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Abstract

This bachelor’s thesis investigates the existence of Nash equilibria in compet-
itive diffusion games on graphs. A diffusion game is a game where the players
initially choose vertices of an undirected graph from which the information
then spreads across the edges. The objective of every player is to maximize
the number of vertices infected by her. Diffusion games have been studied
on several graph classes. For diffusion games on hypercubes, the existence
of a Nash equilibrium for four players is proven. Finally, we look at empiri-
cal studies that suggest conjectures for diffusion games for three players on
hypercubes and for four players on grids.

Zusammenfassung

Diese Bachelorarbeit untersucht die Existenz von Nash-Gleichgewichten in
Diffusionsspielen für mehrere Spieler auf Graphen. Ein Diffusionsspiel ist ein
Spiel, in dem die Spieler zu Beginn Knoten eines ungerichteten Graphen
auswählen, von denen sich die Information über die Kanten ausbreitet. Das
Ziel jeder Spielerin ist es, die Anzahl der von ihr infizierten Knoten zu
maximieren. Diffusionsspiele wurden bereits auf einigen Graphklassen unter-
sucht. Für Diffusionsspiele auf Hyperwürfeln wird die Existenz eines Nash-
Gleichgewichtes für vier Spieler bewiesen. Schließlich betrachten wir em-
pirische Untersuchungen, die Vemutungen für Diffusionsspiele auf Hyperwür-
feln für drei Spieler und auf Grids für vier Spieler nahelegen.
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1 Introduction

Social networks play an important role in human interactions and as a
medium for spreading information. A social network is usually modelled
as a graph where the nodes are individuals, groups or organizations. Two
nodes are connected by an edge if there is some kind of social relationship
between them. Information usually originates in one node or a small subset
of nodes and then spreads through the network. This can also be exploited
by viral marketing campaigns where a small subset of individuals is targeted
in the hope that they spread the information about a product. The challenge
is then to select nodes that set in motion a diffusion process that results in a
large number of users affected. In such a setting there is typically more than
one party competing for the same set of resources. Alon et al. [2] propose a
game-theoretic model for the propagation of information in social networks.
In this model, the network is represented by an undirected graph with the
users as nodes. The players are the companies that wish to advertise a cer-
tain product. Initially, they choose a subset of nodes in the network which
then propagate the information to their neighbors. This sets in motion a
diffusion process where a user adopts the product of a company if some of
its neighbors in the network have done so too. If the neighbors of a node
have adopted different products, then that node is undecided and adopts no
product at all and is hence removed from the game. If a user has adopted one
product, then she will not adopt another later. The fact that nodes can be
removed from the game means that paths between a player’s initial position
and a node may be “blocked“, that is a node on a path becomes a standoff
and therefore no longer participates in the diffusion process and therefore a
node does not necessarily adopt the product of the player that has chosen
the closest node. The question arises whether there are stable states, that is
whether the players can choose nodes such that none of the players can gain
more by changing her decision. Whether such states, called Nash-equilibria,
exist obviously depends on the number of players and the structure of the
network.
This bachelor’s thesis looks at diffusion games on hypercubes and grids. We
show that there is always a Nash equilibrium for four players on a hypercube
and consider diffusion games for three players on hypercubes and for four
players on grids.

1.1 Related work

The model of competitive diffusion games was introduced by Alon et al. [2]
who also claimed that there is always a Nash equilibrium on graphs with
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diameter at most two. However, Takehara et al. [10] gave a counterexample
of a graph with nine vertices and diameter two that does not admit a Nash
equilibrium for two players. Roshanbin [8] showed that for two players, there
is always a Nash equilibrium on paths, cycles and Cartesian grids. They also
discussed Nash equilibria on unicyclic graphs. Bulteau et al. [3] proved that
on sufficiently large grids, there is no Nash equilibrium for three players and
that there is always a Nash equilibrium on cycles for any number of players
and on paths except for three players on paths of length at least six. Small
and Mason [9] showed that there is always a Nash equilibrium on trees for
two players but not necessarily for more than two players. Etesami and Başar
[6] proved that there are Nash equilibria for two players on hypercubes and
lattices and that, in general, the decision whether there is a Nash equilibrium
for two or more players is NP-hard. They also generalized the model by
allowing players to choose more than one node initially. Ito et al. [7] studied
diffusion games on weighed graphs. Related models are Voronoi games where
a player gets all vertices that she is closest to and those vertices to which
several players have the same distance are shared (see Ahn et al. [1] and Dürr
and Thang [5]) and the wave propagation model proposed by Carnes et al. [4]
where a node randomly chooses one of its neighbors and mimics her choice.

1.2 Organization

After an introductory example we start by giving the smallest graph on which
there exists no Nash equilibrium for two players in Section 2. Section 3 deals
with diffusion games on hypercube graphs. The main result is that there is a
Nash equilibrium for four players on d-dimensional hypercubes (Theorem 1).
We then consider diffusion games for three players on hypercubes and con-
jecture that there is a Nash equilibrium as well. Finally, we look at diffusion
games for four players on grid graphs.

1.3 Preliminaries

An undirected graph is an ordered pair G = (V,E) where V is a set of
vertices and E ⊆ {{u, v} | u 6= v ∈ V } is a set of edges. We use the
terms vertex and node interchangeably. The distance ∆(u, v) of two vertices
u, v ∈ V is the length of the shortest path between u and v. A diffusion game
Γ = (G, k) is defined by an undirected graph G = (V,E) and a number k
of players. Initially, each player i chooses a vertex vi which is then colored
in color i. If more than one player chooses the same vertex v, then v is
removed from the game. A strategy profile is a vector (v1, ..., vk) ∈ V k =
V × ... × V where vi is the vertex that player i has chosen at time t = 0.
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If after time step t, an uncolored vertex v has at least one neighbor colored
in color i but no neighbors of any other color, then v is colored in color i
in time step t + 1. If v has neighbors of different colors, then v is called
a standoff and removed from the game. The diffusion process ends when
all remaining uncolored vertices are unreachable, that is there is no path
from any colored vertex to the remaining uncolored vertices. The payoff
Ui(v1, ..., vk) of player i is the number of vertices with color i by the end
of the diffusion process. A strategy profile (v1, ..., vk) is a Nash equilibrium
if no player i can benefit from unilaterally changing her strategy, that is
Ui(v1, ..., vi−1, v

′, vi+1, ..., vk) ≤ Ui(v1, ...vk) holds for all players i ∈ {1, ..., k}
and for all vertices v′ ∈ V .

1.4 Introductory example

Consider a diffusion game for two players on the graph in Figure 1.

v1

v2 v3 v4

v5 v6

Figure 1: A graph on six vertices.

Figure 2 shows the diffusion process for the strategy profile (v1, v3). At time
step t = 0, the two players choose their initial vertices v1 and v2 which are
then colored in their respective colors. At time t = 1, both players color
the neighbors of their initially chosen vertices with v2 becoming a standoff
since it is a neighbor of v1 and v3 which have different colors. At time t = 2,
the diffusion process ends because there are no more uncolored vertices left.
Player 1’s payoff is then U1(v3, v1) = 3 and player 2’s payoff is U2(v3, v1) = 2.
This strategy profile is not a Nash equilibrium since player 2 can improve by
moving to v6 where her payoff would be 3 instead of only 2 as before.
Figure 3 shows the payoff matrix for the two players. Each player’s best
responses are marked in their respective color. If for example the Player 1
(blue) has chosen vertex v1, then the best response of Player 2 (red) is the
maximum of the second value in the first row, in this case v3. Nash equilibria
are those strategy profiles where the players’ positions are best responses to
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v1

v2 v3 v4

v5 v6

(a) t = 0

v1

v2 v3 v4

v5 v6

(b) t = 1

v1

v2 v3 v4

v5 v6

(c) t = 2

Figure 2: The diffusion process on the graph from Figure 1 with the strategy
profile (v3, v1).

Player 1 / Player 2 v1 v2 v3 v4 v5 v6
v1 0/0 1/1 2/3 4/2 2/3 2/2
v2 1/1 0/0 2/3 4/2 3/2 2/2
v3 3/2 3/2 0/0 4/1 1/1 3/3
v4 2/4 2/4 1/4 0/0 1/4 1/5
v5 3/2 2/3 1/1 4/1 0/0 3/3
v6 2/2 2/2 3/3 5/1 3/3 0/0

Figure 3: The two players’ payoffs. The maximum values for each player are
marked in their respective color. Nash equilibria are set bold.

each other, that is where none of the two players can improve by moving to
some other vertex.
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2 The smallest graph without a Nash equi-

librium for two players

Using computer simulations, Bulteau et al. [3] found that there is always a
Nash equilibrium for diffusion games for two players on graphs with at most
seven vertices and that there is no Nash equilibrium in the game on the
graph in Figure 4 with eight vertices. The following proof shows that there
is indeed no Nash equilibrium in that game.

v4

v5

v2

v3

v1

v6

v7

v8

Figure 4: A graph on eight vertices for which there is no Nash-equilibrium
in a diffusion game for two players.

Proposition 1. There is no Nash equilibrium in a diffusion game for two
players on the graph in Figure 4.

Proof. Figure 5 shows the payoff matrix for the game for two players on the
graph in Figure 4. The best options for player 1 are the maximum values of
the first number in the column corresponding to player 2’s choice (marked
blue) while player 2’s best choice is determined by maximizing the second
number in the rows (marked red). As there is no combination of vertices that
maximizes both values, there is no Nash equilibrium for two players.

Proposition 1 shows that there is no Nash equilibrium in diffusion games
on this graph, which means that for any strategy profile at least one of the
players can improve by changing her decision. Now we look at how the players
should decide in any situation. Figure 6 shows which vertices a player should
choose depending on the other player’s decision. If one player has chosen a
vertex, then the other player’s best answers are those vertices to which there
is an arrow. If there was a Nash equilibrium, then there would be a cycle of
length 2 because this would mean that there are two vertices in the graph
that are the players’ best answers to each other.
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Player 1 / Player 2 v1 v2 v3 v4 v5 v6 v7 v8
v1 0/0 2/4 2/4 2/5 2/5 2/4 2/4 3/3
v2 4/2 0/0 3/3 2/4 2/4 2/4 3/4 3/2
v3 4/2 3/3 0/0 2/4 2/4 3/4 2/4 3/2
v4 5/2 4/2 4/2 0/0 2/2 4/2 3/3 5/1
v5 5/2 4/2 4/2 2/2 0/0 3/3 4/2 5/1
v6 4/2 4/2 4/2 2/4 3/3 0/0 2/2 5/2
v7 4/2 4/3 4/3 3/3 2/4 2/2 0/0 5/2
v8 3/3 2/3 2/3 1/5 1/5 2/5 2/5 0/0

Figure 5: The payoffs of player 1 and player 2 depending on their positions.
The maximum values for Player 1 are marked blue and the maximum values
for player 2 are marked red. There is no Nash equilibrium in the game since
the payoffs of the two players cannot be maximized at the same time.

v1

v4

v5

v7

v6

v2/v3/v8

Figure 6: A representation of the players’ best answers depending on the
other player’s choice. If one player has chosen a vertex, then the other
player’s best answers are those to which there is an arrow.

As Figure 6 shows, the vertices v4, v7, v5, and v6 form a cycle of length four
to which all other vertices point. This means that if one player has chosen
a vertex outside the cycle, then the other player should choose a vertex in
the cycle in order to maximize her payoff. If, however, a player has chosen a
vertex inside the cycle, then the other player can always improve by moving
to the next vertex in the cycle. Hence, for all strategy profiles, there is always
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at least one player that can improve by changing her decision and therefore,
there is no Nash equilibrium.
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3 Hypercubes

As Etesami and Başar [6] showed, there is always a Nash equilibrium in
diffusion games on hypercubes for two players. The following proof will show
that there also exists a Nash equilibrium for four players.
Let v ∈ {0, 1}d. Then v[i] denotes the i-th bit of v. Let the Hamming dis-
tance dH between v and w be the number of bits in which v and w differ, that
is dH(v, w) = |{j ∈ {1, ..., d} | v[j] 6= w[j]} |. The Hamming distance satisfies
the triangle inequality ∆(x, y) + ∆(y, z) ≤ ∆(x, z) for all vertices x, y and z.
Let w0(v) be the numbers of zeros in vertex v and w1(v) be the number of
ones, respectively.
A d-dimensional hypercube is an undirected graph Hd = (V,E) with the
vertex set V = {0, 1}d such that two nodes are adjacent if and only if they
differ in exactly one position, i.e. E = {{u, v} | dH(u, v) = 1}.
If a player i has distance ∆(pi, v) =: δ to a vertex v and all other players j
have distance ∆(pj, v) > δ to v, then player i has the unique shortest distance
to v.

3.1 Nash equilibrium for four players

We will now show that the strategy profile (0d, 0d−11, 1d−10, 1d), that is a
profile where two players occupy two adjacent vertices and the other two
are positioned on the opposite side of the hypercube, is a Nash equilibrium.
Figure 7 shows this profile on a 3-dimensional hypercube where each player’s
payoff is one.

000 001

010 011

100 101

110 111

Figure 7: Nash equilibrium for four players on a 3-dimensional hypercube
where each player’s payoff is 1.

11



To prove that there is a Nash equilibrium on Hd for four players, it will be
shown that for the strategy profile (p1, 0

d−11, 1d−10, 1d) with p1 ∈ {0, 1}d, a
vertex will be colored by a player by the end of the diffusion process if and
only if she has a unique shortest distance to that vertex. The first step to do
that is to show that a vertex v will be colored in color i if Player i has a unique
shortest distance to it and that, with a strategy profile (p1, 0

d−11, 1d−10, 1d)
with p1 ∈ {0, 1}d, a vertex v will not be colored by any player if multiple
players have the same shortest distance to it.

Lemma 1. Let (p1, ..., pn), n ≥ 2, be a strategy profile. If px 6= py for
all players x 6= y, then a vertex v will be colored in color i by the end
of the diffusion process if Player i has the unique shortest distance to v,
i.e. ∆(pi, v) < ∆(pj, v) for all j 6= i.

Proof. Let v be a vertex and assume that Player i has the unique shortest
distance to v. If by the time Player i reaches v, v has already been colored
by another player or is already a standoff, then there must be at least one
player with a shorter path to v which means that Player i does not have
the shortest distance to v. If v becomes a standoff because there is some
other Player j competing for it, then ∆(pj, v) ≤ ∆(pi, v) which means that
Player i does not have the unique shortest distance to v. Thus, if Player i
has a unique shortest distance to v, then v is colored in color i by the end of
the diffusion process.

Lemma 1 states that a vertex is colored by a player if she has a unique
shortest distance to it. However, the reverse statement is generally not true,
that is even if multiple players have the same shortest distance to a vertex,
that vertex does not necessarily become a standoff. Consider for example a
4-dimensional hypercube and the strategy profile (0011, 0110, 1010, 1100) as
shown in Figure 8. All players have distance 2 to the vertex 0000 but by
the end of the diffusion process, that vertex is colored in blue because all
neighbors of 0000 except for 0001 are standoffs. Yet, if exactly two players
have the same shortest distance to a vertex v and all other players have a
longer shortest distance to v, then at least two players have a unique shortest
distance to a neighbor of v and therefore v becomes a standoff:

Lemma 2. Let (p1, ..., pn), n ≥ 2, be a strategy profile. If px 6= py for all
players x 6= y, then a vertex v will be a standoff if two players i and j have
the same shortest distance ∆(pi, v) = ∆(pj, v) =: δ to v and ∆(pl, v) > δ for
all other players l.

Proof. Let δ := ∆(pi, v) = ∆(pj, v), i 6= j, and ∆(pk, v) > δ for all k 6∈ {i, j}.
As pi and pj both have distance δ to v and pi 6= pj, the distance between pi
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0000 0001

0010 0011

0100 0101

0110 0111 1111

1011

1101

1001

1010

1000

1110

1100

Figure 8: Diffusion game on a 4-dimensional hypercube with the strategy
profile (0011, 0110, 1010, 1100). Even though all players have distance 2 to
the vertex 0000, it is colored blue by the end of the diffusion process because
all neighbors of 0000 are standoffs except for 0001.

and pj is greater than 0 and even, so they differ in at least two bits. Let s
be the smallest number such that pi[s] 6= pj[s] = v[s] and t be the smallest
number where pj[t] 6= pi[t] = v[t]. Let

x := v[1]...v[s− 1]pi[s]v[s+ 1]...v[d]

and

y := v[1]...v[t− 1]pj[t]v[t+ 1]...v[d].

It holds that ∆(pi, x) = δ − 1 and ∆(pj, x) = δ + 1. If any other Player l had
distance ∆(pl, x) ≤ δ − 1, then ∆(pl, v) ≤ δ. Hence, Player i has a unique
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shortest distance to x. Analogously, Player j has a unique shortest distance
to y as ∆(pj, y) = δ − 1 and ∆(pi) = δ + 1. Thus, after δ− 1 time steps, two
neighbors of v are colored in two different colors. Therefore, v will be a
standoff.

Lemma 2 shows that a vertex v becomes a standoff if exactly two players have
the same shortest distance to v and all other players have a longer shortest
distance to v. The same is not generally true for more than two players for
all strategy profiles, as for example Figure 8 shows.
Yet, with the strategy profile (p1, p2, p3, p4) := (p1, 0

d−11, 1d−10, 1d), p1 ∈
{0, 1}d, a vertex to which exactly three players have the same shortest dis-
tance becomes a standoff.

Lemma 3. For a strategy profile (p1, p2, p3, p4) := (p1, 0
d−11, 1d−10, 1d) with

p1 ∈ {0, 1}d, a vertex v will not be colored by any player if p1 6∈ {p2, p3, p4}
and three players have the same shortest distance to v.

Proof. As a permutation of the 1s and 0s of the vertices of a hypercube
does not change the graph, there is no loss of generality in assuming that
p1 := abc with a := 1k, b := 0d−k−1 and c ∈ {0, 1} with 0 ≤ k ≤ d − 1.
Since ∆(p3, p4) = 1, Players 3 and 4 can never have the same distance to any
vertex. Let v := efg be a vertex with e ∈ {0, 1}k, f ∈ {0, 1}d−k−1, g ∈ {0, 1},
and v 6∈ {p1, p2, p3, p4}. The distances are the following:

∆(p1, v) = w0(e) + w1(f) + w|c−1|(g),

∆(p2, v) = w1(e) + w1(f) + w0(g),

∆(p3, v) = w0(e) + w0(f) + w1(g),

∆(p4, v) = w0(e) + w0(f) + w0(g).

The two cases that have to be considered are p1 = ab0 and p1 = ab1.

Case 1. p1 = ab0.
Let v be a vertex such that ∆(p1, v) = ∆(p2, v) = ∆(p3, v) =: δ and
∆(p4, v) > δ. Then g = 0 because otherwise Player 4 would be closer to v
than Player 3, and w0(e) = w1(e) + 1 because

∆(p1, v) = w0(e) + w1(f) + w1(0) = w1(e) + w1(f) + w0(0) = ∆(p2, v).

Also, w0(f) = w1(f) must hold since

∆(p1, v) = w0(e) + w1(f) + w1(0) = w0(e) + w0(e) + w1(0) = ∆(p3, v).
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Let l be the smallest number such that v[l] = p1[l] 6= p3[l]. Then Player 2
has a unique shortest distance to

v′ := v[1]...v[d− 1]1,

and Player 3 has a unique shortest distance to

v′′ := v[1]...v[l − 1]p3[l]v[l + 1]...v[d].

So at time δ− 1, at least two neighbors of v have different colors. Therefore,
v will be a standoff.
Now, let v be a vertex such that ∆(p1, v) = ∆(p2, v) = ∆(p4, v) =: δ and
∆(p3, v) > δ. Then g = 1 as otherwise Player 3 would be closer to v than
Player 4. Also, w0(e) = w1(e) + 1 because

∆(p1, v) = w0(e) + w1(f) + w1(1) = w1(w) + w1(f) + w0(1) = ∆(p2, v),

and w0(f) = w1(f) since

∆(p1, v) = w0(e) + w1(f) + w1(1) = w0(e) + w0(f) + w0(1) = ∆(p4, v).

Let l be the smallest number such that v[l] = p2[l] 6= p1[l] and m be the
smallest number such that p4[m] 6= p1[m] = v[m]. Then Player 1 has a
unique shortest distance to

v′ := v[1]...v[d− 1]0,

and Player 2 has a unique shortest distance to

v′′ := v[1]...v[l − 1]p2[l]v[l + 1]...v[d].

So after time step δ − 1, at least two neighbors of v have different colors.
Therefore, v will be a standoff.

Case 2. p1 = ab1.
Let v be a vertex such that ∆(p1, v) = ∆(p2, v) = ∆(p3, v) := δ and
∆(p4, v) > δ. Then g = 0 because otherwise Player 4 would be closer to v
than Player 3, and w0(e) = w1(e) since

∆(p1, v) = w0(e) + w1(f) + w0(0) = w1(e) + w1(f) + w0(g) = ∆(p2, v).

Also, w1(f) + 1 = w0(f) since

∆(p1, v) = w0(e) + w1(f) + w0(0) = w0(e) + w0(f) + w1(0) = ∆(p4, v).
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Let l be the smallest number such that v[l] = p1[l] 6= p3[l] and m be the
smallest number such that v[m] = p1[m] 6= p2[m]. Then Player 3 has a
unique shortest distance to

v′ := v[1]...v[l − 1]p3[l]v[l + 1]...v[d]

and Player 2 has a unique shortest distance to

v′′ := v[1]...v[m− 1]p2[m]v[m+ 1]...v[d].

So after time step δ − 1, at least two neighbors of v have different colors.
Therefore, v will be a standoff.
Now let v be a vertex such that ∆(p1, v) = ∆(p2, v) = ∆(p4, v) =: δ and
∆(p3, v) > δ. Then g = 1 as otherwise Player 3 would be closer to v than
Player 4. Also, w0(e) = w1(e) because

∆(p1, v) = w0(e) + w1(f) + w0(1) = w1(e) + w1(f) + w0(1) = ∆(p2, v)

and w0(f) = w1(f) since

∆(p1, v) = w0(e) + w1(f) + w0(1) = w0(e) + w0(f) + w0(1) = ∆(p4, v).

Let l be the smallest number such that v[l] = p1[l] 6= p2[l] and define m as
the smallest number such that v[m] = p1[m] 6= p4[m]. Then Player 2 has a
unique shortest distance to

v′ := v[1]...v[l − 1]p2[l]v[l + 1]...v[d]

and Player 4 has a unique shortest distance to

v′′ := v[1]...v[m− 1]p4[m]v[m+ 1]...v[d].

So after time step δ − 1, at least two neighbors of v have different colors.
Therefore, v will be a standoff.

Lemma 3 shows that a vertex v becomes a standoff if the strategy profile
is (p1, 0

d−11, 1d−10, 1d) with p1 ∈ {0, 1}d such that exactly three players have
the same shortest distance to v while the forth player has a longer distance.
With the strategy profile (p1, 0

d−11, 1d−10, 1d), no more than three players can
have the same shortest distance to a vertex since ∆(p3, p4) = 1 and therefore
∆(p3, v) = ∆(p4, v)+1 or ∆(p4, v) = ∆(p3, v)+1 for all vertices v ∈ V . Hence,
by Lemmas 1, 2, and 3, in any profile (p1, 0

d−11, 1d−10, 1d) with p1 ∈ {0, 1}d,
every player gets exactly the vertices to which she has a unique shortest
distance. Now we show that the strategy profile (0d, 0d−11, 1d−10, 1d) is a
Nash equilibrium. Figure 9 shows this Nash equilibrium on a 4-dimensional
hypercube.
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Theorem 1. In a diffusion game for four players on a d-dimensional hy-
percube, the strategy profile (p1, p2, p3, p4) := (0d, 0d−11, 1d−10, 1d) is a Nash
equilibrium and the payoff for any player j is

Uj(p1, p2, p3, p4) =

b d−1
2 c∑

k=0

(
d− 1

k

)
.

0000 0001

0010 0011

0100 0101

0110 0111 1111

1011

1101

1001

1010

1000

1110

1100

Figure 9: Nash equilibrium for four players on a 4-dimensional hypercube.

Proof. By Lemmas 1, 2, and 3, all players get exactly the vertices to which
they have a unique shortest distance among all players.
Let (0d, 0d−11, 1d−10, 1d) be a strategy profile. Since ∆(p2, v) < ∆(p1, v) for
all v ∈ {w ∈ {0, 1}d | w[d] = 1}, only vertices where the last bit is 0 are
colored by Player 1 by the end of the diffusion process.

17



Let v ∈ {w0 | w ∈ {0, 1}d−1}. Since ∆(p3, v) < ∆(p4, v), only Players 1 and 3
compete for these vertices. Player 1’s distance to v is then ∆(p1, v) = w1(v)
and Player 3’s distance is ∆(p3, v) = w0(w). Hence, the vertices colored in
color 1 by the end of the diffusion process are exactly those where the last
bit is zero and w0(w) < w1(w), that is, w1(w) < d−1

2
. Player 1’s playoff is

therefore

U1(0
d, 0d−11, 1d−10, 1d) =

b d−1
2 c∑

k=0

(
d− 1

k

)
.

The two cases are that the dimension of the hypercube is even or odd.

Case 1. d is even. Then, for the strategy profile (0d, 0d−11, 1d−10, 1d) Player 1’s
playoff is

U1(0
d, 0d−11, 1d−10, 1d) =

b d−1
2 c∑

k=0

(
d− 1

k

)
=

d−2
2∑

k=0

(
d− 1

k

)

=
1

2

d−1∑
k=0

(
d− 1

k

)
= 2d−2.

Now we show that Player 1 can never get more than 2d−2 vertices. Consider
a strategy profile (x, y, x, y) with x 6= y ∈ {0, 1}d and x, y the bitwise com-
plements of x and y. Since this profile is symmetric, x has a unique shortest
distance to exactly as many vertices as x, and y has a unique shortest dis-
tance to exactly as many vertices as y. Assume that y and y together are
closest to more than 2 · 2d−2 = 2d−1 vertices. Then x and x are also closest
to more than 2d−1 vertices. This is a contradiction, since a d-dimensional
hypercube only has 2d vertices. Since a vertex v ∈ V cannot have the same
distance to x and x, x is closest to at most 2d−2 vertices.
Now consider the strategy profile (p1, p2, p3, p4) = (p1, 0

d−11, 1d−10, 1d) with
p1 ∈ {0, 1}d and p1 6∈ {p2, p3, p4}. Clearly, p3 = p2. Since Player 1 does not
have a unique shortest distance to any of the vertices closest to p1, Player 1’s
payoff is never greater than 2d−2.
Thus, (0d, 0d−11, 1d−10, 1d) is a Nash equilibrium with

U1(0
d, 0d−11, 1d−10, 1d) =

b d−1
2 c∑

k=0

(
d− 1

k

)
= 2d−2.

Case 2. d is odd. Then, for the strategy profile (0d, 0d−11, 1d−10, 1d) Player 1’s
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playoff is

U1(0
d, 0d−11, 1d−10, 1d) =

b d−1
2 c∑

k=0

(
d− 1

k

)
=

d−1
2∑

k=0

(
d− 1

k

)
= 2d−2 − 1

2

(
d− 1
d−1
2

)
.

Again, we show that this is the maximum payoff possible for Player 1. Con-
sider a strategy profile (x, y, x, y) with x 6= y ∈ {0, 1}d and x, y the bitwise
complements of x and y where x 6= y ∈ {0, 1}d and x, y are the bitwise com-
plements of x and y. Since d is odd, one of ∆(x, y) and ∆(x, y) is odd and one
is even. Without loss of generality assume that ∆(x, y) is even and ∆(x, y) is
odd. Without loss of generality assume that x = 0d and y = ab with a = 1α

and b = 0d−α for some even α ≤ d− 1. Then there exist vertices v = ef with
e ∈ {0, 1}α and f ∈ {0, 1}d−α such that ∆(x, v) = ∆(y, v) =: δ, ∆(x, v) > δ
and ∆(y, v) > δ, that is δ ≤ bd

2
c. Then it must hold that w1(e) = α

2
and

w0(e) = α
2
, and w1(v) ≤ bd

2
c because otherwise, v is closer to x. Hence,

w1(f) ≤ bd
2
c − α

2
. Thus, there are

(
α
α
2

) b d2c−α2∑
k=0

(
d− 1

k

)
=

(
α
α
2

)
2d−α−1

vertices where δ = ∆(x, v) = ∆(y, v), ∆(x, v) > δ and ∆(y, v) > δ. We use
the following identity:(

2n

n

)
=

(2n)! 22n

n!n! 22n
= 22n (2n)!

(n! 2n)2
= 22n (2n− 1)! !

n! 2n
= 22n (2n− 1)! !

(2n)! !

= 22n1 · 3... · (2n− 1)

2 · 4 · ... · 2n
.

Then,(
α
α
2

)
2d−α−1 = 2α · 2d−α−1 · 1 · 2 · 3 · ... · (α− 1)

2 · 4 · 6 · ... · α
= 2d−1 · 1 · 2 · 3 · ... · (α− 1)

2 · 4 · 6 · ... · α

≥ 2d−1 · 1 · 2 · 3 · ... · (d− 2)

2 · 4 · 6 · ... · (d− 1)
=

(
d− 1
d−1
2

)
,

and therefore (
α
α
2

) b d2c−α2∑
k=0

(
d− 1

k

)
≥
(
d− 1
d−1
2

)
.
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Now assume that x is closest to more than 2d−2 − 1
2

(
d−1
d−1
2

)
vertices. Then x

and x together are closest to more than 2d−1 −
(
d−1
d−1
2

)
vertices. Since this

profile is symmetric, y and y are also closest to more than 2d−1 −
(
d−1
d−1
2

)
vertices. Thus, there are more than 2d − 2

(
d−1
d−1
2

)
vertices to which x, x, y

or y has a unique shortest distance. This is a contradiction, since there are
at least

(
d−1
d−1
2

)
vertices v such that δ = ∆(x, v) = ∆(y, v), ∆(x, v) > δ and

∆(y, v) > δ and because of symmetry at least
(
d−1
d−1
2

)
vertices v such that

δ2 = ∆(x, v) = ∆(y, v), ∆(x, v) > δ2 and ∆(y, v) > δ2. Now consider the
strategy profile (p1, p2, p3, p4) = (p1, 0

d−11, 1d−10, 1d) with p1 ∈ {0, 1}d and
p1 6∈ {p2, p3, p4}. Clearly, p3 = p2. Since Player 1 does not have a unique
shortest distance to any of the vertices closest to p1, Player 1’s payoff is never
greater than 2d−2 − 1

2

(
d−1
d−1
2

)
.

Thus, (0d, 0d−11, 1d−10, 1d) is a Nash equilibrium with

U1(0
d, 0d−11, 1d−10, 1d) =

b d−1
2 c∑

k=0

(
d− 1

k

)
= 2d−2 − 1

2

(
d− 1
d−1
2

)
.

3.2 Nash equilibrium for three players

Computer simulations show that if one of the players from the Nash equi-
librium for four players which was shown in the previous section is removed,
the resulting strategy profile is still a Nash equilibrium. This leads to the
following conjecture:

Conjecture 1. In a diffusion game for three players on a d-dimensional
hypercube, the strategy profile (p1, p2, p3) := (0d, 0d−11, 1d) is a Nash equilib-
rium.

The difference to the four player case is that this strategy profile is not
symmetric and therefore we have to show for all three players that they
cannot improve by changing their decision. Since ∆(0d, 0d−11) = 1, there
is no vertex x ∈ V such that ∆(0d, v) = (0d−11, v). Thus, it follows from
Lemma 1 and Lemma 2 that with a strategy profile (0d, 0d−11, p3) where
p3 ∈ {0, 1}d, a vertex is colored by Player 3 if and only if she has a unique
shortest distance to it. For strategy profiles (p1, 0

d−11, 1d) with p1 ∈ {0, 1}d
and (0d, p2, 1

d) with p2 ∈ {0, 1}d, an argument similar to that of Lemma 3 can
be made, that is, that for these strategy profiles, a vertex becomes a standoff
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if three players have the same shortest distance to it. With Lemmas 1 and 2,
this means that a vertex is colored by Player i if and only if Player i has a
unique shortest distance to that vertex.
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4 Grids

Roshanbin [8] showed that for n,m ∈ N, there is always a Nash equilibrium
on a n ×m grid for two players. Bulteau et al. [3] showed that there is no
Nash equilibrium for three players if n ≥ 5 and m ≥ 5.
A grid graph Gn×m, n,m ∈ N, is an undirected graph with the vertex set

V =

{(
x
y

) ∣∣∣∣ 0 ≤ x < n, 0 ≤ y < m

}
and edge set

E =

{{(
x1
x2

)
,

(
y1
y2

)} ∣∣∣∣ x1 = y1 ∧ x2 = y2 + 1 ∨ x1 = y1 + 1 ∧ x2 = y2

}
.

Proposition 2. There is a Nash equilibrium for 4 players on G5×5.

Proof. We show that the strategy profile

p =

((
1
1

)
,

(
1
2

)
,

(
3
2

)
,

(
3
3

))
,

as shown in Figure 10, is a Nash equilibrium. Since this strategy profile is
symmetric, it suffices to show that players 1 and 2 cannot improve. Figure 11
shows the payoff matrices for players 1 and 2. Since Ui(p) = 6 for all players i
and six is the maximum value in both payoff matrices, p is a Nash equilibrium.

Figure 10: Nash equilibrium on G5×5.
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0 1 2 3 4

0 4 3 6 3 4
1 3 6 4 6 5
2 5 0 3 0 3
3 3 4 3 0 2
4 3 3 3 3 1

(a) Player 1’s payoff matrix

0 1 2 3 4

0 1 3 3 3 3
1 5 0 3 4 3
2 3 6 1 0 3
3 5 4 6 0 2
4 3 5 3 5 5

(b) Player 2’s payoff matrix

Figure 11: The payoff matrices of players 1 and 2.

Computer simulations suggest that the following holds:

Conjecture 2. If n ≥ 6 and m ≥ 6, then there is no Nash equilibrium for
four players on Gn×m.

In their proof for the three player case, Bulteau et al. [3] distinguish the cases
where the players play far from each other, that is there are two players that
differ by at least four in some coordinate, and where they play within a 3×3
subgrid. For the first case, they consider two subcases, namely whether one
player strictly controls the others, that is

∀i 6= j : xi < xj ∧ yi < yj

or ∀i 6= j : xi < xj ∧ yi > yj

or ∀i 6= j : xi > xj ∧ yi < yj

or ∀i 6= j : xi > xj ∧ yi > yj,

or not. For the second case, they distinguish all possible positions the players
can take within a 3 × 3 subgrid. For the four player case, a similar proof
seems possible. However, the number of subcases increases.
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5 Conclusion

We studied competitive diffusion games for three and four players on hyper-
cubes, showing that there is always a Nash equilibrium for four players and
conjecturing that there is a Nash equilibrium for three players as well. We
then looked at diffusion games for four players on grids where we showed that
there is a Nash equilibrium on a 5× 5 grid for four players and conjectured
that there is no Nash equilibrium if m ≥ 6 and n ≥ 6.
There are still several open questions left, some of which shall be mentioned
here. It is still open whether there are Nash equilibria in diffusion games for
more than four players on hypercubes. Another open question is whether
there are Nash equilibria on grids for a higher number of players as well as
what the minimum number of players is such that there is a Nash equilibrium
on a given grid.

24



References

[1] Hee-Kap Ahn, Siu-Wing Cheng, Otfried Cheong, Mordecai Golin, and
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