � cannot be
represented as a matching in our graph, which only happens if some edge {cx, y}
is missing in the graph Gid

d . This is only the case if one of the following holds:

1. y ∈ Hk−t and candidate cx cannot outperform the dropped candidate with gi,j(y)
additional points,

2. y /∈ Hk−t and candidate cx is neither kept nor rejected candidate, cx ∈ C∗
and can outperform d with gi,j(y) additional points, or

3. y ∈ Hk−t and candidate cx is a kept or rejected candidate, cx ∈ C+ ∪ C−.

For the first and the third case, when giving gi,j(y) additional points to cx does
either not result in pushing cx into the winning k-egroup, or cx is already part of
the winning group before casting manipulative votes. We swap the position of cx
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with some cg that gets pushed into the winning k-egroup with less than gi,j(k− t)
additional points and obtain orderings �′ and �′i,j. Voting with �′ and �′i,j results
in S winning. A candidate cg exists because of the choice of t in our iteration.

If the second condition holds, then giving gi,j(y) additional points to cx re-
sults in pushing ci into the winning k-egroup. In this case there must be another
candidate cg that does not get pushed into the winning k-egroup with gi,j(k−t) ad-
ditional points or more. We swap candidates cx and cg to obtain new orderings �′
and �′i,j.

Let S ∈ C be the optimal winning k-egroup for an election E = (C, V ). Suppose
Algorithm 3.2 with the mapping in Equation 3.7 outputs orderings�,�i,j that lead
to k-egroup S ′ winning the election such that eval(S ′) < eval(S).

If S has the same amount of kept candidates t, as S ′, by the first part of our
proof there must be a matching that represents S in Algorithm 3.2 for the iteration
of t. So S must be chosen in the same iteration of the algorithm.

If S has a different amount of kept candidates t, then our algorithm also must
take t into account because it iterates over all possible values of t. Then S must
be found in a different iteration of the algorithm.

Running Time. Algorithm 3.2 only differs in running time from Algorithm 3.1
by iterating over the positions to be swapped. This makes a factor or m2 for the
number of iterations. Thus, the overall running time is O(m(n + r + m4(m +
n))).

3.2.2 k-Borda Manipulation with Multiple Swaps

To extend manipulation with one swap to more swaps, we use a metric d that
counts the number of disagreements between two ranking lists �1,�2 on the can-
didate set C which we define as follows:

d(�1,�2) = |{c ∈ C | r�1(c) 6= r�2(c)}|.
We use our metric d to define the problem statement of the almost-consistent

variant of k-Borda manipulation:

Almost-Consistent-k-Borda-F -eval-Coalitional Manipulation for
eval ∈ {util, candegal} (Almost-Consistent-CM)

Input: An election (C, V ), an egroup size k < |C|, the number ` of posi-
tions that may differ, r manipulators represented by their utility
functions U = {u1, ..., ur} where ui : C → N and a non-negative,
integral evaluation threshold q.

Question: Is there a size-r multiset W of manipulative votes over C and
two linear orders �1,�2 with d(�1,�2) ≤ `, such that there is a
manipulator mswap that votes with �2 and all other manipulators
vote with �1 and some k-egroup S ⊂ C wins the election (C, V ∪
W ) under F with eval(S) ≥ q?
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3 Manipulation of the k-Borda Rule

Conjecture 3.1. Let m be the number of candidates, n the number of voters, k the
size of a searched egroup, ` the number of positions that may differ and r the num-
ber of manipulators. One can solve Almost-Consistent-CM in polynomial
time for any eval ∈ {util, candegal} and F ∈ {Flex,F eval

opt ,F eval
pess} with ` being con-

stant.

Algorithm 3.3. To solve Almost-Consistent-CM we can use the MWBPM.
The algorithm for Almost-Consistent-CM iterates through all possible value
combinations of the following parameters:

• a set of ` distinct ranks L = {r1, ..., r`} ⊆ {1, ...,m} that may differ in �1

and �2,

• a permutation h : {r1, ..., r`} → {r1, ..., r`},

• the dropped candidate d, and

• the position id that d is ranked at by (r − 1) manipulators.

The algorithm iterates over all possible permutations h : {r1, ..., r`} → {r1, ..., r`} of
the chosen ` ranks, including the identity, where no swaps are performed, because
we want to cover all possible manipulations with up to ` positions that differ from
the consistent vote.

Similar to the gain function defined in Equation 3.7 we can now compute a
new gain function gh : {1, ...,m} → N for at most ` positions that differ from the
consistent vote using the permutation h that we fixed.

gh(x) :=

{
r(m− x) if x /∈ L,

(r − 1)(m− x) +m− h(x) otherwise.
(3.8)

As in Equation 3.3, we define Hk−t as the set of the k− t ranks with the highest-
valued gains from gh and the maximal gain gmax as in Equation 3.2. Let Gid

d =
(V \ {d} ∪M,E) a graph with edges E = E0 ∪E+ ∪E− defined in Equations 3.5,
and edge weights defined in Equation 3.6. We solve the MWBPM problem to
obtain the order � on Gid

d and �h by applying h on �. Then d(�,�h) ≤ ` holds
by the choice of L and h.

Running Time. Since we have to guess ` distinct ranks and all possible permu-
tations, we have a factor of m` :=

(
m
`

)
`! in our running time. This then makes

a running time of O(m(n + r + m2m`(m + n))). We leave the proof of correct-
ness subject of future research, but remark that it is similar to the two proofs of
Theorems 3.1 and 3.2 that we have seen above.

According to our conjecture, we can solve Almost-Consistent-CM in poly-
nomial time for a fixed `, which is the number of positions that one manipulator is
allowed to modify from the consistent vote that the other manipulators cast. We
leave the question open, whether it is also solvable in fixed parameter tractable
when parameterized by `.
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4 Experiments

In this chapter we evaluate four different algorithms that where proposed by Bred-
ereck et al. [BKN17]. Our goal is to confirm tractablility by experiments and to
compare how effective the different variants of manipulation are. We provide two
different measures of effectiveness, which we introduce in Section 4.5 as well as an
implementation and statistics about the running time of tie-breaking and `-Bloc
manipulation.

4.1 Experimental Setup and Test Data

The following tests where conducted on a server running a 64bit version of Ubuntu
18.04.4 LTS with 256GB RAM and an Intel(R) Xeon(R) W-2125 4.00GHz proces-
sor with 4 cores. We decided to use Python as programming language, as well as
the PrefLib Library [MW13] and the Gurobi ILP solver [Gur19]. The implemen-
tation is hosted on GitHub.

Data Sets. We generated most of the test data by using the PrefLib Data Gener-
ation tool. For the distribution of preferences, PrefLib offers five different models
to generate data from which we use the following two:

• The Impartial Culture model assumes that the probability of observing pref-
erence orders is equally likely for each voter.

• Mallows Mixture Model assumes there is one or multiple true rankings and
that individuals deviate from the ground truth with exponentially decreasing
probability as the ranking moves away from the reference. In our test we
used one variant with only one reference and one with five references.

Apart from the data generation tool, we used real-world election datasets for test-
ing, the election for the city council of San Francisco. The datasets are available
on the PrefLib Webpage provided by O’Neill [ONe13] and there are election data
for several years.

Generating Utilities. For both, using generated data and real-world data, we
need manipulators and their utility functions as an input for the manipulation
algorithms. Hence, we chose voters from the dataset randomly and used their votes
to compute utility functions by Borda ranks. We then removed the manipulative
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4 Experiments

votes from the election to obtain the non-manipulative votes and utilities of the
manipulators as input for the algorithms.

Note that in future work one can also compare truthful and untruthful votes by
not removing the manipulators from the dataset.

Unfortunately there is no real-world data on manipulators’ utilities and no other,
more sophisticated tool to generate manipulators’ utilities. This is why in this work
we decided to consider, how randomly selected groups of voters would manipulate
together. In future research one could also select groups of voters whose votes are
more similar to each other. One way to do this is for example to choose voters
from one side of a single peaked preference profile. Another way can be to measure
the distance between voters’ ranking lists, for example using Kendall Tau distance
and pick groups that are close to each other.

4.2 Tie-Breaking

In Chapter 2 we already described how ties can be solved by lexicographic, pes-
simistic, and optimistic tie-breaking rules. Since manipulation also has to take
tie-breaking rules into account, we have to consider the complexity of tie-breaking
when we talk about manipulation. In some cases, tie-breaking is already NP-hard,
which then also makes coalitional manipulation hard.

Bredereck et al. [BKN17, p. 16] showed that optimistic and pessimistic tie-
breaking can be solved in polynomial time for the utilitarian and candidate-wise
egalitarian variant.

For the egalitarian variant Bredereck et al. [BKN17, p. 17] showed that pes-
simistic tie-breaking can be solved in polynomial time and optimistic tie-breaking
is NP-hard. Moreover, for the optimistic egalitarian variant, Bredereck et al.
[BKN17, p. 20] proposed an algorithm that is fixed parameter tractable (FPT)
when parameterized by r+udiff , where udiff denotes the number of different utility
values.

Egalitarian Optimistic Tie-Breaking. We implemented the FPT algorithm by
Bredereck et al. [BKN17, pp. 20–21] for egalitarian optimistic tie-breaking by using
the Gurobi Optimizer for Python, a library for solving linear programs [Gur19].

The algorithm is an integer linear program (ILP) which creates variables for
every possible type vector of utility functions. The type of a candidate ci ∈ C
from the candidate set C is defined as vector t = (u1(ci), ..., ur(ci)) with u1, ..., ur
denoting the utility functions of manipulators 1, ..., r.

To enforce different values for udiff we used utility values generated by Borda-
scores that are substituted by 0 for ranks above or equal udiff .

To measure the running time, we use test data drawn from Impartial Culture
in Figure 4.1. We can observe that r has a greater impact on the running time
than udiff , which made it difficult for us to find a good test range for r where
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Figure 4.1: Running time for different values of r (left) and udiff (right), udiff . We
averaged over 40 (left) and 100 (right) iterations and fixed values of
r = 6 (right), m = 400 (right), udiff = m = 100 (left), and k = 10.

running times are feasible in our setup. In the algorithm, udiff and r are used as
an upper bound urdiff for the number of possible type vectors of utilities, because
the ILP creates one variable for every possible type. The use of Impartial Culture
probably leads to creating many different type vectors of utilities, which does not
increase anymore from values of around udiff = 200 and when leaving the number
of manipulators fixed. For a low number of udiff , there are many candidates of
the same type of utility vectors, which leads to less variables created. The peak
around udiff = 100 can be explained by having some candidates of the same type,
and some which are the only ones for their type, which makes is hard for the ILP
solver to find an underlying structure for some instances. For udiff that is more
than one forth of the candidates, there is probably only one candidate per type,
which is why the running time does not increase anymore from that point because
the number of manipulators and candidates are fixed.

Overall, we can observe that running times for elections withm = 100 candidates
are still feasible to compute for 80 manipulators in our setup and even quickly to
compute with less than 40 manipulators.

4.3 Consistent Manipulation of `-Bloc

In the consistent variant of `-Bloc manipulation, all voters cast the same vote.
Bredereck et al. [BKN17, p. 26] showed that this variant can be solved in O(m(m+
r + n)) time for in the utilitarian and candidate-wise egalitarian variant and any
of our introduced tie-breaking rules. Their algorithm uses the fact that for the
utilitarian and candidate-wise egalitarian variants, we can assume that there exists
a function that computes the utility of a candidate group for all manipulators. We
showed how to compute this function in Equation 2.5 and 2.6.
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The algorithm first computes a strength order and iterates over every possible
choice of a dropped candidate, the strongest candidate that is not part of the
winning k-egroup. The algorithm then compares all possible solutions and picks
the one that is most liked by the manipulators, meaning the one with the highest
value of the evaluation function eval ∈ {util, candegal}.

To measure the running time, we use the utilitarian evaluation function and
test data drawn from Impartial Culture in Figure 4.2. As expected, the running
time increases linearly with increasing n. We can observe that for increasing m,
the running time also only increases linearly, although the theoretical running time
proposes quadratic increase. This is because ` was approximated by m in the proof
of running time [BKN17, pp. 28–29]. Hence, we added a fourth test to measure
the running time for increasing `. We can observe that when ` gets close to all or
no candidates, the running time grows faster because of higher differences in the
structure. For the increase of r, the running time does not significantly increase
anymore from r = 50. In the proof of running time [BKN17, pp. 28–29], r used to
compute the value of a candidate and to compute which candidates can still win
when getting r additional points. In our implementation of the algorithm we do
not compute all values of candidates in the beginning, but only of the candidates
needed during the algorithm. We did this because we observed that in every
iteration there are usually only a few candidates that need to be considered as
candidates that can outperform the dropped candidate. In this way we can save
computation time.

We also observe that the algorithm is well suited also for high numbers of can-
didates, voters and manipulators.

4.4 Utilitarian and Candidate-wise Egalitarian
Variant of `-Bloc

Inconsistent `-Bloc manipulation is NP-hard in general, but solvabe in polynomial
time for the utilitarian and candidate-wise egalitarian case as showed by Bredereck
et al. [BKN17, p. 23]. Their algorithm uses the single utility functions for the
utilitarian and candidate-wise egalitarian variants from Equation 2.5 and 2.6. As
observed before, for the egalitarian variant it is not possible to compute a single
utility function. We therefore consider the egalitarian variant separately in 4.6.

The algorithm for the utilitarian and candidate-wise egalitarian variant iterates
over all possible combinations of the least preferred member of the k-egroup and
its score. Each of these iteration can then be reduced to the k-item Knapsack
Problem which can be solved in O(k2mr) as described in Chapter 2. This makes
an overall running time of O(k2m2(n+ r)).
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(a) Running time for different num-
ber of voters, r = 7,m = 100,
` = 8 and k = 7. Average for
ten iterations for each n.

0 1,500 3,000 4,500

0

50

100

number of candidates m
ru

n
n
in

g
ti

m
e

in
se

co
n
d
s

(b) Running time for different
number of candidates, r =
7, n = 10000, ` = 8 and k = 7,
not averaged.
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(c) Running time for different num-
ber of manipulators, n =
10000,m = 100, ` = 8 and
k = 7. Average for ten itera-
tions for each r.
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Figure 4.2: Running time for different values of m, n, `, and r in the consistent
variant.
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Implementation of the Exact-k-Item Knapsack Problem E-kKP. We imple-
mented the algorithm for E-kKP using dynamic programming as suggested by
Kellerer et al. [KPP04, pp. 273–275]. The input of our knapsack implementation
are the weight and value lists which hold weight and value of each knapsack item.
As knapsack items we use all candidates that can possibly join the egroup. We
compute their value using the single utility function and their weight by how many
approvals are needed to push this candidate into the winning k-egroup.

To store subresults of the knapsack weights and items chosen, we use two two-
dimensional lists. In every iteration of the algorithm, the computation of the
subproblem only relies on the iteration before, so we only have to store two matrices
at a time.

The algorithm also requires to guess the final value P of the knapsack. We do
that by iterating over all possible values for P , bounded by the sum of the k most
valuable items.

Results of Running Time Analysis. To measure the running time, we use test
data drawn from Impartial Culture in Figure 4.3.

We can observe that parameter k has the strongest impact on running time,
which made it especially difficult to find a good test range. Different than in the
consistent algorithm in Section 4.3, k is used heavily in the knapsack algorithm,
where the dynamic algorithm uses different sizes of subproblems to compute a
solution for all k knapsack items.

In the plot for the number of voters, there are some outliers for small values
of n, for which the reasons are unclear. Reasons could be technical overhead or
instances that have a complex structure for a small number of voters.

While for m, the running time behaves clearly quadratically, as expected, for r
the running time also looks quadratic from 0 to 20, before the plot starts to flatten
to linear growth. Different to the consistent variant in Section 4.3, where r is only
used to compute the candidates’ values and the set of candidates that can possible
join the k-egroup, here r is also used to compute the E-kKP capacity. This is why
we think that r has a greater impact on the inconsistent algorithm than on the
consistent algorithm in Section 4.3. The algorithm also uses the knapsack capacity
and the approximation of the knapsack weight as sizes to create two-dimensional
lists. Hence, a reason for the quadratic growth for small instances can be that the
capacity and approximation value are dominated by r for small instances.
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Figure 4.3: Running time for different m, n in the utilitarian variant. We fix r = 7,
` = 8, k = 7. On the right we fix m = 100, on the left we fix n = 10000
and average over thirty iterations.
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Figure 4.4: Average percentage/candidates replaced for 50 times for each number
of candidates m for the consistent variant. We fix k = 8, r = 5, ` =
7, n = 10000.

4.5 Likelihood of `-Bloc Manipulation

In this section we want to measure how likely it is to actually change the outcome
of an election, say how effective our algorithms are. We also want to compare the
effectiveness of consistent `-Bloc manipulation and inconsistent `-Bloc manipula-
tion.

To measure how effective a manipulation is, we propose the following two values:

• The number of candidates that differ from the winning egroups in the elec-
tions with and without manipulative voters and

• the improvement in percentage by computing the evaluation function for the
outcome in the elections with and without the manipulative group.

First, we would like to study the correlation of these two values. Therefore we
computed both measures for the Impartial Culture distribution when changing the
number of manipulators in the consistent setting. We chose the consistent setting
because the running times are much lower. In Figure 4.4 we can see that both
measures of effectiveness behave in the same way for our setup.

To compare the effectiveness of consistent and inconsistent manipulation, we
compare the number of exchanged candidates for different distributions of test
data and the real-world dataset of the San Francisco election.

Therefore we fix m = 10 candidates and increase the ratio of manipulators
among the voters in Figure 4.5.

For both, the consistent and inconsistent setting, we can observe a clear trend
against exchanging between two and three candidates in all distributions.
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Figure 4.5: Number of candidates replaced in the consistent (left) and inconsistent
(right) manipulation setting for different distributions of test data and
utilitarian evaluation. We fix n = 30000,m = 10, k = 6, ` = 7 and
average for 30 iterations. The manipulators were chosen randomly
from the set of voters.

This can be explained by most of the voters being satisfied by changing almost
half of the k-egroup in the general case.

For the San Francisco election of 2008 we can observe for both the consistent
and the inconsistent variant that the manipulators only exchange between one
and two candidates. Since this appears in both variants of manipulation we can
explain this by the choice of candidates in the election. It may happen that there
are candidates that are not approved by many voters, which looks as if they are
not part of the election.

We also observe that the number of candidates exchanged is roughly the same
for both consistent and inconsistent `-Bloc manipulation in all distributions. This
indicates that when using the average number of candidates exchanged as measure
for effectiveness, that the inconsistent variant of `-Bloc manipulation is roughly as
effective as the consistent variant.

In future work, one can also compare the effectiveness of consistent and in-
consistent manipulation in terms of the average improvement of the evaluation
function.
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Figure 4.6: Running time for different values of r and udiff . We fix udiff = m (left),
r = 10 (right), n = 200,m = 100, ` = 6 and k = 10.

4.6 Egalitarian Variant

The egalitarian variant of `-Bloc manipulation is fixed-parameter tractable when
parameterized by r+udiff , with udiff denoting the number of different utility values
as showed by Bredereck et al. [BKN17, p. 34]. They suggest an Integer Linear
Program to solve this variant.

We implemented the ILP using the Gurobi ILP solver [Gur19]. The algorithm
iterates over all possible combinations of the lowest final score z of a member of
the k-egroup and numbers of candidates that either get pushed into the k-egroup
with a higher score than z or have score exactly z when taking the manipulative
votes into account. For every combination of these values we then create an ILP.
Similar to the concept of types in the consistent algorithm in Section 4.3, we create
two variables for every group. Two candidates belong to the same group, if they
have the same utility vector and need the same number of additional approvals to
get z or more than z points.

To measure the running time, we use test data drawn from Impartial Culture
in Figure 4.6. While the running time for r increases as expected, we can observe
that for uudiff , the curve starts to flatten around m = 25, which is about one forth
of the candidates. We observed the same thing already in the ILP for egalitarian
tie-breaking in Section 4.2 for about one forth of the candidates. Again we can
explain this by the use of Impartial Culture. At a certain point, the utility vectors
of the candidates are so different, that there is only one candidate per possible
group or type of utility vector (for the egalitarian tie-breaking). From this point
the running time does not increase anymore because the number of manipulators
and candidates are fixed.

39



4 Experiments

4.7 Conclusions from the Experiments

In the experiments we were able to confirm tractability results and even improve
the running times from Bredereck et al. [BKN17]. We learned that, although the
inconsistent variant is more computationally demanding, the consistent and incon-
sistent variant roughly exchange the same number of candidates from a winning
k-egroup. Manipulators intuitively rather decide to vote consistently to achieve
their goal, and we were able to show that this simplistic intuition gives relatively
good results.

It remains to be seen in future experiments whether the number of candidates
exchanged is a good measure of effectiveness or if one should rather use the average
improvement of the evaluation function. We suggest to compare the two proposed
measures on more real-world datasets to gain more insight. We also suggest to
compare the consistent and inconsistent variant with the truthful election results
for `-Bloc.

In this thesis we analyzed, how randomly selected groups of voters would manip-
ulate together. Hence, one can study different ways of choosing the manipulative
voters. This can be done by for example using the Kendall Tau distance to select
voters with similar utility vectors. In future experiments one can also use other
techniques to generate manipulators’ utilities or even collect real-world data.

For the egalitarian variant of `-Bloc manipulation, one can extend the pro-
posed ILP to show that the consistent egalitarian variant remains fixed parameter
tractable.

We would also like to experimentally confirm the tractability results from Chap-
ter 3 for k-Borda manipulation and compare the effectiveness of manipulation.
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In this work we analyzed the complexity of k-Borda manipulation for both variants,
the consistent variant, where manipulators cast exactly the same vote, and the
inconsistent variant. Although voting consistently might come intuitively natural
to a group of manipulators, we gave examples where manipulators are better off
when voting inconsistently. We showed that the consistent variant is easier to
compute and less complex than the inconsistent variant. Indeed we provide a
polynomial-time algorithm for consistent k-Borda whereas the inconsistent variant
is known to be NP-hard already in the singlewinner case [Dav+11, p. 658] [BNW11,
p. 58].

For the inconsistent variant of k-Borda we provide an algorithm that runs in
polynomial time to solve One Swap-CM, which is similar to the consistent vari-
ant. We used this result to conjecture that the variant of k-Borda manipulation
where one manipulator is allowed to modify her vote from the consistent vote
that the other manipulators cast, is solvable in polynomial time when fixing the
number of positions that differ. One can say that according to our conjecture,
the manipulation problem gets more computationally demanding as the number
of positions that differ increases, but is still polynomial-time solvable when the
number of positions is fixed. Subject to further research is whether the complex-
ity of inconsistent manipulation depends only on the number of positions without
a combination with another parameter, i.e. whether it is solvable in FPT when
parameterized by the number of positions that differ.

In comparison to `-Bloc, k-Borda has desirable properties, such as committee
monotonicity and unanimity which make k-Borda suitable for the use in shortlist-
ing applications. In future work one can focus on other excellence-based voting
rules as well as on voting rules that aim for diversity or proportional representa-
tion. We think that our Algorithm 3.1, which uses Maximum Weight Bipartite
Perfect Matching to solve consistent k-Borda manipulation can be extended
to manipulate other scoring-based voting rules by substituting the gain function.

For `-Bloc we implemented algorithms from Bredereck et al. [BKN17], verified
tractability, and compared the effectiveness of different variants of manipulation
to actually change the outcome of an election. Manipulators intuitively rather de-
cide to vote consistently to achieve their goal, and we were able to show that this
simplistic intuition gives relatively good results. We measured the effectiveness of
a manipulation by the average number of candidates that get exchanged in a win-
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ning group by manipulation and observed that consistent and inconsistent `-Bloc
manipulation have roughly the same effectiveness in our experiments. This was an
unexpected result, because the inconsistent variant of `-Bloc is more general and
more challenging to compute. It remains to be seen whether the number of candi-
dates exchanged is a good measure of effectiveness or if one should rather use the
average improvement of the evaluation function. We suggest to compare these two
measures to gain more insight into these two measures of effectiveness by collecting
more data from experiments on other real-world datasets and other distributions in
future work. We also suggest to compare the consistent and inconsistent variants
with the truthful election result.

Another difficulty in our experiments was, that there is no real-world data on
manipulators’ utilities. In future work, one can study different ways of generat-
ing or even collecting real-world data on manipulators’ utilities, other than using
Borda-ranks. We also suggest to experimentally compare the effectiveness of the
consistent and inconsistent variants of k-Borda.

To conclude, the most important lesson that we learned from analyzing time
complexity for `-Bloc and k-Borda is that the consistent case is usually much
easier to compute and also very effective. This gives us new perspectives on the
time complexity of manipulation of other voting rules, because the consistent case
can be studied separately in future work.
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