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Zusammenfassung

Die Betweenness Centrality eines Knotens in einem Netzwerk ist ein Maß für die relative
Häufigkeit, mit der kürzeste Pfade im Netzwerk diesen Knoten passieren. Sie gilt in der
Netzwerkanalyse als Maß dafür, wie wichtig dieser Knoten im Vergleich zu den anderen
im jeweiligen Netzwerk ist. Ein temporales Netzwerk ist, im Gegensatz zum statischen
Netzwerk, eines, bei dem im Laufe einer endlichen, diskreten Zeitfolge Kanten hinzukom-
men und verschwinden können. Brandes’ Algorithmus berechnet für statische Netzwerke
mit n Knoten und m Kanten die Betweenness Centrality aller Knoten in O(n ·m) Zeit.
Die vorliegende Arbeit betrachtet verschiedene Varianten temporaler Betweenness und
untersucht die jeweilige algorithmische Komplexität. Für einige der Varianten stellt sich
heraus, dass sich Brandes’ Ansatz auf den temporalen Fall übertragen lässt, und es
werden effiziente Algorithmen angegeben. Bei anderen Varianten wird bewiesen, dass
die entsprechenden Probleme #P-schwer sind, so dass unter gängigen Annahmen der
Komplexitätstheorie kein Algorithmus mit polynomieller Laufzeit existieren kann.

Abstract

The betweenness centrality of a vertex measures how often this vertex is visited on
shortest paths between other vertices of the graph. In the analysis of technical, social
or biological networks, betweenness centrality of a node is used as an indicator for
the relative importance of a node in the network. Brandes’ algorithm computes the
betweenness centrality of all vertices in a static graph with n vertices and m edges in
O(n ·m) time. In recent years, a growing number of real-world networks are modeled as
temporal graphs instead of conventional (static) graphs because the latter are incapable
of reflecting the dynamics of a network that changes over time. In a temporal graph,
there is a finite discrete set of time steps and every edge may be present at some time
steps and absent at others. While shortest paths are a central concept in conventional
graph theory, temporal paths can be considered ‘optimal’ with respect to many different
aspects, including length, arrival time, and overall travel time (shortest, foremost, and
fastest paths). The temporal betweenness centrality of a vertex can be defined based on
any concept of optimal paths. While this allows closer modeling of dynamic processes, it
poses new challenges on the algorithmic side. We show that counting foremost and fastest
paths is intractable and conclude that the computation of the corresponding temporal
betweenness is intractable as well. For shortest paths and two selected special cases of
foremost paths, we adapt Brandes’ algorithm and devise polynomial-time algorithms for
the computation of the corresponding temporal betweenness.
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Chapter 1

Introduction

Graphs and various graph metrics such as the betweenness centrality are studied and ap-
plied in a wide variety of fields such as social and technological network analysis [Ley07;
Tan+09], wireless routing [DH07], machine learning [ŞB09] and neuroscience [Heu+10].
The betweenness centrality of a vertex in a graph measures how many shortest paths
in the graph go through this vertex. High betweenness centrality scores are usually
associated with vertices that can be seen as more important for the network in some
sense. In static graphs, the betweenness centrality is a well-studied concept. In particu-
lar, Brandes’ algorithm [Bra01] computes the betweenness centrality of all vertices in a
given static graph with n vertices and m edges in O(n ·m) time and O(n+m) space.

On temporal graphs, the notion of betweenness centrality can be defined in a similar
fashion, but there are more options how to choose ‘optimal’ paths. Depending on the
application, a path may be optimal if it minimizes the number of edges (shortest),
the arrival time (foremost), or the overall travel time (fastest), and for any of these
path classes we can define and study a variant of temporal betweenness centrality. In
addition to that, combinations of optimality criteria such as shortest foremost paths
can be considered. Furthermore, we distinguish between temporal paths with strictly or
non-strictly ascending time labels.

We investigate the algorithmic aspects of temporal betweenness variants based on
strict and non-strict shortest, foremost and fastest paths. In addition to that, we consider
two subclasses of foremost paths, namely the shortest foremost and the prefix-foremost
paths, and define temporal betweenness classes based on those paths as well.

strict non-strict

Shortest O(n ·M) O(n ·M)
Foremost #P-hard #P-hard
Fastest #P-hard #P-hard
Prefix-foremost O(n ·M · logM) #P-hard
Shortest foremost O(n ·M · logM) O(n ·M · logM)

Table 1.1: An overview of the complexity of the temporal betweenness variants we
consider. Here, n refers to the number of vertices and M to the number of time edges.
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Our main research question is: how hard is the computation of the different variants
of temporal betweenness centrality?

The different betweenness variants show surprising differences in their computational
complexity: while some of them can be computed in polynomial running time, others
are computationally hard. More specifically, we show that counting foremost and fastest
temporal paths is #P-hard. In Table 1.1, we give an overview of our findings. For the
cases where the computation is hard, we give formal hardness proofs. In the cases where
we state polynomial-time computability, we explicitly state algorithms that compute the
temporal betweenness scores of all vertices in a given temporal graph.

1.1 Related work

The betweenness centrality in static graphs is a well-studied concept. Defined as early
as 1977 by Freeman [Fre77], the betweenness centrality has since been used in a broad
variety of studies related to network analysis. The computation of the betweenness cen-
trality, however, was limited to comparatively small networks for a long time due to the
cubic running times of the best known algorithms. In 2001, Brandes presents a signif-
icantly faster algorithm that takes advantage of the typically sparse graphs that occur
in network analysis. Brandes’ algorithm [Bra01] computes the betweenness centrality of
all vertices for a given static graph with n vertices and m edges in O(n ·m) time and
O(n+m) space. In the area of exact algorithms, this algorithm remains state-of-the-art
to this day and our own algorithms are devised in a similar fashion. In 2007, however,
Bader et al. [Bad+07] present a faster approximation algorithm that approximates the
betweenness centrality of a given vertex in a given graph.

The theory of temporal graphs is considerably younger than graph theory. In 1991,
Göbel et al. [GCV91] did an early work on temporal paths. While the terms temporal
path or temporal graph are not used there, the concept of labeled edges and paths
with ascending labels very closely resembles our notion of (strict) temporal paths, and is
motivated by modeling an information flow problem. Berman [Ber96] considers temporal
networks with edges with start time and finish time and shows that deciding the k-
connectivity of temporal networks is NP-complete even for k = 2. Kempe et al. [KKK02]
investigate non-strict paths, that is, paths with non-decreasing time labels, and analyze
how central graph properties change with the addition of time. Xuan et al. [XFJ03]
did an early work on algorithms that find optimal temporal paths (called ‘journeys’
there). In particular, algorithms for shortest, fastest and foremost paths are discussed.
Wu et al. [Wu+16] find state-of-the-art algorithms for optimal paths. Based on the
well-known breadth-first search which finds shortest paths in static graphs, Wu et al.
show that shortest, foremost, fastest and reverse-foremost (strict) paths can be found in
a similar fashion. This is a non-trivial result, because unlike shortest static paths, not
every optimal temporal path is composed of optimal subpaths. Himmel et al. [Him+19]
expand on the aforementioned work and study a more complex variation of temporal
graphs with constraints on the waiting time in each vertex as well as non-strict walks,
finding algorithms that solve this wider range of problems without substantial loss of
speed when compared to Wu et al. [Wu+16]. Himmel et al. find efficient algorithms to
find optimal walks but show that finding optimal paths is NP-complete in settings with
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upper bounds on the waiting time.
While betweenness centrality in static graphs is a well studied concept, the study

of betweenness centrality in temporal graphs is rather young. Tang et al. [Tan+10]
argue that temporal graphs are more suitable to represent the dynamics of social and
technical networks and introduce temporal variants of centrality metrics such as close-
ness and betweenness centrality. Building up on this, Tang et al. [Tan+11] use their
notion of temporal closeness to analyze the containment of malware in mobile phone
networks. Nicosia et al. [Nic+13] discuss temporal variants of betweenness and closeness
centralities, as well as other temporal graph metrics.

Kim and Anderson [KA12] introduce the time-ordered graph as a representation of
temporal graphs. Given a temporal graph G = (V, E , T ), the time-ordered graph is a
directed acyclic graph where the vertex set contains T copies of the original vertex set V .
Each copy is meant to represent a specific time step of the temporal graph’s lifetime.
The directed edges connect vertices of subsequent time steps such that only paths of
strictly ascending times are possible. Based on this model, Kim and Anderson then study
temporal centrality measures and use known algorithms for static directed graphs to give
efficient algorithms. In particular, Kim and Anderson define the temporal betweenness
centrality of a vertex based on shortest paths in the time-ordered graph. Notably, a path
in the time-ordered graph may represent a non-path walk in the underlying temporal
graph. We further discuss the difference in Section 2.3.1.

1.2 Organization of this thesis

We investigate how well the strategies found by Brandes [Bra01] translate to temporal
graphs and the various concepts of optimal temporal paths. In Chapter 2, we formally
introduce the definitions used throughout the thesis. In Chapter 3 we compare the
concept of (static) shortest paths to the temporal counterparts. Most notably, we find
that the recursive computations done by Brandes fail in the case of foremost and fastest
paths. In fact, we show in Chapter 4 that the counting problems of foremost and
fastest paths are #P-hard, and we show that this implies hardness for the corresponding
temporal betweenness. This negatively answers our research question for these cases,
since it is considered very unlikely that #P-hard problems are polynomial-time solvable.
Nevertheless, we find a polynomial-time algorithm for shortest path betweenness in
Chapter 5. We also introduce two subclasses of foremost paths for which we solve the
counting problem in polynomial time as well. These results are used in Chapter 6 to
devise algorithms for the betweenness variants based on shortest, shortest foremost,
and prefix-foremost paths. In Chapter 7, we summarize our results and briefly discuss
possible future research.
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Chapter 2

Preliminaries

In this section, we present the central mathematical definitions and terminology that
are used in the thesis.

Definition 2.1 (Temporal graph). An undirected temporal graph is a triple (V, E , T )
such that

• V is a set of vertices,

• E ⊆ { ({u, v } , t) | u, v ∈ V, u 6= v, t ∈ [T ] } is a set of time edges, and

• T ∈ N. We consider [T ] = { 1, . . . , T } as the set of time steps.

For a temporal graph G, we use V (G) to denote the set of vertices, E(G) for the set of
time edges, and Et(G) to denote the set of edges of G which are present at time step t,
i.e., Et(G) := { {u, v } | ({u, v } , t) ∈ E(G) }. For a time edge e, we use t(e) to denote
the time label of e.

In our definition of temporal graphs, only edges may appear and disappear over time,
whereas vertices are present throughout the lifetime of the temporal graph. While the
vertex itself does not change over time, its properties within the graph may do so. Hence,
we will be interested in pairs of the form (v, t) ∈ V (G) × [T ]. These are called vertex
appearances.

Definition 2.2 (Temporal walk). A temporal walk W on a temporal graph G from vertex
s to z is an ordered sequence of transitions (e1, . . . , ek) ∈ Ek such that the endpoint of
ei is the starting point of ei+1 and t(ei) ≤ t(ei+1) for each i ∈ { 1, . . . , k − 1 }. We call a
temporal walk strict if t(ei) < t(ei+1) for each i ∈ { 1, . . . , k − 1 }.

A temporal walk may visit the same vertex more than once. In contrast to that, a
temporal path visits each vertex at most once. This is analogous to the definitions for
static graphs.

Definition 2.3 (Temporal path). A temporal path P = (ei)i∈{ t1,...,t2 } is a temporal walk
such that no vertex v ∈ V (G) is start or endpoint of more than one transition ei.

13
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s

v1

v2

v3

z

1 2 3 4

Figure 2.1: In this simple temporal graph, there is only one path from s to z. Notably,
there is no path (and no walk) in the opposite direction due to the time labels.

We only consider undirected temporal graphs. However, a temporal walk is implicitly
directed because of the ascending time labels; the opposite direction is no valid walk in
general. Hence, we need a notion for directed transitions on a walk which indicate not
only which time edge is used but also in which direction.

Definition 2.4 (Transition). For any time edge e = ({ v, w } , t) we call (v, w, t) the
transition from v to w at time step t. We call v the starting point and w the endpoint
of the transition.

For readability, we use the notation v
t→ w instead of the triple (v, w, t). Since the

endpoint of a transition is equal to the starting point of the next one for any walk, we
use a shortened notation omitting the doubled vertices. For instance, we denote the only
temporal path from s to z in Figure 2.1 by:

P = (s
1→ v1

2→ v2
3→ v3

4→ z).

In this example, P is a path since all involved vertices are visited only once. More-
over, P is a strict path because the time labels are strictly ascending.

Brandes [Bra01] uses Ps(v) to denote the set of vertices u ∈ V such that u is a direct
predecessor of v on a shortest path from s to v. We adapt this definition to temporal
graphs.

Definition 2.5. Let v ∈ V be any vertex. Then the set of predecessors is denoted as:

• P (sh)
s (v) for the predecessors of v on shortest paths

• P (fm)
s (v) for the predecessors of v on foremost paths

• P (fa)
s (v) for the predecessors of v on fastest paths

In order to count temporal paths, we will also need a notion of predecessors for vertex
appearances instead of vertices. We define the predecessor of a vertex appearance (w, t′)
on a temporal path as the vertex appearance (v, t) where the path arrived last. For

instance, on the path (a
1→ b

4→ c), the vertex appearance (b, 1) is the predecessor
of (c, 4).

Definition 2.6. Let v ∈ V be any vertex. Then the set of predecessors is denoted as:

• P (sh)
s (v, t) for the predecessors of (v, t) on shortest paths

• P (fm)
s (v, t) for the predecessors of (v, t) on foremost paths

• P (fa)
s (v, t) for the predecessors of (v, t) on fastest paths
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s v v1
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v6
v7

s2 s3

Figure 2.2: The colors indicate the betweenness centrality; the darker the color, the
higher the betweenness. Vertices with high betweenness scores are typically those that
serve as connections between many others.

2.1 Betweenness centrality

In static graphs, the betweenness centrality of a vertex measures how often this vertex is
passed on shortest paths between pairs of vertices in the graph. Freeman [Fre77] defines
the betweenness centrality CB(v) of a vertex v as

CB(v) =
∑
s 6=v 6=z

σsz(v)

σsz
.

An example graph with betweenness values is shown in Figure 2.2. The separa-
tors s, v, and v1 have the highest betweenness values, because each of them lies on any
path between the left and the right part of the graph; the betweenness of s is the highest
because it also connects s1, . . . , s4 with each other. Notably, the example showcases that
the betweenness does not generally depend on the degree—inside a clique, the short-
est paths are always single edges, so no vertex is ever used as an intermediary step on
shortest paths there. As a result, the clique vertices v2, . . . , v7 all have a betweenness of
zero, although they are connected to a high number of vertices. In contrast to that, the
degree-2-vertex v has a very high betweenness because it is the only connection between
the left and the right half of the graph. The vertex s5 connects s1 and s4 but nothing
else. There is another shortest path between s1 and s4, hence the betweenness of s5
is 0.5. The betweenness values of s1 and s2 are higher, because either of them is on
every path from s5 to any other vertex in the graph.

2.2 Optimality of temporal paths

In static graphs, shortest paths are a central concept. In temporal graphs, there are
different concepts of optimal paths. Figure 2.3 illustrates three of the most common
optimization criteria.
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s

a

b1 b2 b3

c1 c2

z

1

1

3

2 3

4

4

5

5

Figure 2.3: This temporal graph features a shortest, foremost, and fastest temporal path
from s to z. Depending on the application, any of them may be considered optimal.

There are three paths from s to z:

• P1 = (s
1→ a

5→ z),

• P2 = (s
1→ b1

2→ b2
3→ b3

4→ z), and

• P3 = (s
3→ c1

4→ c2
5→ z).

Each of the paths examplifies one of the three most commonly used optimization criteria:
the shortest path is P1 because it uses the least amount of edges. The foremost path
is P2 because it has the earliest arrival time. Finally, P3 is the fastest path because it
minimizes the overall transition time. More formally, we use the following definitions:

Definition 2.7. Let G = (V, E , T ) be a temporal graph. Let s, z ∈ V and let W be a
temporal walk from s to z.

• W is a shortest walk if there is no walk W ′ from s to z such that W ′ contains less
transitions than W .

• W is a foremost walk if there is no walk W ′ from s to z such that W ′ has a lower
arrival time than W .

• W is a fastest walk if there is no walk W ′ from s to z such that the difference
between arrival and start time is smaller for W ′ than it is for W .

Brandes [Bra01] uses σsz to denote the number of shortest paths from s to z in a
static graph. We adapt this definition to temporal graphs and the notions of optimal
paths defined above.

Definition 2.8. Let G be a temporal graph. For any s, z ∈ V (G),

• σ(sh)sz is the number of shortest paths,

• σ(fm)
sz is the number of foremost paths, and

• σ(fa)sz is the number of fastest paths.
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In addition to that, Brandes [Bra01] uses σsz(v) to denote the number of shortest
paths from s to z that pass through v in a static graph. Again, we adapt the notation
to temporal graphs and the temporal optimality concepts.

Definition 2.9. Let v ∈ V be any vertex, t ∈ [T ] a time step, and let ? ∈ { sh, fm, fa }.
Then,

• σ(?)sz (v) is the number of ?-optimal paths that pass through v, and

• σ(?)sz (v, t) is the number of ?-optimal paths that pass through v exactly at time

step t, i.e., the paths that contain the transition u
t→ v for some u ∈ V .

2.3 Temporal betweenness

As we have seen above, there are different notions of optimal paths (i.e., fastest, shortest,
foremost) in temporal graphs. Thus, there are several options how to define temporal
betweenness centrality based on any of these notions. We define temporal betweenness
with respect to these different concepts of path optimality.

Definition 2.10. The temporal betweenness of any vertex v ∈ V is given by:

C
(?)
B (v) =

∑
s 6=v 6=z

σ
(?)
sz (v)

σ
(?)
sz

, ? ∈ { sh, fa, fm } .

Intuitively, betweenness centrality can be regarded as an indicator for the relative
importance of a vertex in a graph. When we adapt this concept to temporal graphs,
then we may want to measure how important a vertex is at a specified time. Thus, we
define the betweenness centrality CB(v, t) of a vertex appearance (v, t).

Definition 2.11. The temporal betweenness of any vertex appearance (v, t) ∈ V × [T ]
is given by:

C
(?)
B (v, t) =

∑
s 6=v 6=z

σ
(?)
sz (v, t)

σ
(?)
sz

, ? ∈ { sh, fa, fm } .

2.3.1 Paths vs. walks

In our definition of temporal betweenness centrality we use the number of optimal paths
as opposed to the number of optimal walks. This is natural for static graphs because
in that case, shortest walks are always paths. In the temporal case, this is not always
true—it is possible that there is a non-path walk that arrives at the same time as the
foremost path, so the number of foremost paths and foremost walks between two vertices
can be different. Kim and Anderson [KA12] define temporal betweenness based on the
number of shortest paths in the time-ordered graph. Implicitly, this means that their
definition uses strict temporal walks, not paths, because paths in the time-ordered graph
do not necessarily represent paths in the original temporal graph.

Consider the graph shown in Figure 2.4. Clearly, every walk from the left half to the
right passes either v1 or v2 and since the edges on the right are only present at exactly
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V1 V2

v1

v2

v3

. . . . . .

1

1

T

T

1, . . . , T

Figure 2.4: Assume V1 and V2 are sufficiently large sets of vertices that are adjacent
to v1 and v2 at time steps 1 and T , respectively. Then v1 and v2 are vertices with high
betweenness, v3 has very low betweenness but high closeness.

one time step, every walk going from left to right is a foremost walk. Intuitively, v1
and v2 should have very similar, high betweenness scores, whereas v3 should be close to
zero. But if we use walks instead of paths for our definitions, we get a very high number
of walks alternating between v2 and v3 before arriving on the right side, so v2 and v3
would get a high centrality score.

We conclude that paths are more suitable than walks as a base for the definition of
temporal betweenness centrality.

2.3.2 Closeness centrality

We are mainly focused on temporal betweenness, but want to mention the similar close-
ness centrality measure that is also based on shortest paths. While betweenness measures
how many shortest paths traverse a specified vertex, closeness measures how close that
vertex is to all other vertices in the graph. More specifically, the closeness centrality of a
vertex is calculated by taking the reciprocal of the average distance to all other vertices
in the graph [Bav50].

We use the same example graph in Figure 2.4 to illustrate some differences of be-
tweenness centrality and closeness centrality. As mentioned above, the vertices v1 and v2
are central in the graph in the sense that they connect the left and the right half. The
betweenness of v3 equals zero, since no path goes through v3 at all. The closeness cen-
trality of v3, however, would be almost as high as that of the adjacent v2, because it
reaches every vertex in the network on paths with only one additional edge. Depending
on the application, either of these two centrality measures can be the most appropriate
to model the respective problem.

From an algorithmic point of view, betweenness centrality is presumably harder to
compute. To compute the closeness, it is sufficient to determine the distances between
vertices by finding some shortest path. In contrast to this, betweenness needs the count
of optimal paths. In Chapter 4, we find a surprisingly strong discrepancy between finding
optimal paths and counting them.



Chapter 3

Properties of temporal paths

In this chapter, we compare temporal graphs to static graphs with special regard to the
respective notions of optimal paths. In particular, we identify some fundamental dif-
ferences between shortest paths in static graphs on the one hand, and foremost/fastest
paths in temporal graphs on the other hand, indicating that the optimal path counting
problem for temporal graphs can be harder than for the static counterpart. We also
discuss similarities between static shortest paths and temporal shortest paths. In par-
ticular, we consider two properties that are crucial for Brandes’ algorithm [Bra01]: In
Section 3.1, we discuss that optimal temporal paths may not be composed of optimal
subpaths [Wu+16], which is an important difference to shortest static paths. In Sec-
tion 3.2, we discuss the directed predecessor graph representation of a single-source walk
through a temporal graph and show that this graph is acyclic.

In an undirected static graph, there is virtually no difference between a path from
vertex v to w or the other way around. In a temporal graph, this is not the case. For
example, the temporal graph shown in Figure 3.1 does have a path from s to z but no
path from z to s due to the times in which the edges are present. The same example
shows that temporal reachability is not transitive either: z can reach c and c can reach b,
but z cannot reach b.

s

a

b

c

z

1

1

2 3

5

4

Figure 3.1: Although the edges are undirected, reachability is typically not symmetric
in temporal graphs. In this example, s can reach z but z cannot reach s.
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s

v

w

z

1

1

2

3

3

Figure 3.2: Consider the paths from s to z. All of them are foremost since the edges that
are incident to z are only present at time 3. We observe that there are paths such that v

is a predecessor of w and vice versa—the transitions v
2→ w and w

2→ v form a cycle.
This is a major difference between foremost paths in temporal graphs and shortest paths
in static graphs.

3.1 Subpath optimality

For shortest paths in static graphs, it is known that any subpath is a shortest path as
well. This property is fundamental for many fast greedy algorithms such as breadth-
first search since it allows us to find shortest paths by iteratively extending paths that
have already been found, until the desired vertex is reached. In temporal graphs, this is
typically not the case for many interesting path classes including fastest, foremost and
even shortest paths [Wu+16]. Consider the graph shown in Figure 3.1 as an example.

• (s
1→ a

2→ b
3→ c) is a foremost (and fastest) path from s to c, but its subpath

(s
1→ a

2→ b) is not foremost (nor fastest) because (s
1→ b) arrives earlier.

• (a
2→ b

3→ c
4→ z) is a shortest path from a to z, but its subpath (a

2→ b
3→ c) is

not shortest since (a
5→ c) is shorter.

This example demonstrates that temporal optimal paths show less desirable proper-
ties with regard to computation than shortest paths in static graphs do. However, we
show that for shortest paths there is a form of subpath optimality based on the vertex
appearances instead of the vertices.

Lemma 3.1 (Prefix property for shortest temporal paths). Let G = (V, E , T ) be a

temporal graph. Let P = (s
t1→ . . .

t′→ y
t→ z) be a shortest path from s to (z, t). Then

the prefix P ′ = (s
t1→ . . .

t′→ y) is a shortest path to (y, t′).

Proof. Assume P = (s
t1→ . . .

t→ z) is a shortest path but P ′ = (s
t1→ . . .

t′→ y) is not.

Then there is a shorter path P ′′ = (s
t′1→ . . .

t′→ y) and (P ′′
t→ z) is shorter than P ,

contradiction.

3.2 Acyclic predecessor relation

The second important property of shortest paths in static graphs is the fact that, given a
fixed source s ∈ V (G), the vertex set can be partially ordered by the distance from s. This
is important for Brandes’ algorithm [Bra01] because the recursive dependency acculation
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Figure 3.3: Consider the paths (s
5→ v

6→ w
7→ y

8→ z) and (s
1→ x

2→ w
3→ v

4→ z).
Both are shortest paths and on the former, v is a predecessor of w, while on the latter,

w is the predecessor of v. Note that (s
5→ v

4→ z) is no valid path since 4 < 5.

needs a base case which is given by the vertices with the highest distances. For the case
of static shortest paths, Brandes [Bra01] discusses the directed graph of shortest paths
from a fixed source s to any other vertex v in the graph and shows that this directed
graph is always acyclic.

For foremost and fastest paths, this does not hold. In Figure 3.2 we demonstrate
that for foremost (and thus for fastest) paths it is possible to get symmetric predecessor

relationships for the paths from s to z. In our example, the paths (s
1→ v

2→ w
3→ z)

and (s
1→ w

2→ v
3→ z) are both fastest and foremost. Clearly, in the former path v is a

predecessor of w and in the latter w is a predecessor of v.
For shortest temporal paths, the same effect occurs as well, but the issue is salvage-

able. Figure 3.3 gives an example for symmetric predecessor relations on shortest paths.

The two shortest paths use the transitions v
6→ w and w

3→ v, i.e., go from v to w in
one case and the opposite in the other one. Note that the two transitions have different
time labels, which is not the case in our counter-example for foremost and fastest paths.

We define the directed predecessor graph for shortest paths and show that it is always
acyclic.

Given a temporal graph G, the vertex set of the predecessor graph is the set of vertex
appearances in G. The arc set is given by the ordered pairs of vertex appearances such
that there is an optimal path that arrives in these vertex appearances in that order. That
is, we add an arc from a vertex appearance (v, t) to another vertex appearance (w, t′)
if (v, t) is the predecessor of (w, t′) on any shortest temporal path from s to any vertex
appearance (z, t′′).

Definition 3.2 (Predecessor graph). Let G = (V, E , T ) be a temporal graph. Let s ∈ V .
The predecessor graph of G is the directed static graph given by

Gpre(s) = (V × [T ], E),

where

E = {((v, t), (w, t′)) | ∃ shortest temporal path in G from s to (w, t′)

on which (v, t) is a predecessor of (w, t′)}.

An example for the construction is shown in Figure 3.4. In the example, the prede-
cessor graph is acyclic. In fact, we show next that this is the case for the predecessor
graph of any temporal graph.
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s

u

v

w

1

1

2
2

→

(s, 1)

(u, 1) (u, 2)

(v, 1)

(v, 2)

(w, 2)

Figure 3.4: For any temporal graph G = (V, E , T ) and any source s ∈ V , the shortest
paths graph G(sh)(s) is a directed acyclic graph (DAG). For simplicity’s sake, unreachable
vertex appearances are omitted in the figure.

Lemma 3.3 (Acyclic shortest paths). Let G = (V, E , T ) be a temporal graph. Fix a
source s. The directed temporal graph of the shortest paths from s to all reachable vertex
appearances (v, t) is acyclic.

Proof. Proof by contradiction. Let G = (V, E , T ) be a temporal graph with source s.
Let dist : V × [T ]→ N be the function that gives the length of the shortest path in the
predecessor graph Gpre(s) from s to any vertex appearance. By definition, for any vertex
appearances (x, t) and (y, t′), if the predecessor graph contains the arc ((x, t), (y, t′)),
then dist(x, t) < dist(y, t′). Assume that Gpre(s) contains a cycle C = ((v, t), . . . , (v, t)).
Then dist(v, t) < dist(v, t), contradiction.

Together, Lemma 3.3 and Lemma 3.1 show that shortest paths in temporal graphs
display similar behavior as shortest paths in static graphs. We use this in Chapter 5
to find an efficient algorithm for the corresponding betweenness measure. For foremost
and fastest paths, however, we have given a first intuition that the respective counting
problems are harder than for shortest paths. In fact, we prove in the next chapter that
they are computationally hard.



Chapter 4

Hard counting problems in
temporal graphs

In the previous chapter, we have seen that foremost and fastest paths have fundamen-
tally different properties in comparison with shortest paths, and we have argued that
this makes them hard to count at least on the base of greedy algorithms. In this chap-
ter, we give a very brief overview of the theory of the computational complexity of
counting problems. In particular, we discuss the complexity class #P and the notion of
#P-hardness; we then show that several counting problems in the context of temporal
betweenness centrality are #P-hard, implying that it is very unlikely that any of them
can be solved in polynomial time.

4.1 Computational complexity of counting problems

For any function f : Σ∗ → N, the corresponding counting problem is the following
task: given input x, compute f(x). Valiant [Val79] defines the complexity class #P as
the class of counting problems corresponding to functions f such that there is a non-
deterministic Turing machine with polynomial running time that has f(x) accepting
runs for a given input x. For example, the number of Hamiltonian paths in a graph
or the number of satisfying truth assignments of a Boolean formula are in #P. The
class #P is closed under polynomial-time Turing reductions, and a problem X is #P-
hard if every problem A in #P Turing-reduces to X. A problem is called #P-complete
if it is contained in #P and #P-hard.

Whether there are polynomial-time algorithms for #P-complete problems is a major
unresolved research question, but it is strongly believed that there are none. The exis-
tence of a polynomial-time algorithm for any #P-hard problem would imply P = NP
since counting the number of solutions clearly allows deciding whether there is any at
all [Val79]. One of the most surprising results of computational complexity theory is the
observation that easily polynomial-time-solvable decision problems correspond to hard
counting problems [Val79].

23
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4.2 #P-hard counting problems

In this section, we state counting problems related to temporal betweenness, including
the computation of temporal betweenness itself, and show that they are #P-hard. In
particular, counting all temporal paths is #P-hard for both strict and non-strict paths.
The same holds true for foremost and fastest temporal paths, but not for shortest tem-
poral paths. Our hardness results are based on the following two counting problems for
which Valiant [Val79] shows #P-completeness:

Paths
Input: Static graph G, vertices s, z
Task: Count the number of paths from s to z.

Imperfect Matchings
Input: Bipartite static graph G
Task: Count the number of matchings (of any size) in G.

We use polynomial-time reductions from the two problems above to prove that count-
ing problems related to temporal betweennes are #P-hard.

More specifically, we show the #P-hardness of the following problems:

Temporal Paths
Input: Temporal graph G, vertices s, z
Task: Count the number of temporal paths from s to z in G.

Strict Temporal Paths
Input: Temporal graph G, vertices s, z
Task: Count the number of strict temporal paths from s to z in G.

Foremost (Strict) Paths

Input: Temporal graph G, vertices s, z
Task: Count the number of foremost (strict) temporal paths from s to z in G.

Fastest (Strict) Paths

Input: Temporal graph G, vertices s, z
Task: Count the number of fastest (strict) temporal paths from s to z in G.

(Foremost/Fastest) (Strict) Temporal Betweenness

Input: Temporal graph G, vertex v
Task: Calculate the betweenness centrality of v in G.

For non-strict paths, the #P-hard problem Paths is contained as a special case
in Temporal Paths, since any static graph can be transformed into an equivalent
temporal graph with lifetime T = 1. Hence, we get the following result:

Proposition 4.1. Temporal Paths is #P-hard.

Proof. We reduce from Paths. Given a static graph G = (V,E), consider the temporal

graph G = (V, E , 1) with E = {u 1
—v | {u, v } ∈ E }. Clearly, the number of temporal

non-strict paths in G equals the number of paths in G.
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Figure 4.1: Given a static bipartite graph G, we construct a temporal graph G such that
the number of matchings in G equals the number of strict paths from a′ to b′ in G. In
this example, the matching { { a1, b2 } , { a3, b3 } } (highlighted in bold) translates to the

path (a′
1→ a1

2→ b2
5→ a3

6→ b3
7→ b′).

Proposition 4.1 immediately implies the following:

Corollary 4.2. Foremost Paths and Fastest Paths are #P-hard.

Proof. Reduction from Temporal Paths. Given a temporal graph G = (V, E , T ) with a
source s and a target z, construct G′ = (V ′, E ′, T ′) such that T ′ = T+2, V ′ = V ∪{ s′, z′ }
and E ′ = {ut+1

— v | u t
—v ∈ E }∪{ s 1

—s′, z
T+2
— z′ }. By construction, every path from s′ to z′

is a foremost and fastest path and their number equals the number of s-z-paths in G.

This corollary is more surprising than Proposition 4.1. While counting all tempo-
ral paths was expected to be at least as hard as counting all static paths—which is
#P-hard—the problem of counting all shortest paths in static graphs can be solved in
polynomial time. Hence, the #P-hardness of Foremost Paths and Fastest Paths
is a significant difference between optimal temporal paths on the one hand and short-
est static paths on the other hand. However, counting the shortest temporal paths is
possible in polynomial time.

The counting problem Strict Temporal Paths is #P-hard as well, but the proof
is more technical since strict paths are fundamentally different from static paths, whereas
non-strict paths could be regarded as a generalization of static paths, allowing for the
simple argument used above. We show the #P-hardness of Strict Temporal Paths
by reduction from Non-empty Matchings, where, given a static bipartite graph G,
the task is to count all non-empty matchings in G. Valiant [Val79] only shows the #P-
hardness of Imperfect Matchings, but clearly, the two problems are equally hard,
since every (bipartite) graph has exactly one empty matching.

Theorem 4.3. Strict Temporal Paths is #P-hard.

Proof. We reduce from Matchings. Given a bipartite graph G = (A ∪ B,E), we
construct a temporal graph G = (A∪B∪{ a′, b′ } , E , T ) such that the number of matchings
in G is equal to the number of strict paths from a′ to b′ in G. An example for the
transformation is shown in Figure 4.1.
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The temporal edge set E is constructed as follows: For each edge { ai, bj } ∈ E, we
create a temporal edge ({ ai, bj } , 2 · i). These edges are meant to represent the edges of
the original graph and will be called forward-edges. The vertices ai ∈ A are connected
to a′ at time step 2 ·i−1. All bj ∈ B are connected to b at the last time step T . For i > 1
we connect each ai to each bj at time step 2 · i− 1; these edges are shown in orange in
Figure 4.1 and we will refer to them as back-edges.

We justify the terms forward-edge and back-edge by showing that for any path from a′

to b′, every transition with an even time label goes from an a ∈ A to a b ∈ B (forward)
and exactly the other way (back) for every transition with an odd time label. By con-
struction, each vertex ai ∈ A is incident to time edges with at most two time labels: 2·i−1

and 2 · i. Therefore, any path containing a transition bj
2·i→ ai ends in ai since no time

edge with a higher time label will be available. By an anologous argument, back-edges
cannot be used forward because it is impossible to arrive in ai before time 2 · i− 1.

As a consequence, on any a′-b′-path every back-edge is followed by a forward-edge
and every forward-edge is followed either by a back-edge or by the final edge to b′. Thus,
for any matching M = { { ai1 , bj1 } , . . . , { aim , bjm } } of size m ∈ N+ there is exactly
one a′-b′-path containing exactly the forward edges corresponding to M , and conversely,
for each a′-b′-path P there is exactly one matching corresponding to the forward-edges
in P . Thus, the number of non-empty matchings in G equals the number of a′-b′-paths
in G.

Analogously to the case of non-strict paths, the #P-hardness of Strict temporal
paths implies the #P-hardness of Strict Foremost Paths and Strict Fastest
Paths.

Corollary 4.4. Strict Foremost Paths and Strict Fastest Paths are #P-hard.

We have shown that counting strict and non-strict temporal paths is #P-hard. This
allows us to prove this chapter’s main result.

Theorem 4.5. Temporal Betweenness based on foremost or fastest, strict or non-
strict paths is #P-hard.

Proof. We prove the hardness by reduction from Temporal Paths. Let G = (V, E , T )
be a temporal graph with vertices a and b. Let p be the number of temporal paths
from a to b. We construct a temporal graph G′ = (V ′, E ′, T ′) with V ′ = V ∪ { a′, b′, v′ },
lifetime T ′ = T + 2, and E ′ = {ut+1

— v | u t
—v ∈ E } ∪ { a′ 1—a, a′

1
—v, v

T+2
— b′, b

T+2
— b′ }. The

construction is illustrated in Figure 4.2.
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[2, T + 1]
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Figure 4.2: Given a temporal graph G, we construct a temporal graph G′ such that we
can compute the number of a-b-paths in G from the betweenness of v in G′.

By construction, every a′-b′-path is both fastest and foremost and there are exactly
four (fastest/foremost) paths going through v, connecting the pairs (a, b),(a, b′),(a′, b),
and (a′, b′), respectively:

1. (a′
1→ v

3→ b′),

2. (a
1→ a′

1→ v
3→ b′),

3. (a
1→ a′

1→ v
3→ b′

3→ b), and

4. (a′
1→ v

3→ b′
3→ b)

We observe that for each of these four pairs, there are p+1 foremost (and fastest) paths,
and for any other pair of vertices, no path goes through v at all. This allows us to
compute p from the betweenness centrality of v.

C
(fa)
B (v) = C

(fm)
B (v) =

∑
s 6=v 6=z

δ(fm)
sz (v) = 4 · δ(fm)

ab (v) =
4

p+ 1

⇒ p =
4

C
(fm)
B (v)

− 1

Corollary 4.6. Foremost and fastest, strict and non-strict dependencies and pair-
dependencies are #P-hard.

Proof. By definition, the betweenness centrality can be computed from the dependencies
in linear time or from the pair-dependencies in quadratic time. Thus, calculating those
is #P-hard as well.

Theorem 4.5 negatively answers our research question for the cases of fast and fore-
most paths. For shortest paths, however, there is a polynomial-time algorithm. In the
next chapter, we adapt Brandes’ algorithm [Bra01] to the temporal case and give a
polynomial-time algorithm for temporal betweenness centrality based on shortest paths.
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Chapter 5

Adaptation of Brandes’ algorithm

In the previous chapter, we have shown that temporal betweenness based on fastest or
foremost paths is #P-hard, and we have identified properties of those path classes that
are fundamentally different from static shortest paths, making them harder to count.
There are, however, other concepts of optimal paths that are more promising, including
shortest paths and specialized combinations of optimality. In this chapter, we investi-
gate ways to adapt the approach of Brandes’ algorithm [Bra01] to variants of temporal
betweenness based on path classes for which the counting problem is not intractable in
the first place. We discuss the main idea of Brandes’ algorithm in Section 5.1. We then
adapt the principle to the case of shortest temporal paths in Section 5.2. In Section 5.3,
we consider subclasses of the generally intractable foremost paths—shortest foremost
and prefix-foremost paths—and show that these subclasses can be counted efficiently.

5.1 Main idea

By definition, the betweenness centrality of a vertex v depends on the number of shortest
paths between pairs of vertices which pass through v. Recall the definition of betweenness
centrality:

CB(v) =
∑
s 6=v 6=z

σsz(v)

σsz
,

where σsz is the number of all shortest paths from s to z and σsz(v) is the fraction of
these paths which pass through v. Brandes [Bra01] calls the latter the pair-dependency
of s and z on v. Brandes’ main contribution is the observation that the betweenness
centrality can be computed faster by first computing partial sums of the form

δs•(v) =
∑
z∈V

σsz(v)

σsz
,

the so-called dependency of s on v. Figure 5.1 shows an example graph to illustrate
the concepts of dependencies and pair-dependencies. The important result shown by
Brandes is the fact that the dependencies obey a recursive relation. Hence, a dynamic
program can compute the dependency of a vertex without the need to explicitly compute
all pair-dependencies on that vertex. This reduces the running time on sparse graphs.
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s a

b

c

z

Figure 5.1: Consider the vertex s as the starting point and z as the target. Then a has
a pair-dependency of δsz(a) = 1, because both shortest s-z-paths go through a. The
vertex b has the pair-dependency δsz(b) = 0.5, because only one of the two shortest
s-z-path goes through b (the other one goes through c). The dependency of s on a
is δs•(a) = 3, because every shortest path to b, c and z goes through a. In contrast to
that, the dependency of s on b is only δs•(b) = δsz(b) = 0.5, because z is the only target
where b lies on a shortest path.

Both concepts, dependencies and pair-dependencies, naturally generalize to optimal
paths in temporal graphs.

Brandes [Bra01] defines the pair-dependency δsz(v) of vertices s, z ∈ V on a vertex

v as the fraction of shortest paths from s to z going through v, i.e., δsz(v) = σsz(v)
σsz

.
Brandes then introduces the notion of dependency and shows a recursive relation. We
adapt these definitions to the different notions of optimal temporal paths.

Definition 5.1 (Temporal dependencies). Let G = (V, E , T ) be a temporal graph.
Let s ∈ V be a source and let z ∈ V be a target. Let v 6= s and v 6= z. The tem-
poral pair-dependency of s and z on v and the dependency of s on v are given by:

δ
(?)
sz (v) := σ

(?)
sz (v)

σ
(?)
sz

δ
(?)
s• (v) :=

∑
z∈V δ

(?)
sz (v)

 ? ∈ { sh, fa, fm } .

In some cases, we may be interested in the dependency on a vertex at a specific time
instead of the whole lifetime. Hence, we introduce dependencies on vertex appearances:

Definition 5.2 (Temporal dependencies). Let s be a source and let z be a target.
Let v 6= s and v 6= z. For any t ∈ [T ], the temporal pair-dependency of s and z on (v, t)
and the dependency of s on (v, t) are given by:

δ
(?)
sz (v, t) := σ

(?)
sz (v,t)

σ
(?)
sz

δ
(?)
s• (v, t) :=

∑
z∈V δ

(?)
sz (v, t)

 ? ∈ { sh, fa, fm } .

It is easy to see that the pair-dependency of any vertex v is the sum of the pair-
dependencies of all appearances (v, t) of that vertex.

Lemma 5.3. For any source s and target z, the pair-dependency of any given vertex v
is given by:

δ(?)sz (v) =
∑

1≤t≤T
δ(?)sz (v, t).
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Figure 5.2: In this temporal graph, there are two shortest path from s to z, arriving at
times 2 and 4, respectively. The path highlighted in orange is the shortest path from s
to (z, 3), but no shortest path from s to z, because it is longer than the other two.

Proof. Let v ∈ V . By definition,

δ(?)sz (v) =
σ
(?)
sz (v)

σ
(?)
sz

=

∑
1≤t≤T σ

(?)
sz (v, t)

σ
(?)
sz

=
∑

1≤t≤T

σ
(?)
sz (v, t)

σ
(?)
sz

=
∑

1≤t≤T
δ(?)sz (v, t).

Corollary 5.4. For any source s, the dependency on a vertex v is given by:

δ
(?)
sz•(v) =

∑
1≤t≤T

δ
(?)
sz•(v, t).

Lemma 5.5 (Temporal dependency). If there is exactly one optimal (i.e., shortest,
fastest or foremost) path from s ∈ V to each v ∈ V , then

δ
(?)
s• (v) =

∑
w:v∈P (?)

s (w)

(1 + δ
(?)
s• (w)).

Proof. If there is only one optimal path from s to each v, then P
(?)
s (v) contains exactly

one element which is the unique predecessor of v. This implies that δ
(?)
sv (u) ∈ { 0, 1 } for

any vertex u ∈ V since u can either lie on the unique path or not. If v is the predecessor
of w, then it also lies on the unique path to every successor of w. This yields the recursion
above.

In the general case, the recursion is more complicated and we have to treat the
different classes of optimal paths independently. We discuss shortest paths first, followed
by two subclasses of foremost paths, for which the counting problem is tractable although
counting all foremost paths is #P-hard.
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5.2 Shortest paths

As discussed in Chapter 3, the predecessor relation of vertices on shortest temporal
paths is not guaranteed to be anti-symmetric, but the predecessor relation of vertex
appearances is. This allows us to find a recursion for the shortest paths to a vertex
appearance (z, t), i.e., the shortest paths from s that arrive in z exactly at time t. We
refer to those paths as t-shortest. To avoid confusion, we call shortest paths from s to z
all-time shortest.

Definition 5.6. A path P from s to z is an all-time shortest path if there is no path P ′

from s to z which is shorter than P .
A path from s to z arriving at time t is a t-shortest path if there is no path P ′ from s
to z which arrives at time t and is shorter than P .

Let P sh
s ((z, t)) = { (w, t′) | ∃ shortest path (s→ . . .

t′→ w
t→ z) }.

Lemma 5.7 (Counting of t-shortest paths). Let s be a source and let (z, t) be a vertex
appearance with s 6= z. The number of t-shortest paths from s to z is given by:

σ
(sh)
s(z,t) =

∑
(w,t′)∈P sh

s ((z,t))

σ
(sh)
s(w,t′).

Proof. For any shortest path to (z, t) there is exactly one predecessor (w, t′) and a final

transition w
t→ z. We have shown in Lemma 3.1 that every prefix of a shortest path is

a shortest path itself. Thus, the number of shortest paths to (z, t) equals the number of
shortest paths to any of the predecessors.

With the recursion above, we count the number of t-shortest paths. To compute the
number of all-time shortest paths to the vertex v, we need to add up the numbers of
t-shortest paths for all t where the shortest paths are also all-time shortest. This is not
trivial because the length of shortest paths between two vertices can vary depending
on the specified arrival time. In particular, this length is not monotonic in the time:
Figure 5.2 illustrates a case where there are two paths from s to z of length 2 that arrive
at times 2 and 4,respectively, whereas the only path arriving at time 3 has a length of 3.

Let T
(sh)
s (v) be the set of time steps t where there is a globally shortest path from s

to (z, t).

Lemma 5.8 (Temporal shortest path counting). Let s be a source and let z be a vertex
appearance with s 6= z. The number of shortest paths from s to z arriving at any time
is given by:

σ(sh)sz =
∑

t∈T (sh)
s (z)

σ
(sh)
s(z,t).

Lemma 5.9 (Dependency accumulation for shortest paths). Fix a source s ∈ V . For
any vertex appearance (v, t) ∈ V × [T ], v 6= s it holds:

δ
(sh)
s• ((v, t)) =

∑
(w,t′):(v,t)∈P sh

s ((w,t′))

σ
(sh)
s(v,t)

σ
(sh)
s(w,t′)

· (1 + δ
(sh)
s• ((w, t′))).
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Proof. Since we have shown the transition acyclicity in Chapter 3, the number of paths
through v can be rewritten as the summed number of paths using any transition from v
to any vertex w at some time step:

δ
(sh)
s• ((v, t)) =

∑
(z,t′)∈V×[T ]

δ
(sh)
s(z,t′)((v, t)) =

∑
(z,t′)∈V×[T ]

∑
(w,t′′):(v,t)∈P sh

s ((w,t′′))

δ
(sh)
s(z,t′)(v, w, t

′′),

where δ
(sh)
s(z,t)(v, w, t

′′) is the fraction of shortest paths from vertex s to (z, t′) that use the

transition v
t′′→ w. Analogously to Brandes’ [Bra01] proof for Theorem 6, we distinguish

three cases:

If w = z and t′ = t′′, then δ
(sh)
s(z,t′)(v, w, t

′′) =
σ
(sh)
s(v,t)

σ
(sh)

s(z,t′)

=
σ
(sh)
s(v,t)

σ
(sh)

s(w,t′′)

.

If w = z but t′ 6= t′′, then δ
(sh)
s(z,t′)(v, w, t

′′) = 0.

Otherwise, δ
(sh)
s(z,t′)(v, w, t

′′) =
σ
(sh)
s(v,t)

σ
(sh)

s(w,t′′)

·
σ
(sh)

s(z,t′)((v,t))

σ
(sh)

s(z,t′)

.

Inserting these cases into the term above yields the recursion we stated:

∑
(z,t′)∈V×[T ]

∑
(w,t′′):(v,t)∈P sh

s (w,t′′)

δ
(sh)
s(z,t′)(v, w, t

′′)

=
∑

(w,t′′):(v,t)∈P sh
s (w,t′′)

∑
(z,t′)∈V×[T ]

δ
(sh)
s(z,t′)(v, w, t

′′)

=
∑

(w,t′′):(v,t)∈P sh
s (w,t′′)

 σ
(sh)
s(v,t)

σ
(sh)
s(w,t′)

+
∑

(z,t′)∈(V \{w })×[T ]

σ
(sh)
s(z,t′)((v, t))

σ
(sh)
s(z,t′)


=

∑
(w,t′′):(v,t)∈P sh

s (w,t′′)

σ
(sh)
s(v,t)

σ
(sh)
s(w,t′′)

· (1 + δ
(sh)
s• (w, t′′)).

5.3 Specialized optimality concepts

We have shown in Chapter 4 that counting all foremost paths between a given pair of
vertices is intractable. In this section, we consider subclasses of foremost paths that can
be counted efficiently.

As an additional motivation, consider the example given in Figure 5.3: the temporal
graph consists of a large clique C that is connected to a source s at time 1 and to a
target z at time T . Clearly, every path from s to z is a foremost path since any ingoing
time edge in z is only present at time T . This leads to an extremely high number
of foremost paths, including all the Hamiltonian paths through the clique C. If every
path is foremost, we may consider this property rather meaningless, and ask for relevant
subclasses of foremost paths. More specifically, we consider shortest foremost paths and
prefix-foremost paths.
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C

1 Ts z

Figure 5.3: Assume C is a (large) clique throughout the lifetime of the temporal graph, s
is connected to all v ∈ C at time step 1 and z is connected to all v ∈ C at time step T .
Then every path from s to z is a foremost path.

5.3.1 Shortest foremost paths

A shortest foremost path is a foremost path that is not longer than any other foremost
path. It may not be a shortest path overall, however, as even shorter paths with higher
arrival times may exist. Shortest foremost paths can be regarded as paths that prioritize
a low arrival time and use a low edge count as a tie-breaker.

Definition 5.10. Let s, z ∈ V . A path P from s to z is a shortest foremost path if P is
a foremost path from s to z and for all foremost paths P ′ from s to z it holds: |P | ≤ |P ′|.

We observe that a shortest foremost path is a t-shortest path for the earliest possible
arrival time. Hence, our findings in the previous section translate very easily to shortest
foremost paths. In fact, the algorithm for shortest paths discussed in Chapter 6 computes
the shortest foremost paths as well.

5.3.2 Prefix-foremost paths

In the example given in Figure 5.3, every path from s to z is foremost because z can only
be reached very late. On an intuitive level, this means that a path may waste a lot of
time early on without any impact on the final arrival time because there is a bottleneck
immediately before the target. In this section, we consider the paths that do not show
this behavior. More specifically, we consider the class of foremost paths for which every
prefix path is foremost as well. That is, every vertex that is visited by such a path is
visited as soon as possible. We call this class of paths prefix-foremost paths and consider
a variation of betweenness centrality based on prefix-foremost paths.

Definition 5.11. Let s, z ∈ V . A path P = (e1, . . . , ek) from s to z is a prefix-foremost
path if P is a foremost path and every prefix P ′ = (e1, . . . , ek′), k

′ ≤ k is a foremost path
as well.

Wu et al. [Wu+16] show that there is always at least one prefix-foremost path
between any pair of vertices s and z unless z is not reachable from s at all.
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Figure 5.4: There are 10 foremost paths from s to z but only 2 prefix-foremost paths.

Lemma 5.12 (Existence of prefix-foremost paths [Wu+16]). Let s, z ∈ V . If there is a
foremost path from s to z, then there is a prefix-foremost path from s to z.

In Figure 5.4, there are 10 strict foremost paths from s to z, but only 2 of them are

prefix-foremost ((s
1→ v

7→ z) and (s
1→ w

7→ z)). A strict prefix-foremost path cannot
visit both v and w because the latter would be reached too late. In contrast to that,
non-strict paths can visit both v and w and still be prefix-foremost. In fact, non-strict
prefix-foremost paths still show the undesirable properties of general foremost paths.

Proposition 5.13. Non-strict prefix-foremost paths is #P-hard.

Proof. The proposition follows with the same reductionas as used in the proof of Corol-
lary 4.4.

For strict prefix-foremost paths, we show that the counting problem and the cal-
culation of the corresponding betweenness are solvable in polynomial time by adapting
Brandes’ algorithm [Bra01].

Let σ
(p)
sz denote the number of strict prefix-foremost paths from s to z.

Lemma 5.14 (Strict prefix-foremost dependency accumulation). Fix a source s ∈ V .
For any vertex v ∈ V, v 6= s it holds:

δ
(p)
s• (v) =

∑
w:v∈P (p)

s (w)

σ
(p)
sv

σ
(p)
sw

· (1 + δ
(p)
s• (w)).

Proof. Let σ
(p)
sz (v, w, t) be the number of prefix-foremost paths from vertex s to z that

use the transition (v, w, t).

δ
(p)
s• (v) =

∑
z∈V

δ(p)sz (v) =
∑
z∈V

∑
w:v∈P (p)

s (w)

δ(p)sz (v, w, t)

The first step is just using Definition 5.1. The second is true because the paths going
through v are exactly the paths using the transition (v, w, t) for some w. Note that for
each w there is exactly one t here since we only count the prefix-foremost paths.

Let v and w be vertices such that v is predecessor of w on a prefix-foremost path
from s to w. Let t+ 1 be the foremost arrival time in w.
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If w = z, then δ
(p)
sz (v, w, t) = σ

(p)
sv

σ
(p)
sz

= σ
(p)
sv

σ
(p)
sw

.

Otherwise, the dependency on (v, w, t) is the fraction of paths going from v to w
multiplied by the fraction of paths going through w at all.

This number is given by σ
(p)
sv

σ
(p)
sw

· δ(p)sz (w).

Inserting the two cases into the equations above yields the recursion we stated:∑
z∈V

∑
w:v∈P (p)

s (w)

δ(p)sz (v, w, t) =
∑

w:v∈P (p)
s (w)

∑
z∈V

δ(p)sz (v, w, t)

=
∑

w:v∈P (p)
s (w)

δ(p)sz (v, z, t) +
∑

z∈V \{w }

δ(p)sz (v, w, t)


=

∑
w:v∈P (p)

s (w)

σ
(p)
sv

σ
(p)
sw

+
∑

z∈V \{w }

σ
(p)
sv

σ
(p)
sw

· δ(p)sz (w)


=

∑
w:v∈P (p)

s (w)

σ
(p)
sv

σ
(p)
sw

+
σ
(p)
sv

σ
(p)
sw

·
∑

z∈V \{w }

δ(p)sz (w)


=

∑
w:v∈P (p)

s (w)

σ
(p)
sv

σ
(p)
sw

· (1 +
∑

z∈V \{w }

δ(p)sz (w))

=
∑

w:v∈P (p)
s (w)

σ
(p)
sv

σ
(p)
sw

· (1 + δ
(p)
s• (w))



Chapter 6

Algorithms for temporal
betweenness

We have shown that shortest, shortest foremost, and strict prefix-foremost paths have
sufficiently convenient properties to allow dynamic counting and dependency accumula-
tion in a similar way as done by Brandes’ algorithm [Bra01] for the case of static graphs.
We use our findings to give algorithms for the three betweenness variants discussed in
Chapter 5, starting with Shortest Temporal Betweenness.

In the unweighted case, Brandes’ algorithm [Bra01] is based on breadth-first search.
For each vertex, the Single-source shortest paths problem is solved once. At the
end of each iteration, the dependency of the respective s on all other vertices v is added
to their betweenness scores.

Definition 6.1 (Temporal neighborhood). For a temporal graph G = (V, E , T ) and a
vertex v ∈ V (G), we call NGt (v) := {u ∈ V (G) | {u, v } ∈ Et(G) } the temporal neighbor-
hood of v at time step t ∈ [T ].

Our algorithms for temporal betweenness will follow roughly the same structure.
Instead of breadth-first search, the appropriate algorithm for the respective path class
is used as the base for the algorithm.

6.1 Shortest temporal betweenness

In Section 5.2, we have shown that the temporal dependencies for shortest paths follow
a similar recursion as for static graphs. Recall that we have to consider vertex appear-
ances as opposed to vertices, because the necessary conditions of subpath-optimality and
acyclicity are not guaranteed on the vertex level.

Therefore, Algorithm 1 uses a |V | × T -table to store the number of shortest paths
to all vertex appearances instead of vertices. The overall structure of the algorithm is
similar to Brandes’ algorithm [Bra01]—a single-source-all-shortest-paths traversal from
each vertex to all vertex appearances is performed and the count of shortest paths is
stored in the aforementioned table. At the end of each iteration, we add the dependencies
found for each vertex appearance to the betweenness score of the respective vertex. Note
that there may be t-shortest paths to vertex appearances which are no all-time-shortest

37
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paths; hence, the algorithm needs to check whether these paths are actually relevant for
the betweenness score.

In order to count shortest foremost paths instead of (all-time) shortest paths, only the
dependency accumulation needs to be changed: instead of checking whether the paths
have minimal length, the algorithm checks for minimal arrival time. In fact, Algorithm 1
can be modified such that it computes both variants at the same time, without increasing
the (asymptotical) running time.

Proposition 6.2. Given a temporal graph G = (V, E , T ) with n = |V | and M = |E|,
Algorithm 1 computes the shortest-path betweenness and the shortest-foremost-path be-
tweenness in O(n ·M) time.

Proof. The correctness follows from Lemma 5.7 and Lemma 5.9 since our algorithm
dynamically computes the values given by the recursive formulas we developed in Chap-
ter 5.

Each iteration consists of two major parts: the single-source traversal of the tem-
poral graph, and the accumulation of the dependencies found for the respective source.
The first part is dominated by the loop over the queue of vertex appearances. Vertex
appearances are only added to the queue if there is an incident temporal edge. Since
each vertex appearance is only added and removed once, and only if it is incident to at
least one time edge, this yields an upper bound for the running time of O(M) for this
part. The dependency accumulation has the same asymptotical running time since it
just iterates over each vertex appearance visited during the first part. Since both parts
are done for each vertex once, the overall running time is in O(n ·M).
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Algorithm 1 Shortest betweenness in temporal graphs

Input: Temporal graph G = (V, E , T )

Output: Betweenness C
(sh)
B and C

(fm)
B of all vertices v ∈ V (G)

1: for s ∈ V do
2: for v ∈ V do . Initialization
3: P [v]← ∅
4: dist[v]← −1
5: σ[v]← 0
6: δ[v]← 0
7: end for
8: dist← BFS(s) . Compute minimal distances to all vertices
9: S ← empty stack

10: Q← empty queue
11: Q← enqueue(s, 0)
12: while Q not empty do
13: (v, t)← dequeue(Q)
14: for (w, t′) ∈ N(v, t) with t < t′ do . t ≤ t′ for non-strict
15: if dist[w, t′] = −1 then . First arrival in w at time t′

16: dist[w, t′]← dist[v, t] + 1
17: if dist[w, t′] > dist[w] then . No shortest path to w
18: continue
19: end if
20: S ← push(w, t′)
21: Q. enqueue(w, t′)
22: end if
23: end for
24: if dist[w, t′] = dist[v, t] + 1 then
25: σ[w, t′]← σ[w, t′] + σ[v, t]
26: P [w, t′]← P [w, t′] ∪ { (v, t) }
27: end if
28: end while
29: while (w, t′)← pop(S) do
30: for (v, t) ∈ P [w, t′] do
31: if (dist[v, t] = dist[v]) then . separate t-shortest from all-time-shortest

32: δ[v, t]← δ[v, t] + σ[v,t]
σ[w,t′] · (1 + δ[w, t′])

33: end if
34: if (t = tmin[v]) then . only count shortest foremost here

35: δ(sh fm)[v, t]← δ[v, t] + σ[v,t]
σ[w,t′] · (1 + δ[w, t′])

36: end if
37: end for
38: C

(sh)
B [v]← C

(sh)
B [v] + δ[v, t]

39: C
(sh fm)
B [v]← C

(sh fm)
B [v] + δ(sh fm)[v, t]

40: end while
41: end for
42: return C

(sh)
B , C

(sh fm)
B
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6.2 Strict prefix-foremost betweenness

Algorithm 2 modifies Brandes’ algorithm to count strict prefix-foremost paths instead
of shortest (static paths). The overall structure of the algorithm remains the same.
Instead of iterating over all neighbors, however, we add add all temporal edges of a
vertex into a priority queue (prioritizing early time labels). This allows us to traverse the
graph in a time-respecting manner and find the prefix-foremost paths. The dependency-
accumulation in lines 23—28 is analogous to Brandes.

Proposition 6.3. Given a temporal graph G = (V, E , T ) with n = |V | and M = |E|,
Algorithm 2 computes the prefix-foremost path betweenness of all v ∈ V in O(n·M ·logM)
time.

Proof. The correctness follows from Lemma 5.7 and Lemma 5.14 since our algorithm
dynamically computes the values given by the recursive formulas we developed in Chap-
ter 5.

The outer loop (line 1) iterates over n vertices. The body of the loop is dominated by
the iteration over the transitions in the priority queue (line 11). Since each temporal edge
is added and removed at most once, this yields a runnning time of O(M · logM), under
the assumption that adding and removing elements from a priority takes logarithmical
time. The overall running time of the algorithm is then in O(n ·M · logM).
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Algorithm 2 Strict prefix-foremost betweenness

Input: Temporal graph G = (V, E , T )

Output: Betweenness C
(p)
B of all vertices v ∈ V (G)

1: for s ∈ V do
2: for v ∈ V do . Initialization
3: P [v]← ∅
4: tmin[v]← −1
5: σ[v]← 0
6: δ[v]← 0
7: end for
8: S ← empty stack
9: Q← empty priority queue . Transitions prioritized by time label

10: Q← enqueueAll({ s t→ v | s t
—v ∈ E })

11: while Q not empty do

12: v
t→ w ← dequeue(Q)

13: if tmin[w] = −1 then . First and foremost arrival in w
14: tmin[w]← t
15: S ← push(w)

16: Q. enqueueAll({w t′→ x | w t′
—x ∈ E , t < t′ })

17: end if
18: if tmin[w] = t′ then
19: σ[w]← σ[w] + σ[v]
20: P [w]← P [w] ∪ { v }
21: end if
22: end while
23: while w ← pop(S) do
24: for v ∈ P [w] do

25: δ[v]← δ[v] + σ[v]
σ[w] · (1 + δ[w])

26: end for
27: C

(p)
B [v]← C

(p)
B [v] + δ[v]

28: end while
29: end for
30: return C

(p)
B
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Chapter 7

Conclusion

We have investigated several variants of temporal betweenness centrality based on the
various optimization criteria for temporal paths. We have shown a surprising discrepancy
in their computational complexity: while some variations are #P-hard, others can be
computed in polynomial time. More specifically, we found that counting foremost, and
thus fastest paths, is #P-hard, and in turn, the computation of the corresponding be-
tweenness centrality scores is #P-hard as well. In contrast to that, counting the shortest
temporal paths is possible to do in polynomial time both for strict and non-strict paths.
The same is true for the shortest foremost paths. In the case of prefix-foremost paths, we
found a polynomial-time algorithm for the strict version, whereas the non-strict version
is again #P-hard.

For the temporal betweenness variants which we found tractable, we have given
algorithms. Following the main idea of Brandes’ algorithm, we devised algorithms that
count shortest, shortest foremost, and prefix-foremost paths, respectively, and calculate
the betweenness scores of all vertices based on the respective paths. We expect the
algorithm for prefix-foremost paths to be fast enough to be practical on real-world graphs.
While the algorithm for shortest foremost paths has a good asymptotical running time,
the space complexity of the table for all vertex appearances will presumably be too
demanding for large networks with both many vertices and a high number of time steps.
In the case of sparse temporal graphs, however, most of the vertex appearances are
unreachable and the entry in the table is not needed. Hence, using better data structures
instead of a fixed-size table could greatly reduce the amount of required memory.

An important practical question will be how well our betweenness variants capture
the properties of real-world networks, that is, how reliable a high temporal betweenness
score will correspond to nodes that are actually of particular interest in their network.
Experimentation with real-world networks is required to measure and compare the qual-
ity of the betweenness variants we discussed.

Another relevant research question might be the parameterized complexity of the
variants which we have shown to be hard. If graph parameters or graph classes can be
found for which even the hard variants can be computed fast, this could relativize the
theoretical hardness of the general case. Furthermore, it could be investigated whether
the intractable variants can be approximated in practical running time. For example,
counting the foremost paths is #P-hard, but we have shown that counting the strict
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prefix-foremost paths can be done in polynomial time. Further research could be done to
determine how large a difference there is between these two metrics in real-world graphs
and whether the number of prefix-foremost paths could serve as an approximation or
heuristic for the generally intractable number of all foremost paths.

In addition to that, even more betweenness variants can be defined and studied.
In particular, all of our temporal betweenness variants are based on temporal paths
as opposed to the more general walks, and we did not consider any restriction of the
waiting time in a vertex. Himmel et al. [Him+19] mention that in specific settings,
the computation of a temporal path is NP-hard, whereas temporal walks can still be
computed in polynomial time. Hence, variations of temporal betweenness based on
walks instead of paths may be more suitable in those cases, and a research question
could again ask for the discrepancy between the different variations.



Literature

[Bad+07] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. “Approximating Be-
tweenness Centrality”. In: Algorithms and Models for the Web-Graph. Inter-
national Workshop on Algorithms and Models for the Web-Graph. Ed. by
A. Bonato and F. R. K. Chung. San Diego: Springer Berlin Heidelberg, 2007,
pp. 124–137 (cit. on p. 10).

[Bav50] A. Bavelas. “Communication Patterns in Task-Oriented Groups”. In: The
Journal of the Acoustical Society of America 22.6 (Nov. 1, 1950), pp. 725–
730 (cit. on p. 18).

[Ber96] K. A. Berman. “Vulnerability of scheduled networks and a generalization of
Menger’s Theorem”. In: Networks 28.3 (1996), pp. 125–134 (cit. on p. 10).

[Bra01] U. Brandes. “A faster algorithm for betweenness centrality*”. In: The Jour-
nal of Mathematical Sociology 25.2 (June 2001), pp. 163–177 (cit. on pp. 9–
11, 14, 16, 17, 19–21, 27, 29, 30, 33, 35, 37).

[DH07] E. M. Daly and M. Haahr. “Social Network Analysis for Routing in Discon-
nected Delay-tolerant MANETs”. In: Proceedings of the 8th ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing. MobiHoc
’07. event-place: Montreal, Quebec, Canada. New York, NY, USA: ACM,
2007, pp. 32–40 (cit. on p. 9).

[Fre77] L. C. Freeman. “A Set of Measures of Centrality Based on Betweenness”.
In: Sociometry 40.1 (1977), pp. 35–41 (cit. on pp. 10, 15).
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