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Abstract

We look at newly found demands and requirements of universities employing reform
study programs regarding timetabling. Whereas classic study programs usually repeat
the same schedule of courses every week, reform programs utilize many smaller, aperiodic
courses and have a student-group-centric approach to planning. Tackling the problem
of computing such a non-periodic schedule is the main focus of this thesis.

We present a new model called Aperiodic Curriculum-Based Timetabling
which supports aperiodic courses and student groups as an extension of the known
Curriculum-Based Timetabling. A hypergraph is used to encode scheduling con-
flicts within the search space. Because of the aperiodicity of most courses, the search
space becomes much larger. Therefore, some ideas for splitting the problem into smaller
pieces are explored and a connection between the employed hypergraph and Hitting
Set is made.

Finally, an integer programming approach is presented that solves the problem heuris-
tically in two steps. We show that the decision problem version of the first step is NP-
complete. Further, we analyze the performance of the proposed heuristic on real-world
data of a medical university employing a reform program. Using the two-step heuris-
tic schedules containing aperiodic alongside periodic courses can be computed within a
relatively short time.

Zusammenfassung

Während klassiche Studiengänge vorwiegend aus Kursen mit wöchentlich wiederauftre-
tenden Terminen bestehen, setzen sich Modellstudiengänge mehrheitlich aus Einzelter-
minen zusammen. Weiterhin gibt es deutlich mehr Kurse, die in Kleingruppen gelehrt
werden. Diese Arbeit setzt sich mit der Errechnung eines Stundenplans mit derartigen
Anforderungen auseinander.

Wir stellen ein neues Modell namens Aperiodic Curriculum-Based Timetabling
vor, welches Studentengruppen und sowohl periodische als auch aperiodische Kurse un-
terstützt. Dabei wird das bekannte Problem Curriculum-Based Timetabling unter
anderem um Semesterwochen erweitert. Wegen der aperiodischen Kurse wächst jedoch
der Suchraum enorm an und es werden verschiedene Ansätze behandelt um das Problem
in kleinere Stücke zu unterteilen. Konflikte innerhalb des Suchraumes sind mit Hilfe ei-
nes Hypergraphen modelliert, von dem eine Verbindung zu Hitting Set hergestellt
wird.

Letztlich wird ein ganzahliges lineares Programm vorgestellt, dass das Problem heu-
ristisch in zwei Schritten löst. Der erste Schritt der Heuristik wird in seiner Version
als Entscheidungsproblem als NP-vollständig ermittelt. Anschließend wird die Heuristik
mit realen Daten einer medizinischen Universität mit Modellstudiengang getestet und
ihre Laufzeit untersucht. Die vorgestellte Heuristik errechnet innerhalb relativ geringer
Laufzeit für die Anforderungen passende Studenpläne.
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1 Introduction

Automatically generating timetables for schools and universities is an active field of re-
search [KS13; Sch99; Wer85]. Under the category of Educational Timetabling a number
of problems exist that address different aspects of timetabling. For universities in gen-
eral, a distinction is made between Examination Timetabling and (University) Course
Timetabling. For the latter, one distinguishes between Curriculum-Based Timetabling
(CBT) and Enrollment-Based Timetabling (EBT).

Both Course Timetabling problems and even Highschool Timetabling have in common
that they produce a weekly schedule that repeats throughout the whole teaching period.
Examination Timetabling, however, produces a schedule for specific dates and has dif-
ferent constraints. One major constraint is the desired amount of free time between
examinations. Per student and exam one day is in general to be kept clear. In Course
Timetabling, however, it is desirable to schedule few breaks for the students.

When talking about CBT courses have to be scheduled conflict-free for every curricu-
lum. The curricula are defined by the educational institution in order to enable students
to study programs within reasonable time periods. In EBT, however, it is known which
student is enrolled in which courses beforehand. Usually the enrollment information is
collected from the students themselves. Therefore, a timetable is to be constructed so
that every student can attend all courses in which she or he is enrolled.

Universities constructing all their schedules using automated methods generally use
a combination of CBT, EBT, and Examination Timetabling as depicted by Kristiansen
and Stidsen [KS13, p. 8]: First, a rough schedule is constructed using CBT based on
the known curricula. Contained in this step are mostly lectures that are attended by
larger numbers of students. For planning smaller courses, such as tutorials, some form
of EBT is used as a second step, where students enroll at the beginning of the semester.
Usually these courses are held in small groups requiring a different set of rooms than
big lectures. Therefore, smaller rooms are often blocked in the first step using CBT to
reserve time for the smaller courses later on. After that, the examinations are planned
using Examination Timetabling.

New Requirements The approach described above starts falling apart when the num-
ber of small courses starts to prevail. Sometimes the enrollment data cannot be obtained
or it becomes unclear how many resources have to be blocked during CBT so that it will
be possible to find a feasible timetable during EBT.

What makes both Course Timetabling versions unfit as well is the limitation to only be
able to construct weekly schedules. There are two possibilities to deal with events that
do not run for the whole semester, such as block seminars, congresses and so on. The
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1 Introduction

first is to näıvely schedule these events as normal courses. This results in the assigned
rooms being otherwise empty for the rest of the semester and is thus inadequate. The
second approach is to, again, block some rooms while constructing the weekly schedule
and later placing these events by hand. Being manual labor this is only acceptable if
the number of such events is low. So for universities with many non-weekly events, both
approaches are undesirable.

New Model Many small and non-periodic courses motivate a new problem definition.
First and foremost, non-periodic courses need to be handled well, meaning they cannot
block a combination of room and time for the whole teaching period while only using a
small portion thereof. Second, a different approach for small courses is needed which still
enables to maintain conflict-free curricula per student. Hence, we introduce Aperiodic
Curriculum-Based Timetabling (Aperiodic CBT) in this thesis.

Both issues are stressed by recent advancements made in curricula development. Some
study programs have been reformed to deviate from traditional programs [SLH08; Cha].
These new reform curricula almost exclusively consist of aperiodic courses and have
many courses that students have to attend in small groups. This is because mostly
medical institutions employ these new curricula, where for instance bedside teaching is
a common occurrence. There the students are taught next to a patient’s hospital bed,
thus requiring small sets of students.

Also a problem for medical institutions is the assignment of teachers or lecturers to
courses. Most organizations that are involved in teaching students also have to handle
patients. Therefore, who exactly is going to teach a class is often decided on the spot
by who is available. Hence, in contrast to CBT and EBT, teachers are not assigned
to courses beforehand. Instead each course is assigned a set of organizations that are
suitable for teaching the subject. Therefore, Aperiodic CBT does not guarantee conflict-
free schedules for teachers. Still, in order not to overload the organizations at any given
moment, the work load of organizations can be limited by specifying capacities. These
capacities state how many minutes of teaching is acceptable per week, per day and in
parallel for every organization. The old model of teachers or lecturers with conflict-free
schedules can still be modeled by setting the parallel capacity to one.

1.1 Terminology

In the following, we describe the mentioned reform programs further. We will refer to a
curriculum as being a reform program when it contains a mix of periodic and aperiodic
courses. Periodic courses are usually referred to as lectures in CBT, meaning that they
generally run over the course of the whole lecture period in a weekly manner. Aperiodic
courses, however, have a single appointment somewhere during the lecture period.

The goal of this thesis is to schedule some smaller traditional programs alongside a
specific reform curriculum that almost exclusively consists of aperiodic courses. The
reform program includes seminars, single lectures and talks, practical training courses,
bedside teaching and more teaching formats with diverse requirements.
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1.2 User Interfaces

In contrast to traditional programs, most of the courses are held in small groups. Only
some lectures are held together for all students of a semester. When a course is not held
together for all students, several instances of a course, so-called classes, have to be held
and planned.

To specify which students attend a class together, all students of a semester are first
partitioned into base groups. A base group is an inseparable set of students. These
base groups are then combined to larger groups depending on the teaching format. For
a lecture that is held together for all students of a semester, all base groups of the
semester form one large group. For very small courses, however, each base group could
form its own group. Depending on the number of students per semester, the base groups
are partitioned into several cohorts. A cohort is a set of base groups in the same semester.

All courses are organized in modules. For aperiodic courses, the modules can be
divided into submodules, each having a certain length given in days. Then, an ordering
of these submodules is stated per cohort, which results in a certain time frame for every
course per combination of submodule and cohort.

By dividing the students of a semester into cohorts and specifying different submodule
orderings per cohort, peak loads for organizations can be smoothened. By only sending
one cohort at a time instead of all the students of a semester to a specific organization,
its load can shrink from impossible to manageable.

Every base group has a fixed semester and cohort and therefore a well defined sub-
module ordering. Normally, groups would not be allowed to span base groups of mul-
tiple cohorts because their submodule orderings could be different. It is still desirable,
however, to be able to form groups spanning multiple cohorts when the corresponding
submodule orderings allow for it. Therefore, the orderings are analyzed and groups
spanning cohorts are allowed where the time frames of several cohorts align.

We will present some illustrations for the introduced concepts shortly.

1.2 User Interfaces

In the following we will provide some insights into the user interfaces used to enter the
data for the reform program within Moses [Mata]. Figure 1.1 depicts submodule order-
ings of a single semester. These can be entered after all modules and their submodules
have been specified.

After all courses have been entered and the curricula are defined, the submodule
orderings are analyzed for overlaps. For courses, where submodule orderings overlap,
groups can be formed spanning multiple cohorts. Figure 1.2 shows how the base groups
are compound to different groups, sometimes spanning cohorts, sometimes not.

Capacities for organizations can be entered as seen in Figure 1.3.
Starting out as a research project at Technische Universität Berlin in 2003 and tran-

sitioning into a private business at MathPlan GmbH [Matb] in 2013 Moses has since
expanded to three of the biggest technical universities in Germany. It has been rolled
out at Technische Universität Berlin (TUB) in 2003 [TUB], then at RWTH Aachen
(RWTH) in 2013 [RWT] under the name Carpe Diem!, and at Technische Universität
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1 Introduction

Figure 1.1: A screenshot of four submodule orderings in Moses. Recall that a submod-
ule is a collection of aperiodic courses used to arrange a time-wise ordering.
Each box represents a submodule and the different colors mark the modules.
All students of a semester are partitioned into the same number of cohorts
as submodule orderings exist. For all students participating in rotation one
for example all courses that are part of submodule 1.1 have to completed
before any course of submodule 1.2 is able to start. The same goes for stu-
dents within rotation two. For students of rotations three and four, however,
submodule 3.1 follows after submodule 1.1.

München (TUM) in 2014 [TUM]. TUB uses the full suite of CBT, EBT and Exami-
nation Timetabling, whereas RWTH uses CBT and Examination Timetabling [RWT].
TUM uses the Examination Timetabling exclusively [TUM]. The goal of this thesis is to
implement the newly described algorithm within Moses and reach universities employing
reform study programs, especially medical universities.

In addition to an implementation of the newly formulated problem described in this
thesis, there exist real-world implementations of other already mentioned timetabling
solutions within Moses. CBT has been implemented and shown by Lach, Lach, and Zorn
[LLZ16b], alongside EBT by Höner and Lach [HL16] and Examination Timetabling by
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1.3 Outline

Lach, Lach, and Zorn [LLZ16a].

1.3 Outline

This thesis includes an abstract description and problem definition for Aperiodic Cur-
riculum-Based Timetabling in Chapter 2. First, required notation is listed before
giving the exact problem definition. Afterwards, some key observations about the conflict
graph that is part of the problem are given. A connection of the conflict graph to
Hitting Set is investigated. Chapter 3 proposes a 2-step ILP heuristic solving Aperi-
odic CBT. A polynomial-time reduction from 3-SAT to the first step of the heuristic
is given and therefore proven that Step 1 is NP-hard. Afterwards, the performance of
the heuristic is analyzed. Despite the NP-hardness of step 1, the runtime is found to be
relatively small for the tested real-world instance. Some approaches for further research
are given in Chapter 4.
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1 Introduction

Figure 1.2: A screenshot of groups in Moses. The table shows base groups on the y-
axis along with a checkbox for determining whether only accessible rooms
or family-friendly times can be scheduled. Each base group is representative
of three students. Depending on the teaching format, different numbers of
base groups form a group together. Optimal group sizes are displayed in the
header along the x-axis. Groups are displayed using vertical bars that span
the base groups. Since four submodule orderings exist (see Figure 1.1) the
base groups are partitioned into four cohorts, whose borders are marked by
green horizontal bars. If the placing of submodules overlap the borders are
neglected. All orderings overlap on submodule 1.1 for example. Therefore,
lectures within submodule 1.1 can be held for all cohorts of the semester
together. This can be seen in the leftmost column titled 360. There all
22 pictured base groups form a single group together. For submodules 2.1
and 2.2, however, no adjacent orderings overlap. Hence all borders between
orderings have to be respected. If we now take bedside teaching for example,
where optimally six students form a group, we can see in the rightmost
column labeled 6 that for the first two cohorts two base groups form a group.
For the last two cohorts, however, the partitioning does not work out. Thus,
respectively at the end of each cohort a group of a single base group exists,
covering only three students each.

12



1.3 Outline

Figure 1.3: A screenshot of organizational capacities in Moses. Each organization can
state their available times. Also, a maximal number of parallel classes, a
maximum number of hours per week and a maximal number of hours per
day can be added. Finally, entire time intervals can be blocked altogether
and preferences for weeks can be stated. In this example the organization
states that its teaching personnel is only available between 9am and 4pm.
It can teach a maximum of 4 classes in parallel and 6 hours per day. In a
week the organization can teach 25 hours in sum. On every week with an
odd number Monday 8am to 8:30am is blocked. The organization prefers
teaching in weeks two to four and wants to avoid teaching in weeks 11 to 13
of the semester.
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2 Model & Key Observations

In this section, we will give a more formal description of the decision problem and
portrait some observations. Section 2.1 will give an overview about which symbols are
used to describe the used sets of resources and functions. Then, Section 2.2 will cover
a preprocessing step, before Section 2.3 will formally describe the decision problem.
Finally, in Section 2.4 we will discuss the observations made.

Input

Recall that there are several courses per semester, which consist of classes. Every class
of the same course covers the same topics, only for another set of students. Further, each
class can be held in several sessions for traditional periodic courses or one session for a
fully aperiodic course. The planner specifies the number of sessions and their lengths in
minutes. If all courses were to be held once every week of the semester, then the problem
would be suitable to be solved using classic Curriculum-Based Timetabling (CBT).

For example, consider a single semester with two courses. One course is a lecture with
enough capacity for all students. The other course is a smaller seminar which requires
two classes. Then we would have three classes in total: one for the lecture and two for
the seminar. Both classes of the seminar would cover exactly the same topics but for a
different set of students.

Groups How many classes are needed for every course is dictated by its specified groups.
Students are organized in disjoint base groups. All students of the same base group
attend the same classes. Depending on the format of the course, several of these base
groups form a larger group, so a group consists of a set of base groups. For every course,
it is then specified which set of groups has to attend it. There are always exactly as
many classes per course as groups.

So for our example, we would need at least two base groups. For the smaller seminar,
each base group would also form a group. However, for the lecture, a separate group
needs to exist, consisting of both base groups. This makes a total of three groups for
our example.

Time The time frame that a course can be scheduled in is given per combination of
course and group as a set of eligible periods. These sets can be different within the same
course. This makes it possible to offer courses in different orderings for different groups.
Thus the assignment of a group to a class yields a certain time window, providing a
set of eligible periods. This will become important later on in Step 1 of our proposed
heuristic (section 3.1).
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2 Model & Key Observations

1. Week Mo 2. Week Mo . . . 14. Week Mo

08:00

09:00

10:00

11:00

12:00

13:00

14:00

Figure 2.1: Visualization of a single periodic period.
Every colored box represents a consec-
utive session of a single period. Every
session can consist of several time slots.
We call such a period periodic because it
has more than one session. This period
takes place on Monday starting at 10:00
and lasting two hours. It occurs in all 14
weeks.

Again, for our example, the
lecture is supposed to run over
the whole semester and only has
one group. Therefore, the set
of eligible periods is only speci-
fied once, whereas for the semi-
nar, a differing set of eligible pe-
riods is given for every group.
For one group, the first half of
the semester is considered eligi-
ble and for the other group only
the second half. This is done
to spread the load of teaching
among the organizations.

In the end, each class needs to
be assigned one of the eligible pe-
riods to define the time it takes
place. A period can contain sev-
eral sessions. A session is a set of
consecutive time slots. In addition to time slots in CBT, where time slots are a tuple
of a day and a time interval, we need to keep track of the week within the semester.
All time slots need to be disjoint. For fully aperiodic courses, all eligible periods have
exactly one session whereas for periodic courses, the periods contain several.

1. Week Mo 1. Week Tu 1. Week We 1. Week Th 1. Week Fr

08:00

09:00
lecture 1

10:00
group 1&2

11:00
seminar 2

12:00
seminar 1

13:00
group 1

14:00
group 2

Figure 2.2: Possible timetable for the example

So each eligible period of our
periodic example lecture has as
many sessions as the number of
weeks the semester runs. See Fig-
ure 2.1 for an example of an eli-
gible period for the lecture. The
lecture needs to take place in ev-
ery week. However, the seminar
is an aperiodic course, so its eligi-
ble periods only contain a single
session.

Organizations For assigning or-
ganizations to classes, a set of combinations of organizations is given per course, together
with the number of classes they are obliged to teach. For each of these combinations of
organizations, a set of eligible rooms along with preferences can be stated.

Figure 2.3 gives an overview of how assignments depend on each other and what is as-
signed to each class. The lecture can only be taught by one specific organization because
it covers a special topic. Then the set of eligible combinations of organizations consists
of a single element, which is a set itself consisting of only this specific organization. Also
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course ĉ classes c ∈ ĉ

comb. of orgs. Ôĉ(ĉ) rooms Rĉ,ô(ĉ, ô)

groups G ĉ(ĉ) periods P ĉ,g(ĉ, g)
dependency
assigned later
assigned now
assigned before

Figure 2.3: Interdependencies of resources and assignments for a single course. Dotted
lines show dependencies, and dashed arrows visualize assignments. Every
class belongs to exactly one course and needs to be assigned a combination
of organizations, room, group and period. Eligible combinations of organiza-
tions depend on the course only, whereas the set of eligible rooms depends on
both the course and the combinations of organizations. On the other side,
eligible groups only depend on the course, and the set of eligible periods
depends on both the course and the assigned group. Omitted are possi-
ble restrictions on the periods that are given by limited availabilities of the
assigned room and organizations.

only one special room is eligible. Therefore, the set of eligible rooms is a set of the
specific required room. The seminar, however, covers an interdisciplinary subject and
therefore needs two organizations for every class. Also all rooms of a certain minimum
size are eligible.

Capacities To keep the amount of teaching in check, each organization can indicate
how many classes they can teach in parallel and how many minutes of teaching they can
deliver per day and week independently of the course. Also, time slots can be prioritized
or outright blocked if internal restrictions demand it.

For example if the only organization required for the lecture absolutely cannot teach
on Tuesday afternoons, the lecture cannot be scheduled then.

A resulting timetable for the example lecture and seminar could look like Figure 2.2
in the first week of the semester.

Constraints

Obviously, every class needs to take place at some eligible period, in an eligible room,
with an assigned group and a combination of organizations. Also, every group obligated
to attend a course needs to be assigned to exactly one class belonging to the course.

17



2 Model & Key Observations

All other constraints are conflicts among a set of assignments. As with classic CBT,
no room double bookings are allowed. So no two classes with overlapping periods must
take place in the same room. Further, we need to guarantee that no student has to
attend two classes at the same time. Hence, no two classes with overlapping groups
must take place in overlapping periods.

Short Comparison with CBT

The biggest difference to CBT is that time slots have gained a new dimension. This
enables efficient scheduling of aperiodic courses but expands the search space massively.

In CBT, the set of courses a student has to attend is called a curriculum. The courses
contained in a curriculum must be scheduled conflict-free, so that every student can
attend all classes without conflict. In Aperiodic Curriculum-Based Timetabling (Aperi-
odic CBT), however, curricular constraints are modeled by groups. For every base group
all classes have to be scheduled conflict-free.

Recall from Chapter 1 that teachers are not considered explicitly in Aperiodic CBT.
Instead a set of eligible combinations of organizations is given per class. Then, per
class a combination of organizations needs to be matched. This makes the search space
for the decision problem bigger compared to CBT. We will take care of this shortly in
Section 2.2.

Whereas in CBT a conflict-free schedule per teacher is required, we only consider the
capacities of organizations here. These give upper bounds on the amount of teaching an
organization can deliver in parallel, in a day and in a week.

2.1 Notation

Subsequently, we list the notation used in this work. To denote the power set of a
set S we will write 2S. Also we will use [k] as shorthand for {i ∈ N | 1 ≤ i ≤ k} and
∃!xϕ meaning that there exists exactly one x so that ϕ evaluates true. Integer linear
programming will be abbreviated by ILP.

Resources We will refer to the following sets of resources:

C a set of classes

Ĉ a set of courses, where each course is a set of classes and each class belongs
to exactly one course

ĉ : C → Ĉ a function that gives the exact course a class belongs to

R a set of rooms

O a set of organizations

Ô ⊆ 2O a set containing sets of organizations, each being called a combination of
organizations

18



2.1 Notation

B a set of base groups

G ⊆ 2B a set of groups, where each group is a set of base groups

Time We will refer to the following sets, representing time:

W ⊆ N weeks of a semester

D ⊆ N days of a week

H ⊆ N pairwise disjoint time intervals

T ⊆ W ×D×H time slots

T (w) ⊆ T time slots in week w

T (d) ⊆ T time slots where day of week is d (e.g. all time slots on Mondays)

P ⊆ 2T periods

P(w) ⊆ P periods in week w

P(d) ⊆ P periods where day of week is d (e.g. all periods on Mondays)

P(t) ⊆ P periods containing time slot t

If a period contains more than one set of consecutive time slots, then we will refer to
each consecutive set as a session. The following functions provide further information
about time slots and periods:

lengtht : T → N length of a time slot in minutes

lengthp : P → N length of a period in minutes

Course Properties The properties of a given course are described by the following
functions:

G ĉ : Ĉ → 2G gives a set of groups that have to attend the course

Ôĉ : Ĉ → 2Ô gives a set of combinations of organizations eligible for the course

Ccount : Ĉ × Ô → N gives the number of classes in a course to be taught by a combination
of organizations

P ĉ,g : Ĉ ×G → 2P gives a set of eligible periods for a course per group

Rĉ,ô : Ĉ × Ô → 2R gives a set of eligible rooms for a course per combination of organi-
zations

19



2 Model & Key Observations

Availabilities Rooms and organizations can be blocked for certain times. The following
functions provide restrictions on the available times:

Pr : R → 2P gives the set of available periods for a room

Po : O → 2P gives the set of available periods for an organization

P ô : Ô → 2P gives the set of available periods for a combination of organizations, being
the intersection of the availabilities of the contained organizations

Capacities The capacity functions give us upper bounds on the teaching an organiza-
tion can perform in a given time frame. They are defined as following:

capparallel : O×T → N gives the maximum number of classes an organization can
teach at a given time slot

capdaily : O×W×D → N gives the maximum minutes an organization can teach on a
given date

capweekly : O×W → N gives the maximum minutes an organization can teach in a
given week

Preferences Organizations like to state which times they prefer to teach in. Also per
course, each eligible combination of organizations can state which of the eligible rooms
they prefer. The following functions provide these measures. The lower the number, the
higher the priority.

prefo,t : O×T → N gives an organization’s preference regarding a given time slot

pref ĉ,r,ô : Ĉ ×R×Ô → N gives the preference of a combination of organizations regard-
ing a given room for a given course

2.2 Assigning Organizations to Classes

Recall that for each course, a set of eligible combinations of organizations is given, along
with how many classes each combination should teach. It is ensured that in sum these
counts match the number of classes. To shrink the search space of the decision problem,
we compute a matching between classes and combinations of organizations respecting
the eligibility and counts as illustrated in Figure 2.4.
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2.2 Assigning Organizations to Classes

course ĉ classes c ∈ ĉ

comb. of orgs. Ôĉ(ĉ) rooms Rĉ,ô(ĉ, ô)

groups G ĉ(ĉ) periods P ĉ,g(ĉ, g)
dependency
assigned later
assigned now
assigned before

Figure 2.4: Assigning a combination of organizations to each class. Highlighted as a
solid red arrow is the assignment of a combination of organizations to a class
performed in this step. For a more detailed description refer to Figure 2.3.

The following algorithm will assign a combination of organizations to each class:

Algorithm 1: Assigning Combinations of Organizations to Classes

Input:
• A set of courses Ĉ
• A function Ôĉ : Ĉ → 2Ô that defines the set of eligible combinations of

organizations per course
• A function Ccount : Ĉ × Ô → N that states how many classes of a course an

eligible combination of organizations should teach
Output:
• A function ô : C → Ô that maps every class to a combination of organizations

for ĉ = {c1, . . . , ck} ∈ Ĉ do
i := 1
for ô ∈ Ôĉ(ĉ) do

for j := 0; j < Ccount(ĉ, ô); j := j + 1 do
l := i + j
ô(cl) := ô

i := i + Ccount(ĉ, ô)

The outer loop iterates over all courses, whereas the inner two loops together iterate
over the classes of the course by first iterating over the eligible combinations of organi-
zations for the course and then counting the number of classes that need to be assigned
as per Ccount. None of the used sets and relations change during the execution other than
the output function ô. Also, there cannot be more eligible combinations of organizations
per course than classes. The function Ccount is guaranteed to sum up to the exact num-
ber of classes per course. Hence, Algorithm 1 runs in linear time only depending on the
number of classes.
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2 Model & Key Observations

From now on we will a priori assume that every class has had its combination of
organizations matched.

Remark. Precomputing this matching does not impair the feasibility of the decision prob-
lem since no assignable property has been attached to a class at this point. Therefore,
no generality is lost.

To simplify further definitions we define a function Co : O → 2C as follows:

Co(o) 7→ {c ∈ C | o ∈ ô(c)}.

2.3 Definition of the Problem

Now that we have assigned a combination of organizations to each class, we can define
the set of all eligible assignments.

Definition 2.1. Let A to be the set of all eligible assignments, also called the matching-
space:

A := {(c, t, r, b) |c ∈ C
∧ ∃p ∈ P ĉ,g(ĉ(c), g) ∩ Pr(r) ∩ P ô(ô(c)) : t ∈ p

∧ r ∈ Rĉ,ô(ĉ(c), ô(c))

∧ ∃g ∈ G ĉ(ĉ(c)) : b ∈ g}

This matching-space contains all eligible combinations of classes, their time slots,
rooms and base groups as tuples. A subset of A is a valid assignment of a period, room
and group to a class, if the time slots within the subset are an eligible period and the
base groups within the subset are an eligible group. A valid assignment for a class c1
could be

{(c1, t1,1, r1, b1,1), (c1, t1,2, r1, b1,1), (c1, t1,1, r1, b1,2), (c1, t1,2, r1, b1,2)} ⊆ A

if an eligible period p1 = {t1,1, t1,2} and group g1 = {b1,1, b1,2} existed.

2.3.1 Conflicts

Having defined the matching-space A, it is easy to see that not all assignments are
compatible with each other. For example, a room must not be booked by two classes
simultaneously. To avoid conflicts in general we will define a conflict graph Hconf , which
is a hypergraph. Its vertices are all eligible assignments A and edges represent conflicts
between assignments. For every edge, all except one contained assignments are valid in
combination. There are several parts to the conflict graph.
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2.3 Definition of the Problem

Groups No base group can attend two classes in parallel. So for all intersecting groups,
all combinations of intersecting periods are to be avoided. Hence, we define a set of two-
element edges

EG := {{a1 = (c1, t, r1, b), a2 = (c2, t, r2, b)} | a1, a2 ∈ A∧ c1 6= c2}.

Rooms No room can host two classes in parallel. So for every room every combination
of conflicting periods has to be forbidden. Again we define a set of two-element edges

ER := {{a1 = (c1, t, r, b1), a2 = (c2, t, r, b2)} | a1, a2 ∈ A∧ c1 6= c2}.

Capacities To keep the load of organizations below their stated capacities, we define
three sets of edges, one for every time frame that capacities are given in. They include
all combinations of possible assignments that together would exceed the capacities.

For every combination of assignments that would overload a given organization and
week, we create an edge.

Ecapweekly
:= {{a1 = (c1, t1, r1, b1), . . . , ak = (ck, tk, rk, bk)} | a1, . . . , ak ∈ A

∧ ∀i, j ∈ [k]2 i 6= j : (ti 6= tj) ∨ (ci 6= cj)

∧ ∃o ∈ O ∀i ∈ [k] : o ∈ ô(ci)

∧ ∃w ∈ W ∀i ∈ [k] : ti ∈ T (w)

∧
∑
i∈[k]

lengtht(ti) > capweekly(o, w)}

We do the same for daily capacities on each given combination of week and day of week.

Ecapdaily := {{a1 = (c1, t1, r1, b1), . . . , ak = (ck, tk, rk, bk)} | a1, . . . , ak ∈ A
∧ ∀i, j ∈ [k]2 i 6= j : (ti 6= tj) ∨ (ci 6= cj)

∧ ∃o ∈ O ∀i ∈ [k] : o ∈ ô(ci)

∧ ∃w ∈ W ∃d ∈ D ∀i ∈ [k] : ti ∈ T (w) ∩ T (d)

∧
∑
i∈[k]

lengtht(ti) > capdaily(o, w, d)}

For parallel capacities, we count classes instead of minutes. Consequently, we create
edges for every combination of assignments that would exceed the given maximum num-
ber of classes per time slot for every organization.

Ecapparallel := {{a1 = (c1, t, r1, b1), . . . , ak = (ck, t, rk, bk)} | a1, . . . , ak ∈ A
∧ ∀i, j ∈ [k]2 i 6= j : (ci 6= cj)

∧ ∃o ∈ O ∀i ∈ [k] : o ∈ ô(ci)

∧ k = capparallel(o, t) + 1}

Finally, we can define the conflict graph.
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2 Model & Key Observations

Definition 2.2. Hconf denotes the conflict graph, being a hypergraph with

V (Hconf) :=A,
E(Hconf) :=EG ∪ ER ∪ Ecapweekly

∪ Ecapdaily ∪ Ecapparallel ⊆ 2A.

Now we will define the three constraints a feasible schedule has to obey.

Definition 2.3. We call L ⊆ A a feasible schedule if

∀c ∈ C ∃!p ∈ P ∀t ∈ p ∃!r ∈ R ∃!g ∈ G ∀b ∈ g : (c, t, r, b) ∈ L
(taking place (1))

∀ĉ ∈ Ĉ ∀g ∈ G ĉ(ĉ) ∀b ∈ g ∃!c ∈ ĉ ∃p ∈ P ∀t ∈ p ∃r ∈ R : (c, t, r, b) ∈ L
(group obligation (2))

∀e ∈ E(Hconf) : L∩e 6= e

(conflicts (3))

.

Then the formalization of the decision problem is:

Aperiodic Curriculum-Based Timetabling
Input: The set A of all possible assignments and the hypergraph Hconf .
Task: Find a feasible schedule L ⊆ A.

2.4 Key Observations

For any nontrivial instance, the conflict graph Hconf will become rather large. Consider
an instance with roughly the following dimensions:
• | C | = 15,000,
• | T | = 1,000,
• |R | = 200,
• | B | = 1,100,

hence the product being 3.3 ·1012. Holding a graph of this size in memory would require
at least 13.2 Tebibyte for the vertices alone, assuming a 32-Bit system and only counting
references. Thus, we will determine how to cope with its size in the following.

For most data reduction rules on hypergraphs upper bounds on the edges are needed
(see i.e. [Abu10]). We will derive some properties of the edges of our hypergraph Hconf

here.

2.4.1 Size of the Conflict Graph

By definition, all edges contained in EG and ER are of size two. Their endpoints also
have the same time slot. Regarding time slots, the same applies to all edges in Ecapparallel

but
max

e∈Ecapparallel

|e| = max
o∈O

max
t∈T

capparallel(o, t) + 1.

24



2.4 Key Observations

So the maximum sizes of edges depend solely on the capacities specified by the planner.
In the worst case, the maximum number of parallel classes would be limited by the
number of classes held by an organization altogether since no more than all classes can
be scheduled in parallel.

In contrast, the edges in Ecapweekly
and Ecapdaily span multiple time slots. Counting

the number of classes that could be held in a given week or day is nontrivial since
their eligible periods can contain combinations of time slots that span multiple days
or even weeks. So we focus on a more easily computable upper bound. Since once
again capacities are given per organization and we know which class is held by which
combination of organizations, we count the classes per organization and multiply with
the cardinality of the domains for the other resources part of our tuples. We obtain

max
e∈Ecapweekly

|e| = max
o∈O

max
w∈W
|Co(o)| · |T (w)| · |R| · |B|

and
max

e∈Ecapdaily

|e| = max
o∈O

max
w∈W

max
d∈D
|Co(o)| · |T (w) ∩ T (d)| · |R| · |B| .

Since the edges contain all combinations of tuples that cause more load than the stated
capacities, there exists at least one edge per class that contains all tuples concerned
with eligible time slots in the given week and date, respectively. Unfortunately, there
are no meaningful restrictions possible for the number of rooms and base groups per
organization. Every organization could be assigned every group of a course it participates
in and the same goes for rooms.

This results in no usable upper bounds for the size of edges in the conflict graph.
But as seen in the above-described analysis of the edges of Hconf , there is no edge that
exceeds the time slots of one week. We can use this to our advantage and partition the
whole graph into weeks. This gives us up to 16 separate and independent conflict graphs
since a typical semester consists of roughly that many weeks.

This partitioning can only be applied to the conflict graph, however, so we cannot solve
16 independent instances of Aperiodic CBT. This is because even a single period can
tie the whole semester together because it has sessions in every week. Thus all conflicts
stay global problems. The only reason the partitioning of the conflict graph works is
because the vertices only contain time slots, which are all disjoint in contrast to periods.

2.4.2 Connection to Hitting Set

In order not to violate the conflicts (3) constraint we must not take more than |e| − 1
elements per edge e. This translates properly to Hitting Set, where of each edge at
least one element has to be chosen. We can use a hitting set of our conflict graph to
eliminate all conflicts by deleting the chosen elements from the matching-space A. No
edge of the conflict graph can then be part of the solution in its entirety.

Hitting Set
Input: A hypergraph H with vertices VH and edges EH .
Task: Find a hitting set S ⊆ VH so that ∀e ∈ EH ∃s ∈ S : s ∈ e holds.
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2 Model & Key Observations

Formally, when a hitting set LHS ⊆ A was found, we try to find a solution L ⊆ A\LHS.
This time, we only need to take care of the two remaining constraints taking place (1)
and group obligation (2). Still we have no guarantee that such a solution exists solely
because a hitting set exists. What can be done is constructing a hitting set from a
solution to Aperiodic CBT.

Lemma 2.4. Let I be a yes-instance with solution L for Aperiodic CBT. Then A\L
is a hitting set for Hconf .

Proof. Directly following constraint conflicts (3), we see that there exists a non-empty
part A′ ⊆ A of every edge e in Hconf that must not be part of L. So we construct a
hitting set out of these parts which is exactly A\L.

However, to find a hitting set on a hypergraph is NP-complete. Therefore we need
to employ heuristics or data reduction rules to find a solution quickly. But as seen in
the previous subsection, computing useful upper bounds on the size of the edges is not
easily done.

Also, we may find a hitting set that, when incorporated, leaves an infeasible problem.
However, as seen in the previous proof, we can always extract a hitting set solution from
any feasible solution to our problem.

2.4.3 A Simple Reduction Rule

In the following reduction rule, we recognize a fixation in the input data. When a course
only has one eligible period, room and group, there is no use in leaving it in the decision
problem. Instead we take the classes out of the input and block the room and group
for the scheduled time. Also, we lower the capacities of the scheduled organizations
accordingly.

Note that we do not have to take care of organizational capacities here. If capacities
were too low to schedule this course, then the problem would be infeasible to begin with.

We define the necessary preconditions and modifications for the described rule.

Reduction Rule 2.4.1. Let there be a course ĉ∗ ∈ Ĉ so that

ĉ∗ = {c∗},
Ôĉ(ĉ

∗) = {ô∗},
G ĉ(ĉ∗) = {g∗},

Rĉ,ô(ĉ
∗, ô∗) = {r∗},

P ĉ,g(ĉ
∗, g∗) ∩ Pr(r

∗) ∩ P ô(ô
∗) = {p∗},

Ccount(ĉ∗, ô∗) = 1.
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2.4 Key Observations

Then we can take this course entirely out of our matching-space. We perform the fol-
lowing modifications on our input:

C ′ := C \{c∗},

Ĉ
′
:= Ĉ \{ĉ∗},

P ′r(r∗) :=Pr(r
∗) \ {p ∈ P | p ∩ p∗ 6= ∅}

P ′ĉ,g(ĉ, g) :=P ĉ,g(ĉ, g) \ {p ∈ P | p ∩ p∗ 6= ∅} ∀ĉ ∈ Ĉ ∀g ∈ { g ∈ G | g ∩ g∗ 6= ∅},
G ′ĉ(ĉ∗) :=∅.

This shrinks the matching-space accordingly:

A′ :={(c, t, r, b) | c ∈ C ′

∧ ∃p ∈ P ′ĉ,g(ĉ(c), g) ∩ P ′r(r) ∩ P ô(ô(c)) : t ∈ p

∧ r ∈ Rĉ,ô(ĉ(c), ô(c))

∧ ∃g ∈ G ĉ(ĉ(c)) : b ∈ g}.

Also, the conflict graph is restricted to the new matching-space

V (H′conf) :=A′

E(H′conf) :={e′ | e ∈ E(Hconf) ∧ e′ = e ∩ A′}.

Lemma 2.5. Let I be an instance of Aperiodic CBT with solution L and let I ′ be
I after applying the Reduction Rule 2.4.1 with solution L′. Then I ′ is a yes-instance if
and only if I is a yes-instance.

Proof. Let L∗ be the set of assignments that are fixed by the reduction rule, that is,

L∗ :=
⋃
ti∈p∗

⋃
bj∈g∗
{(c∗, ti, r∗, bj)}.

(⇒) First, we show that L′ is a solution for I ′ when L′ ∪L∗ is a solution for I. We
observe that every class c ∈ C in I fulfills the taking place (1) constraint. This holds
since all neccessary assignments are either in L′ if c 6= c∗ or in L∗ if c = c∗.

Second, every group g ∈ G in I fulfills the group obligation (2) constraint. As per
precondition only group g∗ needs to attend the one class c∗ of course ĉ∗. These necessary
assignments are all in L∗. So for every class c ∈ C, all necessary assignments are either
in L′ if c 6= c∗ or in L+ if c = c∗, as per construction of L∗.

Lastly, we note that every conflict encoded in e ∈ E(Hconf) fulfills the conflicts (3)
constraint. Therefore, assume towards a contradiction that there is a set A ⊆ L∗, an
edge e′ ∈ E(H′conf), and an edge e ∈ E(Hconf) with e′ ∪ A = e and e ∩ (L′ ∪L∗) = e.
Then we have a no-instance of I. We observe that e′ ∩ L′ = e′ because e′ ⊂ 2A

′
. This

contradicts L′ being a solution of I ′.
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2 Model & Key Observations

(⇐) Now we show that L is a solution for I when L′ = L\L∗ is a solution for I ′.
Firstly, for every class c ∈ C ′ in I, the taking place (1) constraint holds because for every
class c ∈ C, all necessary assignments are either in L′ if c 6= c∗ or in L∗ if c = c∗. From
C ′ = C \{c∗} follows that the taking place (1) constraint is fulfilled.

Every group g ∈ G ′ in I fulfills the group obligation (2) constraint. This holds because
G ′ĉ(c∗) = ∅, as per construction of G ′ĉ. As all assignments for c∗ are in L∗, none are in
L′ = L\L∗.

Lastly, every conflict encoded in e ∈ E(H′conf) fulfills the conflicts (3) constraint. We
observe that every edge e′ ∈ E(H′conf) exists either unaltered as e ∈ E(Hconf) or there
is A ⊆ A so that e′ ∪ A = e. Then A ⊆ A\A′ and therefore L′ ∩e′ 6= e′ holds for all
e′ ∈ E(H′conf).

This concludes the proof.
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3 Proposed Heuristic

In this chapter, we tackle Aperiodic Curriculum-Based Timetabling (Aperiod-
ic CBT) using integer programming. This has been a common approach for timetabling
problems [LL12; Sch99]. Moreover, a lot of effort is put into the continuous development
of several commercial integer programming solvers.

Though solving Curriculum-Based Timetabling (CBT) using integer program-
ming is well studied [Bon+12; McC+10] the differences already mentioned in Chapter 2
expand the search space for Aperiodic CBT greatly compared to CBT. Therefore, to
get a feasible timetable within acceptable time, the problem will be solved heuristically
in two steps. Before applying an ILP, we already assigned combinations of organizations
to classes in Section 2.2. Now, in Step 1, we will assign groups to classes, before a period
and room are assigned in step 2. Together, both steps will produce a feasible schedule
as defined by Aperiodic CBT.

In the end, we will discuss a real world implementation and its performance. Further,
an additional step between 1 and 2 will be described, which reduces the search space.

3.1 Step 1

To reduce the size of our matching space (see Definition 2.1), we will assign groups to
classes (see Figure 3.1) independently of period and room assignments in a first step. For
every course, there are exactly as many classes as groups that have to attend. Therefore,
per course, a bijection from classes to groups can be computed.

Since the set of eligible periods for a class depends heavily on the assigned group, we
have to take capacities into consideration. Recall that we already assigned an eligible
combination of organizations to each class in Section 2.2. Therefore, we must not assign
too many groups with overlapping sets of eligible periods to the same organization. The
goal is to keep the average loads below the capacities. Otherwise, the group assignment
could result in an infeasible next step.

To get an approximate measure on the load of assigning a specific group, we define a
function avgP,T that provides the average share of minutes a set of periods has within a
given set of time slots:

avgP,T : 2P × 2T → Q .

We will apply this function on the set of eligible periods P ĉ,g(ĉ, g) for some course ĉ and
group g and a set of time slots concerned with a given capacity constraint, i.e., all time
slots T (w) of some week w. The result will be the average length of each period within
the given set of time slots. To calculate the length of a period p within a set of time
slots T , the lengths of the time slots in the intersection p ∩ T are summed up.
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3 Proposed Heuristic

course ĉ classes c ∈ ĉ

comb. of orgs. Ôĉ(ĉ) rooms Rĉ,ô(ĉ, ô)

groups G ĉ(ĉ) periods P ĉ,g(ĉ, g)
dependency
assigned later
assigned now
assigned before

Figure 3.1: Assigning a group to each class. Highlighted as a solid red arrow is the
assignment of a group to a class, performed in this step. The combinations of
organizations have already been assigned in Section 2.2. For a more detailed
description refer to Figure 2.3.

Now we will define the constraints a feasible group assignment has to obey. Each class
needs to be assigned to a group. Also, every group that has to attend a course has to
be assigned to one class of the course. These two conditions result in one constraint,
which we copy directly from constraint group obligation (2) of Section 2.3. Other than
that, we need two constraints for weekly and daily capacities. Each one sums up the
average lengths of classes assigned to a specific organization per time frame concerning
a capacity and keeps this sum below the stated maximum.

We will refer to the result via the function g : C → G that maps each class to a group.

Definition 3.1. We call the function g a feasible group assignment if

∀ĉ ∈ Ĉ ∀g ∈ G ĉ(ĉ) ∃!c ∈ ĉ : g(c) = g

(group obligation (1))

∀o ∈ O ∀w ∈ W :
∑

c∈Co(o)

avgP,T (P ĉ,g(ĉ(c), g(c)), T (w)) ≤ capweekly(o, w)

(weekly capacity (2))

∀o ∈ O ∀w ∈ W ∀d ∈ D :
∑

c∈Co(o)

avgP,T (P ĉ,g(ĉ(c), g(c)), T (w) ∩ T (d)) ≤ capdaily(o, w, d).

(daily capacity (3))

Then the formalization of the decision problem is:

Aperiodic Curriculum-Based Timetabling - Step 1
Input: The set A of all possible assignments and the function ô : C → Ô from

Section 2.2.
Task: Find a feasible group assignment g.
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3.1 Step 1

3.1.1 NP-completeness

Obviously, the correctness of a group assignment can be checked in polynomial time.
Therefore, the problem lies in NP. To prove that Aperiodic CBT - Step 1 is also
NP-complete, we will give a polynomial-time reduction from 3-SAT.

3-SAT
Input: A boolean formula in conjunctive normal form where each clause has exactly

three different literals (3-CNF).
Task: Find an assignment that satisfies the given formula.

Theorem 3.2. Aperiodic Curriculum-Based Timetabling - Step 1 is NP-hard.

Proof. Let ϕ be a boolean formula in 3-CNF with m clauses and n variables in the form
of:

ϕ =
m∧
i=1

Ki = (`i,1 ∨ `i,2 ∨ `i,3),

where Ki are clauses and `i,j are literals. We refer to the set of variables by var(ϕ) and
the set of clauses by clause(ϕ). We construct an instance of Aperiodic CBT - Step
1 in the following.

Construction We use four weeks {w1, . . . , w4} to schedule the classes into. Each week
has a single day of week d1. The general idea is to have the scheduling of week one
correlate with the variable assignment. Other weeks exist solely to elude week one when
its capacity is reached. We will introduce courses for variables and clauses. Classes
that conflict based on their variable usage will be linked to the same organization. The
capacities will take care of not being able to schedule conflicting assignments. Of each
course, representing a clause exactly one class representing a literal will have to be
scheduled in week one. This literal will be the one satisfying its clause.

We will now provide a more detailed construction. The instance of Aperiodic CBT
will have the course set Ĉ := Ĉx ∪ ĈK for variables and clauses. Analogously, the same
goes for the set of groups G := Gx ∪GK . The above sets will be defined in the following
paragraphs.

Variables For every variable xi ∈ var(ϕ) we introduce a so-called variable-course
ĉxi

. The course contains exactly two classes, one for every choice of assigning true or
false. Also, two combinations of organizations are introduced per variable, again for
representing true and false assignments. Each combination of organizations consists of
a single unique organization. Formally:

Ĉx :={ĉxi
= {cxi

, cxi
} | xi ∈ var(ϕ)}

Ô :={ôxi
= {oxi

}, ôxi
= {oxi

} | xi ∈ var(ϕ)}.
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3 Proposed Heuristic

Normally, the function ô : C → Ô is precomputed using Algorithm 1 of Section 2.2. Here,
we use it to link the variable-classes to their corresponding organizations as follows:

ô(cxi
) := ôxi

∀xi ∈ var(ϕ)

ô(cxi
) := ôxi

∀xi ∈ var(ϕ)

Two groups {g1xi
, g4xi
} are introduced which need to be assigned to classes cxi

and cxi
.

Which group is assigned to which variable-class will decide the assignment for the cor-
responding variable. The upper indices of the groups will signify the eligible week. If
group g1xi

is assigned to class cxi
, the class will be scheduled in week one. Therefore, xi

will be set to true. The groups all consist of a single unique base group and are linked
to their corresponding course as follows:

Gx :={g1xi
, g4xi
| xi ∈ var(ϕ)}

G ĉ(ĉxi
) :={g1xi

, g4xi
} ∀xi ∈ var(ϕ)

As mentioned, we set the eligible periods for all groups according to their upper index,
which will indicate the eligible week. Group g1xi

, if assigned to a class, will force the class
of course ĉxi

into week one, whereas group g4xi
will force the class of course ĉxi

into week
four. All eligible periods for variable-courses and their eligible groups will have length
m, which is the number of clauses. This is achieved by choosing a time interval with the
appropriate length.

P ĉ,g(ĉxi
, g1xi

) := {p1x = (w1, d1, [m])} ∀xi ∈ var(ϕ)

P ĉ,g(ĉxi
, g4xi

) := {p4x = (w4, d1, [m])} ∀xi ∈ var(ϕ)

To summarize the construction for variables, we show the two possible schedules for a
variable xi in Figure 3.2.

Clauses & Literals After modeling the variables, we will now introduce courses
and classes for clauses and literals. For every clause Ki, we introduce a so-called clause-
course ĉKi

. These courses contain three so-called literal-classes {c1Ki
, c2Ki

, c3Ki
}. The upper

indices of literal-classes indicate the index of the literal within its clause Ki. Formally,

ĈK :={ĉKi
= {c1Ki

, c2Ki
, c3Ki
} | Ki ∈ clause(ϕ)}.

We link a literal-class cjKi
to ôxq if literal j in clause Ki is xq. If literal j in clause Ki

is xq, we link the literal-class cjKi
to ôxq . Note the negation of the literal. This ensures

that the right classes conflict within an organization. Summarizing, we set

ô(cjKi
) := ô`i,j ∀Ki ∈ clause(ϕ) ∀j ∈ [3].

For each of the classes, we introduce a group consisting of a single unique base group.
Each literal-class can be placed in weeks one, two or three using these groups. We link
the groups to their corresponding clause-course:

GK :={g1Ki
, g2Ki

, g3Ki
| Ki ∈ clause(ϕ)}

G ĉ(ĉKi
) :={g1Ki

, g2Ki
, g3Ki
} ∀Ki ∈ clause(ϕ).

32



3.1 Step 1

oxi w1 w2 w3 w4

xi :
cxi

g1xi m
cxi

g4xi m

oxi w1 w2 w3 w4

xi :
cxi

g1xi m
cxi

g4xi m

Figure 3.2: The two organizations resulting from a variable are shown as two tables.
Each table has four weeks. Weeks two and three will become important
later, when courses and classes for clauses and literals are introduced. Either
both blue (dashed) or both red (dotted) assignments are valid in combina-
tion. The blue assignment represents an assignment of true to variable xi

as group g1xi
is assigned to class cxi

, resulting in a placement in week one of
organization oxi

. The red group assignment would result in an assignment
of false to variable xi.

Again, the week will be noted by the upper index of the group. Note that at least one
literal-class of the clause has to be assigned group g1Ki

, resulting in a placement in week
one and fulfilling the clause. The eligible periods for clause-courses and their groups will
have length 1. This is achieved by choosing an appropriate time interval.

P ĉ,g(ĉKi
, gjKi

) := {pjk = (wj, d1, [1])} ∀j ∈ [3] ∀Ki ∈ clause(ϕ)

Rooms & Capacities The choice of eligible rooms does not matter. We assume a
unique room exists for every class that could be assigned in the next step.

Using the capacity constraints we limit the classes that can be scheduled per week and
organization. Since we only have a single day of week, both types of capacity constraints
result in the same limitations if we set them equally. For all weeks and organizations,
we set the capacities to m.

capweekly(o, w) = capdaily(o, w, d1) := m ∀o ∈ O ∀w ∈ W

To explain the output of the function avgP,T , central to the assessment of a combina-
tion of group and class, we need to take a look at the sets of eligible periods again. For
all eligible combinations of course and group, the sets of eligible periods are confined to
a single period featuring a single week and day. The function avgP,T is always applied
to the set of eligible periods of a course and one of its groups and the set of time slots
for a week or date. Since all sets of eligible periods contain a single period confined to
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3 Proposed Heuristic

a single day, avgP,T will output the length of the period if the weeks of both sets match
and 0. So avgP,T will output m for variable-courses and 1 for clause-courses.

From the defined resources and functions, we construct the matching-space A as
described in Definition 2.1.

Example We provide an example for the reduction from 3-SAT to Aperiodic Cur-
riculum-Based Timetabling - Step 1 for the formula

ϕ = (x1 ∨ x2 ∨ x1) ∧ (x1 ∨ x2 ∨ x1).

Duplicate literals are eliminated to make the example easier to understand. Since the
clauses now have a maximum of two literals, week three can be omitted from our con-
struction as well. We show the reduction for the equivalent formula:

ϕ =
(
K1 = (`1,1 = x1 ∨ `1,2 = x2)

)
∧
(
K2 = (`2,1 = x1 ∨ `2,2 = x2)

)
.

Firstly, we calculate which literals connect to which (combinations of) organizations:

K1 : ô(c1K1
) = ôx1 ô(c2K1

) = ôx2

K2 : ô(c1K2
) = ôx1 ô(c2K2

) = ôx2

In Figure 3.3, schematic timetables for the organizations resulting from the variables
in ϕ are shown. Per column, we can either choose to schedule a long class connected
to a variable or m = 2 classes connected to literals. Recall that the interesting week is
week one. All variable-classes scheduled in week one result in an assignment of true to
their respective variable.

A possible valid group assignment is shown by the classes marked by solid lines. Thus,
clause K1 is satisfied by its first literal, whereas clause K2 is satisfied by its second literal.
Variable x1 is set to true because of assigning group g1x1

to class cx1 . Analogously, the
same goes for variable x2, which is also set to true. This assignment obviously satisfies
the formula.

Correctness To show the correctness of the given reduction, we will show that ϕ is
satisfiable if and only if a feasible group assignment g exists. Note that daily capacities
are equivalent to weekly capacities here because only a single day of week is used.

Recall that the classes that are scheduled in week one correlate with the assignment.
For variable-classes, we will use the following correspondence between group assignment
and variable assignment:

g(cxi
) = g1xi

⇔ xi is set to true. (3.1)
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3.1 Step 1

ox1 w1 w2 w4

x1 :
cx1

g1x1 m = 2 cx1
g4x1 m = 2

K2 :
c1K2

g1K2 1
c1K2

g2K2 1

ox1 w1 w2 w4

x1 :
cx1

g1x1 m = 2 cx1
g4x1 m = 2

K1 :
c1K1

g1K1 1
c1K1

g2K1 1

ox2 w1 w2 w4

x2 :
cx2

g1x2 m = 2 cx2
g4x2 m = 2

ox2 w1 w2 w4

x2 :
cx2

g1x2 m = 2 cx2
g4x2 m = 2

K1 :
c2K1

g1K1 1
c2K1

g2K1 1

K2 :
c2K2

g1K2 1
c2K2

g2K2 1

Figure 3.3: A graphical representation of the schedules of the example. Each column
represents a week and each row the group choices for a class. On top of
each bar, representing a class, first the name of the class is written, then the
group and lastly the length of the class, which is equal to the output of the
function avgP,T .
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3 Proposed Heuristic

(⇒) Assume we have a valid assignment that satisfies our formula ϕ. We show that
the constructed group assignment g is a feasible group assignment, meaning every class
is assigned a group, per course all groups are assigned to a class, and no capacities are
violated.

We assign groups to all variable-classes using Equation (3.1). Week one of all orga-
nizations belonging to the variable-class that is assigned the group with upper index
one is at the limit of its capacity then. Thus, no literal-classes can be assigned to this
organization in week one. Each literal-class needs to be assigned a group, however. This
is because we have three literal-classes per clause-course and three eligible groups. So
one literal-class needs to be assigned a group with upper index one. Therefore, this
literal-class takes care of satisfying its clause. Otherwise, no feasible group assignment
can be found.

(⇐) Assume we have a feasible group assignment g constructed by the described
construction. We show that the corresponding assignment satisfies the formula: An
assignment satisfies a formula in 3-CNF if and only if in every clause at least one literal
evaluates to true.

We use Equation (3.1) to construct an assignment for our formula ϕ. Since in every
clause-course at least one literal-class is assigned to week one, all clauses are satisfied.

3.1.2 Integer Linear Program

To this end we use an ILP formulation to solve Aperiodic CBT - Step 1.

Variables For every eligible combination of class and group, we will use a binary vari-
able. A value of 1 will indicate the chosen assignment:

Xc,g ∈ {0, 1} ∀c ∈ C ∀g ∈ G ĉ(ĉ(c)).

Objective Though the decision problem is only concerned with finding a valid group
assignment, the ILP stated here will respect the preferences made by the organizations
for time slots.

min
∑
c∈C

∑
g∈Gĉ(ĉ(c))

Xc,g

∑
o∈ô(c)

∑
p∈P ĉ,g(ĉ(c),g(c))

∑
t∈p

prefo,t(o, t)

Note that the values following the decision variable can be precomputed.

Essential Constraints First, we have to make sure, that every class is assigned to
exactly one group. In the second constraint, we guarantee that every group of a course
gets exactly one class. These two constraints together ensure a bijection between classes
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3.2 Step 2

and groups per course.∑
g∈Gĉ(ĉ(c))

Xc,g = 1 ∀c ∈ C (taking place (1))

∑
c∈ĉ

Xc,g = 1 ∀ĉ ∈ Ĉ ∀g ∈ G ĉ(ĉ) (group obligation (2))

Capacity Constraints To approximately stay below the capacities of organizations, we
sum up the average load of all class group combinations belonging to an organization
and time frame. Then, we keep this sum below capacity:∑

c∈Co(o)

∑
g∈Gĉ(ĉ(c))

avgP,T (P ĉ,g(ĉ(c), g), T (w)) ·Xc,g ≤ capweekly(o, w)

∀w ∈ W ∀o ∈ O (weekly capacity (3))∑
c∈Co(o)

∑
g∈Gĉ(ĉ(c))

avgP,T (P ĉ,g(ĉ(c), g), T (w) ∩ T (d)) ·Xc,g ≤ capdaily(o, w, d)

∀w ∈ W ∀d ∈ D ∀o ∈ O (daily capacity (4))

The result is a matching between classes and groups. We will use the already defined
function g : C → G to refer to the result of this step.

3.2 Step 2

In the last step, a period and room are assigned to every class (see Figure 3.4). We
assume that we are given a feasible group assignment. The intention of this step is to
produce a schedule free of intersections in time for every base group and every room.
As before, we also need to take organizational capacities into account.

Now, we will define the constraints a feasible period & room assignment has to obey.
Each class has to be assigned an eligible room and period.

We will refer to the result by the two functions p : C → P and r : C → R.

Definition 3.3. We call L ⊆ A a feasible period & room assignment if

∀c ∈ C ∀t ∈ p(c) ∀b ∈ g(c) : (c, t, r(c), b) ∈ L
(taking place (1))

∀e ∈ E(Hconf) : L∩e 6= e

(conflicts (3))

.

Both constraints follow directly from Aperiodic CBT. The group obligation (2)
constraint is missing since we took care of that in the previous step. Recall that room
conflicts, group conflicts and organizational capacities are all encoded in the hypergraph
Hconf and thus part of the definition.
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course ĉ classes c ∈ ĉ

comb. of orgs. Ôĉ(ĉ) rooms Rĉ,ô(ĉ, ô)

groups G ĉ(ĉ) periods P ĉ,g(ĉ, g)
dependency
assigned later
assigned now
assigned before

Figure 3.4: Assigning a period and room to each class. Highlighted as solid red arrows
are the assignments of a period and a room to a class, performed in this step.
The combination of organizations and the group have already been assigned
in Section 2.2 and Section 3.1, respectively. For a more detailed description
refer to Figure 2.3.

Aperiodic Curriculum-Based Timetabling - Step 2
Input: The set A of all possible assignments, the function ô : C → Ô from Sec-

tion 2.2 and a feasible group assignment g : C → G from Section 3.1.
Task: Find a feasible period & room assignment p and r.

3.2.1 Integer Linear Program

Again, we use an ILP formulation to solve Aperiodic CBT - Step 2. The overall
idea follows along the Intuitive Integer Program shown by Lach and Lübbecke [LL08].

To simplify further definitions, we will define two functions that use the results from
Section 2.2 and Section 3.1:

Pc : C → 2P c 7→ P ĉ,g(ĉ(c), g(c)) ∩
⋂

oi∈ô(c)

Po(oi)

Rc : C → 2R c 7→ Rĉ,ô(ĉ(c), ô(c))

Variables For every eligible class period combination, we will use a binary variable. A
value of 1 will indicate the chosen period.

Yc,p ∈ {0, 1} ∀c ∈ C ∀p ∈ Pc(c)

Another set of variables represents all eligible class period room combinations. Again
a value of 1 will indicate the chosen period and room. The decisions of both sets of
variables have to match per class. Ambiguity will be ruled out by the constraints.

Zc,p,r ∈ {0, 1} ∀c ∈ C ∀p ∈ Pc(c) ∀r ∈ R(c)
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3.2 Step 2

Objective Whereas the decision problem is only concerned with finding a feasible
schedule, here we will take into account the time preferences of organizations. Also
per course, room and combination of organizations room preferences will be respected
here.

min
∑
c∈C

∑
p∈Pc(c)

Yc,p

∑
o∈ô(c)

∑
t∈p

prefo,t(o, t)

+
∑
c∈C

∑
p∈Pc(c)

∑
r∈Rc(c)

Zc,p,r · pref ĉ,r,ô(ĉ(c), r, ô(c))

Note that the values following the decision variables can be precomputed and thus the
objective function is indeed linear.

Essential Constraints Firstly, we ensure that every class has exactly one assigned
period and room by forcing the sum of Y variables per class to one. Also, we connect
the period and room decision variables by forcing the sum over eligible room decisions
to be equal to the period decision variable per class and period.

∑
p∈Pc(c)

Yc,p = 1 ∀c ∈ C (period assignment (1))

∑
r∈R(c)

Zc,p,r = Yc,p ∀c ∈ C ∀p ∈ P (room assignment (2))

Next, we prohibit every room and group conflict taken from our conflict graph. In case
of room conflicts, we limit the classes for every time slot room combination to one.

∑
p1∈Pc(c1)∩P(t)∩Pr(r)

Zc1,p1,r +
∑

p2∈Pc(c2)∩P(t)∩Pr(r)

Zc2,p2,r ≤ 1 ∀(c1, t, r, b1), (c2, t, r, b2) ∈ ER

(no room conflicts (3))

Group conflicts are avoided by limiting the classes per base group and time slot to one.

∑
p1∈Pc(c1)∩P(t)

Yc1,p1 +
∑

p2∈Pc(c2)∩P(t)

Yc2,p2 ≤ 1 ∀(c1, t, r1, b), (c2, t, r2, b) ∈ EG

(no group conflicts (4))

Organizational Capacities Constraints To respect the weekly and daily capacities of
organizations, we count the minutes over all time slots of a week and date, respectively,
limiting them by the stated capacity. For parallel capacities, we instead count the
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3 Proposed Heuristic

number of classes per time slot.∑
c∈Co(o)

∑
p∈Pc(c)∩P(w)

Yc,p ·
∑

t∈p∩T (w)

lengtht(t) ≤ capweekly(o, w)

∀o ∈ O ∀w ∈ W (weekly capacity (5))∑
c∈Co(o)

∑
p∈Pc(c)∩P(w)∩P(d)

Yc,p ·
∑

t∈p∩T (w)∩T (d)

lengtht(t) ≤ capdaily(o, w, d)

∀o ∈ O ∀w ∈ W ∀d ∈ D (daily capacity (6))∑
c∈Co(o)

∑
p∈Pc(c)∩P(t)

Yc,p ≤ capparallel(o, t)

∀o ∈ O ∀t ∈ T (parallel capacity (7))

3.2.2 Room Set Contraction

Up until now, we have been creating a variable for every possible period room combi-
nation per class. This is standard procedure for most algorithms solving CBT, at least
when using Integer Programming. But when we take a look back at the input, we notice
that the set of eligible rooms is not unique per class. Instead, it is given per course and
combination of organizations. We will use this to reduce the number of variables by not
using a class as the first index of our Z variables anymore.

The obvious replacement for the first index would be course and combination of orga-
nizations but we can save even more variables. By using artificially crafted room sets we
can collapse more classes into the same set of variables. The idea is to group all classes
together that share the same room requirements and thus have the same set of eligible
rooms.

So for all classes with the same set of eligible rooms, we create a room set r̂. For
this room set a variable for each eligible period is created. Then, for every time slot we
guaranteed that enough rooms are available for all classes that are assigned to a period
containing said time slot.

R̂ :=
⋃
ĉ∈Ĉ

⋃
ô∈Ôĉ(ĉ)

{r̂ ⊆ R | r̂ = Rĉ,ô(ĉ, ô)}

We denote by C r̂ : R̂ → 2C the classes belonging to a room set and by R̂r : R → 2R̂ the
room sets a room is part of. Also R̂ĉ : Ĉ → 2R̂ gives a set of room sets a course has
classes in and r̂c : C → R̂ gives the single room set a class belongs to.

Variables We substitute the variables for each eligible class, period and room with
variables per room set, period and room. Our modified variables Z ′ stay binary because
we cannot schedule more than one class per period room combination anyway.

Z ′r̂,p,r ∈ {0, 1} ∀r̂ ∈ R̂ ∀p ∈ P ∀r ∈ r̂
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Objective We need to modify our objective function to accommodate for this change.
While the first line stays unmodified, the second needs to aggregate the preferences of
individual classes contained in the room set.

min
∑
c∈C

∑
p∈Pc(c)

Yc,p

∑
o∈ô(c)

∑
t∈p

prefo,t(o, t)

+
∑
ĉ∈Ĉ

∑
r̂∈R̂ĉ(ĉ)

∑
r∈r̂

∑
p∈Pr(r)

Z ′r̂,p,r ·
∑

ci∈Cr̂(r̂)

pref(ĉ(ci), r, ô(ci))

Essential Constraints The constraints are also affected by this change. In constraint
room assignment (2’), we guarantee that enough rooms of the room set are available for
all the classes scheduled in a period. Constraint no room conflicts (3’) sees no major
changes other than accounting for the index change.∑

r∈r̂

Z ′r̂,p,r =
∑

c∈Cr̂(r̂)

Yc,p

∀r̂ ∈ R̂ ∀p ∈ P
(room assignment (2’))∑

p1∈Pc(c1)∩P(t)∩Pr(r)

Z ′r̂c(c1),p1,r +
∑

p2∈Pc(c2)∩P(t)∩Pr(r)

Z ′r̂c(c2),p2,r ≤ 1

∀(c1, t, r, b1), (c2, t, r, b2) ∈ ER
(no room conflicts (3’))

3.3 Performance & Benchmarks

A real-world implementation of the described heuristic exists within the planning tool
Moses. The model and heuristic described in this thesis only cover the basic framework
of the algorithm, though.

3.3.1 Real World Implementation Differences

Many constraints that surpass the scope of this thesis exist to assist planning large
programs. The differences of the real-world implementation in Moses will be described
in the following paragraphs.

Soft Constraints Some constraints that are modeled as hard constraints in this thesis
are implemented as soft constraints. This is done by the introduction of a so-called
penalty variable per constraint. These penalty variables are then added to the objective
function with a large enough coefficient for the solver to avoid assigning any value other
than 0, thus not violating the original constraint. The weighting of the coefficients of
the penalty variables can then be tuned to bias the solution in one direction or another.

The use of soft constraints comes from the fact that for the planner a schedule vio-
lating a few constraints is still more valuable than no schedule at all when the problem
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3 Proposed Heuristic

is infeasible. Therefore, assigning a period, a room and organizational capacities are
handled as soft constraints in both steps of the heuristic. Depending on the importance
of the organizations’ capacities not being exceeded it can be pondered whether it is more
desirable to violate the capacities or not to assign the class at all.

Other Constraints As already mentioned, many other constraints exist within the
real-world implementation, all of which are modeled as soft constraints. Some examples
are:

• Transit times between classes

• Chronological orderings of courses or classes

• Minimum and maximum of classes to be held in parallel per course

• Minimum and maximum time gaps between courses or classes

• Minimum and maximum number of classes per date of a set of courses

• Minimum and maximum number of dates a set of classes should span

• Holding different classes in the same room

• Compactness for students/groups

Step 1.5 The transit time and chronological ordering constraints can be used to reduce
the search space, resulting in much better performance. In the following, we will discuss
a further step in the heuristic applied between steps 1 and 2 described in this thesis.

Chronological orderings state in which order courses should be attended by students.
One way to achieve this is to already limit the available periods of each course during
the input phase in a way that guarantees the desired succession. This, however, would
be a lot of work for the person entering the data and therefore Moses offers the ability
to state orderings on courses without explicitly limiting their eligible periods. These
constraints are then modeled within the conflict graph by prohibiting every combination
that violates the given order.

Another constraint used to limit the search space are transit times between classes.
Every student must have enough time to travel from one class to the next because
sometimes switching classes involves changing campuses. To avoid long transit times
campus changes are to be avoided or kept low.

These two circumstances together are used in the already advertised, additional step
between 1 and 2. We will refer to this step as Aperiodic CBT - Step 1.5 in the
following. There the goal is to assign each base group to a campus on a given date. If
we restrict the eligible rooms for every class to not span more than one campus, we can
then assign classes to dates while respecting the ordering and transit constraints. Thus,
the set of eligible periods can be severely reduced to be within the assigned date. This
simultaneously reduces the set of eligible periods per class and avoids campus changes.
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Table 3.1: Some statistics for the samples used, where | Ĉ | is the number of courses
and | C | the number of classes. Per course, the average number of groups is
denoted by avg| G ĉ(ĉ)| which is relevant for Step 1. For Step 2, the average
number of eligible periods and rooms per class are denoted by avg| Pc(c)| and
avg|Rc(c)|, respectively. Finally, assigned | C | in % states the percentage of
classes that could be assigned a group, period and room after both steps.

Dataset | Ĉ | | C | avg| G ĉ(ĉ)| avg| Pc(c)| avg|Rc(c)| assigned | C | in %
trad+ref0 158 259 1.64 61.87 9.75 98.07
trad+ref2 501 3,271 6.53 64.59 13.67 98.69
trad+ref4 799 8,095 10.13 65.35 13.42 98.68
trad+ref6 1,030 11,069 10.75 63.93 13.09 98.60
trad+ref8 1,305 14,104 10.81 69.55 12.09 98.77
trad+ref10 1,447 15,353 10.61 69.92 11.49 98.80

3.3.2 Benchmarks

To provide benchmarks we use the data of a medical university in Germany with five
programs that are to be planned using Moses. Four of these programs are structured
very traditionally with only periodic courses and have three to five semesters each. Every
semester has between 15 and 70 students and between 4 and 6 periodic courses that take
place in every week of the semester. The last one, however, is a newly designed reform
program featuring aperiodic courses almost exclusively. It consists of 10 semesters with
more than 300 students each. The teaching format with the least student per class
requires three students. Therefore, base groups have three students, resulting in about
100 base groups per semester. These base groups form different groups with different
sizes, ranging from three students, for classes with patients, to more than 300 for lectures.

We used different samples of real data from the mentioned university to test the
proposed heuristic. We will refer to each sample by a name descriptive of its content:
trad+refX contains all semesters of the traditional programs plus the first X semesters
of the reform program, where X ∈ {0, 2, 4, 6, 8, 10}.

All constraints not included in this paper were disabled where possible. Still, the or-
ganizational capacities and period and room assignment are soft constraints. Otherwise,
we would only have had infeasible problems using the real world data from the men-
tioned university. The percentage of classes that could be assigned a period and room
are therefore included in Table 3.1, where we present some statistics on the samples we
used for benchmarking. The measures are after applying steps 1, 1.5 and 2. Unfortu-
nately it was not possible to get any results within reasonable time from Step 2 without
applying the briefly described Step 1.5 first.

Hardware For all runs, the same computer running the same configuration was used.
The CPU is an Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz with around 140GB of
memory available. Our runs were restricted to using 8 threads and a maximum of 64GB
of memory. The Gurobi solver software in version 8.0.1 was used on top of Linux Kernel
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Figure 3.5: Time spent building the ILP model as a function of the number of classes.

version 2.6.32.

Interpretation Table 3.1 clearly shows that the traditional programs have far fewer
students and therefore fewer base groups. This also results in fewer groups per teaching
format and consequently fewer classes per course. The average amount of eligible periods
and rooms however stay roughly constant across the programs.

Interestingly, building the model for Aperiodic CBT - Step 1 is more time con-
suming than for Aperiodic CBT - Step 2 as seen in Figure 3.5.

This stands in contrast to Step 2 having significantly more variables and inequations
as can be seen in Figures 3.6a and 3.6b. This discrepancy is mainly due to the fact that
in Step 1, the values of the function avgP,T have to be precomputed for all combinations
of class and week in the case of weekly capacities and for all combinations of class, week
and day in the case of daily capacities. Still, building times seem almost linear in the
number of classes.

Likewise for solving, increasing the number of classes impairs the time spent almost
linearly for Step 1 as seen in Figure 3.7. Surprisingly, for Step 2 solving the trad+ref6
instance with 11,069 classes takes more time than the larger trad+ref8 instance with
14,104 classes. This may be due to some unaccounted differences in input or the Gurobi
solver choosing a different strategy.

For Step 1, the average number of groups and therefore classes per course correlates
loosely with the time spent solving the step as seen in Figure 3.8. Overall size as in
number of courses and classes does seem to have a larger effect, though. In trad+ref4
and above, the average number of groups per course stays roughly constant but the time
spent solving increases further.

In Step 2 neither the average number of periods nor rooms seem to have any impact
on the time spent solving as seen in Figure 3.9.
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Figure 3.6: Size of the ILP models.
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Figure 3.7: Time spent in seconds solving Aperiodic CBT as a function of the number
of classes.
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Figure 3.8: Time spent in seconds solving Aperiodic CBT - Step 1 as a function of
the average number of groups per course.
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Figure 3.9: Time spent in seconds solving Aperiodic CBT - Step 2 as a function of
the average number of eligible periods per class and the average number of
eligible rooms per class.
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4 Conclusion & Outlook

We described challenges of automatically generating timetables for universities em-
ploying reform programs. To that end, the necessary additions to Curriculum-Based
Timetabling (CBT) have been worked out and a new model called Aperiodic Curricu-
lum-Based Timetabling (Aperiodic CBT) has been developed. We showed that solving
Aperiodic CBT näıvely would probably not work because of the size of the involved
conflict graph. Therefore, we proposed a heuristic that solves the problem in two steps.

As can be seen in Section 3.3.2, the proposed heuristic works quite well for the real-
world data used. The plots show that running time is not a problem, yet. Thus, it
seems likely that the heuristic can still perform well with bigger problem instances,
despite being NP-complete. However, it remains unclear if the heuristic provides close-
to-optimum solutions as no approximation guarantees are given. We conclude this thesis
with some further topics of future interest.

NP-Hardness of Step 1 Despite proving in Section 3.1.1 that the decision problem
version of Step 1 of the heuristic is in fact NP-complete, all test runs done for the
benchmarks immediately produced an integer solution for the relaxation of the integer
program. This may be due to some unaccounted structure in the input data or some
clever implementation on the side of the Gurobi solver. Reformulating the problem to
exploit more structure might as well lead to a computationally less demanding algorithm
for Step 1.

Integrating Further Constraints Integrating all in Section 3.3.1 briefly described con-
straints into the problem definition might prove interesting, too. Some of the constraints
can surely be integrated into the conflict graph already used to describe room, group
and capacity constraints. Others may define constraint classes on their own. Since all
these constraints refer either to times or rooms, they will have to be implemented in
Step 2 of the heuristic. It remains to be seen how they would be implemented in the
ILP, even if they can be integrated into the conflict graph.

Investigating Step 1.5 Possible implementations and computational complexity of
Step 1.5 of the heuristic (see Section 3.3.1) are also up for discussion. Recall that, in
Step 1.5, classes are assigned to sets of dates to narrow down the matching-space for
Step 2. Without at least the further constraints of Section 3.3.1, the assignment of classes
to dates becomes a guessing game and may destroy some good solutions otherwise to be
found in Step 2.
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4 Conclusion & Outlook

Decomposition of Step 2 One idea to get rid of Step 1.5 might be a decomposition
of Step 2 as done by Lach and Lübbecke [LL08] for CBT. Since Step 2 of the heuristic
is quite similar to CBT, this might be possible without much need for change. Lach
and Lübbecke [LL08] first assign periods to all classes (lectures) taking care of rooms by
scheduling no more classes than the number of fitting rooms per period. Then, rooms are
assigned in a second step, which can be performed in polynomial time. Their approach
provides exact solutions. This could reduce the complexity of Step 2 to a manageable
level without performing Step 1.5 first, as was necessary in our benchmarks.
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[LL12] G. Lach and M. E. Lübbecke. “Curriculum based course timetabling: new
solutions to Udine benchmark instances”. In: Annals OR 194.1 (2012),
pp. 255–272. url: https://doi.org/10.1007/s10479- 010- 0700- 7

(cit. on p. 29).

[LLZ16a] G. Lach, M. Lach, and E. Zorn. “Examination timetabling with Moses: Sys-
tem demonstration”. In: Proceedings of the 11th International Conference
of the Practice and Theory of Automated Timetabling. 2016 (cit. on p. 11).

[LLZ16b] G. Lach, M. Lach, and E. Zorn. “University course timetabling with Moses:
System demonstration”. In: Proceedings of the 11th International Confer-
ence of the Practice and Theory of Automated Timetabling. 2016 (cit. on
p. 10).

49

https://doi.org/10.1016/j.jcss.2009.09.002
https://doi.org/10.1016/j.jcss.2009.09.002
https://doi.org/10.1007/s10479-010-0707-0
https://doi.org/10.1007/978-3-540-68552-4\_18
https://doi.org/10.1007/978-3-540-68552-4\_18
https://doi.org/10.1007/s10479-010-0700-7


Literature

[McC+10] B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J. Parkes,
L. D. Gaspero, R. Qu, and E. K. Burke. “Setting the Research Agenda in
Automated Timetabling: The Second International Timetabling Competi-
tion”. In: INFORMS Journal on Computing 22.1 (2010), pp. 120–130. url:
https://doi.org/10.1287/ijoc.1090.0320 (cit. on p. 29).

[Sch99] A. Schaerf. “A Survey of Automated Timetabling”. In: Artif. Intell. Rev.
13.2 (1999), pp. 87–127. url: https://doi.org/10.1023/A:1006576209967
(cit. on pp. 7, 29).

[SLH08] C. Stosch, K. A. Lehmann, and S. Herzig. “Time for Change - Die Imple-
mentierung des Modellstudiengangs Humanmedizin in Köln”. In: Zeitschrift
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