
Technische Universität Berlin

Algorithmic Investigations into
Temporal Paths

Masterarbeit
vorgelegt von

Anne-Sophie Himmel

zur Erlangung des Grades
”
Master of Science“(M. Sc.)

im Studiengang Computer Science

Betreuer:

Matthias Bentert

Dr. André Nichterlein

Prof. Dr. Rolf Niedermeier

Erstgutachter: Prof. Dr. Rolf Niedermeier

Zweitgutachter: Prof. Dr. Markus Brill

2

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie
ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten
Quellen und Hilfsmittel angefertigt habe.

Die selbstständige und eigenständige Anfertigung versichert an Eides statt:

Ort, Datum Unterschrift

3

Abstract

Shortest paths are a fundamental concept in classical graph theory. Within the realm of
temporal graphs—graphs that change over time—the optimization criterion of a shortest
path is no longer unique as a result of the addition of a time component. We survey var-
ious optimization criteria, some well studied in the literature (e.g. earliest arrival time),
others comparatively neglected thus far (e.g. minimum waiting time). We present prop-
erties of optimal temporal walks and discuss their algorithmic implications. We study
the efficiency of algorithms computing single-source, single-sink, and all-pairs shortest
path for different variants of temporal graphs and optimization criteria. We also consider
parameterized problem variants. In addition to lower bounds, the parameterization by
vertex cover number and treewidth of the underlying (classical) graph are examined.

Kurzzusammenfassung

Kürzeste Pfade bilden ein fundamentales Konzept der klassischen Graphentheorie. Im
Bereich temporaler Graphen—Graphen die sich über die Zeit verändern—ist das Op-
timierungskriterium kürzester Pfad aufgrund der zusätzlichen Zeitkomponente nicht
länger einzigartig. Sowohl in der Literatur fundierte Optimierungskriterien (z.B. früheste
Ankunftszeit) als auch bisher vergleichsweise vernachlässigte Kriterien (z.B. minimale
Wartezeiten) finden in dieser Arbeit Betrachtung. Eigenschaften von optimalen tempo-
ralen Pfaden und ihre algorithmischen Implikationen werden diskutiert. Die Effizienz von
Algorithmen für verschiedene Problemvarianten von kürzesten Pfaden (Single-Source,
Single-Sink und All-Pairs Shortest Paths) werden untersucht. Dabei werden auch ver-
schiedene temporale Graphenmodelle und Optimierungskriterien betrachtet. Darüber
hinaus werden parametrisierte Problemvarianten untersucht. Neben unteren Schranken
sind Parametrisierungen anhand von Knotenüberdeckungszahl und Baumweite des un-
terliegenden klassichen Graphen weiterer Untersuchungsgegenstand.

5

Contents

1 Introduction 9

2 Preliminaries 19
2.1 Temporal Graphs . 19
2.2 Temporal Walks & Optimal Walks . 23
2.3 Problem Definitions . 25

3 Structure of Temporal Walks 27
3.1 Temporal Graph Variants . 27

3.1.1 Minimum Dwell Time α. 28
3.1.2 Transmission Time λ. 29
3.1.3 Maximum Dwell Time β. 32

3.2 Optimal Temporal Walks . 33
3.2.1 Temporal Graphs . 34
3.2.2 Temporal Graphs with Unbounded Dwell Time 36

4 Algorithms for Finding Optimal Walks 43
4.1 Single-Source Optimal Walk . 43

4.1.1 Foremost . 43
4.1.2 Fastest . 48
4.1.3 Transformation to Static Graphs 55

4.2 Single-Sink Optimal Walk . 62
4.3 All-Pairs Optimal Walk . 66

5 Polynomial Fixed-Parameter Algorithms 81
5.1 Parameter Restriction . 81

5.1.1 Earliest-Arrival Query & Latest-Departure Query 85
5.1.2 Next-Departure Query . 89

5.2 Fixed-Parameter Algorithms . 91
5.2.1 Temporal Graphs with Bounded Vertex Cover Number 91
5.2.2 Temporal Graphs with Bounded Treewidth 95

6 Conclusion 101

Literature 103

7

1 Introduction

Pandemic spread of an infectious disease is a great threat to global health potentially
associated with high mortality rates as well as economic fallout [Sal+10]. Understanding
the dynamics of infectious disease spread within human proximity networks could facil-
itate the development of mitigation strategies. Understanding propagation patterns of
diseases also has numerous applications beyond human health. Livestock trade networks
offer a fitting example as zoonotic infectious diseases are one of the greatest economical
threats in livestock trade [Baj+11; ML+16].

A large part of the legwork required to understand the dynamics of infectious diseases
is the analysis of transmission routes through proximity networks [Sal+10]. Classical
graph theory can be used to model the main structure of a network: Each person in
the network is represented by a vertex and an edge between two vertices indicates at
least one proximity contact between these persons. The time component of proximity
contacts plays a crucial role in the analysis of transmission routes of a potential disease
as shown in the following example:

Example 1. If we restrict ourselves to a classical graph model of a proximity network
shown in Fig. 1.1(a), then there are several transmission routes from A to D, e.g. A→
B → D and A → C → D, by which a disease could have spread. If we extend our
model by the moments of proximity contacts in Fig. 1.1(b) to Fig. 1.1(d), then we
reach the conclusion that a disease could not have spread from A to D. The proximity
contacts A → B and A → C occurred on day three whereas the contacts B → D
and C → D occurred on days one and two. Thus, A could have only infected B and C
after proximity contact with D.

The infectious period of a disease also has to be taken into account when computing
potential transmission routes through the network, implying the minimum time a person
has to be infected before she becomes contagious herself and the maximum time a person
can be infected before she is no longer contagious.

Example 2. If person B was infected by person A on day four and the infectious period
of the disease starts after one day and ends after the fourth day, then person B could
not have infected a person C she met on day ten. Hence, person C could not have been
infected by the disease via the transmission route A→ B → C.

One model that is capable of representing both of these properties are temporal graphs.

Temporal Graphs. Temporal graphs are already a frequently used model in the pre-
diction and control of infectious diseases [Hol15; Hol16; MH13]. Temporal graphs—
also referred to as temporal networks [HS12; Nic+13], link streams [VLM16], evolving

9

1 Introduction

A

B

C

D

(a) Proximity network

Day 1

A

B

C

D

(b) Proximity network at day 1

Day 2

A

B

C

D

(c) Proximity network at day 2

Day 3

A

B

C

D

(d) Proximity network at day 3

Figure 1.1: A proximity network modelled as a static graph (Fig. 1.1(a)) and a closer look
at the days in which the proximity contacts appear (Figs. 1.1(b) to 1.1(d)).

graphs [XFJ03], or time-varying graphs [Cas+12; San+11]—are graphs that change over
time and are therefore capable of capturing the dynamics within a proximity network.

In this thesis, we will consider a fairly general temporal graph model: A temporal
graph consists of a lifetime, a set of vertices and a set of time-arcs. A time-arc is a
directed edge between two vertices that is associated with a time stamp at which the
contact occurs and a transmission time that indicates the amount of time to traverse
the arc. Furthermore, these vertices exhibit minimum dwell time α and maximum dwell
time β that can reflect the infectious period in our previous example.

Definition (Temporal Graph). A temporal graph G = (V,E, [T], α, β) is defined as a
five-tuple consisting of

(1) a time interval [T], where [T] = {1, . . . , T} ⊆ N and T is the lifetime of G,

(2) a vertex set V ,

(3) a time-arc set E ⊆ V × V × [T]× {0, . . . , T},

(4) a minimum dwell function α : V → {0, . . . , T}, and

(5) a maximum dwell function β : V → {0, . . . , T}.

10

λ ≡ 0, α ≡ 1, β ≡ 4

A

B

C

D

3, 4

3

1, 10

1, 2, 8

2, 9

Figure 1.2: A temporal graph with transmission time zero on every time-arc (λ ≡ 0), a
minimum dwell time of one (α ≡ 1) and a maximum dwell time of four (β ≡
4) in each vertex.

The areas of application of temporal graphs are numerous: in addition to human and
animal proximity networks, they are used in communication networks, traffic networks,
and distributed computing among others [Hol15; HS12].

Example 3. Fig. 1.2 displays a temporal graph within our proximity contact network
on days one to three (Fig. 1.1(b) to Fig. 1.1(d)) plus additional days four to ten. The
lifetime T of the temporal graph is ten, the number of days the network was observed.
The numbers on the arcs indicate the days on which the contacts occur. For example, the
number 3 on the edge between A and B signifies that A and B had proximity contact
on day three. Normally, we would write (3, 0) to show that the transmission time is
zero. For the sake of simplicity, we do not write the transmission time, if it is constant
on every time-arc. The constant transmission time is signaled by λ ≡ 0. We assume
that a person becomes contagious one day after infection and is cured after four days of
infection, that is, a minimum dwell time of one and a maximum dwell time of four in
each vertex. The constant dwell times are signaled by α ≡ 1 and β ≡ 4 in Fig. 1.2. Note
that a period of contagion starting one day after infection could also be represented by
a transmission time of one on the time-arcs.

Temporal Walks & Optimal Temporal Walks. Within this model, temporal walks—
also referred to as temporal journeys [Mer+13; Nic+13; XFJ03]—are the fundamental
concept that implements transmission routes.

A temporal walk is a sequence of time-arcs which connect a sequence of vertices and
are non-decreasing in time. In our model, a temporal walk additionally has to fulfill the
minimum and maximum dwell time in intermediate vertices.

Definition (Temporal Walk). Given a temporal graph G = (V,E, [T], α, β) and two
vertices v, w ∈ V , a temporal walk from v to w is a sequence of time-arcs (e1, e2, . . . , ek)
with ei = (vi, wi, ti, λi) ∈ E for all i ∈ [k − 1] such that

11

1 Introduction

(1) v = v1 and w = wk,

(2) wj = vj+1, and

(3) tj + λj + α(wj) ≤ tj+1 ≤ tj + λj + β(wj) for all j ∈ [k − 1].

The third property signifies that after arriving in a a vertex v in time t + λ, it is
only possible to move on from this vertex earliest α(v) time steps after arrival and at
latest β(v) time steps after arrival.

Example 4. If we consider the temporal graph in Fig. 1.2, then there is only one valid

temporal walk (transmission route) from A to D: A
4→ B

8→ D. Person A could
have infected B on day four. Due to the infectious period of four days, B was still
contagious on day eight when she had contact with person C. This does not hold on

the route A
4→ B

10→ C as discussed in Example 2. Hence, person A could not have
infected C via person B because B was not contagious anymore when she had contact
with C.

We are interested in temporal walks within our proximity network in general, but
wish to place emphasis on temporal walks that optimize certain properties. A plethora
of properties can be optimized as a consequence of the introduction of a time vari-
able. Possible properties (with the names we choose) include: arrival time (Foremost),
departure time (Reverse-Foremost), duration (Fastest), transmission time (Shortest),
number of time-arcs (Minimum Hop-Count), cost (Cheapest), probability (Most-likely),
and waiting time (Minimum Waiting Time). The optimal walks Foremost, Fastest, and
Minimum Hop-Count are used quite frequently in the literature [HS12; Nic+13; San+11;
XFJ03]. Shortest was introduced by Wu et al. [Wu+16]. The remaining properties did
not receive much attention in the literature so far. We provide a brief motivation for
them all. Not all of them warrant consideration in proximity networks. We will pro-
vide examples of the use of all properties that are discarded in the context of proximity
networks from their respective fields of application.

Foremost. A foremost walk is a temporal walk from one vertex to another vertex that
has the earliest arrival time possible. Computing a foremost walk from a source
vertex to all vertices in the proximity network signifies the speed with which an
infectious disease could spread. In Fig. 1.2, person A can infect person B and C on
day 3, however person D can only be infected on day 8. Consequently, the infectious
disease could have permeated the entire system by day 8.

Reverse-Foremost. A reverse-foremost walk is a temporal walk from one vertex to an-
other vertex that exhibits the latest departure time possible. Computing a reverse-
foremost walk from a source vertex to all vertices in the proximity network estimates
the latest possible point in time, at which an infectious disease could start spreading
and still permeates the entire network. In Fig. 1.2, person A must still be contagious
on day 4 to have infected the entire system by the end of the observation period.

12

Fastest. A fastest walk is a temporal walk from one vertex to another vertex which
exhibits the minimum duration, that is, the minimum difference between departure
and arrival times. For a proper motivation, we must leave proximity networks and
delve into the field of flight networks. Airports represent our vertices, time-arcs
flights from one airport to another. The time stamp indicates the departure time of
a flight, the transmission time indicates the duration. The minimum dwell time in
the vertices signifies the minimum time required in an airport to catch a connecting
flight. The duration is the variable passengers aim to minimize in order to streamline
their journey.

Shortest. A shortest walk is a temporal walk from one vertex to another vertex that
minimizes the sum of transmission times on the time-arcs. In the context of flight
networks, a shortest walk is a flight connection with the minimum time spent air-
borne.

Minimum Hop-Count. A minimum hop-count walk is a temporal walk from one vertex
to another vertex which minimizes the number of time-arcs. Within a flight network,
passengers also aim to minimize their number of connecting flights to avoid lengthy
boarding procedures and the risk of missing connecting flights.

Cheapest. For a given cost function on the time-arcs, a cheapest walk is a temporal walk
from one vertex to another vertex with the minimum sum of costs over all time-arcs.
The benefits of the minimization of this property within flight networks are obvious:
Weighing long travel times and multiple connections against the cheapest fare is the
oldest consideration in the book for many air travelers.

Most-Likely. For given probabilities on the time-arcs, a most-likely walk is a temporal
walk from one vertex to another with the highest probability. One application lies
in the field of proximity networks: For every contact there is a certain likelihood for
an infectious disease to be transmitted depending on the proximity of the persons
or the body contact between them. Thus, a most-likely walk is a transmission route
with the highest probability for the infectious disease to be spread. The respective
probabilities of the time-arcs within the walk are multiplied.

Minimum Waiting Time. The minimum waiting time walk is a temporal walk from one
vertex to another that has minimum sum of waiting times over all intermediate
vertices. Routing packets through a router network prioritizes minimum waiting
times of packages in the routers to improve the overall performance of the network.

Fig. 1.3 gives an overview of the optimal walks. A formal definition will be given in
the Section 2.2.

The focus of this thesis lies in finding such optimal walks within temporal graphs. We
elaborate the main structural properties of temporal walks and optimal temporal walks.
Based on these properties, we introduce algorithms for finding single-source, single-sink
and all-pairs optimal walks. In the end, we discuss the potentials and limitations of

13

1 Introduction

v

a b

c d

e f

g h

i

j k

l m

n o

w

(1, 1, 1)

(2, 2, 0)

(6, 1, 1)

(8, 2, 1)

(12, 2, 0)

(16, 2, 1)

(6, 1, 1)

(8, 2, 0)

(11, 1, 1)

(1, 1, 1)

(6, 1, 0)

(9, 1, 1)
(1, 2, 1) (10, 2, 0)

(1, 2, 0)

(5, 2, 0)

(10, 2, 0)

(1, 2, 1)

(5, 2, 1)

(10, 2, 1)

(4, 2, 1)

(6, 2, 0)

(8, 2, 1)

name optimization property Example

foremost earliest arrival time (v, a, b, w)

reverse-foremost latest departure time (v, c, d, w)

fastest minimum duration (v, e, f, w)

shortest minimum travel time (v, g, h, w)

minimum hop-count minimum number of time-arcs (v, i, w)

cheapest minimum cost (v, j, k, w)

most-likely highest probability (v, l,m,w)

minimum waiting time waiting time in intermediate vertices (v, n, o, w)

Figure 1.3: An overview of the optimal walk definitions considered in the thesis. The
example-column provides the vertex sequence of an optimal walk in the above
displayed temporal graph with α ≡ 0 and β ≡ 18. The three-tuples on the
time-arcs represent the time stamp, the transmission time, and potential cost
(given by an additional cost function on the time-arcs) respectively.

14

parameterized problem variants for more efficient algorithms for finding optimal walks
in temporal graphs.

Related Work. Temporal walks are a fundamental concept in temporal graph theory.
Temporal connectivity is a main concept which is based on the definition of temporal
walks [AF16; Ber96; KKK00; Mer+13]. In this context, connected components [Nic+12],
flows [KLS02; Sku09] and s-t-separation [KKK00; Zsc+17] are studied. In the most-
commonly used model of temporal graphs [HS12; Mer+13], two variants of temporal
walks are studied: strict and non-strict temporal walks. Non-strict temporal walks de-
mand non-decreasing time steps on the time-arcs whereas strict temporal walks demand
increasing time steps on the time-arcs. The second model can be simulated in our model
by adding a transmission time of one on each time-arc within the temporal graph.

A quite common approach in the context of temporal walks is the transformation
of a temporal graph into a static graph while maintaining all walks in the temporal
graph—often referred to as line graphs or static expansions [Dea04; KKK00; Mer+13;
Wu+16].

Optimal walks are the basis for concepts such as eccentricity, diameter, betweeness and
closeness centrality that are widely adapted for temporal graphs [KA12; PS11; San+11;
Tan+13]. Nevertheless, the efficiency of computing optimal walks in temporal graphs
has received little attention.

Xuan, Ferreira, and Jarry [XFJ03] compute single-source and all-pair optimal walks
for Foremost, Fastest and Minimum Hop-Count on time evolving graphs—a restricted
class of our temporal graph model in which the lifetime of the graph is bounded in the
input size and the transmission times are zero. Their single-source algorithms run in
quasi-linear and quadratic time respectively. All-pairs fastest walk is computed in cubic
time. One problem is that the running times are depending on the lifetime of the graph
which can be exponentially large in comparison to the input size of a temporal graph.

Wu et al. [Wu+16] introduced algorithms for computing single-source optimal walks
for Foremost, Reverse-Foremost, Fastest, and Shortest on temporal graphs without α-
and β-restrictions. The algorithms run in linear and quasi-linear time with respect to
the number of time-arcs, provided that transmission times are greater than zero on every
time-arc and a sorted time-arcs list is given. A problem is that their algorithms seems
to be not adaptable to graphs with arbitrary transmission times without an increase in
the running time.

The minimum and maximum dwell time in the vertices have not received much at-
tention in the context of temporal walks even though they are considered as reasonable
extensions to the temporal walk model [Hol15; HS12; PS11]. Zschoche et al. [Zsc+17]
have studied these α- and β-restrictions for s-t-separation in temporal graphs. Dean
[Dea04] studied waiting time policies for finding optimal walks on a restricted temporal
graph model, the so-called time-dependent networks, in which the lifetime of the graph
is also bounded in the input size.

15

1 Introduction

Structure and Contributions of the Thesis. In the beginning, we want to highlight
three key messages of the thesis:

1. Different temporal graph parameters—the transmission times λ and the minimum
dwell time α—can be dissolved in linear time while maintaining temporal walks
and optimal temporal walks alike.

2. The maximum dwell time has no influence on the running time of finding optimal
walks despite the fact that nearly no structural properties of optimal walks hold
in temporal graphs with bounded maximum dwell time.

3. There is no deterministic algorithm for finding optimal temporal walks that has
a running time that is bounded by a function in the number of vertices in our
general temporal graph model.

In more detail, the thesis has the following contributions:

In Chapter 2 we formally define the basic concepts of temporal graphs, temporal walks,
and optimal temporal walks. We provide all further terms frequently used throughout
the thesis.

In Chapter 3, we elaborate some basic observation concerning the temporal graph
parameters λ, α, and β and their impact on temporal walks. We introduce two trans-
formations to dissolve the transmission times and the α-restriction while maintaining all
temporal walks in the temporal graph. We present properties of optimal temporal walks
in our graph model, followed by observations concerning the structure of optimal walks
in temporal graphs without β-restriction.

Chapter 4 is devoted to finding optimal walks in temporal graphs. In Section 4.1,
algorithms solving Single Source Optimal Walk are presented. Two algorithms
computing Foremost and Fastest in O(M) and O(M logM) time respectively are devel-
oped where M is the number of time-arcs. The second algorithm is exemplary for the
remaining optimal walk definitions.

We further introduce Transformation 3 to transform a temporal graph to a static
graph while maintaining all temporal walks in the graph. Optimality values of the walks
are preserved by cost functions on the arcs.

Section 4.2 considers the problem of solving Single Sink Optimal Walk. We
introduce a transformation that ’reverses’ a temporal graph such that solving single-
source optimal walk gives a solution for single-sink optimal walk.

In Section 4.3, we introduce an adaptation of the Floyd-Warshall algorithm for solving
All-Pairs Optimal Walk on temporal graphs without β-restrictions. This can be
solved in O(n2M) time for Foremost, Reverse-Foremost, and Fastest, and in O(M3) time
for the remaining optimal walk variants (except for Minimum Waiting Time) where n
is the number of vertices and M is the number of time-arcs in the temporal graph. Not
only do the algorithms compute an optimal walk between all pairs of vertices, but also
within any possible time interval of the lifetime of a temporal graph. The main results
of Chapter 4 are summarized and referenced in Table 1.1.

16

Table 1.1: Main results of the thesis concerning the problem variants single-
source (SSOP), single-sink (SSIOP), and all-pairs (APOP) optimal walk. The
variable n denotes the number of vertices and the variable M denotes the
number of time-arcs.

Problem Running Time Reference

SSOP
(Foremost) O(M) Algorithm 1

O(M logM) Algorithm 2

SSIOP
(Reverse-Foremost) O(M)

Transformation 4
O(M logM)

APOP
(Foremost, Reverse-Foremost,
Fastest)

O(n2M) Algorithm 3

O(M3) Algorithm 4

In Chapter 5 we discuss the potentials and limitations of fixed-parameter algorithms
for finding optimal walks in temporal graphs and introduce two parameterized algo-
rithms for all-pair optimal walk. First, we show in Section 5.1 that there cannot exist
a deterministic algorithm that has a running time that is upper bounded only in the
number of vertices in the graph for finding optimal walks in temporal graphs. This ob-
servation is followed by two algorithms solving all-pairs optimal walk parameterized by
the vertex cover number in Section 5.2.1 and treewidth in Section 5.2.2 of the underlying,
undirected, static graph respectively.

Chapter 6 concludes the thesis with a summary of our main results and finishes with
an outlook on potential research directions.

17

2 Preliminaries

In this chapter, we formally introduce the main concepts of the thesis: temporal graphs,
temporal walks, and optimal temporal walks. We introduce terms and definitions fre-
quently used throughout the thesis.

2.1 Temporal Graphs

A temporal graph is a graph that changes over time. We briefly repeat the formal
definition of a temporal graph introduced in Chapter 1:

Definition 2.1.1 (Temporal Graph). A temporal graph G = (V,E, [T], α, β) is defined
as a five-tuple consisting of

(1) a time interval [T], where [T] = {1, . . . , T} ⊆ N and T is the lifetime of G,

(2) a vertex set V ,

(3) a time-arc set E ⊆ V × V × [T]× {0, . . . , T},

(4) a minimum dwell function α : V → {0, . . . , T}, and

(5) a maximum dwell function β : V → {0, . . . , T}.

A time-arc e = (v, w, t, λ) ∈ E is a directed connection between v and w with time
stamp t and transmission time λ, that is, a transmission from v to w starting at time
step t and taking λ time steps to cross the arc. The arrival time in vertex w sums up
to t+ λ. Furthermore, we call v the startpoint and w the endpoint of the time-arc.

Example. Given a time-arc e = (v, w, 4, 5), the transmission starts at time step 4 from
startpoint v, crosses the arc for 5 time steps, and arrives at time 4 + 5 = 9 at the
endpoint w. We assume that for all time-arcs e = (v, w, t, λ) ∈ E we have t + λ ∈ T so
that the arrival time in an endpoint lies within the lifetime of the temporal graph.

To extract the single elements of a time-arc e = (v, w, t, λ), we write start(e) for
the startpoint v, end(e) for the endpoint w, t(e) for the time step t, and λ(e) for the
transmission time λ of time-arc e.

Furthermore, there are the α- and β-restrictions on the waiting time in the vertices:
The two dwell functions α : V → N and β : V → N assign each vertex a minimum and
maximum dwell time respectively. The minimum dwell time α is the minimum time an
agent has to stay in the vertex before she can move further in the temporal graph. The

19

2 Preliminaries

maximum dwell time β is the maximum time an agent can stay in the vertex before she
is no longer allowed to move further in the graph.

Example. Given a vertex v with α(v) = 2 and β(v) = 6, let us assume an agent arrives in
the vertex v at time step 10. She cannot move to another vertex before time step 10+2 =
12. Moreover, she cannot move to another vertex after time step 10 + 6 = 16 anymore.

If there are no α- and β-restrictions specifically mentioned, then we assume that for
every vertex v ∈ V it holds that α(v) = 0 and β(v) = T . This means that an agent
can remain an arbitrary amount of time in a vertex before she can be move to another
vertex in the graph. We write α ≡ 0 and β ≡ T to imply the constant 0-function and
the constant T -function respectively. For simplicity, we write G = (V,E, [T], β) if α ≡ 0,
and we write G = (V,E, [T]) if α ≡ 0 and β ≡ T . If there is a constant c ∈ N such that
for all e ∈ E it holds that λ(e) = c, then we write λ ≡ c.

In some scenarios, we need to consider time-arc-weighted temporal graphs. A respec-
tive cost function c : E → N assigns each time-arc a value, that is, how much it costs
to transmit through the time-arc. Depending on the situation, the costs can also be
interpreted as probabilities. If there is no cost function given, then it can be assumed
that all time-arcs have a unit value of one.

Induced Temporal Graphs & Underlying Graphs. One concept we will often use
through out the thesis is the concept of induced temporal graphs. A temporal graph
can be induced by a set of vertices V ′ ⊆ V or by a time interval T ′ ⊆ T :

Definition 2.1.2 (Induced Temporal Graph). Let G = (V,E, [T], α, β) be a temporal
graph and let V ′ ⊆ V , T ′ ⊆ T :

• The temporal graph G[V ′] = (V ′, E ′, T, α′, β′) with

(1) E ′ = {(v, w, t, λ) ∈ E | v, w ∈ V ′},
(2) α′ : V ′ → N with α′(v) = α(v) for all v ∈ V ′, and

(3) β′ : V ′ → N with β′(v) = β(v) for all v ∈ V ′.
is the temporal graph induced by the vertex set V ′.

• The temporal graph G[T ′] = (V,E ′, T ′, α, β) with

E ′ = {(v, w, t, λ) ∈ E | t ∈ T ′ ∧ t+ λ ∈ T ′}.
is the temporal graph induced by the time interval T ′.

The underlying graph is the static graph that results by ignoring the time component
of the time-arcs. We distinguish between directed and undirected underlying graphs:

Definition 2.1.3 (Underlying Graph). Let G = (V,E, [T], α, β) be a temporal graph.

• The underlying, directed graph of G is defined as Gd[G] = (V,E ′) with

E ′ = {(v, w) | (v, w, t, λ) ∈ E}.

• The underlying, undirected graph of G is defined as Gu[G] = (V,E ′) with

E ′ = {{v, w} | (v, w, t, λ) ∈ E ∨ (w, v, t, λ) ∈ E}.

20

2.1 Temporal Graphs

Temporal Graph Input. In our algorithmic investigations, we will assume that the
time-arcs are sorted by time stamp. This is a legitimate assumption because most
temporal graph datasets come with this kind of ordering—see the datasets presented in
Barrat and Fournet [BF14], Gemmetto, Barrat, and Cattuto [GBC14], Goerke [Goe11],
Isella et al. [Ise+11], Stehlé et al. [Ste+11], and Vanhems et al. [Van+13].

Definition 2.1.4 (Sorted Time-Arc List). Let G = (V,E, [T], α, β) be a temporal graph,
and [e1, e2, . . . , e|M |] be a list of all time-arcs in E. We call [e1, e2, . . . , e|M |] a sorted time-
arc list if t(e1) ≤ t(e2) ≤ · · · ≤ t(e|M |).

If we do not assume that such a sorted time-arc list is given, then we can observe the
following: There exist temporal graph instances such that a temporal path consists of
all time-arcs sorted by time stamp. Thus, the running-time lower bound of sorting the
time-arcs by time stamps—Ω(M logM)—is a lower bound on finding a temporal walk
within the graph.

Reference Guide. As an overview of the major concept of temporal graphs, we in-
troduce and repeat a number of notations and definitions that we use throughout the
thesis. This table should not been seen as a subject of study but more as a reference
guide. In the context of a temporal graph G = (V,E, [T], α, β), we denote by

V the vertex set of G;

E the time-arc set of G;

[T] the time interval of G with [T] = {1, . . . , T};

start(e) the startpoint v of the time-arc e := (v, w, t, λ) ∈ E ;

end(e) the endpoint w of the time-arc e := (v, w, t, λ) ∈ E ;

t(e) the time step t of the time-arc e := (v, w, t, λ) ∈ E ;

λ(e) the transmission time λ of the time-arc e := (v, w, t, λ) ∈ E ;

λmax the maximum transmission time in G, that is, λmax := max(v,w,t,λ)∈E λ ;

α the minimum dwell with α : V → N;

β the maximum dwell function with β : V → N;

n the number |V | of vertices in G;

M the number |E| of time-arcs in G;

Mt the number of time-arcs in G with time stamp smaller or equal to t, that is,
Mt := |{(v, w, t′, λ) ∈ E | t′ ≤ t}|;

21

2 Preliminaries

Vt the vertex subset Vt ⊆ V at time t, that is, Vt := {v | (v, w, t, λ) ∈ E ∨
(w, v, t, λ) ∈ E};

Et the arc subset at time t, that is, Et := {(v, w) | (v, w, t, λ) ∈ E};

Gt the directed, static graph Gt := (Vt, Et);

nt the number |Vt| of vertices in Gt;

mt the number |Et| of arcs in Gt;

G[V ′] the temporal graph of G induced by the vertex set V ′ where V ′ ⊆ V ;

G[T ′] the temporal graph of G induced by the time interval T ′ where T ′ ⊆ T ;

Gu[G] the underlying, undirected graph of G;

Gd[G] the underlying, directed graph of G;

τ the set of all time-steps in which there exists at least one time-arc, that is,
τ := {t | (v, w, t, λ) ∈ E};

τ+v the set of all time steps in which the vertex v has an out-going arc, formally,
τ+v := {t | (v, w, t, λ) ∈ E};

τ+max the maximum number of time steps in which a vertex has an out-going arc
among all vertices in V , formally, τ+max := maxv∈V |τ+v |;

τ−v the set of all time steps in which the vertex v has an in-going arc, formally,
τ−v := {t+ λ | (w, v, t, λ) ∈ E};

τ−max the maximum number of time steps in which a vertex has an in-going arc among
all vertices in V , formally, τ−max := maxv∈V |τ−v |;

d+v the set of all time-arcs which start in vertex v, formally, d+v := {(v, w, t, λ) ∈ E};

d−v the set of all time-arcs which end in vertex v, formally, d−v := {(w, v, t, λ) ∈ E};

dv,w the set of all time-arcs which start in vertex v and end in vertex w, for-
mally, dv,w := {(v, w, t, λ) ∈ E}.

22

2.2 Temporal Walks & Optimal Walks

2.2 Temporal Walks & Optimal Walks

A temporal walk is a walk in a temporal graph that respects time, that is, the visited
time-arcs of a temporal walk have to be increasing in time. Additionally, the transmission
time and the α- and β-restrictions have to be respected.

Definition 2.2.1 (Temporal Walk). Given a temporal graph G = (V,E, [T], α, β) and
two vertices v, w ∈ V , a temporal walk from v to w is a sequence of time-arcs (e1, e2, . . . , ek)
with ei = (vi, wi, ti, λi) ∈ E for all i ∈ [k] such that

(1) v = v1 and w = wk,

(2) wj = vj+1, and

(3) tj + λj + α(wj) ≤ tj+1 ≤ tj + λj + β(wj) for all j ∈ [k − 1].

The length | · | of a temporal walk (e1, e2, . . . , ek) is |(e1, e2, . . . , ek)| := k, the number of
time-arcs in the sequence. If there is a temporal walk from v to w, then v reaches w.

In the literature, temporal walks are often referred to as temporal journey [Mer+13;
Nic+13; XFJ03]. Also notice that the vertices do not have to be distinct in a temporal
walk. Therefore, we introduce the term temporal path. A temporal path is a temporal
walk where all vertices are pairwise distinct.

Definition 2.2.2 (Temporal Path). Given a temporal graph G = (V,E, [T], α, β) and
two vertices v, w ∈ V , a temporal path from v to w is a temporal walk (e1, e2, . . . , ek)
where ei = (vi, wi, ti, λi) ∈ E for all i ∈ [k] such that

(1) vi 6= vj for all j, i ∈ [k] with i 6= j, and

(2) v1 6= wk.

We will often talk about subsequences of temporal walks:

Definition 2.2.3 (Subwalk & Subpath). Let G = (V,E, [T], α, β) be a temporal graph
and P = (e1, e2, . . . , ek) a temporal walk in G. Every temporal walk Pi,j = (ei, ei+1, . . . , ej)
with i, j ∈ [k] is called a subwalk of P . If i = 1, then we call Pi,j a prefix-walk. If j = k,
then we call Pi,j a postfix-walk. If Pi,j is a temporal path, then we call Pi,j a subpath
of P .

Note that every subwalk of a temporal path is also a path.

Optimal Temporal Walk. Due to the additional time component, the definition of an
optimal walk in temporal graphs can be done in several ways. Different definitions of
optimal temporal walks were first provided by Xuan, Ferreira, and Jarry [XFJ03] and
extended by Santoro et al. [San+11] and Wu et al. [Wu+16]. In this section, we list the
definitions that we have found in the literature and introduce some new definitions that
we consider as useful. We already introduced our optimal walk definitions informally
in Chapter 1. Now, we provide a formal definition of optimal walks:

23

2 Preliminaries

Definition 2.2.4 (Optimal Temporal Walk). Let G = (V,E, [T], α, β) be a temporal
graph, c : E → N be a cost function, and v, w ∈ V be two vertices. A temporal
walk P = (e1, e2, . . . , ek) from v to w with ei = (vi, wi, ti, λi) for all i ∈ [k] is called an
optimal temporal walk if it optimizes the following condition (among all temporal walks
from v to w):

name min / max optimization value

foremost min tk + λk

reverse-foremost max t1

fastest min (tk + λk)− t1

shortest min
∑k

i=1 λi

minimum hop-count min k

cheapest min
∑k

i=1 c(ei)

most-likely max
∏k

i=1 c(ei)

minimum waiting time min
∑k−1

i=1 ti+1 − (ti + λi)

An optimal temporal path is an optimal temporal walk that fulfills the properties of a
temporal path, that is, all visited vertices are pairwise distinct.

For the sake of simplification, we often refer to optimal temporal walks as optimal
walks. Note that the definition of most-likely walk can easily be transformed into cheap-
est walk. First it holds that

k∏
i=1

c(ei) ∼
k∑
i=1

log c(ei)

In most-likely walks we only want to look at probabilities, implying c(e) ∈ [0, 1] for
all e ∈ E. Hence, we can transform a most-likely walk into a cheapest walk by considering
the costs log

(
1−c(e)

)
on the time-arcs. We will therefore not consider most-likely walks

separately.
Also note that if we are looking into temporal graphs with transmission times zero,

then some of the optimal walk variants are equivalent and some are useless:

24

2.3 Problem Definitions

Shortest. Any temporal from a vertex v to a vertex w is a shortest walk because the
sum of transmission times is always zero. Thus, this definition does not make sense
in temporal graphs where all transmission times are zero.

Fastest & Minimum Waiting Time. The optimization value of Fastest can be rewritten
as the sum of all transmission times plus the sum of all waiting times

k∑
i=1

λi +
k−1∑
i=1

ti+1 − (ti + λi).

If the transmission times are zero, then the first term is set to zero in every temporal
walk.

2.3 Problem Definitions

We will give formal definitions of the problem variants of finding optimal walks in tem-
poral graphs that are used throughout the thesis. All these problems can be used for all
of our optimal walk definitions.

The first problem is finding an optimal walk from a source vertex to each vertex in
the temporal graph.

Single Source Optimal Walk
Input: Given a temporal graph G = (V,E, [T], α, β), a cost function c : E → N,

and a vertex v ∈ V .
Task: Find an optimal walk from v to every w ∈ V .

The next problem is finding an optimal walk form each vertex in the temporal graph to
a distinct sink vertex:

Single Sink Optimal Walk
Input: Given a temporal graph G = (V,E, [T], α, β), a cost function c : E → N,

and a vertex w ∈ V .
Task: Find an optimal walk from every v ∈ V to w.

The last problem is finding an optimal walk between all pairs of vertices in the temporal
graph.

All-Pairs Optimal Walk
Input: Given a temporal graph G = (V,E, [T], α, β) and a cost function c : E → N.
Task: Find an optimal walk from every v ∈ V to every w ∈ V .

We will continue in the next chapter by elaborating different temporal graph variants
and their impact on temporal walks. We also look into various properties of optimal
temporal walks before we start studying efficient algorithms solving all three of the above
mentioned problem variants of finding optimal temporal walks.

25

3 Structure of Temporal Walks

This chapter is devoted to the structure of temporal walks. First, we will investigate some
parameters of temporal graphs and their impact on the structure of temporal walks. We
consider three of these parameter: the minimum dwell time α, the transmission time λ,
and the maximum dwell time β. Furthermore, we will show how we can transform a
temporal graph so that there are no transmission times and no minimum dwell times
while maintaining all temporal walks in the graph. These transformations justify our
restricted temporal graph model in the algorithmic investigations of finding optimal
walks. Next, we will study various properties of optimal walks. We will refer to these
properties frequently in the course of this thesis due to their great influence on optimal
walk algorithms.

3.1 Temporal Graph Variants

Parameters—the minimum dwell time α, the transmission time λ, and the maximum
dwell time β—have great impact on the structure of temporal walks. This includes the
existence of cycles or the sequence of time-arcs in a temporal walk. We will elaborate
this impact in this section.

In the beginning, we will consider the parameter minimum dwell time. We will intro-
duce a transformation that allows us to transform any temporal graph in linear time into
a temporal graph with no minimum dwell time in the vertices. The resulting graph of
course maintains all temporal walks. This allows us to restrict the algorithmic investiga-
tions to the following temporal graph model— temporal graphs G = (V,E, [T], α, β) with

1. α(v) = 0 for all v ∈ V ,

2. λ(e) ≥ 0 for all e ∈ E, and

3. β(v) ≤ T for all v ∈ V .

Remark. If it holds that λ(e) = 0 for all e ∈ E, then we call the temporal graph
instantaneous. If it holds that λ(e) > 0 for all e ∈ E, then we call the temporal graph
non-instantaneous. If it holds that β(v) = T for all v ∈ V , then we call the temporal
graph incurable.

We will continue with showing the impact of the transmission times to temporal walks.
We will further introduce a transformation to reduce the transmission time of all time-
arcs to zero in linear time while maintaining all temporal walks in the temporal graph.
In the end, we will consider the last parameter: the maximum dwell time β. The

27

3 Structure of Temporal Walks

w

α = 4

β = 6

(4, 5)

(8, 10)

(a) Vertex w with α(w) = 4

w

α′ = 0

β′ = 2

(4, 9)

(8, 14)

(b) Vertex w with α encoded in the
new transmission times λ′ and the
maximum dwell function β′

Figure 3.1: Removing minimum dwell time α (Transformation 1)

maximum dwell time has a great influence on the structure of temporal walks due to the
possible existence of cycles in any temporal walk between two vertices. Consequently,
the maximum dwell time plays an important role for the algorithmic efficiency of finding
optimal walks.

3.1.1 Minimum Dwell Time α.

Every temporal graph can be transformed into a temporal graph without minimum
dwell times in the vertices and at the same time maintaining all temporal walks. The
transformation shifts the minimum dwell time to the transmission time of the in-going
time-arcs of the vertices: The idea is to stay longer on the time-arc that leads to a vertex
instead of being forced to remain in the vertex for the minimum dwell time. The shift
and, thus, the removal of the minimum dwell time is illustrated in Figure 3.1.

Transformation 1 (Remove minimum dwell time α). Let G = (V,E, [T], α, β) be a tem-
poral graph, transform G into a temporal graph G ′ = (V,E ′, T, β′) with

(1) E ′ = {(v, w, t, λ+ α(w)) | (v, w, t, λ) ∈ E} and

(2) β′ : V → N with β′(v) = β(v)− α(v) for every v ∈ V .

This transformation of the minimum dwell time runs in O(n+M) time because we only
have to look at every vertex and its in-going time-arcs once. The transformed graph G ′
has neither an increase in the number of vertices nor in the number of time-arcs and,
thus, G ′ has n vertices and M time-arcs. The transformation also has no impact on the
temporal walks as we show in the following lemma.

Lemma 3.1.1. Let G = (V,E, [T], α, β) be a temporal graph and let G ′ = (V,E ′, [T], β′)
be the temporal graph resulting from applying Transformation 1 to G. The time-arc
sequence P = (e1, . . . , ek) with ei = (vi, wi, ti, λi) ∈ E is a temporal walk in G if and only
if P ′ = (e′1, . . . , e

′
k) with e′i = (vi, wi, ti, λi + α(wi)) ∈ E ′ is a temporal walk in G ′.

28

3.1 Temporal Graph Variants

Proof. Let us consider a temporal walk P = (e1, . . . , ek) in G where ei = (vi, wi, ti, λi).
We know by construction that e′i ∈ E ′ is equal to (vi, wi, ti, λi + α(wi)) and, conse-
quently, ei and e′i have the same startpoint vi and the same endpoint wi. It remains
to show that the chronological sequence in P ′ = (e′1, . . . , e

′
k) fulfills the definition of a

temporal walk. We know for every ei, ei+1 ∈ P that

ti + λi + α(wi) ≤ ti+1 ≤ ti + λi + β(wi)

⇔ ti + (λi + α(wi)) ≤ ti+1 ≤ ti + (λi + α(wi)) + β(wi)− α(wi)

⇔ ti + (λi + α(wi)) + 0 ≤ ti+1 ≤ ti + (λi + α(wi)) + β′(wi).

We can see that the chronological sequence of every e′i, e
′
i+1 ∈ P ′ is therefore also valid.

Thus, P ′ is a temporal walk in G ′. The other direction of the equivalence can be shown
the same way.

Remark. Note that all temporal walks from v to w in G ′ arrive α(w) time steps later
than the original temporal walks in G. Also one has to pay attention when computing a
shortest walk or a minimum waiting time walk due to the shift of the minimum waiting
time α to the transmission times. For a shortest walk, an easy workaround is to store
the actual transmission time of the time-arcs in a cost function on the time-arcs. For
a minimum waiting time walk, the minimum dwell time must always be added for any
intermediate vertex in a temporal walk. Furthermore, assume we are given a temporal
graph with a sorted time-arc list—see Definition 2.1.4. Transformation 1 does not change
the time stamps of the arcs. Therefore, the sorted list of the time-arcs can be maintained.

Due to Transformation 1, we can always shift the minimum dwell time of a vertex to
the transmission times of the in-going time-arcs in linear time without loosing a potential
sorted list of the time-arcs. Thus, it is sufficient to only look at temporal graphs with
minimum dwell times zero when investigating the algorithmic aspects of optimal walks.
We will do so throughout the thesis.

3.1.2 Transmission Time λ.

Looking at the structure of temporal walks, there is a crucial difference between non-
instantaneous temporal graphs and those with arbitrary transmission times. In non-
instantaneous temporal graphs we know that the time-arcs of a temporal walk have
strictly increasing time stamps. Thus, the order in which the time-arcs can appear in a
temporal walk is already known.

Observation 3.1.2. Let G = (V,E, [T], α, β) be a non-instantaneous temporal graph.
For every temporal walk (e1, . . . , ek) with i1, . . . , ik ∈ [M] it holds that

t(e1) < t(e2) < · · · < t(ek).

In contrast to Observation 3.1.2, if we look at general temporal graphs, then a temporal
walk within these graphs can consist of a subsequence of time-arcs with the same time
stamp.

29

3 Structure of Temporal Walks

v w
(4, 5)

(a) Time-arc e = (v, w, 4, 5)

v ve w
(4, 0) (9, 0)

(b) Splitting time arc e via ve into es =
(v, ve, 4, 0) and e

a = (ve, w, 4 + 5, 0)

Figure 3.2: Removing transmission times λ (Transformation 2)

Removing Transmission Time λ. We can transform every temporal graph with ar-
bitrary transmission times into an equivalent instantaneous temporal graph in terms of
temporal walks. We will show that this transformation can be executed in linear time.

The basic idea of the transformation is to encode the transmission time of a time-
arc e = (v, w, t, λ) by splitting e with a vertex ve into two time-arcs: the first one e1 =
(v, ve, t, 0) appearing at time step t and the second one e2 = (ve, w, t+λ, 0) appearing at
time step t+λ. In this way, we are forced to stay in vertex ve for the whole transmission
time before reaching vertex w. The idea is illustrated in Fig. 3.2. The transmission time
of the two newly added time-arcs is set to zero. Formally, the transformation can be
described as follows:

Transformation 2 (Remove transmission time λ). Let G = (V,E, [T], α, β) be a temporal
graph, transform G into a temporal graph G ′ = (V ′, E ′, [T], α′, β′) with

(1) V ′ = V ∪ {ve | e ∈ E},

(2) E ′ = {(v, ve, t, 0), (ve, w, t+ λ(e), 0) | (v, w, t, λ) ∈ E},

(3) α′ : V ′ → N with

α′(v) =

{
α(v) for all v ∈ V
0 for all v ∈ {ve | e ∈ E}, and

(4) β′ : V ′ → N with

β′(v) =

{
β(v) for all v ∈ V
T for all v ∈ {ve | e ∈ E}.

In Transformation 2, we take all vertices of the original graph and for every time-
arc, we add one additional vertex to our vertex set and two predefined time-arcs in our
time-arc set. The functions α′ and β′ must be defined for every vertex in the newly
constructed vertex set which contains n + M vertices. Hence, the resulting temporal
graph consists of n+M vertices and 2M time-arcs and can be constructed in O(n+M)
time. Furthermore, the transformation has no influence on the existing temporal walks
in the graph:

30

3.1 Temporal Graph Variants

Lemma 3.1.3. Let G = (V,E, [T], α, β) be a temporal graph and G ′ = (V ′, E ′, [T], α′, β′)
be the temporal graph resulting from applying Transformation 2 to G. Given two ver-
tices v, w ∈ V , the time-arc sequence P = (e1, . . . , ek) with ei = (vi, wi, ti, λi) ∈ E
is a temporal walk from v to w in G if and only if P ′ = (es1, e

a
1, . . . , e

s
k, e

a
k) with esi =

(vi, vei , ti, 0) ∈ E ′, eai = (vei , wi, ti + λi, 0) ∈ E ′ is a temporal walk from v to w in G ′.

Proof. Let P = (e1, . . . , ek) be a temporal walk from v to w with ei = (vi, wi, ti, λi) ∈ E.
By Transformation 2, it holds that esi = (vi, vei , ti, 0) ∈ E ′ and eai = (vei , wi, ti + λi, 0) ∈
E ′. It is easy to verify that the time-arc sequence (esi , e

a
i) is a valid temporal walk due

to α(vei) = 0 and β(vei) = T . Furthermore, we know for every ei, ei+1 ∈ P that

t(ei) + λ(ei) + α(end(ei)) ≤ t(ei+1) ≤ t(ei) + λ(ei) + β(end(ei))

⇔ ti + λi + α(wi) ≤ ti+1 ≤ ti + λi + β(wi)

⇔ t(eai) + α(end(eai))) ≤ t(esi+1) ≤ t(eai) + β(end(eai))

It further holds that end(eai) = start(esi+1) if and only if end(ei) = start(ei+1). Thus,
the sequence (eai , e

s
i+1) is a temporal walk in G ′ if and only the sequence (ei, ei+1) is a

temporal walk in G.
We can conclude that every time-arc sequence P = (e1, . . . , ek) in G is a temporal

walk if and only if P ′ = (es1, e
a
1, . . . , e

s
k, e

a
k) is a temporal walk in G ′.

Remark. Note that the transmission time of an original time-arc e is now encoded in the
unique dwell time in the vertex ve within a temporal walk. Also only the waiting times
in the original vertices shall count for a minimum waiting time walk.

There is a useful observation that can be made if Transformation 2 is applied to a
non-instantaneous temporal graph:

Observation 3.1.4. Let G = (V,E, [T], β) be a non-instantaneous temporal graph. After
applying Transformation 2 to G, for the resulting graph G ′ the following holds: The static
graph Gt is acyclic for all t ∈ [T].

Recall that Gt is the static graph induced by all time-arcs with time step t. The obser-
vation follows directly from Observation 3.1.2. Observation 3.1.4 will be useful because
there are certain algorithms—like Dijkstra’s algorithm computing shortest path—that
run faster on acyclic graphs.

Furthermore, if a sorted time-arc list (see Definition 2.1.4) shall be maintained, then
applying Transformation 2 requires additional time:

Lemma 3.1.5. Let G = (V,E, [T], β) be a temporal graph. After applying Transforma-
tion 2 to G, it takes O

(
M log(min{λmax,M})

)
time to maintain a sorted time-arc list

for the resulting graph G ′.

Proof. Let [e1, . . . , e|M |] be a sorted time-arc list of G. Let L be a new sorted time-arc
list of G ′. In the beginning, L is empty. Additionally, we store a sorted list Lt of time
steps t′ together with a list of time-arcs with time stamp t′. The list Lt is also initially
empty. For every time-arc ei with i ∈ [M]—starting with ei := e1 and increasing i in
each iteration—do the following:

31

3 Structure of Temporal Walks

v a w

cb

(4, 1)

(6, 2)

(10, 0)

(12, 1)

(17, 9)

Figure 3.3: A temporal graph with β ≡ 4 in which the only temporal walk from v to w
visits a twice.

1. Delete all time steps in Lt that are smaller than t(ei+1) in ascending order and
append the corresponding time-arcs to L.

2. Append esi to L.

3. Place t(eai) into Lt, if it does not already exist, and add eai to the time-arc list of
time step t(eai).

The list Lt contains at most min{λmax,M} time steps at the same time. Such a sorted
list Lt can be implemented with AVL-trees [AVL62]. Thus, all operations—search,
insertion, deletion—run in O(log min{λmax,M}) time. Therefore, to get a sorted time-
arc list after having applied Transformation 2 takes O

(
M log min{λmax,M})

)
time.

In summary, Observation 3.1.2 suggests that temporal walks are easier to find in
non-instantaneous temporal graphs. Furthermore, for a temporal graph we introduced
Transformation 2 which results in a instantaneous temporal graph. Thus, we mostly
consider either instantaneous or non-instantaneous temporal graphs, that is,

1. transmission times always zero (λ(e) = 0 for all e ∈ E) and

2. transmission times always greater than zero (λ(e) > 0 for all e ∈ E) respectively.

3.1.3 Maximum Dwell Time β.

A bounded maximum dwell time in the vertices has significant impact on temporal
walks. Given a temporal graph G = (V,E, [T], β) with β(v) < T for a vertex v ∈ V ,
we can be forced to make a detour because we exceeded the maximum dwell time. As
a consequence, there can be vertices v, w ∈ V such that any temporal walk from v to w
is not a path. An example is given in in Figure 3.3: The only walk from vertex v to w
visits vertex a twice.

Observation 3.1.6. Let G = (V,E, [T], β) be a temporal graph. There can exist two
vertices v, w ∈ V such that each temporal walk from v to w visits some vertices at least
twice.

32

3.2 Optimal Temporal Walks

In contrast, in incurable temporal graphs it holds that if there is a temporal walk
between two vertices, then there is always a temporal path between these two vertices.

Lemma 3.1.7. Let G = (V,E, [T]) be an incurable temporal graph. If there are two
vertices v, w ∈ V such that there is a temporal walk from v to w, then there always is a
temporal path from v to w.

Proof. Let P = (e1, . . . , ek) be a temporal walk from v to w, and let Pi,j = (ei, . . . , ej)
be the longest temporal subwalk of P that starts and ends in the same vertex, that
is, i, j = argmaxi,j∈[k]{j − i | start(ei) = end(ej)}. If such a subwalk does not exist,

then P is already a temporal path. Otherwise, P̂ = (e1, . . . , ei−1, ej+1, . . . , ek) is a
temporal walk from v to w because end(ei−1) = start(ej+1) and by definitions

t(ei−1) + λ(ei−1) ≤ t(ei) ≤ t(ej+1).

Now, we can apply this procedure recursively to P̂ until no more cycles exist.

Remark. Note that if there are maximum dwell times, then in the proof of Lemma 3.1.7
the maximum dwell time in start(ej+1) might be exceeded within P̂ . Thus, P̂ would not
be a valid temporal path.

Because of Lemma 3.1.7, we will sometimes only consider the special case of incurable
temporal graphs, temporal graphs with β(v) = T for all v ∈ V .

After elaborating the impact of the graph parameters—transmission time λ, minimum
dwell time α, and maximum dwell time β—on temporal walks, we will summarize the
main take-away for the algorithmic investigations into temporal walks: We showed how
to transform in linear time any temporal graph into a temporal graph without mini-
mum dwell time. Thus, throughout this thesis we will only consider temporal graphs
without minimum dwell time. Furthermore, we will mostly consider instantaneous tem-
poral graphs with transmission times zero or non-instantaneous temporal graphs with
transmission times greater than zero. We introduced Transformation 2 to transform
any temporal graph in linear time into an instantaneous temporal graph. We studied
graphs with a maximum dwell time which led us to the distinction between temporal
graphs in general and incurable temporal graphs (β(v) = T for all v ∈ V) in terms of
the maximum dwell time.

An overview of the different temporal graph models considered throughout the thesis
is provided in Fig. 3.4.

3.2 Optimal Temporal Walks

This section is devoted to optimal temporal walks. We will examine structural properties
of optimal walks and briefly discuss their algorithmic impact on finding optimal walks
in temporal graphs.

We distinguish between temporal graphs in general and incurable temporal graphs.
Note that all structural properties of optimal temporal walks that we consider for tem-
poral graphs in general also hold for incurable temporal graphs. We start elaborating
structural properties of optimal walks in all temporal graphs.

33

3 Structure of Temporal Walks

Temporal Graphs with α-Restriction

Temporal Graphs

Incurable (β ≡ T) Instantaneous (λ ≡ 0)

Non-Instantaneous (λ > 0)

Incurable & Instantaneous

Transformation 1 [O(M)]

Transformation 2 [O(M)]

Transformation 2 [O(M)]

Figure 3.4: An overview of the temporal graph models where M is the number of time-
arcs. In [·] the running time of the respective transformation is given.

3.2.1 Temporal Graphs

We will introduce three properties of optimal walks that we consider important for
finding optimal walks in temporal graphs: a property for Foremost, one for Reverse-
Foremost and one for Fastest.

Foremost & Reverse-Foremost. The following two properties concern the set of pos-
sible optimal walks: Looking at a foremost walk P = (e1, . . . , ek), there is always a
foremost walk that is a reverse-foremost walk within time interval [1, t(ek) + λ(ek)].

Observation 3.2.1. Let G = (V,E, [T], β) be a temporal graph, v, w ∈ V be two vertices,
and P = (e1, . . . , ek) be a foremost walk from v to w. Then there is a foremost walk that
is a reverse-foremost walk from v to w in G[[1, t(ek) + λ(ek)]].

Thus, computing a reverse-foremost walk from v to w for every time interval [1, t]
with t ∈ [T] also returns a foremost walk from v to w.

The reverse statement holds for reverse-foremost walks: Looking at a reverse-foremost
walk P = (e1, . . . , ek), there is always a reverse-foremost walk that is a foremost walk
within time interval [t(e1), T].

Observation 3.2.2. Let G = (V,E, [T], β) be a temporal graph, v, w ∈ V be two vertices,
and P = (e1, . . . , ek) be a reverse-foremost walk from v to w. Then there is a reverse-
foremost walk that is a foremost walk from v to w in G[[t(e1), T]].

34

3.2 Optimal Temporal Walks

v

a

b

c

w

4 8

4 5

2 5

(a) Temporal graph G

v

a

b

c

w

4

4 5

2 5

(b) G[[1, 5]]

v

a

b

c

w

4 8

4 5

5

(c) G[[4, 8]]

Figure 3.5: A temporal graph G with λ ≡ 0 and β ≡ 3 and its induced subgraphs G[[1, 5]]
and G[[4, 8]].

Fastest. If P = (e1, . . . , ek) is a fastest walk, then it is a foremost walk within time
interval [t(e1), T]. And it is a reverse-foremost walk within time interval [1, t(ek)+λ(ek)].
This has already been shown by Wu et al. [Wu+16, Lemma 8].

Lemma 3.2.3. Let G = (V,E, [T], β) be a temporal graph, v, w ∈ V be two vertices,
and P = (e1, . . . , ek) be a fastest walk from v to w. Then the temporal walk P is a
foremost walk from v to w in G[[t(e1), T]] and a reverse-foremost walk from v to w
in G[[1, t(ek) + λ(ek)]].

Proof. Let P ∗ = (e1, . . . , ek) be a fastest walk from v to w in G. Assume towards a con-
tradiction that P ∗ is not a foremost walk from v to w in the induced graph G[[t(e1), T]].
Let P ′ be a foremost walk from v to w in G[[t(e1), T]. This means that walk P ′ starts
not before time step t(e1) and arrives before time step t(ek) + λ(ek). But then P ′ would
be a faster walk from v to w in G than the walk P ∗—a contradiction.

Assume towards a contradiction that P ∗ is not a reverse-foremost walk from v to w
in G[[1, t(ek) + λ(ek)]]. Let P ′ be a reverse-foremost walk from v to w in G[[1, t(ek) +
λ(ek)]]. This means that walk P ′ starts later than t(e1) and arrives not later than time
step t(ek) + λ(ek). Hence, P ′ is a faster walk from v to w in G than the walk P ∗—a
contradiction.

Let us look at a vertex v ∈ V of a temporal graph with out-going time-arcs at time-
steps τ+v . Lemma 3.2.3 implies the following: If we compute for all t ∈ τ+v a foremost
walk to a vertex w ∈ V starting at time step t or later, then one of these foremost walks
is a fastest walk from v to w. The same procedure works for reverse-foremost walks.

Example. Fig. 3.5 illustrates Observation 3.2.1, Observation 3.2.2, and Lemma 3.2.3.
Let us look at the temporal graph G in Fig. 3.5(a):

• There are two foremost walks from v to w in the temporal graph G: The temporal
walks Pf =

(
v, c, 2, 0), (c, w, 5, 0)

)
and P ′f =

(
(v, b, 4, 0), (b, w, 5, 0)

)
. If we look

at G[[1, 5]] in Fig. 3.5(b), then P ′f is a reverse-foremost walk.

35

3 Structure of Temporal Walks

v a w

cb

(4, 2)

(6, 4)

(10, 2)

(12, 5)

(17, 3)

Figure 3.6: An incurable temporal graph in which the waiting time in intermediate ver-
tices from v to w decreases by walking a cycle.

• There are two reverse-foremost walks from v to w in G: The temporal walks Pr =(
v, b, 4, 0), (b, w, 5, 0)

)
and P ′r =

(
(v, a, 4, 0), (a, w, 8, 0)

)
. If we look at G[[4, 8]]

in Fig. 3.5(c), then Pr is a foremost walk.

• There is one fastest walk from v to w in the temporal graph G: The temporal
walk Pfa =

(
v, b, 4, 0), (b, w, 5, 0)

)
. If we look at G[[1, 5]] in Fig. 3.5(b), then Pfa is

a reverse-foremost walk. If we look at G[[4, 8]] in Fig. 3.5(c), then Pfa is a foremost
walk.

The restricted dwell time in the vertices prohibit any statement about the general
structure of optimal walks. This changes in incurable temporal graphs. Next, we will
consider optimal walks in incurable temporal graphs.

3.2.2 Temporal Graphs with Unbounded Dwell Time

In incurable temporal graphs, we can find additional properties concerning the structure
of optimal temporal walks that can be exploited when finding optimal walks.

The most important property is the following: For any optimal temporal walk, we can
always find an optimal temporal path. Minimum Waiting Time is an exception since the
path constructed in Lemma 3.1.7 does not preserve this optimality criterion.

Observation 3.2.4. Let G = (V,E, [T]) be an incurable temporal graph. There can exist
two vertices v, w ∈ V such that every minimum waiting time walk from v to w visits a
vertex at least twice.

In Fig. 3.6, we can see that running a cycle reduces the sum of waiting times on the
walk from a to e. We start with proving the above statement about optimal walks in
incurable temporal graphs.

Lemma 3.2.5. Let G = (V,E, [T]) be an incurable temporal graph. If there are two
vertices v, w ∈ V such that there is an optimal temporal walk from v to w, then there
always is an optimal temporal path from v to w (except for Minimum Waiting Time).

36

3.2 Optimal Temporal Walks

Proof. Let us consider an optimal walk P = (e1, . . . , ek) from v to w. By Lemma 3.1.7,
we already know that we can construct a temporal path from a temporal walk by deleting
all longest subwalks Pi,j = (ei, . . . , ej) where start(ei) = end(ej) for i, j ∈ [k]. If there
is no such subwalk, then we are done. Otherwise, we show that the resulting temporal
path P ′ is optimal. The temporal path P ′ is contained in the temporal walk P . Also
the optimality value only depends on the following criterion:

• Foremost : the starting time of the first time-arc in the walk,

• Reverse-Foremost : the arrival time of the last time-arc in the walk,

• Fastest : the difference between the arrival time of the last time-arc and the starting
time of the first time-arc in the walk,

• Shortest : the sum of transmission times of the time-arcs in the walk,

• Minimum Hop-Count : the sum of time-arcs in the walk, and

• Cheapest : the sum of costs of the time-arcs in the walk. Recall that we only
consider positive time-arc costs.

The optimality of P cannot be lost by removing time-arcs from the walk P . Thus, the
resulting walk P ′ has to be optimal.

Lemma 3.2.5 is summarized in Table 3.1. It does not hold in temporal graphs in
general as already shown in Observation 3.1.6. We conclude that if there is a walk
from a vertex v to a vertex w, then there exists an optimal temporal path (except for
Minimum Waiting Time) in incurable temporal graphs. Such a property also holds for
shortest walks in static graphs with no negative cycles. Additionally, in static graphs,
any subpath of a shortest path is a shortest path. This property makes it easy to solve
Single-Source Shortest Path in static graphs. Unfortunately, such a statement
does not hold for temporal graphs due to the additional time component [Wu+16]. We
are, however, able to make a statement about the subwalks of an optimal temporal walk.

Foremost & Reversed-Foremost. Foremost walks are one of the easiest temporal
walks to find, especially in incurable temporal graphs: for any foremost temporal walk,
there exists a foremost path such that all prefix-paths are foremost paths as well. This
has already been shown by Wu et al. [Wu+16, Lemma 6] and Xuan, Ferreira, and Jarry
[XFJ03, Theorem 1].

Lemma 3.2.6. Let G = (V,E, [T]) be an incurable temporal graph and v, w ∈ V be two
vertices. If there is a temporal walk from v to w, then there exists a foremost path P =
(e1, . . . , ek) from v to w such that for every i ∈ [k − 1] the subpath Pi = (e1, . . . , ei) is a
foremost path from v to end(ei).

37

3 Structure of Temporal Walks

Table 3.1: Given an incurable temporal graph, this table shows for which of our optimal
temporal walk definitions it holds that if there is a temporal walk between two
vertices, then there always exists an optimal solution that is a path between
them.

Optimality Criterion Optimal walk is a path?

Foremost X

Reverse-Foremost X

Fastest X

Shortest X

Minimum Hop-Count X

Cheapest X

Minimum Waiting Time ×

Proof. Due to Lemma 3.2.5, we know that there exists a foremost temporal path from v
to w. Let P = (e1, . . . , ek) be a foremost path from v to w and let i ∈ [k−1] be the largest
index such that Pi = (e1, . . . , ei) is not a foremost path from v to end(ei). If such an i
does not exist, then we are done. Otherwise, there is a foremost path P̂ = (ê1, . . . , êi′)
from v to end(ei) that arrives at time-step t(êi′) + λ(êi′) < t(ei) + λ(ei). But then the
temporal path P ∗ = (ê1, . . . , êi′ , ei+1, . . . , ek) is a foremost path from v to w as well.

Example. For a small example, we look at temporal graph G in Fig. 3.7. Let us look at
two different foremost paths from v to e: P =

(
(v, b, 2, 0), (b, d, 6, 0), (d, e, 8, 0)

)
and P ′ =(

(v, a, 4, 0), (a, b, 5, 0), (b, d, 6, 0), (d, e, 8, 0)
)
. It holds that the prefix-paths of P from v

to b and from v to d are foremost paths. This does not hold for path P ′. If we assume
that we have bounded dwell time β ≡ 2, then only P ′ would be a valid path. This shows
that Lemma 3.2.6 only holds in incurable temporal graphs.

Furthermore, we know that every postfix-walk of a foremost walk is a foremost walk
within its time interval.

38

3.2 Optimal Temporal Walks

v

a

b

c

d

e

4

2

7

5

6

8

7

9

Figure 3.7: An incurable temporal graph G with λ ≡ 0.

Lemma 3.2.7. Let G = (V,E, [T]) be an incurable temporal graph and v, w ∈ V be
two vertices. For every foremost walk P = (e1, . . . , ek) from v to w it holds that for
every j ∈ {2, . . . , k} the subwalk Pj = (ej, . . . , ek) is a foremost walk from start(ej) to w
in G[[t(ej−1) + λ(ej−1), T]].

Proof. Let P = (e1, . . . , ek) be a foremost walk from v to w and let j ∈ {2, . . . , k}.
Assume towards a contradiction that Pj = (ej, . . . , ek) is not a foremost walk from vi to

w within time interval Tj = [t(ej−1)+λ(ei−1), T]. Let P̂ = (ê1, . . . , êj′) be a foremost walk
from start(ej) to w within Tj. It holds that t(ej−1)+λ(ej−1) ≤ t(ê1) and t(êj′)+λ(êj′) <
t(ek) + λ(ek). But then the temporal walk P ∗ = (e1, . . . , ej−1, ê1, . . . , êj′) is a temporal
walk with an earlier arrival time than P—a contradiction to our assumption that P is
a foremost walk. Thus, Pj is a foremost walk within Tj.

Example. In Fig. 3.7, we can also see that for any foremost path—let us look at P =(
(v, b, 2, 0), (b, d, 6, 0), (d, e, 8, 0)

)
—the following holds: the postfix-paths of P from b to e

and from d to e are foremost path in G[[2, 9]] and G[[6, 9]] respectively, as suggested by
Lemma 3.2.7. It does not hold in temporal graphs in general. If we assume that the
graph G in Fig. 3.7 has a bounded dwell time β(d) = 1, then for the a valid foremost path
from v to e—P ′ =

(
(v, a, 4, 0), (a, b, 5, 0), (b, d, 6, 0), (d, c, 7, 0), (c, e, 9, 0)

)
—the property

does not hold.

One more observation can be made concerning foremost walks. If we have two time-
steps t and t′ with t < t′, then a foremost walk P from a vertex v to a vertex w starting
earliest in time step t has an arrival time smaller or equal to a foremost walk P ′ from v
to w starting earliest at time-step t′. If this is not the case, then P is not a foremost
path because P ′ starts also earliest in time t and has an earlier arrival time than P .

Observation 3.2.8. Let G = (V,E, [T]) be an incurable temporal graph, t, t′ ∈ [T] be
two time-steps with t < t′, and v, w ∈ V be two vertices. If there is a foremost walk P
from v to w in G[[t, T]] and a foremost walk P ′ from v to w in G[[t′, T]], then P has an
arrival time not greater than P ′.

For reverse-foremost walks, we can make a strong statement about the postfix-walks:
for any reverse-foremost walk, there exists a reverse-foremost path such that all postfix-
paths are reverse-foremost paths as well.

39

3 Structure of Temporal Walks

Lemma 3.2.9. Let G = (V,E, [T]) be an incurable temporal graph and v, w ∈ V be two
vertices. If there is a temporal walk from v to w, then there exists a reverse-foremost
path P = (e1, . . . , ek) from v to w such that for every i ∈ {2, . . . , k} the temporal
path Pi = (ei, . . . , ek) is a reverse-foremost path from start(ei) to w.

Proof. Due to Lemma 3.2.5, we know that there exists a reverse-foremost temporal path
from v to w. Let P = (e1, . . . , ek) be this reverse-foremost path from v to w, and let i ∈
{2, . . . , k} be the smallest index such that Pi = (ei, . . . , ek) is not a reverse-foremost
path from start(ei) to w. If it does not exist, then we are done. Otherwise, we know
that there is a reverse-foremost path P̂ = (êi′ , . . . , êk) from start(ei) to w that departs
at time-step t(êi′) > t(ei). But then the temporal path P ∗ = (e1, . . . , ei−1, êi′ , . . . , êk) is
a reverse-foremost path form v to w as well.

Example. For a small example, we consider again the temporal graph G in Fig. 3.7. Let
us look at two reverse-foremost paths from v to e: P =

(
(v, a, 4, 0), (a, c, 7, 0), (c, e, 9, 0)

)
and P ′ =

(
(v, a, 4, 0), (a, b, 5, 0), (b, d, 6, 0), (d, c, 7, 0), (c, e, 9, 0)

)
. It holds that the postfix-

paths of P from a to e and from c to e are reverse-foremost paths. This does not hold
for path P ′. If we assume that we have a maximum dwell time β ≡ 2, then only P ′

would be a valid path. This shows that Lemma 3.2.9 only holds in incurable temporal
graphs. In the walk P it also holds that the prefix-paths from v to a and from v to c
are a reverse-foremost path in G[[1, 7]] and G[[1, 9]] respectively. This holds in incurable
temporal graphs which will be shown in Lemma 3.2.10.

Furthermore, we know that every prefix-walk of a reverse-foremost walk is a reverse-
foremost walk within its time interval.

Lemma 3.2.10. Let G = (V,E, [T]) be an incurable temporal graph and let v, w ∈ V be
two vertices. For every reverse-foremost walk P = (e1, . . . , ek) from v to w it holds that
for every j ∈ [k − 1] the subpath Pj = (e1, . . . , ej) is a reverse-foremost path from v to
end(ej) in G[[1, t(ej+1)]].

Proof. Let P = (e1, . . . , ek) be a reverse-foremost walk from v to w and let j ∈ [k − 1].
Assume towards a contradiction that Pj = (e1, . . . , ej) is not a reverse-foremost walk

from v to end(ej) within time interval Tj = [1, t(ej+1)]. Let P̂ = (ê1, . . . , êj′) be a
reverse-foremost walk from v to end(ej) within Tj. It holds that t(êj′) + λ(êj′) ≤ t(ej+1)
and t(e1) < t(ê1). But then the temporal graph P ∗ = (ê1, . . . , êj′ , êj+1, . . . , ek) is a
temporal walk with a departure time later than P—a contradiction to our assumption
that P is a reverse-foremost walk. Thus, Pj is a reverse-foremost walk within Tj.

Shortest, Minimum Hop-Count & Cheapest. For Shortest, Minimum Hop-Count, and
Cheapest, we can make a statement about all subwalks of an optimal walk. The basis for
their common property is that they all sum up the respective time-arc values of the walk.
Shortest sums up the transmission times on the time-arcs, Minimum Hop-Count sums up
the number of time-arcs, and Cheapest sums up the costs of the time-arcs in a temporal
walk. Each optimal temporal walks P = (e1, . . . , ek) from a vertex v to a vertex w holds
that each temporal subwalk Pi,j = (ei, . . . , ej) of P is an optimal walk within its time

40

3.2 Optimal Temporal Walks

boundaries, that is, the time-interval starting at time t(ei−1) + λ(ei−1) and ending in
time t(ej+1).

Lemma 3.2.11. Let G = (V,E, [T]) be an incurable temporal graph, and v, w ∈ V be
two vertices. For each optimal walk with respect to Shortest, Minimum Hop-Count, and
Cheapest P = (e1, . . . , ek) from v to w it holds that each subwalk Pi,j = (ei, . . . , ej)
with i, j ∈ [k] is an optimal temporal walk in G[Ti,j] where

Ti,j :=

[1, t(ej+1)] if i = 1,

[t(ei−1) + λ(ei−1), T] if j = k,

[t(ei−1) + λ(ei−1), t(ej+1)] otherwise.

Proof. Let P = (e1, . . . , ek) be an optimal walk from v to w and let Pi,j = (ei, . . . , ej) be
a subwalk of P with i, j ∈ [k]. Assume towards a contradiction that Pi,j = (ei, . . . , ej)

is not an optimal walk within time interval Ti,j. Thus, there is a walk P̂ = (ê1, . . . , êk′)
from start(ei) to end(ej) that is optimal within G[Ti,j]. It holds:

k′∑
l=1

d(êl) <

j∑
l=i

d(el)

with d(e) := λ(e) for Shortest, d(e) := 1 for Minimum Hop-Count, and d(e) := c(e) for
Cheapest for all e ∈ E.

But then the temporal walk P ∗ = (e1, . . . , ei−1, ê1′ , . . . , êk′ , ej+1, . . . , ek) is preferred

over P since the replacement of Pi,j by P̂ reduces the overall value of the temporal walk:

i−1∑
l=1

d(el) +
k′∑
l=1

d(êi) +
k∑

i=j+1

d(ei) <
i−1∑
l=1

λ(el) +

j∑
l=i

d(el) +
k∑

l=j+1

d(el) =
k∑
l=1

d(el)

This is a contradiction to our assumption that P is optimal. Thus, any subwalk Pi,j is
an optimal walk within Ti,j.

The plethora of properties for optimal walks will be used in the algorithmic investi-
gations for finding optimal walks in Chapter 4 and Chapter 5. All properties will be
referenced when used throughout the thesis.

41

4 Algorithms for Finding Optimal
Walks

This chapter is devoted to finding optimal walks in temporal graphs. We will first
introduce some algorithms for solving Single Source Optimal Walk and then we
will give a reduction from temporal graphs to static graphs that maintains all optimal
walks by using different cost functions. We continue with solving Single Sink Optimal
Walk. We give a transformation of temporal graphs that ’reverses’ the graph and, thus,
allows us to use Single Source Optimal Walk algorithms. In the end, we will adapt
the Floyd-Warshall Algorithm to solve All-Pairs Optimal Walk.

4.1 Single-Source Optimal Walk

In this section, we will examine Single Source Optimal Walk on temporal graphs.
For the sake of simplicity, we only study instantaneous temporal graphs. A temporal
graph can be transformed by Transformation 2 into an instantaneous temporal graph
in linear time. To maintain a sorted time-arc list, there is O(M log min{λmax,M}) time
needed as shown in Lemma 3.1.5 to sort the newly created time-arcs by time stamp. The
time to newly sort the time-arc list can be the dominating factor in the overall running
time.

We introduce algorithms solving Single Source Optimal Walk for Foremost and
Fastest that run in O(M) and O(M logM) time respectively. The last algorithm is
exemplary for all remaining optimal temporal walk definitions. In the end of the section,
we introduce a transformation to static graphs in which the optimal walk definitions can
be encoded via different cost functions on the arcs. This allows us to use all known
results for finding shortest paths in static graphs.

4.1.1 Foremost

We start with an algorithm solving Single Source Foremost Walk on instantaneous
temporal graphs. Afterwards, we will shortly discuss the adjustments that can be done
to simplify the algorithm for instantaneous, incurable temporal graphs.

Given an instantaneous temporal graph G = (V,E, [T], β) and a source vertex s ∈ V ,
we construct an algorithm for finding the earliest arrival time from s to each vertex v ∈ V
in G. The main difficulty an algorithm has to overcome is that the prefix-walks of any
foremost walk does not have to be a foremost walk.

Example. Fig. 4.1(a) displays such a situation: The only walk from s to c is via the

43

4 Algorithms for Finding Optimal Walks

s

b

c

a

4

5

9

9

9

(a) Temporal graph G with λ ≡ 0 and β ≡ 4

t = 9

s

b

c

a

(b) Generated static graph for time step t = 9
in Algorithm 1

Figure 4.1: An instantaneous temporal graph and the static graph generated in Algo-
rithm 1—Line 6 for time step t = 9.

vertex b. The earliest arrival time from s to b is in time step 4. But then, we would
exceed the maximum dwell time of 4 before we can continue to c in time step 9. But
with the arrival time 9 in b via a, we can arrive in vertex c.

We can conclude that we not only have to keep track of the earliest arrival time in a
vertex, but also of the latest arrival time seen so far in any vertex.

This observation leads to the following idea for an algorithm: For each t ∈ {1, . . . , T},
the algorithm computes the latest arrival time from s to each vertex within time inter-
val [1, t]. The algorithm can exploit the information of the latest arrival time within
time interval [1, t − 1] for that purpose. Additionally, the algorithm has to store the
smallest t ∈ T for which it finds a latest arrival time from s to v ∈ V—the earliest
arrival time in vertex v.

We will first explain the details of Algorithm 1 that implements the idea described
above. We then prove the correctness of our approach and derive the running time
of O(M).

Given an instantaneous temporal graph G = (V,E, [T], β) and a source vertex s ∈ V ,
for each vertex v ∈ V \ {s}, we store the earliest arrival time from s to v in optv. The
latest arrival time from s to v that we have seen so far in the run of our algorithm is
stored in lastv. Initially, the variables are set to optv =∞ and lastv = −∞ (Lines 2 to 4).
Now, for each t ∈ {1, . . . , T} in which there exists at least one time-arc, Algorithm 1
generates a static graph G (Line 6 & Lines 16 to 19). This static graph consists of the
static graph Gt, that is, the static graph induced by all time-arcs with time stamp t,
and the source vertex s. Arcs are added from s to each vertex v ∈ Vt for which we have
previously found a latest arrival time lastv such that the maximum dwell time in v is
not exceeded in time step t, that is, Er = {(s, v) | v ∈ Vt ∧ t ≤ lastv +β(v)} (Lines 16
to 18). Such a generated graph is displayed in Fig. 4.1(b). The arcs in Er are displayed
with dashed lines; the arcs in Et are displayed with solid lines.

Now, the algorithm conducts a modified breadth-first search on the graph G (Line 7)
(for a short description of the algorithm see paragraph below). It returns a set Vreached
of all vertices for which there exists a walk from s in G ending with an arc in Et. For

44

4.1 Single-Source Optimal Walk

Algorithm 1: Single Source Foremost Walk on temporal graphs with
transmission time zero and bounded dwell time
/* Description of Variables:

optv stores the earliest arrival time in v,

lastv stores the latest arrival time in v not later than time step t,

G is a temporal graph with a sorted time-arc list.

*/

1 function SingleSourceOptimalWalk(G, s ∈ V):
/* Initialization */

2 for v ∈ V \ {s} do
3 optv =∞
4 lastw = −∞
5 for t = 1, . . . , T with Et 6= ∅ do
6 G← GenerateDirectedGraph(Gt, s, opt, last)

/* Modified breadth-first search: returns all vertices with

an arrival time exactly at time step t */

7 Vreached ← modBFS(G, s)
8 for v ∈ Vreached do
9 optv = min{optv, t}

10 lastv = t

/* Break condition: all earliest arrival times found */

11 if ∀v ∈ V : optv <∞ then
12 break

13 return opt

/* Recall Gt = (Vt, Et) is the static graph of time step t (see p.18

for definition) */

14 function GenerateDirectedGraph(Gt, s, opt, last)):
15 Er ← ∅
16 for v ∈ Vt \ {s} do
17 if t ≤ lastv +β(v) then
18 Er ← Er + (s, v)

19 return (Vt ∪ {s}, Et ∪ Er)

45

4 Algorithms for Finding Optimal Walks

all v ∈ Vreached, it holds that there is an s-v walk in G arriving exactly at time step t.
In Fig. 4.1(b), we can see that there is a walk with vertex sequence (s, a, b, c, a) in G
from s to a with a solid arc. Thus, there is a temporal walk from s to a with arrival
time exactly 9. For all vertices v ∈ Vreached, the algorithm sets optv = min{t, optv}
and lastv = t (Lines 9 and 10). Note that if optv is once set to something smaller
than ∞, then it cannot improve anymore because the algorithm looks at the time steps
in [T] in ascending order. Consequently, if for all v ∈ V it holds that optv < ∞ after a
time step tmax, then the algorithm can stop (Lines 11 and 12). At the end, the algorithm
returns the earliest arrival times for all vertices (Line 13).

The modified breadth-first search is rooted in the source vertex s. For all vertices v,
reached[v] is set to false. In the first step all out-going arcs of s are added to a queue Q.
For each arc (v, w) in Q where reached[w] is set to false, all out-going arcs of w are added
to Q and reached[w] is set to true. If the arc (v, w) is in the set Et, then the vertex w
is added to Vreached. With this procedure, each vertex v for which there exists an s − v
walk ending with an arc in Et is found. The algorithm runs in linear time because each
arc is added at most once to Q. All other operations can be done in constant time.

Algorithm 1 finds the earliest arrival time for every vertex in O(n + Mtmax) time
where Mtmax := |{(v, w, t, λ) ∈ E | t ≤ tmax}|, if a sorted time-arc list is given. In case
we are also interested in an actual foremost walk, then we have to additionally store the
time-arcs used to reach each vertex during the run of the algorithm.

We want to start by showing the running time of the Algorithm 1:

Lemma 4.1.1. Algorithm 1 runs in O(n+M) time.

Proof. The initialization in Algorithm 1 is done in O(n) time. Then, for each time
step t = 1, . . . , T , Algorithm 1 generates a static directed graph with O(nt) vertices
and O(mt + nt) arcs which takes O(mt + nt) time. The static graph can be constructed
by going through the sorted time-arc list and gathering all time-arcs with the same time
step t. At most nt additional arcs are added to the graph Gt. This requires O(nt) look
ups. The entire procedure runs in linear time. On each of the static graphs, a modified
breadth-first search is conducted in O(nt +mt) time and the opt- and last-variables are
updated in O(nt) time.

Note that nt is the number of vertices that have at least one in-going or out-going
time-arc at time step t. Consequently, it holds that nt ≤ 2mt. Furthermore, we only
have to check the time steps until we have found an arrival time for every vertex, the
maximum of which is tmax. We can sum up the running time by

O
(
n+

tmax∑
t=1

(mt + nt) + (mt + nt) + nt
)

= O
(
n+

tmax∑
t=1

mt

)
= O

(
n+Mtmax

)
Hence, Algorithm 1 runs in O(n+Mtmax) time.

46

4.1 Single-Source Optimal Walk

To prove the correctness of Algorithm 1, we first show that it computes for each t ∈ [T]
and each v ∈ V the latest arrival from s to v within the time interval [1, t].

Lemma 4.1.2. After time step t ∈ [T], Algorithm 1 computed the latest arrival time
from s to each vertex v ∈ V within G[[1, t]].

Proof. We prove this lemma by induction on the time step t ∈ [T].
In the beginning of Algorithm 1, for all v ∈ V , lastv = −∞. Now, the algorithm

generates a graph G = (V1 ∪ {s}, E1). No further arcs are added because no vertex
has been reached so far. If there is a walk from s to a vertex v ∈ V \ {s} in G, then
Algorithm 1 sets lastv = 1. This is the latest arrival time possible for t = 1.

Now, let us assume that after a time step t ∈ [T], Algorithm 1 computed the latest
arrival time from s to each vertex v ∈ V within G[[1, t]]. If for time step t+ 1 there is no
time-arc with time stamp t+ 1, then there cannot be an arrival time t+ 1 in any vertex.
Thus, the latest arrival times in G[[1, t+1]] are equal to the latest arrival times in G[[1, t]]
which were computed correctly by induction hypothesis. Otherwise, only vertices with
an in-going time-arc in time step t+ 1 are candidates for a latest arrival time in t+ 1.

Let us assume towards a contradiction that there is a vertex v ∈ Vt+1 which was
not updated after time step t + 1 even though there exists a temporal walk from s
to v with arrival time exactly t + 1. Let P = (e1, . . . , ek) be such a temporal walk
with ei = (vi, wi, ti, 0) ∈ E.

Case 1. If ti = t+ 1 for all i ∈ [k], then the walk ((v1, w1), . . . , (vk, wk)) is a path from s
to v in Gt+1. In the modified breadth-first search v can be reached from s with
the arc (vk, wk) ∈ Et and, thus, lastv is set to t + 1. This is a contradiction to our
assumption.

Case 2. Otherwise, there is an i ∈ [k− 1] such that for all j ∈ [i] it holds that tj < t+ 1
and for all j′ ∈ {i+ 1, . . . , k} it holds that tj′ = t+ 1. By our induction hypothesis,
we know that for wi the algorithm computed that latest arrival time lastwi

within
time interval [1, t] correctly. It holds that ti ≤ lastwi

. We further know that

t+ 1 ≤ ti + β(wi) ≤ lastwi
+β(wi) (4.1)

because P is a valid temporal walk.

Let us now consider the generated graph G = (Vt+1 ∪ {s}, Et ∪ Er) with

Er = {(s, v) | v ∈ Vt+1 ∧ t+ 1 ≤ lastv +β(v)}

in Line 6. The walk W = ((vi+1, wi+1), . . . , (vk, wk)) is a walk from s to v in Gt+1 =
(Vt+1, Et+1) because tj′ = t + 1 for j′ ∈ {i + 1, . . . , k}. Thus, W is contained in G.
Also the arc (s, vi+1) is contained in Er due to Eq. (4.1) and wi = vi+1. Thus, there
is a walk from s to v in G. Our modified breadth-first search on G returns the
vertex v because it can be reached via the arc (vk, wk) ∈ ET . Recall that v = wk.
Consequently, lastv is set to t+ 1. This is a contradiction to our assumption.

47

4 Algorithms for Finding Optimal Walks

Algorithm 1 uses in the generated graph G in Line 6 only existing arcs or arcs that
represent a valid temporal walk—see Lines 16 to 19. Thus, a non-existing latest arrival
time for any vertex can not be found. We can conclude that after a time step t ∈ [T],
Algorithm 1 computed the latest arrival time from s to each vertex v ∈ V within G[[1, t]]
correctly.

With Lemma 4.1.2 at hand, we can prove the correctness of Algorithm 1:

Lemma 4.1.3. Algorithm 1 solves Single Source Foremost Walk.

Proof. Assume towards a contradiction that Algorithm 1 does not find the correct earli-
est arrival time from s to a vertex v ∈ V . Let t∗v be the actual earliest arrival time in v.
But then, the latest arrival time of v within G[[1, t∗v]] is t∗v. This was computed correctly
by Algorithm 1 as shown in Lemma 4.1.2. For time step t∗v the variable optv was set
to t∗v and never changed again, as discussed above.

With Lemmas 4.1.1 and 4.1.3 we can finally state the following theorem:

Theorem 4.1.4. Algorithm 1 solves Single Source Foremost Walk on an instan-
taneous temporal graph G in O(n+Mtmax) time where tmax is the largest earliest arrival
time to any vertex in G.

Remark. If there is a temporal graph with unbounded dwell time in the vertices, then
it is not necessary to compute the latest arrival time within every time interval [1, t]
for t ∈ T . It is sufficient to only compute the earliest arrival time in each vertex. We
make use of the fact that there always exists a foremost path such that all prefix paths
are foremost paths shown in Lemma 3.2.6. However, this simplification has no influence
on the running time of the algorithm.

4.1.2 Fastest

Now, we will have a closer look at fastest walks and the complexity Single Source
Fastest Walk on instantaneous temporal graphs. We introduce an algorithm that
computes a fastest walk from a source vertex s to every vertex in a temporal graph
in O(M logM) time. We will then briefly explain how this algorithm can be simplified
for instantaneous, incurable temporal graphs.

Given a temporal graph G = (V,E, [T], β) and a source vertex s ∈ V , the main idea
of the algorithm is the following: For every t ∈ [T], it computes the latest departure
time for a walk from s to all vertices that arrives exactly in time step t. The fastest
walk from s to a vertex w is a reverse-foremost walk—a walk with the latest departure
time—within the time interval [1, t] with t ∈ [T] by Lemma 3.2.3. Thus, during the
execution of the algorithm we find the fastest walk from s to any vertex w ∈ V .

Algorithm 2 has two additional benefits:

1. It computes the reverse-foremost walk—the latest departure time—from s to each
vertex w ∈ V . This is the latest possible departure time for a walk from s to w
that has been found during the run of the algorithm.

48

4.1 Single-Source Optimal Walk

Algorithm 2: Single Source Fastest Walk on temporal graphs with trans-
mission time zero and bounded dwell time
/* Description of Variables:

optv stores the duration of a fastest path to w within [0, t],

Lv is a sorted list [(d1, a1), . . . , (dk, ak)] where di is a the latest

departure time of a walk from s to v that arrives in time ai
with ai ≤ t ≤ ai + βw. We will sort the list such that:

d1 > d2 > · · · > dk and a1 < a2 < · · · < ak, and

G is a temporal graph with a sorted time-arc list.

*/

1 function SingleSourceFastestWalk(G, s ∈ V):
/* Initialization */

2 for v ∈ V \ {s} do
3 optv =∞
4 Lv ← empty list

5 for t = 1, . . . , T with Et 6= ∅ do
6 G, c← GenerateDirectedGraph(Gt, s, L)

/* Modified Dijkstra Algorithm: returns all vertices with an

arrival time exactly at time step t and their latest

departure time */

7 Vreached, cdep ← modDijkstra(G, c, s)
8 for v ∈ Vreached do
9 optv = min{optv, t− (T − cdep(v))}

10 Lv ← add (T − cdep(v), t) & delete redundant tuples (Lemma 4.1.5)

11 return opt

/* Recall Gt = (Vt, Et) is the static graph of time step t (see p.22

for definition) */

12 function GenerateDirectedGraph(Gt, s, L)):
13 Er ← ∅
14 for v ∈ Vt \ {s} do
15 if ∃(d, a) ∈ Lv : a ∈ [t− β(v), t] then
16 Er ← Er ∪ {(s, v)}
17 c((s, vr)) = T − d with d := max{d | (d, a) ∈ Lv ∧ a ∈ [t− β(v), t]}

18 for e ∈ Et do

19 c(e) =

{
T − t , if e = (s, ∗)
0 , else

20 return
(
(Vt ∪ {s}, Et ∪ Er), c

)

49

4 Algorithms for Finding Optimal Walks

2. It computes the foremost walk—the earliest arrival time—from s to each vertex w ∈
V . This is the the earliest time step in which the algorithm finds a walk from s
to w. Among all foremost walks from s to w it even finds the one with the latest
departure time in s.

Next, we will explain the main computational steps of Algorithm 2. We will further
describe how the information about the latest departure time for a walk from s to all
vertices that arrives exactly in time step t for each t ∈ [T] can be stored efficiently. The
efficient access to this data is the crux of the algorithm. We are able to maintain the
information in O(M) time during the execution of the algorithm to allow constant time
access to the data of interest. We will derive a total running time of O(M logM) time
for Algorithm 2.

The details of Algorithm 2 are as follows: Let G = (V,E, [T], β) be an instantaneous
temporal graph and vertex s ∈ V be the source. For each vertex v ∈ V \ {s}, it stores
the duration of a fastest walk from s to w in optv and all arrival times from s to v
with their latest possible departure time in Lv. In the beginning, optv = ∞ and Lv is
empty (Lines 2 to 4).

For each time step t ∈ [T], the algorithm computes the latest departure time for walks
from s to all vertices that arrive exactly in time step t. It generates a graph G (Line 6
and Lines 14 to 20). This graph consists of the static graph Gt = (Vt, Et), that is, the
static graph induced by all time-arcs with time stamp t, and the source vertex s. Arcs
are added from s to each vertex v ∈ Vt for which there exists a temporal walk from s to v
that arrives within the maximum dwell time, that is, within [t − β(v), t]. Let d be the
latest departure time among all such walks. The weight of the arc is then set to T − d.
This information can be found in the list Lv. Let Er be the set of the additionally added
arcs, that is, Er = {(s, v) | v ∈ Vt \ {s}∧∃(d, a) ∈ Lv : a ∈ [t−β(v), t]} (Lines 14 to 17).
The weight of a arcs (v, w) ∈ Et are set or overwritten to 0, if v 6= s, and to T − t,
if v = s (Lines 18 and 19).

Now, Algorithm 2 runs a modified Dijkstra Algorithm on G (for a short description
of the algorithm see paragraph below). It computes a shortest walk from s to each
vertex ending with an arc in Et. The shortest walk is a walk with the latest departure
time. The modified Dijkstra Algorithm returns the set of vertices Vreached that can be
reached within G via an arc in Et and the function cdep : Vreached → [1, t] that maps
each v ∈ Vreached to its latest departure time d (in form T −d) for a s-v walk that arrives
exactly in t. For each v ∈ Vreached, optv is set to the minimum of its current value and the
duration of a newly computed walk, that is, optv = min{t−(T −cdep(v)), optv} (Line 9).
The tuple (T − cdep(v), t) is added to list Lv (Line 10).

The modified Dijkstra Algorithm is rooted in the source vertex s. In the first step, the
source vertex s with distance[s] set to zero is added to a priority queue Q. All other
vertices v are added to Q with distance[v] set to infinity and reached[v] set to infinity.
Now, in each step the vertex v with the smallest distance to s is removed from Q. Then,
for all out-going arcs (v, w) from v the algorithm checks whether

distance[w] > distance[v] + c((v, w)).

50

4.1 Single-Source Optimal Walk

s

a

b

c

d

e

3
5, 8

5

7

8

8

8

11

4

(a) Temporal graph G with λ ≡ 0 and β ≡ 4

t = 8

s

a

b

c

d

T − 8
T − 5

T − 5
0

0

0

(b) Generated static graph for time
step t = 8 in Algorithm 2

Figure 4.2: An instantaneous temporal graph and the static graph generated in Algo-
rithm 2—Line 6 for time step t = 8.

If it holds, then a shorter path is found. If (v, w) ∈ Et, then the algorithm checks
whether

reached[w] > distance[v] + c((v, w)).

If it holds, then a later departure time of a walk to w is found that arrives exactly
in time step t. With this procedure, each vertex v for which there exists an s-v walk
ending with an arc in Et with the latest departure time is found. The algorithm runs
in O(mt logmt).

Example. In Fig. 4.2, we briefly explain Algorithm 2 on the temporal graph G displayed
in Fig. 4.2(a). After the algorithm considered all time steps up to t = 7, walks from s
to the vertices a, b, and c is found. More precisely, La = [(5, 5)], Lb = [(5, 5)], and Lc =
[(3, 3), (5, 7)]. In time step 8, Algorithm 2 first removes all elements for which the
maximum dwell time is exceeded, that is, (3, 3) in Lc due to the arrival time 3. Now
the static graph in Line 6 is generated. This is displayed in Fig. 4.2(b): The solid
black arcs belong to G8—the static graph induced by all time-arcs with time stamp 8
in G—and the dashed black arcs Er represent walks from s to the vertices with arrival
time within [t − β, t − 1] = [4, 7]. The weight is T minus the latest departure time to
arrive within the time interval [4, 7]. Now, Algorithm 2 conducts the modified Dijkstra
Algorithm on the graph in Fig. 4.2(b). A walk from s to d via c is found that contains
at least one arc of Et, that is, a black arc, with minimum cost T − 5, hence, with latest
departure time 5 and arrival time 8. The tuple (5, 8) is added to Lc and optd is updated
to 8− 5 = 3. Furthermore, there is a walk from s to c via b that ends with a solid black
arc with minimum cost T − 5. Thus, there is a walk from s to c with latest departure
time 4 that arrives exactly in time step 8. Thus, (5, 8) is added to Lc. The tuple (8, 8)
is added to La.

The list Lc now contains [(5, 7), (5, 8)]. But the element (5, 7) is not needed anymore
because both tuples have a departure time 5 whereas (5, 8) has a greater arrival time.
Hence, for time steps 9, . . . , 12 (time steps for which the maximum dwell time in c is
not exceeded for the arrival time 8), the tuple (5, 8) is sufficient to determine the latest

51

4 Algorithms for Finding Optimal Walks

departure time. The general structure of these lists is discussed in the next paragraph.

To implement Algorithm 2 efficiently, we have to optimize the list Lv for each ver-
tex v ∈ V . Recall that Lv is the list of all arrival times within [1, t] from s to v with
their corresponding latest departure time for which we have not exceeded the maximum
dwell time in v for a time step t. Let

Lv = [(d1, aa), (d2, a2), . . . , (dk, ak)]

with t − β(v) ≤ a1 < a2 < · · · < ak < t be such a list. It holds for each tuple (di, ai)
with i ∈ [k] that there is a walk from s to v that arrives in time step ai and di is the
latest departure time among all walks from s to v that arrive exactly in time step ai.
For these tuples, we can show that some of them are redundant:

Lemma 4.1.5. For a time step t ∈ [T] and a vertex v ∈ V , if there are two tu-
ples (d, a), (d′, a′) ∈ Lv with a < a′ and d ≤ d′, then (d, a) can be removed from Lv.

Proof. The tuples (d, a), (d′, a′) ∈ Lv imply that there is a temporal walk P from s to v
with departure time d and arrival time a and another temporal walk P ′ from s to v
with departure time d′ and arrival time a′. After time step t, Algorithm 2 only considers
time-arcs with time stamps t′ ∈ {t+ 1, . . . , T}. For any generated graph G (Line 6) for
a time step t′ with v ∈ Vt′ , the algorithm adds an arc from s to v if there is an arrival
time within [t′−β(v), t′]. If a ∈ [t′−β(v), t′], then a′ ∈ [t′−β(v), t′] because a < a′ < t′.
Furthermore, let dl be the latest departure time of a walk from s to v such that its
arrival time is within [t′ − β(v), t′]. The weight of the arc (s, v) is set to T − dl. Thus,
if a, a′ ∈ [t′−β(v), t′], then the weight of (s, v) is set to T − d′ because d ≤ d′. Thus, the
tuple (d, a) is not needed in the list Lv at time step t anymore and can be removed.

After removing all redundant tuples from Lv, it holds that d1 > d2 > · · · > dk in Lv.

(1) Due to the sorting a1 < a2 < · · · < ak, it is not necessary to go through the whole
list to through out elements that are not in the range of the maximum dwell time
anymore.

(2) Due to the sorting d1 > d2 > · · · > dk, it is not necessary to go through the whole
list to find the redundant tuples for a newly added element (d, a). It holds that
ak < a and, thus, all tuples (di, ai) with di < d can be deleted.

After establishing the structure of the list Lv for v ∈ V , we can show the running time
of Algorithm 2:

Lemma 4.1.6. Algorithm 2 runs in O(n+M logM) time.

Proof. The initialization in Algorithm 2 can be done in O(n) time. Then, for each time
step t = 1, . . . , T , Algorithm 2 generates a static directed graph G = (Vt ∪ {s}, Et ∪Er)
with O(nt) vertices and O(mt+nt) arcs which takes O(mt+nt) time. The correct weight
for each arc (s, v) ∈ Er can be found in Lv. More precisely, Algorithm 2 first deletes all

52

4.1 Single-Source Optimal Walk

elements (d, a) ∈ Lv with a < t−β(v). Owing to the sorting of Lv this takes only O(M)
time during the whole run of the algorithm because we only delete at most as many
elements as there are time-arcs in the temporal graph. Recall that if (d, a) ∈ Lv, then
there exists a time-arc (∗, v, a, 0) ∈ E.

In each of the generated graphs G, the modified Dijkstra Algorithm is executed
in O(mt logmt) time. The optv variables are updated, and an element is added to Lv
for each v ∈ Vreac in O(nt) time. finally, Algorithm 2 deletes all elements in Lv that are
redundant. Owing to the sorting in Lv, it takes only O(M) time during the whole run
of the algorithm.

Note, that nt is the number of vertices that have at least one in-going or out-going
time-arc at time step t. Consequently, it holds that nt ≤ 2mt. We can sum up the
running time by

O
(
n+M logM +M +

T∑
t=1

(mt + nt) + (mt logmt) + nt
)

⊆ O
(
n+

T∑
t=1

mt logmt

)
= O

(
n+M logM +M logM

)
= O

(
n+M logM

)
Hence, Algorithm 2 runs in O

(
n + M logM

)
time. Note that if for each t ∈ [T] the

generated graph G is an acyclic graph, then the modified Dijkstra Algorithm runs in
linear time. Thus, the running time of Algorithm 2 would be O(n+M).

For the correctness of Algorithm 2, we first have to show that for every t ∈ [T] and
for every v ∈ V , Algorithm 2 computes a walk from s to v that arrives exactly in t with
the latest departure time among all walks from s to v that arrive exactly in t.

Lemma 4.1.7. In time step t ∈ [T], Algorithm 2 computes the latest departure time for
a temporal walk from s to v ∈ V that arrives exactly in time step t.

Proof. The proof is by induction on the time step t ∈ [T].
In the beginning of Algorithm 2 , Lv is empty for all v ∈ V . Now, the algorithm

generates a graph G = (V1 ∪ {s}, E1). No further arcs are added because no vertex has
been reached so far. All arcs from s to a vertex are weighted with T−1, all other arcs are
weighted with zero. If there is a walk from s to a vertex v ∈ V in G, then Algorithm 1
finds a walk from s to v with value T − 1. Thus, it adds (1, 1) to Lv. Time step 1 is the
latest departure time possible to arrive in time step 1.

Now, let us assume that in all time steps t′ ∈ [t], Algorithm 2 computes the latest
departure time for a temporal walk from s to v ∈ V that arrives exactly in time step t′.
If for time step t+1 a vertex v ∈ V has no in-going time-arcs with time stamp t+1, then
there cannot exist a temporal walk from s to v that arrives exactly in time step t + 1.
Thus, only vertices in Vt+1 are candidates for a temporal walk that arrives exactly in
time step t+ 1.

53

4 Algorithms for Finding Optimal Walks

Let v ∈ Vt+1 be a vertex such that there is a temporal walk from s to v that arrives
exactly in time step t + 1. Let P = (e1, . . . , ek) with ei = (vi, wi, ti, 0) ∈ E be a walk
with the latest departure time among all temporal walks from s to v that arrive exactly
in time step t+ 1. The time step t1 is the latest departure time. Let us assume towards
a contradiction that Algorithm 2 does not find that walk and, thus, does not add the
tuple (t1, t+ 1) to Lv.

Case 1. If ti = t + 1 for all i ∈ [k], then the walk ((v1, w1), . . . , (vk, wk)) is a walk
from s to v in Gt+1. Thus, the modified Dijkstra Algorithm finds a walk from s
to v ending with an arc in Et and value T − (t+ 1) because the weight of (v1, w1) is
set to T − (t + 1). The time step t + 1 is the latest time possible to depart from s
and arrive in v in time step t + 1. Thus, (t + 1, t + 1) is added to Lv. This is a
contradiction to our assumption.

Case 2. Otherwise, there is an i ∈ [k−1] such that for j ∈ [i] it holds that tj < t+1 and
for j′ ∈ {i+ 1, . . . , k} it holds that tj′ = t+ 1. We know that t1 has to be the latest
departure time for a walk from s to wi to arrive exactly in time step ti. Otherwise, P
would not be a walk with the latest departure time. By our induction hypothesis,
Algorithm 2 computed the latest departure time to wi with arrival time exactly ti
correctly. Thus, the tuple (t1, ti) was added to Lwi

. If (t1, ti) is not in Lwi
in time

step t+ 1, then there must be another tuple (t1, t̂i) in Lwi
with ti < t̂i < t+ 1 due to

Lemma 4.1.5. We further know that

t+ 1 ≤ ti + β(wi) ≤ t̂i + β(wi) (4.2)

because P is a valid temporal walk.

Let us now consider the generated graph G = (Vt+1 ∪ {s}, Et+1 ∪ Er). The arc se-
quence ((vi+1, wi+1), . . . , (vk, wk)) is a walk from vi+1 to wk = v in Gt+1 = (Vt+1, Et+1)
because tj′ = t + 1 for j′ ∈ {i + 1, . . . , k} and, thus, contained in G. Also the
arc (s, vi+1) is contained in Er with weight T − t1, due to wi = vi+1 and Eq. (4.2).
Thus, there is a walk from s to v in G. The modified Dijkstra Algorithm on G returns
the vertex v with value T − t1 because there is a walk from s to v ending with an
arc in Et+1. Consequently, (t1, t + 1) is added to Lv. This is a contradiction to our
assumption.

Wrongly adding a tuple (d, a) to a list Lv is not possible because the algorithm uses in
G only existing arcs of Gt and arcs that represent a valid temporal walk.

Thus, after a time step t ∈ [T], Algorithm 2 computed the latest departure time for a
temporal walk from s to v ∈ V that arrives exactly in time step t.

Last but not least, we prove the correctness of Algorithm 2:

Lemma 4.1.8. Algorithm 2 solves Single Source Fastest Walk.

Proof. Assume towards a contradiction that Algorithm 2 does not find the minimum
duration from s to a vertex v ∈ V . Let P = (e1, . . . , ek) with ei = (vi, wi, ti, 0) ∈ E be

54

4.1 Single-Source Optimal Walk

a walk with the minimum duration among all temporal walks from s to v. This walk P
is a reverse-foremost walk within time interval [1, tk] by Lemma 3.2.3. That means, P
has the latest departure time among all temporal walks from s to v that arrive exactly
in time step tk. This was computed correctly by Algorithm 2 in time step tk as shown
in Lemma 4.1.7. Thus, the tuple (t1, tk) was added to Lv and the variable optv was set
to tk − t1—the minimum duration of a walk from s to v. That is a contradiction to our
assumption that Algorithm 2 did not find the fastest walk.

Due to Lemmas 4.1.6 and 4.1.8, we can conclude the following theorem:

Theorem 4.1.9. Algorithm 2 solves Single Source Fastest Walk on an instanta-
neous temporal graph in O(n+M logM) time.

Remark. Note that the running time our algorithm is dominated by the running time
of the modified Dijkstra Algorithm that runs in O(M logM) time. This running time
overshadows the running time of the sorting of the time-arcs by time stamp. Thus, we
do not have to assume that a sorted time-arc list is given to reach the running time.

If an instantaneous, incurable temporal graph is given, then it is sufficient to only
store the latest departure time seen so far instead of a list L.

We already established in the beginning of this subsection that Algorithm 2 also
computes the Reverse-Foremost: the latest departure time from s to each vertex v ∈ V
during the run of the algorithm. For Cheapest and Minimum Hop-Count, the main ideas
of Algorithm 2 can be adapted: for every t ∈ [T], the algorithm computes the minimum
cost and minimum hop-count respectively for a walk from the s to all vertices in V that
arrives exactly in time step t (instead of computing the latest departure time). The
definition Shortest does not make sense to consider in instantaneous temporal graphs,
and the Minimum Waiting Time is equal to Fastest.

For non-instantaneous temporal graphs some observations have to be recalled: As
we have established in Transformation 2, we can transform in linear time any non-
instantaneous temporal graph into an instantaneous temporal graph. A sorted time-arc
list can be maintained in O(M log min{λmax,M}) time as shown in Lemma 3.1.5. Recall
that for each t ∈ [T] the static graph Gt is acyclic as shown in Observation 3.1.4. The
arcs from s to some vertices in Vt could lead to a cycle, but we can delete all arcs from
any vertex to s when we conduct the modified Dijkstra Algorithm. Thus, the generated
graph G remains acyclic. We can conclude that Single Source Fastest Walk on
non-instantaneous temporal graphs can be solved in O(n + M log min{λmax,M}) time
(see proof of Lemma 4.1.6).

4.1.3 Transformation to Static Graphs

We will now show how a temporal graph can be transformed to a static graph such that
all temporal walks can be extracted from the static graph. Even more, the different
optimality values of our optimal walks can be preserved by different cost function. Con-
ducting this transformation allows us to use the plethora of results for finding shortest
paths in path in static graphs for our purpose.

55

4 Algorithms for Finding Optimal Walks

v

3

6, 8

6

6

8

10

(a) Vertex v with in- and out-
going time-arcs

ve v10

v8

v6

v3 vs

(b) Gadget of v for β ≡ ∞

ve

v−3

v−6

v−8

v+6

v+8

v+10

vs

(c) Gadget of v for β ≡ 4

Figure 4.3: A vertex v with τ−v = {3, 6, 8}, τ+v = {6, 8, 10} and the gadgets of v within
the transformations to static graphs.

Depending on the existence of bounded maximum dwell time in the vertices, the
reduction slightly differs, but the main idea is to build a gadgets for every vertex in the
temporal graph. The gadget contains a vertex for every time step in which the vertex
has in-going or out-going time-arcs. These vertices shall be connected to each other such
that the connections represent valid time sequences within a temporal walk. We have
to distinguish between incurable temporal graphs and general temporal graph:

Incurable Temporal Graphs. For a given temporal graph G = (V,E, [T]) and a vertex v ∈
V , the gadget contains a vertex vt for each t ∈ τv = τ−v ∪τ+v . These vertices represent
the vertex v at the time steps t. A vertex vt shall be connected to all vertices vt′ if
and only if t ≤ t′ (non-decreasing in time).

Let τv = {t1, t2, . . . , t|τv |} with t1 ≤ t2 ≤ · · · ≤ t|τv |. An arc is added from vti to vti+1

for all i ∈ [|τv| − 1]. In this way, there is a a path from vt to any vt′ with t ≤ t′ and
no path from vt′ to vt within the gadget. An example is provided in Fig. 4.3(b) with
the vertices and the solid black arcs.

Temporal Graphs. For a given temporal graph G = (V,E, [T], β) and a vertex v ∈ V , the
gadget contains a vertex v−t for each t ∈ τ−v and a vertex v+t for each t ∈ τ+v . These
vertices represent the vertex v at the certain time steps t of in-going or out-going
time-arcs. Here, a vertex v−t shall be connected to all vertices v+t′ if and only if t ≤ t′

(non-decreasing in time) and t′ ≤ t+ β(v) (non-exceeding maximum dwell time).

Let τ+v = {t+1 , t+2 , . . . , t+|τ+v |} with t+1 ≤ t+2 ≤ · · · ≤ t+|τv |. An arc is added from v−t

to v+tj with tj ∈ τ+v , t ≤ tj and tj ≤ t + β(v). In this way, there is a direct arc

from v−t to v+t′ if and only if t ≤ t′ ≤ t + β(v) and nowhere else. An example is
provided in Fig. 4.3(c) with the vertices and the solid black arcs.

56

4.1 Single-Source Optimal Walk

In both cases, a vertex vs and ve are added additionally to the gadget representing
the vertex as a startpoint of a temporal walk and an endpoint of a temporal walk,
respectively. An arc is added from vs to every vt/v

+
t for every t ∈ τ+v and from vt/v

−
t

to ve for every t ∈ τ−v . These arcs are illustrated by the dashed arcs in Figs. 4.3(b)
and 4.3(c). Also an arc from vs to ve is added.

By building a gadget for every vertex v ∈ V , the time component of the temporal
graph is completely encoded in the time step representatives in the gadgets. The last
step is to connect the gadgets according to the time-arcs. That is, for every time-
arc (v, w, t, λ) ∈ E an arc (vt, wt+λ)/(v

−
t , w

+
t+λ) is added.

A similar approach was introduced by Wu et al. [Wu+16] for incurable temporal graphs
and even earlier by Dean [Dea04] in the research field of time-dependent networks with
waiting policies. We extend the reduction by encoding all of our optimal walk definitions
as cost functions on the arcs. We analyze the running time of the reduction and the
size of the resulting static graph. Furthermore, we discuss briefly the structure of the
resulting static graph and its impact on the running time of solving Single Source
Optimal Walk. Due to the similarity of these two transformation, we only introduce
the transformation of temporal graphs in general.

Transformation 3. Let G = (V,E, [T], β) be a temporal graph and let c : E → N be a
cost function on the time-arcs. We construct a directed static graph G = (VG, EG) with

(1) VG = V −t ∪ V +
t ∪ Vs ∪ Ve where

V −t = {v−t | v ∈ V ∧ t ∈ τ−v },
V +
t = {v+t | v ∈ V ∧ t ∈ τ+v },
Vs = {vs | v ∈ V }, and

Ve = {ve | v ∈ V }.

(2) EG = Es ∪ Ee ∪ Es,e ∪ Ew ∪ Et where

Es = {(vs, v+t) | v ∈ V ∧ t ∈ τ+v },
Ee = {(v−t , ve) | v ∈ V ∧ t ∈ τ−v },
Es,e = {(vs, ve) | v ∈ V },
Ew = {(v−t , v+t′) | v ∈ V ∧ t ∈ τ

−
v ∧ t′ ∈ τ+v ∧ t ≤ t′ ≤ t+ β(v)}, and

Et = {(v+t , w−t+λ) | (v, w, t, λ) ∈ E}.

To preserve the optimization value of the temporal walks, we introduce several cost
functions on the arcs EG:

Foremost. Let cf : EG → N with

cf(e) =

{
t , if e = (v−t , ve) ∈ Ee
0 , else.

57

4 Algorithms for Finding Optimal Walks

Reverse-Foremost. Let cr : EG → N with

cr(e) =

{
T − t , if e = (vs, v

+
t) ∈ Es

0 , else.

Fastest. Let cfa : EG → N with

cfa(e) =

t′ − t , if e = (v+t , w

−
t′) ∈ Et

t′ − t , if e = (v−t , v
+
t′) ∈ Ew

0 , else.

Shortest. Let cs : EG → N with

cs(e) =

{
t′ − t , if e = (v+t , w

−
t′) ∈ Et

0 , else

Minimum Hop-Count. Let ch : EG → N with

ch(e) =

{
1 , if e = (v+t , w

−
t′) ∈ Et

0 , else.

Cheapest. Let cc : EG → N with

cc(e) =

{
c((v, w, t, t′ − t)) , if e = (v+t , w

−
t′) ∈ Et

0 , else.

Minimum Waiting time. Let cw : EG → N with

cw(e) =

{
t′ − t , if e = (v−t , v

+
t′) ∈ Ew

0 , else.

Any walk in the static graph G is equivalent to a temporal walk in G and vice versa.
Even more, a shortest walk inG with respect to one of the above mentioned cost functions
is an optimal walk in G and vice versa.

Lemma 4.1.10. Let G = (V,E, [T], β) be a temporal graph, G = (VG, EG) be the static
graph by applying Transformation 3 to G, and v, w ∈ V be two vertices. There is an
optimal temporal walk from v to w in G with optimality value c∗ if and only if there
exists a shortest path from vs to ve in G with minimum cost c∗.

58

4.1 Single-Source Optimal Walk

Proof. Let v, w ∈ V be two vertices of the temporal graph. Let P = (e1, . . . , ek) with ei =
(vi, wi, ti, λi) ∈ E for all i ∈ [k] be an optimal temporal walk from v to w. Then there
are the following arcs in G:

s = ((v1)s, (v1)
+
t1

) ∈ Es due to t1 ∈ τ+v1 ,
ai = ((vi)

+
ti
, (wi)

−
ti+λi

) ∈ Et due to (vi, wi, ti, λi) ∈ E for i ∈ [k],

bi = ((wi)
−
ti+λi

, (wi)
+
ti+1

) ∈ Ew due to ti + λi ≤ ti+1 ≤ ti + λi + β(wi) for i ∈ [k − 1],

e = ((wk)
−
tk+λk

, (wk)e) ∈ Ee due to tk + λk ∈ τ−wk
.

Thus, there is a directed path PG = (s, a1, b1, . . . , ak−1, bk−1, ak, e) from vs to we in G. We
also know that each path from vs to we has to have a structure similar to PG with respect
to sequence of arcs. Hence, the translation of a directed path PG in G to a temporal walk
in G works by extracting the arcs ai with i ∈ [k] from PG. Each ai = ((vi)

+
ti , (wi)

−
ti+λi

)
belongs to a corresponding time arc ei = (vi, wi, ti, λi). Thus, there is a temporal walk P
from v to w in G if and only if there is a walk PG from vs to we in G.

Now, it remains to analyze that the optimality value of P in G is equal to the cost
of PG in G for all the optimal walk definitions:

Foremost. The optimality value of the temporal path P is the arrival time in w, that
is, tk + λk. In G, we use the cost functions cf to find the shortest path. Only arcs
in Ee have costs. Thus, the cost of PG is c(e) = tk + λk.

Reverse-Foremost. The optimality value of the temporal path P is the departure time
in v, that is, t1. In G, we use the cost functions cr to find the shortest path. Only
arcs in Es have costs. Thus, the cost of PG is c(e) = T − t1.

Fastest. The optimality value of the temporal path p is the duration of P . This is
equivalent to the transmission times plus the waiting times in P , that is,

k∑
i=1

λk +
k−1∑
i=1

ti+1 − (ti + λi).

In G, we use the cost function cfa to find the shortest path. Only arcs in Et and Ew
have costs. That is, ai ∈ Et have cost cfa(ai) = λi for i ∈ [k] and bi ∈ Ew have
costs cfa(bi) = ti+1 − (ti + λi) for i ∈ [k − 1]. Thus, the cost of PG are

k∑
i=1

cfa(ai) +
k−1∑
i=1

cfa(bi) =
k∑
i=1

λk +
k−1∑
i=1

ti+1 − (ti + λi).

Shortest. The optimality value of the temporal path P is the sum of transmission times,
that is,

∑k
i=1 λi. In G, we use the cost function cs to find the shortest path. Only

arcs in Et have cost. That is, ai ∈ Et have cost cs(ai) = λi for i ∈ [k]. Hence, the
cost of PG is

k∑
i=1

cs(ai) =
k∑
i=1

λk.

59

4 Algorithms for Finding Optimal Walks

Minimum Hop-Count. The optimality value of the temporal path P is the number of
time-arcs in P , that is, k. In G, we use the cost function ch to find the shortest path.
Only arcs in Et have cost. That is, ai ∈ Et have cost cs(ai) = 1 for i ∈ [k]. Hence,
the cost of PG is

k∑
i=1

cs(ai) =
k∑
i=1

1 = k.

Cheapest. The optimality value of the temporal path P is the costs of time-arcs in P ,
that is,

∑k
i=1 c(ei). In G, we use the cost function cc to find the shortest path. Only

arcs in Et have cost. That is, ai ∈ Et have cost cc(ai) = c(ei) for i ∈ [k]. Hence, the
cost of PG is

k∑
i=1

cc(ai) =
k∑
i=1

c(ei).

Minimum Waiting Time. The optimality value of the temporal P is the waiting times,
that is,

k−1∑
i=1

ti+1 − (ti + λi).

In G, we use the cost functions cc to find a the shortest path. Only arcs in Ew have
costs. That is, bi ∈ Ew have cost cw(bi)ti+1 − (ti + λi) for i ∈ [k − 1]. Thus, the sum
of cost of PG is

k−1∑
i=1

cw(bi) =
k−1∑
i=1

ti+1 − (ti + λi).

We have shown that there is a temporal walk G from v to w with optimality value c∗ if
and only if there is a path in G from vs to we with cost c∗. This completes the proof of
Lemma 4.1.10 that states the following: There is an optimal temporal walk from v to w
in G with optimality value c∗ if and only if there exists a shortest path from vs to ve
in G with minimum cost c∗.

It remains to show the running time of Transformation 3 and the size of the resulting
static graph.

Lemma 4.1.11. Transformation 3 runs in O(M2) time. By applying Transformation 3
for the resulting static graph it holds that |VG| ∈ O(n+M) and |EG| ∈ O(M2).

Proof. Let G = (V,E, [T], β) be a temporal graph. For the reduction, we first have to
find for every v ∈ V the sorted lists of τ−v and τ+v . This takes O

(
M logM

)
time. Now,

we have to construct the directed static graph G. We therefore create the following
vertices:

• |V −t | ∈ O(nτ−max) ⊆ O(M)

• |V +
t | ∈ O(nτ+max) ⊆ O(M)

60

4.1 Single-Source Optimal Walk

• |Vs| ∈ O(n)

• |Ve| ∈ O(n)

and the following arcs:

• |Es| ∈ O(nτ+max) ⊆ O(M)

• |Ee| ∈ O(nτ−max) ⊆ O(M)

• |Es,e| ∈ O(n)

• |Ew| ∈ O(M min{βmax, τ
+
max})

• |Et| ∈ O(M).

Due to the sorted lists τ−v and τ+v for v ∈ V , all these insertions can be done in time O(n+
M min{βmax, τ

+
max}). Hence, the construction runs in

O
(
n+M min{βmax, τ

+
max}+M logM

)
time. For the resulting graph G = (VG, EG), it holds that

|VG| ∈ O(n+M) and |EG| ∈ O(M min{βmax, τ
+
max}).

Remark. In the proof of Lemma 4.1.11, it gets clear that if βmax is a constant, then
the resulting graph G by Transformation 3 has only linear size with respect to the size
of G. If an incurable temporal graph is given, the simpler vertex-gadget introduced in
the beginning of the subsection can be used. This results into a static graph G of linear
size, as already shown in Wu et al. [Wu+16].

For a static graph G = (V,E), solving Single-Source Shortest Path can be done
by Dijkstra’s algorithm in O(|E|+ |V | log |V |) time if all arc costs are non-negative. All
of our cost functions introduced in Transformation 3 have non-negative arc costs. Thus,
we can conclude the following theorem:

Theorem 4.1.12. Single Source Optimal Walk can be solved in O(M2 logM)
time by applying Transformation 3 and solving Single-Source Shortest Path on
the resulting static graph with the respective cost function of the optimal walk variant.

But given an acyclic, directed static graph, Dijkstra’s algorithm has a running time
in O(|E|+|V |). If the transmission times are strictly greater than zero, then the resulting
static graph by Transformation 3 is acyclic.

Observation 4.1.13. Given a non-instantaneous temporal graph G = (V,E, [T], β), the
resulting graph G by applying Transformation 3 to G is acyclic.

61

4 Algorithms for Finding Optimal Walks

We consider a topological ordering of the resulting static directed graph G. A topo-
logical ordering is a linear ordering of the vertices such that for all arcs (v, w) it holds
that v comes before w in the ordering. There is a topological ordering for G if and only
if G is acyclic.

Let G = (VG, EG) with VG = V −t ∪ V +
t ∪ Vs ∪ Ve according to Transformation 3. A

possible topological ordering starts with the vertices in Vs. All these vertices only have
out-going arcs. Afterwards, all vertices in V −t and V +

t can be ordered such that the time
steps are non-decreasing and v−t < v+t for v ∈ V , t ∈ τ−v ∩ τ+v . The arcs between these
vertices are always from a vertex v+t to a vertex w−t′ with v, w ∈ V , t ∈ τ+v , t

′ ∈ τ−w ,
and t < t′ since the transmission times are greater than zero on the time-arcs. Or from
a vertex v−t to a vertex v+t′ with v ∈ V , t ∈ τ−v , t′ ∈ τ+v if t ≤ t′ since the non-decreasing
time sequences. The ordering ends with the vertices in Ve. All these vertices only only
have in-going arcs. Thus, the resulting directed static graph G has a topological ordering
and consequently, is acyclic. As a consequence, Dijkstra’s algorithm can solve Single
Source Optimal Walk in O(M2) time by applying Transformation 3. The same
does not hold for temporal graphs G = (V,E, [T], β) in general because there can exist
a t ∈ [T] for which Gt contains a cycle. In the resulting graph G, there exists a subgraph
topological minor of Gt.

We have introduced Algorithm 1 and Algorithm 2 solving Single Source Optimal
Walk for Foremost and Fastest in O(M) and O(M logM) time respectively on instan-
taneous temporal graphs. Due to the Transformation 3, we can transform any temporal
graph to a static graph without loosing any information on optimal walks.

4.2 Single-Sink Optimal Walk

In this section, we look into solving Single Sink Optimal Walk. In directed static
graphs, we already know that solving Single-Sink Shortest Path can be done by
reversing the arcs in the graph and solving Single-Source Shortest Path on the
resulting graph. We adapt this idea for temporal graphs. We will introduce a trans-
formation of temporal graphs that reverses the time-arcs in a proper manner such that
solving Single Source Optimal Walk on the resulting graph gives us the solution
of Single Sink Optimal Walk in the original temporal graph. To reverse a time-arc,
we

1. reverse the start- and endpoint,

2. adapt the time stamp, and

3. retain the transmission time.

Our transformation reverses all temporal walks in the graph and is done in the following
way:

Transformation 4 (Reverse Temporal Graph). Let G = (V,E, [T], α, β) be a temporal
graph with a cost function c : E → N. We construct the reverse temporal graph Gr =
(V,Er, [T], α, β) and cr : Er → N with

62

4.2 Single-Sink Optimal Walk

a

c

s

b
(2, 1)

(5, 1)

(6, 1)

(3, 4), (8, 2)

(11, 4)

(a) Temporal graph G with β ≡ 4 and T = 16

a

c

s

b
(9, 4), (6, 2)

(1, 4)

(9, 1)

(13, 1)

(10, 1)

(b) Reverse temporal graph Gr of G

Figure 4.4: A temporal graph with β ≡ 4 and lifetime T = 16 and its reverse temporal
graph by Transformation 4.

(1) Er = {(w, v, T − t− λ) | (v, w, t, λ) ∈ E} and

(2) cr((v, w, T − t− λ, λ)) = c((v, w, t, λ)) for all (v, w, T − t− λ, λ) ∈ Er.

The resulting graph of Transformation 4 has obviously neither an increase in the
number of vertices nor in the number of time-arcs. The transformation runs in linear
time, and any sorted time-arcs list can be maintained in O(M + M log min{λmax,M})
time in a similar procedure as shown in Lemma 3.1.5. But most importantly, it maintains
all temporal walks reversely. See Fig. 4.4 for an example of Transformation 4.

Example. Fig. 4.4 shows a temporal graph G (Fig. 4.4(a)) and its reverse temporal
graph Gr (Fig. 4.4(b)). Consider the temporal walk P =

(
(a, b, 2, 1), (b, s, 3, 4)

)
from a

to s. In the reverse temporal graph Gr, the reverse temporal walk exists from s to a:
P r =

(
(s, b, 9, 4), (b, a, 13, 1)

)
. The waiting time in vertex b is for both walks zero and

the sum of transmission time is equal to 5 in both walks. The walk P is a foremost walk
from a to s and P r is a reverse-foremost walk from s to a. All these observations are
not surprising and hold for every walk in G as we will show later in this section. Let
us now have a look at the time-arc sequence

(
(a, c, 5, 1), (c, s, 11, 4)

)
. This is not a valid

temporal walk from a to s because it violates the maximum dwell time of 4 in vertex c.
The same holds for the reverse time-arc sequence

(
(s, c, 1, 4), (c, a, 10, 1)

)
in Gr. This is

also not a temporal walk because we exceed the maximum dwell time of 4 in vertex c.

We will now show that our observations in the small example generally hold in tem-
poral graphs and their reverse temporal graphs by Transformation 4. In the following
discussion, for any time-arc e ∈ E of an original temporal graph, we refer to the corre-
sponding reverse time-arc with er ∈ Er in the reverse temporal graph.

Lemma 4.2.1. Given a temporal Graph G = (V,E, [T], α, β), Transformation 4 runs in
linear time. For the resulting reverse temporal graph Gr = (V,Er, [T], α, β), the following
holds: Let v, w ∈ V . A time-arc sequence (e1, . . . , ek) is a temporal walk from v to w
in G if and only if (erk, . . . , e

r
1) is a temporal walk from w to v in Gr.

63

4 Algorithms for Finding Optimal Walks

Proof. The transformation can be applied in linear time: for every time-arc e ∈ E we
have to add a time-arc er to the the time-arc set Er. The rest of the elements remain
equal to the original temporal graph.

In the next step, we want to show that all temporal walks are maintained. Assume
that the time-arc sequence (e1, . . . , ek) is a temporal walk from v to w in G with ei =
(vi, wi, ti, λi) ∈ E for all i ∈ [k]. Recall that v = v1, w = wk, and for all i ∈ [k − 1] it
holds that ti + λi + α(wi) ≤ ti+1 ≤ ti + λi + β(wi) and vi = wi+1. Thus, we already
know that the sequence of vertices in (erk, . . . , e

r
1) is valid starting in w and ending in v

due to eri = (wi, vi, t
r
i := T − ti − λi, λi) for each i ∈ [k]. It remains to show that for

all i ∈ {2, . . . , k} it holds that tri + λi + α(vi) ≤ tri−1 ≤ tri + λi + β(vi):

tri + λi + α(vi) ≤ tri−1
⇔ T − ti − λi + λi + α(vi) ≤ T − ti−1 − λi−1
⇔ T − ti + α(vi) ≤ T − ti−1 − λi−1
⇔ − ti + α(vi) ≤ −ti−1 − λi−1
⇔ ti−1 + λi−1 ≤ ti − α(vi)

⇔ ti−1 + λi−1 + α(vi) ≤ ti

The last inequality holds since (e1, . . . , ek) is a valid temporal walk. We also have to
show that for all i ∈ {2, . . . , k} it holds that tri−1 ≤ tri + λi + β(vi):

tri−1 ≤ tri + λi + β(vi)

⇔ T − ti−1 − λi−1 ≤ T − ti − λi + λi + β(vi)

⇔ T − ti−1 − λi−1 ≤ T − ti + β(vi)

⇔ − ti−1 − λi−1 ≤ −ti + α(vi)

⇔ ti − β(vi) ≤ ti−1 + λi−1

⇔ ti ≤ ti−1 + λi−1 + β(vi)

This inequality also holds since (e1, . . . , ek) is a temporal walk. Thus, the time-arc
sequence (erk, . . . , e

r
1) is a temporal walk from w to v in Gr. The reverse direction works

analogously.

Next, we have a look at the different optimal walk definitions. We will show that for
two vertices v and s it holds that a foremost walk from v to s in the original graph is a
reverse-foremost walk from s to v in the reverse temporal graph and vice versa. For all
other optimal walk definitions it holds that an optimal walk from v to s in the original
graph is an optimal walk from s to v in the reverse temporal graph. Thus, if we want to
compute an optimal walk from each vertex to a sink vertex s, it is sufficient to compute
an optimal walk from s to each vertex in the reverse temporal graph.

Lemma 4.2.2. Given a temporal graph G = (V,E, [T], α, β), the reverse temporal
graph Gr = (V,Er, [T], α, β) of G constructed by Transformation 4, and two vertices v, w ∈
V , it holds that:

64

4.2 Single-Sink Optimal Walk

(1) If (e1, . . . , ek) is a foremost walk from v to w in G, then (erk, . . . , e
r
1) is a reverse-

foremost walk from w to v in Gr,

(2) If (e1, . . . , ek) is a reverse-foremost walk from v to w in G, then (erk, . . . , e
r
1) is a

foremost walk from w to v in Gr, and

(3) A temporal walk (e1, . . . , ek) is an optimal walk from v to w in G if and only
if (erk, . . . , e

r
1) is an optimal walk with respect to the same criterion from w to v

in Gr for Fastest, Shortest, Minimum Hop-Count, Cheapest, and Minimum Waiting
Time.

Proof. By Lemma 4.2.1, it holds that P = (e1, . . . , ek) is a temporal walk in G from a
vertex v to a vertex w if and only if P r = (erk, . . . , e

r
1) is a temporal walk in Gr from w

to v. Recall that for any e ∈ E, er ∈ Er is the reversed time-arc of e.

To (1): If P is a foremost walk, then t(ek) + λ(ek) is the earliest arrival time from v
to w. Assume towards a contradiction that P r is not a reverse-foremost walk in Gr.
Then there exists a reverse-foremost walk P̂ r = (êrl , . . . , ê

r
1) in Gr from w to v with

departure time t(êrl) = T − t(êl) − λ(êl) > T − t(ek) + λ(ek) = t(erk). But then the
temporal walk P̂ = (ê1, . . . , êl) is a valid walk in G from v to w due to Lemma 4.2.1.
It has an arrival time t(êl)+λ(êl) < t(ek)+λ(ek)—a contradiction to our assumption
that t(ek) + λ(ek) is the earliest arrival time.

To (2): If P is a reverse-foremost walk, then t(e1) is the latest departure time from v
to w. Assume towards a contradiction that P r is not a foremost walk in Gr. Then
there exists a foremost walk P̂ r = (êrl , . . . , ê

r
1) in Gr from w to v with earliest arrival

time t(êr1) + λ(êr1) = T − t(ê1) < T − t(ek) = t(er1) + λ(er1). But then the temporal
walk P̂ = (ê1, . . . , êl) is a valid walk in G from v to w due to Lemma 4.2.1. It
has a departure time t(ê1) > t(e1)—a contradiction to our assumption that P is a
reverse-foremost walk.

To (3): By Lemma 4.2.1, we know that for each P in G there exists a reverse walk P r

in Gr. We show that P and P r have the same optimality value:

Fastest. A fastest walk minimizes the difference between arrival and start time. The
temporal walk P r takes t(er1) + λ(er1)− t(erk) time. That is,

t(er1) + λ(er1)− t(erk)
=
(
T − t(e1)− λ(e1)

)
+ λ(e1)−

(
T + t(ek) + λ(ek)

)
= − t(e1) + t(ek) + λ(ek)

)
This is the time the temporal walk P needs.

Shortest. A shortest walk minimizes the sum of transmission times. The temporal
walk P r has an optimization value of

∑
i∈[k] λ(eri) =

∑
i∈[k] λ(ei) which is the sum

of transmission times in P .

65

4 Algorithms for Finding Optimal Walks

Minimum Hop-Count. A minimum hop-count walk minimizes the number of time-
arcs. The temporal walks P and P r have the same number of time-arcs k.

Cheapest. A cheapest walk minimizes the sum of time-arc costs. The temporal
walk P r has an optimal value of

∑
i∈[k] c

r(eri) =
∑

i∈[k] c(ei) which is the sum
of costs in P .

Minimum Waiting time. A minimum waiting time walk minimizes the waiting times
in the intermediate vertices. The temporal walk P r has accumulated waiting time
of ∑

i∈[k−1]

t(eri)−
(
t(eri+1)− λ(eri+1)

)
=

∑
i∈[k−1]

(
T − t(ei)− λ(ei)

)
−
((
T − t(ei+1)− λ(ei+1)

)
+ λ(ei+1)

)
=

∑
i∈[k−1]

(
T − t(ei)− λ(ei)

)
−
(
T − t(ei+1)

)
=

∑
i∈[k−1]

t(ei+1)−
(
t(ei) + λ(ei)

)
This is the accumulated waiting time of P .

Hence, P is an optimal walk in G if and only if P r is an optimal walk in Gr for
Fastest, Shortest, Minimum Hop-Count, Cheapest, and Minimum Waiting Time.

We can conclude this section with the following theorem:

Theorem 4.2.3. Given a temporal graph G = (V,E, [T], α, β), we can solve Single
Sink Optimal Walk for

1. Foremost in the same time as solving Single Source Reverse-Foremost
Walk,

2. Reverse-Foremost in the same time as solving Single Source Foremost Walk,
and

3. Fastest, Shortest, Minimum Hop-Count, Cheapest, and MinimumWaiting Time in the
same time as solving Single Source Optimal Walk for the specific definition.

Next, we will investigate finding all-pairs optimal walks in temporal graphs.

4.3 All-Pairs Optimal Walk

This section is devoted to solve All-Pairs Optimal Walk. Our approach is to
adapt the famous Floyd-Warshall algorithm [Flo62; War62]—a dynamic programming
algorithm for solving All-Pair Shortest Walk on static graphs without negative
cycles. This algorithm compares all possible paths to compute a shortest path of all
pairs of vertices. It exploits two different properties of shortest walks in static graphs
without negative cycles:

66

4.3 All-Pairs Optimal Walk

(1) there exists a shortest walk which is a path and

(2) every subpath of a shortest path is a shortest path.

Due to the observation (1), using the idea of the Floyd-Warshall algorithm on temporal
graphs seems impossible. As stated in Observation 3.1.6, it can happen that all tem-
poral walks between two vertices contain a cycle if the dwell times are bounded. Also
for the definition of Minimum Waiting Time, we know that there could exist a unique
optimal walk containing cycles even if the maximum dwell time is unbounded, as stated
in Observation 3.2.4. Consequently, we concentrate on incurable temporal graphs and
on all optimal walk definitions excluding Minimum Waiting Time. In this model, we know
by Lemma 3.2.5 that there always exists an optimal walk which is a path. Even though
observation (2) does not hold for these optimal paths, we will show how we can work
around that in our adaptation of the Floyd-Warshall algorithm.

We will start with the optimal walk definition Foremost. For this definition, we can
assume by Lemma 3.2.6 that each prefix path of a foremost path is also a foremost
path. We will introduce a dynamic program based on the Floyd-Warshall algorithm
that computes the foremost path for each pair of vertices and for any possible departure
time. This extra computation is used to overcome the fact that not every postfix-path
of the foremost path is a foremost path. We at least know that every postfix-path of
a foremost path is a foremost path for its departure time as shown in Lemma 3.2.7.
In the resulting table of this program, we will find the optimal solution for Fastest and
Reverse-Foremost as well.

Foremost, Reverse-Foremost & Fastest. In our adaptation of the Floyd-Warshall
algorithm we compute not only for all vertex pairs v, w ∈ V a foremost path from v
to w, but do so for every possible start time. Of course, there can only be different
foremost paths at any time step where v has an out-going time-arc, that is, t ∈ τ+v .
Thus, we compute a foremost path from v to w starting earliest at time step t ∈ τ+v .
Consequently, it also computes the reverse-foremost path and the fastest path. This is
based on the following observations:

• Reverse-Foremost: The latest time step t ∈ τ+v such that there exists a foremost
path from v to w starting earliest at time t is a reverse-foremost path (see Obser-
vation 3.2.2)

• Fastest: Choosing a time step t ∈ τ+v such that the difference between t and the
earliest-arrival time of a foremost path from v to w starting earliest at time t is
minimized will lead us to a fastest path (see Lemma 3.2.3).

The approach is to compare all foremost paths of all pairs of vertices and all possible
starting times. The corresponding algorithm—Algorithm 3—works as follows: Let G =
(V,E, [T]) be a temporal graph where V = {v1, v2, . . . , vn}. After the k-th run of the
outer-most for-loop (Line 6), Algorithm 3 compared for v, w ∈ V and t ∈ τ+v all temporal

67

4 Algorithms for Finding Optimal Walks

Algorithm 3: All-Pairs Optimal Walk for Foremost, Reverse-Foremost, and
Fastest on temporal graphs with unbounded dwell time

1 function TempFloydWarshalI(G):
/* Initialization for all v, w ∈ V and t ∈ τ+v - see Lemma 4.3.1 */

2 for v ∈ V , t ∈ τ+v do
3 d(v, v, t, 0) = t

4 for v, w ∈ V , t ∈ τ+v with v 6= w do
5 d(v, w, t, 0) = min

(
{t′ + λ′ | (v, w, t′, λ′) ∈ E ∧ t ≤ t′} ∪ {∞}

)
6 for vk ∈ {v1, . . . , vn} do

/* Computing the earliest arrival time from v to w starting

earliest at time step t using the vertices {v1, . . . , vk} */

7 for v, w ∈ V withw 6= vk do
8 for t ∈ τ+v do
9 d(v, w, t, k) = min{d(v, w, t, k − 1), d(vk, w,min{t′ ∈ τ+vk |

d(v, vk, t, k − 1) ≤ t′}, k − 1)}

10 return d

paths from v to w starting earliest at time t using only intermediate vertices {v1, . . . , vk}.
Thus, the table entry in d contains the following information:

d(v, w, t, k) := earliest arrival time from v to w starting earliest at time step t

using only the vertices {v1, . . . , vk} as intermediate vertices.

In the next loop-iteration of the outer-most for-loop (Line 6), the algorithm for any
vertex-pair v, w ∈ V (Line 7) and time step t ∈ τ+v (Line 8) computes the earliest arrival
time using the intermediate vertices {v1, . . . , vk+1}. For each pair v, w and each time
step t, one of two statements holds:

1. A path does not use vk+1.
Then, d(v, w, t, k) contains the earliest arrival time of any path using intermediate
vertices {v1, . . . , vk+1}.

2. A path uses vk+1.
Then, the path goes from v to vk+1 starting earliest in time t using only interme-
diate vertices {v1, . . . , vk} and then the path goes from vk+1 to w starting earliest
at time d(v, vk+1, t, k) using only intermediate vertices {v1, . . . , vk}.

Thus, Algorithm 3 computes the earliest arrival time by looking up the earliest arrival
time from v to vk+1 starting at time t, that is, d(v, vk+1, t, k), and then, the earliest arrival
time from vk to w starting earliest in time d(v, vk+1, t, k), that is, d(vk+1, w,min{t′ ∈
τ+vk+1

| d(v, vk+1, t, k) ≤ t′}, k). Both of these entries are computed in the previous
loop-iteration. The last value returns the earliest arrival from v to w if using the

68

4.3 All-Pairs Optimal Walk

vertex vk+1. Now, Algorithm 3 compares the earliest arrival time using only ver-
tices {v1, . . . , vk} to the earliest arrival time when using the additional vertex vk+1.
The table entry d(v, w, t, k + 1) is set to the minimum of both values (Line 9).

After Algorithm 3 is conducted once, the table entry d(v, w, t, n) contains the earliest
arrival time from v to w starting earliest at time step t when using all vertices and, thus,
the earliest arrival time in G. Recall that n is the number of vertices in the temporal
graph. The solution of Foremost, Reverse-Foremost, and Fastest can be found in the final
table. For every v, w ∈ V , we find the optimal value of a temporal path in the following
way:

• Foremost: d(v, w,min τ+v , n),

• Reverse-Foremost: max{t ∈ τ+v | d(v, w, t, n) <∞}, and

• Fastest: min{d(v, w, t, n)− t | t ∈ τ+v }.

After introducing Algorithm 3 in detail, we next show that it solves All-Pairs Opti-
mal Walk and that it runs O(n2M) time. But before, we prove that the initialization
step in Lines 4 and 5 runs O(nM) time:

Lemma 4.3.1. Given an incurable temporal graph G = (V,E, [T]), setting d(v, w, t) :=
min

(
{t′+ λ′ | (v, w, t′, λ′) ∈ E ∧ t ≤ t′}∪ {∞}

)
for all v, w ∈ V, t ∈ τ+v in Lines 4 and 5

takes O(nM) time.

Proof. For every vertex pair v, w ∈ V we can store a list of all time-arcs from v to w:

[(t1, λ1), (t2, λ2), . . . , (tk, λk)]

We create this list for every vertex pair by going through the sorted time-arc list once.
We know that t1 ≤ t2 · · · ≤ tk. We assume that all ti with i ∈ [k] are pairwise distinct.
If not, then we can delete all entries with the same time stamp except the one with the
smallest λ. This can be done in linear time with respect to the length of the list. Then,
we additionally store the arrival times in w:

Lv,w = [(t1, a1 = t1 + λ1, λ1), (t2, a2 = t2 + λ2, λ2), . . . , (tk, ak = tk + λk, λk)]

For each i ∈ [k], we want to set ai to the earliest arrival time in w when taking a v-
w time-arc with time stamp at least ti and λi to the smallest transmission time to
meet the arrival time. In the end, it must hold that a1 ≤ a2 ≤ · · · ,≤ ak. Therefore,
we iterate backwards through the list Lv,w. For the entry (tk, ak = tk + λk, λk) we
know that tk + λk is the earliest arrival time in w when starting earliest in time step tk
because there is no later time-arc to take. For every (ti, ai, λi) with i ∈ [k − 1]—
starting with (ti, ai, λi) := (tk−1, ak−1, λk−1) and decreasing i in each iteration—we do
the following:

1. If ai ≥ ai+1, then set ai := ai+1 and λi := λi+1

because ai+1 is the earliest arrival time when starting earliest at time step ti. Also,
the transmission time λi ≥ λi+1 because we meet the arrival time ai ≥ ai+1 with
a v-w time-arc with a later time stamp than ti.

69

4 Algorithms for Finding Optimal Walks

2. Go to the next entry (ti−1, ai−1).

Thus, by iterating backwards through the list, we update all time steps ti with i ∈ [k]
to the earliest arrival time in w starting earliest in time ti with the smallest transmis-
sion time. This runs in O(|dv,w|) where |dv,w| is the number of time-arcs from v to w.
For filling the table of Algorithm 3, we do not need the knowledge about the smallest
transmission time. But this information is needed in Lemma 4.3.3. Now, we have to go
through the ordered list of τ+v of the vertex pair v, w and update the entries according
to our list Lv,w. This runs in O(|τ+v |) time. Thus, the whole procedure runs in O(nM)
time due to

O
(
M +

∑
v∈V

∑
w∈V

dv,w +
∑
v∈V

∑
w∈V

|τ+v |
)

⊆ O
(
M +M +

∑
w∈V

∑
v∈V

dv
)

⊆ O
(
M + nM

)
= O

(
nM

)
.

Together with Lemma 4.3.1, we can finally prove the following theorem:

Theorem 4.3.2. Algorithm 3 solves All-Pairs Optimal Walk on incurable temporal
graphs for Foremost, Reverse-Foremost, and Fastest in O(n2M) time.

Proof. We first prove the running time of the algorithm and then show its correctness.

Running Time. In the initialization, the algorithm first sets d(v, v, t, 0) = t for ev-
ery v ∈ V , t ∈ τ+v in Lines 2 and 3. This takes at most O(M) time. For ev-
ery v, w ∈ V there are |τ+v | entries to fill in Lines 4 and 5. This runs in O(nM)
time by Lemma 4.3.1. After the initialization, we only have to look at the number of
for-loops: for each vertex vk ∈ V and every vertex-pair v, w ∈ V , Algorithm 3 con-
ducts |τ+v | table entries updates. Now it gets a bit tricky. For each update we have to
find min{t′ ∈ τ+vk | d(v, vk, t, k) ≤ t′} in Line 9. Naively, that takes O(log |τ+vk |) time by
binary search on the sorted array on τ+vk for each t ∈ τ+v . But, if we go through an sorted
array [t1, . . . , t|τ+v |] of τ+v in Line 6, then we know that

min{t′ ∈ τ+vk | d(v, vk, t1, k) ≤ t′} ≤ · · · ≤ min{t′ ∈ τ+vk | d(v, vk, t|τ+v |, k) ≤ t′}

due to Observation 3.2.8. The earliest arrival time of any path from v to w starting
earliest at time t—d(v, vk, t, k)— is smaller or equal to the earliest arrival time of any
path from v to w starting earliest at time t′—d(v, vk, t

′, k)—if and only if t < t′. We can
apply the following procedure:

1. For t1 ∈ τ+v , we go through the sorted array of τ+vk until we find the smallest t ∈ τ+vk
such that d(v, w, t1, k) ≤ t, that is, min{t′ ∈ τ+vk | d(v, vk, t1, k) ≤ t′}. We mark the
position of t in the list of τ+vk .

70

4.3 All-Pairs Optimal Walk

2. For t2 ∈ τ+v , we know that t ≤ min{t′ ∈ τ+vk | d(v, vk, t2, k) ≤ t′}. Thus, we can
start at our marker on the array of τ+vk to find the proper value.

This can be done for all time-steps in τ+v consecutively. Thus, for the loop on τ+v in Line 8,
we only have to iterate the array of τ+vk once. All other operations are table look-ups,
which can be done in constant time. Hence, Algorithm 3 runs in O(n2M) time due to

O
(∑
vk∈V

∑
v∈V

∑
w∈V

(
∑
t∈τ+v

1) + |τ+vk |
)

= O
(∑
vk∈V

∑
v∈V

∑
w∈V

∑
t∈τ+v

1 +
∑
vk∈V

∑
v∈V

∑
w∈V

|τ+vk |
)

= O
(∑
vk∈V

∑
w∈V

∑
v∈V

|τ+v |+
∑
v∈V

∑
w∈V

∑
vk∈V

|τ+vk |
)

⊆ O
(∑
vk∈V

∑
w∈V

∑
v∈V

|dv|+
∑
v∈V

∑
w∈V

∑
vk∈V

|dvk |
)

= O
(∑
vk∈V

∑
w∈V

M +
∑
v∈V

∑
w∈V

M
)

= O
(
n2M + n2M

)
= O

(
n2M

)
.

Correctness. We will show that after the k-th iteration of the outer-most for-loop,
a table entry d(v, w, t, k) contains the earliest arrival time when using only vertices
{v1, . . . , vk} as intermediate vertices. This can be done by induction on the number of
iteration k ∈ {0, 1, . . . , n}:

Before entering the outer-most for-loop, that is, k = 0, the table entries are set
to d(v, w, t, 0) = min

(
{t′ + λ′ | (v, w, t′, λ′) ∈ E ∧ t ≤ t′} ∪ {∞}

)
. Thus, it is set to the

correct earliest arrival time using no intermediate vertices. Let us now assume that after
the k-th iteration, a table entry d(v, w, t, k) contains the earliest arrival time using only
intermediate vertices {v1, . . . , vk}. In the (k+1)-th iteration, the table entry d(v, w, t, k+
1) should be set to the earliest arrival time using intermediate vertices {v1, . . . , vk+1}.
Therefore, the earliest arrival time using vertex vk+1 is computed:

1. the algorithm looks up d(v, vk+1, t, k)—the earliest arrival time from v to vk+1 using
vertices {v1, . . . , vk}, due to the observation that a prefix-path of a foremost path
is a foremost path (Lemma 3.2.6),

2. then, the algorithm looks up d(vk, w,min{t′ ∈ τ+vk | d(v, vk, t, k) ≤ t′}, k)—the
earliest arrival time from vk+1 to w starting earliest in time d(v, vk, t, k), due to
the observation that every postfix-path of a foremost path is a foremost path for
its departure time (Lemma 3.2.7).

Hence, d(vk+1, w,min{t′ ∈ τ+vk | d(v, vk+1, t, k) ≤ t′}, k) is the earliest arrival time from v
to w via vk+1. The table entry is set to

d(v, w, t, k + 1) := min{d(v, w, t, k), d(vk+1, w,min{t′ ∈ τ+vk | d(v, vk+1, t, k) ≤ t′}, k)},

71

4 Algorithms for Finding Optimal Walks

the earliest arrival time using only the intermediate vertices {v1, . . . , vk+1}.
After the n-th iteration, d(v, w, t, n) contains the earliest arrival time using interme-

diate vertices {v1, . . . , vn} = V , and hence, the earliest arrival time in G.

Remark. A closer look into the running time analysis shows that Algorithm 3 runs
in O(n3) for static graphs and, thus, has an identical running time to the original Floyd-
Warshall algorithm.

We continue with the three remaining optimal walk definitions where there always
exists an optimal path in an incurable temporal graph: Shortest, Minimum Hop-Count,
and Cheapest.

Shortest, Minimum Hop-Count & Cheapest. These three optimal walk definitions
have in common that their optimization costs is the sum of the definition-specific time-
arcs values of a temporal walk. The problem is thereby that no subpath of an optimal
path has to be optimal. But every subpath is optimal within a certain time interval as
shown by Lemma 3.2.11. Thus, for each pair of vertices v and w we will compute an
optimal path for any possible start and arrival time. Of course there can only be different
optimal paths from v to w for any time step where there is an out-going time-arc at v
and an in-going time-arc in w, that is, for every starting time tv ∈ τ+v and every arrival
time tw ∈ τ−w . We compare all optimal paths of all pairs of vertices and all possible
starting times and arrival times.

The corresponding algorithm—Algorithm 4—works as follows: Let G = (V,E, [T]) be
an incurable temporal graph where V = {v1, v2, . . . , vn}. After the k-th iteration of
the outer-most for-loop (Line 6), the algorithms compared for v, w ∈ V , tv ∈ τ+v , and
tw ∈ τ−w all temporal path from v to w starting earliest at time tv and arriving no later
than tw using only intermediate vertices {v1, . . . , vk}. Thus, the table entry in d contains
the following information:

d(v, w, tv, tw, k) := minimum sum of time-arc costs from v to w starting earliest

at time step tv and arriving latest in tw using only the

vertices {v1, . . . , vk} as intermediate vertices.

For Shortest the table entry is the minimum amount of transmission times, for Min-
imum Hop-Count it is the minimum number of time-arcs, and for Cheapest it is the
minimum costs from v to w within time interval [tv, tw] using only intermediate ver-
tices {v1, . . . , vk}. In the next iteration of the outer-most for-loop (Line 6), the algorithm
computes for any vertex-pair v, w ∈ V (Line 7) and time steps tv ∈ τ+v , tw ∈ τ−w (Line 8)
an optimal path using the intermediate vertices {v1, . . . , vk+1}. For each pair v, w ∈ V
and tv ∈ τ+v , tw ∈ τ+w , one of two statements holds:

1. A path does not contain vk+1.
Then, d(v, w, tv, tw, k) contains the minimum sum of time-arcs values of any path
using intermediate vertices {v1, . . . , vk+1}.

72

4.3 All-Pairs Optimal Walk

Algorithm 4: All-Pairs Optimal Walk for Shortest, Minimum Hop-Count,
and Cheapest on temporal graphs with unbounded dwell time

1 function TempFloydWarshalII(G, opt):
/* Initialization for all v, w ∈ V and tv ∈ τ+v , tw ∈ τ−w */

2 for v ∈ V , tv ∈ τ+v , t′v ∈ τ−v do
3 d(v, v, tv, t

′
v, 0) = 0

/* The symbol * is a place holder for the optimal walk

definition---see below */

4 for v, w ∈ V , tv ∈ τ+v , tw ∈ τ−w do
5 d(v, v, tv, t

′
v, 0) = Init*(v, w, tv, tw)

6 for vk ∈ {v1, . . . , vn} do
/* Computing the optimal value of a path from v to w starting

earliest at time step tv and arriving latest in tw using

only the vertices {v1, . . . , vk} */

7 for v, w ∈ V do
8 for tv ∈ τ+v , tw ∈ τ−w do
9 d = d(v, w, tv, tw, k − 1)

10 for tvk ∈ τ−vk do
11 d = min{d, d(v, vk, tv, tvk , k − 1) + d(vk, w,min{t′ ∈ τ+vk | tvk ≤

t′}, tw, k − 1)}
12 d(v, w, tv, tw, k) = d

13 return d

/* Initialization for different optimal path definitions */

14 function InitShortest(v, w, tv, tw):
15 return min

(
{λ | (v, w, t′, λ) ∈ E ∧ tv ≤ t′ ∧ t′ + λ ≤ tw} ∪ {∞}

)
16 function InitMinHopCount(v, w, tv, tw):
17 return min

(
{1 | (v, w, t′, λ) ∈ E ∧ tv ≤ t′ ∧ t′ + λ ≤ tw} ∪ {∞}

)
18 function InitCheapest(v, w, tv, tw):
19 return min

(
{c((v, w, t′, λ)) | (v, w, t′, λ) ∈ E ∧ tv ≤ t′ ∧ t′ + λ ≤ tw} ∪ {∞}

)

73

4 Algorithms for Finding Optimal Walks

2. A path uses vk+1.
Then, the path goes from v to vk+1 starting earliest in time tv using intermediate
vertices {v1, . . . , vk} and then from vk+1 to w arriving not later than tw using only
intermediate vertices {v1, . . . , vk}. There is a variety of such paths. For every time
step tvk+1

∈ τ−vk+1
, there could exist a path that arrives in vk+1 not later than tvk+1

and continues in time step min{t′ ∈ τ+vk+1
| tvk+1

≤ t′}.
The optimal path using vertex vk+1 is computed by looking up for each tvk+1

∈ τ−vk+1
an

optimal path from v to vk+1 starting earliest at time tv, that is, d(v, vk+1, tv, tvk+1
, k).

Then, the optimal path from vk to w starting earliest in time tvk+1
and arriving not later

than time tw, that is, d(vk+1, w,min{t′ ∈ τ+vk+1
| tvk+1

≤ t′}, tw, k) is looked up.
The minimum of

d(v, vk+1, tv, tvk+1
,) + d(vk+1, w,min{t′ ∈ τ+vk+1

| tvk+1
≤ t′}, tw, k)

for any tvk+1
∈ τ−vk+1

is taken (Line 11). This value is the optimal value of a path if
the vertex vk+1 has to be used. Now, both values—the value of d(v, w, tv, tw, k) and the
current result—are compared. The table entry d(v, w, tv, tw, k + 1) is updated to the
minimum of these two values (Line 12).

After the n-th iteration of the outer-most for-loop, the optimal path of any pair of
vertices v, w ∈ V can be found in the resulting table:

d(v, w,min τ+v ,max τ−w , n)

After explaining Algorithm 4, we next show the correctness of the algorithm and the
running time complexity of O(nM +M3). To this end, we examine the running time of
the initialization steps:

Lemma 4.3.3. Given an incurable temporal G = (V,E, [T]), initializing d(v, w, tv, tw, 0)
for all v, w ∈ V , tv ∈ τ+v , and tw ∈ τ−w in Lines 4 and 5 takes O(M2) time.

Proof. First, recall how Algorithm 4 initializes the table entry d(v, w, tv, tw, 0) for the
three definitions:

Shortest
d(v, w, tv, tw, 0) := min

(
{λ | (v, w, t′, λ) ∈ E ∧ tv ≤ t′ ∧ t′ + λ ≤ tw} ∪ {∞}

)
Minimum Hop-Count:

d(v, w, tv, tw, 0) := min
(
{1 | (v, w, t′, λ) ∈ E ∧ tv ≤ t′ ∧ t′ + λ ≤ tw} ∪ {∞}

)
Cheapest:

d(v, w, tv, tw, 0) := min{c((v, w, t′, λ)) | (v, w, t′, λ) ∈ E ∧ tv ≤ t′ ∧ t′+ λ ≤ tw}∪ {∞}
To get this initialization, we first have to store for every vertex pair v, w ∈ V a list of
all time-arcs from v to w:

[(t1, λ1), (t2, λ2), . . . , (tk, λk)]

We can create this list for every vertex pair by going through the sorted time-arc list
once. We know that t1 ≤ t2 · · · ≤ tk due to the sorted time-arc list. Now, we prepare
the list for the different definitions in separate ways before we can efficiently initialize
the table entries:

74

4.3 All-Pairs Optimal Walk

Shortest & Minimum Hop-Count. For these two definitions, we create a sorted list
of all time steps in which there is a v-w-time-arc with the earliest arrival time in w and
the minimum transmission time to meet the arrival time. This can be done in the same
manner as described in Lemma 4.3.1. Let

Lv,w = [(t1, a1, λ1), (t2, a2, λ2), . . . , (tk, ak, λk)]

be such a sorted list. It holds that t1 ≤ t2 ≤ · · · ≤ tk and a1 ≤ a2 ≤ · · · ,≤ ak. It
also holds for any list entry (t, a, λ) in Lv,w that the transmission time λ is the smallest
transmission time when starting earliest in time step t and arriving in time step a.
Creating this list takes O(|dv,w|) time where |dv,w| is the number of time-arcs from v
to w.

Cheapest. For this definition, we create a sorted list of all departure times d and arrival
times a of all v-w-time-arcs together with the cheapest time-arc within [d, a]. We first
add the costs of the time-arcs to the tuple and replace the transmission time within the
triple with the arrival time in w.

[(t1, a1 := t1 + λ1, c1), (t2, a2 := t2 + λ2, c2), . . . , (tk, ak := tk + λk, ck)]

In the next step, we sort the time-arcs with the same time stamp by their arrival time
in ascending order. Next, we sort out all time-arcs where there exists another time-arc
with the same time stamp and an earlier arrival time and lower cost. The procedure of
sorting and deleting takes at most O(|dv,w| log |dv,w|) time. We end up with a sorted list

Lv,w := [(t1, a1, c1), (t2, a2, c2), . . . , (tk, ak, ck)]

We know that t1 ≤ t2 ≤ · · · ≤ tk and if ti = ti+1, then ai < ai+1 and ci > ci+1 for
any i ∈ [k− 1]. Now, we iterate through the list Lv,w starting at the end of the list. For
the entry (tk, ak, ck) we know that ck is the cheapest cost to arrive in w when starting
in time step tk and arriving in time step ak because there is no other time-arc to take.
For every (ti, ai, ci) with i ∈ [k − 1]—starting with (ti, ai, ci) := (tk−1, ak−1, ck−1) and
decreasing i in each iteration— we do the following:

1. If ai ≥ ai+1 and ci > ci+1, then set ai := ai+1 and ci := ci+1

because ai+1 is an earlier arrival time with cheaper cost when starting earliest at
time step ti.

2. Go to the next entry (ti−1, ai−1, ci−1).

Thus, by iterating backwards through the list, we update all time steps ti with i ∈ [k]
with the cheapest earliest arrival time. Last, we iterate once more over the list Lv,w
and delete all duplication if they exist and then sort the whole list by arrival times
in ascending order. This takes O(|dv,w| log |dv,w|) time. Thus, the whole procedure
takes O(|dv,w| log |dv,w|) time.

75

4 Algorithms for Finding Optimal Walks

Initialization. Now, we can fill the table of size |τ+v ||τ−w | with the help of Lv,w. We
iterate through the sorted list of τ+v in ascending order. For a tv ∈ τ+v , we first delete all
list entries (t, a, λ|c) of Lv,w where t < tv and end up with a list

Lv,w := [(t1, a1, λ1|c1), (t2, a2, λ2|c2), . . . , (tl, al, λl|cl)]

This takes O(|dv,w|) time. The deleted list entries will not be needed for any following
time step in τ+v since all time-arcs are considered in ascending departure times. If Lv,w
is empty, then for all tw ∈ τ−w the table entries d(v, w, tv, tw, 0) are set to ∞ because
there are no v-w time-arcs that starts earliest in time tv. Else, we can iterate forward
through the sorted array [tw1 , . . . , t

w
kw

] of τ−w .

1. If for twi , it holds that twi < tv or twi < a1, then d(v, w, tv, tw, 0) :=∞.
There is no time-arc from v to w that starts earliest at time tv and arrives no later
than twi .

2. Else, we look in Lv,w for the largest earliest arrival time aj such that aj ≤ twi . We
set the table entry

• Shortest: d(v, w, tv, t
w
i , 0) := min{d(v, w, tv, t

w
i−1), λj}.

• Minimum Hop-Count: d(v, w, tv, t
w
i , 0) := 1.

• Cheapest: d(v, w, tv, t
w
i , 0) := min{d(v, w, tv, t

w
i−1), cj}

It holds that d(v, w, tv, t
w
1 , 0) ≥ d(v, w, tv, t

w
2 , 0) ≥ · · · ≥ d(v, w, tv, t

w
kw
, 0). To fill all these

entries, it is sufficient to iterate at most once over Lv,w due to the ascending order of τ−w .
Thus, it runs in O(|τ+v |(|τ−w | + |dv,w|) time. The whole procedure runs in O(M2) time
due to

O
(
M +

∑
v∈V

∑
w∈V

|dv,w| log |dv,w|+ |τ+v |(|τ−w |+ |dv,w|)
)

⊆ O
(
M +

∑
v∈V

∑
w∈V

|dv,w| log |dv,w|+ |dv||dw|
)

= O
(
M +

∑
v∈V

∑
w∈V

|dv,w| log |dv,w|+
∑
v∈V

∑
w∈V

|dv||dw|
)

⊆ O
(
M +M logM +

∑
v∈V

|dv|
∑
w∈V

|dw|
)

⊆ O
(
M logM +M2

)
= O

(
M2
)
.

With Lemma 4.3.3, we can finally prove the following theorem:

Theorem 4.3.4. Algorithm 4 solves All-Pairs Optimal Walk on incurable temporal
graphs for Shortest, Minimum Hop-Count, and Cheapest in O(nM +M3) time.

76

4.3 All-Pairs Optimal Walk

Proof. We begin with proving the running time of the algorithm.

Running Time. In the initialization, the algorithm first sets d(v, v, tv, tw, 0) = 0 for
every v ∈ V , tv ∈ τ+v , tw ∈ τ−v in Lines 2 and 3. This takes at most O(nM) time. In the
initialization, for every v, w ∈ V there are |τ+v ||τ−w | entries to fill. This runs in O(M2)
time as shown in Lemma 4.3.3.

After the initialization, we only have to look at the number of for-loops: for each
vertex vk ∈ V and every vertex-pair v, w ∈ V , Algorithm 4 conducts |τ+v ||τ−w | table
entries updates. For each tw ∈ τ+v , tw ∈ τ−w , the algorithm has to iterate over all possible
arrival times in vk, that is, a sorted array [tvk1 , . . . , t

vk
l] of |τ−vk |. The algorithm looks

up the optimal value d(v, vk, tv, t
vk
i , k) and d(vk, w,min{t′ ∈ τ+vk | t

vk
i ≤ t′}, tw, k) for

each i ∈ [l]. To find min{t′ ∈ τ+vk | t
vk
i ≤ t′}, Algorithm 4 has to iterate through τ+vk only

once for all arrival times in τ−vk due to

min{t′ ∈ τ+vk | t
vk
1 ≤ t′} ≤ min{t′ ∈ τ+vk | t

vk
2 ≤ t′} ≤ · · · ≤ min{t′ ∈ τ+vk | t

vk
l ≤ t′}

We can sum up the computation effort by:

O
(∑
vk∈V

∑
v∈V

∑
w∈V

∑
tv∈τ+v

∑
tw∈τ−w

(
∑
tk∈τ−vk

1) + |τ+vk |
)

= O
(∑
vk∈V

∑
v∈V

∑
w∈V

|τ+v ||τ−w |(|τ−vk |+ |τ
+
vk
|)
)

⊆ O
(∑
v∈V

|τ+v |
∑
w∈V

|τ−w |
∑
vk∈V

|dvk |
)

≤ O
(∑
v∈V

dv
∑
w∈V

dw
∑
vk∈V

dvk
)

= O
(
M3
)

Hence, Algorithm 4 runs in O(nM +M3) time.

Correctness. We will show that after the k-th iteration of the outer-most for-loop,
the table entry d(v, w, tv, tw, 0) contains the optimal path value when using only ver-
tices {v1, . . . , vk} as intermediate vertices. This can be done by induction on the number
of iterations k ∈ {0, 1, . . . , n}:

Before entering the most-outer for-loop, the table entries are set correctly to

• Shortest:
d(v, w, tv, tw, 0) := min

(
{λ | (v, w, t′, λ) ∈ E ∧ tv ≤ t′ ∧ t′ + λ ≤ tw} ∪ {∞}

)
• Minimum Hop-Count:
d(v, w, tv, tw, 0) := min

(
{1 | (v, w, t′, λ) ∈ E ∧ tv ≤ t′ ∧ t′ + λ ≤ tw} ∪ {∞}

)
• Cheapest:
d(v, w, tv, tw, 0) := min

(
{c((v, w, t′, λ)) | (v, w, t′, λ) ∈ E ∧ tv ≤ t′ ∧ t′ + λ ≤

tw} ∪ {∞}
)

77

4 Algorithms for Finding Optimal Walks

This is an optimal path value using no intermediate vertices.
Let us now assume that after the k-th iteration, d(v, w, tv, tw, k) contains the optimal

value using only intermediate vertices {v1, . . . , vk}. In the (k + 1)-st iteration, the table
entry d(v, w, tv, tw, k + 1) should be set to the optimal path value using intermediate
vertices {v1, . . . , vk+1}. Therefore, the optimal path value using vertex vk+1 is computed.
For any possible arrival time in vk+1, that is, tvk+1

∈ τ−vk+1
, the algorithm does the

following:

1. the algorithm looks up d(v, vk+1, tv, tvk+1
, k)—the optimal path value from v to vk+1

arriving in tvk+1
using vertices {v1, . . . , vk},

2. then, the algorithm looks up d(vk+1, w,min{t′ ∈ τ+vk | tvk+1
≤ t′}, tw, k)—the opti-

mal path value from vk+1 to w starting earliest in time tvk+1
.

The value

c = min
tvk+1

∈τ+vk+1

{d(v, vk+1, tv, tvk+1
, k) + d(vk+1, w,min{t′ ∈ τ+vk | tvk+1

≤ t′}, tw, k)}

is the optimal path value if vk+1 is on an optimal path. Every subpath of such an optimal
path is an optimal path within its time interval as shown in Lemma 3.2.11. The optimal
path using vertices {v1, . . . , vk+1} is either using vk+1, that is, value c, or uses only the
vertices {v1,vk}, that is, d(v, w, tv, tw, k). Thus, the table entry d(v, w, tv, tw, k + 1)
is set to min{d(v, w, tv, tw, k), c}. This is the optimal path value using intermediate
vertices {v1, . . . , vk+1}.

After the n-th iteration, d(v, w, tv, tw, n) contains the optimal path value using inter-
mediate vertices {v1, . . . , vn} = V , and hence, the optimal path value in G.

We have introduced our adaptation of the Floyd-Warhsal algorithm to incurable tem-
poral graphs. In Table 4.1, we compare the running time of Algorithm 3 and Algorithm 4
to the running time of the algorithms for Single Source Optimal Walk. The algo-
rithms for All-Pairs Optimal Walk cannot compete with conducting n times the
Single Source Optimal Walk algorithms. Note that with our algorithms we com-
pute not only an optimal walk in the whole temporal graph, but also an optimal walk
for any possible starting time and arrival time within the graph. Such information can
be useful in the computation of radius, diameter, and closeness centrality in temporal
graphs [KA12; PS11; San+11; Tan+13].

When computing a foremost path for each vertex v ∈ V and each starting time t ∈ τ+v ,
Algorithm 3 can compete with the Single Source Optimal Walk algorithm that
runs in

O(
∑
v∈V

|τ+v |M) ⊆ O(M2)

time if n2 ≤M on incurable temporal graph.
Hence, Algorithm 3 has the best running time that we know for solving All-Pairs

Optimal Walk within all time intervals [t, t′] ∈ [T].

78

4.3 All-Pairs Optimal Walk

Table 4.1: Comparison of the running times of Algorithm 3 and Algorithm 4 for All-
Pairs Optimal Walk (APOP) to the running times of the Single Source
Optimal Walk (SSOP) algorithms on incurable temporal graphs.

Optimality Criterion APOP SSOP

foremost n2M M

reverse-foremost n2M
M logM

fastest n2M

shortest M3

M logMminimum hop-count M3

cheapest M3

79

5 Polynomial Fixed-Parameter
Algorithms

We now discuss the potentials and boundaries of fixed-parameter algorithms for the
polynomial time solvable problem of finding optimal walks in temporal graphs. The main
motivation herein is to find efficient algorithms for problems that have an unattractive
polynomial running time [GMN17]. The goal is to identify appropriate parameters k
and to derive algorithms that run in f(k) · poly(n) time and f(k) · poly(M) time for
Single Source Optimal Walk and All-Pairs Optimal Walk, respectively. A
function poly(·) is a polynomial function only depending on the input variable and a
function f(k) is an arbitrary function only depending on parameter k. Three design
goals for such algorithms were formulated by Giannopoulou, Mertzios, and Niedermeier
[GMN17]:

(1) The running time should have polynomial dependency on the parameter k.

(2) The running time should be close to linear if the parameter k is a constant.

(3) The parameter, or a good approximation of it, should be computable in polynomial
time (preferable in linear time).

We start by showing a fundamental limitation for this approach in finding optimal walks
in temporal graphs: There can not exist an algorithm that runs in f(n) time for any
function f . We will show that the statement even holds in incurable temporal graphs
with a directed path as underlying graph. Next, we will look into the potentials of fixed-
parameter algorithms. This is a first try to adapt the idea of polynomial fixed-parameter
algorithm to finding optimal walks in temporal graphs. Therefore, we limit our focus to
Foremost on instantaneous, incurable temporal graphs. We describe a fixed-parameter
algorithm with respect to the vertex cover number of the underlying graph for finding
all-pairs optimal walks in a temporal graph. Afterwards, we introduce a data structure
based on the tree-decomposition of the underlying graph that allows us to conduct fast
foremost walk queries in an incurable temporal graph.

5.1 Parameter Restriction

One important difference between temporal graphs and static graphs is that the number
of time-arcs cannot be upper bounded by a function in the number of vertices. We
will even show that no deterministic algorithm exists for finding an optimal walk in a

81

5 Polynomial Fixed-Parameter Algorithms

λ ≡ 0, β ≡ 1

i = 1, . . . , df(n)
n−2e

v1

v2

vn−1

v3

vn−2

v4

v5

vn

0

1 + i · (n− 2)

2 + i · (n− 2)3 + i · (n− 2)

(n− 3) + i · (n− 2) (n− 2) + i · (n− 2)

2 + f(n)

Figure 5.1: A temporal graph with n vertices and a temporal walk from v1 to vn of length
greater than f(n).

temporal graph with a running time only depending on the number of vertices in the
graph. We will conclude that any parameter k that is upper bounded by a function
in the number of vertices cannot be used for a fixed-parameter algorithm for Single
Source Optimal Walk that runs in f(k) · poly(n)) ⊆ O(g(n)) time, where g is a
function only depending on the number n of vertices.

In our approach, we show that the length of an optimal temporal walk cannot be
upper bounded by any function solely depending on the number of vertices.

Theorem 5.1.1. For finding an optimal walk in a temporal graph with n vertices, there
is no deterministic algorithm for which the number of time-arc queries can be upper
bounded by a function f : N→ N in n.

Proof. Assume towards a contradiction that there is a deterministic algorithm that
queries at most f(n) time-arcs for finding an optimal temporal walk in a graph with n ver-
tices. We show that such an algorithm can be fooled by an adversary. An adversary
answers the time-arc requests of the algorithm. It can always add or delete time-arcs

82

5.1 Parameter Restriction

that have not yet been queried by the algorithm. With these changes it can affect the
existence of a temporal walk or the value of an optimal temporal walk.

To proof Theorem 5.1.1, the strategy of an adversary is to build a graph with n vertices
in which the only temporal walk between two vertices consists of more than f(n) time-
arcs. Thus, the algorithm cannot find this walk with only f(n) time-arc queries. A
construction of an optimal temporal walk of length > f(n) can be done by exploiting
the maximum dwell time β. A possible construction is displayed in Figure 5.1:

The labels on the arcs display the time steps at which the arcs appear. Hence, for
each j = 2, . . . , n−2, from vj to vj+1 there are time-arcs at time steps (j+1)+ i · (n−2)

for i = 1, . . . , df(n)
n−2e, and from vn−1 to v2 there are time-arcs at time steps (n−2)+i·(n−2)

for i = 1, . . . , df(n)
n−2e. The transmission time of every time-arc is 1. The maximum dwell

time in all vertices is restricted to 1 time step. The only temporal walk from v1 to vn
uses 2 + f(n) > f(n) time-arcs. Starting in v1 at time step 0, we have to take at every
time step a new time-arc to avoid violating the dwell time constraints. Hence, the only
way to reach vn is to walk around the circle until reaching v3 at time step 1 + f(n) from
where we can go to vn in time step 2 + f(n).

To ensure the existence of the temporal walk the algorithm has to request all time-arcs
on the temporal walk. In our construction the only temporal walk from vertex v1 to vn
consists of 2 + f(n) time-arcs. After f(n) time-arc requests the algorithm has not seen
all time-arcs on the walk from v1 to vn and, therefore, cannot decide whether a temporal
walk from v1 to vn exists.

For Minimum Waiting Time, the same construction can be used in an incurable tem-
poral graph with λ ≡ 1 to show that the only optimal walk consists of more than f(n)
time-arcs. In Figure 5.1, if we assume that λ ≡ 1, then there is only one temporal walk
from v1 to vn without waiting time. This walk consists of f(n) + 2 time-arcs. Hence,
the minimum waiting time walk walk cannot be found by an algorithm with only f(n)
time-arc requests.

The theorem holds for temporal walks in temporal graphs in general and for Minimum
Waiting Time in incurable temporal graphs. Next, we analyse whether there can exist
algorithms for the remaining optimal walk definitions that run with only f(n) time-arc
queries in incurable temporal graphs. In such temporal graphs, most of our optimal
walks can be reduced to optimal paths (see Lemma 3.2.5) and thus, are restricted to
at most n− 1 time-arcs. Hence, the idea behind the proof of Theorem 5.1.1 is not
applicable. We will examine for which time-arc queries and optimal walks it is possible
to find a deterministic algorithm that runs with f(n) time-arc queries. To this end, we
distinguish three different kinds of time-arc queries:

• A next-departure query Qnd(v, w, t) with (v, w, t) ∈ V × V × T returns a set of
time-arcs from v to w that have the smallest time stamp t′ ≥ t among all time-
arcs from v to w, that is,

{(v, w, t′, λ) ∈ E | t′ = min{t′ | (v, w, t′, λ) ∈ E ∧ t ≤ t′ ∧ λ ∈ N}}.

In Fig. 5.2, Qnd(v, w, 1) returns the set {(1, 3), (1, 4)}.

83

5 Polynomial Fixed-Parameter Algorithms

v w(1, 3), (1, 4), (3, 1)

Figure 5.2: Several time-arcs from a vertex v to a vertex w. Recall that a tuple (t, λ) on
an arc represents a time-arc with time stamp t and transmission time λ.

• An earliest-arrival query Qea(v, w, t) with (v, w, t) ∈ V ×V ×T returns a time-arc
from v to w that has the earliest arrival time among all time-arcs from v to w with
time stamp t′ ≥ t, that is, a time-arc

(v, w, t′, λ) ∈ E s.t. t′ ≥ t ∧ 6 ∃(v, w, t′′, λ′) ∈ E : t′′ ≥ t ∧ t′′ + λ′ < t′ + λ

In Fig. 5.2, Qea(v, w, 1) returns for example the time-arc (v, w, 3, 1).

• A latest-departure query Qld(v, w, t) with (v, w, t) ∈ V × V × T returns a time-arc
from v to w that has the largest time stamp among all time-arcs from v to w that
arrive latest in time step t, that is, a time-arc

(v, w, t′, λ) ∈ E s.t. t′ + λ ≤ t ∧ 6 ∃(v, w, t′′, λ′) ∈ E : t′′ + λ′ ≤ t ∧ t′′ > t′

In Fig. 5.2, Qld(v, w, 4) also returns the time-arc (v, w, 3, 1).

For the next-departure query, for every (v, w) ∈ V × V one stores a sorted list of all
time-arcs (v, w, t, λ) ∈ E sorted by time stamp in ascending order.

For the earliest-arrival query, for every (v, w) ∈ V × V one stores a sorted list of all
time steps t ∈ T such that there is a time-arc (v, w, t, λ) ∈ E. For each time step t in
the list, a adequate time-arc from v to w is stored with the earliest arrival time among
all time-arcs from v to w starting in time step t or later.

For the latest-departure query, for every (v, w) ∈ V × V one stores a sorted list of all
time steps t + λ ∈ T such that there is a time-arc (v, w, t, λ) ∈ E. For each time step t
in the list, an adequate time-arc from v to w is stored with the latest departure time
among all time-arcs from v to w with an arrival time latest in time step t.

With these data structures at hand, all these queries can be answered efficiently by
binary search on the sorted time step list. Nevertheless, we will assume that such queries
can by processed and answered in constant time. But before, we briefly explain why we
only consider these three query types.

However, for some optimal walk definitions it is difficult to find an appropriate time-
arc query that makes it easier to find an optimal walk. Let us consider shortest walks
as an example: The first query that comes into mind is a shortest-transmission-time
query. Given two vertices v, w ∈ V and a time step t ∈ T , it returns a time-arc from v
to w that has the shortest transmission time among all time-arcs from v to w that do
not start before t. The time-arc returned could appear at the end of the lifetime of a
temporal graph and, therefore, cannot be used in any shortest walk. Thus, such queries
can be tricked by an adversary quite easily. Due to this problem, a reasonable query
type in finding an optimal walk is the next-departure query.

84

5.1 Parameter Restriction

We start with Foremost, Reverse-Foremost, Minimum Hop-Count, and Fastest, where the
more fine-grained earliest-arrival query and latest-departure query can be employed. We
will show that there is an algorithm for finding an optimal walk in an incurable temporal
graph that runs with n3 time-arc queries for Foremost and Reverse-Foremost, and with n!
time-arc queries for Minimum Hop-Count by exploiting the earliest-arrival query and
latest-departure query. However, on temporal graphs with bounded dwell time and a
directed path as underlying graph these queries do not lead to an algorithm with time-arc
queries upper bounded by a function in the number of vertices. Also for Fastest, these
queries do not provide an algorithm which time-arc queries are bounded by a function in
the number of vertices anymore. Next, we will show that for the next-departure query
there is no algorithm for finding an optimal walk in an incurable temporal graph that
runs with f(n) time-arc queries for any of the optimal walk definitions even on temporal
graphs with a directed path as underlying graph.

5.1.1 Earliest-Arrival Query & Latest-Departure Query

In incurable temporal graphs, recall that any foremost, reverse-foremost, minimum hop-
count, and fastest walk can be transformed to a temporal path without loosing optimality
as shown in Lemma 3.2.5. Thus, these walks consist of at most n− 1 time-arcs because
each vertex is visited at most once.

Foremost, Reverse-Foremost & Minimum Hop-Count. We already made an impor-
tant observation concerning foremost walks: If there is a temporal walk from a vertex v
to a vertex w, then there is a foremost path such that all prefix-paths are foremost
paths (Lemma 3.2.6). Something similar can be observed for reverse-foremost paths: If
there is a temporal walk from a vertex v to a vertex w, then there is a reverse-foremost
path such that all postfix-paths are reverse-foremost paths as well (Lemma 3.2.9). Last
but not least, if we look at all minimum hop-count paths from a vertex v to a vertex w
that visit the vertices v1 to vk successively, then there is a path so that any vertex vi
is visited earliest as possible for all i ∈ [k]. Based on these observations we show the
following:

Proposition 5.1.2. Let G = (V,E, [T]) be an incurable temporal graph. There exists a
deterministic algorithm that can find a foremost and reverse-foremost path with O(n3)
earliest-arrival queries and latest-departure queries respectively. A minimum hop-count
path can be found with O(n!) earliest-arrival queries.

Proof. We will describe the algorithm for finding a foremost path and describe the
adaptions that have to be made for a reverse-foremost path. Afterwards, we briefly
explain the brute-force algorithm for a minimum hop-count path.

Let G = (V,E, [T]) be an incurable temporal graph. Let v, w ∈ V be two vertices. For
Foremost, the algorithm builds up a set of all vertices to which there is a path from v,
together with the earliest arrival time to each of these vertices. The algorithm takes one
vertex after another, always looking for the next vertex that can be reached earliest in

85

5 Polynomial Fixed-Parameter Algorithms

time. In this way, the algorithm finds the earliest arrival time for all vertices including
the vertex w. More precisely, the algorithm works with two sets:

• A ⊆ V × T : A set of vertex-time step tuples (w′, t) such that a foremost walk
from v to w′ arrives at time step t

• B ⊆ V : A set of vertices for which no foremost path has been found yet

It starts with the set A = {(v, 0)} and the set B = V \{v}. In each round, the algorithm
runs the following steps:

1. For each vertex-time step tuple (v′, t) ∈ A and each w′ ∈ B an earliest-arrival
query Qea(v

′, w′, t) is conducted. There are at most n2 such queries in each round.

For a vertex w′ ∈ B that has the earliest arrival time t′ among all conducted
earliest-arrival queries, a foremost path from v to w′ has arrival time t′.

2. The vertex-time step tuple (w′, t′) is added to the set A and w′ is removed from B,
formally, A← A ∪ {(w′, t)} and B ← B \ {w′}.
If no (w′, t′) exists that can be added to A, then all remaining vertices in B cannot
be reached from v. Thus, the algorithm stops.

The algorithm needs at most n of these rounds until the vertex w is removed from B.
Thus, finding a foremost path from v to w needs at most n3 earliest-arrival queries.

Concerning the correctness of the algorithm, assume that in an arbitrary round the
set A consists only of vertex-time step tuples (w′, t) ∈ A such that a foremost walk from v
to w′ arrives at time step t, and no vertex in B can be reached earlier in time than the
vertices in A. This holds at least in the first round where A = {(v, 0)}. Let (w′, t′)
with w′ ∈ B be the next vertex-time step tuple that is added to the set A by the
algorithm. Thus, all other vertices w′′ ∈ B cannot be reached earlier than t′ and w′

cannot be reached earlier than t′ via one of the other vertices in B. Hence, t′ is the
earliest possible time step in which a path from v to w′ can arrive.

For Reverse-Foremost, the main idea is quite similar: The algorithm starts with the
set A = {(w,∞)} and B = V \ {w} and conducts latest-departure queries to find the
next vertex that can reach w with the latest departure time. Thereby, we compute
reverse-foremost paths from any vertex—including v—to w.

For Minimum Hop-Count, the algorithm consecutively examines for each k = [n − 2]
each possible sequence (v1, . . . , vk) of pairwise-distinct vertices in V \{v, w} whether there
is a temporal path from v to w visiting the vertices (v1, . . . , vk). This can be done by
conducting earliest arrival queries. There are at most (n−2)! such sequences. A temporal
path with the smallest k is a minimum hop-count path from v to w the algorithm was
looking for. The algorithm runs in O(n!) time with earliest-arrival queries.

We have already seen in Theorem 5.1.1 that there is no algorithm for finding an optimal
walk in temporal graphs in general that runs in O(f(n)) time due to the maximum
dwell time. The construction (see Figure 5.1) was a temporal graph with a cycle in the

86

5.1 Parameter Restriction

β ≡ 0, i = 1, . . . , f(n)

v1 v2 v3 vn
(

t︷ ︸︸ ︷
3 · i− 1,

λ︷︸︸︷
1 ,

c︷︸︸︷
1) (

t︷ ︸︸ ︷
3 · i+ 1,

λ︷︸︸︷
1 ,

c︷︸︸︷
1)

Figure 5.3: A temporal graph with n vertices where the underlying directed graph is a
path.

underlying graph. But even if we restrict our consideration to temporal graphs with a
directed path as underlying graph, then the earliest-arrival and latest-departure query do
not lead to an algorithm for Foremost, Reverse-Foremost, and Minimum Hop-Count that
is upper bounded by a function in the number of vertices—even though all temporal
walks are restricted to n− 1 time-arcs.

Proposition 5.1.3. If the underlying graph of a temporal graph is a path, then there
is no deterministic algorithm for finding a foremost-walk, a reverse-foremost walk, or a
minimum hop-count walk where the number of earliest-arrival queries or latest-departure
queries can be upper bounded by a function f : N→ N in the number of vertices.

Proof. Assume towards a contradiction that there is an algorithm for Foremost that
needs O(f(n)) earliest-arrival queries to find an optimal walk in any temporal graph
with a directed path as underlying graph.

We construct such a graph and a strategy for the adversary such that any deterministic
algorithm will need more than f(n) earliest-arrival queries to find a foremost path from
a vertex v1 to a vertex v3. Let us look at the graph shown in Figure 5.3. In this proof,
we assume that the the maximum dwell time is 0 in all vertices—β ≡ 0. From v1 to v2
there are time-arcs at time steps 3 · i− 1, and from v2 to v3 there are time-arcs at time
steps 3 · i + 1 for i = 1, . . . , f(n). All time-arcs have transmission time 1 and cost 1.
The two vertices v1 and v3 that are colored black are the start- and endpoint of the
optimal walk the algorithm is looking for. Notice that any temporal walk from v1 to v3
can only consist of two time-arcs—(v1, v2, t, λ) and (v2, v3, t

′, λ′)—such that t + λ = t′

due to β ≡ 0. The strategy of an adversary depends on the approach of the algorithm:

Case 1. The algorithm conducts earliest-arrival queries from vertex v1 to v2 consecutively
increasing in the time stamp. That is, it starts by executing the earliest-arrival
query Qea(v1, v2, 0). The query returns time-arc (v1, v2, 2, 1). This time-arc is not
part of a temporal walk from v1 to v3 in our graph. The algorithm continues to request
the next possible time-arc: Qea(v1, v2, 3). The query returns time-arc (v1, v2, 5, 1).
This time-arc is again not part of a temporal walk from v1 to v3 in our graph. The
algorithm conducts earliest-arrival queries Qea(v, w, i) for i = 0, 3, . . . , 3 · (f(n)− 1).

87

5 Polynomial Fixed-Parameter Algorithms

After f(n) queries, the algorithm has seen all time-arcs from vertex v1 to v2 up
to time step 3 · f(n) − 1. Until now, all of them are not part of a temporal walk
from v1 to v3. Now, the adversary can add one more time-arc (v1, v2, 3 · f(n), 1).
With this time-arc, there exists a temporal walk from v1 to v3, that is, ((v1, v2, 3 ·
f(n), 1), (v2, v3, 3·f(n)+1, 1)). This temporal walk cannot be found by the algorithm
with only f(n) queries.

Case 2. The algorithm missed executing an earliest-arrival query Qea(v1, v2, j) for a j ∈
{0, 3, . . . , 3 · (f(n)− 1)}. Now, the adversary can add the time-arc (v1, v2, j, 1) to our
temporal graph. With this time-arc there exists a temporal walk from v1 to v3, that
is, ((v1, v2, 3 · j, 1), (v2, v3, 3 · j + 1, 1)).

Thus, each deterministic algorithm with only O(f(n)) earliest-arrival queries is not opti-
mal. Due to the adversary, the algorithm did not find any walk from v1 to v3 after f(n)
earliest-arrival queries. Thus, it cannot find a minimum hop-count walk either. The
proof idea and the temporal graph can be used to show the corollary for reverse-foremost
paths with latest-departure queries.

According to Proposition 5.1.3 there is no hope to improve the running time upper
bounds for finding an optimal walk for Foremost, Reverse-Foremost, and Minimum Hop-
Count for any non-trivial temporal graph class. Next, we have a look at the last definition
in which a more fine-grained query type seems reasonable: Fastest.

Fastest. A fastest path P is a foremost path in the induced temporal graph starting
at the time step in which the temporal path P begins (Lemma 3.2.3). Thus, earliest-
arrival queries are a legitimate choice. We are, however, able to show that finding
a fastest temporal walk cannot be done by an algorithm that conducts f(n) earliest-
arrival queries. It is not even possible in incurable temporal graphs with a directed path
as an underlying graph. The statement also holds for Shortest and Cheapest.

Proposition 5.1.4. For finding a fastest, shortest, or cheapest walk in a temporal graph
with n vertices, there is no deterministic algorithm for which the number of earliest-
arrival queries can be upper bounded by any function f : N→ N in n.

Proof. The proof scheme is the same as in Proposition 5.1.3. We start with proving the
proposition for Fastest.

Assume towards a contradiction that there is an algorithm that needs O(f(n)) earliest-
arrival queries for finding a fastest walk in any incurable temporal graph with n vertices.
We construct a temporal graph with n vertices and a strategy for the adversary such
that any deterministic algorithm will need more than f(n) earliest-arrival queries to
find a fastest path from v1 to v3. Let us look at the temporal graph that is displayed
in Figure 5.3. We assume that there is unbounded dwell time—β ≡ ∞. Recall that
any temporal walk from vertex v1 to vertex v3 starts in vertex v1, passes through v2 and
ends in v3. Thus, the first time-arc of any temporal walk starts with a time-arc from v1
to v2. The strategy of the adversary is a case distinction depending on the approach of
the algorithm:

88

5.1 Parameter Restriction

Case 1. The algorithm queries the time-arcs from vertex v1 to v2 step by step increasing
in the time stamps. Thus, the algorithm executes earliest-arrival queries Qea(v1, v2, i)
for i = 0, 3, . . . , 3 · (f(n)− 1). The queries return the time-arcs (v1, v2, j, 1, 1) for j =
2, 5, . . . , 3 · f(n) − 1. After f(n) queries, the algorithm has seen all time-arcs from
vertex v1 to v2 up to time step 3·f(n)−1. Until now all possible temporal paths, that
could have been found, have a duration of at least 3 time steps because when starting
at time 3 · i− 1 it is only possible to arrive at vertex v3 in time 3 · i + 1. But then,
the adversary can add one more time-arc (v1, v2, 3 · f(n), 0, 0). With this time-arc
the fastest path from v1 to v3 starts at time 3 · f(n) and arrives at time 3 · f(n) + 1.
It has a duration of 2 time steps and is therefore the fastest path from v1 to v3.

Case 2. The algorithm missed executing an earliest-arrival query from v1 to v2 at a
time step j ∈ {0, 3, . . . , 3 · (f(n) − 1)}. The adversary can now add the time-
arc (v1, v2, j, 0, 0). With this time-arc the fastest path from v1 to v3 starts at time 3 ·j
and arrives at time 3 · j + 1. It has a duration of 2 time steps and is therefore the
fastest path from v1 to v3.

Thus, each deterministic algorithm with only f(n) earliest-arrival queries is not optimal.
The newly created walk in both cases is not only the fastest walk, but also the shortest
and cheapest walk among all temporal walks from v1 to v3.

We have seen so far that for Foremost, Reverse-Foremost, and Minimum Hop-Count in
incurable temporal graphs, there exists an algorithm that runs with n3 and n! earliest-
arrival queries and latest-departure queries. We will now show that there is no deter-
ministic algorithm that conducts at most f(n) next-departure queries for finding any
optimal walk in an incurable temporal graph.

5.1.2 Next-Departure Query

We will show that for finding an optimal walk we cannot have an upper bound on the
number of time-arcs queries depending only on the number of vertices in a temporal
graph. More formally:

Proposition 5.1.5. For finding an optimal walk in an incurable temporal graph with
n vertices, there is no deterministic algorithm for which the number of next-departure
queries can be upper bounded by a function f : N→ N in n.

Proof. We begin with the optimal walk definitions Fastest, Shortest, and Cheapest. Af-
terwards, we give a proof of our statement for Foremost and Reverse-Foremost. Finally,
we discuss Minimum Hop-Count.

Fastest, Shortest & Cheapest. We have already seen the proof for these three opti-
mal walk variants. In Proposition 5.1.4, if we replace earliest-arrival queries with next-
departure queries, then the returned time-arcs are identical in the incurable temporal
graph of Figure 5.3.

89

5 Polynomial Fixed-Parameter Algorithms

β ≡ ∞, i = 1, . . . , f(n)

v1 v2 v3 vn
(

t︷︸︸︷
i ,

λ︷ ︸︸ ︷
f(n) + 1− i) (

t︷︸︸︷
f(n),

λ︷︸︸︷
1)

Figure 5.4: An incurable temporal graph with n vertices where the underlying directed
graph is a path.

Foremost & Reverse-Foremost. Assume towards a contradiction that there is an al-
gorithm that needs O(f(n)) next-departure queries for finding a foremost walk in any
incurable temporal graph with n vertices. We construct a temporal graph with n vertices
and a strategy for the adversary such that any deterministic algorithm will need more
than f(n) next-departure queries to find a foremost walk from v1 to v2. Let us look at
the temporal graph displayed in Figure 5.4. From v1 to v2 there are time-arcs at time
step i with transmission time f(n) + 1− i for i = 1, . . . , f(n). Any temporal walk from
vertex v1 to vertex v2 consists of only one time-arc from v1 to v2. The strategy of an
adversary depends on the approach of the algorithm:

Case 1. The algorithm queries the time-arcs from vertex v1 to v2 step by step increasing
in the time stamps. Thus, the algorithm executes next-departure queriesQnd(v1, v2, i)
for i = 0, . . . , f(n) − 1. The queries return the time-arcs (v1, v2, i, f(n) + 1 − i)
for j = 0, . . . , f(n) − 1. After f(n) queries, the algorithm has seen all time-arcs
from vertex v1 to v2 up to time step f(n) − 1. Until now all possible temporal
walks arrive at time step f(n) + 1. But then, the adversary can add one more
time-arc (v1, v2, f(n), 0). With this time-arc the walk arrives at time step f(n).

Case 2. The algorithm missed executing a next-departure-query from v1 to v2 at a time
step j ∈ {0, . . . , f(n)}. The adversary can now add the time-arc (v1, v2, j, 0). With
this time-arc the foremost walk from v1 to v2 arrives at time j ≤ f(n).

Thus, each deterministic algorithm with only f(n) next-departure queries is not optimal.
The same proof idea works for reverse-foremost walks.

Minimum Hop-Count. If we look at the proof for foremost walks, no algorithm found a
temporal walk from v1 to v2 that arrives earlier than time step f(n) + 1 after f(n) next-
departure queries. Thus, the temporal walk from v1 to v3 cannot be found after f(n)
next-departure queries because the only time-arc from v2 to v3 is at time step f(n),
see Figure 5.4.

In Proposition 5.1.5 we have shown that there is no algorithm for finding an optimal
walk in an incurable temporal graph that runs with f(n) next-departure queries—even

90

5.2 Fixed-Parameter Algorithms

when the underlying graph is a directed path. We have seen in Proposition 5.1.2 that
if we allow earliest-arrival and latest departure queries, then there are algorithms that
run with n3 and n! such queries in incurable temporal graphs. But already in general
temporal graphs with a directed path as underlying graph this upper bound by a function
in the number of vertices does not hold anymore as shown in Proposition 5.1.3.

We can conclude that there is no algorithm for finding optimal walks in temporal
graphs that has a running time that is upper bounded by a function in the number of
vertices, even in temporal graphs with a directed path as underlying graph. Thus, there
is no algorithm for Single Source Optimal Walk that runs in f(k) · poly(n) time
for any parameter k that is upper bounded by a function in the number of vertices.

5.2 Fixed-Parameter Algorithms

We have elaborated in Section 5.1 the limitations of fixed-parameter algorithms for
finding optimal walks in temporal graphs. Now, we will look into the potentials of fixed-
parameter algorithms. This is a first try to adapt the idea of polynomial fixed-parameter
algorithm to finding optimal walks in temporal graphs. Therefore, we limit our focus to
the optimal walk variant Foremost on instantaneous, incurable temporal graphs.

We will introduce a fixed-parameter algorithms with respect to the vertex cover num-
ber k—a parameter on the top of the graph parameter hierarchy [SW13]. The algorithm
runs in O((k|τ |)2n+ kn2) time. Last but not least, we introduce a data structure based
on the tree-decomposition with treewidth k of the underlying undirected graph that
allows us to conduct fast foremost walk queries in O(k2|τ | log n) time in an incurable
temporal graph.

5.2.1 Temporal Graphs with Bounded Vertex Cover Number

We will start with looking at the parameter vertex cover number of the underlying
graph and how we can exploit this parameter for finding optimal walks. The vertex
cover number is usually a quite large parameter. Nevertheless, in some networks such
as flight networks that we briefly discussed in Chapter 1, this parameter can be small.

Given a static undirected graph G = (V,E), a vertex cover is a vertex subset VVC ⊆ V
such that for all edges e ∈ E it holds that e has at least one endpoint in VVC, that
is, e ∩ VVC 6= ∅. The vertex cover number is the size of a minimum vertex cover. In
a temporal graph G, we consider the vertex cover number of the underlying undirected
graph Gu[G]. It is well known that finding a minimum vertex cover is NP-hard. But
there is a simple 2-approximation that runs in linear time: For an edge, both endpoints
are taken into the vertex cover and then are removed from the graph with all adjacent
edges. Repeatedly applying this procedure leads to a vertex cover of size at most twice
as large the minimum vertex cover. Thus, the parameter is suitable for a polynomial
fixed-parameter algorithms.

This parameter combined with the number of vertices is not sufficient for a polyno-
mial fixed-parameter algorithm. But combining the vertex cover number k with the

91

5 Polynomial Fixed-Parameter Algorithms

parameter |τ |, that is, the number of time steps in which at least one time-arc exist,
allows us to upper bound the number of time-arcs and, thus, leads to an algorithm for
All-Pairs Foremost Walk. First, note that the number of time-arcs can be upper
bounded by O(k|τ |n), that is, M ∈ O(k|τ |n) because in a static graph with vertex cover
number k there can be at most k · n edges. Each static graph Gt for t ∈ τ is a subgraph
of the underlying graph Gd[G]. Thus, each Gt can have at most k · n arcs and, thus,
there can be at most O(k|τ |n) time-arcs in the temporal graph.

In Theorem 5.2.1, we will show that solving All-Pairs Foremost Walk in in-
stantaneous, incurable temporal graphs runs in O

(
(k · |τ |)2n + kn2)

)
time where k is

the vertex cover number of the underlying undirected graph of the temporal graph. The
algorithm fulfills the three design goals that we introduced in the beginning of this chap-
ter. However, in most datasets we have seen so far the parameter |τ | is larger than the
number of vertices in the graph. Hence, solving n times the Single Source Fore-
most Walk which is solvable in O(M) ⊆ O(k|τ |n) time by Algorithm 1 can lead to a
better running time. Consequently, this result is more of a classification result than of
practical use.

Algorithm. Given a temporal graph G = (V,E, [T]) with vertex cover number k, and
a vertex cover VVC with |VVC| ∈ O(k), the idea of Algorithm 5 is as follows: First,
it computes for each v ∈ VVC a foremost walk to all vertices in G, that is, solving
Single Source Foremost Walk with source vertex v on G (Lines 2 and 3). Then,
for each v ∈ VVC and for each t ∈ τ+v a foremost walk is computed to all vertices
within the time interval [t, T], that is, solving Single Source Foremost Walk with
source vertex v on G[[t, T]] (Lines 4 to 6). Afterwards, Algorithm 5 computes for each
vertex v ∈ V \ VVC a foremost walk to all vertices. Therefor, for each v ∈ V \ VVC, a
new acyclic, directed static graph Gv = (Vv, Ev) is created (Line 8):

The vertex set Vv consists of the vertices V and the additionally the vertex cover
vertices {wVC | w ∈ VVC}. For each w ∈ VVC, it determines a v-w time-arc with the
earliest arrival time in w, that is, (v, w, t, 0) ∈ E such that t = min{t′ | (v, w, t′, 0) ∈ E},
if it exists. If such an time-arc exists, then an arc (v, wVC) is added to Ev (Lines 15
and 16). The cost of this arc is set to zero (Line 17). Next, for each vertex x ∈ V an
arc (wVC, x) is added to Ev. If wVC = x, then the cost of this arc is set to t. Else,
the cost of this arc is set to the earliest arrival time from wVC to x starting earliest at
time t (Lines 18 to 20). These earliest arrival times have already been computed.

Now, the algorithm solves Single-Source Shortest Path for source v on this
sparse acyclic, directed static graph by using Dijkstra’s algorithm (Line 9). The cost of
a shortest path from v to a vertex w ∈ Vv ∩ V in Gv is the arrival time of a foremost
walk from v to w in G.

We will prove the correctness of Algorithm 5 and analyze its running time to conclude:

Theorem 5.2.1. Algorithm 5 solves All-Pairs Foremost Walk on instantaneous,
incurable temporal graphs with underlying vertex cover number k in O

(
(k · |τ |)2n+ kn2

)
time.

92

5.2 Fixed-Parameter Algorithms

Algorithm 5: All-Pairs Foremost Walk for instantaneous, incurable tem-
poral graphs

/* Description of Variables:

opt(v, t) stores a list of all w ∈ V with the earliest arrival time

from v to w within [t, T];

opt(v, t, w) stores the earliest arrival time from v to w within [t, T].

*/

1 function AllPairForemostPath(G = (V,E, [T]), VVC ⊆ V):
/* Computing Single Source Foremost Walk for all vertices in the

vertex cover. */

2 for v ∈ VVC do
3 opt(v, 1)← SingleSourceForemostWalk(G, v)

/* Computing Single Source Foremost Walk for all vertices in the

vertex cover and for all time steps in which the vertex has

an in-going time-arc. */

4 for v ∈ VVC do
5 for t ∈ τ+v do
6 opt(v, t)← SingleSourceForemostWalk(G[[t, T]], v)

/* Computing Single Source Foremost Walk for all vertices not in

the vertex cover */

7 for v ∈ V \ VVC do
8 Gv, c← generateGraph(G, VVC, opt, v)
9 opt(v, 1)← Dijkstra(Gv, c, v)

10 return opt

11 function generateGraph(G, VVC, opt, v):
12 Vv ← V ∪ {vVC | v ∈ VVC}
13 Ev ← ∅

/* Adding an arcs from s to every vertex cover vertex and a arc

from those to every vertex in the graph with the earliest

arrival time represented by costs on the arcs. */

14 for w ∈ VVC do
15 if ∃(v, w, t, 0) : (v, w, t, 0) ∈ E ∧ t = min{t′ | (v, w, t′, 0) ∈ E} then
16 Ev ← Ev ∪ {(v, wVC)}
17 c((v, wVC)) = 0
18 for x ∈ V do
19 Ev ← Ev ∪ {(wVC, x)}

20 c((wVC, x)) =

{
opt(w,min{t′ ∈ τ+w | t′ ≥ t}, x) , if w 6= x

t , else

21 return (Vv, Ev), c

93

5 Polynomial Fixed-Parameter Algorithms

Proof. We start with showing the correctness of Algorithm 5, and continue to prove the
running time of it.

Correctness. Given an instantaneous, incurable temporal graph G = (V,E, [T]) with
vertex cover number k, and a vertex cover VVC ⊆ V of size O(k), Algorithm 5 computes
Single Source Foremost Walk for each vertex v ∈ VVC correctly.

Given a vertex not in the vertex cover—v ∈ V \ VVC—we know the second vertex of
any temporal walk starting at v has to be a vertex cover vertex. (If not, then the arc
from v to the second vertex would not be covered by the vertex cover—a contradiction
to the definition of a vertex cover.)

By Lemma 3.2.6, we know that if there exists a walk from v to a vertex w ∈ V , then
there exists a foremost path P = (e1, . . . , el) with ei = (vi, wi, ti, 0) ∈ E from v to w
such that every prefix-path is a foremost path. Hence, (e1) is a foremost path from v1
to w1. Additionally, we know by Lemma 3.2.7 that the postfix-path (e2, . . . , el) of P
is a foremost path within G[[t1, T]]. In the generated graph, for (w1)VC ∈ VVC there is
an arc (v, (w1)VC) due to e1 with cost zero and an arc from (w1)VC to w representing
a foremost walk from (w1)VC to w starting earliest at time step t1 with cost tl. Hence,
the foremost walk P between v and w exists by the arc (v, (w1)VC) representing e1 and
the arc ((w1)VC, w) with cost tl representing the foremost path (e2, . . . , el) within time
interval [t1, T]. If l = 1, then the arc ((w1)VC, w) has cost t1.

The path ((v, (w1)VC), ((w1)VC, w) is the shortest path with tl in the generated graph,
and thus, will be found by running Dijkstra’s algorithm.

Running Time. First, note that VVC is at most twice as large as the minimum ver-
tex cover when using the 2-approximation algorithm and thus, still of size O(k).

For all v ∈ VVC, and all t ∈ τ+v where |τ+v | ≤ τ+max ≤ |τ |, the algorithm solves Single
Source Foremost Walk in O(k|τ |n) time with Algorithm 1. Hence, there is a total
running time of O

(
(k|τ |)2n

)
.

Afterwards, for each vertex v ∈ V \VVC an acyclic, directed graph Gv is generated with
at most one arc from v to an vertex in the vertex cover, that is, O(k) arcs, and at most
one arc from the vertex cover vertices to any vertex in the graph, that is, O(k ·n) arcs. In
the directed graph there are at most O(n) vertices. Hence, the whole generated acyclic
graph is of size O(kn). The whole construction of Gv runs in linear time. The costs
of the arcs have to be extracted from the earliest arrival times from the vertex cover
vertices to all vertices in the graph. This runs in O(k|τ |n) during the whole run of the
algorithm.

Solving Single-Source Shortest Path with the Dijkstra’s algorithm on Gv for
each v ∈ V \VVC runs in O(kn) because Gv is acyclic. We can sum up the running time
with

O((kτ+max)
2n) +O(kτ+maxn) +O(kn2)

)
⊆ O((k|τ |)2n+ kn2)

Consequently, Algorithm 5 runs in O
(
(k|τ |)2n+ kn2

)
.

94

5.2 Fixed-Parameter Algorithms

Algorithm 5 is only faster than n times Single Source Foremost Walk on the
incurable temporal graph, if k|τ | < n due to M ∈ O(k|τ |n). It seems hard to transfer this
algorithm to other optimal walk definitions without significantly increasing the running
time.

5.2.2 Temporal Graphs with Bounded Treewidth

In this subsection, we will study the application of the well-established concept of
treewidth and tree-decomposition for finding foremost walks in instantaneous, incur-
able temporal graphs. This concept has been used as a theoretical approach to speed
up shortest path computation in road networks. Using a tree-decomposition of a static
graph, a data structure can be implemented that allows fast and exact distance queries—
also referred to as distance oracle—if the treewidth is small [Abr+16]. We take the same
approach used to derive this result to exploit the tree-decomposition of the underly-
ing graph for fast and exact foremost walk oracle in instantaneous, incurable temporal
graphs. The treewidth is bounded by the vertex cover number [SW13] and so it seems
appropriate to also study this parameter.

Before we get into the algorithmic idea, we briefly recap the definition of tree-decompo-
sition for static graphs that we apply to the underlying undirected graph of a temporal
graph.

Definition 5.2.2. A tree-decomposition of a graph G = (V,E) is a pair (X , T =
(X , E , R)) consisting of a rooted tree T on X with root R ∈ X and a family X of
sets X ⊆ V (called bags), such that

(1) for all v ∈ V the set
X−1(v) := {X ∈ X | v ∈ X}

is non-empty and induces a subtree of T and

(2) for every edge e ∈ E there is a bag X ∈ X with e ⊆ X.

The width w((X , T)) of the tree-decomposition (X , T) is w((X , T)) := max{|X| − 1 |
X ∈ X}. The treewidth tw(G) of a graph G is defined as the minimal width of any
tree-decompositions of G. The depth of a rooted tree-decomposition is the depth of the
rooted tree T .

Among the wide range of results concerning tree-decompositions we make use of a
result of Bodlaender [Bod89] to derive a faster way of computing foremost walks.

Theorem 5.2.3 ([Bod89]). If G has treewidth k, then G has a binary tree-decomposition
with width 3k + 2 and depth O(log n).

Bodlaender et al. [Bod+16] introduce an algorithm that takes a graph G and a k ∈ N
and returns either that the tree width of G is larger than k or a tree-decomposition of G
with width at most 5k + 4. The algorithm runs in O(2kn) which is linear in the input
size if k is a constant. Fomin et al. [Fom+17] give a polynomial time approximation

95

5 Polynomial Fixed-Parameter Algorithms

with running time O(k7n log n) that, given a graph G and a k ∈ N, either provides a
tree decomposition of G of width at most O(k2), or correctly concludes that tw(G) ≥ k.

We introduce some notation that help us describe the techniques: if there are two
bags X, Y ∈ X where X lies on the shortest path from the root R to Y , then we will
call X an ancestor of Y and Y a descendent of X. Furthermore, let TX with X ∈ X
be the induced subtree of T rooted in X containing all descendents of X. Let V (TX)
be the set of all vertices v ∈ V such that there exists a bag Y in TX with v ∈ Y .
For a vertex v ∈ V let Xv be the closest bag to the root with Xv ∈ X−1(v). For a
time-arc (v, w, t, 0) ∈ E let X{v,w} be the bag closest to the root with {v, w} ∈ X{v,w}.

Foremost Walk Oracle. In this paragraph, we introduce a technique that exploits a
tree-decomposition of the underlying, undirected graph of an instantaneous, incurable
temporal graph to create a data structure that allows fast foremost walk queries between
two vertices and within a chosen time interval. This method is a trade-off between
storage and query time:

(1) The data structure needs less memory than the information about all foremost
walks between any pairs of vertices within any arbitrary time interval.

(2) The query takes less time than the computation of the foremost walk from scratch,
if the treewidth is small.

Our idea is based on the work of Abraham et al. [Abr+16] for shortest path computation
in static graphs with bounded treewidth. We adapt this idea to instantaneous, incurable
temporal graphs. The main challenge lies in maintaining a foremost walk between two
vertices for any possible starting time within the lifetime of a temporal graph.

We start by introducing the data structure that is based on a tree-decomposition of
the underlying undirected graph of a temporal graph that allows fast foremost walk
queries. We will briefly discuss the running time of the preprocessing that leads to the
desired data structure and the size of the data structure. Next, we will explain how
this data structure can be exploited to answer foremost walk queries more efficiently.
As we have already seen for the parameter vertex cover, the parameter treewidth k is
not enough for a fixed-parameter algorithm. We also include the parameter |τ | to our
analysis. Note that we can upper bound the number of time-arcs M by O(k|τ |n), that
is, M ∈ O(k|τ |n). We summarize our results in the following theorem before we go into
the details:

Theorem 5.2.4. There exists a data-structure of size O(k2|τ |n) that can be computed
in O(k3|τ |2n) preprocessing time such that finding a foremost walk between two ver-
tices v, w ∈ V takes O(k2|τ | log n log(k|τ | log n)) time on instantaneous, incurable tem-
poral graphs with underlying treewidth k.

Preprocessing & Data Structure. As a first step towards proving Theorem 5.2.3, we
consider a given rooted tree-decomposition (X , T = (X , E , R ∈ X)) of the underlying,
undirected graph Gu[G] where T is a binary tree with depth O(log n) and width O(k).

96

5.2 Fixed-Parameter Algorithms

First, we compute a data structure based on the tree-decomposition that allows us to run
fast foremost walk queries for any two vertices within any time interval of our original
instantaneous, incurable temporal graph.

We compute for every bag X ∈ X and for every two vertices v, w ∈ X and t ∈ τ+v
the earliest arrival time from v to w starting earliest in t in G[V (TX)], that is, the
temporal graph induced by all vertices in bags in TX . We refer to this earliest arrival
time as dX(v, w, t). Let us first consider the running time of computing this information:

Lemma 5.2.5. The preprocessing runs in O(k3|τ |2n) time.

Proof. For the preprocessing, assume that for a bag X ∈ X we already processed the
two children Xl and Xr of X in a bottom-up approach. We then create a temporal
graph over the vertex set X and add all time-arcs of the original graph G between any
two vertices v, w ∈ X. We also add for all two vertices v, w ∈ Xl ∩X and v, w ∈ Xr ∩X
all foremost walks for any possible starting time t ∈ τ+v computed in Xl and Xr. That
is, for v and w, and all t ∈ τ+v we add a time-arc from v to w with time stamp t and
transmission time min{dXl

(v, w, t)− t, dXr(v, w, t)− t}.
The resulting graph GX has O(k) vertices and at most O(k2τ+max) time-arcs. This is

enough information to simulate the whole temporal graph G[V (TX)] with only these k ver-
tices because Xl ∩X is a separator between vertices in V (TXl

) and vertices in X. The
same holds for vertices in Xr ∩X.

The resulting temporal graph GX has transmission times greater than zero. These
time-arcs with transmission time greater zero can be transformed in linear time into two
time-arcs without transmission time by Transformation 2. We further have to sort the
time-arc by time stamp in O

(
k2τ+max log(kτ+max)

)
time.

Afterwards, we solve for every vertex v ∈ X and for every t ∈ τ+v Single Source
Foremost Walk on the instantaneous, incurable temporal graph GX [[t, T]] with source
vertex v which leads to kτ+max calls of Algorithm 1 on GX . This has to be done for every
bag in T in a bottom-up approach. There are at most O(n) bags in T . Consequently,
the whole preprocessing leads to a running time in O(k3τ+max

2
n) ⊆ O(k3|τ |2n).

After preprocessing, we have to store the structure of T , the information we computed
for every bag, and some additional information to allow fast foremost walk queries.

Lemma 5.2.6. The size of the data structure is in O(k2|τ |n).

Proof. The structure of T only requires O(n) memory for the O(n) bags and O(n) edges.
For every bag X ∈ X , we have to store for every v, w ∈ X and t ∈ τ+v the earliest arrival
time from v to w within [t, T] in G[V (TX)], that is, dX(v, w, t). These are O(k2τ+maxn)
earliest arrival times that have to be stored. Furthermore, we have to store Xv for
every v ∈ V and X{v,w} for every (v, w, t, 0) ∈ E which requires O(kn) space.

We can see that the preprocessing takesO(k3|τ |2n) time whereas computing a foremost
walk runs in O(M) ⊆ O(k|τ |n) time. But the size O(k2|τ |n) of the data structure is
smaller than storing the information of size O(|τ |n2) about the earliest arrival time
between any pairs of vertices and all possible starting times, if the treewidth is small.

97

5 Polynomial Fixed-Parameter Algorithms

Foremost Walk Query. We will now look at a foremost walk query. We want to
compute the foremost walk between two vertices v, w ∈ V for a certain starting time t ∈
[T] by using only the data structure we discussed above.

Therefore, let X (v, w) be the set of all bags X ∈ X such that it holds that X is an
ancestor of Xv or Xw. Let V (X (v, w)) := {u | u ∈ X ∧X ∈ X (v, w)}.

Let G(v, w, t) = (V ′, E ′, [t, T]) be the temporal graph consisting of the vertex set
V ′ = V (X (v, w)). Construct E ′ as follows: For all two vertices v′, w′ ∈ V ′ and t′ ∈ τ+v
with t ≤ t′ such that there exists a bag X ∈ X (v, w) with v′, w′ ∈ X, we add time-arcs
from v′ to w′ starting at t′ and arriving at time step tmin = min{dX(v′, w′, t′) | X ∈
X (v, w) ∧ v′, w′ ∈ X}, that is, time-arc (v′, w′, t′, tmin − t′).

Observe that the number of bags in X (s, t) is at most O(log n) (due to the binary
tree-decomposition with depth O(log n)). Hence, the temporal graph G(v, w, t) consists
of O(k|τ | log n) vertices and O(k2|τ | log n) time-arcs. These time-arcs with transmission
time greater than zero can also be transformed into time-arcs without transmission
time by Transformation 2 in linear time. We have to sort the time-arcs by time stamp
in O(k2|τ | log n log(k|τ | log n)) time. Now, we can solve Single Source Foremost
Walk for the instantaneous, incurable temporal graphs G(v, w, t) with source v. This
takes O(k2|τ | log n) time with Algorithm 1. We can conclude:

Lemma 5.2.7. The foremost walk query takes O(k2|τ | log n log(k|τ | log n)) time.

It further holds that the earliest arrival time from v to w in G(v, w, t) is an earliest
arrival time in G[[t, T]]. To prove this statement and, thus, the correctness of our method,
we will make use of a lemma that has already been proven by Abraham et al. [Abr+16]:

Lemma 5.2.8 ([Abr+16], Claim 1). For any time-arc (v, w, t) ∈ E, if depth(Xv) ≥
depth(Xw), then it holds that X{v,w} = Xv.

With Lemma 5.2.8 in hand, we can start the correctness proof of our foremost walk
oracle. We refer to the earliest arrival time from v to w in G(v, w, t) as d(v, w,G(v, w, t))
and to the earliest arrival time from v to w in G[[t, T]] as d(v, w,G[[t, T]]).

Lemma 5.2.9. Let v, w ∈ V be two vertices and t ∈ T be a time step. The earliest
arrival time from v to w in G(v, w, t) is equal to the earliest arrival time in G[[t, T]], that
is, d(v, w,G(v, w, t)) = d(v, w,G[[t, T]]).

Proof. The proof is by induction on the number of time-arcs in the foremost walk from v
to w starting in time t. Let us assume that P = (e1, . . . , ek) with ei = (vi, wi, ti) is a
foremost path from v to w in G[[t, T]] with k time-arcs such that all prefix-paths of P
are foremost paths by Lemma 3.2.6.

For the induction basis, let us consider k = 1. Then, there exist the time-arc e1
from v to w within [t, T] such that t1 is the earliest arrival time. Without loss of gen-
erality, let depth(Xv) ≥ depth(Xw), then we know by Theorem 5.2.8 that X{v,w} = Xv.
So, (v, w, t1, 0) ∈ G[V (TXv)] and, consequently, (v, w, t1, 0) ∈ G(v, w, t).

For the induction hypothesis, let us assume that for all v, w ∈ V , and all t ∈ T ,
if (e′1, . . . , e

′
l) with l < k be a foremost walk from v to w starting at time t with an

earliest arrival time d(v, w,G[[t, T]]), then d(v, w,G(v, w, t)) = d(v, w,G[[t, T]]).

98

5.2 Fixed-Parameter Algorithms

Now, we consider two vertices v, w ∈ V and a time step t ∈ T such that a foremost
walk P = (e1, . . . , ek) has exactly k time-arcs and all prefix-paths of P are foremost
paths by Lemma 3.2.6. We further assume that depth(Xv) ≥ depth(Xw) without loss of
generality. Note that for all i ∈ [k] it holds that ti ∈ [t, T]. We distinguish two cases:

Case 1: We consider the case that for all i ∈ [k] it holds that the time-arc ei ∈ G[V (TXv)].
In particular, this means that ek ∈ G[V (TXv)] and, consequently, w ∈ V (TXv). It
follows that w ∈ Xv due to the assumption that depth(Xv) ≥ depth(Xw) and prop-
erty (1) of the tree-decomposition. Hence,

d(v, w,G(v, w, t)) = dXv(v, w, t) = d(v, w,G[[t, T]]).

Case 2: In the second case, let ej with j ∈ [k] be the first time-arc in the foremost
walk P such that ej 6∈ G[V (TXv)].

Note that for the vertex v2 it holds that v2 ∈ V (TXv). We know that all bags that
contain v are in TXv . Thus, all time-arcs from or to v have to be in G[V (TXv)]. It
follows that e1 ∈ G[V (TXv)] and, consequently, v2 ∈ V (TXv).

It follows that j > 1. We further know that ej−1 ∈ G[V (TXv)]. Thus, wj−1 = vj ∈
V (TXv). Even more, we know that vj ∈ Xv because there is a bag in TXv that
contains v and there exists another bag Y not in TXv with vj, wj ∈ Y due to the fact
that ej 6∈ G[V (TXv)]. Hence, vj ∈ Xv by property (1) of the tree-decomposition.

Hence, we know that the prefix-path (e1, . . . , ej−1) is represented in G(v, w, t) by
an edge from v to vj starting at t1 and arriving at tj−1. Recall that v, vj ∈ Xv

and e1, . . . , ej−1 ∈ G[V (TXs)]). Thus,

d(v, vj,G(v, w, t)) = dXv(v, vj, t) = d(v, vj,G[[t, T]]).

Due to the induction hypothesis, we further know that for the subwalk (ej, . . . , ek)
it holds that

d(vj, w,G(vj, w, tj)) = d(vj, w,G[[tj, T]]).

It remains to show that G(vj, w, [tj, T]) ⊆ G(v, w, t). But this follows from the fact
that vj ∈ Xv and, consequently, Xvj is an ancestor of Xv because Xvj is the closest
bag to the root among all bags containing vj (by construction of G(v, w, t)). Hence,

d(vj, w,G[[tj, T]]) = d(vj, w,G(vj, w, tj)) ≥ d(vj, w,G(v, w, tj)) = d(vj, w,G[[tj, T]]).

We can conclude that

d(v, w,G(v, w, t)) = d(v, w,G[[t, T]]).

This proves that G(v, w, t) contains enough information to compute the earliest arrival
time from v to w in G[[t, T]].

If we compare the running time of a foremost walk query inO(k2|τ | log n log(k|τ | log n))
to solving Single Source Foremost Walk in O(M) ⊆ O(k|τ |n), we can see that
there is a noticeable improvement for instantaneous incurable temporal graphs with
small underlying treewidth k.

99

6 Conclusion

This thesis contributes to a better understanding of temporal walks in temporal graphs.
In particular, temporal walks with arbitrary transmission times on the time-arcs and
with minimum and maximum dwell time restrictions in the vertices have not received
much attention in the literature before. We discussed the impact of these parameters
on temporal walks to gain a better understanding of the structure of temporal walks.

Our main algorithmic focus was finding optimal walks in temporal graphs. We con-
sidered not only the most common optimal walk variants—Foremost, Reverse-Foremost,
Fastest, and Minimum Hop-count—but also variants such as Shortest, Cheapest, and
Minimum Waiting Time. We analyzed properties and structures of these optimal walks.
Due to the strong impact of maximum dwell time on optimal walks, we distinguish be-
tween optimal walks in temporal graphs in general and optimal walks in temporal graphs
with unbounded maximum dwell time in particular.

In our algorithmic investigations, we introduced algorithms solving Single Source
Optimal Walk on temporal graphs for the variants Foremost and Fastest with running
time O(M) and O(M logM) respectively. To our surprise, bounded maximum dwell
time had no influence on the efficiency of the algorithms. One main take-away of our
algorithmic investigations is the awareness of the potentially exponential size of the
lifetime T of a temporal graph with respect to the input size. As a consequence, one
difficulty that arises is the choice of suitable data structures to store intermediate results
of algorithms finding optimal walks.

We analyzed the potentials and limitations of fixed-parameter algorithms for finding
optimal walks. We concluded that fixed-parameter algorithms have to include parame-
ters |τ | or M in the running time—even for graph classes of the underlying graph that
contain a directed path of length three.

Future Work. We conclude the thesis with a list of further research directions.

Implementation. Examining the performance of Algorithm 1 and Algorithm 2 for finding
single-source optimal walks on real-world datasets should be a next step in the algorith-
mic investigation of optimal walks—especially in combination with Transformation 1
and Transformation 2. The results can be used as an indicator whether specific algo-
rithms for non-instantaneous temporal graphs have to be developed in the context of
temporal graphs with maximum dwell time.

It is also of interest to examine whether our Floyd-Warshall adaptation—Algorithm 3—
can compete with the algorithms of Wu et al. [Wu+16] on non-instantaneous, incurable
temporal graphs for computing foremost, reverse-foremost and fastest walks between

101

6 Conclusion

any two pairs of vertices and within any time interval. This also holds for our second
Floyd-Warshall adaptation—Algorithm 4—for the remaining optimal walk variants.

Enumerating Walks. In public transport networks, as an example, it is not only neces-
sary to find one fastest transportation route but to find all fastest transportation routes
through the system to offer a selection of possibilities. Finding second fastest routes
that are only slightly longer than the optimum can also increase the information gained.
Hence, constructing efficient algorithms for enumerating all optimal walks and finding
second optimal walks in temporal graphs can be a future research goal.

Finding pareto-optimal walks can also be of major interest in some fields of applica-
tion such as flight networks as discussed briefly in Chapter 1. Passengers are not solely
interested in optimizing one criterion such as cost, but finding a good balance between
flight duration and cost. Hence, finding and enumerating pareto-optimal walks can be
of major benefit for a plethora of applications of optimal walks.

Fixed-Parameter Algorithms for Finding Optimal Walks. Finding structural graph pa-
rameters that are small in temporal graphs is a first step to extract potential parameters
that are well-motivated considering for fixed-parameter algorithms. One example for
such parameters is the diameter which tends to be small in social networks. Temporal
graph parameters such as the maximum dwell time β also warrant consideration. As
seen in Chapter 1, this parameter is constant in proximity networks when analyzing
transmission routes of infectious diseases.

102

Literature

[Abr+16] I. Abraham, S. Chechik, D. Delling, A. V. Goldberg, and R. F. Werneck.
“On Dynamic Approximate Shortest Paths for Planar Graphs with Worst-
case Costs”. In: Proceedings of the 27th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’16). SIAM, 2016, pp. 740–753 (cit. on pp. 95,
96, 98).

[AF16] K. Axiotis and D. Fotakis. “On the size and the approximability of mini-
mum temporally connected subgraphs”. In: arXiv preprint arXiv:1602.06411
(2016) (cit. on p. 15).

[AVL62] G. Andelson-Velskii and E. Landis. “An algorithm for the organisation of
information”. In: Soviet Mathematics-Doklady 3 (1962), pp. 1259–1262 (cit.
on p. 32).

[Baj+11] P. Bajardi, A. Barrat, F. Natale, L. Savini, and V. Colizza. “Dynamical
Patterns of Cattle Trade Movements”. In: PLOS ONE 6.5 (2011), pp. 1–19
(cit. on p. 9).

[Ber96] K. A. Berman. “Vulnerability of scheduled networks and a generalization of
Menger’s theorem”. In: Networks 28.3 (1996), pp. 125–134 (cit. on p. 15).

[BF14] A. Barrat and J. Fournet. DATASET: High school dynamic contact networks.
http://www.sociopatterns.org/datasets/high- school- dynamic-

contact-networks/. 2014 (cit. on p. 21).

[Bod+16] H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov,
and M. Pilipczuk. “A cˆkn 5-Approximation Algorithm for Treewidth”. In:
SIAM Journal on Computing 45.2 (2016), pp. 317–378 (cit. on p. 95).

[Bod89] H. L. Bodlaender. “NC-algorithms for graphs with small treewidth”. In: Pro-
ceedings of the 14th International Workshop on Graph-Theoretic Conecpts
in Computer Science (WG ’88). Springer, 1989, pp. 1–10 (cit. on p. 95).

[Cas+12] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. “Time-varying
graphs and dynamic networks”. In: International Journal of Parallel, Emer-
gent and Distributed Systems 27.5 (2012), pp. 387–408 (cit. on p. 10).

[Dea04] B. C. Dean. “Algorithms for minimum-cost paths in time-dependent net-
works with waiting policies”. In: Networks 44 (2004), pp. 41–46 (cit. on
pp. 15, 57).

[Flo62] R. W. Floyd. “Algorithm 97: Shortest Path”. In: Communications of the
ACM 5.6 (1962), pp. 345–348 (cit. on p. 66).

103

http://www.sociopatterns.org/datasets/high-school-dynamic-contact-networks/
http://www.sociopatterns.org/datasets/high-school-dynamic-contact-networks/

Literature

[Fom+17] F. V. Fomin, D. Lokshtanov, M. Pilipczuk, S. Saurabh, and M. Wrochna.
“Fully polynomial-time parameterized computations for graphs and matrices
of low treewidth”. In: Proceedings of the 28th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA ’16). SIAM. 2017, pp. 1419–1432 (cit.
on p. 95).

[GBC14] V. Gemmetto, A. Barrat, and C. Cattuto. “Mitigation of infectious disease at
school: targeted class closure vs school closure”. In: BMC Infectious Diseases
14.1 (2014), p. 1 (cit. on p. 21).

[GMN17] A. C. Giannopoulou, G. B. Mertzios, and R. Niedermeier. “Polynomial fixed-
parameter algorithms: A case study for longest path on interval graphs”. In:
Theoretical Computer Science 689 (2017), pp. 67–95 (cit. on p. 81).

[Goe11] R. Goerke. Email Network of KIT Informatics. http://i11www.iti.uni-
karlsruhe.de/en/projects/spp1307/emaildata. 2011 (cit. on p. 21).

[Hol15] P. Holme. “Modern temporal network theory: a colloquium”. In: The Euro-
pean Physical Journal B 88.9 (2015), p. 234 (cit. on pp. 9, 11, 15).

[Hol16] P. Holme. “Temporal network structures controlling disease spreading”. In:
Physical Review E 94.2 (2016), p. 022305 (cit. on p. 9).

[HS12] P. Holme and J. Saramäki. “Temporal networks”. In: Physics Reports 519.3
(2012), pp. 97–125 (cit. on pp. 9, 11, 12, 15).

[Ise+11] L. Isella, J. Stehlé, A. Barrat, C. Cattuto, J.-F. Pinton, and W. Van den
Broeck. “What’s in a crowd? Analysis of face-to-face behavioral networks”.
In: Journal of Theoretical Biology 271.1 (2011), pp. 166–180 (cit. on p. 21).

[KA12] H. Kim and R. Anderson. “Temporal node centrality in complex networks”.
In: Physical Review E 85.2 (2012), p. 026107 (cit. on pp. 15, 78).

[KKK00] D. Kempe, J. Kleinberg, and A. Kumar. “Connectivity and Inference Prob-
lems for Temporal Networks”. In: Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing (STOC ’00). ACM, 2000, pp. 504–513
(cit. on p. 15).

[KLS02] E. Köhler, K. Langkau, and M. Skutella. “Time-Expanded Graphs for Flow-
Dependent Transit Times”. In: Proceedings of the 10th Annual European
Symposium on Algorithms (ESA ’15). Springer, 2002, pp. 599–611 (cit. on
p. 15).

[Mer+13] G. B. Mertzios, O. Michail, I. Chatzigiannakis, and P. G. Spirakis. “Tem-
poral Network Optimization Subject to Connectivity Constraints”. In: Pro-
ceedings of the 40th International Colloquium on Automata, Languages, and
Programming (ICALP ’13). Springer, 2013, pp. 657–668 (cit. on pp. 11, 15,
23).

[MH13] N. Masuda and P. Holme. “Predicting and controlling infectious disease
epidemics using temporal networks”. In: F1000prime Reports 5 (2013) (cit.
on p. 9).

104

http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/emaildata
http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/emaildata

Literature

[ML+16] M. Moslonka-Lefebvre, C. A. Gilligan, H. Monod, C. Belloc, P. Ezanno, J.
A. N. Filipe, and E. Vergu. “Market analyses of livestock trade networks
to inform the prevention of joint economic and epidemiological risks”. In:
Journal of The Royal Society Interface 13.116 (2016) (cit. on p. 9).

[Nic+12] V. Nicosia, J. Tang, M. Musolesi, G. Russo, C. Mascolo, and V. Latora.
“Components in time-varying graphs”. In: Chaos: An Interdisciplinary Jour-
nal of Nonlinear Science 22.2 (2012), p. 023101 (cit. on p. 15).

[Nic+13] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora.
“Graph Metrics for Temporal Networks”. In: Temporal Networks. Under-
standing Complex Systems. Springer, 2013, pp. 15–40 (cit. on pp. 9, 11, 12,
23).

[PS11] R. K. Pan and J. Saramäki. “Path lengths, correlations, and centrality in
temporal networks”. In: Physical Review E 84.1 (2011), p. 016105 (cit. on
pp. 15, 78).

[Sal+10] M. Salathé, M. Kazandjieva, J. W. Lee, P. Levis, M. W. Feldman, and J.
H. Jones. “A high-resolution human contact network for infectious disease
transmission”. In: Proceedings of the National Academy of Sciences 107.51
(2010), pp. 22020–22025 (cit. on p. 9).

[San+11] N. Santoro, W. Quattrociocchi, P. Flocchini, A. Casteigts, and F. Amblard.
“Time-varying graphs and social network analysis: Temporal indicators and
metrics”. In: arXiv preprint arXiv:1102.0629 (2011) (cit. on pp. 10, 12, 15,
23, 78).

[Sku09] M. Skutella. “An introduction to network flows over time”. In: Research
Trends in Combinatorial Optimization. Springer, 2009, pp. 451–482 (cit. on
p. 15).

[Ste+11] J. Stehlé, N. Voirin, A. Barrat, C. Cattuto, L. Isella, J.-F. Pinton, M. Quag-
giotto, W. Van den Broeck, C. Régis, B. Lina, et al. “High-resolution mea-
surements of face-to-face contact patterns in a primary school”. In: PLoS
ONE 6.8 (2011), e23176 (cit. on p. 21).

[SW13] M. Sorge and M. Weller. “The Graph Parameter Hierarchy”. Manuscript.
2013. url: https://manyu.pro/assets/parameter-hierarchy.pdf (cit.
on pp. 91, 95).

[Tan+13] J. Tang, I. Leontiadis, S. Scellato, V. Nicosia, C. Mascolo, M. Musolesi, and
V. Latora. “Applications of temporal graph metrics to real-world networks”.
In: Temporal Networks. Springer, 2013, pp. 135–159 (cit. on pp. 15, 78).

[Van+13] P. Vanhems, A. Barrat, C. Cattuto, J.-F. Pinton, N. Khanafer, C. Régis, B.
Kim, B. Comte, and N. Voirin. “Estimating potential infection transmission
routes in hospital wards using wearable proximity sensors”. In: PLoS ONE
8.9 (2013), e73970 (cit. on p. 21).

105

https://manyu.pro/assets/parameter-hierarchy.pdf

Literature

[VLM16] J. Viard, M. Latapy, and C. Magnien. “Computing maximal cliques in link
streams”. In: Theoretical Computer Science 609.1 (2016), pp. 245 –252 (cit.
on p. 9).

[War62] S. Warshall. “A Theorem on Boolean Matrices”. In: Journal of the ACM
9.1 (1962), pp. 11–12 (cit. on p. 66).

[Wu+16] H. Wu, J. Cheng, Y. Ke, S. Huang, Y. Huang, and H. Wu. “Efficient Algo-
rithms for Temporal Path Computation”. In: IEEE Transactions on Knowl-
edge and Data Engineering 28.11 (2016), pp. 2927–2942 (cit. on pp. 12, 15,
23, 35, 37, 57, 61, 101).

[XFJ03] B. B. Xuan, A. Ferreira, and A. Jarry. “Computing shortest, fastest, and
foremost journeys in dynamic networks”. In: International Journal of Foun-
dations of Computer Science 14.02 (2003), pp. 267–285 (cit. on pp. 10–12,
15, 23, 37).

[Zsc+17] P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier. “The Compu-
tational Complexity of Finding Separators in Temporal Graphs”. In: arXiv
preprint arXiv:1711.00963 (2017) (cit. on p. 15).

106

	Introduction
	Preliminaries
	Temporal Graphs
	Temporal Walks & Optimal Walks
	Problem Definitions

	Structure of Temporal Walks
	Temporal Graph Variants
	Minimum Dwell Time bold0mu mumu subsection.
	Transmission Time bold0mu mumu subsection.
	Maximum Dwell Time bold0mu mumu subsection.

	Optimal Temporal Walks
	Temporal Graphs
	Temporal Graphs with Unbounded Dwell Time

	Algorithms for Finding Optimal Walks
	Single-Source Optimal Walk
	Foremost
	Fastest
	Transformation to Static Graphs

	Single-Sink Optimal Walk
	All-Pairs Optimal Walk

	Polynomial Fixed-Parameter Algorithms
	Parameter Restriction
	Earliest-Arrival Query & Latest-Departure Query
	Next-Departure Query

	Fixed-Parameter Algorithms
	Temporal Graphs with Bounded Vertex Cover Number
	Temporal Graphs with Bounded Treewidth

	Conclusion
	Literature

