
Technische Universität Berlin

Fakultät IV
Institut für Algorithmik und Komplexitätstheorie

Master Thesis

Algorithms and Complexity for Centrality
Improvement in Networks

Clemens Hoffmann

Supervisor:
Prof. Rolf Niedermeier

Co-Advisors:
Manuel Sorge and Hendrik Molter

April 24, 2017

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigen-
händig sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwen-
dung der aufgeführten Quellen und Hilfsmittel angefertigt habe.

Speyer, den 23.8.2017

Clemens Hoffmann

Abstract

The task of improving the centrality of a node in a network has many ap-
plications, as a higher centrality often implies a larger impact on the net-
work or less transportation or administration cost. This work studies the
parameterized complexity of the NP-hard problem of improving a node’s
closeness and betweenness centrality by adding a certain number of edges
to the network, denoted as Closeness Improvement and Betweenness
Improvement. We show similarities between Closeness Improvement
and Minimum Dominating Set. On the negative side, we show that in
general, both problems are W[2]-hard if parameterized by the number of
edge additions, even on graphs with constant diameter; for Closeness Im-
provement, we show W[2]-hardness even on split graphs. Furthermore, we
show W[2]-hardness for the problem variants on directed graphs. On the
positive side, we show fixed-parameter tractability for the parameters vertex
cover size, distance to clique, and distance to cluster graph. Finally, we show
W[1]-hardness for the problem of improving the betweenness centrality by
deleting edges from the graph, and provide an outlook on problem variants
such as improving a node’s relative closeness centrality by removing a certain
number of edges.

Abstrakt

Die Zentralität eines Knotens in einem Netzwerk kann auf vielfältige Art und
Weise gemessen werden - zu den bekanntesten Verfahren zählen die Between-
ness und die Closeness Centrality. Diese Zentralität durch das Einfügen von
Kanten zu erhöhen, ist in vielerlei Anwendungen von Nutzen. Beispielsweise
haben Knoten mit hoher Zentralität in sozialen Netzwerken einen hohen Ein-
fluss innerhalb des Netzwerks. Für Transport- und Logistikunternehmen ist
es von Interesse, Lager möglichst zentral zu legen, um Kosten zu sparen.
Diese Abschlussarbeit untersucht die parametrisierte Komplexität der NP-
harten Probleme der Maximierung der Betweenness und Closeness Centrality
durch das Hinzufügen von einer begrenzten Anzahl an Kanten im Netzwerk,
sowohl auf gerichteten als auch auf ungerichteten Graphen. Darüber hinaus
werden Ähnlichkeiten der Probleme Dominating Set und Closeness Im-
provement aufgezeigt. Zu den zentralen Resultaten dieser Arbeit zählt der
Beweis der W[2]-Härte beider Probleme sowohl auf gerichteten als auch auf
ungerichteten Graphen, selbst mit konstantem Durchmesser und auf einigen
eingeschränkten Graphklassen. Darüber hinaus wird gezeigt, dass das Prob-
lem der Maximierung der Closeness Centrality mit gewissen Parametern in
FPT oder sogar in Polynomialzeit lösbar ist. Des Weiteren wird das Problem
der Maximierung der Betweenness Centrality durch das Löschen von Kan-
ten eingeführt und W[1]-Härte mit dem Parameter Anzahl der zu löschenden
Kanten gezeigt. Als Ausblick werden eine Reihe weiterer Problemvarianten
sowie offene Fragestellungen aufgeführt.

Contents

1 Introduction/Motivation 3
1.1 Related Work . 6
1.2 Our contribution . 6
1.3 Preliminaries . 9

1.3.1 Graph theory and basics 9
1.3.2 Parameterized complexity 10
1.3.3 Decision problems . 11

2 Closeness Centrality Improvement 13
2.1 Hardness results . 16
2.2 Algorithmic results . 22
2.3 Closeness improvement on directed graphs 28
2.4 Solution space reduction rules 32

3 Betweenness Centrality Improvement 35
3.1 Hardness results . 36
3.2 Algorithmic results . 40
3.3 Directed Betweenness Improvement 41
3.4 Relationship to Independent Set 44

4 Destructive Betweenness Improvement 47
4.1 Hardness result . 48
4.2 Greedy strategy . 50

5 Conclusion and Outlook 53
5.1 Betweenness vs. Closeness Improvement 54
5.2 More centrality improvement variants 54

5.2.1 Betweenness Editing 54
5.2.2 Betweenness Balancing 55
5.2.3 Relative Improvement 55

5.3 Open questions . 55

1

Chapter 1

Introduction/Motivation

Measuring the centrality of nodes in a network has attracted the interest
of researchers since the second half of the 20th century. There are various
interpretations of what makes a node more central than another node in a
network (Freeman [Fre78]). Three popular centrality measurements are be-
tweenness, closeness and node degree (Opsahl et al. [OAS10]). They have in
common that centrality reflects the importance of a node based on structural
properties of a node’s location and embedding in the graph: For example, a
node which has short distances to other nodes can be considered as central,
while a node with very few neighbors located at a network’s boundary is
rather peripheral.

Analyzing network centrality has been studied intensively (e.g. Freeman
[Fre78], Okamoto et al. [OCL08], Newman [New05], Brandes [Bra08]) and
comprises a huge set of applications, e.g. network analysis (Newman and Gir-
van [NG04]) and the field of bioinformatics (Rubinov and Sporns [RS10]).
Besides the academic interest, the model of centrality also fits many eco-
nomical scenarios. For instance, a transport company might be interested in
parking its vehicles and goods in a central depot such that the transportation
costs are rather low. Hence, the company’s task is to select central depots.
The value of an airport might be impacted by the number of connections
to other airports. Furthermore, analyzing the network centrality is also im-
portant in the field of computer science. For instance, determining the most
central nodes in a computer network is useful for determining attractive data
centers where the routes are rather short and peering costs are rather low.
In social networks, influencers are somehow more central than other users.
As there is no natural answer how to measure centrality, several indicators
have been used in order to determine a node’s centrality.

Two of these indicators are subject of the research within this work: The
first one, referred to as closeness centrality, takes the sum of all distances to

3

4 CHAPTER 1. INTRODUCTION/MOTIVATION

other nodes into account. By summing up the multiplicative inverses of these
distances, a higher value means that on average the distances to other nodes
are rather low. The usage of the multiplicative inverses of the distances is
a solution for measuring the centrality of a node in a disconnected graph,
as by convention, the distance between disconnected nodes is ∞. Using the
multiplicative inverses, each node increases the closeness centrality by at
most one. For a node z, it is formally defined as follows:

cz =
∑
u∈V

d(u,z)<∞
u6=z

1

d(u, z)
(1.1)

However, the closeness centrality of a node does not necessarily determine
its importance: Assume that a node has short distances to many isolated
nodes, but its distances to other central nodes with a high degree are com-
paratively large. Its closeness centrality value might still be high, although
from a structural perspective, the centrality of the node would be low. This
deficit leads to another approach for measuring centrality which takes the
proportional number of shortest paths containing z into account. This cen-
trality is referred to as the betweenness centrality, where σst is the number
of shortest path from s to t and σstz is the number of shortest paths from
s to t containing z. For an undirected graph, the betweenness centrality is
defined as follows, where z is a node of the graph:

bz =
∑
s,t∈V

s6=t;s,t 6=z
σst 6=0

σstz
σst

(1.2)

Polynomial-time algorithms for measuring the centrality have been in-
tensively studied since the 1970s. Modern approaches like scalable heuristics
for very large networks have also been subject of research [Kan+11]. How-
ever, besides measuring a node’s centrality, there are a lot of scenarios where
the improvement of a node’s centrality is desirable. E.g., a social network
member might want to increase her impact on other users by increasing her
own centrality. Another motivation for this problem is an airport operator
who wants to increase the number of flights from and to her airport: The
most natural way to increase this number is by increasing the number of
shortest flights with intermediate landings at the airport.

In this work, we address the problem of improving the centrality of a
node by performing a limited number of edge operations. Hence, we intro-
duce and mainly focus on the following decision problems.

For the closeness centrality, we ask whether the centrality of a node z
can be increased to a specified value r by adding k edges:

5

Closeness Improvement
Input: An undirected, unweighted graph G = (V,E), a node z ∈ V , an

integer k and a rational number r.
Question: Is there an edge set S, S ∩ E = ∅, of size at most k such that

cz ≥ r in G′ = (V,E ∪ S)?

In the same way, we ask whether the betweenness centrality of a node z
can be increased to a specified value r by adding k edges:

Betweenness Improvement
Input: An undirected, unweighted graph G = (V,E), a node z ∈ V , an

integer k and a rational number r.
Question: Is there an edge set S, S ∩ E = ∅, of size at most k such that

bz ≥ r in G′ = (V,E ∪ S)?

By removing edges from a network, the closeness centrality of a node can
only be decreased. The same does not hold for betweenness centrality: As-
sume that there are several shortest paths from s to t, some of which contain
z and some do not. Then bz can be increased by removing edges which are
part of a shortest path not containing z. The model of removing edges in
order to increase a node’s centrality may be desirable in some situations: For
instance, a network administrator might want some network traffic to pass a
specific, monitored node by shutting down as few links as necessary. Hence,
we additionally introduce and analyze the Destructive Betweenness
Improvement problem, where we ask whether the betweenness centrality
of a node z can be increased to a specified value r by removing at most k
edges:

Destructive Betweenness Improvement
Input: An undirected, unweighted graph G = (V,E), a node z ∈ V , an

integer k and a real number r.
Question: Is there an edge set S ⊆ E of size at most k such that bz ≥ r in

G′ = (V,E \ S)?

In this work, we analyze the parameterized complexity of each of the
introduced decision problems: First, we show that all problems are W[2]-hard
with respect to the perhaps most natural parameter, i.e. the number of edges
that are added or removed respectively. Moreover, we show W[1]-hardness
or membership in the class FPT for other parameters and some restricted
graph classes. For the natural parameter, we also show W[2]-hardness for the
problem of maximally increasing the closeness or betweenness on directed,
unweighted graphs. Moreover, for each of the introduced decision problems,
we analyze the parametrized complexity of the variants where the input
graph is a directed graph, and the task is to increase a node’s centrality by

6 CHAPTER 1. INTRODUCTION/MOTIVATION

adding or removing arcs to or from the input graph respectively. Therefore,
we also define centrality in directed graphs in the corresponding sections.

1.1 Related Work

The field of centrality measurement has been widely studied in the past.
The first work describing the ideas of betweenness centrality measurement
is due to Bavelas [Bav48]. Three decades later, the current formal model of
betweenness centrality has been defined by Freeman [Fre77]. The same work
also provides a polynomial-time algorithm for measuring the betweenness
centrality running in O(n3) time. In the past years, the problem of effi-
ciently measuring the betweenness centrality has been actively researched.
For instance Brandes [Bra01] presents an algorithm for undirected graphs
running in O(nm) time. A recent work discussing problem variants is due to
Brandes [Bra08], such as bounded-distance betweenness and edge between-
ness. Recently, randomized algorithms for approximating the betweenness
centrality and some variants are due to Riondato and Kornaropoulos [RK16]
and .

The problem of improving the betweenness or closeness centrality of a
node by adding a limited number of edges was initiated by Crescenzi et
al. [Cre+16] and D’Angelo et al. [DSV16]. They show that both problems,
formulated as maximization problems where the task is to maximally improve
a node’s closeness or betweenness centrality by a specific number of edges,
do not admit a polynomial-time approximation scheme. Furthermore, they
present a factor 1− 1

e approximation for closeness improvement on directed
graphs, and show that the problem cannot be approximated by a factor
greater than 1− 1

3e (factor 1− 1
2e for betweenness improvement on directed,

unweighted and undirected, weighted graphs, respectively), unless P 6= NP.
Furthermore, they introduce polynomial-time greedy strategies and present
experimental results.

1.2 Our contribution

In this work, we present results for the parameterized complexity of centrality
improvement problems. The highlights of this work are found in Chapter 2
and Chapter 3: In Chapter 2, the subject of research is the parameterized
complexity of Closeness Improvement: We show that the problem is
W[2]-hard with respect to the number of added edges, even on split graphs.
For other parameters such as vertex cover size and distance to cluster graph,
we show membership in the complexity class FPT. Chapter 3 covers re-
sults and observations for Betweenness Improvement: Analogously to
the previous chapter, we show W[2]-hardness for the parameter number of

1.2. OUR CONTRIBUTION 7

Vertex Cover Max Leaf #Distance to Clique

Minimum
Clique Cover

Distance to
Co-Cluster

Distance to
Cluster

Distance to
Disjoint Paths

Feedback
Edge Set Bandwidth

Maximum
Independent Set

Distance to
Cograph

Distance to
Interval

Feedback
Vertex Set Pathwidth

Maximum
Degree

Bisection
Width

Minimum
Dominating Set

Distance to
Chordal

Distance to
Bipartite

Distance to
Outerplanar h-index

Genus
Max Diameter
of Components

Distance to
Perfect

Treewidth

Cliquewidth Acyclic
Chromatic #

Average
Distance

Degeneracy

Boxicity

Chordality

Girth

Chromatic #

Average
Degree

Minimum
Degree

Maximum
Clique

Distance to
DisconnectedDomatic #

Figure 1: Hasse diagram of the known part of the boundedness relation
between graph parameters. For two parameters that a connected by a line,
the lower parameter is upper bounded by the upper parameter (that is, the
upper parameter is larger). ”Distance to X“ is the number of nodes that have
to be deleted in order to transform the input graph into a graph from the
graph class X. Refer to Sorge and Weller [SW17] for the formal definitions
of the parameters.

added edges, and membership in FPT for the parameter vertex cover size
and the combined parameter distance to cluster graph and number of added
edges.

For both problems, we introduce a variant where the input graph is a
directed, unweighted graph. We also show W[2]-hardness for these prob-
lems with respect to the number of added arcs in Section 2.3 respectively
Section 3.3. In Chapter 4, we introduce some variants of Betweenness
Improvement such as Directed Betweenness Improvement, where
the task is to remove edges from a graph in order to improve the between-
ness centrality. We show that this problem is W[1]-hard on directed graphs
with respect to the number of removed arcs.

8 CHAPTER 1. INTRODUCTION/MOTIVATION

Problem Parameter Results

Closeness number of edge additions W[2]-hard in general (Theorem 1)
Improvement XP in general Corollary 1

W[2]-hard with diameter 4 (Corollary 4)
W[2]-hard for split graphs (Theorem 3)
NP-hard on planar graphs

with max degree 3 (Corollary 3)
P on cluster graphs (Lemma 6)
P with diameter at most 2 (Lemma 7)

vertex cover size FPT in general (Theorem 5)
distance to clique FPT in general (Theorem 4)
distance to cluster FPT in general (Theorem 6)

Directed Closeness number of arc additions W[2]-hard in general (Theorem 7)
Improvement XP in general (Lemma 12)

W[2]-hard on DAGs Corollary 5
W[2]-hard with diameter 4 (Theorem 8)
P with diameter at most 2 (Lemma 13)

Betweenness number of edge additions W[2]-hard in general (Theorem 9)
Improvement XP in general (Corollary 6)

NP-hard with max. h-index 4 (Corollary 7)
vertex cover and FPT in general (Theorem 10)

number of edge additions
Directed Betweenness number of arc additions W[2]-hard in general (Theorem 7)
Improvement XP in general (Corollary 8)

W[2]-hard on DAGs (Corollary 9)

Directed Destructive number of arc subtractions W[1]-hard (Theorem 12)
Betweenness

Improvement

Table 1: Overview of our classification results.

An overview of all results of our complexity analysis can be found in
Table 1. Herein, in general denotes that the result is valid for unrestricted
graphs. As Closeness Improvement and Betweenness Improvement
are W[2]-hard with respect to the number of edge additions, we analyze the
parameterized complexity with other parameters, such as distance to clique,
vertex cover size and distance to cluster graph. The main purpose is to locate
each problem in the parameter hierarchy visualized in Figure 1 in order to be
able to compare the centrality improvement problems with other problems in
terms of parameterized complexity. As Dominating Set is fixed-parameter
tractable with respect to distance to clique and vertex cover size, there was
a strong motivation in comparing Closeness Improvement to this prob-
lem due to the relationship between these two problems as shown in Chap-
ter 2. Moreover, we analyze the hardness of Closeness Improvement
on split graphs, as this graph class is the perhaps most simple one with a
core-periphery structure, which can be found in social and transportation
networks (Rombach et al. [Rom+14]).

1.3. PRELIMINARIES 9

1.3 Preliminaries

This section covers the notation and basics of this work. However, we pre-
sume that the reader is familiar with the theoretical foundations of computer
science, such as NP-completeness and graph theory.

1.3.1 Graph theory and basics

Graphs. An undirected graph G = (V,E) is a tuple where V is a set of
nodes and E ⊆

(
V
2

)
is a set of undirected edges. A directed graph G′ = (V,A)

consists of a set of nodes V and a set of directed arcs A ⊆ V ×V . The number
of nodes is referred to as n while the number of edges respectively arcs is
referred to as m. For a node u of an undirected graph, deg(u) denotes the
degree of u. For a graph G = (V,E) and S ⊆ V , we refer to the induced
subgraph G′ = (V \ S,E \ {{u, v} | u ∈ S ∨ v ∈ S)} as G− S.

Distance. For two nodes u, v, d(u, v) denotes the distance between u and
v, i.e. the length of a shortest path from u to v. If u and v are not connected
by a path, then d(u, v) =∞.

Neighborhood. For a graph G = (V,E), the neighborhood of a node u is
the set of nodes adjacent the u. The open neighborhood of a node u ∈ V ,
that is the set of nodes adjacent to u not including u, is denoted by N(u).
The closed neighborhood, that is the set of neighbors of u which includes u,
is denoted by N [u]. For any subset V ′ ⊆ V , we define NV ′(u) := N(u)∩ V ′,
and NV ′ [u] := N [v] ∩ V ′.

Isolation. A node is isolated if and only if its degree in the graph is 0.
Otherwise.

Cluster Graphs. A cluster graph is a graph which consists of a disjoint
union of cliques, referred to as clusters.

Split Graphs. A split graph is a graph which can be partitioned into a
clique and an independent set.

Independent Set. For an undirected graph G = (V,E), an independent
set is a set of nodes V ′ ⊆ V such that {v, v′} /∈ E for all v, v′ ∈ V ′.

H-index. A graph has h-index k if there are at least k nodes with degree
at least k.

10 CHAPTER 1. INTRODUCTION/MOTIVATION

Edge additions. For Betweenness Improvement and Closeness Im-
provement, a solution for an instance I = (G = (V,E), z, k, r) is a set
of edges S of size at most k such that the betweenness resp. closeness cen-
trality of z in G′ = (V,E∪S) is at least r. Sometimes we denote the number
of edge additions k as the natural parameter of these problems. These terms
also apply to the problem variants on directed graphs.

1.3.2 Parameterized complexity

Parameterized complexity. The motivation behind parameterized com-
plexity (Niedermeier [Nie06], Downey and Fellows [DF13], Cygan et al.
[Cyg+15], Flum and Grohe [FG06]) is to solve NP-hard decision problems
more efficiently by restricting the exponential running time of an algorithm
to one or more parameters of an instance, which are independent of the in-
put size. Formally, in parameterized complexity theory (Downey and Fellows
[DF13]), a language L ⊆ Σ∗ × Σ∗ is a parameterized language, where Σ is a
finite alphabet. For an instance (x, k) ∈ L, the second component k is the
parameter.

Parameterized languages. A parameterized language L is fixed-parameter
tractable if and only if there is a computable function f that only depends
on k such that it can be determined in f(k) · nO(1) time whether (x, k) ∈ L,
where n is the input size. The corresponding complexity class of fixed-
parameter tractable languages is FPT.

Some prominent fixed-parameter tractable languages are Vertex Cover
or Feedback Vertex Set, both with respect to the parameter solution size
(see Section 1.3.3) for the problem definitions). Analogously to the assump-
tion that P 6= NP, we assume that many problems with natural parame-
ters are not fixed-parameter tractable, such as Dominating Set and Set
Cover. These problems are members of the complexity classes W[t] for a
t ≥ 1. In particular, Dominating Set and Set Cover are W[2]-complete,
while for instance Maximum Clique and Maximum Independent Set
are W[1]-complete.

W-Hierarchy. The W-Hierarchy is defined as follows ([DF13]):
FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[t] ⊆ . . . ⊆ W[Sat] ⊆ W[P] ⊆ XP.

Parameterized reductions. In order to classify parameterized languages
in the parameterized complexity hierarchy, the framework of parameterized
reductions is a useful tool:

Let L,L′ ⊆ Σ∗ × Σ∗. A parameterized (many-to-one) reduction from L
to L′ is a function f : Σ∗ × Σ∗ → Σ∗ × Σ∗ : (I, k)→ (I ′, k′) such that:
(i) f(I, k) can be computed in g(k) · |I|O(1) time for some computable

function g,

1.3. PRELIMINARIES 11

(ii) k′ ≤ h(k) for some computable function h and
(iii) (I, k) ∈ L⇔ (I ′, k′) ∈ L′.

For instance, we can show that a parameterized language L is W[1]-hard
by giving a parameterized reduction from a W[1]-hard problem, for instance
Maximum Clique, to L. In order to show that L ∈ W[1], we can give a
parameterized reduction from Maximum Clique to L. If both reductions
exist, then L is W[1]-complete.

XP. Finally, a parameterized problem L is in XP if it can be determined
in f(k) · |I|O(g(k))) time whether (I, k) ∈ L, where f and g are computable
functions only depending on k.

1.3.3 Decision problems

We introduce some decision problems, which are used in reductions within
this work.

Dominating Set is a graph problem known to be W[2]-hard with re-
spect to the parameter solution size. We use parameterized reductions from
Dominating Set in order to prove W[2]-hardness for some centrality im-
provement problems.
Dominating Set
Input: An unweighted graph G = (V,E) and an integer k.
Question: Is there a set of nodes V ′ ⊆ V of size at most k such that each

node not in V ′ has at least one neighbor in V ′?

Furthermore we introduce Set Cover which is W[2]-hard with respect
to the parameter solution size k:
Set Cover
Input: A family of subsets S = {S1, . . . , Sm} over a universe X =

{x1, . . . , xn} and an integer k.
Question: Is there a set S′ ⊆ S, |S′|≤ k such that

⋃
R∈S′ R = X?

By a slight modification where we ask if at least p elements can be covered
by k sets, we obtain the following problem:
Max k-Set Cover
Input: A family of subsets S = {S1, . . . , Sm} over a universe of ele-

ments X = {x1, . . . , xn}, integers k and p.
Question: Is there a set S′ ⊆ S of families of size at most k such that

|
⋃
R∈S′ R|= p?

12 CHAPTER 1. INTRODUCTION/MOTIVATION

The W[2]-hardness of Set Cover with the parameter size k of subsets
directly implies the W[2]-hardness of Max k-Set Cover by setting p := n.

Vertex Cover is fixed-parameter tractable with respect to the parame-
ter k and the fastest algorithm at the time of writing runs in O(1.2738k+kn)
time [CKX10].
Vertex Cover
Input: An undirected graph G = (V,E) and a positive integer k.
Question: Is there a V ′ ⊆ V of size at most k such that for all {u, v} ∈ E

either u ∈ V ′ or v ∈ V ′?

Chapter 2

Closeness Centrality
Improvement

This chapter presents algorithmic and hardness results for Closeness Im-
provement in general and for different graph classes. First, we show that
the closeness centrality improvement of a node by a certain number of edge
additions is maximal if each added edge contains z. We use this basic ob-
servation for showing the correctness of the hardness reductions within this
chapter.

On the negative side, we use parameterized reductions from Dominating
Set, Set Cover, and Max k-Set Cover to show W[2]-hardness for the
parameters number of edge additions on undirected, unweighted graphs and
number of arc additions on directed, unweighted graphs. Moreover, we show
that Closeness Improvement is W[2]-hard even on split graphs.

On the positive side, we provide algorithms to show that Closeness
Improvement is fixed-parameter tractable with respect to the vertex cover
size and the distance to cluster, that is the number of nodes to remove such
that the resulting graph is a cluster graph. As the running time of these
algorithms circumvents practical usability, the main purpose is to give a
classification in the parameterized complexity hierarchy.

Furthermore, we show that there is a relation between Closeness Im-
provement and Dominating Set. Let G be an undirected graph and k
be a positive integer. If a dominating set for G of size at most k is com-
putable in polynomial time, then we can solve a Closeness Improvement
instance (G, z, k, r) in polynomial time. We analyze this observation and
its implications; furthermore, we show similarities and differences between
these two problems in terms of parameterized complexity.

13

14 CHAPTER 2. CLOSENESS CENTRALITY IMPROVEMENT

We first introduce some general propositions and theorems that are used
throughout the following proofs.

This first proposition is used to determine the running time of the algo-
rithms presented in Section 2.2:

Proposition 1. The closeness centrality of a node z in a connected, undi-
rected, unweighted graph can be computed in O(n+m) time.

Proof. By summing up the multiplicative inverses of all distances between z
and all other nodes, we get the closeness centrality of z. The problem of
finding the shortest paths between one source and all other nodes is the
Single-Source-Shortest-Path problem which can be solved in O(n+m) time
[Tho99].

The next observation is that the closeness centrality of a node is maximal
if it is connected by a edge to all other nodes, independent of the structure
of the graph.

Lemma 1. The closeness centrality cz of a node z in an undirected, un-
weighted graph is maximal if and only if z is adjacent to all other nodes in a
graph.

Proof. If z is adjacent to all other nodes, then the distance between z and
each other node is 1 and therefore minimal, hence cz = n− 1. If there is at
least one node which z is not adjacent to, then its distance is at least 2 and
therefore cz ≤ n− 2 + 1

2 < n− 1.

We use the following theorem to proof the correctness of the hardness
reductions in Section 2.1.

Lemma 2. Let I = (G = (V,E), z, k, r) be a Closeness Improvement
instance. If I is a Yes-instance, then cz can be increased to r by adding at
most k edges, all of which contain z.

Proof. Let ui, uj ∈ V, ui, uj 6= z be two nodes of the input graph such
that e := {ui, uj} /∈ E. We show that, if a solution S contains {ui, uj}, then
there is a solution S′ of size at most k such that e /∈ S′, but {z, up} ∈ S′ for
some up ∈ V, {up, z} /∈ E ∪ S. Such a node exists as we restrict ourselves to
non-trivial instances.

Let e ∈ S such that e introduces a shortest path p of length l between z
and some node uq 6= ui such that each other path not containing e has
length l′ > l. Hence, e reduces the distance between z and uq by at least
1. Without loss of generality, assume ui precedes uj in p. Also, it follows
that {z, uj} /∈ S: Otherwise, {ui, uj} does not reduce the distance between z
and uj . We obtain a solution which reduces the distance between z and uq

15

by at least the same value if we replace e by {z, uj}, as this reduces the
distance between z and uj to 1.

If the the edge {z, uj} already exists in the input graph, then there is
no shortest path between z and any other node ut containing e. Hence, e
has no impact on cz at all and replacing e by any other edge containing z
increases cz by at least 1

2 . As the instance is non-trivial, we can find such
an edge.

Lemma 2 directly implies that Closeness Improvement is in XP with
respect to the number k of edge additions:

Corollary 1. Closeness Improvement is solvable in O(nk) time where
k is the number of edge additions, and thus is in XP with respect to the
parameter number of edge additions.

Proof. As shown in Lemma 2, an optimal solution for a Closeness Im-
provement instance I = (G, z, k, r) contains only edges where one end-
point is z. Hence, a brute-force approach can be used which iterates over all
subsets of V ′ ⊆ V of size at most k such that (z, v) /∈ E for all v ∈ V ′. For
each V ′, the closeness centrality of z after adding edges between z and each
node in V ′ is computed and the subset which increases cz at most forms the
solution. The total running time of this algorithm is O(nk · (n+m)).

Next, we show that there is a relation between Dominating Set and
Closeness Improvement. We make use of this relationship in the proofs
of the following corollaries and theorems.

Lemma 3. Let I = (G = (V,E), z, k, r) be a Closeness Improvement
instance. Assume G admits a dominating set D ⊆ V of size at most k. If I
is a Yes-instance, then there is a solution S for I such that (z, u) ∈ S ∪ E
for each u ∈ D.

Proof. Let d be the degree of z in G. An optimal solution for a Closeness
Improvement instance contains edges where one endpoint is z (Lemma 2).
Then after adding k such edges, there are exactly k + d nodes which have
distance 1 to z. The distance between z and the other nodes in the graph
is at least 2. Hence, a solution is optimal if the distance to each other node
is exactly 2, which is the case if we connect z to each node forming the
dominating set by an edge.

Lemma 3 directly implies the following corollary:

Corollary 2. Let I = (G, z, k, r) be a Closeness Improvement instance.
From Lemma 3 it follows directly that given a dominating set of size at most
k, a solution for I is computable in polynomial time. In particular, if a
dominating set of size at most k is computable in polynomial time, then I is
decidable in polynomial time.

16 CHAPTER 2. CLOSENESS CENTRALITY IMPROVEMENT

u1 u2

u3 u4

u5

u6

u1 u2

u3 u4

u5

u6

z

(a) A Dominating Set
instance I = (G, k = 2).
The red colored nodes
form a solution for I.

(b) The constructed Closeness Improvement instance
(I ′ = G′, z, k′ = 2, r = k + n−k

2
). The red dashed edges

form a solution for I ′.

Figure 2: Parameterized reduction from Dominating Set to Closeness
Improvement.

The next corollary is used to show that Closeness Improvement is
fixed-parameter tractable with respect to the size of a vertex cover in Theo-
rem 5.

Lemma 4. Let I = (G = (V,E), z, k, r) be a Closeness Improvement
instance, and let d0 be the number of isolated nodes in G, and V ′ ⊆ V be a
vertex cover of G of size `. If k ≥ d0+`, then I can be solved in O(1.2738k+
kn) time.

Proof. From Corollary 2 we know that we obtain an optimal solution S
for I if the neighborhood of z obtained by adding S to G is a dominating
set. As a vertex cover union the set of isolated nodes is a dominating set,
we also obtain an optimal solution if k ≥ ` + d0. However, there does not
necessarily need to exist a vertex cover of size k in G; we may also determine
whether there is a vertex cover V ′ ⊆ V of size at most deg(z)+k−d0, where
N(z) ⊆ V ′. If such a set V ′ exists, then we can optimally solve I by adding
at most k edges to the input graph such that {z, u} ∈ E ∪ S for all u ∈ V ′,
and d0 edges to between z and the isolated nodes of G. In this case, we can
compute a solution S of size at most k − d0 by solving the Vertex Cover
instance (G−N(z), k − d0) in O(1.2738k + kn) time [CKX10].

2.1 Hardness results

This section presents hardness proofs for Closeness Improvement. First,
we show that the problem is W[2]-hard with respect of the probably most
natural parameter, that is the number k of edge additions.

Theorem 1. Closeness Improvement is W[2]-hard with respect to the
parameter number k of edge additions.

Proof. The proof is by a parameterized reduction from Dominating Set
with parameter solution size k:

2.1. HARDNESS RESULTS 17

Let I = (G = (V,E), k ∈ N) where V = {u1, . . . , un} be a Dominating
Set instance. We construct a Closeness Improvement instance I ′ =
(G′ = (V ′, E′), z, k, k + 1

2(n− k) as follows (see Figure 2): Given the input
graph G, we simply add an isolated node z to the graph, that is G′ =
(V ∪ {z}, E).

We now show that the reduction is correct, i.e. I is a Yes-instance if and
only if I ′ is a Yes-instance:
⇒: Let I be a Yes-instance. Then there is a dominating set VDS ⊆ V

of size k in G. After adding k edges between z and each node in VDS in G′,
these k nodes have distance 1 to z and the n−k neighbors of the nodes VDS
have distance 2 to z.

Hence, cz = k + n−k
2 . That is, I ′ is a Yes-instance.

⇐: We prove the reverse direction by contraposition. That is, we show
that I ′ is a No-instance if I is a No-instance. Let I be a No-instance,
that is there is no dominating set of size k in G. From Lemma 2 we know
that we can maximally increase cz by adding edges where one endpoint is z.
However, after adding k edges between z and k nodes in G′, there are l ≥ 1
nodes in G′ whose distances to z is d ≥ 3.

Hence, cz ≤ k + n−k−l
2 + l

d < k + n−k
2 . That is, I ′ is a No-instance.

The next two results directly follow from the proof of Theorem 1:

Corollary 3. Closeness Improvement is NP-hard even on planar graphs
with maximum degree 3.

Proof. Let I = (G, k) be a Dominating Set instance, where G is a planar
graph with maximum degree 3. Let G′ be the graph constructed by the
reduction used in the proof of Theorem 1. Then G′ is also a planar graph
with maximum degree 3. As Dominating Set is NP-hard even on planar
graphs with maximum degree 3 [GJ90], Closeness Improvement remains
NP-hard on graphs of degree 3.

As many network have a slowly increasing or even decreasing diame-
ter (Leskovec et al. [LKF05]), we analyze the parameterized complexity of
Closeness Improvement with respect to the parameter graph diameter.
By modifying the reduction in the proof of Theorem 1, we show that Close-
ness Improvement remains W[2]-hard on graphs with diameter 6.

Theorem 2. Closeness Improvement is W[2]-hard with respect to the
parameter number of edge additions k even on graphs with diameter 6.

Proof. The proof is by a parameterized reduction from Dominating Set
with parameter solution size k:

18 CHAPTER 2. CLOSENESS CENTRALITY IMPROVEMENT

u1 u2

u3 u4

u5

u6

u1 u2

u3 u4

u5

u6

z

x1

x2

x3

x4

x5

x6

y1

y2

y3

y4

y5

y6

(a) A Dominating Set
instance I = (G, k = 2).
The red colored nodes
form a solution for I.

(b) The constructed Closeness Improvement instance
(I ′ = G′, z, k′ = 2, 2n + k

2
). The red dashed edges form a

solution for I ′.

Figure 3: Parameterized reduction from Dominating Set to Closeness
Improvement on graphs with diameter six.

Let I = (G = (V,E), k ∈ N) where V = {u1, . . . , un} be a Dominating
Set instance. We construct a Closeness Improvement instance I ′ =
(G′ = (V ′, E′), z, k, 2n + k

2) as follows (see Figure 3): Given the input
graph G, we add 2n nodes x1, . . . , xn, y1, . . . , yn such that each node xi is
adjacent to ui and yi. Furthermore, we add z and add edges between z and
each y1, . . . , yn. Formally, V ′ and E′ are defined as follows:

V ′ = V ∪ {xi, yi | 1 ≤ i ≤ n} ∪ {z},
E′ = E ∪ {{ui, xi} | 1 ≤ i ≤ n} ∪ {{xi, yi} | 1 ≤ i ≤ n}

∪ {{z, yi} | 1 ≤ i ≤ n}.

We partition V ′ into the subsets Y ′ := {y1, . . . , yn}, X ′ := {x1, . . . , xn}
and U ′ := {u1, . . . , un}. The nodes in Y ′ have distance 1 to z, the nodes
in X ′ have distance 2 to z and the nodes in U ′ all have distance 3 to z. First,
we show that adding edges between z and nodes in U ′ is optimal:

Assume an edge {z, xi}, xi ∈ X ′, is added. Then the distance between z
and xi is 1 and the distance between z and ui is 2. If we instead add
the edge {z, ui}, then the distance between z and ui is 1 and the distance
between z and xi remains 2. Furthermore, the edge {z, ui} may introduce
shorter distances to the neighbors of ui, which the edge {z, xi} does not.
Hence, if a solution for I ′ contains {z, xi}, we can replace that edge by {z, ui}.
Last, it remains to show that the reduction is correct, i.e. I is a Yes-instance
if and only if I ′ is a Yes-instance:
⇒: Let I be a Yes-instance. Then there is a dominating set U ′DS ⊆ U ′

of size k for G′ − (X ′ ∪ Y ′). After adding k edges between z and each node

2.1. HARDNESS RESULTS 19

in U ′DS , these k nodes have distance 1 to z and the n−k neighbors in U ′\U ′DS
have distance 2 to z. Furthermore, each node in Y ′ has distance 2 to z and
each node in X has distance 1 to z.

Hence, cz = k + n−k
2 + n

2 + n = 2n+ k
2 . That is, I

′ is a Yes-instance.

⇐: We prove the other way by contraposition. That is, we show that I ′

is a No-instance if I is a No-instance. Let I be a No-instance. If there
is no dominating set of size k in G′ − (X ′ ∪ Y ′), then after adding k edges
between z and nodes in U ′, there are l ≥ 1 nodes in U ′ whose distances to z
is still 3.

Hence, cz = k + n−k−l
2 + l

3 + n
2 + n = 2n+ k

2 −
l
6 , for l ≥ 1. That is, I ′

is a No-instance.

The W[2]-hardness of Dominating Set on graphs with diameter 2 (Lok-
shtanov et al. [Lok+13]) and the reduction in the proof of Theorem 2 directly
imply the following corollary:

Corollary 4. Closeness Improvement remains W[2]-hard on graphs with
diameter 4.

Proof. Let I = (G, k) be a Dominating Set instance, whereG has diameter
2. The graph of the instance I ′ = (G, z, k, r) constructed by the reduction in
the proof of Theorem 2 has diameter at most 4: The largest shortest paths
in G′ are the ones between xi and xj , if the distance between ui and uj
is maximal, that is 2. Then these shortest paths have length 4 and either
contain yi, z and yj , or ui, an intermediate node u′ and uj .

However, we show in Lemma 7 that Closeness Improvement is poly-
nomial-time solvable on graphs of diameter 1 and 2.

Next, we show that Closeness Improvement remains W[2]-hard with
respect to the number of edge additions k on split graphs by a parameterized
reduction from Max k-Set Cover. The proof makes use of the following
lemma, which provides information on the structure of a solution on split
graphs.

Lemma 5. Let (G, z, k, r) be a Closeness Improvement instance where
G = (V,E) is a split graph and V = C ∪ I such that the nodes in C induce
a clique and the nodes in I induce an independent set. Furthermore, let I =
II ∪IN , where II is the set of isolated nodes and IN is the set of non-isolated
nodes. Let u ∈ IN , u

′ ∈ C and e := {z, u}, e′ := {z, u′} /∈ E . Assume
z /∈ C; otherwise, the instance is polynomial-time solvable (Lemma 8). If a
solution S ⊆

(
V
2

)
contains e, then replacing e by e′ does not decrease cz.

20 CHAPTER 2. CLOSENESS CENTRALITY IMPROVEMENT

s1
s2

s3
s4

s5

F1

F2

F3

u1

u2

u3

u4

u5

v1

v2

v3

z

(a) A Max k-Set
Cover instance I =
(U,F , k = 2, r = 4) with
solution {F1, F3}.

(b) The constructed Closeness Improvement in-
stance I ′ = (G, z, k = 2, r = 4 5

6
). The red dashed lines

form a solution for I ′.

Figure 4: Parameterized reduction from Max k-Set Cover to Closeness
Improvement on split graphs.

Proof. Depending on whether z is adjacent to a node in C, we analyze the
closeness centrality gain of z by adding an edge e ∈ S to the graph. For each
case, we show that replacing e by e′ does not decrease cz.

Case 1 : Assume z has a neighbor in C. Then the distance between z and
each node in C is at most 2 and the distance between z and each node in IN is
at most 3. After adding the edge e to the graph, the distance between z and u
decreases from 2 to 1. Each path between z and nodes in C containing e has
length at least 2, and each path between z and nodes in IN \{u} containing e
has length at least 3. Hence, e does not decrease the distances between z
and any node except to u. Consequently, replacing {z, u} by an arbitrary
edge {z, u′}, u′ ∈ VC , {z, u′} /∈ E ∪ S does not decrease cz.

Case 2 : Assume z has no neighbor in C. After adding the edge e to the
graph, the distance between z and u is 1 and the distance between z and
each neighbor of u in C is 2. Moreover, the distance between z and each
other node in C containing e is 3 and the distance to each node in IN \ {u}
containing e is at least 3.

If we replace e by e′, then the distance between z and u′ is 1 and the
distance between z and u is 2. The distances between z and each node
in C \{u′} containing e′ is 2 and the distance between z and each other node
in IN is at most 3.

Hence, the closeness centrality of z does not decrease if e is replaced
by e′.

Theorem 3. Closeness Improvement is W[2]-hard on split graphs with
respect to the parameter number of edge additions.

2.1. HARDNESS RESULTS 21

Proof. We show that Closeness Improvement is W[2]-hard on split graphs
by a parameterized reduction from Max k-Set Cover. Let I = (U =
{s1, . . . , sn},F = {F1, . . . , Fm}, k, r) be a Max k-Set Cover instance. We
construct a Closeness Improvement instance I ′ = (G = (V,E), z, k, k +
r+(m−k)

2 + n−r
3) where G is a split graph. The construction is as follows

(Figure 4 provides an example):

First, we set V := {v1, . . . , vm} ∪ {u1, . . . , un} ∪ {z}. In the next step,
we add edges such that C := {v1, . . . , vm} induces a clique. Furthermore,
we add an edge {ui, vj} if si ∈ Fj . The constructed graph is a split graph:
The set C induces a clique and the nodes z and I := {u1, . . . , un} induce an
independent set. Obviously, the Closeness Improvement instance can be
constructed in polynomial time. Without loss of generality, we assume that
each element is contained in at least one subset of the family F . Hence, the
induced independent set of G does not contain isolated nodes. We also as-
sume that k < n, as n ≤ m and if k ≥ m then we have a trivial Yes-instance.

Let S be a solution for the constructed Closeness Improvement in-
stance. The subsets in F corresponding to the nodes of the solution S for
the Closeness Improvement instance form a solution for the Max k-Set
Cover instance. It remains to show that the reduction is correct, i.e. that I
is a Yes-instance if and only if I ′ is a Yes-instance:

⇒ If I is a Yes-instance, then there is a set F ′ ⊆ F of size k such
that |

⋃
Fj∈F ′ |= r. Set S := {vi | si ∈ F ′}. By adding k edges between z

and the nodes in S, the closeness centrality of z is as follows: The dis-
tance between z and the k nodes in S is 1. Furthermore, the distance to
each neighbor of a node in S is 2: These are the remaining m − k nodes
of the induced clique and, as the input instance is a Yes-instance, there
must also be at least r nodes of the induced clique which have neighbors
in S. The distance to the remaining nodes which have no neighbor in S is 3.
Hence, cz ≥ k + r+(m−k)

2 + n−r
3 .

⇐ We prove the reverse direction by contraposition. That is, we show
that I ′ is a No-instance if I is a No-instance. Let I be a No-instance. Then
for each F ′ ⊆ F of size at most k, there are at most r − l, l ≥ 1 covered
element.

As the constructed graph G is a split graph, we know from Lemma 5
that we can maximally increase cz by adding edges between z and nodes
in C. After adding k edges between z and nodes in C, we have the following
distances:

• For k nodes in C, the distance to z is 1.

22 CHAPTER 2. CLOSENESS CENTRALITY IMPROVEMENT

• For m− k nodes in C, the distance to z is 2.

• For r − l nodes in I, the distance to z is 2.

• For n− (r − l) nodes in I, the distance to z is 3.

Hence, the maximal value for cz in I ′ after adding k edges is k +
(r−l)+(m−k)

2 + n−(r−l)
3 for some l ≥ 1. It follows that I ′ is a No-instance.

In the next section, we classify Closeness Improvement as fixed-
parameter tractable with other graph parameters. Moreover, we show that
Closeness Improvement is polynomial-time solvable on certain graph
classes, such as cluster graphs.

2.2 Algorithmic results

The first result of this section covers the graph parameter distance to clique,
that is the number of nodes to remove such that the graph is a clique. Due
to its running time, the presented algorithm is useful for a classification
of Closeness Improvement in terms of parameterized complexity, but
rather useless in terms of practical application. However, for a sufficiently
large parameter k, we can solve Closeness Improvement in linear time:

Proposition 2. Let I = (G, z, k, r) be a Closeness Improvement in-
stance, where G has distance to clique ` < deg(z) + k. Then I can be solved
in O(n+m) time.

Proof. Let VR ⊆ V be a set of nodes of size at most ` such that G− VR is a
clique. The set VR and one node of V \ VR forms a dominating set. Hence,
by adding an edge between z and each node in VR that is not adjacent to z,
and by adding the remaining edges between z and arbitrary nodes of V \VR,
we maximally increase cz.

However, in general we can only show that Closeness Improvement
is fixed-parameter tractable with respect to the parameter distance to clique.

Theorem 4. Closeness Improvement can be solved in 2` · 22` · (m+ n)
time, where ` is the distance to clique.

Proof. Let I = (G, z, k, r) be a Closeness Improvement instance, where `
is G’s distance to clique. Without loss of generality, assume ` ≥ deg(z) + k:
Otherwise, I is solvable in polynomial time (Proposition 2).

Let VR ⊆ V be a set of size ` such that VC := V \VR is a clique. As VR can
be computed in fpt-time with respect to its size ` (Hüffner et al. [Hüf+10]),
we assume that VR is given. Moreover, we introduce a partition P of VC
such that all nodes within a subset P ∈ P have the same neighborhood. We

2.2. ALGORITHMIC RESULTS 23

say that a subset P is covered if z is adjacent to at least one node u ∈ P ;
otherwise, we say P is uncovered.

We now introduce an algorithm which guesses an optimal solution S for
Closeness Improvement in two steps in O(2` ·22` · (n+m)) time, where `
is the distance to clique. The algorithm first guesses a subset V ′R ⊆ VR of
size at most k such that {z, u} is part of S for each u ∈ V ′R. As k ≤ ` and
VR has size `, there are O(2`) combinations for V ′R.

Next, if |V ′R|< k, then the algorithm guesses a set of k−|V ′R| nodes of VC
such that edges between z and these nodes are part of S. We now show that
it is adequate to guess a family of subsets P ′ ⊆ P of size k − |V ′R| such that
{z, u} ∈ S, where u is an arbitrary node of P . The correctness of this part
of the algorithm requires two properties: First, as all nodes in a subset P
are equivalent in terms of their neighborhood, for two nodes u, v ∈ P the
closeness centrality of z increases by the same value if we add {z, u} or {z, v}
to the graph. Second, if z is adjacent to a node u ∈ P , then adding an edge
to another node v ∈ P only decreases the distance between z and v from
2 to 1; hence, cz can be increased by at least the same value by replacing
{z, v} by any other edge {z, v′} where v′ is part of an uncovered subset. As
|P|≤ 2`, there are O(22

`
) combinations for P ′.

In total, an optimal solution can be computed in 2` ·22` ·(m+n) time.

This result is interesting for classification purposes in terms of the param-
eter hierarchy. Next, we analyze the complexity of Closeness Improve-
ment on cluster graphs and the parameterized complexity of Closeness
Improvement with parameter distance to cluster graphs.

Lemma 6. Closeness Improvement is solvable in O(n) time on cluster
graphs.

Proof. Let (G, z, k, r) be a Closeness Improvement instance and let c
be the number of disjoint cliques. We refer to a cluster as covered if z is
adjacent to at least one node in that cluster. As z is adjacent to all nodes
in its own cluster, each solution may only add edges to nodes in clusters not
containing z. Initially, all clusters except the one containing z are uncovered.
For each uncovered cluster C, adding an edge between z and a node u ∈ C
yields distance 1 between z and u and distance 2 between z and all other
nodes in that cluster. Each further edge between z and any u′ ∈ C only
decreases the distance between z and u′ by 1. Hence, the closeness centrality
maximally increases by subsequently adding edges between z and nodes in
the largest uncovered cluster. A list of all connected components along with
their sizes can be computed in O(n) time.

Furthermore, we show that Closeness Improvement is polynomial-
time solvable on graph with diameter at most 2.

24 CHAPTER 2. CLOSENESS CENTRALITY IMPROVEMENT

Lemma 7. Closeness Improvement is solvable in O(1) time on graphs
with diameter 1 and solvable in O(n) time on graphs with diameter 2.

Proof. Let I = (G, z, k, r) be a Closeness Improvement instance. If the
diameter of G is a 1, then G is a clique, and the closeness centrality of z
cannot be improved as no edges can be added to the graph. If the diameter
of G is 2, then edges can be added between z and nodes which have distance
2 to z. However, adding such an edge between z and a node u with distance 2
to z does not decrease the distances between z and other nodes in the graph,
as the distance is at most 2 and each path between z and nodes u′ 6= u
containing u has length at least 2.

For the class of split graphs, we show that Closeness Improvement
can be solved in polynomial time in at least two cases:

Lemma 8. Let (G, z, k, r) be a Closeness Improvement, where G is a
split graph. If z is in the clique part of the split graph, then the instance is
linear-time solvable.

Proof. As z is already adjacent to all other nodes in the clique part, edges
can be added to the independent set part only. The distance to nodes in the
independent set is either 2 if G is connected, or ∞ for isolated nodes. By
adding an edge to a node u of the independent set, the distance between z
and u is decreased to 1 and the distances to all other nodes remains the
same. Hence, an optimal solution can be computed as follows: First, if there
are isolated nodes, then we add edges between z and these nodes in arbitrary
order. Otherwise, or if there are less than k isolated nodes, we add edges to
arbitrary nodes in the independent set.

Lemma 9. Let (G, z, k, r) be a Closeness Improvement instance, where G
is a split graph. If the number of nodes inducing an independent set in G is
less than k, then the instance is solvable in O(n) time.

Proof. One node of the clique part plus all nodes from the independent set
part form a dominating set. Hence, due to Lemma 3 the instance can be
solved in polynomial-time by adding edges to all nodes of the independent
set and at least one node of the clique.

Next, we show that Closeness Improvement is fixed-parameter trac-
table with respect to the vertex cover size of a graph. The proof makes use
of the following lemma:

Lemma 10. Let I = (G = (V,E), z, k, r) be a Closeness Improvement
instance, where G has no vertex cover V ′ ⊆ V of size deg(z) + k such that
N(z) ⊆ V ′. Let VV C ⊆ V be a vertex cover of size `, and VIS := V \ VV C
induce an independent set. We say that VN ⊆ VIS is the set of non-isolated
nodes of the induced independent set. Furthermore, let P be a partition of

2.2. ALGORITHMIC RESULTS 25

VN such that all nodes in a subset P ∈ P have the same neighbors in VV C .
Then for each P ∈ P, it is optimal to add at most one edge between z and a
node in P if z is not adjacent to a node in P . If z is adjacent to a node in
P , then we obtain an optimal solution by adding no additional edges between
z and other nodes in P .

Proof. We distinguish whether z is adjacent to a neighbor of the nodes in P
or not. Let S be an optimal solution for I.

• Assume z is adjacent to a neighbor t ∈ VV C of the nodes in P , and
there are at least two nodes u, v ∈ P such that {z, u} ∈ E ∪ S and
{z, v} ∈ S: Then the closeness centrality increases by exactly 1

2 by
adding the edge {z, v}, as it decreases the distance between z and v
from 2 (path via t) to 1. The distances to all the neighbors of v are
not reduced, as the neighborhood of v is the same as the neighborhood
of u, and {z, u} ∈ E ∪ S. Hence, the solution obtained by replacing
{z, v} by some edge {z, v′}, t′ ∈ VV C decreases cz by at least the same
value. Due to our assumption that there is no vertex cover V ′ ⊆ V of
size deg(z) + k such that N(z) ⊆ V ′, we ensure that there is such a
node t′.

• Let t be a neighbor of the nodes in P , and z is not adjacent to a
neighbor of the nodes in P . Furthermore, assume that there are at least
two nodes u, v ∈ P such that {z, u} ∈ E ∪ S and {z, v} ∈ S. Then the
distance between z and v decreases from 3 to 1 after adding the edge
{z, v}. Other distances between nodes in G and z are unaffected, as z is
already adjacent to u ∈ P . Hence, cz increases by 2

3 after adding {z, v}
to the graph. However, if we replace {z, v} by {z, t}, then the distance
between z and t decreases from 2 to 1, and the distance between z and
v decreases from 3 to 2. Hence, cz increases by 1

2 + 1
3 >

2
3 .

Hence, in each case, we can replace {z, v} by an edge {z, t}.

Based on the knowledge about the structure of an optimal solution from
Lemma 10, we now show that Closeness Improvement is fixed-parameter
tractable with respect to the parameter vertex cover size.

Theorem 5. Closeness Improvement can be solved in O(2` · (22` + k) ·
(n+m)) time, where ` is the vertex cover size.

Proof. Let I = (G = (V,E), z ∈ V, k, r) be a Closeness Improvement
instance, and let VV C ⊆ V be a vertex cover of G of size `. Let d0 be the
number of isolated nodes in G.

In this proof, we assume that G does not admit a vertex cover V ′V C ⊆ V
of size at most deg(z) + k − d0, such that N(z) ⊆ V ′V C . In particular,

26 CHAPTER 2. CLOSENESS CENTRALITY IMPROVEMENT

this means that k < ` + d0. Otherwise, we can solve I in O(1.2738` + `n)
time by computing a vertex cover of size k − d0 for G − N(z) (Lemma 4).
Furthermore, we assume that the set VV C is given. Let S be an optimal
solution for I.

We partition V into the vertex cover VV C of size `, and the sets VN
and VI . The set VN contains all nodes in V \ VV C with degree at least
1; they are the set of non-isolated nodes of the induced independent set;
the set VI contains all isolated nodes of the induced independent set, that
is VI := V \ (VV C ∪ VN). Moreover, we denote the VI union VN by VIS
Each u ∈ VN has at least one neighbor in VV C , otherwise VV C is not a
vertex cover. Furthermore, the subgraph induced by VIS is edgeless, which
means that for each u ∈ VIS : N(u) ⊆ VV C . Second, we define a partition
P of VN such that all nodes in a subset P ∈ P have the same neighbors
in VV C . As the vertex cover has size `, the size of P is at most 2`. From
Lemma 10 we know that we obtain an optimal solution if, for each P ∈ P,
there is at most one node u ∈ P such that {u, z} ∈ S. Furthermore, the
number of degree-0 nodes in VI is arbitrary; however, if S contains a certain
number `′ ≤ ` of edges between z and nodes in VI , then it does not make a
difference which nodes are chosen to be adjacent to z. Moreover, adding an
edge {z, w}, w ∈ VI increases cz by exactly 1.

We now describe an algorithm A to solve Closeness Improvement
in O(2` · (22` + k) · (n+m)) time, where ` is the vertex cover size. Let S be
an optimal solution that contains edges to nodes in VV C ∪ VI and at most
one edge to each P ∈ P. As shown in Lemma 10, such a solution exists. The
algorithm guesses S by finding a set V ′V C ⊆ VV C and a set P ′ ⊆ P, such that
S only contains edges {z, u} for each u ∈ V ′V C, an edge to a node in each P ′,
and at most k arbitrary edges between z and nodes in VI if |V ′V C ∪ P ′|< k.
We now show how A works.

First, A iterates over all subsets V ′V C ⊆ VV C of size at most k. For
each V ′V C , the algorithm iterates over all subsets P ′ ⊆ P of size less than
k−|V ′V C |. We then add edges between z and each node in V ′V C , and between
z and one node in each P ∈ P ′. If k′ := |P ′|+|V ′V C |< k, that less than k
edges have been added and we add the remaining k′ edges between z and
arbitrary nodes in VI . We do not need to differ between the nodes in VI , as
adding an edge to any of these nodes does not manipulate the distances to
any other nodes, and for each edge {z, w}, the centrality of z increases by
exactly 1. If there are less than k′ nodes in VI , then the guess for V ′V C or P ′
does not constitute S. For each such guess, we determine cz, possibly saving
the current guess if it increases cz the most, and remove the added edges
before starting the next iteration. Finally, after computing cz for each V ′V C
and P ′, we return 1 if the largest value found for cz is larger than r, and 0
otherwise.

We now analyze the running time of the algorithm. As VV C = `, there

2.2. ALGORITHMIC RESULTS 27

are O(2`) subsets V ′V C ⊆ VV C . For each such subset, there are O(22
l
) subsets

P ′ ⊆ P, as the size of P is O(2l). The remaining edges to nodes in VI are
computed in O(k) time. For each combination of V ′V C and P ′, the closeness
centrality of z is computed in O(n+m) time where appropriate. Hence, the
total running time of A is O(2` · (22` + k) · (n + m)). This result directly
implies that Closeness Improvement is fixed-parameter tractable with
respect to the size ` of a vertex cover.

Theorem 6. Closeness Improvement is solvable in O(2` ·222
`

·22l · (m+
n)) time, where ` is the vertex deletion distance of G to a cluster graph.

Proof. Let (G, z, k, r) be a Closeness Improvement instance, where VV DS
⊂ V is a cluster vertex deletion set of size ` such that GC = (VC , EC) :=
G − VV DS is a cluster graph with clusters {c1, . . . , cs} =: C. Assume that
VV DS is given. The idea is to compute the optimal solution by guessing an
optimal solution in two steps.

Before we describe the algorithm, we define a partition P of the set of
clusters C such that the following statement holds for all subsets P ∈ P
and all clusters ci, cj ∈ C: If ci, cj ∈ P , then for each ui ∈ ci there is
a node uj ∈ cj such that NV DS(ui) = NV DS(uj). We then say that ci
and cj have the same cluster signature. We now analyze the size of P:
Let ui, uj ∈ Vc such that NV DS(ui) = NV DS(uj); we say that ui and uj have
the same node signature. As VV DS has size `, there are at most 2l nodes
in VC with different node signatures. Hence, there are at most 22

` clusters
with different cluster signatures.

We next describe an algorithm which solves Closeness Improvement

in O(2` · 222
`

· 22l · (m+ n)) time.
First, we guess a subset of VV DS of size b ≤ k by trying all possibil-

ities and add edges between z and these nodes. This step involves O(2`)
branches. Second, we add the remaining k − b edges between z and nodes
in VC in the following two steps: In Step 1, we guess the signatures of the
clusters containing these nodes. As there are O(22

`
) cluster signatures, this

involves O(22
2`

) branches. In Step 2, for each cluster signature, we guess
the signatures of nodes we want to add edges to. As there are O(2`) node
signatures, this step involves O(22

`
) branches. Finally, for each guess we

need O(n+m) time to compute the closeness centrality of cz.

We now show that the algorithm is correct. For each cluster signature
we guess in Step 1, we can find the best cluster with that signature, i.e.
adding edges to nodes in that cluster maximizes the closeness centrality of z
in polynomial time: Let P ∈ P be a set of clusters with the same signature.
Then adding an edge to a node in the largest cluster in P which does not
contain nodes that z is connected to by an edge is part of an optimal solution

28 CHAPTER 2. CLOSENESS CENTRALITY IMPROVEMENT

s1s2

s3

s4

s5

F1

F3

F2 F4

u1

u2

u3

u4

u5

v1

v2

v3

v4

z

(a) A Set Cover in-
stance I = (U,F , k = 2)
with solution {F2, F4}.

(b) The constructed Directed Closeness Improve-
ment instance I ′ = (G, z, k = 2, r = 4 5

6
). The red dashed

edges imply a solution for I ′.

Figure 5: Parameterized reduction from Set Cover to Directed Close-
ness Improvement .

constructed by this algorithm: If we choose a node u in a cluster c which
contains a node adjacent to z, then the distance between z and u is reduced
from 2 to 1, and the distances to all other nodes in c remain unchanged.
However, if we choose a node u′ with the same node signature of a cluster
c′ with the same cluster signature which does not contain a node that is
adjacent to z, then the distance between z and u′ decreases from at least 2
to 1, and the distance between z and each other node in c′ is 2.

Moreover, we show the correctness of Step 2. For each cluster signature,
we construct an optimal solution by adding at most one edge to a node with
a specific node signature s. Assume there is an edge between z and a node
with a specific node signature which is part of a cluster c ∈ P . Then by
adding another edge to a node with the same signature in a cluster c′ ∈ P ,
we only decrease the distances between z and the nodes in c′, but not to the
rest of the graph. Hence, by adding an edge to any other node in c′ which
is not adjacent to z, we increase cz by at least the same value.

2.3 Closeness improvement on directed graphs

In this section, we introduce the problem of improving the closeness centrality
on directed, unweighted graphs. We show that the problem remains W[2]-
hard with respect to the number k of added arcs, even on directed acyclic
graphs and even if the diameter of the graph is 3. Before we present the
hardness proofs, we introduce formal definition of the decision problem:

2.3. CLOSENESS IMPROVEMENT ON DIRECTED GRAPHS 29

Directed Closeness Improvement
Input: A directed, unweighted graph G = (V,A), a node z ∈ V , an

integer k and a rational number r.
Question: Is there an arc set S of size at most k such that cz ≥ r in G′ =

(V,E ∪ S)?

Analogously to the undirected variant, we show that we can maximize the
closeness centrality of a node z in a directed graph by adding arcs adjacent
to z:

Lemma 11. Let I = (G = (V,E), z, k, r) be a non-trivial Directed Close-
ness Improvement instance, i.e. deg(z)+k ≤ n−1. If I is a Yes-instance,
then there is a solution S for I where for each arc a ∈ S, the source node
is z.

Proof. The proof is analogous to the one of Lemma 2: If an optimal solu-
tion S contains an arc a := (u, v), u, v 6= z, then any shortest path from z to
some node w containing the arc a becomes even shorter if (u, v) is replaced
by (z, v). If (z, v) already exists, then no shortest path from z contains a;
hence, it can be replaces by an arbitrary arc with source z. Furthermore,
an arc a′ where z is the endpoint does not improve the closeness centrality
of z at all, as any path from z containing a′ contains a loop and thus is no
shortest path.

Lemma 11 directly implies that Directed Closeness Improvement
is in XP with respect to the number of arc additions:

Lemma 12. Directed Closeness Improvement can be solved in O(nk ·
(n+m)) time, where k is the number of arc additions and thus is in XP with
respect to the parameter number of arc additions.

Proof. As shown in Lemma 11, an optimal solution for a Directed Close-
ness Improvement instance I = (G, z, k, r) contains only arcs where the
source is z. Hence, a brute-force approach can be used which iterates over all
subsets of V ′ ⊆ V of size at most k such that (z, v) /∈ E for all v ∈ V ′. For
each V ′, the closeness centrality of z after adding arcs between z and each
node in V ′ is computed and the subset which increases cz at most forms the
solution. The total running time of this algorithm is O(nk · (n+m)).

Theorem 7. Directed Closeness Improvement is W[2]-hard with re-
spect to the number of edge additions k.

Proof. The proof uses a parameterized reduction from Set Cover with the
parameter number of subsets k, which is known to be W[2]-hard (Downey
and Fellows [DF12]). Let I = (F = {F1, . . . , Fm}, U = {s1, . . . , sn}, k)
be a Set Cover instance. We reduce I to a Closeness Improvement
instance I ′ = (G = (V,A), z, k, k + n

2), where G is a directed, unweighted

30 CHAPTER 2. CLOSENESS CENTRALITY IMPROVEMENT

graph constructed as follows: For each si ∈ U and each Fj ∈ F , we add
a node vi or uj to the graph, respectively. Furthermore, if si ∈ Fj for
any si ∈ U,Fj ∈ F , then we add an arc (vj , ui). Finally, we add a node z to
the constructed graph. We provide an example in Figure 5.

Before showing the correctness of the reduction, we state and prove the
following observation: The closeness centrality of z can be maximally in-
creased by adding arcs from z to vj .

First of all, the closeness centrality of z can be maximally increased if
the source of each added arc is z. Otherwise, if z is the target of an arc, then
we either introduced a loop, or the source of the arc remains unreachable
from z. If z is neither the source nor the target of the arc, then all intro-
duced shortest paths containing this arc become even shorter if we replace
the source of the arc by z. Last, an arc (z, ui) can be replaced by (z, vj),
where (vj , ui) ∈ E. By adding the arc (z, ui), the distance from z to ui is
decreased to 1. An arc (z, vj) decreases the distance from z to vj to 1 and
the distance of at least one more node ui to 2. Hence, by adding arcs from z
to vj , we obtain a larger closeness centrality of z compared to adding edges
from z to ui.

We show that the reduction is correct, that is, I is a Yes-instance if and
only if I ′ is a Yes-instance.

⇒: If I is a Yes-instance, then there is an F ′ ⊆ F of size k such
that

⋃
Fj∈F ′ = U . By adding k arcs (z, vj), Fj ∈ F ′, there are k nodes

with distance 1 from z, and each node in {u1, . . . , un} has distance 2 from z.
Hence, cz can be increased to k + n

2 and I ′ is a Yes-instance.

⇐: If I is not a Yes-instance, then there is no such set F ′ ⊆ F of size k
such that ∪Fj∈F ′ = U . After adding k arcs from z to nodes in {v1, . . . , vm},
there is at least one node ui such that there is no path from z to ui. Summing
up, cz can be increased to at most k+ n′

2 for n′ < n and I ′ is a No-instance.

Corollary 5. Directed Closeness Improvement is W[2]-hard on di-
rected acyclic graphs.

Proof. Theorem 7 directly implies W[2]-hardness on directed acyclic graphs,
as the constructed graphs in the reduction are acyclic.

Hence, there is no hope for fixed-parameter algorithm for Directed
Closeness Improvement with respect to the number of arc additions.
Although we do not know the relationship of the hardness between Close-
ness Improvement and Directed Closeness Improvement, we pro-
pose that the directed variant is even harder than the undirected one: An
optimal solution may contain arcs where the source is z or the target is z,

2.3. CLOSENESS IMPROVEMENT ON DIRECTED GRAPHS 31

while for the undirected variant there is no such distinction. In the next the-
orem, we slightly modify the reduction in the proof of Theorem 7 in order
to show that Directed Closeness Improvement remains W[2]-hard on
directed graphs with diameter 4.

Theorem 8. Directed Closeness Improvement remains W[2]-hard on
directed graphs, even with diameter 3.

Proof. Let I = (F = {F1, . . . , Fm}, U = {s1, . . . , sn}, k) be a Set Cover
instance. We construct a Directed Closeness Improvement instance
I ′ = (G = (V,E), z, k, r) as follows. First we construct a directed graph as
described in the reduction in the proof of Theorem 7. Then we add m nodes
wi and 2m arcs (z, wi), (wi, vi) for each 1 ≤ i ≤ m. Additionally, for each
ui, vi and wi ∈ V , we add the arcs (ui, z), (vi, z) and (wi, z) to G. Last, we
set r = k + 2n− k

2 .
The constructed graph is a directed graph with diameter 3: From z, the

length of shortest paths to the other nodes is at most 3. The distance from
each node wi, vi and ui to any node uj is at most 4, and the distance from
these nodes to any node vj is at most 3. Hence, G is a strongly connected
directed graph with diameter 4.

Analogously to the reduction in Theorem 7, there is an optimal solution
for I ′ which only contains arcs where z is the source and some of the nodes
vi are the target - the proof for this statement is the same as the one in the
referred theorem.

It remains to show that the reduction is correct, that is I ′ is a Yes-
instance if and only if I is a Yes-instance:

⇒: If I is a Yes-instance, then there is an F ′ ⊆ F of size k such
that

⋃
Fj∈F ′ = U . By adding k arcs (z, vj), Fj ∈ F ′, there are k nodes vi

with distance 1 from z, and each node in {u1, . . . , un} has distance 2 from z.
Moreover, the other n − k nodes vi have distance 2 from z, and each node
wi has distance 1 from z. Hence, cz can be increased to r = k+n+ n+(n−k)

2
and I ′ is a Yes-instance.

⇐: If I is not a Yes-instance, then there is no such set F ′ ⊆ F of size k
such that ∪Fj∈F ′ = U . After adding k arcs from z to nodes in {v1, . . . , vm},
there is at least one node ui such that there is no path from z to ui. Hence,
there are n nodes wi and k nodes vi with distance 1 from z and n− k nodes
ui with distance 2 from z. Furthermore, there are n′ < n nodes ui with
distance 2 from z, and there is at least one node ui with distance 3 from z.
Summing up, cz can be increased to at most k+n+ n′+(n−k)

2 + 1
3 for n′ < n

and I ′ is a No-instance.

It is unknown whether Directed Closeness Centrality is W[2]-
hard on directed graphs with diameter 3. However, analogously to the prob-

32 CHAPTER 2. CLOSENESS CENTRALITY IMPROVEMENT

lem variant with undirected input graphs, in Lemma 13 we show that the
problem is polynomial-time solvable on graphs with diameter at most 2.

Lemma 13. Directed Closeness Improvement is solvable in O(1) time
on directed graphs with diameter 2, and solvable in O(n) time on directed
graphs with diameter 2.

Proof. If the diameter of the graph is 1, then it is a clique and the distance
from z to any node is 1 and thus maximal. If the diameter of the graph
is 2, then the distance from z to any node is at most 2. It does not make
a difference in terms of centrality improvement to which of the nodes with
distance 2 from z we add an arc. Assume an arc (z, u) is added, for an
arbitrary node u with distance 2 from z. Each path from z to a node u′, u′ 6=
u which contains u has length at least 2; hence, the arc (z, u) introduces no
shortest paths except the one from z to u.

2.4 Solution space reduction rules

This section introduces some solution space reduction rules for Closeness
Improvement. Solution space reduction rules are rules that allow us to
exclude certain parts of the solution space from an optimal solution. For a
Closeness Improvement instance (G = (V,E), z, k, r), the solution space
is the set of edges E′ such that for each u ∈ V , {z, u} ∈ E′ if and only if
{z, u} /∈ E.

In the following, let I = (G = (V,E), z, k, r) be a Closeness Improve-
ment instance. Furthermore, assume that there is no dominating set in G
of size at most k.

Rule 1. Let u ∈ V, u 6= z be a node such that deg(u) = 1 and N(u) = {v}.
Then there is an optimal solution for I which does not contain (z, u).

Proof. Assume that there is an optimal solution S for I such that u ∈ S.
Then after adding {z, u} to G, the distance between z and u is 1 and the
distance between z and v is 2. Moreover, the length of shortest paths between
z and the neighbors of v which contain u is 3. If we replace {z, u} by {z, v},
then the distance between z and v is 1 and the distance between z and u is
2; the shortest paths between z and the neighbors of v which contain u is 2.
Hence, if an optimal solution contains {z, u}, then we can replace this edge
by {z, v} without decreasing the closeness centrality of z.

Rule 2. Let V ′ = {u1, u2, . . . , u`} ⊆ V such that N [u1] = N [u2] = . . . N [u`].
Then an optimal solution S contains at most one edge between z and a node
in V ′ and all but one node of V ′ can be excluded from the search space.

Proof. If {z, ui} ∈ S for an ui ∈ V ′, then the distance between z and ui is 1
and the distance between z and each neighbor of ui, including all other nodes

2.4. SOLUTION SPACE REDUCTION RULES 33

in V ′, is at most 2. By adding another edge {z, uj} for an uj ∈ V ′, only the
distance between z and uj is decreased from 2 to 1, as the neighborhoods of
ui and uj are the same. Hence, replacing {z, uj} by any other edge where
an endpoint is z does not decrease the closeness centrality of z.

Last, we introduce a search space reduction rule that involves the open
neighborhoods of the nodes in the graph.

Rule 3. Let V ′ = {u1, u2, . . . , u`} ⊆ V such that N(u1) = N(u2) =
. . . N(u`) and z is not connected to any node in V ′ by an edge. Then all
except k nodes of V ′ can be excluded from the search space.

Proof. As the open neighborhood for each node in V ′ is the same, none of
the nodes in V ′ are pairwise adjacent. Moreover, as none of the nodes in V ′

are adjacent to z, the distance between z and any node in V ′ is the same. If
S contains an edge {z, ui} for ui ∈ V ′, then for any node uj ∈ V ′, uj 6= ui,
only the distance between z and uj is decreased from 3 to 1 if S also contains
{z, uj}. There is no difference in terms of closeness centrality improvement,
which of the nodes in V ′ are contained in S. As we may add at most k edges
to G, we can exclude any additional nodes in V ′ from the search space.

Unfortunately, we cannot transform these rules into data reduction rules,
which is desirable in order to decrease the memory consumption by shrinking
the input instance. If we are able exclude a part of the input from an optimal
solution, such as degree-1 nodes (Rule 1), we cannot reduce the size of the
input instance by removing degree-1 nodes from the input graph, as the sum
of the multiplicative inverses of the distances of these nodes may be required
to increase cz to the specified target value r.

34 CHAPTER 2. CLOSENESS CENTRALITY IMPROVEMENT

Chapter 3

Betweenness Centrality
Improvement

This chapter covers the problem of increasing the betweenness centrality of
a specific node in a graph by inserting a certain number of edges into the
graph. We show that, similar to Closeness Improvement, Betweenness
Improvement is W[2]-hard with respect to the parameter number of edge
additions and in FPT with respect to the parameter distance to clique. Fur-
thermore, we introduce the problem of improving the betweenness centrality
on directed, unweighted graphs and also show W[2]-hardness with respect to
the parameter number of arc additions. Before we introduce the hardness
proofs, we provide the Lemma 14 which is used to show the correctness of
the parameterized reductions in this chapter:

Lemma 14. Let I = (G, z, k, r) be a Betweenness Improvement in-
stance. If I is a Yes-instance, then there is an optimal solution that only
contains edges where one endpoint is z.

Proof. Let S be a solution for I, and let e := {ui, uj} ∈ S. Furthermore,
assume that e introduces at least one shortest path containing z (if it does
not, then e can be replaced by any edge containing z). Without loss of
generality, assume ui precedes uj on each of these paths. Then by replacing e
by e′ := {z, uj} in S, the distance between z and uj decreases to 1 and the
shortest paths previously containing e now contain e′. Hence, bz does not
decrease.

Hence, if we compute a solution for some Betweenness Improvement
instance, we need to find a subset of the graph’s nodes of size k such that
adding an edge between z and these nodes maximally increases the between-
ness centrality of z. This directly implies the following corollary:

Corollary 6. Betweenness Improvement is solvable in O(nk) time where
k is the number of edge additions and thus is in XP with respect to the pa-
rameter number of edge additions.

35

36 CHAPTER 3. BETWEENNESS CENTRALITY IMPROVEMENT

u1
u2

u3 u4

u5

u6u6

(a) A Dominating Set instance
(I = (G, k = 2)). The red colored
nodes imply a solution for I.

u1 u2

u3 u4

u5

u6

z1

z21

z22

z2α

z3z4

(b) The constructed Betweenness Improve-
ment instance I ′ = (G, z1, k, r). The red dashed
edges imply a solution for I ′.

Figure 6: Parameterized reduction from Dominating Set to
Betweenness Improvement.

Proof. As shown in Lemma 14, an optimal solution for a Betweenness
Improvement instance I = (G, z, k, r) contains only edges where one end-
point is z. Hence, a brute-force approach can be used which iterates over
all subsets of V ′ ⊆ V \ {z} of size at most k such that (z, v) /∈ E for all
v ∈ V ′. For each V ′, the betweenness centrality of z after adding edges
between z and each node in V ′ is computed and the subset which increases
bz at most forms the solution. The total running time of this algorithm is
O(nk · (n+m)).

Moreover, in order to determine a proper running time for the algorithms
in Section3.2, we note that the betweenness centrality of a node in an undi-
rected graph can be computed in O(nm) time (Brandes [Bra01]).

3.1 Hardness results

We show that Betweenness Improvement is W[2]-hard with respect to
the parameter number of edge additions by a parameterized reduction from
Dominating Set.

Theorem 9. Betweenness Improvement is W[2]-hard with respect to
the parameter number of edge additions k.

Proof. We give a parameterized reduction from Dominating Set. Let I =
(G = (U,E), k) be a Dominating Set instance, where U = {u1, . . . , un} .
We construct a Betweenness Improvement instance

I ′ = (G′ = (V,E′), z1, k, r = αk +
2

3
α(n− k) +

1

2
(k + α+

(
α

2

)
)),

3.1. HARDNESS RESULTS 37

where α > 3k(k−1)
2 . The graph G′ is constructed as follows:

For each ui ∈ U , we add a node u′i to G
′. Also, for each edge {ui, uj} ∈ E,

we add an edge {u′i, u′j} to E′. We set U ′ := {u′1, . . . , u′n}. Next, we add
the nodes {z1, z3, z4} and Z2 = {z21 , . . . , z2α} to G′. For each z2i ∈ Z2,
we add two edges {z1, z2i} and {z2i , z3} to G′. Furthermore, we add the
edges {z1, z3}, {z1, z4} and {z3, z4}. Finally, for each node u′i ∈ U ′, we add
an edge {z4, u′i}. Figure 6 illustrates the construction.

As z1 is adjacent to all nodes except the ones in U ′, a solution S for I ′

contains only edges where one endpoint is z1 and each other one is in U ′

(Lemma 14). We now show that I ′ is a Yes-instance if and only if I is
a Yes-instance: First, if I is a No-instance, we show that there is an up-
per bound ru < r such that bz1 can be increased to at most ru by adding
at most k edges to G′. Second, if I is a Yes-instance, we provide a lower
bound r` ≥ r such that bz1 can be increased to at least r` by adding at
most k edges to G′. Both r` and ru depend on α, which determines the size
of G′. Finally, we determine a minimum value for α such that r` and ru are
strict bounds.

⇒ The input graph contains a dominating set UDS ⊆ U of size k. We say
that U ′DS is the set of nodes in the constructed graph which correspond to the
nodes in UDS . Then, by adding k edges between z1 and the nodes in U ′DS ,
for the following pairs of nodes there are shortest paths containing z1:

• For each pair (u′ ∈ U ′DS , z ∈ Z2), there is one shortest path of length 2,
containing z1. The number of such pairs is αk.

• For each pair (u′ ∈ U ′ \ U ′DS , z ∈ Z2), two out of three shortest paths
of length 3 between u′ and the nodes in z contain z1: One contains z1
and a member of the dominating set, one contains z1 and z4, and one
contains z3 and z4. The number of such pairs is α(n− k).

• For each pair (u′ ∈ U ′DS , z3), there are two shortest paths of length 2
between u′ and z3: One contains z1, the other one contains z4. The
number of such pairs is k.

• For each pair (z2i , z2j ∈ Z2 | i 6= j), there are two shortest paths of
length 2 between z2i and z2j : One contains z1, the other one con-
tains z3. The number of such pairs is

(
α
2

)
.

• For each pair (z2i ∈ Z2, z4), there are two shortest paths of length 2:
One contains z3 and the other one contains z1. The number of such
pairs is α

38 CHAPTER 3. BETWEENNESS CENTRALITY IMPROVEMENT

In total,

bz1 ≥ αk +
2α(n− k)

3
+
k

2
+

(
α
2

)
2

+
α

2
,

which can be simplified to

bz1 ≥ αk +
2α(n− k)

3
+
k + α+

(
α
2

)
2

=: r`.

⇐ We prove the reverse direction by contraposition. That is, we show
that I ′ is a No-instance if I is a No-instance. If the input instance does
not admit a dominating set of size at most k, then there is at least one node
which cannot be dominated. We analyze the number of shortest paths in
the constructed Betweenness Improvement instance after adding k edges
between z1 and nodes in U ′. We set U ′′ ⊆ U ′ := {u′i ∈ U ′ | {z1, u′i} ∈ S}.
Furthermore, let ` be the number of nodes that are undominated in G′ after
adding the edges in S, i.e. which are not adjacent to z1 and which do not
have a neighbor adjacent to z1. As G does not admit a dominating set of
size k, it holds that ` ≥ 1.

• For each pair (u′ ∈ U ′′, z ∈ Z2), there is one shortest path of length 2,
containing z1. The number of such pairs is αk.

• For each pair (u′ ∈ U ′ \ U ′′, z ∈ Z2) where u′ is a neighbor of one of
the nodes in U ′′, two out of three shortest paths of length 3 between u′

and the nodes in z contain z1: One contains z1 and a member of the
dominating set, one contains z1 and z4, and one contains z3 and z4.
The number of such pairs is α(n− k − `).

• For each pair (u′i, u
′
j ∈ U ′), there is a path of length 2 containing z4. If

the nodes in U ′ are not adjacent, then this is the shortest path. Addi-
tionally, there may be another shortest path containing z1 of length 2,
introduced by the edges in S. Hence, for each of up to

(
k
2

)
pairs of

nodes, one out of two shortest path contain z1.

• For each pair (u′ ∈ U ′ \ U ′′, z ∈ Z2) where u′ is not a neighbor of one
of the nodes in U ′′, there are two shortest paths betweens u′ and z of
length 3: One contains z1 and z4, the other one contains z3 and z4.
The number of such pairs is α`.

• For each pair (u′ ∈ U ′′, z3), there are two shortest paths of length 2
between u′ and z3: One contains z1, the other one contains z4. The
number of such pairs is k.

• For each pair (z2i , z2j ∈ Z2 | i 6= j), there are two shortest paths of
length 2 between z2i and z2j : One contains z1, the other one con-
tains z3. The number of such pairs is

(
α
2

)
.

3.1. HARDNESS RESULTS 39

• For each pair (z2i ∈ Z2, z4), there are two shortest paths of length 2:
One contains z3 and the other one contains z1. The number of such
pairs is α.

In total,

bz1 ≤ αk +
2α(n− k − `)

3
+

(
k
2

)
2

+
α`

2
+
k

2
+

(
α
2

)
2

+
α

2
,

which can be simplified to

bz1 ≤ αk +
2α(n− k − `)

3
+

(
k
2

)
+ α(`+ 1) + k +

(
α
2

)
2

=: ru.

In the last step, we need to determine a proper value for α such that ru <
r`. Hence, the inequality that needs to be satisfied is

αk +
2α(n− k − `)

3
+

(
k
2

)
+ α(`+ 1) + k +

(
α
2

)
2

< αk +
2α(n− k)

3
+
k + α+

(
α
2

)
2

for each n, k, ` ∈ N, k ≤ n, 1 ≤ ` ≤ n. This equation can be transformed to

α`

3
>

(
k

2

)
.

By setting ` = 1 and transforming the binomial coefficient, we get

α >
3k(k − 1)

2
.

Hence, by setting α to a value strictly larger than 3k(k−1)
2 , the reduction

is correct. Furthermore, the reduction is computable in fpt time: As the size
of I ′ is polynomial to the size of I, G′ can be constructed even in polynomial
time.

As social networks are usually power-law distributed, they tend to have
a rather low h-index. However, as we see in Corollary 7, Betweenness
Improvement remains NP-hard even on graphs with h-index 4.

Corollary 7. Betweenness Improvement is NP-hard even on graphs
with h-index 4.

Proof. Let I = (G, k) be a Dominating Set instance, where G is a graph
with maximum degree three. Let G′ be the graph constructed by the re-
duction used in the proof of Theorem 9. Then each node except z1, z3,
and z4 has degree at most four. Hence, the h-index of G′ is at most four.
As Dominating Set is NP-hard even on planar graphs with degree three
[GJ90], Betweenness Improvement remains NP-hard on graphs with h-
index four.

40 CHAPTER 3. BETWEENNESS CENTRALITY IMPROVEMENT

3.2 Algorithmic results

Analogously to Section2.2, we derive some positive results for Betweenness
Improvement. We show that the problem is fixed-parameter tractable with
respect to the combined parameter vertex cover size and number of edge
additions, and with respect to the combined parameter distance to cluster
and number of edge additions.

Theorem 10. Betweenness Improvement can be solved in O(2` · 2`k ·
(nm)) time, where ` is the vertex cover size and k is the number of edge
additions.

Proof. Let (G = (V,E), z ∈ V, k, r) be a Betweenness Improvement
instance. Furthermore, let VV C ⊆ V be a minimal vertex cover of size at
most ` and VIS := V \ VV C be its complement of size n − `. The proof is
very similar to the proof of Theorem 5.

First, we observe that each u ∈ VIS has at least one neighbor in VV C ,
otherwise VV C is not a vertex cover. Furthermore, the subgraph induced
by VIS is edgeless, which means that for each u ∈ VIS : N(u) ⊆ VV C .
Hence, there is a partitioning P of VIS such that all nodes in a subset p ∈ P
have the same neighbors in VV C . As the vertex cover has size `, the size of P
is at most 2`.

Second, we observe that all nodes within a subset p ∈ P are equivalent
in terms of their neighborhood. Hence, if an optimal solution contains edges
from z to nodes in p, then it does not play a role which nodes in p are chosen.

We now describe an algorithm to solve Betweenness Improvement in
O(2` ·2`k · (n+m)) time, where ` is the vertex cover size. The algorithm first
iterates over all subsets V ′V C ⊆ VV C with size at most to k. As VV C = `,
there are O(2`) such subsets. For a subset V ′V C , we add an edge between z
and each node in V ′V C . If the size of V ′V C is strictly less than k, then we
finally add the remaining k − |V ′V C | edges between z and nodes in VIS . As
the size of P is 2` there are O(2`

k
) ways to chose k partitions, where we

cannot preclude that a partition is chosen multiple times. The total number
of combinations is O(2` · 2`k), and each combination takes another O(nm)
time to compute bz. Hence, Betweenness Improvement can be solved
in O(2` · 2`k · (nm)) time. It follows that Betweenness Improvement
is fixed-parameter tractable with respect to the combined parameter vertex
cover size and number of edge additions.

3.3. DIRECTED BETWEENNESS IMPROVEMENT 41

3.3 Directed Betweenness Improvement

This subsection covers results for the problem of improving the between-
ness centrality of directed, unweighted graphs. First, we define betweenness
centrality for directed, unweighted graphs, as the definition due to Freeman
[Fre77] only measures the centrality over all unordered subsets of nodes of
size two. A very natural definition, which is equivalent to the one used in
further literature (e.g. by White and Borgatti [WB94]) is to measure the
ratio of shortest paths containing a certain node z for both orders of any
pair of nodes:

bz =
∑
s∈V

∑
t∈V

t6=s;s,t 6=z
σst 6=0

σstz
σst

Next, we introduce the problem of improving the betweenness centrality
of a directed, unweighted graph:

Directed Betweenness Improvement
Input: A directed, unweighted graph G = (V,A), a node z ∈ V , an

integer k and a rational number r.
Question: Is there an arc set S of size at most k such that bz ≥ r in G′ =

(V,A ∪ S)?

Analogously to the undirected problem variant, we show that we can
maximally improve the betweenness centrality of a node z by adding arc
where one of the endpoints is z.

Lemma 15. If a Directed Betweenness Improvement instance I =
(G = (V,A), z, k, r) is a Yes-instance, then there is a solution S that only
contains arcs where either the source or the target is z.

Proof. Assume S contains an arc (u1, u2) such that u1 6= z and u2 6= z.
Let v1, v2 ∈ V such that (u1, u2) introduced a shortest path from v1 to v2
containing z and the arc (u1, u2). It is clear that u2 must have been connected
to z by a path before adding the arc (u1, u2). Furthermore, it is clear σv1v2z ≤
1, as there max be other paths from v1 to v2 not containing z.

However, the shortest paths introduced by (u1, u2) necessarily contain u1
and u2; hence, these paths can be contracted by replacing (u1, u2) by (u1, z).
By this, we do not decrease bz: Let ` be the length of a shortest path
from v1 to v2 which contains (u1, u2) and z. Then, after replacing (u1, u2)
by (u1, z), there is exactly one shortest path of length `′ < ` from v1 to v2.
Hence, σstz = 1.

However, note that a solution S for a Yes-instance I = (G, z, k, r) may
also contain arcs where z is the source. For instance, (G = {z, v1, v2}, A =

42 CHAPTER 3. BETWEENNESS CENTRALITY IMPROVEMENT

s1s2

s3

F2 F1

u1

u2

u3

v1

v2

z

c1
c2
c3
c4
c5
c6
c7
c8

(a) A Set Cover in-
stance I = (U,F , k = 2)
with solution {F1, F2}.

(b) The constructed Directed Betweenness Improve-
ment instance I ′ = (G, z, k = 2, r = 4 5

6
). The red dashed

edges imply a solution for I ′.

Figure 7: Parameterized reduction from Set Cover to Directed Be-
tweenness Improvement.

{(v1, z)}, z, 1, 1) is a Yes-instance with solution S = {(z, v2)}.

Corollary 8. Directed Betweenness Improvement is solvable in
O((2n)k) time where k is the number of edge additions, and thus is in XP
with respect to the parameter number of edge additions.

Proof. As shown in Lemma 15, an optimal solution for a Directed Be-
tweenness Improvement instance I = (G, z, k, r) contains k arcs where
one endpoint is z. For each node u¬z, the arc (z, u) and (u, z) can be part
of the optimal solution. Hence, we need to chose k arcs from the set of at
most 2n possible arcs. For each such subset of size at most k, we add the
corresponding arcs to the graph and measure the resulting betweenness cen-
trality of z; the subset with the maximum increase is the solution. The total
running time of this algorithm is O(nk · nm).

We now show that Directed Betweenness Improvement is also
W[2]-hard with respect to the parameter number k of arc additions.

Theorem 11. Directed Betweenness Improvement is W[2]-hard with
respect to the parameter number of arc additions k.

Proof. We prove the hardness using a parameterized reduction from Set
Cover. Let I = (F = {F1, . . . , Fm}, U = {s1, . . . , sn}) be a Set Cover
instance. We construct a Directed Betweenness Improvement in-
stance I ′ = (G = (V,A), z, k, k(1+n)+n)), whereG is a directed, unweighted
graph. The construction is as follows:

• For each si ∈ U , add a node ui. Set VU := {u1, . . . , un}.

• For each Fj ∈ F , add a node vj . Set VV := {v1, . . . , vm}.

• Add the node z.

3.3. DIRECTED BETWEENNESS IMPROVEMENT 43

• Add the nodes c1, . . . , cm(m+n−1); the set of these nodes is denoted
as VC .

• For each c ∈ VC , add the arcs (c, z).

• For each ui ∈ VU and each vj ∈ VV , add an arc (vj , ui) if si ∈ FJ .

In Figure 7, the reduction is illustrated.

Let I be a Yes-instance and S be an arc set of size at most k, such
that bz ≥ r in G′ = (V,A ∪ S). We now show that for each arc a ∈ S, the
source is z and the target is one of the nodes in VV . First, from Lemma 15
we know that there is a solution S′ of the same size where z is an endpoint
of each arc a ∈ S′. Hence, in the following we assume that for each a ∈ S,
one of its endpoints is z.

Moreover, if a solution S contains an arc (z, ui), ui ∈ VU , we can replace
it by an arc (z, vi), vi ∈ VV such that si ∈ Fj without decreasing bz: The
arc (z, ui) introduces paths from the nodes z and all its predecessors to ui. By
replacing (z, ui) by (z, vj), the paths remain, but additionally paths from z
and its predecessors to vj are added. Hence, bz does not decrease.

Furthermore, by adding the node set VC of size m(m + n − 1), we en-
sure that by adding arcs where the source is z, we obtain more (shortest)
paths containing z than by adding arcs where the endpoint is z: Each arc
from z to a node in VV introduces at least m(m + n − 1) shortest paths
containing z. However, adding an arc from a node in VU to z introduces
at most m((m − 1) + (n − 1)) paths containing z: Each node in VU has at
most m predecessors in VV . Furthermore, z may have at most m successors
in VV and at most (n − 1) successors in VU . Hence, by adding an arc from
a node in VU to z, cz is increased by at most m((m− 1) + (n− 1)).

We now show that the reduction is correct, i.e. that I is a Yes-instance
if and only if I ′ is a Yes-instance.

⇒: If I is a Yes-instance, then there is a F ′ ⊆ F of size k such
that ∪Fj∈F ′ = U . By adding arcs (z, vj) for each Fj ∈ F ′, the following
shortest paths contain z:

• For each vj such that Fj ∈ F ′ and each c ∈ VC , there is a shortest path
from c to vj containing z. As |F ′|= k, the number of such shortest
paths is k(m(m+ n− 1)).

• For each ui and each c ∈ VC , there is a shortest path from c to ui
containing z. In total, the number of such paths is n(m(m+ n− 1)).

44 CHAPTER 3. BETWEENNESS CENTRALITY IMPROVEMENT

Hence, bz can be increased to (k + n)(m(m + n − 1)) and I ′ is a Yes-
instance.

⇐: If I is not a Yes-instance, then there is no such set F ′ ⊆ F of
size k such that

∑
F ′ = U . Let S be a set of size k which contains arcs from

nodes vj to z. The graph G′ = (V,A ∪ S) contains the following shortest
paths, each containing z:

• For each v ∈ VV which is the endpoint in an arc in S, and each c ∈ VC ,
there is a shortest path from c to v containing z. As the target of all
arcs in S is a node in VV and |S|= k, the number of such shortest
paths is k(m(m+ n− 1)).

• As I is a No-instance, there is at least one node u in G′ such that there
is no path from the nodes in VC to u. Hence, the number of paths from
nodes in VC to nodes in VU is at most n− 1(m(m+ n− 1)).

Hence, bz can be increased to at most (k+ n− 1)(m(m+ n− 1)) and I ′ is a
Yes-instance.

Hence, the problem of improving the betweenness centrality is W[2]-hard
on both directed and undirected graphs. A last result is that Directed
Betweenness Improvement even remains W[2]-hard on directed, acyclic
graphs.

Corollary 9. Directed Betweenness Improvement is W[2]-hard even
on directed acyclic graphs.

Proof. The graphs constructed in the reduction in the proof of Theorem 11
are directed acyclic graphs.

3.4 Relationship to Independent Set

In Chapter 2, we show that there is a relationship between Dominating
Set and Closeness Improvement: If our task is to maximally increase
the closeness centrality of a node z by adding at most k edges to the graph,
then by adding edges between z and all nodes of a dominating set we obtain
an optimal solution, if there is a dominating set of size at most k. In this sec-
tion, we want to show similarities between Betweenness Improvement
and Independent Set in order to have a better understanding for the struc-
ture of Betweenness Improvement. Furthermore, we managed to exploit
the similarities between Dominating Set and Closeness Improvement:
If the number k of edge additions is larger than the size of a dominating set of
the input graph, then adding edges to the nodes of the dominating set forms
an optimal solution. Hence, we want to show whether there is a similar re-
lationship between Independent Set and Betweenness Improvement.

3.4. RELATIONSHIP TO INDEPENDENT SET 45

However, we show that for a Betweenness Improvement instance I =
(G = (V,E), z, k, r), adding edges from z to nodes u and v where {u, v} ∈ E
can be necessary to maximize the betweenness centrality of z.

Let I = (G = (V,E), z, k, r) be a Betweenness Improvement in-
stance, where VIS ⊆ V is an independent set of G of size at most k. At first
sight, it seems like adding edges between z and nodes in VIS yields a high
betweenness centrality of z: As none of the nodes in VIS are adjacent, the
distance between each pair of these nodes after adding the edges is 2, and
for each pair of nodes in VIS there is a shortest path containing z. If VIS is a
Distance-3 Independent Set, then by adding edges between z and nodes
in VIS we achieve a betweenness centrality for z of at least k(k−1)

2 , as for all
shortest paths between nodes in VIS there is exactly one shortest path, each
containing z. Moreover, we can even improve this lower bound if we find a
Distance-7 Independent Set of size k: Then after adding edges between
z and nodes in VIS , all shortest path between the nodes in VIS have length
2 and contain z. Additionally, all shortest paths between neighbors of nodes
in VIS have length 4 and contain z, as their distance before adding the edges
was at least five (otherwise, VIS was no Distance-7 Independent Set).

u1
u2u3

u4u5

u6u7

z

v1 v2 v` w1w2 w`

Figure 8: Betweenness Improvement instance I = (G, z, k = 5, r). The
red colored nodes form an independent set of size five. The red dashed
edges illustrate a solution where the endpoints u2, u4, u5, u6, u7 do not form
an independent set, but which yields a larger improvement of bz than the
solution obtained by adding edges between z and the red colored nodes.

Unfortunately, for some instances it may be better in terms of between-
ness centrality improvement to add edges between z and nodes V ′ ⊆ V which
are not an independent set. We provide an example in Figure 8: By adding
edges between z and the red colored nodes forming an independent set of size
five, we have bz = 5+2`: For each pair of the red colored nodes, there are two
shortest paths, one of which contains z. Moreover, for each of the ` nodes vi,
there are two shortest paths between vi and u2, u3, u4 and u5, one of which
contains z. However, we obtain bz = 9/2 + 3` by adding the five red dashed

46 CHAPTER 3. BETWEENNESS CENTRALITY IMPROVEMENT

edges to the graph: Between each pair of the nodes in {u2, u4, u5, u6, u7}
except {u6, u7}, there are two shortest paths, one of which contains z; these
paths increase bz by 9

2 . Moreover, for each node v1, . . . , v`, w1, . . . , w`, there
are two shortest paths to the nodes u2, u4 and u5, half of which contain z;
these paths increase bz by 3`. Note that in the latter solution, the endpoints
of the edges do not form an independent set, but the quality of this solution
is better than the quality of the first one, where the endpoints form an inde-
pendent set. The quality of the solution containing edges to the red colored
nodes may even become arbitrarily bad with a large value for `.

It is not clear whether there is a strategy to compute an optimal solution
for a Betweenness Improvement instance by exploiting the similarities to
Independent Set. However, adding edges to nodes that form an indepen-
dent set, e.g. in combination with a polynomial-time local search algorithm,
may be helpful for heuristically solving Betweenness Improvement.

Chapter 4

Destructive Betweenness
Improvement

In this chapter, we introduce Destructive Betweenness Improvement,
which is strongly related to Betweenness Improvement: Given an undi-
rected graph G, we ask if we can increase the betweenness centrality of a
node z to at least r by removing edges from the input graph. The term
destructive phrases that ask whether a property, such as a certain value for
the betweenness centrality of a node, can be achieved by ”destroying“ parts
of the graphs, such as edges. A real-world application for this scenario is,
e.g., that in a computer network, an adversary wants to tear down connec-
tions between nodes in order to increase the amount of information passing
it. We refer to this problem as the Destructive Betweenness Improve-
ment (DBI) problem, using the following formal definition:

Destructive Betweenness Improvement
Input: An undirected, unweighted graph G = (V,E), a node u ∈ V , an

integer k and a rational number r.
Question: Is there a set of edges S ⊆ E, |S|≤ k, such that bu ≥ r in

G′ = (V,E \ S)?

Furthermore, we introduce the directed variant referred to as DDBI,
where the input graph is a directed, unweighted graph:
Directed Destructive Betweenness Improvement
Input: A directed, unweighted graph G = (V,A), a node u ∈ V , an

integer k and a rational number r.
Question: Is there a set of arcs S ⊆ A, |S|≤ k, such that bu ≥ r in G′ =

(V,A \ S)?

We first show that Directed Destructive Betweenness Improve-
ment is W[1]-hard with respect to the number of arc additions - unfortu-

47

48 CHAPTER 4. DESTRUCTIVE BETWEENNESS IMPROVEMENT

s v11 v12 v13 v14 t

v21 v22 v23 v24

s v11 v12 v13 v14 t

v21 v22 v23 v24

p1 p2 p3 p4 p5

(a) A Bounded Edge Directed (s, t)-
Cut instance I = (G, k = 2, ` = 5, s, t).
The red dashed lines form a solution for I.

(b) The constructed Directed Destruc-
tive Betweenness Improvement in-
stance I ′ = (G′, p1, k = 2, r = ` − 1 +

1
(n−2)!

). The red dashed edges imply a so-
lution for I ′.

Figure 9: Parameterized reduction from Bounded Edge Directed (s, t)-
Cut to Directed Destructive Betweenness Improvement with re-
spect to the number k of arc deletions.

nately, we have no result for the undirected variant. Then, we introduce a
natural and simple greedy strategy and show that it has an arbitrarily small
approximation ratio for the undirected variant.

4.1 Hardness result

We show that Directed Destructive Betweenness Improvement
(DDBI) is W[1]-hard with respect to the number of arc deletions by a parame-
terized reduction from theW[1]-hard Bounded Edge Directed (s, t)-Cut
(BEDC) with parameter number k of arc deletions (Golovach and Thilikos
[GT11]). Unfortunately, we do not provide a parameterized reduction to the
undirected variant of this problem.

Bounded Edge Directed (s, t)-Cut
Input: A directed, unweighted graph G = (V,A), two distinct nodes

s, t ∈ V , tho positive integers k, `.
Question: Is there a set of arcs S ⊆ A of size at most k such that G′ =

(V,A \ S) contains no (s, t)-path of length at most `?

Theorem 12. Directed Destructive Betweenness Improvement is
W[1]-hard with respect to the parameter number of arc deletions.

Proof. Using a parameterized reduction, we reduce a BEDC instance I =
(G, k, `, s, t) to a DDBI instance I ′ = (G′, p1, k, ` − 1 + 1

(n−2)!) in poly-
nomial time. The construction of G′ is as follows: Starting with a copy
of G, we additionally introduce ` − 1 new nodes p1, . . . , p` and the arc
set {(s, p1), (p1, p2), . . . , (p`−1, p`), (p`, t)}. Furthermore, we remove all arcs
from G′ where s is the target node and all nodes where t is the source node:
As we regard the shortest paths where s is the source and t is the target, all

4.2. GREEDY STRATEGY 49

w

z
y1

x2
y2

x3
y3

xα
yα

u1
u2

uk

v1

v2

vk

Figure 10: Destructive Betweenness Improvement instance I. The
greedy strategy introduced in Section 4.2 has an arbitrarily low approxima-
tion ratio on this instance. The red dashed edges are part of the optimal
solution, the blue dotted edges are the result of the greedy strategy: Delet-
ing up to k− 1 of the red dashed edges from the graph does not increase bz,
whereas deleting all red dashed edges maximally increases cz.

paths containing s or t more than once contain a loop and are not minimal.
An example is provided in Figure 9. We now show that the reduction is
correct:

⇒ If the input instance I is a Yes-instance, then there is an arc set S ⊆ A
of size k such that after removing S from A, there is no path of length at
most ` from s to t. Removing the arcs corresponding to S from G′, it holds
that the path from s to t containing the nodes p1, . . . , p` is a shortest path
from s to t with length `+1. Hence, the betweenness centrality of p1 is larger
than ` − 1 + 1

(n−2)! : The paths from s to p2, . . . , p` and to t all contain p1.
However, there may be arbitrary other paths from s to t of length `+ 1.

⇐ If the input instance is a No-instance, then for all arc sets S ⊆ A of
size at most k it holds that after removing S from A, the shortest path be-
tween s and t has length less than `. Thus, by removing k arcs from G′, none
of the shortest paths from s to t contains p1, as the only path from s to t con-
taining p1 has length `+1. It follows that bp1 = `−1 and I ′ is a No-instance.

From the parameterized reduction follows that DDBI is W[1]-hard with
respect to the number k of arc deletions, as BEDC is W[1]-hard on directed
graphs with respect to the size of the arc deletion set S.

50 CHAPTER 4. DESTRUCTIVE BETWEENNESS IMPROVEMENT

4.2 Greedy strategy

In this subsection, we introduce a very simple greedy strategy for De-
structive Betweenness Improvement. As a very simple and natural
greedy strategy for Directed Closeness Improvement and Directed
Closeness Improvement provides a 1− 1

e -approximation (Crescenzi et al.
[Cre+16]), but have as arbitrarily small approximation ratio for Between-
ness Improvement (D’Angelo et al. [DSV16]). Our goal is to analyze
whether a similar strategy for Directed Betweenness Improvement
also provides an approximation. Unfortunately, this strategy does not serve
as an approximation algorithm, as the ratio between the size of an optimal
solution and the size of the solution generated by the greedy strategy may
become arbitrarily low. We now introduce the greedy strategy and such an
instance.

The greedy strategy is as follows: Given an instance I = G, z, k, r, we
introduce k steps. In each step, we determine which edge deletion increases
bz at most and remove that edge from G.

For a graph G = (V,E), a node z ∈ V and a positive integer k, we denote
bOPT (z) the maximum betweenness centrality of z in G after removing k
edges, and bGRE(z) the betweenness centrality of z in G after deleting k
edges as computed by the greedy strategy.

We introduce a Directed Betweenness Improvement instance I =
(G, z, k, r) as visualized in Figure 10 such that the ratio between bOPT (z)
and bGRE(z) is arbitrarily small. We now proof this statement by computing
bOPT (z) and bGRE(z).

An optimal solution is S = {{x2, vi} | 1 ≤ i ≤ k}. By removing S
from G, the following shortest paths contain z:

• For each ui, 1 ≤ i ≤ k, and each yj , 1 ≤ j ≤ α, there is one shortest
path from ui to yj containing z.

• For each ui, 1 ≤ i ≤ k, and each vj , 1 ≤ j ≤ k, there is one shortest
path from ui to vj containing z.

• For each ui, 1 ≤ i ≤ k, and each xj , 2 ≤ j ≤ α, there is one shortest
path from w to ui and one from w to xj containing z.

• For each xi, 2 ≤ i ≤ α, and each vj , 1 ≤ j ≤ k, there is one shortest
path from xi to vj containing z.

• For each xi, 2 ≤ i ≤ α, and each yj , 1 ≤ j ≤ α, there is one shortest
path from xi to yj containing z.

In total, by removing S from G, we increase bz to (k+(α−1))(α+k+1).

4.2. GREEDY STRATEGY 51

Now, we analyze the result of the greedy strategy. In each step, we must
remove an edge from ui to x2, 1 ≤ i ≤ k, as the removal of any other edge
does not increase bz. After k steps, all edges from ui to x2 are removed. The
following shortest paths then contain z:

• For each ui, 1 ≤ i ≤ k, and each xj , 2 ≤ j ≤ α, there is one shortest
path from ui to yj containing z.

• For each ui, 1 ≤ i ≤ k, and each xj , 2 ≤ j ≤ α, there is one shortest
path from w to ui and one from w to xj . Each path contains z.

• For each vi, 1 ≤ i ≤ k, there are two shortest paths from vi to w. One
contains x2 and z and the other one contains y2 and y1.

• For each xi, 2 ≤ i ≤ α, there is one shortest path from xi to y1 con-
taining z.

• For each ui, 1 ≤ i ≤ k and each yj , 1 ≤ j ≤ α, each shortest path
from ui to yj contains z.

In total, the greedy strategy increases bz to (k+1)(α−1)+k(32 +α)+α.
Hence, using the greedy strategy, the betweenness centrality of z increases
linear with α. However, by deleting the edges from an optimal solution, bz
increases quadratically with α. Hence, the solution quality becomes arbi-
trary bad with a large value for α.

However, this result does not necessarily mean that the greedy strategy is
useless for real-world data. Practical evaluation and comparison between the
solution quality of the greedy strategy and an optimal solver may be a future
task in order to determine the practical usability of the greedy strategy.

52 CHAPTER 4. DESTRUCTIVE BETWEENNESS IMPROVEMENT

Chapter 5

Conclusion and Outlook

We studied the parameterized complexity of Closeness Improvement
and Betweenness Improvement for the perhaps most natural parame-
ter, that is the number of edge additions. We showed that both problems are
in XP, but unfortunately they are W[2]-hard with this parameter. The same
holds for the problem variants on directed graphs. Moreover, we showed that
Closeness Improvement is NP-hard even on planar graphs with maxi-
mum degree 3 and W[2]-hard on graphs with diameter 3 with parameter
number of edge additions. Betweenness Improvement remains NP-hard
on graphs with h-index 6, and the directed variant of both centrality im-
provement problems remain W[2]-hard even on directed acyclic graphs, with
respect to the number of edge additions.

However, we were also able to show that Closeness Improvement is in
FPT for some non-standard parameters, such as the node deletion distance
to a clique or a cluster graph, or the size of a vertex cover; Closeness
Improvement and Betweenness Improvement are even polynomial-
time solvable on graphs with diameter 2.

For Directed Betweenness Improvement, we showed that the prob-
lem is W[1]-hard with respect to the number of edge deletions, and that a
natural greedy strategy has an arbitrary low approximation ratio.

Most of the results in this work are negative hardness or inapproxima-
bility results, and the few polynomial-time or fixed-parameter tractability
results might not be of much practical use, due to the high running time
or very restricted graph classes. However, they provide first insights into
the structure of centrality improvement problems. We propose some related
subjects and open questions which might be worth further research.

53

54 CHAPTER 5. CONCLUSION AND OUTLOOK

5.1 Betweenness vs. Closeness Improvement

One aspect which has not been discussed in this paper is whether Between-
ness Improvement is harder to solve than Closeness Improvement,
in terms of parameterized complexity. Unfortunately, we were not able
to find (parameterized) reductions from Betweenness Improvement to
Closeness Improvement or vice versa, as the structures of the problems
are very unsimilar. One major problem which occurred when designing a
reduction was the impact of an edge addition on the betweenness central-
ity gain or closeness centrality gain, respectively. Let z be the node whose
closeness or betweenness centrality shall be maximized. Then decreasing the
distance between two nodes u, v 6= z as a side effect of an edge addition
does not impact the closeness centrality of z. The same is not true for the
betweenness centrality. Moreover, there is no relationship between the ab-
solute distance between z and other nodes and the betweenness centrality of
z. Hence, it is unclear how a reduction from one problem to the other might
work.

5.2 More centrality improvement variants

In this section, we introduce some more problems related to Betweenness
Improvement and Closeness Improvement: We present Between-
ness Balancing, where we ask to minimize the maximum betweenness
centrality of all nodes in the graph. A practical scenario is to evenly dis-
tribute traffic in the network by avoiding bottlenecks in form of few nodes
with a high betweenness centrality. Furthermore, we introduce Relative
Closeness Improvement, where the task is to relatively improve a node’s
closeness centrality by removing edges from the graph. For the latter prob-
lems, this work does not cover any results, but analysis of the complexity
and work on algorithms of these problems might be interesting.

As an outlook, this section introduce some decision problems that are
related to Closeness Improvement or Betweenness Improvement.

5.2.1 Betweenness Editing

A very canonical variant of Betweenness Improvement is to allow a cer-
tain number k of edge deletions and additions, in order to improve a node’s
betweenness centrality. As both Betweenness Improvement and Di-
rected Betweenness Improvement are W[2]-hard, it seems likely that
Betweenness Editing remains W[2]-hard with respect to the number of
edge additions and deletions. Another variant may be to improve a node’s
closeness or betweenness centrality by replacing at most k adjacent to a
node z by k other nodes. This problem better models the cost of infrastruc-
ture: For instance, it might be too expensive for a logistics company to add

5.3. OPEN QUESTIONS 55

new routes, but it may replace routes by new ones in order to decrease the
distances, and hence the cost, to its customers.

5.2.2 Betweenness Balancing

Another modification of Betweenness Improvement is motivated from
the following scenario: A network provider wants to add edges to her infras-
tructure such that for each node, the workload is as low as possible. In other
words, the provider wants to avoid hotspots in his network where much traf-
fic passes through. Defined as an optimization problem, the goal is to add
or delete a certain number k of edges such that the maximum betweenness
centrality of all nodes is minimized.

5.2.3 Relative Improvement

In contrast to the problem of improving the betweenness centrality, it is not
possible to improve the closeness centrality of a node by removing edges from
the graph. However, it is possible to decrease the closeness or betweenness
centrality of other nodes by deleting edges. Hence, deleting edges may be
beneficial when our goal is to have a relatively high closeness or betweenness
centrality compared to other nodes in the graph. Therefore, we might ask
whether it is possible to remove a certain number k of edges such that the
centrality of a certain node z is larger than the centrality of any other node
(or that at most ` other nodes have a higher centrality.)

A real-world application for relative closeness improvement might be that
a competitor is not able to improve her own centrality by adding edges,
but destructively removing edges is possible and being better than as many
other competitors as possible is beneficial (this might be true for almost
any economic scenario). Another real-world application might be found in
(social) networks: Assume that a social network is modeled as a graph,
and the closeness centrality of a member, for instance a voting candidate,
somehow reflects its influence on other members (for instance, the voters)
in the network. Then decreasing the popularity, and hence the influence of
another candidate might be easier than increasing the own popularity.

5.3 Open questions

While our work provides first classifications for Closeness Improvement
and Betweenness Improvement in terms of parameterized complexity
and for few restricted graph classes, there are still many open questions. For
instance, for many graph parameters it is not clear whether the centrality
improvement problems are fixed-parameter tractable or not. Moreover, there
may be fpt results for multivariate parameters such as maximum degree
and number of edge additions. Finally, the fpt-time algorithms provided in

56 CHAPTER 5. CONCLUSION AND OUTLOOK

this work are useful for the classification of these problems, but are not of
practical use due to the high running time. However, further research may
uncover more insights into the structures of these problems, and ideas how
to practically exploit them.

Bibliography

[Bav48] Alex Bavelas. “A mathematical model for group structures.” In:
Human Organization 7.3 (1948), pp. 16–30 (cit. on p. 6).

[Bra01] Ulrik Brandes. “A faster algorithm for betweenness centrality.”
In: Journal of Mathematical Sociology 25.2 (2001), pp. 163–177
(cit. on pp. 6, 36).

[Bra08] Ulrik Brandes. “On variants of shortest-path betweenness cen-
trality and their generic computation.” In: Social Networks 30.2
(2008), pp. 136–145 (cit. on pp. 3, 6).

[CKX10] Jianer Chen, Iyad A. Kanj, and Ge Xia. “Improved upper bounds
for vertex cover.” In: Theoretical Computer Science 411.40 (2010),
pp. 3736–3756 (cit. on pp. 12, 16).

[Cre+16] Pierluigi Crescenzi, Gianlorenzo D’angelo, Lorenzo Severini, and
Yllka Velaj. “Greedily improving our own closeness centrality in
a network.” In: ACM Transactions on Knowledge Discovery from
Data (TKDD) 11.1 (2016), p. 9 (cit. on pp. 6, 50).

[Cyg+15] Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Loksh-
tanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and
Saket Saurabh. Parameterized Algorithms. Vol. 3. Springer, 2015
(cit. on p. 10).

[DF12] Rodney G Downey and Michael Ralph Fellows. Parameterized
complexity. Springer Science & Business Media, 2012 (cit. on
p. 29).

[DF13] Rodney G Downey and Michael R Fellows. Fundamentals of pa-
rameterized complexity. Vol. 4. Springer, 2013 (cit. on p. 10).

[DSV16] Gianlorenzo D’Angelo, Lorenzo Severini, and Yllka Velaj. “On
the maximum betweenness improvement problem.” In: Electronic
Notes in Theoretical Computer Science 322 (2016), pp. 153–168
(cit. on pp. 6, 50).

[FG06] Jörg Flum and Martin Grohe. Parameterized Complexity The-
ory, volume XIV of Texts in Theoretical Computer Science. An
EATCS Series. 2006 (cit. on p. 10).

57

58 BIBLIOGRAPHY

[Fre77] Linton C Freeman. “A set of measures of centrality based on
betweenness.” In: Sociometry 40 (1977), pp. 35–41 (cit. on pp. 6,
41).

[Fre78] Linton C. Freeman. “Centrality in social networks conceptual
clarification.” In: Social Networks 1.3 (1978), pp. 215–239 (cit.
on p. 3).

[GJ90] Michael R. Garey and David S. Johnson. Computers and In-
tractability; A Guide to the Theory of NP-Completeness. New
York, NY, USA: W. H. Freeman & Co., 1990 (cit. on pp. 17,
39).

[GT11] Petr A. Golovach and Dimitrios M. Thilikos. “Paths of bounded
length and their cuts: Parameterized complexity and algorithms.”
In: Discrete Optimization 8.1 (2011). Parameterized Complexity
of Discrete Optimization, pp. 72–86 (cit. on p. 48).

[Hüf+10] Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf
Niedermeier. “Fixed-parameter algorithms for cluster vertex dele-
tion.” In: Theory of Computing Systems 47.1 (2010), pp. 196–
217 (cit. on p. 22).

[Kan+11] U Kang, Spiros Papadimitriou, Jimeng Sun, and Hanghang Tong.
“Centralities in large networks: Algorithms and observations.”
In: Proceedings of the 2011 SIAM International Conference on
Data Mining. SIAM. 2011, pp. 119–130 (cit. on p. 4).

[LKF05] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. “Graphs
over time: densification laws, shrinking diameters and possi-
ble explanations.” In: Proceedings of the eleventh ACM Inter-
national Conference on Knowledge Discovery in Data Mining
(SIGKDD). ACM. 2005, pp. 177–187 (cit. on p. 17).

[Lok+13] Daniel Lokshtanov, Neeldhara Misra, Geevarghese Philip, M. S.
Ramanujan, and Saket Saurabh. “Hardness of r-dominating set
on Graphs of Diameter (r + 1).” In: Parameterized and Ex-
act Computation - 8th International Symposium, IPEC 2013,
Sophia Antipolis, France, September 4-6, 2013, Revised Selected
Papers. 2013, pp. 255–267 (cit. on p. 19).

[New05] Mark EJ Newman. “A measure of betweenness centrality based
on random walks.” In: Social networks 27.1 (2005), pp. 39–54
(cit. on p. 3).

[NG04] Mark EJ Newman and Michelle Girvan. “Finding and evaluating
community structure in networks.” In: Physical review E 69.2
(2004), p. 026113 (cit. on p. 3).

BIBLIOGRAPHY 59

[Nie06] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Ox-
ford Lecture Series in Mathematics and Its Applications. Oxford
University Press, 2006 (cit. on p. 10).

[OAS10] Tore Opsahl, Filip Agneessens, and John Skvoretz. “Node cen-
trality in weighted networks: Generalizing degree and shortest
paths.” In: Social Networks 32.3 (2010), pp. 245–251 (cit. on
p. 3).

[OCL08] Kazuya Okamoto, Wei Chen, and Xiang-Yang Li. “Ranking of
closeness centrality for large-scale social networks.” In: Interna-
tional Workshop on Frontiers in Algorithmics. Springer. 2008,
pp. 186–195 (cit. on p. 3).

[RK16] Matteo Riondato and Evgenios M Kornaropoulos. “Fast approx-
imation of betweenness centrality through sampling.” In: Data
Mining and Knowledge Discovery 30.2 (2016), pp. 438–475 (cit.
on p. 6).

[Rom+14] M Puck Rombach, Mason A Porter, James H Fowler, and Pe-
ter J Mucha. “Core-periphery structure in networks.” In: SIAM
Journal on Applied Mathematics 74.1 (2014), pp. 167–190 (cit.
on p. 8).

[RS10] Mikail Rubinov and Olaf Sporns. “Complex network measures
of brain connectivity: uses and interpretations.” In: Neuroimage
52.3 (2010), pp. 1059–1069 (cit. on p. 3).

[SW17] Manuel Sorge and Martin Weller. The graph parameter hierarchy
(Manuscript). 2017. url: http://fpt.akt.tu-berlin.de/
msorge/parameter-hierarchy.pdf (cit. on p. 7).

[Tho99] Mikkel Thorup. “Undirected single-source shortest paths with
positive integer weights in linear time.” In: Journal of the ACM
46.3 (1999), pp. 362–394 (cit. on p. 14).

[WB94] Douglas R. White and Stephen P. Borgatti. “Betweenness cen-
trality measures for directed graphs.” In: Social Networks 16.4
(1994), pp. 335–346 (cit. on p. 41).

http://fpt.akt.tu-berlin.de/msorge/parameter-hierarchy.pdf
http://fpt.akt.tu-berlin.de/msorge/parameter-hierarchy.pdf

	Introduction/Motivation
	Related Work
	Our contribution
	Preliminaries
	Graph theory and basics
	Parameterized complexity
	Decision problems

	Closeness Centrality Improvement
	Hardness results
	Algorithmic results
	Closeness improvement on directed graphs
	Solution space reduction rules

	Betweenness Centrality Improvement
	Hardness results
	Algorithmic results
	Directed Betweenness Improvement
	Relationship to Independent Set

	Destructive Betweenness Improvement
	Hardness result
	Greedy strategy

	Conclusion and Outlook
	Betweenness vs. Closeness Improvement
	More centrality improvement variants
	Betweenness Editing
	Betweenness Balancing
	Relative Improvement

	Open questions

