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Zusammenfassung

Dynamic Time Warping (DTW) ist ein wichtiges Data-Mining Werkzeug, das gerade in
den letzten Jahren, da das massenhafte Speichern und Verarbeiten von großen Daten-
mengen einfacher wurde, deutlich an Relevanz gewann. In dieser Arbeit beschäftigen
wir uns mit dem Problem zu einer Menge gegebener binärer Zeitreihen eine neue binäre
Zeitreihe zu berechnen, die eine möglichst geringe DTW-Distanz zu allen Inputsequenzen
hat. Eine solche

”
Meansequenz” ist für herkömmliche Clustering-Algorithmen von Vorteil.

Wir zeigen eine neue obere Schranke für die asymptotische Laufzeit dieses Problems und
diskutieren, ob dieses Problem noch schneller (linear) lösbar ist. Außerdem designen wir
einen Algorithmus, der unter praktischen Annahmen sehr schnell eine solche Zeitreihe
findet und auch das generelle DTW Problem schnell auf binären Daten löst. Wir gehen
auch kurz auf ähnliche Probleme ein, welche die gleiche Struktur haben und zeigen, dass
wir für derartige Probleme die selbe asymptotische Laufzeit als obere Schranke annehmen
können. Abschließend untersuchen wir die Struktur von Lösungen in Abhängigkeit von bes-
timmten Merkmalen der Eingaben, um eine gute Linearzeitapproximation für das Problem
zu finden.

Abstract

Dynamic Time Warping (DTW) is an important tool for data mining, that has seen a rise
in relevance over the last couple of years due to recent improvements in the capabilities of
data storage and processing. In this thesis we look into the problem of finding a binary
time series that has a low DTW-distance to a number of given input time series. Such a
“mean” time series is necessary for common clustering algorithms. We prove a new upper
bound for the asymptotic running time of computing such a time series and also discuss
whether it may be possible to solve this problem even faster (linear time). Furthermore,
we design an algorithm for this problem that runs fast in practice and can also be used
to compute the DTW-distance of two binary time series quickly. We also look at similar
problems that have the same structure and show that the asymptotic running time of those
problems is bounded by the same number. In the end, we analyse the structure of output
time series depending on specific features of the input time series to find a good linear time
approximation algorithm for this problem.
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1 Introduction

Whenever some sensor measures data over time, a time series is created. The most promi-
nent example is a sensor measuring air pressure about 44 thousand times a second, the
microphone. Formally speaking, a time series S is a finite sequence of points in a space,
that is, S = s1, s2, ...sn with n being the length of the sequence. If we want to use these
time series for pattern recognition or other tasks in data mining or machine learning, we
need some sort of similarity measure of two time series, so we need to calculate distances in
the space of time series. In Figure 1.1 you can see two such time series created from speech
data, they have similar shapes but do not match up very well in the time domain. If we try
to measure the distance between theese two series S and T with the traditional Euclidean
distance defined by deucl(S, T ) :=

√∑n
i=1(si − ti)2, then we run into two problems: First,

the two series S and T could have different length so what is n? Second, the Euclidean
distance only accounts for the differences in S and T where the indices match. In the
bottom left graphic in Figure 1.1 we can see what using the Euclidean distance to compare
the two time series would look like and there are lots of big black areas that indicate a
large distance between the two series.
To solve these problems, we introduce the dynamic time warping distance—short DTW-
distance. The DTW-distance measure can be seen as a two-step procedure where we first
try to align one time series with the other such that we can stretch out parts of each time
series so that they end up with the same length and hopefully are shaped in a similar way
(see Figure 1.1 top right graph), and then calculate the Euclidean distance of those aligned
time series (see Figure 1.1 bottom right graph).

Dynamic time warping is widely used in data mining domains such as speech or gesture
recognition [CTH18; KKS13; VS15; WL16; ZLL14], and can even be used as a good string
comparison algorithm for tasks like genome sequencing or shape matching [MP05; Sku+13].
The DTW-distance can be computed with a simple dynamic program which runs in O(n2)
time with n being the size of the of the input strings. This quadratic complexity has also
been shown to be the lower bound for computing the DTW-distance over any alphabet
of size at least three[BI15; Kus19]. When it comes to long sequences such as time series
with high sample rate over a decently long period of time, the expense of running the
standard dynamic programming algorithm is often too high. A vast amount of research
tackles this problem by developing heuristics that limit the search space, prune warping
paths or reduce data dimensionality while trying to ensure a good approximation of the
exact algorithm. Recently, the special case of computing the DTW-distance on binary data
has caught more attention and new algorithms [Mue+16; Sha+18] were developed which
yield exact results on binary data and good approximations on arbitrary data. Binary time
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1 Introduction

Figure 1.1: The pitch of the first formant of two recordings saying “dynamic” over time.
In the top left corner we see the original time series. In the top right corner we see how
the two time series would be aligned using dynamic time warping. At the bottom you can
see the two time series again with black regions highlighting the distances between them
in terms of Euclidean distance. The bottom left graph shows the distances of the original
two sequences while the bottom right graph shows the distances of the series after aligning
them with dynamic time warping. The distance between the aligned series is about five
times lower than the distance between the original series.

series data can not only be found where binary data is measured over time (for example
state of on/off switches or open or closed door in a house) but can also be obtained from
arbitrary data by applying a boolean function on the original time series such as “Is the
temperature higher than 20°C?”, or “Did the price go up or down?”.

A common task in data mining is clustering inputs and the most prominent algorithm
to solve this task is called k-means clustering. This algorithm consists of two basic steps:
Starting out with k initial centers, the inputs are grouped to their nearest center, and then
new centers are computed from the average of each group. This process is then repeated
until the groups, also called clusters, do not change anymore. When we use this algorithm
in our time series setting, we run into a problem. How do we calculate the cluster centers?
Using the Euclidean mean is not an option because it can produce a mean to two time
series S and T which has a larger DTW-distance to both than the actual DTW-distance
between them.

Figure 1.2 shows two sine curves with one of them being offset by π. The Euclidean mean
of those two curves would actually be ~0 which does not represent the sinusoidal shape at all
and has a DTW − distance of about 0.25 to both of them. A much better representation
of a mean of those two sinusiodal curves would be for example a sine with three peaks and
two valleys. This mean would have only distance 0.04 to both input series.
Instead of using an Euclidean mean, we need to calculate new time series that represents
the average shape of our input series. The problem of finding the real mean of input
series in the dynamic time warping space, called DTW-Mean, is defined by finding a
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1.1 Related Work

Figure 1.2: Two sine curves over an interval of 6π. The second curve is shifted by π.

new time series µ, that minimizes the summed DTW-distance to all the input series. But
this problem has been shown to be NP-hard [BFN18]. Approximating this problem with
simple heuristics seems to not work well in a k-means clustering approach [NR07] but some
research still aims to refine those techniques [YW17].

In this thesis we will study the binary special case of the DTW-Mean problem. This
special case has been shown to be polynomial time solvable [Bri+19] and we will ex-
plore how this problem can be solved even faster. As with the DTW-distance, maybe
the structure of the binary special case hints to new heuristic approaches for the general
DTW-Mean problem.

1.1 Related Work

The general DTW-Mean problem, where input and output strings can have arbitrary
real values, has been shown to be NP-hard and W[1]-hard with respect to the number of
input strings by Bulteau, Froese, and Niedermeier [BFN18]. In a related paper Brill et al.
[Bri+19] also briefly looked at Binary-DTW-Mean, where input and output strings are
restricted to be binary, and showed that it is polynomial time solvable in O(kn3) time,
where k is the number of input strings and n is the maximum length. To get this poly-
nomial time they bounded the number of strings that have to be considered as a mean by
O(n) and then computed the DTW-distance between each input string and each of those
mean candidates with the standard O(n2) algorithm. We will make use of some of their
observations in our proofs as well.
Some recent papers developed heuristic approaches that approximate the dynamic time
warping distance to save time [HBG19; Mue+16; Sha+18]. These algorithms (AWarp[Mue+16],
BDTW[Sha+18], BSDTW[HBG19]) mainly make use of grouping blocks of the same or sim-
ilar symbols together. On binary data this approach (when executed correctly) yields exact
fast algorithms and we will also use it to develop a fast practical Binary-DTW-Mean
algorithm. Mueen et al. [Mue+16] used the CASAS human activity datasets [Coo+19]
from the Washington State University which we will also use to test our results.
In 2015, Chan and Lewenstein [CL15] showed that the Bounded Monotone (min,+)
Convolution problem can be solved in O(n1.864) time using new techniques from the
area of additive combinatorics such as the Balog-Szemerêdi-Gowers Theorem and the FFT
Lemma and also algorithmic techiniques such as randomization. Abboud, Backurs, and
Williams [ABW15] showed that Binary-DTW is solvable deterministically in O(n1.87)
time, breaking the O(n2) time barrier with the help of this new faster Bounded Mono-
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1 Introduction

tone (min,+) Convolution. In their proof for the new upper bound they reduce
Binary-DTW to a different problem by also grouping repeating ones and zeros together.

1.2 Our Contributions

In this thesis we will prove that (weighted) Binary-DTW-Mean is solvable in at most
O(kn1.87) time and develop an algorithm which—similarly to Awarp, BDTW etc.—solves
this problem fast on sparse data and also yields an algorithm that solves Binary-DTW
quickly, improving the BSDTW and AWarp algorithms in most cases in terms of running
time.
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2 Preliminaries

In this section we will shortly reintroduce the Dynamic Time Warping distance in a more
formal way and also formally define other problems that came up in the introduction or
will be used in proofs later on. We will also define some notions that help dealing with the
binary structure more efficiently and explore some intuitions and basic approaches before
we get to the main proofs. Dynamic time warping measures the distance between time
series but because we will focus on the binary domain we assume the inputs to be strings
over the alphabet {0, 1}.

2.1 Defining and Computing the DTW-distance

Consider a string s of length n and a string t of length m. A warping path P s
t that aligns

s and t is a list of (i, j) pairs with 1 ≤ i ≤ n and 1 ≤ j ≤ m, implying that the i-th symbol
in s is aligned with the j-th symbol in t. Any dynamic time warping path P s

t has to satisfy
three conditions:

1. Boundary condition: (1, 1) ∈ P s
t and (n,m) ∈ P s

t

2. Continuity condition: For two following pairs (i, j), (k, l) in P s
t : |i − k| ≤ 1 and

|j − l| ≤ 1.

3. Monotonicity condition: For two following pairs (i, j), (k, l) in P s
t : k − i ≥ 0 and

l − j ≥ 0.

In Figure 2.1 you can see a visualization of an optimal warping path between two exam-
ple strings s =“000110111011” and t =“01111000111”. The three conditions also apply
visually: The boundary condition states that the path has to go from the top left corner
to the bottom right corner, the continuity condition states that the lines can only go from
one cell to a neigbouring cell, including corners and the monotonicity condition states
that the path can only move right, down or diagonally down-right. The cost CP s

t
of a

warping path P s
t of length l is then the Euclidean distance of the aligned strings, that

is, CP s
t

:=
√∑l

r=1(sir − tjr)2 and the DTW-distance is the minimum cost of any of the

warping paths, DTW(s, t) := minP s
t
{CP s

t
}. Visually speaking, we want to find a warping

path that minimizes the black area it travels through.
Note that since we are looking for optimal warping paths that minimize the cost we can
assume that a warping path never contains the same tuple twice in a row. From this ob-
servation and the Continuity and Monotonicity conditions we can deduce the following:
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2 Preliminaries

Figure 2.1: Example of an optimal alignment/warping path of two binary strings strings
“000110111011” (in blue) and “01111000111” (in orange). The DTW-distance of those
two equals one. White cells imply that the aligned symbols match (both ones or both
zeros) and black cells imply that the aligned symbols do not match, which increases the
DTW-distance.

If P s
t r = (i, j), then P s

t r+1 ∈ {(i+ 1, j), (i, j + 1)(i+ 1, j + 1)}.
From this rule, we can easily see how the dynamic program works (see Algorithm 1). Note
that if the inputs are binary, then the differences of any two elements can also be only 0
or 1 so we do not need to square the costs. Applying the square root is also optional as it
does not change the actual optimal warping path but only the output of the algorithm.

2.2 Problem Definitions

Binary-DTW-Mean
Input: Binary strings s1, s2, . . . , sk of length at most n.

Output: A binary string µ such that
∑k

i=1 DTW(µ, si) is minimzed.

Binary-DTW
Input: Two binary strings s, t of lengths at most n.
Output: The dynamic time warping Distance DTW(s, t).

Min 1-separated k-Sum
Input: A list of m positive integers x1, x2, . . . , xm with m ≤ n :=

∑k
i=1 xi.

Output: The minimal sum of k distinct elements xi1 , xi2 , . . . , xik , where ij 6= ir + 1 for all j, r.

Min 1-separated Sums
Input: A list of m positive integers x1, x2, . . . , xm with m ≤ n :=

∑k
i=1 xi.

Output: A list A of solutions of Min 1-separated k-Sum for all k ∈ {1, 2, . . . , dm
2
e}.

Bounded Monotone (min,+) Convolution
Input: Two lists of m integers x1, x2, ..., xm and y1, y2, ..., ym which are all positive and grow

monotonically and
∑m

i=1 xi ≤ m,
∑m

i=1 yi ≤ m.
Output: A list of 2m integers s1, s2, s2m with si = minj+r=i(xj + yr).
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2.3 Other Definitions

Algorithm 1: Standard dynamic program to compute the DTW-distance
Input : Two time series, s of length n and t of length m
Output: The DTW-distance DTW(s, t).
M ← n×m Matrix, initialized with infinity
M [1, 1]← (s[1]− t[1])2

for i← 2 to n do // calculating the path costs at the boundary

M [i, 1]←M [i− 1, 1] + (s[i]− t[1])2

for j ← 2 to m do
M [1, j]←M [1, j − 1] + (s[1]− t[j])2

for i← 2 to n do // calculating the path costs in the middle

for j ← 2 to m do
M [i, j]← min(M [i− 1, j − 1],M [i− 1, j],M [i, j]) + (s[i]− t[j])2

return
√
M [n,m]

2.3 Other Definitions

Blocks: r repeating zeros (ones respectively) in a binary string will be called a
0-block (1-block) of size r.

Alignemnt: Two blocks are aligned in a Dynamic Time Warping path if all elements
of each block are aligned with at least one element of the other.

Match/mismatch: Two aligned blocks are matched if they are both 0-blocks or 1-blocks and
mismatched if one of them is a 1-block and the other a 0-block.

Condensation: The condensation of a binary string is obtained by reducing all blocks to
size 1.

Cells: A condensed string of length 2 is called a cell. The two types of cells are
01-cell and 10-cell.

2.4 Notation

We use x̃ to denote the condensation of x.
We use x[i : j] to denote the substring of x that starts on index i of x and ends on index
j of x. (both i and j are inclusive)
We use x_y to denote a concatenation of strings x and y.
When considering one string s, we use si to denote the i-th symbol of s, s(i) to denote the
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2 Preliminaries

i-th block of s and si to denote the concatenation of i copies of s. We will also use send to
denote the last symbol of s and s(end) to denote the last block of s.
We always assume that strings are binary unless explicitly stated otherwise. Thus DTW(s, t)
always refers to the Binary-DTW problem rather than the general DTW problem.

2.5 Important Lemmata and Intuitions

Lemma 1. There always exists a condensed solution to Binary-DTW-Mean

Shown by Brill et al. [Bri+19, Proposition 1].
Condensed strings are the best choice for a mean in the binary time warping space because
they can be stretched out at any point to be aligned with strings with more blocks but
also only have low distance to strings with less blocks because all the redundant blocks
that cannot be aligned have only size one.

Lemma 2. If we consider a condensed string s and a string t with |t̃| ≥ |s| and assume
s1 = t1, send = tend, then every symbol in t is aligned exactly once and every block in t is
aligned with exactly one symbol in s in an optimal warping path.

Proof. By Picture:

The only path that has zero cost, is the one aligning s(i) with t(i) for all i (the green diagonal
path in the picture). Since t has at least as many blocks as s, it is easy to see that any
optimal warping path has to be on the right side of this green diagonal path. If the path
aligns a symbol of t with two symbols of s, then that would mean going down and having
to go through one additional black block in t to end up on the green path again.
If two following symbols of the same block in t are aligned with different symbols in s then
either one of the symbols is aligned with two symbols in s which we just proved cannot
happen or each of them is aligned with a different symbol in s. One of those alignments
has cost zero and the other alignment has cost 1 so we could align one of the symbols
with both symbols of s at the same cost which leads to a contradiction to the first part we
proved.

With this picture and the lemma we can get an intuition for the reduction from Binary-
DTW to Min 1-separated k-Sum which is essential in the upcoming sections. We saw
that the warping path only goes right and diagonally down right. And we showed that if
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2.6 Naively computing the Binary-DTW-Mean

a symbol of a block i in t is aligned with a symbol in s then the whole block i is aligned
with the symbol in s. Now the DTW-distance is just the amount of black squares we have
to go right from the diagonal to reach the diagonal that aligns the last blocks of the two
strings. If we go right through such a black block, then the next block will be white again,
so only every second block can contribute to the DTW-distance.

In Lemma 2 we required that s and t start and end with the same symbols. The following
lemma will handle all other cases.

Lemma 3. If s1 6= t1 then DTW(s, t) = min(x+ DTW(s, t[x+ 1 : |t|]), y+ DTW(s[y+ 1 :
|s|], t)) where x is the length of t(1), y is the length of s(1).

This result has been proven by Abboud, Backurs, and Williams [ABW15] in the proof of
their Claim 6 and we will just scetch their proof idea.: If the first symbol in t(2) is aligned
with a symbol in s(1) then all symbols in t(1) also have to be aligned with symbols in s(1)

at a cost of at least |t(1)| which we called x. We could now delete t(1) and get a cost of
DTW(s, t[x + 1 : |t|]) for the rest. In total we get a cost of x + DTW(s, t[x + 1 : |t|]) for
this warping path. If the first symbol in s(2) is aligned with a symbol in t(1) we can do an
analogous argument to get a cost of y + DTW(s[y + 1 : |s|], t). Because of the continuity
condition, in all other cases s(1) is only aligned with t(1). This alignment already costs
max(x, y) and, because we could have aligned s(1) with t(2) or t(1) with s(2) for free, the
total cost of the alignment is max(x, y)+min(DTW(s, t[x+1 : |t|]),DTW(s[y+1 : |s|], t)).
Since this alignment is worse than the two other cases, we can ignore it.

Note that because of symmetry this lemma can also be applied when s and t have different
ending symbols or even when both starting and ending symbols differ. In this case we would

then get: DTW(s, t) = min


x0 + x1 + DTW(s , t[x0 + 1 : |t| − x1 − 1])
x0 + y1 + DTW(s[1 : |s| − y1 − 1] , t[x0 + 1 : |t|])
y0 + x1 + DTW(s[y0 + 1 : |s|] , t[1 : |t| − x1 − 1])
y0 + y1 + DTW(s[y0 + 1 : |s| − y1 − 1] , t)

with x0 = |t(1)|, y0 = |s(1)|, x1 = |t(end)|, y1 = |s(end)|.

2.6 Naively computing the Binary-DTW-Mean

In the following paragraph we will briefly look at the O(kn3)-time Algorithm that Brill
et al. [Bri+19] developed to show that Binary-DTW-Mean is polynomial time solvable
and see how it can be improved with a simple trick that is very important for our later
proofs as well.

Brill et al. [Bri+19] showed that there is always a condensed solution to Binary-DTW-
Mean and also showed that this condensed solution can only have a length of at most
n+ 1, with n being the length of the longest input string. So in total only 2(n+ 1) strings
remain as candidates for being a mean and we can just compute the distances between each
of those 2(n + 1) strings of length at most n + 1 and the input strings which have length
at most n which yields a running time of O(kn3) time to compute all those distances.
Choosing the mean then only requires summing the k distances from each input string to
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2 Preliminaries

the mean candidates to find the best among them.
If we take a closer look at those condensed strings we can observe that half of the strings
are prefixes of the longest condensed string that starts with 0 and the other half is are
prefixes of the longest condensed string that starts with 1. In the calculation of the DTW-
distance (Algorithm 1) we have already computed the distances of all prefixes in the last
column of the matrix. So we can compute Binary-DTW-Mean faster by computing the
DTW-distance from the k input strings to the two longest condensed strings but using the
whole last column of the DTW-Matrix instead of just using the last entry. We will call
this approach the naive algorithm from now on.

14



3 Computing Binary-DTW-Mean in
Subquadratic Time in n

We have seen that Binary-DTW-Mean can be solved in O(kn2) time with a relatively
simple algorithm. In this chapter we will prove a better upper bound on the asymptotic
running time of this problem. The proof will rely a lot on the reduction from Binary-
DTW to Min 1-seperated k-Sum which we gave some intuition for in the previous
chapter and the structure of condensed binary strings being prefixes of longer condensed
strings.

Theorem 1. Binary-DTW-Mean(s1, ..., sk) is computable in O(kn1.87) time or O(kn+
k · T (n)) time, where T (n) refers to the running time of the Min 1-separated Sums
problem with inputs that sum up to n.

Proof. We will first reduce the problem space of strings that we have to consider as possible
means by a vast amount and end up with only an amount that is linear in n. Then we look
at each input string si individually and show that we can compute the DTW-distances from
all of the possible means to this specific string in O(n1.87) time. We split this computation
in two parts, first only computing distances to means that are longer than the condensation
of the considered string and then computing distances to means that are shorter than the
condensation. If we have done this for all k input strings we get O(kn) many distances
and can find the mean in that additional time.

As Brill et al. [Bri+19, Proposition 1] derived in their paper, we can assume that a mean
is a condensed string of alternating zeros and ones. They have also shown that the mean
can have at most length n + 1 [Bri+19, Lemma 3]. If it is feasible to compute the DTW-
distances of all possible condensed means up to length n+1 to one specific string in O(n1.87)
time, then we can easily compute the mean of k strings in O(kn1.87) time.
For the rest of the proof, let us consider one specific given string s of length m ≤ n. Let
m′ = |s̃| denote the length of the condensation of s. We will first compute the distance
of s to possible means which are longer than m′. Let µ be such a candidate for a mean
with |µ| = n′ ≥ m′. By [Bri+19, Lemma 2] it holds that for a condensed string x and a
string y if |x| ≥ |ỹ| then DTW(x, y) = DTW(x, ỹ). With the choice of our mean candidate
it follows that DTW(µ, s) = DTW(µ, s̃) and by [Bri+19, Lemma 1] the DTW-distance of

15



3 Computing Binary-DTW-Mean in Subquadratic Time in n

any two condensed strings x, y can be simply computed by:

DTW(x, y) =


d|x| − |y|e/2, x1 = y1

2, x1 6= y1 ∧ |x| = |y|
1 + b(|x| − |y|)/2c, x1 6= y1 ∧ |x| > |y|

(3.1)

Since this formula is applicable for µ and s̃, it yields an algorithm that lets us compute the
distances between s and all mean candidates longer than m′ in linear time (constant time
for one mean candidate and known m′). It only remains to show that we can compute the
distances to means shorter than m′ in O(n1.87) time.

To compute the cost of means that are shorter than the condensation of s we will first
calculate the cost of mean candidates starting and ending with the same symbols as s and
then use Lemma 3 to compute the cost of candidates with arbitrary starting and ending
symbols.

Abboud, Backurs, and Williams [ABW15, Theorem 8] showed that Binary-DTW can
be reduced to Min 1-separated k-Sum and then further presented an algorithm that
solves Min 1-separated k-Sum in O(n1.87) time with the help of a new faster method
to solve the (min, +) - convolution problem by Chan and Lewenstein [CL15]. The main
observation used in the reduction to Min 1-separated k-Sum is that given two binary
strings s and t, where |t̃| ≤ |s̃|, each block of t is aligned with some blocks of s such that
the first and last of those blocks in s contain the same symbol as the block of t (that is
a 1-block in t could be aligned with a 1-block, the following 0-block, and 1-block in s but
not with just the first two of those blocks because then the next 0-block in t would have to
be aligned with that last 1-block but this would correspond to a black diagonal movement
as illustrated in Figure 3.2). The cost in that part of the alignment is then the size of
the aligned blocks in s containing the other symbol. This has the consequence that two
neighbouring blocks in s cannot both contribute to the cost and that the first and the last
block in s cannot contribute to the cost either. (Recall that we are only considering the
special case where s and t start and end with the same symbol at the moment.)

Figure 3.1 shows the warping paths of two different means µ, µ′ and an example string
s = 001101100001111000 where m′ = 7. White fields have cost 0 and black fields have cost
1. One can easily see that if two neighbouring blocks were to contribute to the cost (black
in the figure) then the warping path needs to go diagonally from the last field of the first
black block to the first field of the second block. For any field that is reachable from that
position there would have been a cheaper warping path avoiding this diagonal movement
(see Figure 3.2).

Let B be a list of the sizes of blocks in s. We can use the algorithm by Abboud,
Backurs, and Williams [ABW15, Theorem 10] designed to solve Min 1-separated k-
Sum to compute four lists A00, A0∗, A∗0, A∗∗ which are the solutions for Min 1-separated
Sums on the sublists B[3 : m′ − 2], B[3 : m′ − 1], B[2 : m′ − 2], B[2 : m′ − 1]. To obtain
a solution for Binary DTW of s and some other string with shorter condensation we
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Figure 3.1: Optimal dynamic time
warping paths of an example string
001101100001111000 on the x-axis and
two different mean candidates 01010 and 010
with shorter condensations on the y-axis.
White squares are possible alignments of
equal symbols (cost 0). Black squares are
alignments of different symbols (cost 1). The
warping path has to connect the upper left
and lower right corners while minimizing the
amount of black squares it passes.

Figure 3.2: Segments of warping
paths (not necessarily optimal) of
two strings or segments of strings.
The upper graphic shows a warping
path including a diagonal move-
ment between black squares and all
possible directions the path could
have taken before and after that
movement. The lower graphic shows
paths cheaper or of equal cost to
the above ones avoiding the black
diagonal movement.

would now only use one entry from the list A∗∗ but for our purposes we will use almost all
the entries from all four lists. The r-th entry of the list A∗∗ is the minimal cost of r non
neighbouring blocks (already excluding the first and the last block) in s and thus relates
to the cost of the mean of size m′ − 2r with same starting and ending symbols as s. The
other lists will be used to compute the DTW-distances occurring in Lemma 3. Algorithm 2
computes the costs of all means that are shorter than the condensation of s.

The List C1 contains distances to all mean candidates starting and ending with the same
symbols as s and the other three lists contain the other different variants of starting and
ending symbols. For example, c2 is the cost of a mean candidate of length m′ − 2r with
an added one (or zero respectively) to the start. The two resulting possiblities are then
either mismatching the new one (zero) with s(1) at an addional cost of 1 compared to c1 or
mismatching s(1) and s(2) with the new one (zero) and thus having to mismatch one block
less in the rest of s. The other cases c3, c4 are analoguous uses of Lemma 3. Figure 3.3
shows an example for s = 001101100001111000 and r = 2.
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3 Computing Binary-DTW-Mean in Subquadratic Time in n

Algorithm 2: Computes DTW(µ, s) for all µ with |µ| < m′

Input : Binary string s.
Output: Four lists C1, C2, C3, C4 of distances from s to condensed strings shorter

than m′ each list corresponds to a specific combination of starting and
ending symbol.

B ← list of sizes of blocks in s
x← B1, y ← Bm′

compute A00, A0∗, A∗0, A∗∗

// with input B[2 : m′ − 1] for the algorithm [ABW15, Theorem 10] in O(n1.87)time

// in 4O(T (n)) time, where T (n) is the running time of Min 1-separated Sums

initialize four lists C1, ..., C4

for r ← 1 to bm′−1
2
c // r is the number of mismatched blocks in s

do
c1 ← A∗∗r
c2 ← min(1 + A∗∗r , x+ A0∗

r−1)
c3 ← min(1 + A∗∗r , y + A∗0r−1))
c4 ← min(2 + A∗∗r , 1 + x+ A0∗

r−1, 1 + y + A∗0r−1, x+ y + A00
r−2)

// using Lemma 3 and its symmetric statement, see Figure 3.3 for visual

explanation

add c1, ..., c4 to the corresponding lists

Figure 3.3: Example of the case analysis of Algorithm 2 with s = 001101100001111000 and
r = 2. The red paths differentiate the possibilities of warping paths where µ and s have
different starting or ending symbols. The colored paths are the optimal solutions of Min
1-separated k-Sum on sublists given by the red paths. Each color corresponds to the entry

of one specific list: A∗∗2 , A0∗
1 , A∗01 , A00

0 . Note that the purple subpath corresponding

to A00
0 has cost 0 and would not actually be calculated by the algorithm.

Note that Algorithm 2 does not compute the cost of a single one or zero as a mean if s
starts and ends with different symbols. But that is obviously no problem since the cost
can be computed in linear time.
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3.1 Mean in linear time for k = 2

With Algorithm 2 and Equation (3.1) given by Brill et al. [Bri+19] we can compute the
distance DTW(µ, s) between all possible means µ up to length n+1 and the k given strings
in O(kn1.87) time or O(k · T (n)) time. We can then find the mean with the lowest cost in
an additional O(kn) time.

3.1 Mean in linear time for k = 2

We have seen that Binary-DTW-Mean can be computed in strongly subquadratic time
(in n). Now we will look at some special cases to see if we can get an even faster asymptotic
time. First of all we look at the mean of two binary strings in the time warping space. Ap-
proximation alogirithms for the general DTW-Mean problem often sequentially compute
weighted means of two strings so maybe having a linear algorithm for Binary-DTW-
Mean of two strings could yield a good linear approximation algorithm for general k as
well.

Theorem 2. Binary-DTW-Mean of two input strings is comptable in O(n) time.

Proof. Let s and t be two binary strings of length at most n. As before we will consider the
strings having the same starting and ending symbol and then derive the means for other
cases from there.
Let x1 := s1 = t1 be the first symbol and xend := send = tend be the last symbol of the two
strings.

Claim 1. Any mean of s and t has to start with x1 (and end with xend).

Proof. Assume µ is a mean and does not start with x1. Note that µ(1) has to be aligned
with x1 in s and t. If µ(1) is not aligned with any more blocks other than s(1) and t(1) then
we can delete it to obtain µ′ starting with x1 with smaller cost which contradicts µ being
a mean. If µ(1) is aligned with more than the first symbol in either s or t then we can
let µ′ := x_1 µ. Aligning just µ′1 (x1) with the first symbol of s or t and µ′(2) with all the
symbols as µ(1) except the first symbol will yield a smaller cost which contradicts µ being
a mean.

Let without loss of generality |s̃| ≤ |t̃|.

Claim 2. µ := t̃ is a mean of s and t.

Proof. We know that there is a condensed mean starting with x1 and ending with xend.
The only variability left is the length of the mean. Assume without loss of generality that
xend = “0”. Let cs = DTW(µ, s) and ct = DTW(µ, t) and let c = cs + ct be the cost of µ.
If we add a 10-cell to the end of µ, then the costs cs and ct will increase by 1 [Bri+19,
Lemma 1+2] so the cost c will increase too. If we delete a cell from µ, then the cost cs will
decrement (one less mismatched block in µ), but ct will increase by at least 1 (one more
mismatched block in t), so c will not decrease.
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3 Computing Binary-DTW-Mean in Subquadratic Time in n

Now that we know a mean for any two strings s and t with same starting symbol x1 and
ending symbol xend, let us consider the slightly modified strings s′ and t′ which do not
necessarily have same starting and ending symbols and let cs′ , ct′ be the modified costs.
Let y1 = 1− x1 and yend = 1− xend be the opposites of the starting/ending symbol. If we
obtain s′ and t′ by adding a y1-block of arbitrary size to the start of either of them (not
to both since then they start with the same symbol again) or a yend block to the end then
we just need to consider the two following possibilities:

1. |s̃′| < |t̃′|: We can still choose µ = t̃′. As before let c = cs′ + ct′ be the cost of that
mean. We know ct′ = 0 and cs′ = cs + 1 if we added exactly one y1-block to the start
s or t (or yend-block to the end). And cs′ = 2 if we added a y1-block to the start
of either s or t and a yend-block to the end of either of the two. Any mean µ′ with
smaller cost would have to be shorter to lower cs′ which would result in equally many
blocks being mismatched in t′ so the total cost would not decrease.

2. |s̃′| = |t̃′|: In this case s′ and t′ both start and end on opposite symbols, for example,
s′ starts and ends with 0 and t′ starts and ends with 1. We can choose µ = s′1

_t̃′ (or
t′1
_s̃′) as a mean with distance 1 to both strings. The condensations of s′ and t′ are

both substrings of µ and thus only the first or last symbol in µ will be misaligned in
the warping paths. If there was a cheaper mean, then it would have to have distance
0 to either s′ or t′ and thus start and end with the same symbol as one of the two
which would yield a distance of at least two to the other which contradicts it having
less cost.

Note that |s̃′| > |t̃′| could happen after adding a y-block to s but those cases are symmetric
to |s̃′| < |t̃′|.

3.2 Binary-DTW-Mean in f (k)O(n) time?

In the previous section we have seen that Binary-DTW-Mean is solvable in linear time
for k = 2. Now the question naturally arises as to whether it is not possible to solve this
problem in time depending only linearly on n for all k.
We will prove that for the relaxation of Binary-DTW-Mean where all input strings start
with x0 and end with x1 we can solve this problem in linear time for k = 3 as well and
show why this approach does not work for k ≥ 4.

Relaxed Binary-DTW-Mean
Input: Binary strings s1, s2, . . . , sk of length at most n and x0, x1 ∈ {0, 1}

such that all input strings start with x0 and end with x1
Output: A binary string µ such that

∑k
i=1 DTW(µ, si) is minimzed.

Theorem 3. Relaxed Binary-DTW-Mean is computable in O(n) for three input
strings.
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3.2 Binary-DTW-Mean in f(k)O(n) time?

Proof. Let s1, s2, s3 be ordered by sizes of their condensations. We can easily see that
|µ| ≥ |s̃2|. Recall that increasing the length of the mean by two (appending a cell) will
increase the distance to s1 and s2 by one and the distance to s3 decreases with one block
less contributing to the cost, so it is only worth to increase the size of the mean by a cell if
we can save at least a block of size at least two in s3. Let r be the number of 1-separated
blocks of size one in s3. We can compute r in linear time by greedily counting every one
we see and then ignoring the next element in the list of block sizes of s3. If r = 0 then
there is no block of size one so making the mean longer by a cell will always save a block
of size at least two in s3 and thus µ = s̃3. If r ≥ |s̃3|−|s̃2|

2
then there is no block that can be

saved by making µ longer and so µ = s̃2. Otherwise we can choose |µ| = |s̃3| − 2r and by
a more general version of Claim 1 the mean has to start with x0 and end with x1 which
makes it unambiguous.

When we chose the mean length somewhere between |s̃2| and |s̃3| depending on r there

is one thing we assumed implicitly, that is, as long as |s̃3|−|µ|
2

< r then appending one cell
to the mean actually decreases the distance to s3 by at least two. For that we need the
following lemma to hold.

Lemma 4. Let B be the list of block sizes with |B| = b, let A be the solution of Min
1-separated Sums(B) and let r be the maximum number of 1-separated blocks of size
one in B. Then for i > r it holds that Ai − Ai−1 ≥ 2.

Proof. For any i > r let j1, j2, ..., ji be the indices of 1-separated blocks in B such that∑i
l=1Bjl = Ai. Since i > r there has to be some block of size at least two beyond those.

Let B[jx] be that block then choose j′1, ..., j
′
i−1 := j1, j2, ..., jx−1, jx+1, ..., ji. The new i− 1

indices are 1-separated and Ai−1 ≤
∑i−1

l=1 Bj′l
≤ Ai − 2.

To finish the proof of the linear solvability for k = 3 for the non-relaxed version one would
have to make a case distinction regarding which string starts (ends respectively) with a
block containing different symbol than the other two and then slightly modify the mean
depending on which string it is and what are the lengths of the starting (ending) blocks.
When considering four input strings s1, s2, s3, s4 we can assume that the mean is at least
as long as s̃3. For that consider a mean that is a bit shorter, appending one cell would
increase the distance to s1 and s2 by one and decrease the distance to s3 and s4 by at
least one. Now to get a better result by appending cells to the mean we would need to
save at least a cost of three in s4. So one might find some r that is the maximum number
of 1-separated blocks of length at most two in s4 which is possible in linear time again,
and then choose |µ| = max(|s̃4| − 2r, |s̃3|). But now we run into the following problem:
The found mean could still be too short! This can happen because the difference between
r and r − 1 1-separated Blocks of size at most two can be indeed bigger than two. In
fact it can be arbitrarily big. Consider the following example: s1 = s2 = s3 = “0” and
s4 = “000011110010010011110000”. The list B4 of block sizes of s4 would look like this:
B4 = [4, 4, 2, 1, 2, 1, 2, 4, 4] and r = 3. The computed mean would have length 9 − 6 = 3
so µ = “010”. This mean would have cost 3 + 6 = 9 but by appending one 01-cell to
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3 Computing Binary-DTW-Mean in Subquadratic Time in n

the start of the mean we can get µ′ := “01010” with cost 6 + 2 = 8 and having such a
00100100-structure multiple times within s4 would make it necessary to increase the mean
size multiple times. So for k ≥ 4 we cannot find a mean with this approach without
actually solving the Min 1-separated Sums problem at some point.
Although we discussed why our approach for solving Binary-DTW-Mean for k = 3
cannot be used to solve the problem for larger k, we did not prove that there is no way
to compute Binary-DTW-Mean in f(k)O(n) and it remains open whether there is such
an algorithm or not.
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4 Binary-DTW-Mean in Time
Quadratic in Condensed Lengths

We have shown that the mean of binary time warping data is computable in O(kn1.87)
time where k is the number of strings and n is the maximum length but some parts of
the underlying algorithm by Chan and Lewenstein [CL15] use highly complex theoretical
results and randomization which makes it hard to implement efficiently in practice. In this
section we will develop another algorithm which is easy to implement and runs in much
better time than a naive solutions like computing the whole DTW-Array for each string
which would take about O(kn2) time because it uses the facts that blocks of the same
symbol can be grouped together and that we only have to consider warping paths that
pass through a smaller number of black blocks. We will again use the reduction to Min
1-separated k-Sum but this time use a dynamic program which runs in O(m2) time,
where m only depends on condensed sizes. This algorithm is especially efficient on sparse
data.

Claim 3. If the binary input strings s1, s2, ..., sk are ordered by number of blocks (length
of condensations), then there exists a condensed mean µ with |µ| ≥ |s̃b k

2
c+1|.

Proof. Suppose there is a condensed mean µ′ with shorter length. Now we know there are
at least dk

2
e strings with a longer condensation than µ′. The distance to those strings is at

least the added size of mismatched blocks in s̃b k
2
c+1, ..., sk and some constant cost for the

start and end. If we now create µ′′ by adding one cell to µ′ then the distance to s1, ..., s̃b k
2
c

will increase by exactly 1 while the distance to s̃b k
2
c+1, ..., sk decreases by at least 1. The

new µ′′ has at most the cost of µ′ which and is also a mean.

Let m′ = |s̃b k
2
c+1| be the new lower bound on the length of the mean. Now we know

for any string with longer condensation si, i > dk2e that we can match at least m′ blocks
correctly with blocks in the mean and only half of the remaining blocks will contribute
to the cost. So we only have to solve the 1-separated k-Sum problem for 1 up to
k′ ≤ b |s̃i|−m

′

2
+ 1c. The +1 emerges from possible differences of starting or ending symbols.

Algorithm 3 solves this problem.
The lines 17 to 23 of Algorithm 3 are the core of the dynamic programming approach.

The entry M [i, r] is the minimal sum of r 1-separated elements in the sublist senc[1 : i]. In
the base case of only having one element in the sum (r = 1) the minimum is always either
the same as before or the new element of the substring. If r > 1 we can either take the
new element and then use the minimal r − 1 element sum of the substring not containing
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4 Binary-DTW-Mean in Time Quadratic in Condensed Lengths

Algorithm 3: Computes DTW(µ, s) for all µ with |µ| < m′ and specific starting
and ending symbols.
Input : Binary string s, µ1 and µend
Output : An array M with distances between s and all µ up to length m′

1 senc ← list of block sizes of s
2 r ← length(senc)−m′
3 b1 ← 0, bend ← 0 // indicates whether there is a black block in the top left or

bottom right corner

4 if µ1 6= s1 then
5 b1 ← 1 // if the top left block is black then we already count the first

step through that block that any warping path has to make, see line 24

6 r ← r − 1
7 senc[1]← senc[1]− 1 // if the warping path passes through the top left black

block horizontically then we do not count the first step again

8 else
9 delete senc[1]

10 if µend 6= send then
11 bend ← 1
12 r ← r − 1
13 senc[last]← senc[last]− 1

14 else
15 delete senc[last]

16 k′ ← b r2c+ b1 + bend // k′ is the number of black blocks the smallest mean

starting with µ1 and ending with µend has to pass through

17 M ← |s̃i| × k′ Array, initialized with infinity
18 for r ← 1 to k′ do // r is the number of 1-separated blocks

19 for i← 2(r − 1) + 1 to length(senc) do // there cannot be r 1-separated blocks

in less than 2(r − 1) + 1 blocks

20 if r = 1 then // for r = 1 we just look for the smallest block

21 M [i, r]← min(senc[i],M [i− 1, r])
22 else
23 M [i, r]← min(M [i− 1, r], senc[i] +M [i− 2, r − 1]) // in the general case

either take the best i 1-separated blocks from before or the new

senc[i] and the i− 1 1-separated blocks so that senc[i− 1] is not among

them

24 M [length(senc), r]←M [length(senc), r] + b1 + bend

the new element and the one before (to ensure the 1-separation) senc[i] + M [i − 2, r − 1],
or we do not take the new element in which case the minimal sum is the same as before
M [i− 1, r].
The rest of the algorithm handles the differences of starting and ending symbols (in constant
time). To show this is correct assume that the mean µ and s start with different symbols.
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4.1 Solving Binary-DTW with our Algorithm

Figure 4.1: Two optimal warping paths of µ = 010 and s = 1110011001110000 with
DTW(µ, s) = 5. The path in the upper picture aligns µ1 with only S1 at a cost of one
but then has to align µ2 with s(1), s(2), s(3), s(4), s(5) of which s(2) and s(4) contribute to the
cost. The path in the lower image aligns µ1 with s(1), s(2), s(3), s(4) of which s(1) and s(3)

contribute to the cost.

In this case the optimal alignment path has two options: Either align µ1 and µ2 with the
first symbol of s at a cost of one but then having to mismatch one additional block in s.
Or align s1 and s2 with µ1 at cost of the size of s1 (see Figure 4.1). The algorithm handles
this by decreasing the cost of s1 by one and adding this cost of one to both cases at the
end. It also changes the number of mismatched blocks accordingly. If µ and s start with
the same symbol, then µ1 and s1 are always aligned in an optimal warping path, so s1

cannot contribute to the cost and is thus erased from the list by the algorithm. Handling
the last symbols is symmetric.

If m = max{|s̃i| : 1 ≤ i ≤ k} and m′ is the median condensed length as before, then

Algorithm 3 runs in Θ( (m−m
′)2

4
) to compute distances for one specific case of starting and

ending symbol. If we run this algorithm four times—for every possible combination of
starting and ending symbols—then we get a running time in Θ((m−m′)2).
Now we can create a k

2
by 4 · (m − m′) list of distances between all possible means and

given binary strings. Notice that we only need to keep track of all the strings with longer
condensation than m′. For the shorter strings we can sum up the distances. For each
combination of starting and ending symbol then find the mean with the shortest length in
k
2
· (m−m′) time and choose the best mean out of those four to be the final result.

4.1 Solving Binary-DTW with our Algorithm

In the previous section we have developed an alternative algorithm that solves the Min
1-separated Sums problem in a dynamic programming approach. Now we will use this
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4 Binary-DTW-Mean in Time Quadratic in Condensed Lengths

algorithm again to solve the original problem Binary-DTW where the reduction came
from and compare it to other fast algorithms that we introduced before (BDTW[Sha+18],
Awarp[Mue+16], BSDTW[HBG19]) in terms of running time.

Let s, t be two binary strings, let n := max(|s|, |t|) and without loss of generality assume
|s̃| ≥ |t̃|. As Abboud, Backurs, and Williams [ABW15] showed in their reduction from
Binary-DTW to Min 1-separated k-Sum we need to solve Min 1-separated k-Sum
for k = |s̃|−|t̃|

2
on the list of block sizes of s. If s and t differ in starting and ending symbols

we additionally need to make use of Lemma 3 and in the worst case (if s and t start and
end with different symbols) we have to run Algorithm 3 four times.

For a given k, Algorithm 3 runs in Θ(
∑k

i=1 |s̃| − 2i) = Θ(k(|s̃| − k− 1)) time. Let p1 := |s̃|
n

and p2 := |t̃|
n

be the sparsities of s and t. Note that this notion of sparsity differs slightly
from sparsities as defined by Hwang and B. Gelfand [HBG19]. They defined sparsity to be
the number of ones devided by n, thus only making use of big 0-blocks, while we take both
1-blocks and 0-blocks into account. In the worst case we gain a factor of two compared to
their definition, but if 1-blocks are on average at least of size two, then our definition of
sparsity will yield lower values and thus better running time.
We can express the running time in terms of n and p1, p2: k = n(p1−p2)

2
, |s̃| = np1 so in the

worst case we get a running time of 4n(p1−p2)
2

(np1 − n(p1−p2)
2
− 1) ≤ 2n2(p1

2 − p1p2).
If all 1-blocks have size one, then we can express the running time of BSDTW as p1p2

n2

2
,

and the running time of AWarp as p1p2n
2. If the difference of condensed sizes of s and t

is sufficiently small, that is p1 − p2 ≤ p2
4

, then we get a better running time than BSDTW
and AWarp even for the worst case. If s and t start and end with same symbols, then
p1 − p2 ≤ p2 suffices and if there are larger 1-blocks, then we get an even faster algorithm.
So in conclusion this algorithm would be best used when binary data is generated with
high enough sample rate that there are some large 1-blocks or when binary data is already
known to be pretty similar so the condensed sizes are almost equally big. Comparing our
algorithm to BDTW is easier because BDTW also uses repitions of both, zero and one-
blocks and achieves a running time of Θ(n2p1p2). We can achieve a better running time
with our algorithm if p1 ≤ 3

2
p2 in the worst case and even better running times if starting

and ending symbols match.
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5 Related Problems

In this section we will look at some problems that are similar to Binary-DTW-Mean
and see how we can use our algorithms and structural information of binary dynamic time
warping to solve those.

5.1 Weighted Binary-DTW-Mean

Input: Binary strings s1, s2, ..., sk and weights w1, w2, ..., wk with , |si| ≤ n, wi ≥ 0 for all i.

Output: A binary string µ such that
∑k

i=1wi DTW(µ, si) is minimzed.

Corollary 1. Weighted Binary-DTW-Mean is computable in O(kn1.87) time.

Proof. First, we can still assume that any mean is condensed by the same argument as
before. Consider a non-condensed mean. Then, it is easy to see that the condensation of
it has at most the same DTW-distance to each string. It is easy to see that the length of
the weighted mean is still bounded by the condensed sizes of the input string with shortest
condensation and the input string with the largest condensation since making it shorter
(or longer respectively) would increase the distance to all strings.
As before we can compute the costs for all possible means to one specific string in O(n1.87)
time and end up with at most 2(n+1)·k values in total which we can then weight according
to the given parameters and compute the mean in additional O(nk) time.

5.2 Binary-DTW-Center

Input: Binary strings s1, s2, . . . , sk of lengths at most n.
Output: A binary string c such that max1≤i≤k DTW(c, si) is minimzed.

Corollary 2. Binary-DTW-Center is computable in O(kn1.87) time.

Proof. As above, the center can also be assumed to be condensed with length bounded by
shortest and longest condensation of input strings. We can compute the same 2(n+ 1) · k
values in O(kn1.87) time which contain the distances from all possible condensed centers to
all input strings. Now we can find the center similarly to finding the mean by considering
only the maximum distance to one of the k input strings for each possible mean instead
of summing the distances of all input strings. So finding the center only takes additional
O(nk) time.
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6 Testing and Experiments

In this section we will answer some of the arising questions by testing the algorithm de-
veloped in chapter 4 and also compare it to the trivial algorithm that calculates the whole
n×n+ 1 matrix for each string. To do this we will mostly use the human activity datasets
provided by the Washington State University CASAS [Coo+19] and also use some ran-
domly generated data. The use of those human activity datasets was inspired by Mueen
et al. [Mue+16] who also used those datasets to test their DTW algorithm.
To derive meaningful information from the tests we will use our notion of sparsity as de-
fined in Section 4.1, that is, for a binary string s with length n with m blocks the sparsity
is defined as ps := m

n
= |s̃|
|s| . This definition of sparsity yields values between zero and one

with values close to zero implying long blocks in s and values close to one implying many
short blocks in s. We will call strings with sparsity greater than 0.5 dense and strings with
sparsity smaller than 0.2 sparse.
The data in the CASAS datasets consists of different sensors which signal changes in the
environment (for example door got opened/closed). We use this data in two different ways
(further using the door example):

1. To create mostly sparse data we will create lots of evenly spaced time points, for
example 10 seconds or less apart, and check on each time if the most recent event
was opening or closing the door. See Figure 6.2. Notice that we may lose track of
the door being opened and closed within less than 10 seconds this way.

2. To create less sparse data where the data points are maybe 10 minutes apart we
require each event of the door being opened or closed to be represented by at least 1
of the data points. See Figure 6.3. Of cause this does not work if we have less data
points than events.

6.1 Comparing our Algorithm with the naive Solution

Regarding the speed of Algorithm 3 we want to answer the following questions:

Question 1. Is Algorithm 3 always at least as fast as the naive approach?

Question 2. How much does the running time of Algorithm 3 improve with lower sparsity?

To answer the first two questions regarding the speedup of Algorithm 3 we compare the
naive dynamic O(kn2) algorithm and the fast dynamic program on sparse and very sparse
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6.1 Comparing our Algorithm with the naive Solution

Figure 6.1: Randomly generated data with
n = 20000, k = 6

Figure 6.2: Motion sensor data from
7pm to 0am in one hour splits. Data
points are 0.5 seconds apart. For
DTW-Mean here n = 7200, k = 5.

Figure 6.3: State of a door (open or closed) in a house over four weeks. Here the interval
between two data points is ten minutes and if the door was opened and closed within those
ten minutes then it will count as open for one data point. For DTW-Mean here n = 1008,
k = 4.

real data obtained from the door sensor D002 in the dataset H001 and on sparse and dense
randomly generated data, both for various values of k. As you can see in Figure 6.4 and
Figure 6.5 our algorithm performs so much better that it seems to have zero running time
if we only look at input sizes where the naive algorithm still runs in somewhat feasable
time. In fact, in terms of total running time in each of the diagrams with sparsity ≈ 0.1 in
Figure 6.4, the new algorithm performs about 300 times better than the naive algorithm
and in Figure 6.5 it performs about 800 times better. Notice that for this sparsity of
≈ 0.002, most of the running time is probably just overhead of the function because the
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6 Testing and Experiments

Figure 6.4: Running time of the naive O(kn2)
and the new algorithm on relatively sparse
data obtained from the sensor D002 in 10
minute intervals.

Figure 6.5: Running time of the
naive O(kn2) and the new algorithm
on relatively sparse data obtained
from the sensor D002 in 5 second in-
tervals.

data is not long enough yet. Which makes it seem like an almost constant running time.
In Figure 6.6 and Figure 6.7 you can see the running time of our algorithm on larger input
sizes. For sparsities around 0.1 you can see that our algorithm still performs about twice
as well at input size 10000 as the naive algorithm does on input size 1000.
It is certain that our algorithm runs a lot faster than the naive algorithm, even for low k
and small input sizes.
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6.2 Testing stuctural qualities of the mean

Figure 6.6: Running time of the naive O(kn2)
till input size of 1000 and running time of the
new algorithm till input size 5000 on dense
randomly generated data.

Figure 6.7: Running time of the
naive O(kn2) till input size of 1000
and running time of the new algo-
rithm till input size 10000 on sparse
randomly generated data.

6.2 Testing stuctural qualities of the mean

Question 3. How closely related are the length of the mean and the median condensed
length?

Question 4. Is it more likely that the mean length equals the median condensed length if
we consider more input strings?

Question 5. Is the mean length always the same as the median condensed length if we
consider dense input strings?

Question 6. How does the starting (and ending symbol) of the mean relate to the starting
symbols or starting blocks of the input strings?

To answer Questions 3 to 5 regarding the structure of solutions for Binary-DTW-
Mean, we will look at how the mean length differs from the median condensed length.
Recall that by Claim 3 we know that if we assume that the input strings s1, s2, ..., sk are
sorted by the lengths of their condensations, then there is always a (condensed) mean
µ with |µ| ≥ |s̃b k

2
c+1| and we call this lower bound the median condensed length. The

intuition being that for every cell we append before reaching this length, we always save
at least as many blocks in the strings with longer condensations as we have to mismatch
blocks in the mean for strings with shorter condensations.
In Figure 6.8 you can see how the median condensed length differs from the mean length
for different sparsities. The data has been created with n = 1000 and k = 10 and the
sparsity was used as the chance that the next symbol in the string will be different from
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6 Testing and Experiments

Figure 6.8: Differnce between median condensed length and calculated mean length with
changing sparsity.

the last one so the actual sparsities are not necessarily exactly the sparsities given by the
x-axis but very close to those. You can clearly see that for sparsities greater than 0.5,
which we called dense there is only three points with difference greater than one from
the median condensed length and only one of those points with difference greater than
two. The common difference of one is likely caused by the differences in starting or ending
symbols. Our fifth hypothesis is pretty much answered with this, that is, for dense data
there almost always is a mean with median condensed length give or take one.
To answer the other two questions we have a look at Figure 6.9. Here the data was created
with n = 400 and for each sparsity the strings were created symbol by symbol as explained
before. Interestingly we can see that for sparse strings the mean very often differs quite a
lot from the median condensed length and for a higher number of input strings it seems
to differ even more often than for a low number of input strings. This could be the case
because the more input strings we consider the more likely it is that there is one input
string with high condensed length and long block sizes. We can also clearly see that for
dense strings there is not a single red dot for any k.

To answer the last question we tested for different k and different sparsities how the
starting symbol of the mean depends on the starting symbols or blocks of the input strings.
To do that, we first tested how often the starting symbol of the mean is the same as the
majority of starting symbols of input strings (see Table 6.1) and then also summed up the
lengths of all starting 1-blocks and the lengths of starting 0-blocks and checked how often
the mean corresponds to the bigger of those two sums (see Table 6.2). Overall the starting
symbol of the mean matches the majority of starting symbols or blocks of the input strings
pretty often but interestingly, for lower sparsities taking the length of starting blocks into
account seems to show worse results than taking only the first symbol into account.
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6.2 Testing stuctural qualities of the mean

Figure 6.9: Difference of mean and median condensed length depending on sparsity and
number of input strings. For every point in the 100 × 60 grid we calculated one mean
for the respective k strings and given sparsity. No dot means that the median condensed
length and the mean length did not differ by more than one. A blue dot means they differed
slightly (2− 4 difference) and a red dot means they differed by at least five.

Table 6.1: Frequency of the first symbol of the mean also being the first symbol in the
majority of input strings

k/sparsity 0.05 0.1 0.2 0.5 0.8 1
5 76% 79% 82% 82% 82% 80%
15 75% 81% 82% 83% 85% 85%
40 82% 84% 88% 87% 91% 97%

Table 6.2: Frequency of the first symbol of the mean also being the in the majority of
symbols throughout the first blocks of input strings

k/sparsity 0.05 0.1 0.2 0.5 0.8 1
5 69% 73% 75% 83% 85% 80%
15 67% 73% 75% 82% 88% 85%
40 66% 70% 74% 81% 91% 97%
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7 Conclusion

We have seen that the problem of finding a mean in a dynamic time warping space can be
solved very efficiently for binary data. It can also be reduced to a more well researched
problem for which some efficient algorithms already exist. However, it still remains unclear
whether Binary-DTW-Mean could be solved in f(k)O(n) time but we think of this as
unlikely.
For relatively dense data we have seen that we can choose a condensed string with starting
and ending symbols corresponding with the majorities of starting and ending symbols in
the input strings and length of the median condensed input string and it is very likely that
this string will also be a mean of all input strings. For k given input strings we could do
this in O(nk) time and for run length encoded strings this would even be possible in O(k)
time. Of course this computed string is not certain to be an exact solution so computing
it would only be useful if a minor error is allowed. One could try to generalize this notion
to arbitrary data, where finding a mean is a very hard problem.
We have also seen that related problems like Binary-DTW-Center or more general
problem formulations like Weighted Binary-DTW-Mean can be solved efficiently with
the same reductions used when solving Binary-DTW-Mean.
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