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Zusammenfassung

Das c-Closure eines Graphen wurde von Fox et al. [SICOMP ’20] eingeführt und misst
Triadic Closure: Dies ist die Tendenz zweier Knoten, adjazent zu sein, wenn sie viele
gemeinsame Nachbarn haben. Für einen Graphen G = (V,E) kann das c-Closure mittels
Closure-Numbers definiert werden, welche durch Koana et al. [ISAAC ’20] eingeführt
wurden. Wir passen deren Definition leicht an. Die Closure-Number eines Knotens v ∈ V
ist wie folgt definiert:

clG(v) := max
u∈V \NG[v]

{|NG(u) ∩NG(v)|}+ 1

Wenn V \NG[v] = ∅, dann clG(v) := 1. So lässt sich das c-Closure von G als die größte
Closure-Number definieren:

c(G) := max
v∈V
{clG(v)}

Das c-Closure hat mehrere wünschenswerte Qualitäten, darunter seine Einfachheit.
Darüber hinaus wurde es bereits erfolgreich zum Entwurf parametrisierter Algorithmen
verwendet. Jedoch ist das c-Closure nicht sehr robust, da das Entfernen einer Kante zu
einem unbeschränkten Anstieg im c-Closure führen kann.

Es ist das Ziel dieser Arbeit, ein Maß für Triadic Closure einzuführen, das robuster
ist als das c-Closure, aber dessen Einfachheit beibehält. Zu diesem Zweck benutzen wir
den h-Index, welcher von Hirsch [PNAS ’05] eingeführt wurde. Der h-Index einer nicht
leeren, aber endlichen Multimenge M ⊆ N0 ist die eindeutige Zahl h(M) ∈ N0, so dass
es h(M) Werte in M gibt, die mindestens h(M) sind, während alle anderen Werte in M
höchstens h(M) sind. Dann definieren wir den hc-Index von G als den h-Index von allen
Closure-Numbers:

hc(G) := h([clG(v) | v ∈ V ])

Auch führen wir den Weak hc-Index von G ein: Er ist die kleinste Zahl whc(G) ∈ N1,
so dass eine Menge U ⊊ V mit |U | ≤ whc(G) und c(G[V \ U ]) ≤ whc(G) existiert. Der
Weak hc-Index ist nie größer als der hc-Index, und der hc-Index ist nie größer als das
c-Closure.

In der Arbeit charakterisieren wir zunächst die Graphen mit kleinem hc-Index durch
verbotene induzierte Teilgraphen, und wir ermitteln die Position des hc-Index und des
Weak hc-Index in der Hierarchie der Graphenparameter. Danach zeigen wir, dass der
hc-Index in Polynomialzeit berechnet werden kann und dass er in einigen Graphen aus
der echten Welt relativ klein ist. Jedoch kann der Weak hc-Index nicht in Polynomialzeit
berechnet werden, es sei denn, P = NP. Außerdem zeigen wir, dass für jede gegebene
Zahl k ∈ N1 in

O∗((hc(G) · k)O(k) · 2O(hc(G))
)

Zeit entschieden werden kann, ob G eine dominierende Menge der Größe höchstens k
enthält, indem wir einen Algorithmus von Koana et al. [ESA ’20] anpassen. Abschließend
beweisen wir, dass für jede beliebige Konstante k ∈ N1 gilt: Wenn der Graph G einen
Weak hc-Index von höchstens k hat, dann enthält er

O
(
n2−21−k

G

)
maximale Cliquen. Somit passen wir eine Schranke von Fox et al. [SICOMP ’20] an. Dies
legt nahe, dass der (Weak) hc-Index generell nützlich ist, um Ergebnisse anzupassen, die
vom c-Closure abhängen.
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Abstract

The c-closure of a graph was introduced by Fox et al. [SICOMP ’20], and it measures
triadic closure: the tendency of two vertices to be adjacent if they have many common
neighbors. For a graph G = (V,E), its c-closure can be defined using closure numbers,
which were introduced by Koana et al. [ISAAC ’20]. We modify their definition slightly.
The closure number of a vertex v ∈ V is

clG(v) := max
u∈V \NG[v]

{|NG(u) ∩NG(v)|}+ 1

if V \NG[v] ̸= ∅; otherwise, clG(v) := 1. We may then define the c-closure of G as the
maximum closure number:

c(G) := max
v∈V
{clG(v)}

The c-closure has several desirable qualities, including its simplicity. Furthermore, it
has been used successfully to design parameterized algorithms. However, the c-closure is
not very robust, as removing an edge from a graph can lead to an unbounded increase in
c-closure.

It is the intent of this thesis to introduce a measure of triadic closure that is more
robust than the c-closure while maintaining its simplicity. For this purpose, we use the
h-index, which was introduced by Hirsch [PNAS ’05]. The h-index of a non-empty and
finite multiset M ⊆ N0 is the unique number h(M) ∈ N0 such that there are h(M) values
in M that are at least h(M), while all other values in M are at most h(M). Then, we
define the hc-index of G to be the h-index of all closure numbers:

hc(G) := h([clG(v) | v ∈ V ])

We also introduce the weak hc-index of G: It is the smallest number whc(G) ∈ N1

such that there exists a set U ⊊ V with |U | ≤ whc(G) and c(G[V \ U ]) ≤ whc(G). The
weak hc-index is never greater than the hc-index, and the hc-index is never greater than
the c-closure.

In the thesis, we first characterize the graphs of small hc-index in terms of forbidden
induced subgraphs, and we establish the position of the hc-index and the weak hc-index
in the graph parameter hierarchy. Then, we show that the hc-index can be computed in
polynomial time and that it is relatively small in some real-world graphs. However, the
weak hc-index cannot be computed in polynomial time unless P = NP. We further show
that given a number k ∈ N1, deciding if G contains a dominating set of size at most k
takes

O∗((hc(G) · k)O(k) · 2O(hc(G))
)

time, adapting an algorithm by Koana et al. [ESA ’20]. Finally, we prove that for any
fixed k ∈ N1, if G has a weak hc-index of at most k, then G contains

O
(
n2−21−k

G

)
maximal cliques, adapting a bound by Fox et al. [SICOMP ’20]. This suggests that the
(weak) hc-index is generally useful to adapt results that rely on the c-closure.
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Chapter 1

Introduction

This chapter provides an overview of the thesis, covering motivation and related work.

1.1 Motivation

In social networks, two individuals with many common friends tend to be friends them-
selves [Gra73]. This property, known as triadic closure, motivated Fox et al. [Fox+20] to
introduce the c-closure of a graph G = (V,E): It is the smallest number c(G) ∈ N1 such
that any two distinct vertices with at least c(G) common neighbors are adjacent. Based
on this definition, it is to be expected that the c-closure is small in graphs that exhibit
high triadic closure, that is, graphs where two vertices are likely to be adjacent if they
share many neighbors.

Koana et al. [KKS20a] use an alternative definition of c-closure, which we modify
slightly: First, we define the closure number of a vertex v ∈ V as

clG(v) := max
u∈V \NG[v]

{|NG(u) ∩NG(v)|}+ 1

if V \NG[v] is non-empty; otherwise, we define that clG(v) := 1. Then, we can define the
c-closure as the maximum closure number:

c(G) := max
v∈V
{clG(v)}

Throughout the thesis, we will rely on these definitions. Especially the closure numbers
play an important role since they let us identify vertices that violate the triadic closure
property.

As a graph parameter, the c-closure has several desirable qualities; for example, it is
simple to understand and compute [KKS20b]. The c-closure is also simple in the sense
that for any c ∈ N1, it is easy to characterize the graphs of c-closure at most c in terms
of forbidden induced subgraphs. The graphs of c-closure at most 2, for instance, are the
graphs that contain neither an induced cycle on four vertices nor an induced diamond, as
Fox et al. [Fox+20] note. A drawing of the diamond is shown in Figure 1.1. Additionally,
the c-closure can be used to bound the number of maximal cliques in a graph [Fox+20].
Furthermore, it is useful in the design of parameterized algorithms, including algorithms
for finding dominating sets [KKS20b].
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v1

v2

v3

v4

Figure 1.1: The diamond, denoted D.

However, the c-closure is not very robust, as removing an edge from a graph can lead
to an unbounded increase in c-closure: Consider the complete graph Kn for any n ∈ N1

with n ≥ 3. While we have c(Kn) = 1, the c-closure increases to c(Kn − e) = n− 1 after
removing an edge because the resulting graph Kn − e contains two non-adjacent vertices
that share n− 2 neighbors.

As a more robust alternative, Fox et al. [Fox+20] introduce the weak c-closure, which
can be defined using closure numbers [KKS20a]: It is the smallest number wc(G) ∈ N1

such that for every non-empty set U ⊆ V , the induced subgraph G[U ] contains at least
one vertex v ∈ U with clG[U ](v) ≤ wc(G).

To give an example, we calculate the weak c-closure of the diamond D. Since the
vertices v2 and v4 are each adjacent to all other vertices, we have clD(v2) = clD(v4) = 1.
More generally, this applies to every induced subgraph of D that contains v2 or v4. It
remains to consider the induced subgraphs that contain neither v2 nor v4. Such induced
subgraphs will consist only of isolated vertices, because v1 and v3 are not adjacent. As
the closure number of an isolated vertex is 1, it follows that all induced subgraphs of D
contain a vertex of closure number 1, and therefore wc(D) = 1. By a similar argument,
we can deduce that wc(Kn − e) = 1 for all n ∈ N1. In contrast, c(D) = c(K4 − e) = 3
since clD(v1) = clD(v3) = 3.

Like the c-closure, the weak c-closure may be used to bound the number of maximal
cliques in a graph [Fox+20]. For graphs of bounded weak c-closure, Fox et al. [Fox+20]
prove a bound that is quadratic in the number of vertices, whereas for graphs of bounded
c-closure, they prove a bound that is subquadratic. Contrast this with arbitrary graphs,
which may contain exponentially many maximal cliques [MM65].

Similarly, the weak c-closure can also be used to design parameterized algorithms;
for instance, finding a dominating set of at most a given solution size is fixed-parameter
tractable when combining the solution size and the weak c-closure [LS21]. However, as
for any given c ∈ N1, the class of graphs with a weak c-closure of at most c is generally
much broader than the class of graphs with a c-closure of at most c, designing algorithms
that exploit the weak c-closure is more difficult. Continuing the example, the c-closure
admits a simpler algorithm for finding dominating sets [KKS20b].

Also, it appears to be difficult to characterize the graphs of small weak c-closure in
terms of forbidden induced subgraphs. Koana et al. [KKS20a] note that a graph has a
weak c-closure of 1 if and only if it contains neither an induced cycle on four vertices nor
an induced path on four vertices. For the graphs of weak c-closure at most 2, however,
they note that finding such a characterization remains an open problem.
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This thesis attempts to introduce a measure of triadic closure that is more robust
than the c-closure while maintaining its simplicity. To be specific, we want to introduce
a graph parameter that bounds most of the closure numbers in a graph but tolerates a
few vertices with high closure numbers. For this purpose, we can use the h-index of a
non-empty, finite multiset M ⊆ N0, which was introduced by Hirsch [Hir05]: It is the
unique number h(M) ∈ N0 such that there are h(M) values in M that are at least h(M),
while all other values in M are at most h(M). Then, we define the hc-index of G to be
the h-index of all closure numbers:

hc(G) := h([clG(v) | v ∈ V ])

We use the diamond D as an example again. We have already established that the
closure numbers are clD(v1) = clD(v3) = 3 and clD(v2) = clD(v4) = 1. Therefore, the
hc-index of D is the h-index of the multiset [3, 1, 3, 1], so hc(D) = 2.

The hc-index is robust in the sense that removing an edge from a graph can increase
its hc-index by at most 2: Let G′ = (V,E′) be the graph that is obtained after removing
an edge {u, v} ∈ E \ E′ from G. The closure number of any vertex from V \ {u, v} will
not increase. Because G contains at most hc(G) vertices with a closure number greater
than hc(G), the graph G′ contains at most hc(G) + 2 vertices with closure numbers that
are greater than hc(G). Hence, hc(G′) ≤ hc(G) + 2.

Further, we introduce the weak hc-index, which is the smallest number whc(G) ∈ N1

such that there exists a set U ⊊ V with |U | ≤ whc(G) and c(G[V \ U ]) ≤ whc(G). For
every k ∈ N1, the class of graphs with weak hc-index at most k fully contains the class of
graphs with hc-index at most k, as the weak hc-index demands low closure numbers only
after removing the vertices of high closure number.

In the diamond D, it suffices to remove the vertex v1 to obtain a complete graph,
which has c-closure 1. Therefore, we conclude that whc(D) = 1. In summary, the weak
c-closure and the weak hc-index of D are 1, its hc-index is 2, and its c-closure is 3. We
discuss the relationships between these parameters more thoroughly for general graphs
in Chapter 4.

The hc-index is the main focus of this thesis, and we will show that multiple of the
desirable properties of the c-closure carry over to the hc-index. This includes the fact
that the class of graphs with hc-index 1 as well as the class of graphs with hc-index at
most 2 is easy to characterize in terms of forbidden induced subgraphs (Chapter 3). We
also show that the hc-index is simple to compute and relatively small in selected graphs
from the real world (Chapter 5). In addition, we show that the hc-index is useful for the
design of parameterized algorithms: We adapt the algorithm for finding dominating sets
by Koana et al. [KKS20b] so as to exploit the hc-index (Chapter 6).

For the weak hc-index, we show that it is probably not efficiently computable, since
it cannot be computed in polynomial time unless P = NP (Chapter 5). Still, the weak
hc-index allows us to bound the number of maximal cliques: We show that in graphs of
bounded weak hc-index, the maximum number of maximal cliques is subquadratic in the
number of vertices (Chapter 7), adapting the bound by Fox et al. [Fox+20]. From this,
it follows that the problem of listing all maximal cliques in a graph is fixed-parameter
tractable with respect to the weak hc-index.
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1.2 Related work

Koana et al. [KKS20b] show that given a graph G and a number k ∈ N1, deciding if G
contains a dominating set of size at most k takes O∗((c(G) · k)O(k)) time. In Chapter 6,
we follow their approach closely to obtain an algorithm for finding dominating sets that
exploits the hc-index.

Lokshtanov and Surianarayanan [LS21] present an algorithm that decides whether
a graph G contains a dominating set of size at most k in O∗(kO(wc(G)2·k3)) time given
any number k ∈ N1. Because the weak c-closure is never greater than the hc-index, their
algorithm is also suitable for graphs of small hc-index. This algorithm, however, is more
complicated than the algorithm by Koana et al. [KKS20b], which we adapt to obtain a
simpler algorithm for graphs of small hc-index (Chapter 6).

Downey and Fellows [DF95] show that deciding if a graph contains a dominating set
of size k is W[2]-complete when parameterized by the solution size k ∈ N1 alone. They
therefore conjecture that the problem is not fixed-parameter tractable. Fixed-parameter
algorithms are known when combining the solution size with other parameters, as the
results mentioned above demonstrate.

Fox et al. [Fox+20] show that for all n, c ∈ N1, a graph on n vertices with a c-closure
of at most c contains at most 4(c+4)·(c−1)/2 · n2−21−c

maximal cliques, and they show that
a graph with n vertices and a weak c-closure of at most c contains at most 3(c−1)/3 · n2

maximal cliques. The weak hc-index admits similar bounds (Chapter 7).
Eppstein et al. [ELS10] prove bounds on the number of maximal cliques in graphs of

bounded degeneracy, which is a graph parameter introduced by Lick and White [LW70]:
For an arbitrary graph G = (V,E), it is defined as the smallest number d(G) ∈ N0 such
that for every non-empty set U ⊆ V , the induced subgraph G[U ] contains at least one
vertex v ∈ U with degG[U ](v) ≤ d(G). In graphs of bounded degeneracy, the maximum
number of maximal cliques is linear in the number of vertices [ELS10]. As we show in
Chapter 4, the weak hc-index and the degeneracy are incomparable.

Moon and Moser [MM65] show that for all n ∈ N1, there exists a graph on n vertices
with 3⌊n/3⌋ maximal cliques. Contrasting this with the bounds mentioned above, graphs
of small degeneracy or small (weak) c-closure contain relatively few maximal cliques in
comparison.

We recall that the hc-index is the h-index of all closure numbers. This definition is
similar to a definition by Eppstein and Spiro [ES09], who define the h-index of a graph
to be the h-index of all degrees. The introduction of this parameter was also motivated
by the structure of social networks. In Chapter 4, we show that the hc-index of a graph
is at most one greater than its h-index.



Chapter 2

Preliminaries

This chapter is used to define preliminary terms and notation. Unless indicated other-
wise, most of the definitions for standard concepts from graph theory are based on the
textbook by Diestel [Die00] or Bondy and Murty [BM08]. In addition, some familiarity
with concepts from parameterized complexity and algorithmics is assumed [Nie06].

Basic graph notation. Let G = (V,E) denote a (simple) graph, where V denotes the
non-empty, finite set of vertices and E ⊆

(
V
2

)
denotes the set of edges.

Now, let v ∈ V be an arbitrary vertex, and let U ⊆ V be any subset of the vertices.
Then, we denote by

V (G) the vertex set of G, formally, V (G) := V ;

E(G) the edge set of G, formally, E(G) := E;

nG the order of G, formally, nG := |V |;

mG the size of G, formally, mG := |E|;

NG(v) the (open) neighborhood of v, formally, NG(v) := {u ∈ V | {u, v} ∈ E};

NG(U) the (open) neighborhood of U , formally, NG(U) := (
⋃

u∈U NG(u)) \ U ;

NG[v] the closed neighborhood of v, formally, NG[v] := NG(v) ∪ {v};

NG[U ] the closed neighborhood of U , formally, NG[U ] := NG(U) ∪ U ;

degG(v) the degree of v, formally, degG(v) := |NG(v)|;

∆(G) the maximum degree of G, formally, ∆(G) := maxu∈V {degG(u)};

G[U ] the induced subgraph on U ̸= ∅, formally, G[U ] := (U,E ∩
(
U
2

)
);

G the complement of G, formally, G := (V,
(
V
2

)
\ E).
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Basic graph terms. Let G = (V,E) be a graph, and let U ⊆ V be a non-empty set.
If two vertices u, v ∈ V are connected by an edge {u, v} ∈ E, then u and v are said to
be adjacent. If every pair of distinct vertices in U is adjacent, then U is called a clique.
If no pair of vertices in U is adjacent, then U is called an independent set. If the closed
neighborhood of U contains all vertices of G, then U is called a dominating set. A set
of vertices W ⊆ V is called a vertex cover if e ∩W ̸= ∅ for every edge e ∈ E.

Let H be a second graph. If H can be obtained by injectively relabeling the vertices
of G, then the two graphs are said to be isomorphic, which we denote as G ≃ H. Their
union is defined as G ∪H := (V ∪ V (H), E ∪ E(H)), and the disjoint union is defined
as G ⊎H := G ∪H ′, where H ′ is some graph with H ′ ≃ H and V ∩ V (H ′) = ∅. For a
positive integer n ∈ N1, we denote the disjoint union of n copies of G as n ·G.

Named graphs. Let m,n ∈ N1 be positive integers. We denote by

Kn the complete graph of order n, formally, Kn := ([n],
(
[n]
2

)
);

Kn − e the near-complete graph of order n, formally, Kn − e := ([n],
(
[n]
2

)
\ {{1, 2}});

Km,n the complete bipartite graph of order m+ n, formally, Km,n := (Km ⊎Kn);

P3 the 3-path, formally, P3 := K3 − e;

C4 the 4-cycle, formally, C4 := K2,2;

D the diamond, formally, D := K4 − e.

Graph parameters. Koana et al. [KKS20a] define the closure number of a vertex in
a graph. In this thesis, a slightly modified definition is used.

Definition 2.1. The closure number of a vertex v ∈ V in a graph G = (V,E) is:

clG(v) := max
u∈V \NG[v]

{|NG(u) ∩NG(v)|}+ 1

If there is no vertex in V that is distinct from and non-adjacent to v, then clG(v) := 1.

Fox et al. [Fox+20] introduce the c-closure and the weak c-closure of a graph. They
can be defined using closure numbers [KKS20a].

Definition 2.2. The c-closure of G = (V,E) is the maximum closure number:

c(G) := max
v∈V
{clG(v)}

Definition 2.3. The weak c-closure of G = (V,E) is the smallest number wc(G) ∈ N1

such that for every non-empty set U ⊆ V , the induced subgraph G[U ] contains at least
one vertex v ∈ U with clG[U ](v) ≤ wc(G).

The definition above is similar to the definition of the degeneracy of a graph, which
was introduced by Lick and White [LW70].
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Definition 2.4. The degeneracy of G = (V,E) is the smallest number d(G) ∈ N0 such
that for every non-empty set U ⊆ V , the induced subgraph G[U ] contains at least one
vertex v ∈ U with degG[U ](v) ≤ d(G).

Hirsch [Hir05] introduces the index on which the next definition is based.

Definition 2.5. The h-index of a non-empty and finite multiset M ⊆ N0 is the unique
number h(M) ∈ N0 such that there are h(M) values in M that are at least h(M), while
all other values in M are at most h(M).

Eppstein and Spiro [ES09] apply this index to graphs using the definition below.

Definition 2.6. The h-index of a graph G = (V,E) is the h-index of all degrees:

h(G) := h([degG(v) | v ∈ V ])

Combining h-index and c-closure, the following parameters are introduced here.

Definition 2.7. The hc-index of G = (V,E) is the h-index of all closure numbers:

hc(G) := h([clG(v) | v ∈ V ])

Definition 2.8. The weak hc-index of G = (V,E) is the smallest number whc(G) ∈ N1

such that there exists a set U ⊊ V with |U | ≤ whc(G) and c(G[V \ U ]) ≤ whc(G).





Chapter 3

Graphs of small hc-index

For any c ∈ N1, it is easy to see how the class of graphs with c-closure at most c can be
characterized in terms of forbidden induced subgraphs. To give an example, the graphs
with c-closure at most 2 are exactly the (C4, D)-free graphs [Fox+20], where C4 denotes
the 4-cycle and D denotes the diamond. This class in particular has been studied for its
own sake [Esc+11].

Characterizing the graphs of small weak c-closure appears to be less simple: While a
forbidden induced subgraph characterization for the graphs with a weak c-closure of 1 is
known, characterizing the graphs of weak c-closure at most 2 remains an open problem,
as Koana et al. [KKS20a] note.

In this chapter, we characterize the graphs of small hc-index, in particular, hc-index
exactly 1 (Theorem 3.2) and hc-index at most 2 (Theorem 3.3 and Figure 3.1). For this
purpose, the following lemma is useful.

Lemma 3.1. For all k ∈ N1, the class of graphs with an hc-index of at most k is closed
under taking induced subgraphs.

Proof. Let k ∈ N1 be a positive integer, let G = (V,E) be a graph with an hc-index of
at most k, and let U ⊆ V be a non-empty set of vertices. For the sake of contradiction,
assume that the induced subgraph G[U ] has an hc-index that is greater than k. Hence,
there are more than k vertices with closure numbers greater than k in G[U ]. Since any
two distinct, non-adjacent vertices in G[U ] are non-adjacent in G and share at least as
many neighbors in G as they do in G[U ], there are more than k vertices with a closure
number that is greater than k in G. This is a contradiction to G having an hc-index of
at most k. Therefore, the hc-index of G[U ] is at most k as well.

3.1 Graphs of hc-index 1

First, we characterize the graphs of hc-index 1. We recall that P3 denotes the 3-path.

Theorem 3.2. A graph has hc-index 1 if and only if it does not contain an induced P3.

Proof. We prove the two directions individually.

(⇒) Let G = (V,E) be a graph of hc-index 1. Assume, for the sake of contradiction,
that there is a set of vertices U ⊆ V such that G[U ] ≃ P3. Since G[U ] has hc-index 2

19



20 CHAPTER 3. GRAPHS OF SMALL HC-INDEX

but G has hc-index 1, this contradicts Lemma 3.1. We infer that no induced subgraph
isomorphic to P3 exists in G.

(⇐) We use contraposition to prove this direction. Let G = (V,E) be a graph with an
hc-index of at least 2. Then, there exists a vertex v ∈ V with a closure number that is
at least 2. Thus, there is another vertex u ∈ V that is non-adjacent to v, and they have
at least one common neighbor w ∈ V . Choose U := {u, v, w}. It follows that G[U ] ≃ P3

because E(G[U ]) = {{v, w}, {w, u}}.

3.2 Graphs of hc-index at most 2

For the graphs of hc-index at most 2, we prove two characterizations and give a list of
forbidden induced subgraphs, which was found by computer-assisted search.

Theorem 3.3. A graph has hc-index at most 2 if and only if it contains no induced C4

and at most one pair of distinct, non-adjacent vertices that is part of an induced D.

Proof. The proof has two directions.

(⇒) Let G = (V,E) be a graph of hc-index at most 2. Because the hc-index of C4 is 3,
the graph G contains no induced subgraph isomorphic to C4, as implied by Lemma 3.1.
For the sake of contradiction, suppose that there are two distinct pairs of non-adjacent
vertices U1, U2 ∈ E(G) such that there are two distinct sets W1,W2 ⊆ V with U1 ⊆W1

and U2 ⊆W2 satisfying G[W1] ≃ G[W2] ≃ D. Then, clG(v) ≥ 3 for all v ∈ U1 ∪ U2. As
the pairs U1 and U2 are distinct, there are at least three vertices in G that have closure
numbers of at least 3. This is a contradiction to G having hc-index at most 2, and thus
there is at most one pair of distinct, non-adjacent vertices that is part of an induced D.

(⇐) We prove this direction using contraposition. Let G = (V,E) be a graph with an
hc-index of at least 3. By definition of the hc-index, the graph G contains at least three
distinct vertices v1, v2, v3 ∈ V such that for every i ∈ {1, 2, 3}, we have clG(vi) ≥ 3, and
thus there exists a vertex xi ∈ V that is distinct from and non-adjacent to vi, and they
share at least two distinct neighbors ui, wi ∈ NG(vi) ∩NG(xi). If for some i ∈ {1, 2, 3},
the common neighbors ui and wi are non-adjacent, then G[{ui, vi, wi, xi}] ≃ C4 and we
are done. Otherwise, G[{ui, vi, wi, xi}] ≃ D for every i ∈ {1, 2, 3}. Because v1, v2, v3 are
distinct, at least two of the pairs {v1, x1}, {v2, x2}, {v3, x3} are distinct.

We recall that G ∪H := (V (G) ∪ V (H), E(G) ∪ E(H)) for graphs G and H.

Corollary 3.4. A graph has hc-index at most 2 if and only if it contains no induced C4

and either no induced D, or the union over every induced D is isomorphic to Kn − e for
some n ∈ N1.

Proof. We prove each direction separately.

(⇒) Let G = (V,E) be any graph of hc-index at most 2. Then, G does not contain an
induced C4. If G contains no induced D, then we are done. Otherwise, we consider the
union over every induced D:

H :=
⋃
U⊆V

G[U ]≃D

G[U ]
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By Theorem 3.3, there is a pair of distinct, non-adjacent vertices P ∈ E(G) such that
for any two sets W1,W2 ⊆ V with G[W1] ≃ G[W2] ≃ D, we have P ⊆W1 and P ⊆W2.
Let u ∈W1 \ P and v ∈W2 \ P be distinct vertices. Then, u is adjacent to both of the
vertices in P , and v is adjacent to both vertices in P . Consequently, u and v must be
adjacent in G: Otherwise, we would have G[P ∪ {u, v}] ≃ C4, which is impossible. But
instead, we have G[P ∪ {u, v}] ≃ D, so u and v are also adjacent in H. It follows that
any two distinct vertices from V (H) \ P are adjacent in H. Therefore, H ≃ Kn − e for
some n ∈ N1.

(⇐) Let G be any graph that contains no induced C4 and either no induced D, or the
union over every induced D is isomorphic to Kn − e for some n ∈ N1. Clearly, there is
at most one pair of distinct, non-adjacent vertices that is part of an induced D. Thus,
the graph G has hc-index at most 2 by Theorem 3.3.

Remark. Stating the inverse of Theorem 3.3, a graph has hc-index at least 3 if and only
if it contains an induced C4 or at least two pairs of distinct, non-adjacent vertices such
that each pair is part of some induced D. Two such pairs, together with one induced D
for each pair, will take up at most eight vertices. Therefore, the graphs with hc-index at
most 2 can be characterized in terms of forbidden induced subgraphs with at most eight
vertices. An exhaustive computer-assisted search was conducted, which has shown that
any graph has hc-index at most 2 if and only if it does not contain an induced subgraph
isomorphic to one of the following fifteen graphs:

([4], {{3, 1}, {3, 2}, {4, 1}, {4, 2}})
([5], {{2, 1}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {5, 1}, {5, 2}})
([5], {{2, 1}, {3, 1}, {3, 2}, {4, 1}, {4, 3}, {5, 1}, {5, 2}})
([5], {{2, 1}, {3, 1}, {3, 2}, {4, 1}, {4, 2}, {4, 3}, {5, 1}, {5, 2}})
([7], {{2, 1}, {3, 1}, {4, 1}, {4, 3}, {5, 1}, {5, 3}, {6, 1}, {6, 2}, {7, 1}, {7, 2}})
([7], {{2, 1}, {3, 1}, {4, 1}, {4, 3}, {5, 3}, {5, 4}, {6, 1}, {6, 2}, {7, 1}, {7, 2}})
([7], {{2, 1}, {4, 3}, {5, 1}, {5, 2}, {5, 3}, {5, 4}, {6, 3}, {6, 4}, {7, 1}, {7, 2}})
([7], {{3, 1}, {3, 2}, {4, 2}, {5, 1}, {5, 4}, {6, 1}, {6, 4}, {6, 5}, {7, 1}, {7, 2}, {7, 3}})
([8], {{2, 1}, {4, 3}, {5, 3}, {5, 4}, {6, 3}, {6, 4}, {7, 1}, {7, 2}, {8, 1}, {8, 2}})
([8], {{2, 1}, {3, 1}, {4, 3}, {5, 3}, {5, 4}, {6, 3}, {6, 4}, {7, 1}, {7, 2}, {8, 1}, {8, 2}})
([8], {{2, 1}, {4, 3}, {5, 1}, {5, 3}, {5, 4}, {6, 3}, {6, 4}, {7, 1}, {7, 2}, {8, 1}, {8, 2}})
([8], {{2, 1}, {4, 3}, {5, 2}, {5, 3}, {5, 4}, {6, 1}, {6, 3}, {6, 4}, {7, 1}, {7, 2}, {8, 1}, {8, 2}})
([8], {{2, 1}, {4, 3}, {5, 3}, {5, 4}, {6, 4}, {6, 5}, {7, 1}, {7, 2}, {7, 3}, {8, 1}, {8, 2}})
([8], {{2, 1}, {4, 3}, {5, 3}, {5, 4}, {6, 1}, {6, 4}, {6, 5}, {7, 1}, {7, 2}, {7, 3}, {8, 1}, {8, 2}})
([8], {{2, 1}, {5, 3}, {5, 4}, {6, 3}, {6, 4}, {6, 5}, {7, 1}, {7, 2}, {7, 4}, {8, 1}, {8, 2}, {8, 3}})

Drawings of the graphs are shown in Figure 3.1. The order of the drawings was chosen
to highlight similarities between the graphs and differs from the order in the list above,
which instead gives the graphs in the order of their discovery by the computer.
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Figure 3.1: Forbidden induced subgraphs, found by computer-assisted search.



Chapter 4

Bounds on the hc-index

This chapter discusses the position of the hc-index and the weak hc-index in the graph
parameter hierarchy. Concretely, we compare the two parameters with the h-index, the
c-closure, the weak c-closure, and the degeneracy.

The relationships between those parameters are known: The weak c-closure is never
greater than the c-closure [Fox+20]. It is also at most one greater than the degeneracy
of a graph [KKS20a], but the c-closure and the degeneracy are incomparable [KKS20b].
Similarly, the c-closure and the h-index are incomparable [KN21]. The degeneracy is at
most as great as the h-index, which is at most as great as the maximum degree [SW19].
Also, the c-closure is at most one greater than the maximum degree [KN21]. Several of
these relationships are shown in a Hasse diagram by Koana et al. [Koa+22].

The results of this chapter expand this Hasse diagram (Figure 4.1). A line segment
represents a bound on the lower parameter by a linear function of the upper parameter.
Now, we prove the new relationships shown in Figure 4.1 one after the other. First, we
prove the upper bounds on the hc-index. Then, we prove the lower bounds. Finally, we
show the incomparability of multiple parameters.

Lemma 4.1. The closure number of a vertex is at most one greater than its degree.

Proof. Let v ∈ V be a vertex of the graph G = (V,E). Because degG(v) ≥ 0, the bound
holds if clG(v) = 1. Otherwise, if clG(v) ≥ 2, then V \NG[v] ̸= ∅ and we can make the
following deduction:

clG(v) = max
u∈V \NG[v]

{|NG(u) ∩NG(v)|}+ 1 ≤ |NG(v)|+ 1 = degG(v) + 1

Thus, clG(v) ≤ degG(v) + 1.

Theorem 4.2. The hc-index of a graph is at most one greater than its h-index.

Proof. Let G = (V,E) be a graph. By definition of the h-index, there are h(G) vertices
in V with degrees greater than or equal to h(G), and all other vertices in V have degrees
less than or equal to h(G). Hence, there exists a set U ⊆ V with |U | = h(G) such that
for all v ∈ W , we have degG(v) ≤ h(G), where W := V \ U . By Lemma 4.1, it follows
that clG(v) ≤ degG(v) + 1 ≤ h(G) + 1 for all v ∈ W . Because |W | = nG − h(G), there
cannot be more than h(G) + 1 vertices with closure numbers greater than h(G) + 1, and
so hc(G) ≤ h(G) + 1.
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Theorem 4.3. The hc-index of a graph is less than or equal to its c-closure.

Proof. Let G = (V,E) be any graph. By definition of the hc-index, there are hc(G) ≥ 1
vertices v ∈ V with clG(v) ≥ hc(G). As clG(v) ≤ c(G), it follows that hc(G) ≤ c(G).

Theorem 4.4. The weak c-closure of a graph is less than or equal to its hc-index.

Proof. Let G = (V,E) be a graph, and let U ⊆ V be any non-empty set of vertices. We
need to show that there exists some vertex v ∈ U with clG[U ](v) ≤ hc(G). If there is a
vertex v ∈ U with clG(v) ≤ hc(G), then clG[U ](v) ≤ hc(G) and we are done. Otherwise,
we know that clG(v) > hc(G) for all v ∈ U . By definition of the hc-index, there are at
most hc(G) such vertices v in G, and therefore |U | ≤ hc(G). Hence, every vertex v ∈ U
has clG[U ](v) ≤ c(G[U ]) ≤ |U | ≤ hc(G). We infer that wc(G) ≤ hc(G).

Theorem 4.5. The weak hc-index of a graph is less than or equal to its hc-index.

Proof. Let G = (V,E) be any graph. Then, choose U := {v ∈ V | clG(v) > hc(G)}. By
definition of the hc-index, we have |U | ≤ hc(G). Clearly, c(G[V \ U ]) ≤ hc(G), and we
deduce that whc(G) ≤ hc(G).

Theorem 4.6. The hc-index and the degeneracy are incomparable.

Proof. Let n ∈ N1 be any positive integer. Choose Gn := n ·K2,n. The hc-index of Gn

is greater than n because there are at least 2 · n vertices with closure numbers greater
than n, but the degeneracy of Gn is at most 2. In contrast, the hc-index of Kn is 1 by
Theorem 3.2, but the degeneracy of Kn is n− 1. We thus conclude that neither of the
two parameters bounds the other.

Theorem 4.7. The weak hc-index and the degeneracy are incomparable.

Proof. Let n ∈ N1 be any positive integer. Again, choose Gn := n ·K2,n. By removing
fewer than n vertices from Gn, the graph that is obtained has c-closure greater than n;
hence, the weak hc-index of Gn is at least n, whereas the degeneracy is at most 2. The
complete graph Kn, however, has weak hc-index 1 and degeneracy n− 1.

Theorem 4.8. The weak hc-index and the weak c-closure are incomparable.

Proof. Let n ∈ N1 be a positive integer. Choose Gn := (K1,n ⊎K1,n). It is sufficient to
remove two vertices from Gn to obtain a complete graph, which has c-closure 1. Thus,
the weak hc-index of Gn is at most 2. However, because every closure number in Gn is
greater than n, the weak c-closure is greater than n as well. Furthermore, n ·K2,n has
a weak hc-index of at least n, but the weak c-closure is at most 3.

Remark. The bounds proven here can be visualized in a Hasse diagram (Figure 4.1). A
line segment indicates that the lower parameter is bounded from above by some linear
function of the upper parameter.
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Figure 4.1: Hasse diagram of graph parameters.





Chapter 5

Computing the (weak) hc-index

The c-closure of a graph G can be computed efficiently: Algorithms with a running time
of O(n2.373

G ) [Fox+20] and O(c(G) · n2
G +m1.5

G ) [KN21] are known. The former algorithm
relies on fast matrix multiplication, whereas the latter is purely combinatorial.

The hc-index can be computed with a similar efficiency. We present a combinatorial
algorithm with a running time of O(nG +mG ·∆(G)) (Theorem 5.1), which was used to
compute the hc-index of multiple real-world graphs (Table 5.1). Like the c-closure, the
hc-index can be computed in O(n2.373

G ) time using matrix multiplication (Theorem 5.2);
however, for sparse graphs, the combinatorial algorithm is likely preferable.

The weak hc-index does not seem to be efficiently computable: Unless P = NP, the
weak hc-index cannot be computed in polynomial time (Theorem 5.3). For this reason,
no algorithm for computing the weak hc-index is presented here.

5.1 The hc-index of sparse graphs

In this section, an algorithm for computing the hc-index of sparse graphs is presented.
It was used to compute the hc-index of several graphs from the real world.

Theorem 5.1. The hc-index of a graph G can be computed in O(nG +mG ·∆(G)) time.

Proof. Using Algorithm 1, all closure numbers of a graph G = (V,E) can be computed
in O(nG +mG ·∆(G)) time.

The algorithm calculates the closure number of v ∈ V by counting the number of
common neighbors between v and any vertex u ∈ V : The entry A[u] is incremented if
and only if a new common neighbor w ∈ NG(u) ∩NG(v) is discovered. Afterwards, all
entries in A of the vertices in NG[v] are reset to 0. Then, the algorithm searches for the
maximum number of shared neighbors between v and any non-adjacent vertex u ∈ V
distinct from v. All entries of A need to be reset to 0 so A can be reused as auxiliary
space for computing the next closure number.

For every vertex v ∈ V , Algorithm 1 iterates over NG(v) and takes O(∆(G)) time
for each w ∈ NG(v). By the degree sum formula, a call to AllClosureNumbers thus
takes O(nG +mG ·∆(G)) time in total.

To compute the hc-index of the graph G, the h-index of all closure numbers must be
calculated. This can be done in O(nG) time by first sorting the array of closure numbers
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in non-ascending order using counting sort [Cor+09, pp. 194–196], where the frequency
of each closure number is counted, and then searching for the index h ∈ {1, 2, . . . , nG}
such that there are h closure numbers greater than or equal to h, while all other closure
numbers are less than or equal to h. Clearly, hc(G) = h.

Algorithm 1 Algorithm to compute all closure numbers.

Input: A graph G = (V,E) with V = {1, 2, . . . , nG}.
Output: All closure numbers of G.
1: A[nG]← ⟨0, 0, . . . , 0⟩ ▷ Allocate and initialize an array of length nG.
2:

3: function ClosureNumber(G, v)
4: for w ∈ NG(v) do
5: for u ∈ NG(w) do
6: A[u]← A[u] + 1 ▷ Count the common neighbors between v and u.
7: end for
8: end for
9: for u ∈ NG[v] do

10: A[u]← 0 ▷ Reset the irrelevant entries of A to 0.
11: end for
12: max← 0
13: for w ∈ NG(v) do
14: for u ∈ NG(w) do
15: if A[u] > max then
16: max← A[u] ▷ Find the maximum number of common neighbors.
17: end if
18: A[u]← 0 ▷ Reset all the entries of A to 0.
19: end for
20: end for
21: return max+ 1
22: end function
23:

24: function AllClosureNumbers(G)
25: C[nG]← ⟨ . . . ⟩ ▷ Allocate an array of length nG.
26: for v ← 1 to nG do
27: C[v]← ClosureNumber(G, v)
28: end for
29: return C
30: end function

Remark. An implementation of Algorithm 1 was used to compute the c-closure and the
hc-index of multiple real-world graphs. The results are shown in Table 5.1. For directed
graphs, the underlying undirected graph was considered. Any loops were removed; thus,
only simple graphs were analyzed. Note that the hc-index remains relatively small: Half
of the selected graphs have an hc-index of at most 22.
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Table 5.1: The maximum degree, h-index, c-closure, and hc-index of real-world graphs
from the Stanford Network Analysis Project (SNAP) [LK14].

G nG mG ∆(G) h(G) c(G) hc(G)

ca-AstroPh 18,772 2 · 105 504 150 61 47
ca-CondMat 23,133 93,439 279 76 27 20

ca-GrQc 5,242 14,484 81 45 43 25
ca-HepPh 12,008 1.2 · 105 491 238 90 73
ca-HepTh 9,877 25,973 65 38 13 11

email-Enron 36,692 1.8 · 105 1,383 195 187 80
p2p-Gnutella04 10,876 39,994 103 42 29 15
p2p-Gnutella05 8,846 31,839 88 46 48 25
p2p-Gnutella06 8,717 31,525 115 48 48 29
p2p-Gnutella08 6,301 20,777 97 51 31 23
p2p-Gnutella09 8,114 26,013 102 52 32 24
p2p-Gnutella24 26,518 65,369 355 33 11 9
p2p-Gnutella25 22,687 54,705 66 28 12 10
p2p-Gnutella30 36,682 88,328 55 35 18 12
p2p-Gnutella31 62,586 1.5 · 105 95 41 18 13

roadNet-CA 2 · 106 2.8 · 106 12 8 5 4
roadNet-PA 1.1 · 106 1.5 · 106 9 8 4 4
roadNet-TX 1.4 · 106 1.9 · 106 12 8 4 4

wiki-Talk 2.4 · 106 4.7 · 106 1 · 105 1,056 4,216 296
wiki-Vote 7,115 1 · 105 1,065 186 441 113

5.2 The hc-index of dense graphs

For a dense graph, matrix multiplication can be used to compute the hc-index. Alman
and Vassilevska Williams [AVW21] show that for every n ∈ N1, any two n× n matrices
over a field can be multiplied using O(nω+ε) field operations, where ω ∈ R denotes the
matrix multiplication exponent with 2 ≤ ω < 2.3728596, for all ε ∈ R>0. This gives the
following upper bound on the complexity of hc-index computation:

Theorem 5.2. The hc-index of an arbitrary graph G can be computed in O(nω+ε
G ) time

for any ε ∈ R>0.

Proof. Fox et al. [Fox+20] mention that the c-closure of a graph G can be computed by
squaring its adjacency matrix. This way, the number of common neighbors between any
two vertices is obtained. To compute the hc-index, after squaring the adjacency matrix,
we collect all closure numbers in O(n2

G) time and calculate their h-index in O(nG) time.
Assuming that basic arithmetic operations take constant time, the total running time is
bounded by O(nω+ε

G ) for all ε ∈ R>0, because squaring the nG × nG adjacency matrix is
the most expensive step.

5.3 The weak hc-index

Unlike the hc-index, the weak hc-index does not appear to be efficiently computable; in
fact, the weak hc-index cannot be computed in polynomial time unless P = NP.
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Theorem 5.3. Given a graph G and a number k ∈ N1, deciding whether G has a weak
hc-index of at most k is NP-complete.

Proof. Clearly, the problem under consideration is in NP. We show that it is NP-hard
as well. Let G = (V,E) be a graph, and let k ∈ {2, 3, . . . , nG − 1} be a positive integer.
Now, we construct a graph G′ := (V ′, E′) as follows:

1. For each vertex v ∈ V , add v to V ′.

2. For each edge e ∈ E, add 2 · k new vertices {ve1, ve2, . . . , ve2·k} to V ′.

3. For each edge e = {u,w} ∈ E, add the edges {{u, vei }, {vei , w} | i ∈ [2 · k]} to E′.

This can clearly be done in polynomial time. Then, G contains a vertex cover of size at
most k if and only if G′ has a weak hc-index of at most k, as we show next. Finally, the
theorem follows directly from the NP-hardness of deciding if a vertex cover of at most a
given size exists [GJ79, pp. 53–56].

(⇒) Let U ⊆ V with |U | ≤ k be a vertex cover in G. After removing the vertices in U
from G′, all closure numbers in the resulting graph are at most 2. Equivalently, we can
state that c(G′[V ′ \ U ]) ≤ 2. Since 2 ≤ k ≤ nG − 1, it follows that whc(G′) ≤ k.

(⇐) We will assume that whc(G′) ≤ k: There exists a set U ⊊ V ′ with |U | ≤ k such
that c(G′[V ′ \ U ]) ≤ k. Now, there cannot be an edge {u, v} ∈ E with {u, v} ∩ U = ∅,
as both u and v would have a closure number greater than k in G′[V ′ \ U ]. Therefore,
the set W := U ∩ V with |W | ≤ k is a vertex cover in G.



Chapter 6

Finding dominating sets

Parameterized by the solution size k ∈ N1, deciding whether a dominating set of size k
exists in a graph is W[2]-complete and thus likely not fixed-parameter tractable [DF95].
However, fixed-parameter algorithms are known when combining the solution size with
another parameter such as the c-closure [KKS20b] or the weak c-closure [LS21].

Koana et al. [KKS20b] show that given a graph G and a number k ∈ N1, deciding if
the graph G contains a dominating set of size at most k takes O∗((c(G) · k)O(k)) time.
In this chapter, we adapt their algorithm so as to exploit the hc-index.

Lokshtanov and Surianarayanan [LS21] present an algorithm that exploits the weak
c-closure: They show that given a graph G and a number k ∈ N1, deciding whether G
contains a dominating set of size at most k takes O∗(kO(wc(G)2·k3)) time. The hc-index
of a graph is greater than or equal to its weak c-closure, and so their algorithm is also
suitable for graphs of small hc-index. However, we obtain a simpler algorithm for such
graphs when adapting the algorithm by Koana et al. [KKS20b].

We follow their approach closely, and we use their definitions of the terms bw-graph
and bw-dominating set [KKS20b, pp. 5, 12].

Definition 6.1. A bw-graph is a graph G that has the form G = (B ⊎W,E), where B
denotes the set of black vertices and W denotes the set of white vertices.

Definition 6.2. A set of vertices D ⊆ V (G) in a bw-graph G = (B ⊎W,E) is called a
bw-dominating set if it dominates every black vertex, that is, B ⊆ NG[D].

At the end of this chapter, we present Algorithm 3. Given a graph G and a positive
integer k ∈ N1, the algorithm decides if G contains a dominating set of size at most k
in O∗((hc(G) · k)O(k) · 2O(hc(G))) time (Theorem 6.11).

The idea behind the algorithm is to try all suitable subsets of the vertices with high
closure numbers as partial solutions. For each partial solution, we construct a bw-graph
where the closed neighborhood of the partial solution is white and all other vertices are
black. Then, we remove the vertices of the partial solution from the bw-graph. Further,
we turn the remaining vertices of high closure number into a clique. Thus, the resulting
bw-graph has bounded c-closure. However, we have to ensure that no vertices from the
clique are included in a bw-dominating set for this bw-graph. To avoid this, we declare
these vertices as forbidden. We modify the algorithm by Koana et al. [KKS20b] to deal
with forbidden vertices; for sufficiently small instances, Algorithm 2 is invoked.
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Formally, we first study the problem below.

Constrained BW-Dominating Set
Input: A bw-graph G = (B ⊎W,E), a solution size k ∈ N0, and a set of forbidden

vertices F ⊆ V (G).

Question: Is there a set D ⊆ V (G) \ F with |D| ≤ k such that B ⊆ NG[D]?

Following the approach by Koana et al. [KKS20b, p. 8], we can use a reduction rule
to reduce the number of white vertices in an instance of the problem.

Reduction Rule 6.3. Given G = (B ⊎W,E) and F ⊆ V (G), if there are two distinct
vertices u ∈W and v ∈ V (G) \ F with NG(u) ∩B ⊆ NG[v] ∩B, then remove u.

It can clearly be applied exhaustively in polynomial time and does not increase the
c-closure, so we move on to proving its correctness.

Lemma 6.4. Reduction Rule 6.3 is correct.

Proof. Let G = (B ⊎W,E) be a bw-graph, let F ⊆ V (G) be a set of forbidden vertices,
and let G′ = (B ⊎W ′, E′) be the bw-graph obtained after applying the reduction rule
to the vertices u ∈ W \W ′ and v ∈ V (G′) \ F . Clearly, any bw-dominating set in G′

is also a bw-dominating set in G. In addition, any bw-dominating set in G that does
not contain u is a bw-dominating set in G′. Finally, if D ⊆ V (G) \ F with u ∈ D is a
bw-dominating set in G, then D′ := (D \ {u}) ∪ {v} is a bw-dominating set in G′ such
that D′ ⊆ V (G′) \ F and |D′| ≤ |D|, so the reduction rule is correct.

Using the reduction rule, an algorithm for Constrained BW-Dominating Set is
obtained that is suitable for instances with few black and few forbidden vertices. It is
used to solve such instances in Algorithm 3.

Algorithm 2 Algorithm for Constrained BW-Dominating Set.

Input: A bw-graph G = (B ⊎W,E), a number k ∈ N0, and a set F ⊆ V (G).
Output: If G contains a Constrained BW-Dominating Set, then YES, else NO.
1: function SolveCBWDS(G = (B ⊎W,E), k, F )
2: Apply Reduction Rule 6.3 exhaustively to (G,F ).
3: F ← V (G) \ F
4: P ← {v ∈ F | NG[v] ∩B ∩ F ̸= ∅}
5: for D∗ ⊆ P with |D∗| ≤ k do
6: if B ∩ F ⊆ NG[D∗] then
7: U ← (B ∩ F ) \NG[D∗]
8: S ← {NG[v] ∩ U | v ∈ F \ P}
9: if SolveSC(U, S, k − |D∗|) = YES then ▷ Reduction to Set Cover.

10: return YES

11: end if
12: end if
13: end for
14: return NO

15: end function
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The algorithm invokes the SolveSC function to solve instances of the Set Cover
problem, where it must be decided whether there are k ∈ N0 or fewer sets in S ⊆ P(U)
such that their union is equal to the set U , which can be done in O(|U | · |S| · 2|U |) time
using the algorithm by Fomin and Kratsch [FK10, p. 36]. We refer to this bound in the
analysis of Algorithm 2 below.

Lemma 6.5. Algorithm 2 is correct.

Proof. Let G = (B ⊎W,E) be an arbitrary bw-graph, let k ∈ N0 be a solution size, and
let F ⊆ V (G) be a set of forbidden vertices. We show that G contains a bw-dominating
set that satisfies these constraints if and only if Algorithm 2 returns YES. Henceforth,
let F = V (G) \ F be the set that is constructed in Line 3, and let P ⊆ F be the set that
is constructed in Line 4.

(⇒) Let D ⊆ F with |D| ≤ k be a set such that B ⊆ NG[D]. Choose D∗ := D ∩ P .
Clearly, we have |D∗| ≤ k and B ∩ F ⊆ NG[D∗]. Now, let U = (B ∩ F ) \NG[D∗] be the
set constructed in Line 7, and let S ⊆ P(U) be the set constructed in Line 8. We show
that (U, S, k − |D∗|) is a YES-instance of Set Cover: Choose D′ := D \D∗. Since we
have U ⊆ NG[D

′], the union over S′ := {NG[v] ∩ U | v ∈ D′} equals U . From S′ ⊆ S
and |S′| ≤ k − |D∗|, we conclude that Algorithm 2 returns YES.

(⇐) We will assume that Algorithm 2 returns YES. Then, there exists a set D∗ ⊆ P
with |D∗| ≤ k such that B ∩ F ⊆ NG[D∗]. Let U = (B ∩ F ) \NG[D∗] be the set that
is constructed in Line 7, and let S ⊆ P(U) be the set that is constructed in Line 8. As
there is a set S′ ⊆ S with |S′| ≤ k − |D∗| such that the union over S′ equals U , there
is a set D′ ⊆ F \ P with |D′| ≤ k − |D∗| and U ⊆ NG[D

′]. Choose D := D′ ∪D∗. We
conclude that the set D ⊆ F with |D| ≤ k is such that B ⊆ NG[D].

Lemma 6.6. Given any bw-graph G = (B ⊎W,E), number k ∈ N0, and set F ⊆ V (G),

the running time of Algorithm 2 is bounded by O∗((c(G) · |B|)O(k) · 2O(|F |)).
Proof. Let G = (B ⊎W,E) be an arbitrary bw-graph, let k ∈ N0 be a solution size, and
let F ⊆ V (G) be a set of forbidden vertices. Furthermore, let F = V (G) \ F be the set
that is constructed in Line 3, and let P ⊆ F be the set that is constructed in Line 4. As
Reduction Rule 6.3 has been applied exhaustively, the black neighborhood of any white
vertex in P cannot be a clique; otherwise, this white vertex would have been removed.
Thus, every white vertex in P has two black neighbors that are not adjacent. Then, by
the definition of c-closure, the set P contains O(c(G) · |B|2) vertices in total. The loop
in Line 5 therefore iterates over O((c(G) · |B|)O(k)) subsets D∗ ⊆ P . Finally, after the
set U ⊆ F is constructed in Line 7 and the set S ⊆ P(U) is constructed in Line 8, the
resulting Set Cover instance (U, S, k − |D∗|) is solved in O(|F | · 2|F | · 2|F |) time using
the algorithm by Fomin and Kratsch [FK10, p. 36]. Consequently, the running time of
Algorithm 2 is bounded by O∗((c(G) · |B|)O(k) · 2O(|F |)).

In the algorithm for finding dominating sets (Algorithm 3), the following reduction
rule gives us a bound on the number of black neighbors of any black vertex.

Reduction Rule 6.7. Given G = (B ⊎W,E) and k ∈ N0, if a black vertex v ∈ B has
more than c(G) · k black neighbors, then color v white.
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Again, the reduction rule can be applied exhaustively in polynomial time, and so it
remains to prove its correctness.

Lemma 6.8. Reduction Rule 6.7 is correct.

Proof. Let G = (B ⊎W,E) be any bw-graph, let k ∈ N0 be an arbitrary solution size,
and let G′ = (B′ ⊎W ′, E) be the bw-graph obtained by applying Reduction Rule 6.7 to
the vertex v ∈ B ∩W ′. Furthermore, let F ⊆ V (G) be a set of forbidden vertices. We
show that any set D ⊆ V (G) \ F with |D| ≤ k is a bw-dominating set in G if and only
if it is a bw-dominating set in G′.

(⇒) Let D ⊆ V (G) \ F with |D| ≤ k be a bw-dominating set in G. Then, B ⊆ NG[D].
Because B′ ⊆ B and NG′ [D] = NG[D], it follows that B′ ⊆ NG′ [D]. Therefore, D is also
a bw-dominating set in G′.

(⇐) Let D ⊆ V (G′) \ F with |D| ≤ k be a bw-dominating set in G′. We prove that D
must contain v or at least one of its neighbors: Assume, for the sake of contradiction,
that NG′ [v] ∩D = ∅. By the definition of c-closure, every vertex in D can dominate at
most c(G′)− 1 black neighbors of v. Thus, all the vertices in D combined dominate at
most (c(G′) − 1) · k ≤ c(G′) · k black neighbors of v. Since v has more than c(G′) · k
black neighbors, this is in contradiction to D being a bw-dominating set in G′. Hence,
we conclude that NG′ [v] ∩D ̸= ∅, and so D dominates v. As B = B′ ∪ {v}, it follows
that D is a bw-dominating set in G.

Next, we turn to the algorithm for finding dominating sets; we prove its correctness
and analyze its running time.

Lemma 6.9. Algorithm 3 is correct.

Proof. Let G = (V,E) be a graph, let k ∈ N1 be a solution size, and let H ⊆ V be the
set that is constructed in Line 2. We show that G contains a dominating set of size at
most k if and only if Algorithm 3 returns YES.

(⇒) Let D ⊆ V with |D| ≤ k be a dominating set in G. Choose D∗ := D ∩H. Now,
let F = H \D∗ be the set that is constructed in Line 6. Also, let G′ = (B ⊎W,E′) be
the bw-graph that is constructed in Line 8. Then, (G′, k − |D∗|, F ) is a YES-instance of
Constrained BW-Dominating Set: Choose D′ := D \D∗. Clearly, D

′ ⊆ V (G′) \ F
and |D′| ≤ k − |D∗|. Because B = V \NG[D∗], it follows that B ⊆ NG[D

′]. And hence,
from E′ = (E ∩

(
V \D∗

2

)
) ∪

(
F
2

)
, we conclude that B ⊆ NG′ [D′]. Finally, since Branch

works analogously to Branch [KKS20b, p. 10], it will recognize the YES-instance. Thus,
Algorithm 3 returns YES.

(⇐) We will assume that Algorithm 3 returns YES. Then, there exists a set D∗ ⊆ H
with |D∗| ≤ k such that Branch returns YES on (G′, k − |D∗|, F ), where F = H \D∗
is the set and G′ = (B ⊎W,E′) the bw-graph that is constructed in Line 6 and Line 8,
respectively. Because Branch works analogously to Branch [KKS20b, p. 10], we infer
that (G′, k − |D∗|, F ) is a YES-instance of Constrained BW-Dominating Set, and
thus there is a set D′ ⊆ V (G′) \ F with |D′| ≤ k − |D∗| such that B ⊆ NG′ [D′]. Since
we have E′ = (E ∩

(
V \D∗

2

)
) ∪

(
F
2

)
, it follows that B ⊆ NG[D

′]. Choose D := D′ ∪D∗.
From B = V \NG[D∗], we deduce that D with |D| ≤ k is a dominating set in G, that
is, V ⊆ NG[D].
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Algorithm 3 Algorithm to find a dominating set, based on SolveTDS [KKS20b, p. 10].

Input: A graph G = (V,E) and a number k ∈ N1.
Output: If G contains a dominating set of size at most k, then YES, else NO.
1: function SolveDS(G = (V,E), k)
2: H ← {v ∈ V | clG(v) > hc(G)}
3: for D∗ ⊆ H with |D∗| ≤ k do
4: B ← V \NG[D∗]
5: W ← NG(D∗)
6: F ← H \D∗
7: E′ ← (E ∩

(
V \D∗

2

)
) ∪

(
F
2

)
8: G′ ← (B ⊎W,E′)
9: Apply Reduction Rule 6.7 exhaustively to (G′, k − |D∗|).

10: if Branch(G′, k − |D∗|, F,∅) = YES then
11: return YES ▷ Success.
12: end if
13: end for
14: return NO ▷ Failure.
15: end function
16:

17: function Branch(G = (B ⊎W,E), k, F,D)
18: Color NG[D] white.
19: if B = ∅ then
20: return YES

21: end if
22: if k = 0 then
23: return NO

24: end if
25: Find a maximal independent set I ⊆ B in G[B].
26: if |I| ≥ k + 1 then
27: Pick an arbitrary set I ′ ⊆ I with |I ′| = k + 1.
28: P ← {v ∈ V (G) | |NG(v) ∩ I ′| ≥ 2}
29: for v ∈ P \ (F ∪D) do
30: if Branch(G, k − 1, F,D ∪ {v}) = YES then
31: return YES

32: end if
33: end for
34: return NO

35: end if
36: return SolveCBWDS(G, k, F )
37: end function
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It remains to analyze the running time of the algorithm.

Lemma 6.10. Given a graph G and a number k ∈ N1, the running time of Algorithm 3
is bounded by O∗((hc(G) · k)O(k) · 2O(hc(G))

)
.

Proof. Let G = (V,E) be a graph, let k ∈ N1 be a solution size, and let H ⊆ V be the
set that is constructed in Line 2. Because |H| ≤ hc(G), the for-loop in Line 3 iterates
over O(hc(G)k) subsets D∗ ⊆ H. Then, let F = H \D∗ be the set that is constructed
in Line 6, and let G′ = (B ⊎W,E′) be the bw-graph that is constructed in Line 8. We
have |F | ≤ hc(G) since F ⊆ H.

Additionally, we have c(G′) ≤ 2 · hc(G): Let u, v ∈ V (G′) be two distinct vertices
that are non-adjacent in G′. At most one of the two vertices can be in H because any
two distinct vertices from F = H ∩ V (G′) are adjacent in G′. Thus, u and v share at
most hc(G)− 1 neighbors in G. As E′ = (E ∩

(
V \D∗

2

)
) ∪

(
F
2

)
, if one of the two vertices

is in F , then it will share at most hc(G) + |F | − 1 ≤ 2 · hc(G) − 1 neighbors with the
respective other vertex in G′. Otherwise, they also share at most hc(G)− 1 neighbors
in the bw-graph G′. Therefore, c(G′) ≤ 2 · hc(G).

After the exhaustive application of Reduction Rule 6.7 in Line 9, any black vertex
in G′ has at most c(G′) · k ≤ 2 · hc(G) · k black neighbors. As the number of calls to
Branch is bounded by O((c(G′) · k)O(k)) ⊆ O((hc(G) · k)O(k)) [KKS20b, p. 11], only
the running time of Line 36 remains to be bounded.

In Line 36, the independent set I ⊆ B constructed in Line 25 is such that |I| ≤ k
and B ⊆ NG′ [I], so |B| = |NG′ [I] ∩ B| ≤ 2 · hc(G) · k2 + k. By Lemma 6.6, it follows
that Line 36 takes O∗((hc(G) · k)O(k) · 2O(hc(G))) time. Combining all the bounds, the
total running time of Algorithm 3 is also O∗((hc(G) · k)O(k) · 2O(hc(G))).

Finally, from Lemma 6.9 and Lemma 6.10, we obtain the following:

Theorem 6.11. Given a graph G and a number k ∈ N1, deciding whether G contains a
dominating set of size at most k takes O∗((hc(G) · k)O(k) · 2O(hc(G))

)
time.
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Counting maximal cliques

Arbitrary graphs can contain many maximal cliques: For every n ∈ N1, there is a graph
on n vertices with 3⌊n/3⌋ maximal cliques [MM65]. However, graphs with small c-closure
contain relatively few maximal cliques. Fox et al. [Fox+20] show that for all n, c ∈ N1, a
graph on n vertices with a c-closure of at most c contains at most 4(c+4)·(c−1)/2 · n2−21−c

maximal cliques. They also prove that for all n, c ∈ N1, every graph with n vertices and
a weak c-closure of at most c contains at most 3(c−1)/3 · n2 maximal cliques. The goal of
this chapter is to derive similar bounds for the weak hc-index.

It is useful to prove an upper bound on the number of maximal cliques that exploits
the weak hc-index since listing all maximal cliques in a graph G takes O(nG ·mG) time
per maximal clique [Tsu+77]. Therefore, if graphs of small weak hc-index contain only
few maximal cliques, then these maximal cliques can be listed quickly. In particular, by
adapting the bounds from Fox et al. [Fox+20], it follows that the problem of generating
all maximal cliques is fixed-parameter tractable in the weak hc-index.

To adapt the bounds, we show that the number of maximal cliques in a graph with
a given weak hc-index is bounded by the number of maximal cliques in certain induced
subgraphs of small c-closure (Theorem 7.4). The new bound maintains the dependence
on the number of vertices, and thus we obtain Corollary 7.5, adapting the subquadratic
bound by Fox et al. [Fox+20].

To start with, we state their definition of the function F [Fox+20, p. 453].

Definition 7.1. For all n, c ∈ N1, we denote the maximum number of maximal cliques
in a graph on n vertices that has c-closure at most c as F (n, c) ∈ N1.

Fox et al. [Fox+20] show that F (n, c) ≤ min{3(c−1)/3 · n2, 4(c+4)·(c−1)/2 · n2−21−c} for
all n, c ∈ N1. Next, we define a function C, and we prove a bound on C using F . Then,
their bound on F gives us a bound on C.

Definition 7.2. For all n, k ∈ N1, we denote the maximum number of maximal cliques
in a graph on n vertices with a weak hc-index of k as C(n, k) ∈ N0, where C(n, k) := 0
if no such graph exists.

To simplify the subsequent proof, we use the following notation.

Definition 7.3. For a graph G = (V,E) and a non-empty set U ⊆ V , we define:

N∩
G(U) :=

⋂
v∈U

NG(v)
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Now, we obtain the bound on the maximum number of maximal cliques. It applies
to every graph G with nG > whc(G); we only exclude graphs isomorphic to K1.

Theorem 7.4. For all n, k ∈ N1 with n > k, the bound C(n, k) ≤ 2k · F (n− k, k) holds.

Proof. Let G = (V,E) be a graph with nG > 1 and C(nG,whc(G)) maximal cliques. By
definition of the weak hc-index, there is a set of vertices U ⊊ V with |U | = whc(G) such
that c(G[W ]) ≤ whc(G), where W := V \ U . Since |W | = nG − whc(G), the number of
maximal cliques in G[W ] is at most F (nG − whc(G), c(G[W ])). Clearly, this is bounded
from above by F (nG − whc(G),whc(G)).

It remains to bound the maximal cliques that have at least one vertex in U . Such
maximal cliques either lie entirely in U or can be partitioned into a clique X ⊆ U and a
maximal clique in G[N∩

G(X) ∩W ]: No maximal clique in G consists of a clique X ⊆ U
and some non-maximal clique in G[N∩

G(X) ∩W ], because any vertex that extends the
non-maximal clique in G[N∩

G(X) ∩W ] would extend the maximal clique in G, which is
impossible.

There are exactly 2whc(G) − 1 non-empty subsets X ⊆ U . For every such set X, we
have |N∩

G(X) ∩W | ≤ nG − whc(G) and c(G[N∩
G(X) ∩W ]) ≤ whc(G) if N∩

G(X) ∩W is
not empty. Hence, the number of maximal cliques that have at least one vertex in U is
at most (2whc(G) − 1) · F (nG − whc(G),whc(G)). Combining the bounds, it follows that
there are at most 2whc(G) · F (nG − whc(G),whc(G)) maximal cliques in G, and thus we
have C(nG,whc(G)) ≤ 2whc(G) · F (nG − whc(G),whc(G)).

Using the bound by Fox et al. [Fox+20], we conclude the following:

Corollary 7.5. For any fixed k ∈ N1, every graph G with a weak hc-index of at most k

contains O
(
n2−21−k

G

)
maximal cliques.
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Conclusion

In this thesis, we explored algorithmic as well as structural aspects of the hc-index and
the weak hc-index. We showed how the graphs of small hc-index can be characterized in
terms of forbidden induced subgraphs. Then, we determined the position of the hc-index
and the weak hc-index in the graph parameter hierarchy. Next, we presented a simple
algorithm that efficiently computes the hc-index of a graph. For the weak hc-index, we
showed that it is unlikely to be computable in polynomial time. In the subsequent two
chapters, we used the hc-index and the weak hc-index to adapt results that rely on the
c-closure. In particular, we adapted an algorithm by Koana et al. [KKS20b] for finding
dominating sets so as to exploit the hc-index. Further, we showed that the bounds for the
maximum number of maximal cliques by Fox et al. [Fox+20] can be adapted to obtain
similar bounds for the weak hc-index. Consequently, the maximum number of maximal
cliques in graphs of bounded weak hc-index is subquadratic in the number of vertices,
and the problem of generating all maximal cliques in a graph is fixed-parameter tractable
with respect to the weak hc-index.

These results suggest that the (weak) hc-index is generally useful for adapting results
that depend on the c-closure. As such, the parameters enable gradual progress: Results
that rely on the c-closure may be adapted to use the hc-index instead. The new results
could then be adapted to use the weak c-closure or the weak hc-index, moving down the
graph parameter hierarchy.

The thesis mainly focused on the hc-index; the weak hc-index was not investigated to
the same extent. Future research could, for instance, characterize the graphs of small
weak hc-index. It could also be attempted to prove more bounds on the weak hc-index.
While the weak hc-index does not appear to be efficiently computable for general graphs,
there may be efficient algorithms for special graph classes. This could be of interest when
using the weak hc-index for the design of parameterized algorithms. For example, can
the weak hc-index be used for finding dominating sets?

Finally, I want to thank Tomohiro Koana and Dr. André Nichterlein for supervising
this thesis, and I want to thank the Studienstiftung des deutschen Volkes for supporting
my studies in computer science.
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