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Zusammenfassung

Im Rahmen einer Modernisierung eines Netzwerks mit Hilfe einer neuen Tech-
nologie, wie zum Beispiel von Glasfaserkabeln, ist es meist wünschenswert sie
gezielt dort einzusetzen, wo es die meisten Menschen erreicht. Wir suchen also
nach einem Pfad, dessen Einwirkung auf die Umgebung besonders groß ist und
untersuchen Variationen dieses Problems, in denen es einerseits Anforderungen
an die Größe des Pfades und andererseits an die Umgebung des Pfades gibt.
Erstaunlicherweise sind alle von uns beleuchteten Variationen NP-vollständig.
Wir präzisieren dieses Ergebnis sowohl hinsichtlich der parametrisierten Kom-
plexität als auch bezüglich einiger Graphklassen.



Abstract

Imagine a setting where a new technology such as fiber optic cables are sup-
posed to modernize a network. However the supply is still limited and at first
one should introduce this new technology to areas where one reaches the most
people, in order to have the most effect. Hence we are looking for a path where
the exposure to the surroundings is high. We study variations of this kind of
problem where there is a demand in the size of a path but also in the exposure
of it to the network. Surprisingly, it turns out that all of the variations we
examined are NP-complete. We present further investigation in terms of their
parametrized complexity as well as some results on specific graph classes.
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Figure 1: A graph with two terminal vertices s and t and two shortest paths with
length 4. The neighborhood of the solidly drawn path consists of 10 vertices,
whereas the neighborhood of the dashed path only consists of 4 vertices. The
remaining dotted lines are the edges of the graph, which are not included in
either path.

1 Introduction

Finding the shortest path between two vertices in a graph is one of the basic
problems in graph theory. A polynomial-time algorithm to find such a path
was already given by Dijkstra [7] in 1959. Consider a graph with two terminal
vertices s and t given in Figure 1. There are two shortest paths with both
the same length. But they differentiate each other by a property, which might
be of interest in some applications. For instance those two terminals could be
cities which shall be connected by a new high speed railroad line. However
it is advisable to reduce the amount of noise or pollution to the surrounding
settlements. In that case one tries to keep the costs low by keeping the size of
the track relatively small and also avoid a high exposure to the surroundings.
A lot of problems can be modeled using a graph and then solved with graph
algorithms. Common uses of graphs can be found in the area of networks
connecting computers or in the area of transportation. As seen in the Figure 1
the neighborhood, that is the adjacent vertices of the two possible paths are
different. The dashed path is more secluded than the other one, which might
be of interest. However the algorithm given by Dijkstra [7] does only take the
length into account and does not prefer one solution over the other if they both
share the same length.

We are going to study four new path problems. These are, in contrast to
optimization, decision type problems of finding a path with certain properties.
One can imagine looking for a path with length below or above a certain thresh-
old, denoted Short or Long paths in the following work. The second property
we look at is the neighborhood of the path. If the goal is to find a path with
a neighborhood below a certain threshold it is called Secluded; if a greater
neighborhood is desirable it is denoted Unsecluded. By combining these two
possible issues one arrives at four problem definitions, which are going to be the
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main topic of this thesis.

Input: An undirected graph G = (V,E), integers k, `.
Question: Is there a path P = (Vp, Ep) in G such that

Short Secluded Path: |Vp| ≤ k, |NG(Vp)| ≤ ` ?
Short Unsecluded Path: |Vp| ≤ k, |NG(Vp)| ≥ ` ?
Long Secluded Path: |Vp| ≥ k, |NG(Vp)| ≤ ` ?
Long Unsecluded Path: |Vp| ≥ k, |NG(Vp)| ≥ ` ?

Related work. To examine common problems with a secluded variation was
started by Chechik et al. [4]. Their motivation was sending sensitive informa-
tion over a network thus trying to minimize the overall exposure to the graph,
meaning the closed neighborhood. On the one hand they applied this frame-
work on the Path problem and also the Steiner Tree problem, which is the
problem of finding a tree connecting a number of terminal vertices. Secluded
Path and Secluded Steiner Tree were proven to be NP-complete. They
also showed a polynomial-time algorithm for Secluded Path on graphs with
bounded degree or graphs with bounded treewidth. Those problems were fur-
ther analyzed by Fomin et al. [11] in terms of parametrized complexity. Among
others they were able to show that the problems are fixed-parameter tractable if
parametrized by the size of the exposure. Other problems under neighborhood
constraints were considered by Fomin, Golovach, and Korhonen [10], which in-
troduced two parameters, one for the size of the solution and one for, contrary to
the work by Fomin et al. [11] the open neighborhood, not including the solution
itself. They looked at problems where the open neighborhood had to be smaller
than a given parameter. This framework, then baptized as Small Secluded
was closer studied van Bevern et al. [2], by applying it to various other prob-
lems for example the s-t Separator for their complexity and parametrized
complexity. They found that Secluded s-t Separator is polynomial-time
solvable, however that Small Secluded s-t Separator is NP-hard. They
also expanded the framework by including Large Secluded Independent
Set, where the solution size shall be big, while the open neighborhood has to
be kept below a given parameter. They suggested that these keywords together
with Unsecluded should be analyzed further for more common problems. Our
work builds on that going back to the original Path problem and analyzing it
under this modified framework.

Our results. Surprisingly, all of our four main problems Short Secluded
Path, Short Unsecluded Path, Long Secluded Path and Long Un-
secluded Path as well as the s-t-variants given to each problem turn out to
be NP-complete. Those results are proven in Section 3 with a more detailed
explanation. In Section 4 those results are further analyzed in terms of their
parametrized complexity. In general they appear to be hard for a practical point
of view, however there is still some hope in the cases of the short variants. For
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Path Problem Compl. Parametrized Complexity
` k k + `

Short Secluded NP-c. NP wcp. XP, W[1]-hard ?
Short Unsecluded NP-c. ? XP, W[2]-hard FPT

Long Secluded NP-c. NP wcp. NP wcp. NP wcp.
Long Unsecluded NP-c. NP wcp. W[2]-hard ?

Short Secluded s-t NP-c. ? W[1]-hard ?
Short Unsecluded s-t NP-c. ? W[2]-hard ?

Long Secluded s-t NP-c. ? NP wcp. ?
Long Unsecluded s-t NP-c. ? W[2]-hard ?

Table 1: Overview of our results - NP-c. stands for “NP-complete” and NP
wcp. stands for “NP-complete with constant parameter”.

Short Unsecluded Path there even is a FPT algorithm with respect to k
and l. We refer to Table 1 for an overview of our results. Our problems appear
to be closely related to Hamiltonian Path and thus we were able to prove
that the problems are NP-complete on the same graph classes. We assume that
they are polynomial-time solvable on the same graph classes as well. We were
able to give polynomial-time algorithms on cographs and threshold graphs. We
refer to Figure 2 for an overview concerning the classification on graph classes.

2 Basic Definitions and Preliminaries

We use basic definitions and notations given by Diestel [6]. We only consider
finite, undirected graphs that do not contain loops or multiple edges between
two vertices: A graph G = (V,E) is a pair of a set V of vertices and a set E
of edges. We denote G(V ) = V and G(E) = E. An edge e ∈ E is a set of
different vertices {x, v} or xv for short where x, v ∈ V . We denote the number
of vertices as n := |V | and the number of edges as m := |E|.

Neighborhoods. The set of neighbors of a vertex v is denoted by NG(v),
where x ∈ NG(v) if and only if there is an edge xv ∈ E. For a set X ⊆ V
of vertices the open neighborhood is NG(X) =

⋃
x∈X NG(x) \ X. The closed

neighborhood is NG[X] = NG(X) ∪X. The degree of a vertex v is the number
of its neighbors dG(v) = |NG(v)|. A vertex v is called isolated when it holds
dG(v) = 0. A vertex v is called dominating when it holds dG(v) = n − 1. The
minimum degree of G is δ(G) = min{d(v) | v ∈ V } and the maximum degree of
G is ∆(G) = max{d(v) | v ∈ V }.

Graph properties. A v1-vk path P = (VP , EP ) is a non-empty graph with
VP = {v1, v2, . . . , vk} and EP = {v1v2, v2v3, vk−1vk}, where each vertex v ∈ V is
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Figure 2: Overview of our results on graph classes for most of our variants. If
there is an arrow from Ci to Cj then Cj ⊆ Ci. The problems on graph classes
written in italics are assumed to be contained in P but not yet known.

distinct. The number |EP | of edges of a path is its length. A path with length
|EP | = 0 contains only one vertex. A non-empty graph G is called connected,
if for any two vertices v, w ∈ V there is a v-w path. A component of G is a
maximal connected subgraph. A graph G = (V,E) is isomorphic to another
graph G′ = (V ′, E ′) if there exists a bijection ϕ : V → V ′ with xy ∈ E ⇔
ϕ(x)ϕ(y) ∈ E ′ for all x, y ∈ V . An independent set I ⊆ G is a set of vertices
such that no two vertices of I are adjacent to each other. Whereas a clique
C ⊆ G is a set of vertices such that any two vertices of C are adjacent to each
other.

Graph classes. A graph G is a tree if G is connected and acyclic. The leafs of
a tree are those vertices of degree 1. A tree-decomposition of a Graph G is a tree
with bags X as vertices, where X ⊆ V (G) with the following three properties.
The union of all bags have to be V (G). For each edge e = uv ∈ E(G) there has
to be a bag X with u, v ∈ X. Finally each subset S ⊂ V (G), the bags which
include any vertex of S have to form a subtree of the tree-decomposition of G.
The width of a tree-decomposition is |Xb| − 1, where Xb is a bag with the most
vertices of the tree-decomposition. The treewidth of a graph G is the minimum
width over all possible tree-decompositions of G [3]. A graph G is bipartite if
V (G) can be partitioned into two sets U and W such that each edge connects
U and W [25]. A graph G is a split graph when V (G) can be partitioned into
an independent set and a clique [1]. A line graph L(G) can be constructed from
G by creating a vertex for each edge and two vertices of L(G) have an edge
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between them when the corresponding edges are adjacent [12]. The two edges
e = uv and e′ = uw are adjacent to each other, because they share the vertex u.
A graph G is called planar if it has an embedding in the plane R2, such that no
two edges cross each other [25]. A graph G is an interval graph if the vertices of
G can be mapped on intervals of the real line such that there is an edge between
u and v when the corresponding intervals of u and v intersect each other [21].

Parametrized Complexity. The field of parametrized complexity was mainly
initiated by Downey and Fellows [8]. An overview over the field can be further
read in the books of Flum and Grohe [9] and Niedermeier [24]. The parametrized
complexity is the approach of studying a given problem not only based on the
size of the input n, but also on another parameter k. A problem is a parametrized
problem parametrized by k if it has a parameter k with its value being fixed.
A parametrized problem is fixed-parameter tractable, or contained in FPT, if it
can be solved in f(k) · nO(1) time, whereas the complexity class XP contains
problems which can be solved in f(k) · ng(k) time with computable functions f
and g. Clearly, FPT ⊆ XP and it even has been shown that FPT ⊂ XP [8]. In
between FPT and XP lie a hierarchy of parametrized intractability classes called
W[1] and W[2] and others. It is known that FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP
[8]. However similarly to the P 6= NP conjecture it is not known whether these
subsets are strict. It is assumed though, that FPT 6= W[1] and is thus un-
likely that a W[1]-hard problem would have a running time of f(k) · nO(1). A
parametrized reduction is from a problem A to a problem B is a function φ
which can be computed in time f(k) · |x|O(1) where x is a yes-instance of A if
any only if φ(x) is a yes-instance of B. To show W[1]-hardness one has to give
a parametrized reduction to a problem which is known to be W[1]-hard.

3 NP-hardness

Contrarily to what one might imagine, it turns out that the four variants Short
Secluded Path, Short Unsecluded Path, Long Secluded Path and
Long Unsecluded Path are very similar to each other. One could have spec-
ulate that at least the short variants would be easier to solve from a complexity
standpoint, since the problem of finding the shortest path between two vertices
s and t is polynomial time solvable. It turns out that in terms of our path prob-
lems the secluded and unsecluded framework is enough to make those problems
NP-complete. What jumps out though is, that we deem it necessary to change
the graph of the reduction only for Short Unsecluded Path, which has the
effect that not all of the results from Hamiltonian Path concerning the graph
classes carries over to Short Unsecluded Path.

Theorem 3.1. All four Short Secluded Path, Short Unsecluded Path,
Long Secluded Path, Long Unsecluded Path are NP-complete.

10



Proof. Given a solution P = (V,E) of any of Short Secluded Path, Short
Unsecluded Path, Long Secluded Path, Long Unsecluded Path, can
be verified in polynomial time by checking the length and the neighborhood
of the path against the parameters k and `, meaning they are contained in
NP. The NP-hardness results are shown in Proposition 3.2, Proposition 3.3,
Proposition 3.4 and Proposition 3.5 for the individual problems.

For the following proofs we will need two problems from which we can reduce
in order to proof NP-hardness.

Hamiltonian Path
Input: An undirected graph G = (V,E).
Question: Is there a path in G containing each vertex in V exactly once ?

The Hamiltonian Path problem is known to be NP-complete [13]. Further-
more it stays NP-hard on split [23], bipartite [14] and line graphs [15] as well
as on planar graphs with bounded degree ∆ ≥ 3 [18]. Note that whenever G is
not connected G will always be a trivial no-instance of Hamiltonian Path.

Long Path
Input: An undirected graph G = (V,E), integer k.
Question: Is there a path P = (Vp, Ep) in G such that |Vp| ≥ k ?

The second NP-complete problem is Long Path which can be considered,
in a way, as a more general case of the Hamiltonian Path, since if one
imagines an instance (G, k = n) of Long Path with |V (G)| = n it resembles
the Hamiltonian Path. Interestingly Long Path is contained in FPT when
parametrized by the length of the path k [22].

Proposition 3.2. Short Secluded Path is NP-hard on split, bipartite, line
and planar graphs even if the parameter ` = 0.

Proof. We reduce from Hamiltonian Path, which is only defined on con-
nected graphs. Let G be an instance of Hamiltonian Path with |V (G)| = n.
Construction. We construct an instance (G′, k = n, ` = 0) of Short Secluded
Path such that G is isomorphic to G′ = (V ′, E ′). We claim that G is a yes-
instance of Hamiltonian Path if and only if (G′, k, `) is a yes-instance of
Short Secluded Path.
“⇒”. Assume there is a Hamiltonian path Ph = (Vh, Eh) in the graph G. Then
NG(Vh) = 0 and |Vh| = n due to the definition of Hamiltonian Path. As G′

is isomorphic to G, Ph is also a solution to Short Secluded Path with k = n
and ` = 0.
“⇐”. Assume there is a path Ps = (Vs, Es) with |Vs| ≤ n and |NG′(Vs)| ≤ 0.
Suppose |Vs| < n. Then there is a vertex v ∈ V ′ with v /∈ Vs. Since the
graph G′ is connected, there has to be a w ∈ Vs such that a v-w path exists.
Hence NG′(Vs) ≥ 1 and thus contradicting our assumption. The solution Ps

forms a Hamiltonian path since |Vs| = n.
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Figure 3: Construction of G′ used in the proof of Proposition 3.3

Since G′ is isomorphic to G the NP-hardness results from Hamiltonian Path
concerning the graph classes carries over to Short Secluded Path. As we
set l = 0 in the reduced instance, it follows that Short Secluded Path is
NP-complete with a constant parameter ` = 0.

Proposition 3.3. Short Unsecluded Path is NP-hard even on bipartite
and planar graphs.

Proof. We reduce from Hamiltonian Path. Let G be an instance of Hamil-
tonian Path with |V (G)| = n.
Construction. We construct an instance (G′, k = n, ` = n2) of Short Unse-
cluded Path where G′ is obtained from G by attaching n vertices with no
other neighbors to every vertex of G. We refer to Figure 3 for an Illustration.
We claim that G is a yes-instance of Hamiltonian Path if and only if (G′, k, `)
is a yes-instance of Short Unsecluded Path.

“⇒”. Assume there is a Hamiltonian path in G. Let Ph = (Vh, Eh) bet the
corresponding path in G′. We show that Ph is also a short unsecluded path with
respect to k and `. Since |Vh| = n and all of those vertices having n neighbors
it follows that NG′(Vh) = n2.
“⇐”. Assume there is a path Ps = (Vs, Es) with |Vs| ≤ n and |NG′(Vs)| ≥ n2 in
G′. Then the neighborhood of that path is at most |NG′(Vs)| ≤ |Vs| ·n+n−|Vs|.
Since it holds that |NG′(Vs)| ≥ n2 we can conclude that if n > 1 then |Vs| ≥ n.
Furthermore Vs has to contain every original vertex in order to gain the n2

added isolated vertices in its neighborhood and cannot contain any additional
ones (from the isolated vertices) since it would decrease |NG′(Vs)|. Thus the
corresponding path in G of Ps is a Hamiltonian path. The graph G′ used in our
reduction remains a bipartite and planar if G was as well, because we are only
adding single vertices connected by one edge to another vertex.

Proposition 3.4. Long Secluded Path is NP-hard on split, bipartite, line
and planar graphs even if ` = 0 and k has any constant value.

Remark. Since Long Secluded Path and Short Secluded Path are closely
related the used reductions are similar to each other. The difference lies in the
parameter k which had to be adjusted to accompany the different behavior of
the path length.

Proof. We reduce from Hamiltonian Path, which is only defined on con-
nected graphs. Let G be an instance of Hamiltonian Path with |V (G)| = n.
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Construction. We construct an instance (G′, k = 0, ` = 0) of Long Secluded
Path such that G is isomorphic to G′ = (V ′, E ′). We claim that G is a yes-
instance of Hamiltonian Path if and only if (G′, k, `) is a yes-instance of
Long Secluded Path.
“⇒”. Assume there is a Hamiltonian path Ph = (Vh, Eh) in the graph G. Then
|Vh| = n > 0 and NG(Vh) = ∅ by definition of the Hamiltonian path, meaning
that the same path is also a solution for Long Secluded Path with k = 0
and ` = 0.
“⇐”. Assume there is a path Ps = (Vs, Es) with |Vs| ≥ 0 and |NG′(Vs)| = 0
in G′. Further assume that the path Ps has |Vs| < n. Then there has to be a
v ∈ V ′ and v /∈ Vs. Since the graph G′ is connected, there has to be a w ∈ Es

such that a v-w path exists. Hence NG′(Vs) ≥ 1 and thus contradicting our
assumption. The solution Ps forms a Hamiltonian path since |Vs| = n.
Since G′ is isomorphic to G the NP-hardness results from Hamiltonian Path
concerning the graph classes carries over to Long Secluded Path.

Remark. Note that k could have been any constant value k ≤ n in the given
reduction. One can also reduce from Long Path without changing G. However
the instance constructed (G′, k′ = k, ` = n) would have made less of an impact
on the parametrized results. This can be useful though if results from Long
Path can be helpful.

Proposition 3.5. Long Unsecluded Path is NP-hard on split, bipartite,
line and planar graphs even if the parameter ` = 0.

Proof. We reduce from Long Path. Let (G, k) be an instance of Long Path.
Construction. We construct an instance (G′, k′ = k, ` = 0) of Long Unse-
cluded Path such that G is isomorphic to G′ = (V ′, E ′). We claim that G is
a yes-instance of Long Path if and only if (G′, k, `) is a yes-instance of Long
Unsecluded Path.
“⇒”. Assume there is a longest path Pp = (Vp, Ep) in G. We know that |Vp| ≥ k
and |NG(Vp)| ≥ 0 hence the corresponding path in G′ is a long secluded path.
“⇐”. Assume there is a long secluded path Ps = (Vp, Ep) in G′. We know that
|Vp| ≥ k hence the corresponding path in G is a longest path. The graph G′

is isomorphic to G, so all the results concerning the graph classes from Long
Path are being inherited by Long Unsecluded Path.

Remark. Since Long Path can be reduced from Hamiltonian Path with
the instance (G′, k = n) and no change of G′, Long Path remains NP-hard
on the graph classes where Hamiltonian Path is NP-hard. We could have
also reduce from Hamiltonian Path directly without change of G′. However
the instance constructed (G′, k′ = n, ` = 0) did not seem as promising from a
parametrized perspective.

Similarly to our four main path problems, we define four s-t path variants.
Two terminals s and t are introduced, which have to be start and endpoint of
the path.
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Input: An undirected graph G = (V,E), s, t ∈ V integers k, `.
Question: Is there an s-t path P = (Vp, Ep) in G such that

Short Secluded s-t Path: |Vp| ≤ k, |NG(Vp)| ≤ ` ?
Short Unsecluded s-t Path: |Vp| ≤ k, |NG(Vp)| ≥ ` ?
Long Secluded s-t Path: |Vp| ≥ k, |NG(Vp)| ≤ ` ?
Long Unsecluded s-t Path: |Vp| ≥ k, |NG(Vp)| ≥ ` ?

One could imagine the problem getting easier in terms of their complexity when
a fixed start and endpoint is given, which we were not able to confirm. In fact
in some areas, for example when considering solutions for Short Secluded
Path, some solutions which were often sufficient are no longer possible. For
instance a common solution for Short Secluded Path would be isolated
vertices, since they do not have any neighbors and the path is the smallest.

Theorem 3.6. All four Short Secluded s-t Path, Short Unsecluded
s-t Path, Long Secluded s-t Path, Long Unsecluded s-t Path are
NP-complete.

Interestingly, all four variants reduce to their s-t variants via the same con-
struction. None of the problems were getting easier in terms of their complexity,
since it seemed again that the secluded and unsecluded framework was enough
to make those problems NP-complete. We are going to present the reduction
for Short Secluded s-t Path as an example. However the reduction of the
other three path variants work in the same manner.

Proof. We reduce from Short Unsecluded Path, which is shown to be NP-
complete in Proposition 3.2. Let (G, k, `) be an instance of Short Unse-
cluded Path with |V (G)| = n.
Construction. We construct an instance (G′, k′ = k + 2, `′ = ` + 2(

(
n
2

)
− 1))

of Short Secluded s-t Path. G′ is constructed by creating G1, G2, . . . , G(n
2)

which are individually isomorphic to G and joining them together into one
graph G′. Two vertices s and t are added to G′. For each combination of two
vertices of G one of these subgraphs are taken to connect one of the corre-
sponding pair of vertices to s and the other to t as indicated in Figure 4. We
claim that (G, k, `) is a yes-instance of Short Unsecluded Path if and only
if (G′, k′, `′) is a yes-instance of Short Secluded s-t Path.

“⇒”. Assume there is a path Pc = (Vc, Ec) with |Vc| = k in the graph G.
Then there is an s-t path Ps = (Vs, Es) in G′ with Vs = {s, vc1 , vc2 , . . . , vck , t}
using the corresponding path of Pc in one of the duplicated subgraphs Gi. The
resulting path has |Vs| = k + 2 and |NG′(Vs)| = |NG(Vc)|+ 2(

(
n
2

)
− 1).

“⇐”. Assume there is an s-t path Ps = (Vs, Es) in G′. The path has to traverse
one of the duplicated subgraphs Gi meaning Vs = {s, vi,c1 , vi,c2 , . . . , vi,ck , t}.
The corresponding path Pc = (Vc, Ec) in G with Vc = {vc1 , vc2 , . . . , vck} can be
found by using the corresponding vertices in G from Vc ignoring s and t. Since
Gi and G are isomorphic |NG(Vc)| = |NG′(Vs)| − (|NG′(s)| + |NG′(t)| − 2) =
|NG′(Vs)| − 2(

(
n
2

)
− 1) and |Vc| = |Vs| − 2.
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v1,1 v1,2

v2,1

v2,3

v(n
2),n−1

v(n
2),n

. . .

s

t

G1

G2

G(n
2)

Figure 4: Construction of G′ used in the proof of Theorem 3.6

Remark. Notice that the given reduction is also a parametrized reduction with
respect to the parameter k, meaning that the hardness results for the parame-
ter k are being inherited from the four main problems.

4 Parametrized Complexity

When looking at the problems from the parametrized point of view, one can first
start to see differences between the individual problems. The first assumption
that the short variants might actually be easier in terms of their complexity,
which was rejected at first, got some support in this area of study. We are going
to present our FPT results for the short variants first.

Theorem 4.1. Short Secluded Path and Short Unsecluded Path can
be solved in time O(n · ∆k) and Short Unsecluded Path can be solved in
time O(n · `k). Short Secluded s-t Path and Short Secluded s-t Path
can be solved in time O(∆k).

Remark. We are going to show both running times for Short Unsecluded
Path, the argumentation for Short Secluded Path will be the same with
the difference that the additional bound for ∆ does not hold.

Proof. The algorithm, which can solve this problem is a simple breadth-first
search. Its worst case running time is O(∆k) for one vertex. We have to do this
for each starting vertex, thus n times. Note that in case of the s-t variants it is
only necessary to have the terminal vertex s as a starting vertex. In case of the
Short Unsecluded Path a trivial solution can be found if ∆ ≥ `, because
then there must exist a single vertex v in the graph G with |NG(v)| ≥ `, thus
being a solution for Short Unsecluded Path. For other cases we then know
that ∆ ≤ ` is an upper bound, resulting in the running time O(n · `k).
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Algorithm 1 used in Lemma 4.2

Input: A graph G, integers k, `
Output: whether the graph has a Short Secluded Path
1: for all S ∈ P(V (G)) with |S| ≤ k do
2: if S forms a path & |NG(S)| ≤ ` then
3: return true
4: end if
5: end for
6: return false

Even though the other following results do not seem to be promising from a
practical point of view, it still shows the differences between the short and the
long variants from a parametrized view.

Lemma 4.2. Short Secluded Path and Short Unsecluded Path are
contained in XP with respect to k.

Proof. We give Algorithm 1 for any graph G = (V,E) with running time O(nk ·
m) with n = |V (G)| and m = |E(G)|. The given algorithm works exemplary
for the Short Secluded Path but works for Short Unsecluded Path in
the same manner. All possible subsets are checked for being paths and their
neighborhoods concerning `. The loop is being traversed

∑k
i=0

(
n
i

)
times, due to

having to check all possible subsets from i = 0 to i = k. The internal running
time of the loop is O(m) in order to check if the subset forms a path. An upper

bound of the number of subsets is
(
n
k

)
· 2k and with

(
n
k

)
≤ nk

k!
and k! > 2k for all

k ≥ 3 resulting in a running time of O(nk ·m).

In order to prove W[1] and W[2]-hardness of our problems we first have to
get to know a few problems which are W[1] and W[2]-complete.

Clique
Input: An undirected graph G = (V,E), integer k.
Question: Is there a set C ⊆ V with |C| ≥ k such that there is an edge

between every two vertices c, d ∈ C ?

Dominating Set
Input: An undirected graph G = (V,E), integer k.
Question: Is there a set D ⊆ V with |D| = k such that NG[D] = V ?

We will be using Clique and Dominating Set in our parametrized reductions
in the following theorems. Clique parametrized by its solution size is known
to be W[1]-complete, whereas Dominating Set parametrized by its solution
size is W[2]-complete [8].

Theorem 4.3. Short Secluded Path is W[1]-hard with respect to k.

16



(m+ 1)-clique

E ′

V ′

m-clique . . .

. . .

. . .

e = uv

u v

Figure 5: Construction of G′ used in the proof of Theorem 4.3

Proof. We reduce from Clique. Let (G, k) be an instance of Clique with
|V (G)| = n and |E(G)| = m.
Construction. We construct an instance (G′, k′ =

(
k
2

)
, ` = m + k −

(
k
2

)
) of

Short Secluded Path. We refer to Figure 5 for an illustration of G′. The
graph G′ is constructed by creating an (m+1)-clique, where every vertex of the
clique is connected to every other vertex by an edge, and n vertices representing
V (G), denoted V ′. Each vertex from the (m + 1)-clique got an edge to every
vertex in V ′. For each edge e = uv we add another vertex e to G′ with two
additional edges between e and the vertices corresponding to u and v. All the
vertices e1, e2, . . . , em ∈ E ′ created this way are joined together into an m-clique.
We claim that (G, k) is a yes-instance of Clique if and only if (G′, k′, `) is a
yes-instance of Short Secluded Path.

“⇒”. Assume there is a k-clique C ⊆ V (G) in the graph G. Then there are(
k
2

)
vertices v1, v2, . . . , v(k

2)
in the part of G′ which is corresponding to the edges

of the k-clique C. Since E ′ in G′ is a clique there has to be a path P such that
P (V ) = {v1, v2, . . . , v(k

2)
}. Observe that NG′(P ) = m−

(
k
2

)
+x, where x are the

number of neighbors of P in V ′. Since C is a k-clique x = k.
“⇐”. Assume there is a path Ps = (Vs, Es) with |Vs| ≤

(
k
2

)
and |NG′(Vs)| ≤ m+

k−
(
k
2

)
. The path Ps cannot be only one vertex of V ′, because its neighborhood

would be NG′(Ps) ≥ m + 1, which is too much for values k ≥ 3. The path Ps

cannot include any vertices from either the (m + 1)-clique or V ′, because if it
would contain a vertex from the (m + 1)-clique then NG′(Ps) ≥ n + m + 1 −
|V (Ps)|. But NG′(Ps) ≤ m+ k −

(
k
2

)
, which can only be true if:

n+m+ 1− |V (Ps)| = m+ k −
(
k

2

)

⇔ 1 = |V (Ps)|︸ ︷︷ ︸
≤(k

2)

+ (k − n)︸ ︷︷ ︸
≤0

−
(
k

2

)
.

Hence Ps ⊆ E ′. It follows |NG′(Ps)| = m − |V (Ps)| + |NG′(Ps) ∩ V ′| and thus,
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because |V (Ps)| ≤
(
k
2

)
:

m−
(
k

2

)
+ |NG′(Ps) ∩ V ′| ≤ |NG′(Ps)| ≤ m+ k −

(
k

2

)
Meaning |NG′(Ps)∩V ′| ≤ k. The set of vertices in the path V (Ps) is the smallest,
if the corresponding vertices of V ′ ∩NG′(Ps) are a clique in G, because a clique
has the best ratio between edges and vertices, meaning |V (Ps)| ≤

(|NG′ (Ps)∩V ′|
2

)
m−

(
|NG′(Ps) ∩ V ′|

2

)
+ |NG′(Ps) ∩ V ′| ≤ |NG′(Ps)| ≤ m+ k −

(
k

2

)

⇔ |NG′(Ps) ∩ V ′| − k ≤
(
|NG′(Ps) ∩ V ′|

2

)
−
(
k

2

)
Which is true for values k ≥ 3 and only k ≥ |NG′(Ps) ∩ V ′|, meaning that the
path has to use its allowed length of

(
k
2

)
− 1. The clique C ⊆ G can by found

by selecting the corresponding vertices of V ′ ∩NG′(Ps).

Theorem 4.4. Short Unsecluded Path and Long Unsecluded Path
is W[2]-hard with respect to k.

We show the reduction for Short Unsecluded Path in detail, however
note that the reduction for Long Unsecluded Path works in the same man-
ner.

Proof. We reduce from Dominating Set. Let (G, k) be an instance of Dom-
inating Set with |V (G)| = n.
Construction. We construct an instance (G′, k′ = 2k+1, ` = n2+2n+n2k−k) of
Short Unsecluded Path. We construct G′ by creating two replicas of V (G)
denoted V ′ and V ′′ and k+ 1 vertices each with n isolated vertices as neighbors
called K. For each vertex v ∈ V (G) we add an edge v′v′′ between v′ ∈ V ′ and
v′′ ∈ V ′′ in G′. For each edge e = vw ∈ E(G) we create two additional edges in
G′ namely v′w′′ and w′v′′. The resulting graph G′ is illustrated in Figure 6. We
claim that (G, k) is a yes-instance of Dominating Set if and only if (G′, k′, `)
is a yes-instance of Short Unsecluded Path.

“⇒”. Assume there is a dominating set D = {d1, d2, . . . , dk} ⊆ V (G) in
the graph G. We construct a path Ps in G′ with pi ∈ P such that V (Ps) =
{p1, d′1, p2, . . . , d′k−1, pk, d′k, pk+1}, which can always be done, because every ver-
tex of V ′ is connected to every vertex of P . The resulting path is a short
unsecluded path with |V (Ps)| = 2k + 1. Furthermore |NG′(Ps) ∩ V ′′| = n
since D is a dominating set. Since every vertex in K is in the neighborhood
due to P ⊂ V (Ps), the resulting neighborhood of the path is |NG′(Ps)| =
n2 · (k + 1) + (n− k) + n = n2 + 2n+ n2k − k.
“⇐”. Assume there is a path Ps with |V (Ps)| ≤ 2k + 1 and |NG′(Ps)| ≥
n2 + 2n+ n2k− k in G′. It has to hold P ⊂ V (Ps), because imagine that there
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Figure 6: Construction of G′ used in the proof of Theorem 4.4

is a p ∈ P with p /∈ Ps. Then the neighborhood is bounded by all the remaining
vertices: |NG′(Ps)| ≤ 2n+ k + 1 + n2k, resulting in:

2n+ k + 1 + n2k ≥ |NG′(Ps)| ≥ n2 + 2n+ n2k − k

⇒ 2k + 1 ≥ n2.

Since k is bounded by n, this can never be true for n > 2. Thus P ⊂ V (Ps).
In order to achieve that, it has to hold |V (Ps) ∩ V ′| ≥ k, because the vertices
in P do not have any other edges apart from the ones connected to every other
vertex in V ′. Furthermore it has to hold |V (Ps) ∩ V ′| = k, because there are
only n2 + n2k + 2n − k vertices left from which all of them have to be in the
neighborhood and cannot be included in the path. To gain the remaining n
vertices from V ′′ in NG′(Ps) the corresponding vertices from V (Ps)∩V ′ have to
form a dominating set in G.

Remark. For Long Unsecluded Path the argumentation and reduction would
be the same. Only the part where it is discussed that the path could be shorter
than 2k + 1 would have been left out.

5 Graph Classes

Since our problems are, as seen in the given reductions in Section 3, closely
related to Hamiltonian Path, we hypothesized that our new path problems
are NP-complete and polynomial-time solvable on the same graph classes as
Hamiltonian Path. This assessment was validated at least on the graph
classes that we checked. As seen in Section 3, they inherit the hardness results
of Hamiltonian Path, meaning split, bipartite, line and planar graphs. Note
that on some graph classes like complete graphs our problems are rather trivial,
due to the property of being able to easily construct paths and check their
neighborhood. More interesting graph classes are covered in this section and
the corresponding algorithms are shown.
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Figure 7: A threshold graph with its corresponding array representation. The
vertices added as dominating vertices are filled.

Trees. It is relatively simple to solve any of the eight problem variants on a
tree T due to its properties. There is only one unique x-y path connecting two
terminal vertices x, y ∈ V (T ) [6]. A simple brute force algorithm will suffice
for a polynomial-time algorithm. Simply take all possible n2 combinations of
start and endpoints. Since the path connecting those is unique, one only has
to check the neighborhood of that path against the parameter `. For the four
s-t variants it is even simpler. It is only necessary to check the neighborhood
of the one s-t path, which connects both terminal vertices.

5.1 Threshold Graphs

The class of threshold graphs can be defined recursively with the following rules:

1. The graph G = (V,E) with |V | = 1 and E = ∅ is a threshold graph.

2. Adding an isolated vertex to a threshold graph, is also a threshold graph.

3. Adding a dominating vertex to a threshold graph, is also a threshold
graph.

Only graphs which can be constructed with these rules are threshold graphs
[19]. We use an array representation of the graph for most of our problems,
which stands for a way the graph could have been created. The array stores the
information how many isolated vertices were added before the next dominating
vertex. The array A can be constructed by Algorithm 2. Observe that the
deconstruction begins at A[1] to A[alast], so in order to reconstruct the graph
one has to traverse the array in reverse order, that is from A[alast] to A[1]. An
example of a threshold graph and its array are given in Figure 7.

Theorem 5.1. Short Unsecluded Path on threshold graphs can be solved
in time O(n+m).

Proof. Given an instance of Short Unsecluded Path (G, k, `), there is only
one path to consider as the solution on a given threshold graph G = (V,E). If
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Algorithm 2 Deconstruction of a threshold graph

Input: A threshold graph G
Output: array representation A of the threshold graph G
1: i← 1
2: G′ ← G
3: while G′ still contains at least one vertex do
4: Let I be the set of isolated vertices in G′

5: A[i]← |I|
6: G′ ← G′ \ I
7: Let v be a vertex of maximal degree
8: G′ ← G′ \ {v}
9: i← i+ 1
10: end while
11: return graphArray

the graph G is not connected, that means that there are i isolated vertices with
I = {i | i is isolated} which are not candidates for a short secluded path and
thus can be ignored. The remaining graph G′ is connected, since there cannot
be more than one connected component with more than one vertex. It then
follows from the definition of threshold graphs that there is a vertex v, which
has NG(v) = V \ (I ∪{v}). There is no better candidate solution than the path
P = (Vp, Ep) with Vp = {v}, E = ∅ and |NG(v)| = n − 1 − |I|, because the
neighborhood can not get any bigger than n−1−|I| and the length of the path
can not get smaller than 0. All the algorithm has to do is count the number of
isolated vertices which takes O(n+m) time and then decide if ` ≥ n− 1− |I|
holds, which takes constant computational effort.

Lemma 5.2. The array representation of a threshold graph can be constructed
in time O(n2).

Proof. The algorithm for deconstruction of a threshold graph can be found
Algorithm 2. The loop is at most traversed n times as in each iteration at
least one vertex is deleted from the graph. The running time inside a loop is
O(n).

Remark. For the following proofs we will also need a function d(i) =
∑Alast

j=i+1A[j]
which stand for the number of vertices (originally added as isolated ones), which
are dominated by the ith dominating vertex.

Theorem 5.3. Long Unsecluded Path on threshold graphs can be solved
in time O(n2).

Proof. We have already shown in Theorem 5.1, that there is one vertex d1
which has the all remaining vertices, apart from the set of isolated vertices
I1, in its neighborhood |NG(d1)| = n − 1 − |I|. Starting from that vertex the
Algorithm 3 is going to let the path grow in length by one vertex while their
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neighborhood is reduced by one vertex, since all remaining vertices are already
in the neighborhood. Between each two vertex ds and dr added as a dominating
one, we try to add a vertex js+1 ∈ Js+1 where Ji =

⋃last
j=i Ij. The resulting

path P = (V,E) will be V = {j2, d1, j3, d2, . . . , dlast−1, jlast} alternating between
vertices added as dominating and isolated vertices. Note that if Ji = ∅ then ji
is left out instead. The loop in Line 3 of Algorithm 3 is traversed at most n
times, because the length of the array cannot exceed n. The calculation of d is
also bound by n and together with the other operations inside the loop which
take constant effort the resulting running time is O(n2).

Algorithm 3 Long Unsecluded Path on threshold graphs

Input: array representation of the threshold graph A, the two integers k, ` and
the function d(i) =

∑Alast

j=i+1A[j]
Output: whether there is a Long Unsecluded Path in the graph
1: pathLength ← 1
2: neighborhood ← n− A[1]− 1
3: for i← 1 to length(A)− 1 do
4: // adding an isolated vertex to the path if possible:
5: if d(i) ≥ 0 then
6: pathLength ← pathLength +1
7: neighborhood ← neighborhood −1
8: if pathLength ≥ k and neighborhood ≥ ` then
9: return true
10: end if
11: end if
12: // adding a dominating vertex to the path:
13: pathLength ← pathLength +1
14: neighborhood ← neighborhood −1
15: if pathLength ≥ k and neighborhood ≥ ` then
16: return true
17: end if
18: end for
19: return false

5.2 Cographs

Since we were able to show that the problems are polynomial-time solvable on
threshold graphs, we are going to show that the same is true on a more general
graph class. An introduction to cographs is given by Corneil, Lerchs, and
Burlingham [5]. Each cograph can be represented by a cotree which, similarly
to the array representation of the threshold graphs, does represent the way the
cograph can be constructed. In this section we will refer to the vertices of the
cotree as nodes to avoid confusion with the vertices of the cograph. A cotree for a
graph G is a tree with its leafs representing the vertices of G. The internal nodes
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Figure 8: Example of a cograph and its cotree representation
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Figure 9: Example of binarizing a node of a cotree

of the tree are labeled 0 or 1. Two vertices x, y ∈ V (G) are adjacent if and only
if the least common ancestor of x and y is labeled 1 [26]. The root of the cotree
is always a 1-labeled node and the graph is disconnected if and only if it has
only one child [16]. As seen in Figure 8, it is quite simple to construct a cograph
given a cotree representation. When working with cographs it can be useful to
use a binarized version of the cotree illustrated in Figure 9, which was also used
by Lin, Olariu, and Schwing [17]. It was recently discovered that finding the
longest path on a cograph G can be done in polynomial time [20], which we are
going to use in some of our algorithms, denoted as getLongestPath(G).

Theorem 5.4. Long Secluded Path on cographs can be solved in polynomial
time.

Proof. We are first going to create an array with all of the best possible neigh-
borhoods concerning the secluded framework, meaning of two paths with iden-
tical length we always prefer the one with a smaller neighborhood. For an
overview of the algorithm we refer to Algorithm 4. It is recursively defined,
thus in order to get the proper array for the whole graph the root of the cotree
has to be the input. For Long Secluded Path the array A is then to be
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Algorithm 4 Recursively defined function leastNb for Theorem 5.4

Input: graph G, node t of the cotree
Output: array AN representing the least neighbors for all sizes of paths on the

subtree T with t as its root
1: if type(t) = leaf then
2: AN [1]← 0
3: else
4: left← leftChild(t)
5: right← rightChild(t)
6: end if
7: if type(t) = 0 then
8: for i← 1 to length(N) do
9: AN [i]← min(leastNb(left)[i], leastNb(right)[i])
10: end for
11: end if
12: if type(t) = 1 then
13: for i← 1 to length(N) do
14: bestLeft← leastNb(left)[i] + numberOfVertices(right)
15: bestRight← leastNb(right)[i] + numberOfVertices(left)
16: AN [i]← min(bestLeft, bestRight)
17: L← getLongestPath(T)
18: AN [|V (L)|]← |NG(V (L))|
19: end for
20: end if
21: return AN
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checked whether there is an A[x] = y with x ≥ k and y ≤ `.
Since there are three types of nodes the algorithm distinguishes between those.
If the node t of the cotree is a leaf, then the best path consists obviously of 1
vertex and its neighborhood is 0. If the node t is labeled with a 0 as in Line 7
of Algorithm 4, then there are no vertices between the subtrees Tleft and Tright.
Meaning that the paths do not change. Only the two arrays have to be merged
together. If the node t is labeled with a 1 as in Line 13 of Algorithm 4, then
there is an edge between any vertex of Tleft and any vertex of Tright. Thus there
are three possibilities where the best paths can occur. Either in Tleft (Line 14),
in Tright (Line 15) or in both. If the path P has a vertex in both Tleft and
Tright then its neighborhood is NG(V (P )) = (Tleft ∪ Tright) \ V (P ). Hence the
best path, in terms of its neighborhood, one can acquire is the longest path in
Tleft ∪Tright. We use the algorithm given by [20] to find that path in Line 17 of
Algorithm 4.
In the worst case the cotree consists of only nodes labeled with a 1 and leafs.
Since the subtree Tsub of the next function call does not contain t itself, it the
function gets called at most n times. With the running time of finding the
longest path is polynomial the overall running time also stays polynomial.

6 Conclusion and further work

Generally speaking we can conclude that all of our eight variations seem to
be closely related to Hamiltonian Path in terms of its complexity. Apart
from filling in the gaps in terms of parametrized complexity and the complexity
on the graph classes a few other things appear to be of further interest. The
problem that stands out from this observation is Short Unsecluded Path.
Not only were we able to give an FPT algorithm in respect to k and l but the
reduction used in Section 3 suggests that, since a lot of adjacent vertices were
added to each vertex, the problem might be also efficiently solvable on graphs
with bounded degree. Those graphs can be especially interesting in area of real
world applications, where the degree of single vertex should not exceed a certain
threshold.
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