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Abstract

Computing maximum flows in directed graphs is one of the most fundamental and applied
network flow problems. For graphs with m arcs, n vertices and capacities of size at
most C, Lee and Sidford [FOCS ’14] provided an Õ(m

√
n log2C)-time algorithm, but

for several applications this time is still too slow.
In the spirit of the FPT in P program introduced by Giannopoulou et al. [Theoretical

Computer Science ’17] this work analyzes parameterizations for Maximum Flow. Our
results are of two kinds. One the one hand, we show that many parameters such as
maximum degree or the vertex deletion distance to complete graphs do not help to
solve the problem more quickly. On the other hand we provide “good news”: First,
we provide quasilinear-time applicable data reduction rules that yield a kernel of size
linear in the undirected feedback edge number (i.e., the edge deletion distance from the
undirected input graph to forests). This is, to the best of our knowledge, the first
nontrivial kernelization result for Maximum Flow. Second, we introduce a systematic
approach for designing fixed-parameter algorithms for Maximum Flow. This approach
is based on ideas by Hochstein and Weihe [SODA ’07] and generalizes the Push-Relabel
method by Goldberg and Tarjan [Journal of the ACM ’88]. By applying our approach
with the underlying feedback vertex number k (i.e., the vertex deletion distance from the
undirected input graph to forests) we can solve the problem in O(k4m) time.

Zusammenfassung

Die Berechnung von größtmöglichen Flüssen auf gerichteten Graphen (Maximum Flow)
ist eines der fundamentalen Netzwerkflussprobleme. Der Algorithmus von Lee und Sid-
ford [FOCS ’17] ist mit einer Laufzeit vonO(m

√
n log2C) auf Graphen mit m gerichteten

Kanten, n Knoten und Maximalkapazität C der zur Zeit schnellste, jedoch genügt diese
Laufzeit nicht den Ansprüchen aller Anwendungen.

In Anlehnung an das
”

FPT in P“-Projekt von Giannopoulou et al. [Theoretical
Computer Science 17] analysieren wir in dieser Arbeit Parametrisierungen für Maxi-
mum Flow. Wir präsentieren zwei Arten von Ergebnissen. Einerseits zeigen wir, dass
viele Parameter – zum Beispiel der Maximalgrad oder die Knotenlöschungsdistanz zu
vollständigen Graphen – nicht zu einem schnelleren Algorithmus führen können. An-
dererseits –

”
positiv“ – zeigen wir zweierlei: Erstens zeigen wir in quasilinearer Zeit

anwendbare Datenreduktionsregeln, die zu einem Kern führen, dessen Größe linear in
der ungerichteten kreiskritischen Kantenzahl ist, d.h. die kleinste Anzahl an Kanten, die
aus der ungerichteten Kopie des Eingabegraphen zu entfernen sind, damit ein Wald ent-
steht. Nach unserem Wissensstand ist dies das erste Resultat, das einen (nicht-trivialen)
Problemkern für Maximum Flow zeigt. Zweitens führen wir ein systematisches Ver-
fahren zur Konzeption von parametrisierten Algorithmen für Maximum Flow ein, das
auf Ideen von Hochstein und Weihe [SODA 07] basiert und die

”
Push-Relabel“-Methode

von Goldberg und Tarjan [Journal of the ACM 88] verallgemeinert. Mit der Anwendung
dieses Verfahrens können wir einen Algorithmus für das Problem mit einer Laufzeit
von O(k4m) ableiten, wobei k die ungerichtete kreiskritische Knotenzahl ist, d.h. die
kleinste Anzahl an Knoten, die – analog der ungerichteten kreiskritischen Kantenzahl –
zu entfernen sind, damit ein Wald entsteht.
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Chapter 1

Introduction

“Networks are pervasive” [AMO93], and the applications for network flow problems are
endless. Transport networks and scheduling problems, but also fundamental problems
such as Bipartite Matching and Minimum Path Cover are some exemplary prob-
lems that can be solved with network flows. We refer to Ahuja, Magnanti, and Orlin
[AMO93] for an overview of applications. Probably the most fundamental variant of
the network flow problems is the polynomial-time solvable Maximum Flow problem:
Given a directed graph where each arc has a flow capacity, and two terminals s and t,
the task is to send as much flow as possible from s to t while honoring the flow capacities
and ensuring that at no vertex (other than s and t) any excess flow may gather. We
depict in Figure 1.1 an exemplary instance of Maximum Flow.

Starting with the seminal algorithm by Ford and Fulkerson [FF56], finding efficient
algorithms for Maximum Flow has been an active research topic now for six decades,
and the problem does not cease to attract plenty of researchers. The upper bound on
the running time is being improved continuously. But due to the amount of information
stored in the world growing exponentially over time [HL11], the demand on solving
network problems such as Maximum Flow more quickly has grown over time as well.
From a practitioner’s point of view, a linear-time algorithm would be ideal, but neither
are the best known algorithms close to running in linear time, nor do we know whether
such an algorithm is possible for Maximum Flow. In the last decade a new research
direction for Maximum Flow has emerged in which one trades optimal solutions for
better running times [Chr+11; LRS13; She13]. For instance, Kelner et al. [Kel+14]
presented an algorithm that finds a (1 − ε)-approximation for Maximum Flow on
undirected m-edge graphs in O(m1+o(1) · ε−2) time.

Our goal is to develop more efficient algorithms without giving up the quest for
optimal solutions. In the young and upcoming field of of FPT in P one pursuits “fixed-
parameter algorithms for problems already known to be solvable in polynomial time”
[GMN17], that is, for problems with instance size x solvable in O(xα) time, one tries
to find algorithms running in f(k) · xβ time, where k is a parameter, f is a computable
function and β < α. We want to investigate the Maximum Flow problem in the spirit
of this field and try to find algorithms with running times of the kind f(k) · Õ(x).1

Further, we want to provide efficient (i.e., (quasi-)linear-time solvable) data reduction

1The notation Õ(f) := O(f logc f) for constant c hides polylogarithmic factors in the running time.
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Figure 1.1: An exemplary instance of Maximum Flow. The arcs are labeled with
their capacity in (a) and with their flow/capacity in (b).

rules—algorithms that shrink the size of instances to some upper bound, typically a
function depending only on the size of a parameter. In the research field on algorithms
for NP-hard (decision) problems, this is known as kernelization. We also want to show
that certain parameters “do not help” to solve Maximum Flow more efficiently, even if
they are small. While these might first sound just like negative “intractability” results,
they also give insight into the Maximum Flow problem that might help designing
efficient algorithms. For example, by reducing any instance of Maximum Flow to an
instance with maximum degree three in linear time, one can see that a fixed-parameter
algorithm with respect to the maximum degree does not help, and when designing new
algorithms for Maximum Flow one can assume that the maximum degree of the input
graph is three.

Note that in this work we will restrict ourselves to the Maximum Flow problem
with integer capacities.

Related work. We start off by giving a condensed overview over the history of the
best algorithms for Maximum Flow. Ahuja, Magnanti, and Orlin [AMO93] discuss
many algorithms and applications for Maximum Flow in detail. Goldberg and Tarjan
[GT14] provide a compact and recent survey on the development of Maximum Flow
and cover several of the current research directions for the problem. Goldberg and Rao
[GR98] provide a detailed list of Maximum Flow algorithms that shows how the best
running time upper bounds have improved over time. Table 1.1 shows a selection of
these results as well as two remarkable, more recent findings. Orlin [Orl13] provides
an O(nm+m31/16 log2 n)-time algorithm, that, among other things, calls the algorithm
by Goldberg and Rao [GR98] as a subroutine. Calling the latter algorithm if the graph is
sparse, and the algorithm by King, Rao, and Tarjan [KRT94] otherwise, allows to bound
the running time of Maximum Flow by O(nm). Lee and Sidford [LS14] presented a
new algorithm for efficiently solving linear programs and have shown that applying it
to the linear programming formulation of Maximum Flow yields the currently best
known running time upper bound for Maximum Flow.

While the running time upper bound for Maximum Flow improved over time,
there are no nontrivial results on running time lower bounds for Maximum Flow.
Contrarily, Krauthgamer and Trabelsi [KT18] showed that if one finds a lower bound for
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Table 1.1: Running time upper bounds for the Maximum Flow problem on directed
graphs with n vertices, m arcs and a maximum arc capacity of C.

Year Worst case running time References

1956 O(nmC) Ford and Fulkerson [FF56]
1970 O(nm2) Dinic [Din70], Edmonds and Karp [EK72]
1970 O(n2m) Dinic [Din70]
1973 O(nm logC) Dinic [Din73], Gabow [Gab85]
1974 O(n3) Karzanov [Kar74]
1988 O(nm log(n2/m)) Goldberg and Tarjan [GT88]
1994 O(nm logm/(n logn) n) King, Rao, and Tarjan [KRT94]

1998 O(min{n2/3,√m}m log(n2/m) logC) Goldberg and Rao [GR98]
2013 O(nm) Orlin [Orl13]

2014 Õ(m
√
n log2C) Lee and Sidford [LS14]

Maximum Flow with one of the prominent techniques, fine-grained reductions [VW15]
in combination with the Strong Exponential Time Hypothesis (SETH) [IPZ01], then the
Nondeterministic Strong Exponential Time Hypothesis would be refuted. In contrast,
Krauthgamer and Trabelsi [KT18] showed that All Pairs Maximum Flow—given a
capacitated graph D, compute the maximum v–w-flow for every pair of vertices v, w ∈
V (D)—cannot be solved in O(n3−ε) time under the assumption that the SETH holds.

This work is in spirit of the field of fixed-parameter algorithms for polynomial-time
solvable problems (FPT in P) which was initiated by Giannopoulou, Mertzios, and Nie-
dermeier [GMN17]. The main goal of this field is to find fixed-parameter algorithms
that outperform the best unparameterized algorithms if the parameter is sufficiently
small. Exemplary problems that have been studied in the spirit of FPT in P include
Diameter [AWW16; BN18], Graph Hyperbolicity [Flu+17] and Triangle Enu-
meration [Ben+17]. One of the most studied problems in the field of FPT in P, and thus
possibly the coming up “drosophila”2 of the field, is the Maximum Matching prob-
lem. There are fully polynomial fixed-parameter algorithms (i.e., the running time is at
most polynomial in the parameter) with respect to the parameters difference between
maximum and minimum degree [Yus13], treewidth [Fom+17], modular width [KN18]
and treedepth [IOO17]. The latter of the four results also holds for the weighted variant
of the problem. Mertzios, Nichterlein, and Niedermeier [MNN17] showed that Maxi-
mum Matching admits a linear-size kernel with respect to the feedback edge number
and an exponential-size kernel with respect to the feedback vertex number. They also
showed that the Bipartite Maximum Matching problem—a special case of Maxi-
mum Flow—admits a cubic-size kernel with respect to the vertex deletion distance to
chain graphs.

For Maximum Flow there also exist fixed-parameter algorithms (see Table 1.2).
Chambers, Erickson, and Nayyeri [CEN12] provided a fixed-parameter algorithm for
Maximum Flow with respect to the genus of the input graph. For a generalization of

2The fruit fly “Drosophila melanogaster” is one of the most-studied organisms in the field of genetics
[Hal+15]. Niedermeier [Nie06] called the Vertex Cover the “drosophila” of FPT studies [Nie06].
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Table 1.2: Fixed-parameter algorithms for the Maximum Flow problem as well as
so-called “hardness” results that show that Maximum Flow parameterized by the pa-
rameter does not become easier than its unparameterized version.

Parameter k Worst case running time Reference

Crossing number O(k3n log n) [HW07]
Genus O(k8n log2 n log2C) [CEN12]

Treewidth O(2O(k
2)n) [Hag+98]

Vertex cover number O(k3m) Thm 5.20
(Undirected) feedback vertex number O(k4m) Cor 5.25

(Undirected) feedback edge number O(k3/2 log2C + (n+m) log n) Cor 3.15

Domination number

not easier to solve than the
unparameterized version

Prop 4.3
Bisection number Prop 4.4
Degeneracy Prop 4.5
Distance to bipartite graphs Cor 4.6
Maximum degree Thm 4.7
Distance to complete graphs Thm 4.13

Maximum Flow called Multi-Terminal Flow, Hagerup et al. [Hag+98] presented
a fixed-parameter algorithm with respect to the treewidth of the input graph. Lastly,
based on the Push-Relabel method by Goldberg and Tarjan [GT88], Hochstein and
Weihe [HW07] provided an algorithm for Maximum Flow on “nearly planar graphs”
which is parameterized by the crossing number; thus one can see it as an algorithm for
Maximum Flow on planar graphs plus k non-planar arcs. This result is one of the
main motivators of our work.

Data reduction rules and kernelization results play a central role in the young field
of FPT in P. Liers and Pardella [LP11] provided several data reduction rules for Max-
imum Flow. While exhaustively applying the data reduction rules takes O(n5) time
in the worst case, the rules can be applied quickly in practice and allow an empirically
observed improvement in the running times of the best practical Maximum Flow al-
gorithms. Further, Weihe [Wei97] stated observations which can be translated to simple
data reduction rules. While the final running time of the algorithm stated in his work is
quasilinear, it is not clear whether the data reduction rules can be applied exhaustively
in quasilinear time.

Our contributions. The results of this work can be divided into three parts. First,
we provide simple (i.e., quasilinear-time applicable) data reduction rules for Maximum
Flow. The data reduction rules are partially based on observations by Weihe [Wei97],
and are less complex than those presented by Liers and Pardella [LP11]. We further
show that Maximum Flow admits a linear-size kernel with respect to the (undirected)
feedback edge number, i.e., the edge deletion distance from the undirected version of the
input graph to forests. That is, one can reduce the size of any instance of Maximum
Flow in quasilinear time such that the resulting instance has 6k+6 vertices and 14k+12
arcs, where k is the feedback edge number (Theorem 3.14). From this we obtain a fixed-



13

parameter algorithm for Maximum Flow with respect to the feedback edge number
(Corollary 3.15).

Second, using a concept called General Problem hardness by Bentert et al. [Ben+17],
we show that there are several parameters such as the vertex deletion distance to bipartite
graphs (Corollary 4.6) or the maximum degree (Theorem 4.7), for which presumably
there exist no fixed-parameter algorithms. The concept of General Problem hardness
usually bases on running time lower bounds for the respective problem. But since no
lower bounds are known for Maximum Flow, we show instead that a fixed-parameter
algorithm for a certain parameter—as for example the maximum degree—would imply an
algorithm that outperforms the best known unparameterized algorithms for Maximum
Flow.

Third, inspired by and based on the work of Hochstein and Weihe [HW07], we provide
a systematic approach that allows for easy design of fixed-parameter algorithms with
respect to vertex deletion distances of certain graph classes. We present two applications
of this approach.

One of the two applications of the systematic approach for fixed-parameter algo-
rithms is as follows: We provide an algorithm for Maximum Flow with respect to the
(undirected) feedback vertex number k, i.e., the vertex deletion distance from the undi-
rected version of the input graph to forests, running in O(k4m) time (Corollary 5.25).
The algorithm makes heavy use of the data reduction rules introduced in Chapter 3.
Comparing the result to the fixed-parameter algorithm by Hochstein and Weihe [HW07]
running in O(k3n log n) time, note that the parameters feedback vertex number and
crossing number are incomparable. Further, albeit the feedback vertex number be-
ing NP-hard to compute, one can approximate the feedback vertex number within a
factor of four in linear time [BY+98]. This is in contrast to the crossing number, for
which there is no constant-factor approximation, unless P = NP [Cab13]. The result is
further strengthened by the fact that to this date, for the smaller parameter treewidth,
the best known fixed-parameter algorithm for Maximum Flow requires time exponen-
tial in the parameter size [Hag+98].

Table 1.2 gives an overview of fixed-parameter algorithms for Maximum Flow as
well as a list of parameters that do not help to solve Maximum Flow more efficiently.
We present our results in a condensed form in Figure 1.2, which is an excerpt of the
graph parameter hierarchy [SW16].

Structure of the work. In Chapter 2 we provide formal definitions on graph theory,
parameterized problems and data reduction rules, and flows and capacities. In Chapter 3
we present four efficient data reduction rules and a kernel for Maximum Flow with
respect to the undirected feedback edge number. Chapter 4 is devoted to the question
which parameters (and other restrictions) probably do not help to solve Maximum Flow
more efficiently and shows that Maximum Flow cannot be solved faster with certain
parameters than without. In Chapter 5, after presenting the Push-Relabel method of
Goldberg and Tarjan [GT88] in detail, we introduce our systematic approach for finding
fixed-parameter algorithms for Maximum Flow and present two applications of our
approach. Finally, in Chapter 6 we recapitulate the contents of this thesis and discuss
further research opportunities.
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Figure 1.2: An overview over the parameterized complexity of Maximum Flow.
There is an edge between two parameters if the lower parameter can be upper-bounded
by a function in the upper parameter. If a parameter k is highlighted green, then there
exists an kO(1) · Õ(|I|)-time algorithm. If k is highlighted yellow, then there exists
an f(k) · Õ(|I|)-time algorithm, where f is a computable function. If k is highlighted
red, then Maximum Flow does not become easier with respect to k. If a parameter is
highlighted in any of the light colors (inside the dashed boxes above the yellow box or the
below red box), then a result for the parameter can be deduced from a parameter in the
corresponding darker color. The corresponding references are listed in Table 1.2. Apart
from the results for the parameters treewidth [Hag+98] and genus [CEN12], all results
are either shown in this work or can be deduced from results for the other parameters.



Chapter 2

Preliminaries

In this chapter we provide some basic notation on graphs, parameterized problems and
flows. Note that we predominantly use standard notation throughout this work. The
lists are intended to provide easy look-up of specific notation. As a convention, by N
we denote the set of natural numbers without zero, and by N0 := N ∪ {0} the set of
natural numbers with zero. Further, we assume logn := log2 n, that is, the base of the
logarithm is two, if unspecified. Let C be a set. We denote by C = A ]B the partition
of C into two sets A,B such that A ∪B = C and A ∩B = ∅.

2.1 Graph Theory

This section provides the notation that we use for graphs throughout this work. Note
that in general we work with simple (undirected and directed) graphs, that is, the graphs
do not contain any self loops or parallel arcs or parallel edges. Most of the notation is
based on the book of Diestel [Die17]. For a set S we denote by

(
S
2

)
the set of all size-two

subsets of S, and by S2 = S × S the set of all pairs (a, b) with a, b ∈ S.

Undirected graphs. An undirected graph is a pair G = (V (G), E(G)). In this con-
text, we denote by

V (G) the vertex set of G;

E(G) the edge set of G with E(G) ⊆
(
V (G)
2

)
; for an edge e = {u, v} ∈ E(G) the two

vertices u and v are called endpoints of e;

nG the number |V (G)| of vertices;

mG the number |E(G)| of edges;

NG(v) the (open) neighborhood of v, formally, NG(v) := {u ∈ V | {u, v} ∈ E(G)};

NG(V ′) the (open) neighborhood of V ′, formally,NG(V ′) :=
(⋃

u∈V ′ NG(u)
)
\V ′ for V ′ ⊆

V (G);

degG(v) the degree of v, formally, degG(v) := |NG(v)|;

15
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∆(G) the maximum degree of G, formally, ∆(G) := max
v∈V
{degG(v)};

G[V ′] the induced subgraph of G on V ′ ⊆ V , formally, G[V ′] := (V ′, E(G) ∩
(
V ′

2

)
);

G− E′ the graph obtained from G by deleting the edges E′ ⊆ E(G), formally, G−E′ :=
(V (G), E(G) \ E′);

G− V ′ the graph obtained from G by deleting the vertices V ′ ⊆ V (G), formally, G −
V ′ := G[V (G) \ V ′].

If the graph G is clear from the context, then we will omit the subscript G. As a
convention throughout the work, if we call a graph by the letter G (possibly with sub-
or superscript), then the graph is undirected. We say that two vertices v, w ∈ V (G) are
adjacent if {v, w} ∈ E(G). We say that a vertex v is incident to an edge e ∈ E(G), and
that e is incident to v, if v ∈ e.

Directed graphs. A directed graph is a pair D = (V (D), A(D)). We denote by

V (D) the vertex set of D;

A(D) the arc set of D with A(D) ⊆ V (D)2; for an arc a = (u, v) ∈ A(D) the
vertex u is called source and v is called destination of a;

nD the number |V (D)| of vertices;

mD the number |V (D)| of arcs;

G(D) the underlying undirected graph, formally, G(D) := (V (D), {{u, v} | (u, v) ∈
A(D) ∨ (v, u) ∈ A(D)});

↼

D the reverse graph of D, formally,
↼

D := (V (D), {(v, u) | (u, v) ∈ A(D)};

N−D (v) the ingoing neighborhood of v, formally, N−D (v) := {u ∈ V (D) | (u, v) ∈
A(D)};

N+
D (v) the outgoing neighborhood of v, formally, N+

D (v) := {w ∈ V (D) | (v, w) ∈
A(D)};

ND(v) the (combined) neighborhood of v, formally, ND(v) := N+
D (v) ∪N−D (v);

deg−D(v) the indegree of v, formally, deg−D(v) := |N−D (v)|;

deg+D(v) the outdegree of v, formally, deg+D(v) := |N+
D (v)|;

degD(v) the (combined) degree of v, formally, degD(v) := |ND(v)|;

∆−(D) the maximum indegree of v, formally, ∆−(D) := max{deg−D(v) | v ∈ V (D)};

∆+(D) the maximum outdegree of v, formally, ∆+(D) := max{deg+D(v) | v ∈ V (D)};

∆(D) the maximum (combined) degree of v, formally, ∆(D) := max{degD(v) | v ∈
V (D)};
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D[V ′] the induced subgraph of D on V ′ ⊆ V (D), formally D[V ′] := (V ′, A(D) ∩
V (D)2);

D −A′ the graph obtained from D by deleting the arcs A′ ⊆ A(D), formally, D −
A′ := (V (D), A(D) \A′);

D − V ′ the graph obtained from D by deleting the vertices V ′ ⊆ V (D), formally,
D − V ′ := D[V (D) \ V ′].

As with undirected graphs, the subscript D is dropped if the graph meant is clear from
the context. As a convention throughout the work, if we call a graph by the letter D
(possibly with sub- or superscript), then the graph is directed. Further we say that two
vertices v, w ∈ V (D) are adjacent if (v, w) ∈ A(D) or (w, v) ∈ A(D). We say that a
vertex v ∈ V (D) is incident to an arc a ∈ A(D), and that a is incident to v, if v is either
the source or the destination of a. For every arc a = (u, v) ∈ A(D) we denote by

↼
a the

arc (v, u).

Graph properties. Let G be an undirected graph. A graph G′ is a subgraph of G,
written G′ ⊆ G, if V (G′) ⊆ V (G) and E(G′) ⊆ E(G)∩

(
V (G′)

2

)
, and an induced subgraph

of G, if V (G′) ⊆ V (G) and E(G′) = E(G) ∩
(
V (G′)

2

)
. Let D be a directed graph. A

(directed) graph D′ is a subgraph of D, written D′ ⊆ D, if V (D′) ⊆ V (G) and A(D′) ⊆
A(D)∩ (V (D′)2), and an induced subgraph of D, if V (D′) ⊆ V (D) and A(D′) = A(D)∩
V (D′)2.

A path is an undirected graph P with vertex set V (P ) = {v1, . . . vn}, n ≥ 2, and edge
set E(P ) = {{vi, vi+1} | 1 ≤ i < n}. We denote the path by v1 . . . vn, and the vertices v1
and vn are called endpoints, and all other vertices are called inner vertices. We say that
the path is a v1–vn-path, and the length of the path is m = n − 1, and we say that the
path visits the vertices v1, . . . , vn and the edges {v1, v2}, . . . , {vn−1, vn}.

Let G be an undirected graph. We say that v ∈ V (G) reaches w ∈ V (G), or v
and w are connected to each other, if G contains a v–w-path. The distance dG(v, w) is
the length of the shortest v–w-path. An undirected graph is connected if every pair of
vertices v, w ∈ V (G) is connected. A connected component of G is a subgraph induced
by a maximal set of pairwise connected vertices. A vertex v ∈ V (G) is a cut vertex
if G− {v} contains more connected components than G.

A (directed) path is a directed graph P with vertex set V (P ) = {v1, . . . vn} and arc
set A(P ) = {(vi, vi+1) | 1 ≤ i < n}. We denote the path by v1 . . . vn and the vertices v1
and vn are called endpoints, and all other vertices are called inner vertices. We say that
the path is a v1–vn-path, and the length of the path is m = n − 1, and we say that the
path visits the vertices v1, . . . , vn and the arcs (v1, v2), . . . (vn−1, vn).

Let D be a directed graph. A vertex v ∈ V (D) reaches a vertex w ∈ V (D), and w is
reached by v, if there is a directed v–w-path in D. The distance dD(v, w) is the length of
the shortest v–w-path. Two vertices v, w ∈ V (D) are connected if they are connected in
the underlying undirected graph G(D). This is also called weakly connected. A directed
graph D is (weakly) connected if every pair of vertices in V (D) is connected. A (weakly)
connected component of a directed graph is a subgraph induced by a maximal set of
pairwise connected vertices. A vertex v ∈ V (D) is called a source vertex, or source,
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if deg−(v) = 0, and it is called a sink vertex, or sink, if deg+(v) = 0. A vertex v ∈ V (D)
is a cut vertex if it is a cut vertex in the underlying undirected graph G(D).

Special graphs and graph parameters. An undirected graph G with V (G) =
{v1, . . . , vn} is a

cycle if G is connected and each vertex has degree two. We denote
the cycle by the sequence of its vertices v1v2 . . . vnv1.

independent set if G contains no edge;

complete graph if E(G) =
(
V (G)
2

)
. We denote a complete graph on n vertices

by Kn.

bipartite graph if V (G) = V1 ] V2 and G[V1] and G[V2] are independent sets;

complete bipartite graph if V (G) = V1 ] V2 and E(G) = {{v, w} | (v, w) ∈ V1 × V2}.
We denote a complete bipartite graph by Kp,q, where p := |V1|
and q := |V2|.

planar graph if G can be embedded into the plane (drawn with points for
vertices and curves for edges) without crossing edges;

forest if G contains no cycle;

tree if G is a forest and is connected;

cluster graph if every connected component is a complete graph;

interval graph if there are real intervals {Iv | v ∈ V (G)} such that {vi, vj} ∈
E(G) if and only if Ivi ∩ Ivj 6= ∅.

A p×q-grid is an undirected graph G with vertex set V (G) := {vi,j | 1 ≤ i ≤ p, 1 ≤ j ≤ q}
and edge set E(G) := {{vi,j , vi′,j′} | |i− i′|+ |j − j′| = 1}. A grid graph is a subgraph of
a grid.

Let T be a tree. Note that in a tree, every pair of vertices is connected by a unique
path. We call v ∈ V (T ) a leaf if deg(v) = 1. A rooted tree is a tree T with a designated
root r ∈ V (T ). We say that T is rooted in r. Let v, w ∈ V (T ) be two vertices such that
the unique r–w-path visits v. Then we call w an ancestor of v and v a descendant of w.
If additionally v and w are adjacent, then we call w a child of v and v the parent of w.

A directed graph D with vertex set V (D) = {v1, . . . , vn} is a (directed) cycle,
if A(D) = {(vi, vi+1) | 1 ≤ i < n}∪{(vn, v1)}, and a (directed) complete graph, if A(D) =
{(v, w), (w, v) | {v, w} ∈

(
V (G)
2

)
}. A directed k × `-grid is a directed graph whose under-

lying undirected graph is a k × `-grid. A directed grid graph is a directed graph whose
underlying undirected graph is a grid graph.

A class C of (directed or undirected) graphs is a set of graphs. As an example, let C
be the class of complete graphs. Then for every n ∈ N, Kn ∈ C. We call a class C of
graphs hereditary if it holds that for every graph G ∈ C, every induced subgraph G′ of G
is also contained in C. The class of complete graphs, the class of independent sets and
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the class of forests are examples for hereditary graph classes. The class of cycles is not
hereditary.

Let G be a graph. We say that a vertex subset V ′ ⊆ V (G) is a

vertex cover if G− V ′ is an independent set;

dominating set if N(V ′) ∪ V ′ = V (G);

feedback vertex set if G− V ′ is a forest;

vertex deletion set to C if C is a class of graphs and G− V ′ ∈ C.

An edge subset E′ ⊆ E(G) is a

feedback edge set if G− E′ is a forest;

bisection if G−E′ has exactly two connected components C1 and C2 such that
the number of vertices in C1 and C2 differ by at most one.

We define the following graph parameters for an undirected graph G:

The degeneracy of G is the smallest number d such that for every subgraph G′ ⊆
G, it holds true that ∆(G′) ≤ d;

the vertex cover number is the size of a minimum vertex cover of G;

the domination number is the size of a minimum dominating set of G;

the feedback vertex number is the size of a minimum feedback vertex set of G;

the vertex deletion distance to C is the size of the minimum vertex deletion set to C,
where C is a class of graphs;

the feedback edge number is the size of a minimum feedback edge set of G;

the bisection number is the size of a minimum bisection of G.

Data structures for graphs. If given an undirected (directed) graph as input, we
assume to be given the number of vertices and edges (arcs) and, for each vertex, its
adjacency list (list of ingoing and outgoing neighbors). This allows for constant-time
access to any vertex and to the list of all edges (arcs) incident to a specific vertex,
but does not allow for quick access to a selected edge (arc). Thus, when needed, we
manage the edges (arcs) of the input graph in an AVL-Tree. The operations of looking
up, inserting and deleting an edge (arc) all take O(logm) ⊆ O(log n2) ⊆ O(log n) time.
Creating the AVL-Tree can be done by m consecutive inserts in O(m log n) time.
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2.2 Parameterized Problems and Data Reduction Rules

Let Σ be a finite alphabet, and let Σ∗ be the set of all words over Σ. A decision problem P
is a subset of Σ∗. An instance I ∈ Σ∗ is a yes-instance for problem P if I ∈ P , and a
no-instance otherwise.

The notation Õ(f) := O(f logc f) for a function f and a constant c is used to
hide polylogarithmic factors. We call a function g : N → N quasilinear, if g(n) ⊆
O(n logO(1) n) for n ∈ N. Let f and p be computable functions. We call an algorithm
running on an instance of size |I| with a running time of the kind O(f(k) · p(|I|)) a
fixed-parameter algorithm if p is polynomial, a linear-time fixed-parameter algorithm if p
is linear, and a quasilinear-time fixed-parameter algorithm if p is quasilinear. We call a
fixed-parameter algorithm fully polynomial if f is polynomial.

A parameterized problem P ⊆ Σ∗ × N is a set of instances (I, k) where I ∈ Σ∗,
and k ∈ N is the parameter. We call the set of corresponding instances I without
the parameter the unparameterized decision problem associated to P . We say that two
instances (I, k) and (I ′, k′) of a parameterized problem P are equivalent if (I, k) is a
yes-instance for P if and only if (I ′, k′) is a yes-instance for P .

A kernelization is an algorithm that, given an instance (I, k) of P , computes in
polynomial time an equivalent instance (I ′, k′) of P (the kernel) such that |I ′|+k′ ≤ f(k)
for some computable function f : N→ N. We say that f measures the size of the kernel.

A data reduction rule is an algorithm that takes as an input an instance I of a
problem P , and outputs another instance I ′ of P . We say that a data reduction rule R
is correct if the new instance I ′ that results from applying R to I is equivalent to I ′. We
say that R is exhaustively applied to an instance I if further application of this rule has
no effect on the instance.

2.3 Maximum Flow

In this section, we define the problems Maximum Flow and k-Flow, and any notation
related to the problems that are used throughout this work. Lastly, we will present the
Ford-Fulkerson method [FF56] for solving Maximum Flow.

Let D be a directed graph. A capacity function is a total function c : A(D) → N0.
We denote by C := max{c(a) | a ∈ A(D)} the maximum capacity of c. For the sake of
convenience, if (u, v) 6∈ A(D), then we assume c((u, v)) = 0.

We start by defining what a flow is.

Definition 2.1 (Flow). Let D be a directed graph, let s 6= t ∈ V (D) be two terminals,
and let c : A(D) → N0 be a capacity function. We call a function f : A(D) → N0

an s–t-flow on D, if

∀a ∈ A(D) : 0 ≤ f(a) ≤ c(a) (capacity constraint), and

∀v ∈ V (D) \ {s, t} :
∑

u∈N−(v)

f((u, v))−
∑

w∈N+(v)

f((v, w)) = 0 (conservation constraint).

The value of flow f is defined as val(f) :=
∑

(s,v)∈A(D) f((s, v)).
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A maximum s–t-flow is an s–t-flow of maximum value. For better readability, we
denote by c(u, v) the capacity, and by f(u, v) the flow on the arc (u, v) ∈ A(D).

Let D be a graph and let D′ be a subgraph of D. Let f : A(D) → N0 be a flow
on D, and let f ′ : A(D′) → N0 be a flow on D′. Then, we define f + f ′ to be the
flow f ′′ : A(D)→ N0, where

∀(u, v) ∈ A(D′) : f ′′(u, v) := f(u, v) + f ′(u, v), and

∀(u, v) ∈ A(D) \A(D′) : f ′′(u, v) := f(u, v).

Throughout this work, we are going to work with so-called residual graphs. Given a
graph D and a flow f , the residual graph shows along which arc flow can be sent, and
the residual capacity of an arc shows how much flow can be sent along the arc.

Definition 2.2 (Residual graph and capacities). Let D be a graph, let c : A(D) → N0

be a capacity function, and let f : A(D) → N0 be a flow. The directed graph Df with
vertex set V (Df ) = V (D) and arc set

A(D) = {a | a ∈ A(D) ∧ 0 ≤ f(a) < c(a)} ∪ {↼a | a ∈ A(D) ∧ 0 < f(a) ≤ c(a)}
is called the residual graph of D with respect to f . The capacity function cf : A(Df )→ N0

where
∀a ∈ A(Df ) : cf (a) = c(a)− f(a) + c(

↼
a)

is called the residual capacity function with respect to f .

We are now ready to state the main problem of this work:

Maximum s–t-Flow (Maximum Flow)

Input: A directed graph D, two vertices s 6= t ∈ V (D), and a capacity func-
tion c : A(D)→ N0.

Task: Compute a maximum s–t-flow.

An instance I of Maximum Flow is a four-tuple (D, s, t, c) consisting of a directed
graph D, two terminals s 6= t, and a capacity function c.

The above problem is an optimization problem, since the task is to find a flow of
maximum value. In some cases, we are only interested whether there exists a flow of
some value k. For this, we define the corresponding decision problem:

k-Flow
Input: A directed graph D, two vertices s 6= t ∈ V (D), arc capaci-

ties c : A(D)→ N0 and an integer k ∈ N.
Question: Is there an s–t-flow of value at least k in D?

An instance I of k-Flow is a five-tuple (D, s, t, c, k) where the first four entries are the
same as for Maximum Flow, and the fifth entry is the integer k.

Let I = (D, s, t, c) be an instance of Maximum Flow. Then we call the correspond-
ing maximum s–t-flow f the solution for I. Let I and I ′ be two instances of Maximum
Flow, and let f and f ′ be the corresponding solutions for I and I ′ respectively. We say
that I and I ′ are equivalent if val(f) = val(f ′).

Since k-Flow is a decision problem, the definition of equivalence follows from Sec-
tion 2.2: Two instances I, I ′ of k-Flow are equivalent if I is a yes-instance if and only
if I ′ is a yes-instance.
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Algorithm 2.1: The Ford-Fulkerson method [FF56].

1 Initialize flow f such that for all (u, v) ∈ A(D), f(u, v) = 0.
2 while there is an s–t-path P in Df do
3 Let δ := min{cf (a) | a ∈ A(P )} be the smallest capacity in P .
4 Send flow of δ along the arcs of P , that is, ∀a ∈ A(P ) : f(a) := f(a) + δ.

5 end

The Ford-Fulkerson method. In some of the proofs in the following chapters we
make use of one of the easiest combinatorial algorithms for Maximum Flow—the Ford-
Fulkerson method [FF56]. It is described in Algorithm 2.1.

The algorithm works as follows: It sends flow along s–t-paths in Df , until there are
no more s–t-paths in Df . To prove that f is a maximum s–t-flow on termination, Ford
and Fulkerson [FF56] stated the following seminal theorem:

Theorem 2.3. Let D be a graph, let s 6= t ∈ V (D) be two terminals and let c be
a capacity function on D. Then, an s–t-flow f is maximum if and only if there is
no s–t-path in Df .



Chapter 3

Preprocessing

Preprocessing simple parts of a problem instance can often lead to highly improved
running times. A cardinal example for this are ILP-solvers [AS05; GG11; Sav94], but
preprocessing also has its justification in the world of combinatorial algorithms [Bag+12;
BBN14; Bru+12]. Another hot topic related to preprocessing is the field of finding prob-
lem kernels. Recently, problem kernels have become a field of interest for polynomial-time
algorithms. Examples for this are the works of Mertzios, Nichterlein, and Niedermeier
[MNN17] for Maximum Matching, [Flu+17] for Graph Hyperbolicity and of Ben-
tert et al. [Ben+17] for Triangle Enumeration.

In 2011, Liers and Pardella [LP11] presented data reduction rules for Maximum
Flow. Their rules can be split into two categories: reducing high capacities and con-
tracting arcs of high capacities. While applying the rules exhaustively takes O(n5) time
in the worst case, they have shown that in practice, applying their rules before executing
some of the established algorithms for Maximum Flow yields running time improve-
ments over executing the algorithms without application of their rules.

Inspired by the work on kernels for polynomial-time solvable problems and by the
effectiveness of the preprocessing by Liers and Pardella [LP11], we consider four data
reduction rules for Maximum Flow in this chapter. Three of the four rules are based on
so-called assumptions made by Weihe [Wei97]. The rules are simpler in nature than the
preprocessing rules by Liers and Pardella; each of the rules can be applied in quasilinear
time respectively. We show that the exhaustive application of three of the four rules
yield a linear kernel in the feedback edge number of the underlying undirected graph,
computable in quasilinear time. Ideally, we would be able to apply all four reductions
rules together in quasilinear time, but this proves to be very challenging. Nevertheless,
we were able to provide anO(nm)-time algorithm for applying the four rules exhaustively
together.

Chapter outline. In Section 3.1 we present four data reduction rules and prove their
correctness. Next, in Section 3.2 we show that an exhaustive application of the first
three reduction rules can be done in quasilinear time and yields a problem kernel linear
in the size of the feedback edge number of the underlying undirected graph. Finally,
in Section 3.3 we depict an O(nm)-time algorithm for applying all four reduction rules
exhaustively and discuss the possibility and challenges of doing so in quasilinear time.

23



24 CHAPTER 3. PREPROCESSING

3.1 Reduction Rules for Maximum Flow

In this section we will state the four data reduction rules and prove that they are correct.
The first two rules are based on an assumption stated by Weihe [Wei97]. The assumption
and the two rules follow from the obvious fact that a maximum s–t-flow only sends flow
along arcs that are visited by some s–t-path.

Observation 3.1. Let I = (D, s, t, c) be an instance of Maximum Flow. Then there
exists a maximum s–t-flow f such that for every arc a ∈ A(D) that is not visited by
any s–t-path, f(a) = 0, and for every vertex v ∈ V (D) that is not visited by any s–t-path,
the sum of the incoming flows and the sum of the outgoing flows is zero.

Proof. Let f be the flow obtained by executing the Ford-Fulkerson method [FF56] on I
(see Section 2.3 on page 22). Since the Ford-Fulkerson method only sends flow along
s–t-paths, we have f(a) = 0 for any arc a ∈ A(D) that is not visited by any s–t-path. If
a vertex v ∈ V (D) is not visited by any s–t-path, then its incident arcs are not visited
by any s–t-path either. Hence, no flow is sent through v, that is,∑

u∈N−(v)

f(u, v) =
∑

w∈N+(v)

f(v, w) = 0.

So ideally, to reduce the instance size, one removes every vertex and arc that is not
visited by any s–t-path. Unfortunately, identifying all arcs or vertices that are visited
by some s–t-path in D is NP-hard. It is even NP-complete to decide whether there
exists an s–t-path that visits some given arc a or vertex v as shown in the following
observation.

Observation 3.2. Let D be a directed graph and let s, t ∈ V (D). Then, for a given
arc a ∈ A(D) (or a vertex v ∈ V (D)) it is NP-complete to decide whether there exists
an s–t-path that visits a (or v).

Proof sketch. Clearly the stated problem is in NP. Fortune, Hopcroft, and Wyllie
[FHW80] have shown that, given four vertices s1, s2, t1, t2 ∈ V (D), to decide whether
there exists an s1–t1-path P and an s2–t2-path Q such that P and Q are vertex disjoint
is NP-complete. Adding arc a = (t1, s2) to D yields an equivalent instance to the prob-
lem asking whether arc a is visited by an s–t-path. Adding vertex v with arcs (t1, v)
and (v, s2) yields an equivalent instance to the problem asking whether vertex v is visited
by an s–t-path.

So, the goal of Weihe’s assumption, and thus of our first two data reduction rules, is
to remove as many vertices and arcs as possible, along which no flow can be sent. We
first make a simple observation that allows us to assume that s is a source and t is a
sink, and remove any arc (v, s) and (t, v) otherwise.

Observation 3.3. Let I = (D, s, t, c) be an instance of Maximum Flow. Then
there exists a maximum s–t-flow f such that for every v ∈ N−(s) and for every w ∈
N+(t), f(v, s) = f(t, w) = 0.

We are now ready to state a data reduction rule based on one of the two assumptions
made by Weihe [Wei97].
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s w v

t

(a) There is an s–v-path
and a v–t-path, but there is
no s–t-path visiting v.

s w v

t

(b) This graph does not con-
tain any cut vertices and
no s–t-path visiting v.

s w v

t

(c) There is an s–v-path and
a w–t-path, both via (w, v),
but no s–t-path via (w, v).

Figure 3.1: Three examples to show that the BFS-Rule (a), the Cut-Rule (b) and
Weihe’s Rule (c) do not delete all vertices that are not visited by an s–t-path.

Reduction Rule 3.1 (Weihe’s Rule). Let I = (D, s, t, c) be an instance of Maximum
Flow and let (v, w) ∈ A(D) be an arc such that there exists no s–w-path visiting (v, w)
or no v–t-path visiting (v, w). Then delete (v, w).

Unfortunately, Weihe [Wei97] has not shown how to apply this rule exhaustively in
quasilinear time, and in the scope of this work we were not able to find a way to do
so either. The main challenge we see in applying Weihe’s Rule in (quasi-)linear time is
that after applying the rule on one arc, the rule may become applicable on other arcs
as well. We do not know at this point how to denominate those arcs on which the rule
then becomes applicable. Instead, we introduce two data reduction rules that are based
on, but are not as powerful as Weihe’s Rule. In Section 3.2 we will show that we can
apply the next two reduction rules exhaustively in linear time. The first of the two rules
can be considered as the vertex version of Weihe’s Rule.

Reduction Rule 3.2 (BFS-Rule). Let I = (D, s, t, c) be an instance of Maximum
Flow and let v ∈ V (D) be a vertex such that there exists no s–v-path or no v–t-path.
Then delete v.

Recall that in a path, vertex may be visited twice. Thus the BFS-Rule does not
necessarily remove all vertices that are not visited by an s–t-path, since for some vertex v,
the s–v-paths and v–t-paths may share vertices. Figure 3.1a shows a simple example
for a vertex v that is not removed by the rule, but is not visited by any s–t-path. Note
though that in Figure 3.1a, all s–v-paths and all v–t-paths visit the cut vertex w. We
can generalize on this observation as follows: Given a cut vertex w ∈ V (D), consider
the (weakly) connected components of D − {w}. Then for every component that does
not contain s or t it holds that none of its vertices can be visited by any s–t-path. From
this we derive our second reduction rule.

Reduction Rule 3.3 (Cut-Rule). Let I = (D, s, t, c) be an instance of Maximum
Flow where the BFS-Rule is not applicable, and let w ∈ V (D) be a cut vertex. Let v ∈
V (D)\{s, t} be a vertex such that all s–v-paths and all v–t-paths visit w. Then delete v.

Note that after applying the BFS-Rule and the Cut-Rule exhaustively, our graph
may still contain arcs on which Weihe’s Rule still is applicable. An example can be
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seen in Figure 3.1b. But Weihe’s Rule still cannot delete all arcs that are not visited by
an s–t-path, as shown in Figure 3.1c.

The correctness of the two reduction rules presented so far is easy to see; it follows
from Observation 3.1.

Observation 3.4. The BFS-Rule and the Cut-Rule are correct.

Proof. Let I = (D, s, t, c) be an instance of Maximum Flow. The correctness of the
BFS-Rule follows directly from Observation 3.1.

For showing that the Cut-Rule is correct, let v ∈ V (D) \ {s, t} be a vertex such that
each s–v-path and each v–t-path visits the same cut vertex w. Let Ps = sx1x2 . . . xkv
be any such s–v-path and let Pt = vy1y2 . . . y`t be any such v–t-path. Then the concate-
nation of the two paths sx1 . . . xkvy1 . . . y`t visits w twice, and thus is no path. Hence,
there is no s–t-path visiting v and by Observation 3.1 v can be removed. It follows that
the Cut-Rule is correct.

At this point we can also observe that s cannot be a cut vertex if the BFS-Rule was
applied exhaustively.

Observation 3.5. Let I = (D, s, t, c) be an instance of Maximum Flow on which
the BFS-Rule is not applicable. Then s is not a cut vertex.

Proof. Since s is a source vertex, any neighbor v of s that does not reach t is removed
by the BFS-Rule. Thus, after removing s from D, every vertex still reaches t.

Next, we present two reduction rules that do not only exploit the structure of the
input graph, but also take the capacities of arcs into consideration. The first of the two
rules is based on an assumption by Weihe [Wei97] and deletes vertices of degree two:

Reduction Rule 3.4 (Deg-2-Rule). Let I = (D, s, t, c) be an instance of Maximum
Flow and let v ∈ V (D) \ {s, t} be a vertex of combined degree two, and let u and w
be the neighbors of v. If there exists a u–w-path, then ensure that (u,w) ∈ A(D) (if
necessary, add (u,w) with capacity zero), and increase c(u,w) by min{c(u, v), c(v, w)}.
Proceed analogously if there exists a w–u-path. Then remove v from D.

The correctness of the Deg-2-Rule follows from the flow conservation constraint.

Observation 3.6. The Deg-2-Rule is correct.

Proof. Let I = (D, s, t, c) be an instance of Maximum Flow. Let v ∈ V (D) be a vertex
with two neighbors u and w. Note that, due to the conservation constraint, the highest
flow that can be sent along (u, v) and (v, w) is min{c(u, v), c(v, w)} and the highest flow
that can be sent along (w, v) and (v, u) is min{c(w, v), c(v, u)}. Since any flow passing
through v must also pass through u and w, the Deg-2-Rule can be applied without
changing the value of the maximum s–t-flow of the network and thus is correct.

The last rule that we present exploits that at least one arc of an s–t-path of length
two can be saturated. Hence, we can send flow along this path and remove at least one
of its arcs. Note that the implementation of the work of Boykov and Kolmogorov [BK04]
hints that they apply a similar rule.
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Figure 3.2: An example why the SVT-Rule does not generalize to longer paths.

We formulate the rule for the decision variant k-Flow. For applying the rule on the
optimization variant, Maximum Flow, we need to remember how much flow has been
sent along the path, and then take care of the altered arcs in a postprocessing step (for
further details we refer to Theorem 5.24 on page 66).

Reduction Rule 3.5 (SVT-Rule). Let I = (D, s, t, c, k) be an instance of k-Flow
and let v ∈ V (D) \ {s, t} such that there is a path P = svt in D. Then decrease k
by min{c(s, v), c(v, t)}, and decrease c(s, v) and c(v, t) by the same value. If arc a ∈ A(P )
has capacity zero, delete it.

For showing that the rule above is correct, we prove that there exists an s–t-flow f
such that in any s–t-path of length two the arc with the lower capacity is saturated.

Lemma 3.7. The SVT-Rule is correct.

Proof. Let I = (D, s, t, c, k) be an instance of k-Flow and let v ∈ V (D) be such that
there is a path P = svt in D. We show that from applying the SVT-Rule on P we
obtain an equivalent instance I ′ = (D′, s, t, c′, k′), where k′ = k − min{c(s, v), c(v, t)}.
We execute the Ford-Fulkerson method [FF56] (see Section 2.3 on page 22) on I and
assume without loss of generality that P is the first s–t-path on which we augment. Then
we send flow of value min{c(s, v), c(v, t)} along P . Note that afterwards, the method will
not send flow along the reverse arcs of P since they cannot be visited by any s–t-path.
Hence, when the algorithm terminates, the s–t-flow f computed on I sends flow of value
at least min{c(s, v), c(v, t)} along the arcs of P .

Assume that val(f) ≥ k, thus I is a yes-instance. Let A(P ) = {a, b}, and without
loss of generality let c(a) ≤ c(b). When applied on P , the SVT-Rule decreases c(a)
and c(b) by min{c(a), c(b)} = c(a). We obtain a valid s–t-flow f ′ on I ′ from f by
setting f ′(a) = f(a)− c(a) and f ′(b) = f(b)− c(a). Then,

val(f ′) =
∑

v∈N+
D(s)

f ′(s, v) =
( ∑
v∈N+

D(s)

f(s, v)
)
− c(a) = val(f)−min{c(s, v), c(v, t)} ≥ k′,

implying that I ′ is a yes-instance. Given that I ′ is a yes-instance, we can send additional
flow of value min{c(s, v), c(v, t)} in I, implying that I is a yes-instance as well.

Note that the SVT-Rule does not generalize to longer paths, since it is not necessarily
optimal to saturate the arc with the lowest capacity. An example for this is shown in
Figure 3.2. After choosing the path svwt of length three and removing arc (v, w), one
cannot reach the maximum flow value of 2000. Note that one can add structure to the
graph such that the path svwt is the shortest path.
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3.2 A Kernel for Maximum Flow

In this section we will show that the BFS-Rule, the Cut-Rule and the Deg-2-Rule yield
a kernel with respect to the feedback edge number of the underlying undirected graph.
Recall that a feedback edge set of an undirected graph G is a subset E′ ⊆ E(G) of
edges such that G − E′ is a forest. The feedback edge number of G is the smallest
number k such that there is a feedback edge set of size k in G. A feedback edge set F
of an undirected graph G can be computed in O(n+m) time by computing a spanning
tree T ⊆ G and setting F = E(G) \ E(T ).

We first show that the BFS-Rule, the Cut-Rule and the Deg-2-Rule can be exhaus-
tively applied in quasilinear time. Afterwards we will show how to upper-bound the size
of a correspondingly reduced undirected graph in the feedback edge number. Finally we
will show that the size of an instance of Maximum Flow on which the three aforemen-
tioned reduction rules were exhaustively applied is upper-bounded by a linear function
in the feedback edge number of the input graph. While the parameter feedback edge
number tends to be rather large, this is to the best of our knowledge the first problem
kernel result for Maximum Flow.

As shown in the following, the BFS-Rule can be applied in linear time.

Lemma 3.8. The BFS-Rule can be applied exhaustively in O(n+m) time.

Proof. Let I = (D, s, t, c) be an instance of Maximum Flow. We run a breadth-first

search in D starting in s, and a breadth-first search in the reverse graph
↼

D, starting in t.
Let Bs, Bt ⊆ V (D) be the vertices found by the two search instances, and let s ∈ Bs
and t ∈ Bt. Set D := D[Bs ∩ Bt]. For the correctness of the approach observe that Bs
contains s and all vertices for which there exists an s–v-path in D, and Bt contains t and
all vertices for which there exists a t–v-path in

↼

D, that is, all vertices for which there
exists an v–t-path in D.

Towards determining the running time of applying the BFS-Rule note that we need
to remove at most n vertices, which takes O(

∑
v∈V (D) deg(v)) ⊆ O(m) time. Computing

a breadth-first search takes O(n+m) time, so overall we need O(n+m) time to apply
the BFS-Rule exhaustively.

We apply the Cut-Rule by running a modified depth-first search on the underlying
undirected graph G(D) starting in s. In the following we describe the algorithm in detail
(see also Algorithm 3.1). The approach is based on an algorithm to find cut vertices as
shown by Even [Eve11, Chapter 3].

Towards showing that Algorithm 3.1 exhaustively applies the Cut-Rule we first fix
some notation. Let T be the search tree rooted in s resulting from the depth-first
search computed in lines 3 to 11 of Algorithm 3.1. The edges E(G(D)) of the under-
lying undirected graph can be partitioned into the sets of tree edges E(T ) and back
edges E(G(D)) \E(T ). During the search, every vertex s 6= v 6= t is given an increasing
number r(v) ≥ 2. We call this number r(v) the traversal number of v. Vertices s and t
are assigned the traversal numbers zero and one, respectively. The lowpoint `(v) of v is
the lowest traversal number r(w) of a vertex w that can be reached from v by a path
(possibly of length zero) downwards along T , followed by at most one back edge. It is
easy to see that this is the same as the smallest of the following:
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Algorithm 3.1: Implementation of the Cut-Rule.

1 Let S be a stack, set k = 2, and set r(v) =∞ for all v ∈ V (D).
2 Push s onto S.
3 while stack S is not empty do (Depth-first search starting in s)
4 Pop uppermost vertex v from stack S.
5 if r(v) =∞ then
6 if v = s then Set r(v) = 0. (Special numbering for s and t)
7 else if v = t then Set r(v) = 1.
8 else Set r(v) = k and increase k by one.

9 for w ∈ N(v) do Push w onto S.

10 end

11 end

12 Let T be the search tree rooted in s resulting from the depth-first search above.
13 for w ∈ V (T ), bottom-up towards s do

14 Set `(w) = min


r(w),

min{`(v) | v is a child of w},
min{r(v) | {v, w} ∈ E(G(D)) \ E(T )}.


(Remove all children v of w that have `(v) ≥ r(w) and do not lead to t)

15 for each child v of w with respect to T do
16 if w 6= s then
17 if `(v) ≥ r(w) then Remove v and its ancestors.
18 end

19 end

20 end

(1) the traversal number of v,

(2) the smallest of the lowpoints of the children of v, and

(3) the smallest of the traversal numbers of those neighbors of v that are reachable by
back edges.

The formal computation of `(v) can be found in line 14 of Algorithm 3.1. Afterwards,
for all vertices w 6= s we remove a child v and its ancestors if `(v) ≥ r(w). Towards
showing that this is exactly the set of vertices as described in the Cut-Rule we show the
following lemma.

Lemma 3.9. Let I = (D, s, t, c) be an instance of Maximum Flow on which the
BFS-Rule is not applicable. Let w ∈ V (D) \ {s} and let v be a child of w with respect
to the search tree T . Let T ′ be the subtree of T rooted at v. Then, for all v′ ∈ V (T ′),
all s–v′-paths and v′–t-paths visit w if and only if `(v) ≥ r(w).

Proof. Suppose first that for all v′ ∈ V (T ′), all s–v′-paths and v′–t-paths visit w. Then
there cannot be any back edges connecting vertices of V (T ′) with vertices of V (T ) \
(V (T ′)). Hence, `(v) ≥ r(w).
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Suppose now that `(v) ≥ r(w). We assume towards a contradiction that t can
be reached from v′ ∈ V (T ′) without visiting w. Clearly, r(w) ≥ r(t). If t ∈ V (T ′),
then w 6= t and t = v or t is an ancestor of v. Thus `(v) ≤ r(t). By definition, r(t) <
r(w), contradicting `(v) ≥ r(w). Thus t 6∈ V (T ′) and we need to bypass w by using a
back edge from v′ to a descendant of t. Assume that there is such a back edge {v′, t′}
where t′ ∈ V (T ) \ (V (T ′) ∪ {w}) and `(t′) ≤ r(t). By Even [Eve11, Lemma 3.4] a back
edge may only connect a vertex to one of its descendants. So t′ must be a descendant
of v′, and also of w. Hence, r(t′) < r(w). Due to edge {v′, t′} we have `(v) ≤ r(t′) < r(w),
contradicting `(v) ≥ r(w). Thus back edge {v′, t′} cannot exist and v cannot reach t
without visiting w. Since r(s) < r(t), v cannot reach s without visiting w either.

With Lemma 3.9 and Observation 3.5 at hand we can prove that the Cut-Rule is
applicable in linear time.

Lemma 3.10. Given an instance of Maximum Flow where the BFS-Rule is not ap-
plicable, Algorithm 3.1 exhaustively applies the Cut-Rule in O(m) time.

Proof. The correctness of Algorithm 3.1 follows from Lemma 3.9 and Observation 3.5.
A depth-first search can be executed in O(n + m) time. Our modification to the

search is to check whether a vertex is s or t, and to assign a different traversal number.
This can be accomplished in constant time and thus does not affect the running time of
our depth-first search.

The search tree T can be computed in linear time as well. In line 13, the bottom-up
ordering of the vertices w can be found by a traversal of T , also running in linear
time. The computation of `(w) accesses the traversal numbers of other vertices and the
lowpoint values of the children of w. The traversal numbers are already known, and
since we traverse the vertices of T in a bottom-up manner, the lowpoint values of the
children of w are known at this point as well. So the computation of all lowpoint values
can be done in O(m) time.

For the for-loop starting in line 15 observe that iterating over the children of a tree in
a bottom-up manner takes O(

∑
v∈V (T ) degT (v)) ⊆ O(mT ) ⊆ O(n) time. Since a deletion

of a vertex v runs in O(degD(v)) time, and every vertex can be visited only once, the
deletion step in line 17 can be done in overall O(

∑
v∈V (D) degD(v)) ⊆ O(m) time. All

in all, the time required to run Algorithm 3.1 is in O(m), given that the BFS-Rule was
exhaustively applied.

Lastly, before showing that we can apply the BFS-Rule, the Cut-Rule and the
Deg-2-Rule together exhaustively in quasilinear time, we need to show how to apply
the Deg-2-Rule exhaustively.

Lemma 3.11. The Deg-2-Rule can be applied to a single vertex v in O(log n) time and
exhaustively in O((m+ n) log n) time.

Proof. Let v ∈ V (D) \ {s, t} be a vertex with two neighbors u and w. Towards applying
the Deg-2-Rule on a vertex v ∈ V (D), assume that the arc set of D is managed in an
AVL-tree. We can then check the degrees of v in constant time. If the only neighbors
of v are u and w, then we can check in O(log n) time whether arcs (u,w) and (w, u)
exist. If any of them do not exist, then we add them to the arc set. Removing v and
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its incident arcs and increasing the capacities of the arcs between u and w can then be
done in O(log n) time. If an arc that was added in the process has capacity zero, then
we dispose of it.

Since the reduction rule applies to at most n− 2 vertices, it can be applied exhaus-
tively in O(n log n) time if the arcs of D are managed in an AVL-tree, and in O((m +
n) log n) time otherwise.

Given Lemmata 3.8, 3.10 and 3.11 it is easy to see that we can exhaustively apply
the BFS-Rule, the Cut-Rule and the Deg-2-Rule in quasilinear time:

Observation 3.12. The BFS-Rule, the Cut-Rule and the Deg-2-Rule can be applied
exhaustively in O((m+ n) log n) time.

Proof. Let I = (D, s, t, c) be an instance of Maximum Flow.

We apply the BFS-Rule, the Cut-Rule and the Deg-2-Rule in that order. By Lem-
mata 3.8, 3.10 and 3.11 this can be done in O(m+ n+m+ n log n) ⊆ O(m log n) time
if A(D) is sorted, and in O(m + n + m + (m + n) log n) ⊆ O((m + n) log n) time oth-
erwise. Note that deleting the set of vertices V w ⊆ V (D) that reach s and t only via
a cut vertex w ∈ V (D) does not affect the existence of s–u-paths or u–t-paths for ver-
tices u ∈ V (D) \ V w. This means that if the BFS-Rule was applied exhaustively then it
does not become applicable from applying the Cut-Rule. Note further that the operations
of the Deg-2-Rule do not change the reachability between the neighbors u and w and the
endpoints s and t. Hence, if the BFS-Rule and the Cut-Rule were applied exhaustively
beforehand, they do not become applicable from applying the Deg-2-Rule.

Having shown that we can apply the three reduction rules (BFS-Rule, Cut-Rule and
Deg-2-Rule) in quasilinear time, we can advance towards showing that Maximum Flow
admits a kernel of size linear in the feedback edge number. As a last prerequisite we show
the following lemma upper-bounding the size of an undirected reduced graph linearly in
the feedback edge number.

Lemma 3.13. Let G be an undirected graph that contains n1 vertices of degree one
and n2 vertices of degree two, and let F ⊆ E(G) be a minimum feedback edge set of
size k. Then nG ≤ 6k + 2n1 + n2 and mG ≤ 7k + 2n1 + n2.

Proof. Without loss of generality assume that G is connected (otherwise, consider each
connected component separately). Let F ⊆ E(G) be a minimum feedback edge set of G,
and let k := |F |. Let V1(G−F ), V2(G−F ) and V≥3(G−F ) be the sets of vertices of G−F
that are of degree one, two and at least three, respectively. A vertex v ∈ V (G − F ) is
in V1(G − F ) either because it is a degree-one vertex in G, or because it is incident to
at least one edge in F . Since removing an edge from G lowers the degree of the two
incident vertices, we have |V1(G−F )| ≤ n1 + 2k. With the same argumentation one can
also upper-bound the number of degree-two vertices |V2(G− F )| by n2 + 2k.

Since G − F is a tree, and in a tree we have m = n − 1, and in any graph H we
have

∑
v∈V (H) deg(v) = 2mH , we can upper-bound the number of vertices of degree at
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least three by solving

3|V≥3(G− F )|+ 2|V2(G− F )|+ |V1(G− F )|
≤

∑
v∈V (G−F )

deg(v) = 2(|V (G− F )| − 1)

= 2
(
|V≥3(G− F )|+ |V2(G− F )|+ |V1(G− F )| − 1

)
⇐⇒ |V≥3(G− F )| ≤ |V1(G− F )| − 2 ≤ n1 + 2k − 2.

Altogether, we have

nG = |V1(G− F )|+ |V2(G− F )|+ |V≥3(G− F )| ≤ 6k + 2n1 + n2.

As G−F is a tree, we have mG = mG−F +k ≤ nG−1+k, thus mG ≤ 7k+2n1 +n2.

Since any instance of Maximum Flow in which the BFS-Rule, the Cut-Rule and
the Deg-2-Rule are not applicable does not contain any vertices of degree less than three,
Lemma 3.13 yields a quasilinear-time kernel for Maximum Flow linear in the size of
the feedback edge number of the underlying undirected graph.

Theorem 3.14. Maximum Flow admits a kernel computable in quasilinear time and
consisting of at most 6k + 6 vertices and at most 14k + 12 arcs, where k is the feedback
edge number of the underlying undirected graph G(D).

Proof. Let I = (D, s, t, c) be an instance of Maximum Flow. We apply the BFS-Rule,
the Cut-Rule and the Deg-2-Rule in that order. By Observation 3.4 this results in an
equivalent instance I ′ = (D′, s, t, c′) and by Observation 3.12 the application is exhaus-
tive and can be done in O((m+ n) log n) time.

Observe that D′ is connected due to the BFS-Rule and that D′ contains at most two
degree-one vertices, namely s and t. If any other vertex v has (combined) degree one,
then all s–v-paths and all v–t-paths visit the unique neighbor w of v. Since w then is a
cut vertex, this contradicts the assumption that the Cut-Rule was applied exhaustively.
Further, due to the Deg-2-Rule, D′ contains at most two vertices of (combined) degree
two. By Lemma 3.13, we have |V (D′)| ≤ 6k+ 6. Since the directed graph may have two
arcs (in both directions) between a pair of vertices, we have |A(D′)| ≤ 2|E(G(D))| ≤
14k + 12.

The best known algorithm for Maximum Flow runs in Õ(n
√
m log2C) time [LS14].

Applying this algorithm on the reduced instance gives us the following.

Corollary 3.15. Maximum Flow can be solved in O((m+n) log n+k3/2 · log2C) time,
where k is the feedback edge number of the underlying undirected graph G(D).

3.3 Towards Exhaustively Applying all Reduction Rules

While not all known reduction rules are always needed for finding a problem kernel,
it is typically valuable in practice to be able to apply all known reduction rules for a
given problem exhaustively in as little time as possible. As shown in Observation 3.12,
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we can apply three of the four reduction rules (BFS-Rule, Cut-Rule and Deg-2-Rule) in
quasilinear time. Our goal is to apply all four reduction rules (including the SVT-Rule) in
the same time bound. Unfortunately we were not able to fulfill this goal. This section is
dedicated to show the challenges that come with this goal by showing how the reduction
rules depend on each other, and which dependencies pose algorithmic challenges for the
quasilinear exhaustive application. We will then show that the four reduction rules can
be applied in O(nm) time.

We first define what it means if a reduction rule depends on another reduction rule.

Definition 3.16. (Dependency) Let A and B be reduction rules and let I be an in-
stance of Maximum Flow on which reduction rule A is not applicable. We say that
reduction rule A depends on B if A may become applicable after applying B. We call
the dependency local if after applying B one can determine in O(log n) time on which
vertices A becomes applicable.

Figure 3.3 depicts an example instance of Maximum Flow. Following the order of
application of the reduction rules as shown below the figures, one can find all depen-
dencies between the four reduction rules and compare with Figure 3.4—a display of all
dependencies between the reduction rules. Overall there can be at most 2 ·

(
4
2

)
= 12

dependencies between four reduction rules. By showing which rules do not depend on
each other we prove that Figure 3.4 is complete.

Observation 3.17. The BFS-Rule does not depend on the Cut-Rule, the BFS-Rule and
the Cut-Rule do not depend on the Deg-2-Rule, and the SVT-Rule does not depend on
the BFS-Rule and the Cut-Rule.

Proof. It is shown in the proof of Observation 3.12 that the BFS-Rule does not depend on
the Cut-Rule and that the BFS-Rule and the Cut-Rule do not depend on the Deg-2-Rule.
The SVT-Rule does not depend on the BFS-Rule or on the Cut-Rule since the latter
two rules only remove vertices; the arc set of the remaining subgraph is not altered.

Next, we want to show that some of the dependencies between the reduction rules
are local. Towards this we first need to show how to apply the SVT-Rule.

Lemma 3.18. The SVT-Rule can be applied to a single vertex v in O(log n) time and
exhaustively in O((m+ n) log n) time.

Proof. Assume that the arcs of D are managed in an AVL-tree. Checking the existence
and capacity of arcs (s, v) and (v, t) for a given vertex v can be done in O(log n) time.
Removing at least one of the two arcs and updating their capacities according to the
SVT-Rule can then be done in O(log n) time. Since the SVT-Rule can be applied to at
most n− 2 vertices, an exhaustive application takes O(n log n) time if the arc set of D
is managed in an AVL-tree, and O(m log n) time otherwise.

We are now ready to show that the dependencies that are displayed blue (dash-
dotted) in Figure 3.4 are local.

Lemma 3.19. The dependencies of the Deg-2-Rule on the BFS-Rule, the Cut-Rule and
the SVT-Rule as well as the dependency of the SVT-Rule on the Deg-2-Rule are local.
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Figure 3.3: An example instance of Maximum Flow which can be reduced to a
path st by applying the four reduction rules in the correct order. Applying the named
reduction rule on the marked vertices (orange, dotted) yields the instance shown in the
next figure. Assume that we have capacities a < b. Note that if in step (f) the arc with
capacity a at the marked vertex were directed the other way, then the Deg-2-Rule would
become applicable, showing that the Deg-2-Rule depends on the SVT-Rule.

BFS Cut

Deg-2SVT Figure 3.4: Displaying the dependencies
of the four reduction rules. An arc (A,B)
means that reduction ruleB depends onA.
The dependency is local if the arc is blue
(dash-dotted, proven in Lemma 3.19). If
the arc is orange (solid), then it is not
known whether the dependency is local.
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Figure 3.5: The challenge in the three “non-local” dependencies: By applying rule A
on v (or svt), rule B become applicable on subgraph D′ in the examples.

Proof. Let I = (D, s, t, c) be an instance of Maximum Flow and assume that the
Deg-2-Rule is not applicable. Observe that if the BFS-Rule or 3.3 applies to some
vertex v ∈ V (D) \ {s, t}, then it is removed and the degree of the neighbors of v is
updated. If the degree of a neighbor u ∈ N(v)\{s, t} becomes two, then the Deg-2-Rule
becomes applicable on u. By keeping a counter for the degree of every vertex, we
can determine in constant time whether u has degree two; thus the dependency of the
Deg-2-Rule on the BFS-Rule and the Cut-Rule is local.

For showing that the dependency of the Deg-2-Rule on the SVT-Rule is local, let P =
svt ⊆ D. When applying the SVT-Rule on P , then only the degrees of s, v and t are
changed. When removing at least one of the arcs, the degree counter of s, v and t is
updated; thus we can check in constant time whether the Deg-2-Rule becomes applicable
on v.

Lastly, we show that the SVT-Rule depends locally on the Deg-2-Rule. Assume that
the SVT-Rule is not applicable on I and that D contains a path of the type P = svwt
or Q = swvt, where w is a degree-two vertex. Then, after applying the Deg-2-Rule
to w, the SVT-Rule becomes applicable on P or Q. Since the Deg-2-Rule only adds
arcs between the neighbors of the removed vertex w if the arcs did not exist yet, the
SVT-Rule can only become applicable to v, which can be checked in O(log n) time.

We can exhaustively apply the BFS-Rule, the Cut-Rule and the Deg-2-Rule together
in quasilinear time, and we can exhaustively apply the SVT-Rule by itself in quasilinear
time. Ideally one could apply all four reduction rules together in quasilinear time as
well. Due to the dependencies of the BFS-Rule and the Cut-Rule on the SVT-Rule and
the dependency of the Cut-Rule on the BFS-Rule, this turns out to be challenging. We
show examples for these dependencies in steps a, b and e of Figure 3.3. Note that after
the BFS-Rule or the Cut-Rule become applicable due to one of their dependencies, they
do not necessarily become applicable only on a single vertex. It is as well possible that
they become applicable on multiple vertices, as shown in Figure 3.5.

We do not know any way to check in less than O(m) time whether the BFS-Rule or
the Cut-Rule is applicable even to a single vertex, and we leave it as an open question
whether it is possible to apply the four reduction rules exhaustively in quasilinear time.
Instead, in the following, we show a simple way to exhaustively apply the four reduction
rules together within a less strict time bound.
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Algorithm 3.2: Exhaustive application of the four reduction rules.

1 Apply the SVT-Rule exhaustively.
2 while the BFS-Rule, the Cut-Rule or the Deg-2-Rule is applicable do
3 Apply the BFS-Rule and then the Cut-Rule exhaustively.
4 while the Deg-2-Rule is applicable to some vertex v do
5 Apply the Deg-2-Rule on v.
6 if there is an u ∈ N(v) such that there is a path sut then Apply the

SVT-Rule on sut.

7 end

8 end

Theorem 3.20. The Reduction Rules 3.2 to 3.5 (BFS-Rule, Cut-Rule, Deg-2-Rule and
SVT-Rule) can be applied exhaustively in O(nm) time.

Proof. Let I = (D, s, t, c) be an instance of Maximum Flow. We apply the four
reduction rules by running Algorithm 3.2.

Note that when starting an iteration of the first while-loop (line 2), the SVT-Rule
is not applicable. By Observation 3.17 it does not become applicable after applying the
BFS-Rule or the Cut-Rule, but by Lemma 3.19 it depends locally on the Deg-2-Rule. It
follows that Algorithm 3.2 applies the four reduction rules exhaustively.

Next, observe that during the applications of the BFS-Rule and the Cut-Rule we
are able to remember all vertices that have degree two with constant time overhead.
Also, after applying the SVT-Rule on a path svt we can check whether v is of degree
two. Lastly, also the Deg-2-Rule can generate new degree-two vertices, which can also
be remembered in constant time. Thus, when entering the second while-loop (line 4),
we can determine a vertex v of degree two in constant time.

Finally, we discuss the running time of Algorithm 3.2. Note first that an iteration
of the second while-loop takes O(log n) time, since the Deg-2-Rule and the SVT-Rule
take O(log n) time to apply (see Lemmata 3.11 and 3.18) and are applied at most once
per iteration. Further, since in each iteration of the second while-loop the Deg-2-Rule is
applied, the number n of vertices in D is decreased by one in every iteration. Note that
when entering the first while-loop, one out of the Reduction Rules 3.2 to 3.4 (BFS-Rule,
Cut-Rule, Deg-2-Rule) is applicable. Each application of these rules removes a vertex.
Hence, for each iteration over the first while-loop, n is decreased by at least one. It
follows that for each vertex removed, we have spent either O(log n) or O(m) time. Since
in weakly connected directed graphs m ≥ 2(n − 1), we have O(log n) ⊆ O(m). Thus it
takes O(nm) time to run Algorithm 3.2.

While the O(nm) time bound for Algorithm 3.2 matches the running time of the best
Maximum Flow algorithm that does not depend on the maximum capacity [Orl13],
it is outperformed by the Õ(m

√
n log2C)-time algorithm by Lee and Sidford [LS14]

whenever C ∈ 2o(
4√n). Still, Algorithm 3.2 is farly less complex than the latter two

algorithms for Maximum Flow. Thus, while theoretically the exhaustive application
of the four reduction rules yields no benefit, it is possible that in practice it leads to a
significant improvement of the running time.



Chapter 4

When Maximum Flow is Not
Easy to Solve

In this chapter we want to present results of two kinds: first, that fixed-parameter
algorithms with certain parameters are unlikely for Maximum Flow, and second, that
there are presumably no faster1 algorithms for Maximum Flow on certain classes of
graphs. Herein, the first kind of results rely on a notion called General Problem hardness
by Bentert et al. [Ben+17], and the second kind is inspired by it.

Both of these kinds of results usually rely on running time lower bounds for the
general problem. Having been a hot research topic for decades, the best running time
upper bounds for Maximum Flow have been improved steadily. When, before 2013, it
still was an open question whether the “magical” [HW07] upper bound of O(nm) will
be reached, by now it has been met [Orl13] and even improved upon (Õ(m

√
n log2C)

[LS14]). But to this date, no running time lower bounds are known for Maximum Flow.
Even further, Carmosino et al. [Car+16] have shown that it is unlikely that one can find
a lower bound for Maximum Flow with one of the popular tools for showing lower
bounds for polynomial-time solvable problems, namely fine-grained reductions [VW15]
in combination with the Strong Exponential Time Hypothesis [IPZ01]. Thus, instead
of ruling out fast algorithms for Maximum Flow with respect to certain parameters
or structural restrictions to the instance, we present results that show that such fast
algorithms would lead to algorithms for the general problem (unparameterized or without
structural restrictions) that are significantly faster than the best algorithms known to
date. Achieving such running times for the general Maximum Flow problem would
be considered a breakthrough result. From a positive point of view, some of the results
presented in this chapter can also be used as guidelines for designing Maximum Flow
algorithms. For example, we show that one can modify any instance of Maximum Flow
in linear time such that it becomes bipartite (Corollary 4.6). Hence, when designing an
algorithm, one can assume that the input is bipartite. This “technique” was already used
by Weihe [Wei97] when presenting an O(n log n)-time algorithm for Maximum Flow
on planar graphs: He formulated as an assumption that every instance of Maximum
Flow can be modified in such a way that is has maximum degree three. In Section 4.2

1By “faster” we mean algorithms with running times faster than the best current algorithms for
general Maximum Flow.
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we present in great detail how to construct an instance with maximum degree three from
any instance of Maximum Flow in Section 4.2.

Chapter outline. In Section 4.1 we introduce the notion of General Problem hardness
as by Bentert et al. [Ben+17] and, as a warm-up, present four simple General Problem
hardness results for Maximum Flow. In Section 4.2 we show that a fast fixed-parameter
algorithm for Maximum Flow with respect to the maximum degree of the input graph
implies an equivalently fast unparameterized algorithm for Maximum Flow, and that
Maximum Flow is General-Problem-hard with respect to the maximum degree for
instances with large capacities, that is, the largest capacity of the instance is at least as
large as the maximum degree. This result is based on an observation made by Weihe
[Wei97]. Lastly, we show in Section 4.3 that a linear-time algorithm for Maximum
Flow on graph classes that contain complete graphs implies an O(n2)-time algorithm
for Maximum Flow on general graphs.

4.1 A Primer on General Problem Hardness

In this section we describe General Problem hardness (GP hardness)—a notion intro-
duced by Bentert et al. [Ben+17]—and present four applications of it on the Maximum
Flow problem.

The General Problem hardness relates parameterized problems to their unparame-
terized (general) counterpart and proves that the parameterized version of a problem is
not easier to solve than the unparameterized version of the problem. It is defined as
follows:

Definition 4.1 ([Ben+17]). Let P ⊂ Σ∗×N be a parameterized problem, let f : N→ N
be a function, and let Q ⊆ Σ∗ be the unparameterized decision problem associated to P .
We call P `-General-Problem-hard(f) (`-GP-hard(f)) if there exists an algorithm A
transforming any input instance I of Q into a new instance (I ′, k′) of P such that

(1) A runs in O(f(|I|)) time,
(2) I ∈ Q ⇐⇒ (I ′, k′) ∈ P ,

(3) k′ ≤ `, and
(4) |I ′| ∈ O(|I|).

We call P General-Problem-hard(f) (GP-hard(f)) if there exists an integer k such that P
is k-GP-hard(f). We omit the running time and call P k-General-Problem-hard (k-GP-
hard) if f is a linear function.

The central idea behind GP hardness is that if one can preclude the existence of
an O(f(|I|)-time algorithm for Q and is able prove that P is GP-hard, then one can also
preclude an algorithm that solves P in O(g(k) ·f(|I|)) time for a computable function g.
This is put to record in the following lemma.

Lemma 4.2 ([Ben+17]). Let f : N→ N be a function, let P ⊆ Σ∗×N be a parameterized
problem that is `-GP-hard(f), and let Q ⊆ Σ∗ be the unparameterized decision problem
associated to P . If there is an algorithm solving each instance (I, k) of P in O(g(k) ·
f(|I|)) time, then there is an algorithm solving each instance I ′ of Q in O(f(|I ′|)) time.

We are now going to present four simple GP hardness results for Maximum Flow
with respect to the parameters domination number, degeneracy, bisection width and
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Figure 4.1: Constructions for showing GP hardness with respect to the domination
number and the degeneracy of D.

distance to bipartite graphs. With the four results we can show that linear-time fixed-
parameter algorithms for Maximum Flow with respect to these parameters imply
linear-time algorithms for Maximum Flow.

Recall that a dominating set of an undirected graph G is a vertex subset V ′ ⊆ V (G)
such that N [V ′] = V (G), and that the domination number of G is the smallest number γ
such that there exists a dominating set of size γ. The bisection width of G is the smallest
number of edges that need to be removed such that G has two connected components
whose number of vertices differ by at most one. The degeneracy of G is the smallest
number d such that every subgraph of G contains at least one vertex of degree at most d.
Lastly, the distance to bipartite graphs of G is the number of vertices that need to
be removed such that the vertices of the resulting graph can be partitioned into two
independent sets.

In order to show that Maximum Flow is GP-hard with respect to the domination
number of the underlying undirected graph, we only need to add one vertex to the
instance.

Proposition 4.3. Maximum Flow is 1-GP-hard with respect to the domination num-
ber γ of the underlying undirected graph G(D) of D.

Proof. Let I = (D, s, t, c) be an instance of Maximum Flow. We create an instance I ′ =
(D′, s, t, c′) such that G(D′) has domination number one by adding a source vertex that
is adjacent to all vertices in V (D). Formally, we set V (D′) := V (D)∪{w} and A(D′) :=
A(D) ∪ {(w, u) |u ∈ V (D)} and set c′(w, u) := 1 for all u ∈ V (D) and c′(u, v) := c(u, v)
for all (u, v) ∈ A(D). See Figure 4.1a for an illustration.

Since N(w) ∪ {w} = V (D′), the singleton {w} is a dominating set in D′, and the
domination number γ of D is one. Further, w is a source, and thus by Observation 3.4,
no flow will pass through w. Since D = D′ −{w}, the maximum s–t-flow is the same in
both graphs, and hence, the two instances are equivalent, and constructing I ′ takesO(|I|)
time.

It is similarly easy to see that Maximum Flow is GP-hard with respect to the
bisection width of the underlying undirected graph G(D).

Proposition 4.4. Maximum Flow is 0-GP-hard with respect to the bisection width of
the underlying undirected graph G(D) of D.
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Proof. Let I = (D, s, t, c) be an instance of Maximum Flow. Let D′ be the disjoint
union of two copies of D, and let c′ : V (D)2 → N0 be the capacity function that assigns
the same capacities to the copies of D as c. Let s′, t′ ∈ V (D′) be the vertices correspond-
ing to the vertices s and t in one of the two copies of D. Then instance I ′ = (D′, s′, t′, c′)
has bisection width zero. Since the flow can only be sent within one of the two compo-
nents of D′, and each of the components is a copy of D with the same capacities as c,
the instances I and I ′ are equivalent. Clearly, constructing I ′ takes O(|I|) time.

Next, we are going to show that every instance of Maximum Flow can be modified
such that it has degeneracy two. Recall that planar graphs have degeneracy five, and
Maximum Flow on planar graphs can be solved in O(n log n) time. Note that the
converse is not necessarily true (a K5 with subdivided edges has degeneracy two and
is not planar), and hence, the following result does not imply that every instance of
Maximum Flow can be made planar.

Proposition 4.5. Maximum Flow is 2-GP-hard with respect to the degeneracy d of
the underlying undirected graph G(D) of D.

Proof. Let I = (D, s, t, c) be an instance of Maximum Flow. We create an instance I ′ =
(D′, s, t, c′) that has degeneracy two by subdividing each arc. Formally, we set

V (D′) := V (D) ∪ {v | (u,w) ∈ A(D)},
A(D′) := {(u, v), (v, w) | (u,w) ∈ A(D)}, and

c′(u, v) := c′(v, w) := c(u,w), for each (u,w) ∈ A(D).

See Figure 4.1b for an illustration.
As each of the newly introduced vertices v has degree two, each subgraph H ⊆ G(D′)

has at least one vertex of degree at most two, and hence, the degeneracy of G(D′) is
at most two. Also note that the Deg-2-Rule applies to every such vertex v. Hence, it
follows from Observation 3.6 that instances I and I ′ are equivalent. Constructing I ′

takes O(|I|) time.

Note that the reduction of Proposition 4.5 produces bipartite graphs: The original
vertices V (D) are the one partition, and the vertices that subdivide the arcs are the other
partition. It follows that Maximum Flow is GP-hard with respect to the distance to
bipartite graphs of the underlying undirected graph.

Corollary 4.6. Maximum Flow is 0-GP-hard with respect to the distance to bipartite
graphs of the underlying undirected graph.

4.2 Low Maximum Degree Does Not Help

In this section we will show that a linear-time fixed-parameter algorithm for Maxi-
mum Flow with respect to the maximum degree ∆(D) would imply that there exists a
quasilinear-time algorithm for the general problem. This would provide an algorithm for
Maximum Flow that improves on the running time of the currently best algorithm for
Maximum Flow—the O(m

√
n log2C)-time algorithm by Lee and Sidford [LS14]. Our
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Figure 4.2: How a vertex v of degree higher than three is replaced by a path gadget.
The path arcs have capacity C ′ := C ·∆(D).

result is based on the observation by Weihe [Wei97] that any vertex of high degree can
be replaced by a cycle in which each vertex has degree three. We first state the main
theorem of this section.

Theorem 4.7. Let f : N → N be a computable function and let γ ≥ 0. If there
exists an O(f(∆(D)) · |I|1+γ)-time algorithm for Maximum Flow, then there exists
an O((|I|+m · log(∆(D))1+γ)-time algorithm for Maximum Flow.

We will start off by showing how to construct an instance with maximum degree
three from any instance of Maximum Flow. Next, we will prove that the constructed
instance can be computed in quasilinear time, and increases only quasilinearly in size.
Finally, we will show that it is equivalent to the original instance, that is, the value of
the maximum flow of the two instances is the same.

Construction 4.8. We assume that the instance I is reduced with respect to the
BFS-Rule, which removes any vertex that cannot be reached by s and cannot reach t.
As shown in the previous chapter, this rule gives us an instance equivalent to the input
instance (see Observation 3.4) and can be applied in O(n+m) time (see Lemma 3.8).

We create instance I ′ = (D′, s′, t′, c′) from I = (D, s, t, c): Let C := max{c(a) | a ∈
A(D)} be the highest capacity of D. We initialize c′ := c and

D′ = (V (D) ∪ {s′, t′}, A(D) ∪ {(s′, s), (t, t′)}).
The capacities of the new arcs are c′(s′, s) = C · degD(s) and c′(t, t′) = C · degD(t). We
replace each vertex v ∈ V (D′) \ {s′, t′} of degree higher than three by a gadget called
path gadget (as depicted in Figure 4.2), which is constructed as follows:

Let κ = deg−(v), let k = deg(v) and let a1, . . . , aκ be the incoming arcs of v and
let aκ+1, . . . , ak be the outgoing arcs of v. Introduce path vertices v1, . . . vk and path
arcs (vi, vi+1) with capacities c′(vi, vi+1) = C ·deg(v) for every 1 ≤ i < k. For 1 ≤ i ≤ k,
change the endpoint v of ai to vi and set c′(ai) = c(ai). We call arcs ai altered arcs. We
call an arc standard arc if it is neither an altered arc, nor a path arc, nor any of the two
arcs (s′, s) and (t, t′). �

Having presented the construction we now show how to apply it efficiently, and how
large the resulting instance becomes.

Lemma 4.9. Let I = (D, s, t, c) be an instance of Maximum Flow and let I ′ =
(D′, s′, t′, c′) be the instance obtained when applying Construction 4.8 on I. Then D′

has O(mD) vertices and arcs and the highest capacity C ′ in I ′ is C ·∆(D). Construc-
tion 4.8 can be performed in O(|I|+m · log(∆(D))) time.
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Proof. Let n = |V (D)|, m = |A(D)|, and let n′ = |V (D′)| and m′ = |A(D′)|. Consider
a vertex v ∈ V (D) of degree greater than three. Then, the path gadget replacing v
has deg(v) vertices and deg(v)− 1 arcs. Hence, there are at most 2 +

∑
v∈V (D) deg(v) =

2m+ 2 ∈ O(m) new vertices and arcs.
Let s∗ and t∗ be the unique neighbors of s′ and t′, respectively. Note that for a

path arc a ∈ A(D′) corresponding to v ∈ V (D) we have c(a) = C · deg(v) > C,
and also, c(s′, s∗) = C · deg(s) > C and c(t∗, t′) = C · deg(t) > C. Since all other
arcs have capacity at most C, the highest capacity in I ′ is C ′ := C · ∆(D). Note
that |I| ∈ O(n+m logC). Since more space is required to store the capacities, we have

|I ′| ∈ O(m log(C ·∆(D))

⊆ O(m · (logC + log(∆(D))))

⊆ O(|I|+m log(∆(D))).

Adding the vertices s′ and t′ and the corresponding arcs requires constant time. For
each v ∈ V (D)\{s′, t′}, deg(v) > 3, we introduce deg(v) new vertices and deg(v)−1 new
arcs of capacity C · deg(v). Hence, replacing all vertices of degree higher than three by
path gadgets requires O(

∑
v∈V (D) deg(v) · log(C · deg(v))) ⊆ O(m log(C ·∆(D))) time.

Together with Reduction Rule 3.2, we need O(n + m · log(C · ∆(D))) ⊆ O(|I| + m ·
log(∆(D))) time to create the new instance I ′.

Next, we show that Construction 4.8 is correct.

Lemma 4.10. Let I = (D, s, t, c) be an instance of Maximum Flow. Then the in-
stance I ′ = (D′, s′, t′, c′) obtained from applying Construction 4.8 on I is equivalent
to I.

Proof. To show that instance I ′ has the same maximum flow as I, we will construct
an s′–t′-flow f ′ on I ′ from an s–t-flow f on I. We will then show that f ′ is valid if f
is valid. Lastly, we will discuss that f ′ is a maximum flow for I ′, assuming that f is a
maximum flow for I.

By construction, vertices s′ and t′ have exactly one neighbor. We denote by s∗ and t∗

the unique neighbors of s′ and t′ respectively, and set

f ′(s′, s∗) =
∑

(s,w)∈A(D)

f(s, w) and f ′(t∗, t′) =
∑

(u,t)∈A(D)

f(u, t).

For each vertex v of indegree κ and combined degree k > 3 replaced by a path gadget,
we do the following. Let v1, . . . , vk be the path vertices, and, for 1 ≤ i ≤ k, let ai be the
(unique) altered arc incident to vi. For each altered arc ai, 1 ≤ i ≤ k, set f ′(ai) = f(ai).
For each path arc (vi, vi + 1), 1 ≤ i < k, set

f ′(vi, vi+1) =

min{i,κ}∑
j=1

f ′(aj)−
i∑

j=κ+1

f ′(aj), (4.1)

that is, the sum of the flows of the arcs whose source are v1, . . . , vi minus the sum of the
flows of the arcs whose destination is v1, . . . , vi. Lastly, for all standard arcs (u,w) ∈
A(D′), set f ′(u,w) = f(u,w). Note that val(f) =

∑
(s,w)∈A(D) f(s, w) = val(f ′).
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As one can see, the flow f ′ is the same as f on all altered and standard arcs. The
capacities of those arcs are also the same in D and D′. Let v ∈ V (D) be of degree k > 3.
Then, it follows from equation (4.1) that for 1 ≤ i < k we have f ′(vi, vi+1) ≤ k · C.
Lastly we have f(s′, s∗) ≤ C · deg(s) and f(t∗, t′) ≤ C · deg(t). Thus, f ′ follows the
capacity constraint. We also obtain that f ′ follows the conservation constraint for all
vertices except for those incident to the path arcs, that is, the path vertices. To show
that the conservation constraint holds for path vertices as well, consider a vertex v
with degD(v) > 3 that is replaced by a path gadget with vertices v1, . . . , vk. We know
exactly which arcs are incident to each of the path vertices. Thus, for 1 ≤ i ≤ κ we have∑

(x,vi)∈A(D′)

f ′(x, vi)−
∑

(vi,x)∈A(D′)

f ′(vi, x)

= f ′(ai) +

min{i−1,κ}∑
j=1

f ′(aj)−
i−1∑

j=κ+1

f ′(aj)︸ ︷︷ ︸
=0

−
(min{i,κ}∑

j=1

f ′(aj)−
i∑

j=κ+1

f ′(aj)︸ ︷︷ ︸
=0

)

= f ′(ai) +
i−1∑
j=1

f ′(aj)−
i∑

j=1

f ′(aj)

= f ′(ai)− f ′(ai) = 0.

Analogously, for κ < i ≤ k we have∑
(x,vi)∈A(D′)

f ′(x, vi)−
∑

(vi,x)∈A(D′)

f ′(vi, x)

=

min{i−1,κ}∑
j=1

f ′(aj)−
i−1∑

j=κ+1

f ′(aj)−
(min{i,κ}∑

j=1

f ′(aj)−
i∑

j=κ+1

f ′(aj) + f ′(ai)
)

=
κ∑
j=1

f ′(aj)−
κ∑
j=1

f ′(aj)︸ ︷︷ ︸
=0

−
i−1∑

j=κ+1

f ′(aj) +
i∑

j=κ+1

f ′(aj)− f ′(ai)

= f ′(ai)− f ′(ai) = 0,

and hence, f ′ also follows the conservation constraints for the path vertices, giving us
that f ′ is a valid flow under the assumption that f is valid.

Next, we will show that f ′ is a maximum flow if and only if f is a maximum flow. As
in the construction, we denote by v1, . . . , vdeg(v) ∈ V (D′) the path vertices replacing v ∈
V (D). As a simplification, for a vertex v ∈ V (D) that is not replaced by a path gadget,
we denote the corresponding vertex in D′ by v1.

We claim that there is a path v1 . . . vp in D if and only if there is a path

v1i1v
1
i1+1 . . . v

1j1v
2
i2 . . . v

2
j2 . . . v

p−1
jp−1

vpip . . . v
p
jp−1v

p
jp

in D′, where 1 ≤ i` ≤ j` ≤ degD(vk), 1 ≤ ` ≤ p. That is, D′ contains a path going along
subsets of those path vertices corresponding to v1, . . . , vp.



44 CHAPTER 4. WHEN MAXIMUM FLOW IS NOT EASY TO SOLVE

⇒: Assume that there is a path v1 . . . vp in D. In D′, we have a ui–uj-path for each
vertex u ∈ V (D), degD(u) > 3, where 1 ≤ i ≤ j ≤ degD(u). If deg(u) ≤ 3, then we have
only a single corresponding vertex u1 ∈ D′, and we have a ui–uj-path for i = j = 1.
Hence, we only need to show that we have the arcs (v`j` , v

`+1
i`+1

) ∈ A(D′), for 1 ≤ ` < p.

If degD(v`), degD(v`+1) ≤ 3, then the arc (v`j` , v
`+1
i`+1

) exists for j` = i`+1 = 1, since the arc

and both of its endpoints were copied from D to D′. If degD(v`) > 3 and degD(v`+1) ≤ 3,
then the source of the arc (v`, v`+1) ∈ A(D) is moved to one of the path vertices v`j` .

Thus, there is an arc (v`j` , v
`+1
i`+1

) ∈ A(D′) for deg−D(v`) < j` ≤ degD(v`) and i`+1 = 1.

Note that j` cannot be smaller, since the path vertices v`1, . . . , v
`
deg−D(v`)

are only incident

to path arcs and incoming altered arcs. Similarly, if degD(v`) ≤ 3 and degD(v`+1) > 3,
then there is an arc (v`j` , v

`+1
i`+1

) ∈ A(D′) for j` = 1 and 1 ≤ i`+1 ≤ deg−D(v`+1). Lastly,

if degD(v`), degD(v`+1) > 3, then both the source and the destination of arc (v`, v`+1) ∈
A(D) are modified by the construction such that it starts at a path vertex v`j` and ends

at a path vertex v`+1
i`+1

. Hence, there is an arc (v`j` , v
`+1
i`+1

) ∈ A(D′), where deg−D(v`) <

j` ≤ degD(v`) and 1 ≤ i`+1 ≤ deg−D(v`). Note that for each v` ∈ V (D), 1 ≤ ` ≤ p, we
have i` = j` = 1 if degD(v) ≤ 3 and i` ≤ deg−(v`) < j` if degD(v) > 3. Hence, there is a
path from v`i` to v`j` in D′. Altogether, there is a path v1i1 , . . . , v

1
j1
, . . . , vpip , . . . v

p
jp

in D′.

⇐: Assume that there is a path P = v1i1 . . . v
1
j1
. . . vpip . . . v

p
jp

in D′. Note that to undo

the construction, that is, to obtain D from D′, one needs to contract all path ver-
tices u1, . . . , udegD(u) into a single vertex u. Hence, the subpaths going along the ver-

tices v`i` , . . . , v
`
j`
∈ V (D′), 1 ≤ ` ≤ p, correspond to vertex v` ∈ V (D). Observe that for

any a 6= b ∈ {1, . . . , p} we have va 6= vb since P must visit va
deg−(va)

and vb
deg−(vb)

, and

if a = b, then P is not a path. Further, any altered arc (v`j` , v
`+1
i`+1

) ∈ A(D′), 1 ≤ ` < p,

corresponds to arc (v`, v`+1) ∈ A(D). Hence, there is a path v1 . . . vp in D.
With this, we have shown the claim. This gives us that for each s–t-path in D, we

have an s′–t′-path in D′ that goes along the standard and altered arcs corresponding
to the arcs of the path in D. Observe that each s′–t′-path in D′ must contain at least
one standard arc or one altered arc, or we have s = t in D. These arcs in D′ have the
same capacity, and the same flow sent along them, as their corresponding arcs in D.
This gives us that if an arc in D is saturated by f , then the corresponding arc in D′ (a
standard or altered arc) is saturated by f ′. If f is a maximum flow, then every s–t-path
in D contains at least one saturated arc. Simultaneously, in D′, every s′–t′-path contains
at least one arc saturated by f ′, and hence, f ′ is a maximum flow.

Combining the two lemmata, it follows directly that for every instance of Maximum
Flow, we can create an equivalent instance with maximum degree three in linear time.

Proposition 4.11. Given an instance I = (D, s, t, c) of Maximum Flow, one can
construct in O(|I| + m · log(∆(D))) time an equivalent instance I ′ = (D′, s′, t′, c′) of
size |I ′| ∈ O(|I| + m · log(∆(D))), such that ∆(D′) ≤ 3 and C ′ = C · ∆(D), where C
and C ′ are the maximum capacities in c and c′ respectively.

This proposition gives us that, if we have a linear fixed-parameter algorithm for
Maximum Flow with respect to the maximum degree of the input graph, then we have
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a similarly efficient algorithm for the general problem.

Theorem 4.7 (Restated). Let f : N → N be a computable function and let γ ≥ 0.
If there exists an O(f(∆(D)) · |I|1+γ)-time algorithm for Maximum Flow, then there
exists an O((|I|+m · log(∆(D))1+γ)-time algorithm for Maximum Flow.

Proof. By Proposition 4.11, we can compute an equivalent instance I ′ = (D′, s′, t′, c′)
with ∆(D′) ≤ 3 in O(|I| + m · log(∆(D))) time. Since |I ′| ∈ O(|I| + m · log(∆(D))),
applying the O(f(∆(D)) · |I|1+γ)-time algorithm on I ′, γ ≥ 0, gives us a running time
of

O
(
f(∆(D′) ·

(
|I|+m log(∆(D))

)1+γ) ⊆ O((|I|+m log(∆(D))
)1+γ)

.

Recall that to this date the best known running time for solving Maximum Flow
is Õ(m

√
n log2C) [LS14]. They state that with the notation Õ(·), they hide polyloga-

rithmic factors in the number of arcs in the input graph; thus the running time of their
algorithm is O(m

√
n log2C · logO(1)m). Note that

O
((
|I|+m log(∆(D))

)1+γ) ⊆ O(((n+m logC) · log(∆(D))
)1+γ)

⊆ O
((
n+m logC

)1+γ · logO(1)m
)
,

for γ ≥ 0. Hence, if one finds an O(f(∆(D)) · |I|1+γ)-time algorithm for Maximum
Flow with 0 ≤ γ < 0.5, then one would obtain an algorithm for Maximum Flow that
is faster than the algorithm by Lee and Sidford [LS14] on sparse graphs, i.e., m ∈ O(n).
If 0 ≤ γ < 0.25, then the algorithm would improve upon the algorithm by Lee and
Sidford in general.

Since by applying Construction 4.8 the size of the resulting instance increases by
a logarithmic factor, Proposition 4.11 gives us General Problem hardness with respect
to ∆(D) only if C ≥ ∆(D).

Corollary 4.12. Maximum Flow with C ≥ ∆(D) is 3-GP-hard with respect to ∆(D),
where C is the highest capacity of the input and ∆(D) is the maximum degree of the
input graph.

Proof. If C ≥ ∆(D), then we have O(log(C ·∆(D))) ⊆ O(log(C2)) ⊆ O(logC). Hence,
by Proposition 4.11, for each instance I = (D, s, t, c) with C ≥ ∆(D), we can construct
an equivalent instance I ′ = (D′, s′, t′, c′) of size

|I ′| ∈ O(|A(D)| · log(C ·∆(D))) ⊆ O(|A(D)| · logC) ⊆ O(|I|),

where ∆(D′) ≤ 3. This implies 3-GP hardness for all instances I ′ with C > ∆(D).

If instead C < ∆(D), then one cannot state GP hardness since the size of the new
instance I ′ is required to be linear in the size of the original instance I. But on the other
hand, there are as many distinct capacities as there are vertices in the instance. Thus
assuming that the algorithm is run on a Random Access Machine with a word size of
at least log n, we can store and access capacities constant space and time. With this
assumption we would obtain |I ′| ∈ O(|I| + m log(∆(D))) ⊆ O(|I|), and thus, that the
GP hardness result of Corollary 4.12 would hold in general.
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4.3 High Minimum Degree Does Not Help Either

We have shown that a fixed-parameter linear-time algorithm for Maximum Flow with
respect to the maximum degree would imply a faster algorithm for Maximum Flow.
In other words, Maximum Flow does not become easier to solve when the maximum
degree of the input graph is low. In this section we look into Maximum Flow on graphs
with high minimum degree, specifically, on complete directed graphs and related graph
classes.

Note first that Maximum Flow with unit capacities on complete directed graphs is
trivial: There are n − 1 arc-disjoint s–t-paths in a complete graph with n vertices, one
path of length one from s to t, and n − 2 paths of length two visiting a vertex other
than s or t. Hence, the value of the maximum s–t-flow is n − 1. But as soon as the
restriction on the capacities is removed, Maximum Flow on complete directed graphs
probably cannot be solved that efficiently. We show next that a linear-time algorithm
for Maximum Flow on complete directed graphs would also yield an improvement on
the best known running time of Maximum Flow on general graphs (O(m

√
n log2C)

[LS14]).

Theorem 4.13. Let γ ≥ 0. If there is an O(|I|1+γ)-time algorithm for Maximum
Flow on complete directed graphs, then there is an O((n2 logC)1+γ)-time algorithm for
Maximum Flow on general graphs.

Proof. Let I = (D, s, t, c) be an instance of Maximum Flow, where D is a general
directed graph. We create an instance I ′ = (D′, s, t, c′) from I as follows: The graph D′ is
a complete directed graph on V (D), that is A(D′) = {(u, v) |u 6= v ∈ V (D)}. We call an
arc a ∈ A(D′) old if it is in A(D), and new otherwise. For all old arcs a ∈ A(D′)∩A(D)
we set c′(a) = c(a) and for all new arcs a ∈ A(D′) \ A(D) we set c′(a) = 0. The
terminals s and t are copied from I. The construction of I ′ takes O(n2 logC) time, and
the size of I ′ is O(n2 logC) as well.

Computing a maximum s–t-flow f ′ for instance I ′ can be done in O(|I ′|1+γ) ⊆
O((n2 logC)1+γ) time since D′ is complete. Clearly, the new arcs do not contribute to
the value of f ′. Thus we have val(f) = val(f ′) I and I ′ are eqivalent. Therefore, it
takes O((n2 logC)1+γ) time to compute f .

Note that the running time implied by an O(|I|1+γ)-time algorithm for Maxi-
mum Flow on complete directed graphs differs from the running time implied by
an O(f(∆(D)) · |I|1+γ)-time algorithm in Theorem 4.7. This is an improvement over
the fastest known algorithm for Maximum Flow (Õ(m

√
n log2C) time [LS14]) when-

ever m ∈ ω(n1.5+2γ).
Clearly, Theorem 4.13 also holds if there is an O(|I|1+γ)-time algorithm for Max-

imum Flow on graphs whose underlying undirected graphs are complete. One can
generalize the result to all classes of (undirected) graphs that contain complete graphs,
e.g., the classes of cluster graphs or interval graphs.

Corollary 4.14. Let C be a class of undirected graphs such that Kn ∈ C for n ∈ N,
and let γ ≥ 0. If Maximum Flow can be solved in O(|I|1+γ) time on graphs D
for which G(D) ∈ C, then Maximum Flow can be solved on general directed graphs
in O((n2 logC)1+γ) time.
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What else might not be easy? We have shown that certain graph structures are not
exploitable when solving Maximum Flow. Note though that the results of Sections 4.2
and 4.3 do not hold for Maximum Flow with unit capacities. If the maximum capacity
is defined in the problem, that is, if the capacity function is c : A(D)→ {1, . . . , C}, then
Theorem 4.13 and Corollary 4.14 still hold, but Theorem 4.7 does not. The results of
Section 4.1 are independent of any capacity restrictions and thus also hold for Maximum
Flow with constant and unit capcities. For the results for fixed-parameter algorithms
with respect to maximum degree, it would be interesting whether these results can be
extended to work with upper-bounded capacities or even unit capacities.

In their concluding remarks Kratsch and Nelles [KN18] mentioned that with the
same reduction as used in Theorem 4.13 it can be shown that Maximum Flow does not
become easier when parameterized by the modular width of the input graph. Without
going into detail, this is easy to see since the modular width of a complete graph is
constant.





Chapter 5

Fixed-Parameter Algorithms for
Maximum Flow

Motivated by the gap in running times between Maximum Flow on planar graphs
(O(n log n), [BK09; Wei97]) and Maximum Flow on general graphs (O(nm), [Orl13]),
Hochstein and Weihe [HW07] presented a parameterized algorithm for Maximum Flow
running in O(k3n log n) time, where k is the crossing number of the input graph. The
crossing number is the minimum number k of edges that need to be removed from a
(directed or undirected) graph such that it can be drawn in the plane [Zar55]. The
algorithm which is named “nearly planar maxflow” by its authors is based on a gen-
eralization of the well-known Push-Relabel method introduced by Goldberg and Tarjan
[GT88] (see Section 5.1). Herein, Hochstein and Weihe only operate on a subset of the
vertices, and instead of pushing flow arc by arc towards terminal t, they push the flow
along subgraphs on which Maximum Flow can be easily computed. For the implemen-
tation of the nearly planar maxflow algorithm, they split the graph into two parts, the
first containing the k crossing edges, and the second containing the remaining planar
graph. They choose the subset of vertices, the so-called stop vertices V stop, to be the
terminals s and t and the vertices incident to the crossing edges. Then, when “pushing”
the flow from one stop vertex to another, one will find that either the two vertices are
connected by a crossing edge, or by a subgraph of the planar graph. In the latter case,
an algorithm for solving Maximum Flow on planar graphs is called as a subroutine.

Given a set of k crossing edges, the algorithm by Hochstein and Weihe [HW07]
improves upon the best known running time for Maximum Flow that is independent
of the maximum capacity (O(nm) [Orl13]) whenever k ∈ O( 3

√
m). Note at the same

time that finding a minimum-cardinality set of crossing edges is NP-hard and that there
are no constant-factor approximation algorithms for finding crossing edges of a graph
unless P = NP [Cab13].

Inspired by the work of Hochstein and Weihe [HW07], we present two main results in
this chapter, one being a systematic approach for linear-time fixed-parameter algorithms
for Maximum Flow based on the same idea as the generalized algorithm of Hochstein
and Weihe, the other being an application of our approach yielding an algorithm for
Maximum Flow parameterized by the feedback vertex set k of the underlying undi-
rected input graph and running in O(k4m) time. Note that due to Bar-Yehuda et al.
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[BY+98], given a graph with feedback vertex number k, one can compute an approxi-
mate feedback vertex set X of size at most 4k in linear time. Thus, our running time
bound holds even if we are not given a feedback vertex set.

While the feedback vertex number of a graph is considered a rather large parame-
ter, note that for the smaller parameter treewidth1 there exists a fixed-parameter algo-
rithm, but as opposed to our algorithm, its running time is exponential in the parameter
[Hag+98]. Further, note that the crossing number and the feedback vertex number are
incomparable (an n×n-grid has a high feedback vertex number, but its crossing number
is zero, and a complete bipartite graph K3,n has a high crossing number, but its feedback
vertex number is three).

Chapter outline. In Section 5.1 we introduce the reader to the Push-Relabel method
and state the lemmata and theorems used by Goldberg and Tarjan [GT88] to prove the
correctness of the method. We then present in Section 5.2 an algorithm for Maximum
Flow parameterized by the vertex cover number of the input graph as a warm-up to
the systematic approach. Herein, we make use of the “proof structure” of Goldberg and
Tarjan [GT88] to show the correctness and the running time of our algorithm. The sys-
tematic approach for linear-time fixed-parameter algorithms for Maximum Flow then
is introduced in Section 5.3. The main theorem of Section 5.3 reuses of the theorems and
lemmata proven in the previous section. Finally, in Section 5.4, we present an algorithm
for Maximum Flow parameterized by the feedback vertex set as an application of our
systematic approach.

5.1 Preflows and the Push-Relabel Method

In 1974, Karzanov [Kar74] took a new direction for computing Maximum Flow by
introducing the concept of preflows. Informally, preflows have a relaxed capacity con-
straint compared with flows, demanding for each vertex the outgoing flow to be at most
as large as the ingoing flow. The difference between incoming and outgoing flow is called
the excess of a vertex. We state the following definitions:

Definition 5.1 (Preflow). Let (D, s, t, c) be an instance of Maximum Flow. We call
a function f : A(D)→ N0 a preflow on D, if

∀a ∈ A(D) : 0 ≤ f(a) ≤ c(a) (capacity constraint), and

∀v ∈ V (D) \ {s, t} :
∑

u∈N−(v)

f(u, v)−
∑

w∈N+(v)

f(v, w) ≥ 0 (conservation constraint).

For better readability, we denote by f(u, v) the flow on arc (u, v) ∈ A(D).
The excess of v ∈ V (D) with respect to preflow f is

exf (v) :=
∑

u∈N−(v)

f(u, v)−
∑

w∈N+(v)

f(v, w).

A vertex v ∈ V (D) \ {s, t} with positive excess is called active.

1An undirected graph G with feedback vertex number k has a treewidth of at most k + 1. For more
information on treewidth we refer to Bodlaender [Bod05] and to Diestel [Die17, Chapter 12].
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Note that for a flow, the excess of all vertices except s and t is zero. The definitions
of the residual graph Df and the residual capacities cf with respect to f as stated in
Definition 2.2 remain unchanged if f is a preflow.

In terms of preflow, the goal of Maximum Flow is to maximize the excess of t such
that for all vertices v other than s or t, the excess is zero. The result of Karzanov [Kar74]
is based on this formulation of the goal. The idea is to “push” the flow from s arc by
arc towards t. Based on this, Goldberg and Tarjan [GT88] introduced the Push-Relabel
method. Shortly put, in the Push-Relabel method one examines the active vertices other
than s and t and pushes the excess towards what is “believed” to be close to t. If t is not
reachable from a vertex, then the excess of the vertex cannot be pushed to t, and the
algorithm pushes the excess back towards s. To determine which vertex is “believed” to
be close to t, Goldberg and Tarjan introduced a labeling on the vertices.

Definition 5.2 (Distance Labeling). Let (D, s, t, c) be an instance of Maximum Flow
and let f be a preflow. A vertex labeling d : V (D)→ N0 is a valid distance labeling if

d(s) = n, d(t) = 0,

d(v) ≤ d(w) + 1, for all (v, w) ∈ A(Df ).

If for some (v, w) ∈ A(Df ), d(v) = d(w) + 1, then we say that (v, w) is admissible.

The distance labeling allows us to approximate the distance from vertices v ∈ V (G)\
{s, t} to t or s. We make the following observation, already indicated, but not formally
proven by Goldberg and Tarjan [GT88].

Lemma 5.3. Let d : V (D) → N0 be a valid labeling and f be a preflow. If d(v) < n,
then for v ∈ V (D) \ {s, t}, d(v) is a lower bound on the distance from v to t in Df .
If d(v) ≥ n, then d(v)− n is a lower bound on the distance from v to s in Df .

Proof. Due to Reduction Rule 3.2 we may assume without loss of generality that every
vertex v ∈ V (D) \ {s, t} is reachable from s and reaches t. Let f be a preflow. We claim
that if in the residual graph Df vertex v does not reach t, then it reaches s. Towards
this claim, consider a v–t-path P in D that does not exist in Df . Then, there exists an
arc (u,w) ∈ A(P ) such that u is reachable from v in Df , and that f saturates (u,w),
that is, f(u,w) = c(u,w) and thus (u,w) 6∈ A(Df ) and (w, u) ∈ A(Df ). Since f is a
preflow, we then have a path from u to s and thus a path from v to s in Df .

Next, assume that d is a valid labeling on Df and that that there exists a short-
est v–t-path of length ` in Df . Then, for each of its ` arcs (u,w) it holds that d(u) ≤
d(w) + 1. By induction we can show that d(v) ≤ d(t) + ` = `, and thus d(v) is a lower
bound on the distance from v to t in Df .

Clearly, any shortest path in a graph with n vertices has length at most n− 1. Thus
if d(v) ≥ n, then there cannot be a shortest v–t-path. Then, by the claim above, there
exists an s–v-path. Assume that this path is a shortest path of length `. Then, as above,
for each of its ` arcs (u,w) we have d(u) ≤ d(w) + 1, and thus d(v) ≤ d(s) + ` = n+ `.
Hence, if d(v) ≥ n, then d(v)− n is a lower bound on the distance from v to s.

Algorithm 5.1 is an implementation of the Push-Relabel method as introduced by
Goldberg and Tarjan [GT88] and uses two procedures called by a main routine. Pro-
cedure Push(v, w) takes an admissible arc (v, w) ∈ Df as input and pushes the ex-
cess of v towards w. There are two possible outcomes after a call to Push(v, w).
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Algorithm 5.1: The Push-Relabel method by Goldberg and Tarjan [GT88].

1 Main Algorithm
2 Call Initialize().
3 while there is an active vertex v do
4 if there is a vertex w such that arc (v, w) ∈ A(Df ) is admissible then
5 Call Push(v, w).
6 else
7 Call Relabel(v).
8 end

9 end

10 end

11 Procedure Initialize()
12 Set d(s) := n, and set d(v) := 0 for all v 6= s.
13 For each arc (s, v) ∈ A(D) call Push(s, v).

(Assume exf (s) to be ∞ during Initialize() and −∞ afterwards.)

14 end

15 Procedure Push(v, w)
16 Increase f(v, w) by min{cf (v, w), exf (v)}.
17 end

18 Procedure Relabel(v)
19 Set d(v) := min{d(w) + 1 | (v, w) ∈ A(Df )}.
20 end

(1) If exf (v) ≥ cf (v, w), then the procedure pushes flow of value cf (v, w) along (v, w).
After the call to Push(v, w), v has nonnegative excess, and arc (v, w) 6∈ A(Df ). We call
this a saturating push. (2) If exf (v) < cf (v, w), then the procedure pushes the excess
of v towards w. Vertex v then has an excess of zero, and arc (v, w) still exists in Df . We
call this a non-saturating push. Procedure Relabel(v) takes an active vertex with no
outgoing admissible arc as input. It increases label d(v) such that there is at least one
admissible arc (v, w). That is, after a call to Relabel(v), there is at least one arc (v, w)
such that Push(v, w) can be called. Note that in procedure Initialize, we push from
an inactive vertex s and along inadmissible arcs. To simplify the procedure, we assume
during the initialization that exf (s) = ∞, and that all arcs leaving s are admissible.
After the initialization, s acts as a sink. We thus assume that exf (s) = −∞ after the
call to Initialize. The algorithm terminates as soon as there is no active vertex, that
is, as soon as there is no vertex other than s and t that has positive excess.

In the following we present the steps in which Goldberg and Tarjan [GT88] prove
the correctness and running time of the Push-Relabel method, but we omit the proofs.
We refer to Goldberg and Tarjan [GT88] and to Ahuja, Magnanti, and Orlin [AMO93,
Chapter 7] for proof details.

Towards showing correctness, we first need to show that at no time d becomes invalid
or there is a vertex with negative excess.
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Lemma 5.4 ([GT88]). Algorithm 5.1 maintains the invariant that d is a valid labeling
and that f is a preflow.

Since, in the initialization, we saturate all arcs leaving s, there are no s–t-paths in
the residual graph Df . If the algorithm terminates, then no vertex is active, and our
preflow f is a flow. As t is not reachable from s, it follows that f is maximum.

Proposition 5.5 ([GT88]). If Algorithm 5.1 terminates, then the computed preflow f
is a maximum flow.

Towards showing that the algorithm terminates within a given running time up-
per bound, Goldberg and Tarjan first observe that the sizes of the distance labels are
bounded.

Lemma 5.6 ([GT88]). For a vertex v ∈ V (D), the label d(v) never decreases. Each
call to Relabel(v) increases d(v). During the execution of Algorithm 5.1, for every
vertex v ∈ V (D), d(v) ≤ 2n− 1.

With this at hand, one can upper-bound the number of calls to the procedures.

Lemma 5.7 ([GT88]). In Algorithm 5.1,
(i) the number of calls to Relabel is at most 2n−1 per vertex and at most 2n2 overall,

(ii) the number of calls to Push resulting in a saturating push is at most 2nm, and
(iii) the number of calls to Push resulting in a non-saturating push is at most 4n2m.

Since the procedures Push and Relabel operate in constant time, we obtain the
following.

Theorem 5.8 ([GT88]). Algorithm 5.1 solves Maximum Flow in O(n2m) time.

This running time can be further improved if the active vertices are selected in
a specific order. Goldberg and Tarjan [GT88] achieved a running time of O(n3) by
choosing the next active vertex in a first-in, first-out (FIFO) manner. Informally, by
FIFO, we mean that we call procedures Push and Relabel on the vertices in the order
in which they become active. Algorithm 5.2 is an implementation of the Push-Relabel
method employing the FIFO method to choose the next vertex to operate on.

Shortly after the introduction of the Push-Relabel method, Cheriyan and Maheshwari
[CM89] showed that by always selecting the active vertex with the highest distance label
results in a running time for Maximum Flow of O(n2m1/2).

5.2 Warm-Up: Maximum Flow with Vertex Cover Num-
ber

As a simple practical example of the systematic approach which is going to be introduced
in the following section we present a parameterized algorithm for Maximum Flow
with respect to the vertex cover number (introduced below). The algorithm shares
many features with the parameterized algorithm with respect to the crossing number by
Hochstein and Weihe [HW07]. Both algorithms are based on the Push-Relabel method
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Algorithm 5.2: FIFO implementation of the Push-Relabel method [GT88].

1 Call Initialize().
2 Let Q1 be a list containing the initially active vertices in arbitrary order.
3 Set i := 1.
4 while there are active vertices do
5 Set ` := |Qi| and initialize Qi+1 as an empty list.
6 for j := 1, . . . , ` do (Iterate through the elements of Qi)
7 Let v be the j-th element of Qi.
8 repeat
9 if there is a vertex w such that arc (v, w) ∈ A(Df ) is admissible then

10 Call Push(v, w).
11 if w 6∈ Qi+1 then append w to Qi+1.

12 else
13 Call Relabel(v).
14 end

15 until exf (v) = 0 or d(v) is increased.
16 if v is active then append v to Qi+1.

17 end
18 Increase i by one.

19 end

introduced in Section 5.1 and use a highly modified Push method. But this method is
also the main difference of the algorithms: While the algorithm of Hochstein and Weihe
calls a subroutine on the input graph minus the crossing edges, our algorithm calls a
subroutine only on a small subgraph.

The algorithm presented in this section can be seen as an application of the systematic
approach shown in the next section, but we prove the correctness and running time of
the parameterized algorithm with respect to the vertex cover number independently of
the systematic approach. Later on, when presenting the systematic approach in the next
section, we make use of the proof structure employed in this section.

Let D be a directed graph together with a vertex cover V ′ ⊆ V (D). We define a
vertex cover of a directed graph as the vertex cover of the underlying undirected graph,
that is, a vertex cover is a set of vertices V ′ such that the undirected graph G(D)− V ′
has no edges. Observe that, given a vertex u ∈ V ′ of degree at least one, either u is in the
vertex cover, or every neighbor of u is in the vertex cover. This observation is the central
idea of the algorithm presented in this section: If there is an u–w-path with u,w ∈ V ′,
then there is an u–v-path with v ∈ V ′ of length at most two (it may be that v = w). In
other words, if D is (weakly) connected, then from any vertex u ∈ V ′, there is a path of
length at most two to some vertex w ∈ V ′.

We use this property of vertex covers for our algorithm. Instead of pushing excess
along single arcs, we push excess only between vertices in the vertex cover, and s and t.
In analogy to Hochstein and Weihe [HW07] we call these vertices stop vertices. We
denote them by V stop := V ′ ∪ {s, t}, and the number of stop vertices by k := |V stop |.

One can think of the procedure Push(v, w) as solving an instance of Maximum Flow



5.2 WARM-UP: MAXIMUM FLOW WITH VERTEX COVER NUMBER 55

s
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Figure 5.1: An example graph with stop vertices V stop = {s, a, b, t} (marked orange,
dotted). A call to Push(b, t) operates only on the atomic b–t-paths (marked blue), but
not on any of the paths visiting a, since a ∈ V stop.

on the subgraph “between” v and w, that is, on the graph consisting of all v–w-paths.
To ensure that procedure Push operates efficiently we need the procedure to operate on
paths that are as short as possible. Consider two vertices v, w ∈ V stop. There may be
arbitrarily many v–w-paths of arbitrary length. As noted above though, we can separate
any of these v–w-paths into paths of length at most two in such a way that the endpoints
of all paths are in V stop. We call such paths atomic. See Figure 5.1 for an example.

Definition 5.9 (Atomic paths). Let D be a graph and let V stop ⊆ V (D) be a vertex
set. Then, an u–v-path is an atomic path if its endpoints are in V stop and if its inner
vertices are in V (D) \ V stop.

By allowing Push(v, w) to operate only on atomic v–w-paths, we can guarantee that
the procedure operates in linear time. Since the labeling is only relevant for the proce-
dure Push, it is sufficient if only the stop vertices carry labels. Note though that the defi-
nitions of a valid labeling changes: A labeling d : V stop → N0 is valid if d(s) = k, d(t) = 0,
and d(v) ≤ d(w) + 1 for every atomic v–w-path in the residual graph Df . Note that
this implies d(v) ≤ d(w) + 1 for any v–w-path with v, w ∈ V stop. We call v–w-paths
admissible if v, w ∈ V stop and d(v) = d(w) + 1.

We may call Push(v, w) if v is active and there is an atomic admissible v–w-path
in Df . Procedure Push(v, w) then works in two steps:

(1) On the subgraph of Df consisting of all atomic v–w-paths, compute a v–w-flow such
that the value of the flow is maximized, but does not exceed the excess of v.

(2) Send the computed flow along the arcs of Df .

The definition of saturating and non-saturating is adapted accordingly: We call a push
resulting from Push(v, w) saturating if afterwards there is no atomic v–w-path in Df ,
and non-saturating otherwise.

Algorithm 5.3 gives a formal description of the algorithm described above. As with
Algorithm 5.1, we assume that during Initialize, exf (s) = ∞, and that all atomic
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Algorithm 5.3: The Push-Relabel method with a vertex cover as stop vertices.

1 Main Algorithm
See Algorithm 5.2 (Replace “admissible arc (v, w) ∈ A(Df )” with “admissible
atomic v–w-path in Df”).

2 end

3 Procedure Initialize()
4 Set d(s) := k, and set d(v) := 0 for all v 6= s.
5 For each atomic s–v-path in Df , call Push(s, v)

(Assume exf (s) to be ∞ during Initialize() and −∞ afterwards.)

6 end

7 Procedure Push(v, w)
8 In Df , find all atomic v–w-paths P = {P1, . . . , P`}.
9 For 1 ≤ i ≤ `, let δi := min{cf (u, u′) | (u, u′) ∈ A(Pi)}.

10 Set cstopf (v, w) :=
∑`

i=1 δi. (maximum flow from v to w along P)

11 Set j := min{exf (v), cstopf (v, w)}, and set i := 1.

12 while j > 0 and i ≤ ` do (Send flow of j along the paths in P.)
13 Set q := min{δi, j}.
14 For all (u, u′) ∈ A(Pi) increase f(u, u′) by q.
15 Decrease j by q and increase i by one.

16 end

17 end

18 Procedure Relabel(v)
19 Set d(v) := min{d(w) + 1 | there is an atomic v–w-path in Df}.
20 end

paths starting in s are admissible. After the initialization, we assume exf (s) = −∞.
Note that we use the first-in, first-out implementation of the Push-Relabel method as
described in Algorithm 5.2.

We continue by proving correctness of the described algorithm. We start by showing
that some properties that hold for the original procedure Push also hold for the new
procedure. Afterwards we proceed similarly to the way of proving the correctness of
the original Push-Relabel method. For this, we first show that at any time during the
execution of the algorithm, f is a preflow and d is a valid labeling.

Lemma 5.10. Algorithm 5.3 maintains the invariant that f is a preflow.

Proof. Note that the only part of the algorithm to change f is the procedure Push. So
we claim that if f is a valid preflow, then it remains a valid preflow after calling Push.

Let P be the set of all atomic v–w-paths in Df . When calling Push(v, w), flow
of value min{exf (v), cstopf (v, w)} is sent along the paths in P. More specifically, for
each P ∈ P and for each a, a′ ∈ A(P ), we have f(a) = f(a′). The paths in P are
pairwise arc-disjoint, since otherwise the graph would contain parallel arcs or loops.
Thus, we have that the incoming flow of the internal vertices is the same as the out-
going flow. This gives us that the internal vertices have an excess of zero. Since all
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P
v w
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x

↼
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v w
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x

Push(v, w)

Figure 5.2: The effect of a call to Push along stop vertices. On the left-hand
side, we can see that there is an atomic admissible v–w-path P (dashed, blue). If

we call Push(v, w), then we know that afterwards we have a w–v-path
↼

P (dash-dotted,
orange) and hence, an x–y-path, which did not exist before.

paths in P start in v and end in w, the excess of v is pushed towards w, and exf (w)
increases by min{exf (v), cstopf (v, w)}. Note that after a call to Push(v, w), the excess
of v becomes zero if it is a non-saturating push, and nonnegative if it is a saturating
push. Hence, f follows the relaxed conservation constraint as of Definition 5.1 after a
call to Push, that is, for every vertex other than s and t, the incoming flow is at least as
large as the outgoing flow. Due to the choice of δi the capacities of the arcs in A(

⋃P)
are not exceeded by f . So, f also follows the capacity constraint, and thus, if f is a
preflow, then it also is a preflow after calling Push(v, w).

For showing that d is a valid labeling at any step during the execution, we first
need to prove the following claim. The proof is based on Hochstein and Weihe [HW07,
Lemma 5.1].

Lemma 5.11. Let d be a valid labeling, and let v, w, x, y ∈ V stop be stop vertices such
that there is an atomic admissible v–w-path P in Df . After calling Push(v, w) from
Algorithm 5.3, there is no x–y-path in Df , or d(x) ≤ d(y) + 1.

Proof. If after calling Push(v, w) there is no x–y-path in Df , then we are done. So

assume that there is an arbitrary x–y-path Q. Calling Push(v, w) creates a w–v-path
↼

P

in Df . If
↼

P and Q are arc-disjoint, then Q existed in Df before the call to Push(v, w).
Since at that moment d was a valid labeling, we have d(x) ≤ d(y) + 1, and we are done.

So assume that
↼

P and Q are not arc-disjoint. Let x′ and y′ be the vertices incident
to the shared arcs A(

↼

P ) ∩ A(Q) that are closest to x and y respectively. Before the
call to Push(v, w), there was an x–x′-path in Df . Since P existed at that time, there
was an x′–w-path, and hence, an x–w-path as well. Since the labeling was valid at that
point, we have d(x) ≤ d(w) + 1. Analogously, there were paths from v to y′ and from y′

to y, yielding a v–y-path in Df . Thus d(v) ≤ d(y) + 1. See Figure 5.2 for an example.
Since the v–w-path was admissible at that time, we have d(v) = d(w) + 1. We obtain

d(x) ≤ d(w) + 1 = d(v) ≤ d(y) + 1.

This inequality also holds if x = w or v = y.

With Lemma 5.11 at hand, we can show that d is a valid labeling throughout the
runtime of Algorithm 5.3.
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Lemma 5.12. Algorithm 5.3 maintains the invariant that d is a valid labeling.

Proof. After the initialization there is no arc leaving s in Df , and thus d(s) = k is
correct. For v ∈ V stop \{s, t}, label d(v) = 0 also fulfills the criteria of a valid labeling.
Hence, after the initialization, d is valid.

Let W ⊆ V stop be the set of vertices such that for each w ∈ W there is an
atomic v–w-path. Then calling Relabel(v) increases d(v) such that d(v) ≤ d(w) + 1
for all w ∈W . Given that d is valid, Relabel(v) yields a new valid labeling.

Lemma 5.11 gives us that after a call to Push(v, w) on a valid labeling, for each
pair x, y ∈ V stop of stop vertices, there either is an x–y-path in Df and d(x) ≤ d(y) + 1,
or there is no x–y-path. This gives us that Push maintains the invariant that d is a valid
labeling.

Having shown that labeling d remains valid during the execution of Algorithm 5.3,
we are now ready to show that the algorithm is correct.

Proposition 5.13. If Algorithm 5.3 terminates, then f is a maximum flow.

Proof. By Lemmata 5.10 and 5.12, the algorithm maintains the invariants that f is a
preflow and d is a valid labeling. The algorithm terminates if every vertex except s and t
has an excess of zero. Thus, at termination, f is a flow. Assume towards contradiction
that after termination there is an s–t-path P of length ` in Df . Note that a path may
visit every vertex (and thus every stop vertex) at most once. Thus there exist j < k
atomic paths P1, . . . , Pj such that P = P1∪· · ·∪Pj , where P1 is an atomic s–v1-path, Pj
is an atomic vj−1–t-path, and Pi is an atomic vi−1–vi-path, for 1 < i < j. Since by
Lemma 5.12 the validity of d is maintained, we have d(v) ≤ d(w) + 1 for each of the
atomic paths Pi, and thus d(s) ≤ d(t)+ j < k as d(t) = 0. This contradicts d(s) = k and
thus there is no s–t-path after the algorithm has terminated. Hence, at termination, f
is a maximum flow.

The next step is to show an upper bound for the running time of the algorithm. We
do this by showing that the labels cannot increase too much, and by this, the number
of calls to Push and Relabel are bounded.

First, we show that the label of a vertex cannot get smaller during the execution of
the algorithm.

Lemma 5.14. For a vertex v ∈ V stop, the label d(v) never decreases, and each call
to Relabel(v) of Algorithm 5.3 increases d(v).

Proof. Since the labels are only updated by Relabel, we only need to show that d(v)
is increased by a call to Relabel(v). Let W ⊆ V stop be the set of vertices such that
for each w ∈ W there is an atomic v–w-path. Procedure Relabel(v) is only called if
in Df there is no admissible atomic path starting in v. Then we have d(v) < d(w) + 1
for all w ∈W . Setting d(v) to min{d(w) + 1 |w ∈W} increases the value of d(v).

Having shown that the labels do not decrease at any time, we need to show that the
labels cannot grow too large. Recall that k = |V stop |.

Lemma 5.15. During the execution of Algorithm 5.1, for every v ∈ V stop, d(v) ≤ 2k−1.
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Proof. This trivially holds for s and t. Further, the algorithm only changes labels of
active vertices. Thus it suffices to show that the lemma holds for any active vertex v ∈
V stop \{s, t}. Let f be a preflow computed during the runtime of Algorithm 5.3. Let v ∈
V stop be a vertex with exf (v) > 0. Then there must be an s–v-path P in D such that

for all a ∈ A(P ), f(a) > 0. Hence, in Df , we have a v–s-path
↼

P . The number ` of

stop vertices visited by
↼

P excluding the start point v is at most k− 1, since otherwise
↼

P
would visit some vertex twice. Since d is valid, we have d(u) ≤ d(u′) + 1 for each

atomic u–u′-path in
↼

P . Hence, d(v) ≤ d(s) + ` ≤ k + k − 1 = 2k − 1.

After the initialization, d(v) = 0 for each v ∈ V stop \{s}, and d(t) is never in-
creased. Hence, it follows directly from Lemmata 5.14 and 5.15 that the number of calls
to Relabel is bounded.

Lemma 5.16. The number of calls to Relabel is at most 2k − 1 per vertex and at
most 2k2 overall.

Next, we show that the number of calls to Push is bounded. Here, we need to
differentiate between saturating and non-saturating pushes. Recall that we call the push
resulting from Push(v, w) saturating if afterwards there is no atomic v–w-path in Df ,
and non-saturating otherwise.

Lemma 5.17. The number of calls to Push resulting in a saturating push is at most 4k3.

Proof. We claim that for each atomic v–w-path, between two calls to Push(v, w) that
result in a saturating push, there must be a call to Relabel(v). Recall that in order
to call Push(v, w), we require that there is an atomic v–w-path, and that this path is
admissible, that is,

d(v) = d(w) + 1. (5.1)

Recall further that an atomic v–w-path has length at most two. If we have a saturating
push along the path, then at least one of the two arcs becomes reversed by the push
operation.

First, consider an atomic v–w-path of length one in Df . That is, the path consists
only of the arc (v, w). After a saturating push along (v, w), we only have the reverse
arc (w, v) in Df . Hence, to be able to push along (v, w) again, we need to restore the arc.
This can only be achieved by calling Push(w, v). For this, the label of w must increase
by two. Hence, to push along (v, w) again, the label of v must increase by two as well,
since otherwise (v, w) is not admissible. Thus, for atomic v–w-paths of length one, there
cannot be two calls to Push(v, w) without a call to Relabel(v) in between.

Now, consider an atomic v–w-path P of length two in Df . Let P consist of the
arcs (v, u) and (u,w). After a saturating push from v to w, at least one of the two arcs
of P is saturated, that is, one of the two arcs is replaced by its reverse. Hence, P can
be restored by pushing back from w to v. This case is analogous to the case above with
paths of length one. However, it is also possible to restore only the saturated arc.

Consider first that (v, u) is saturated, that is, we have arc (u, v), but not (v, u)
in Df . Then, to restore arc (v, u), we require a push along an atomic path that contains
arc (u, v). Suppose there is an atomic x–v-path Q in Df , starting in x ∈ V stop and
visiting u. Then, by calling Push(x, v), we can restore arc (v, u) in Df . Such a path Q



60 CHAPTER 5. A SYSTEMATIC APPROACH

exists only if arc (x, u) existed prior to the first push along P . Hence, before the first
call to Push(v, w) there was an atomic x–w-path. Since d is a valid labeling at all times,
we have

d(x) ≤ d(w) + 1. (5.2)

To call Push(x, v), we require Q to be an admissible atomic path. For Q to be admissible,
we must have

d(x) = d(v) + 1 = d(w) + 2 > d(w) + 1,

which contradicts inequality (5.2). The second equality is due to equation (5.1). The
contradiction gives us that Q can only be admissible if Relabel(w) is called. Hence, in
order to call Push(v, w) again, v must be relabeled as well.

Consider now that (u,w) is saturated, that is, we only have arc (w, u) in Df . To
restore arc (u,w), we need to push along an atomic path that contains arc (w, u). Sup-
pose there is an atomic w–x-path Q in Df , ending in x ∈ V stop and visiting u. By
calling Push(w, x), we can restore arc (u,w) in Df . We again have that arc (u, x) must
have existed prior to the first push along P , hence, we have an atomic v–x-path, and
since d is a valid labeling,

d(v) ≤ d(x) + 1. (5.3)

To push along Q, we require that Q is admissible, that is,

d(w) = d(x) + 1 ≥ d(v) ⇒ d(v) < d(w) + 1,

which contradicts equation (5.1). Thus Q can only be admissible if Relabel(w) is called.
As above, this rules out another call to Push(v, w) without calling Relabel(v) first.

Concludingly, in all cases, between any two saturating pushes along a v–w-path,
there must be a call to Relabel(v). Since there are at most 2k calls to Relabel(v), and
there are at most k2 atomic paths in D, we have that there are at most 4k3 calls to Push

resulting in a saturating push.

Next we need to upper-bound the number of non-saturating pushes. Recall that
Algorithm 5.3 employs the FIFO method to choose the next active vertex to operate on
(see Algorithm 5.2). To bound the number of non-saturating pushes, we first need to
discuss the number of iterations over the while-loop in line 4 of Algorithm 5.2.

Lemma 5.18. The number of iterations over the while-loop in line 4 of Algorithm 5.2
is at most 4k2.

Proof. Let Φi := max({d(v) | v ∈ Qi} ∪ {0}), i ≥ 1, be the highest label of all vertices
in Qi at the moment at which the algorithm starts iterating over Qi (consider Qi to be
computed after line 5). First note that, by Lemma 5.6, Φi ≤ 2k − 1. Observe further
that in iteration i, we iterate over the vertices in list Qi.

There are two ways for a vertex v ∈ V stop to be appended to Qi+1. The first way is
if v became active during iterating over Qi due to a call to Push(u, v) from some u ∈ Qi.
Then, d(v) < d(u) ≤ Φi, where d is the labeling at the moment of the call to Push(v, w).
The other way is if v ∈ Qi, and v remained active during iterating over Qi. Then, there
must have been a call to Relabel(v), and d(v) must have increased.
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Suppose that during iterating over list Qi there was at least one call to Relabel.
Denote by QRi ⊆ Qi the vertices that were relabeled. Let d(v) be the label before the call
to Relabel(v), and let d′(v) be the label afterwards. Let ϕi := max{d′(v)−d(v) | v ∈ QRi }
be the highest increase of a label during iterating over Qi. Hence, Φi+1 ≤ Φi + ϕi.

Suppose now that during iterating over Qi there was no call to Relabel; thus there
were only calls to Push. Then, Qi+1 contains all vertices to which excess was pushed.
Thus, due to the admissibility constraint, for each w ∈ Qi+1 we have d(w) < Φi, and
hence, Φi+1 < Φi.

Since overall we have at most 2k2 calls to Relabel, we know that there are at
most 2k2 iterations i such that Φi > Φi−1. Suppose there are j iterations over the
while-loop. Then we have that Φ1 = Φj+1 = 0, since after the initialization all active
vertices have label zero, and at termination there are no active vertices. Thus there are
at most 2k2 iterations i such that Φi < Φi+1. Altogether, there are at most 4k2 and
hence, at most 4k2 iterations over the while-loop.

With this at hand, it is easy to see that the number of non-saturating pushes can be
upper-bounded.

Lemma 5.19. The number of calls to Push resulting in a non-saturating push is at
most 4k3.

Proof. After a non-saturating push from v to w, the excess of v is zero. Since in a list
each vertex can appear at most once, there is at most one non-saturating push per vertex
per list, which is 4k2 · k = 4k3.

With the running times and the number of calls to the procedures at hand, we can
state the running time of Algorithm 5.3.

Theorem 5.20. Algorithm 5.3 solves Maximum Flow in O(τ3 ·m) time, where τ is
the vertex cover number of D.

Proof. For executing Relabel(v), we need to find all vertices w ∈ V stop such that there
is an atomic v–w-path in Df . We can do this by computing the first two layers of a
breadth-first search from v. Computing the new value of d(v) can be done on the fly
during the breadth-first search. A call to Relabel thus takes O(m) time.

We can use the same principle to bound the time of a call to Push(v, w). Again,
to find all v–w-paths, we need to compute the first two layers of a breadth-first search.
Since there are at most O(m) v–w-paths and O(m) arcs of which the flow needs to be
updated, the while-loop in procedure Push takes O(m) time to compute. Together with
the breadth-first search, this gives us a running time of O(m).

Lastly, for each list Qi, for each vertex v ∈ Qi, we need to find all admissible atomic
paths starting in a given vertex v. This can be done by computing the first two layers
of a breadth-first search as well and again takes O(m) time.

Overall, by Lemmata 5.16 to 5.19, we know that there are at most O(k2) calls
to Relabel, at most O(k3) calls to Push and at most O(k2) lists, each of which may
contain O(k) vertices, where k := |V stop | is the number of stop vertices. We have
shown above that for each of these calls or vertices in lists, we need to do computations
taking O(m) time. Hence, the overall running time is O(k3 ·m).
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Let τ be the vertex cover number of D. Since V stop is a vertex cover plus the
vertices s and t, we have k ≤ τ + 2. Thus the running time of Algorithm 5.3 can be
bounded by O(τ3 ·m).

Comparing the algorithm with the algorithm by Hochstein and Weihe [HW07] which
runs in O(k3n log n) time, where k is the crossing number, one can see that the running
times of the two algorithms are similar. The two main differences are the following:
The first difference is, as mentioned before, that the procedure Push of our algorithm
runs only on a small portion of the graph while the procedure Push of the algorithm
by Hochstein and Weihe runs an instance of Maximum Flow on planar graphs on a
subgraph containing all vertices of the input graph. Hence, it is likely that in practice
the procedure Push of our algorithm outperforms the procedure Push of Hochstein and
Weihe. The second difference is the parameter. While the parameters vertex cover
number and crossing number are incomparable (an n × n-grid has a high vertex cover
number, but its crossing number is zero, and a complete bipartite graph K3,n has a high
crossing number, but its vertex cover number is three), in practice, the crossing number
tends to be smaller than the vertex cover number.

In the upcoming section we are going to make use of the proof structure employed
for proving the running time and the correctness of Algorithm 5.3.

5.3 A Systematic Approach

In the previous section we presented a linear-time fixed-parameter algorithm for Maxi-
mum Flow with respect to the vertex cover number of the input graph. Our goal is to
generalize the used approach to develop algorithms for Maximum Flow with respect
to stronger parameters. Herein we focus on vertex deletion distances to special graph
classes. In order to maintain the efficiency of the algorithm of our systematic approach
as well as any algorithms derived from this approach we require that the procedure Push

operates in linear time and that the number of stop vertices |V stop | is bounded by some
parameter.

We now generalize the approach of the parameterized algorithm with respect to the
vertex cover number. Observe that in procedure Push(v, w) of Algorithm 5.3 we need
to compute the maximum v–w-flow on the subgraph consisting of all atomic v–w-paths
in Df , that is, an independent set plus two vertices, namely v and w. Our generalization
is of such a kind that we exchange the graph class of independent sets by other graph
classes Π. Analogously we adapt V stop to be the deletion set to Π plus s and t, that is,
we set V stop := V ′ ∪ {s, t}, where V ′ ⊆ V (D) is the smallest set such that D − V ′ ∈ Π.
In procedure Push(v, w) we then compute the maximum v–w-flow on the subgraph D′

consisting of the vertices of all atomic v–w-paths inDf . Note that the definition of atomic
paths is dependent on the set V stop. Further, note that D′ consists of a subgraph D′′ ∈ Π
together with the vertices v, w ∈ V stop. So in order to fulfill that Push operates in linear
time, we require the class Π to be of such kind that that Maximum Flow on a graph
in Π plus two vertices can be solved efficiently. If Π fulfills this property, then we say it
is nifty.

Before we formally define Π, we make a few observations that impact on how to
design Π. Since we call Push as a subroutine, and since the orientation of the arcs in Df
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s tG(D′) ∈ Π
...

...

Figure 5.3: Let Π be a class of graphs that is f -nifty. If the subgraph G(D′) =
G(D−{s, t}) (blue, dashed) is in Π, then Maximum Flow can be solved in f(|I|) time
on D.

depends on (pre-)flow f , we require that a call to Push runs in linear time independently
of the orientation of the arcs. Hence, we consider classes Π of undirected graphs. Fur-
ther, since for a call to Push we only consider a subgraph of Df we require Π to be
hereditary. Having made these two observations, we call Π nifty if one can compute a
maximum s–t-flow on a graph consisting of an arbitrary orientation of some G ∈ Π plus
arbitrarily connected vertices s and t efficiently. See Figure 5.3 for further intuition.
Formally, we state the following definition.

Definition 5.21. Let Π be a hereditary class of undirected graphs and let f : N → N

be a function. We call Π f -nifty if it holds that for every instance I = (D, s, t, c) of
Maximum Flow, if G(D − {s, t}) ∈ Π, then I is solvable in f(|I|) time. If f is linear,
then we say Π is nifty.

Since a vertex cover V ′ ⊆ V (D) is the same as the vertex deletion set to an indepen-
dent set, we obtain the following as an immediate product of Theorem 5.20.

Observation 5.22. The class Π of independent sets is nifty.

From the results of Chapter 4 we can also derive a few graph classes that are un-
likely to be nifty, e.g., classes of bipartite graphs (Corollary 4.6), of bounded degree
(Theorem 4.7) and classes of graphs that contain complete graphs (Corollary 4.14).

We now show the main result of this section, namely, that there exists a linear-
time fixed-parameter algorithm for Maximum Flow with respect to the vertex deletion
distance to Π, if Π is nifty.

Theorem 5.23. Let f be a function, let Π be an f -nifty graph class and let I = (D, s, t, c)
be an instance of Maximum Flow, and let V ′ ∈ V (D) be a vertex set of size k such
that G(D − V ′) ∈ Π. Then instance I can be solved in k4f(|I|) time.

Proof. We first state the algorithm—hereafter called general algorithm—and afterwards
prove its correctness and running time. Let V stop = V ′ ∪ {s, t}. Recall that a path is
atomic if its endpoints are in V stop and its inner vertices are in V (D) \ V stop. For the
general algorithm we reuse the main routine as shown in Algorithm 5.2 (replace “admis-
sible arc (v, w)” with “admissible atomic v–w-path”) and the procedures Initialize

and Relabel from Algorithm 5.3, but state a new generalized procedure Push. All
procedures and the main routine used are gathered in Algorithm 5.4.
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Algorithm 5.4: The algorithm for Maximum Flow with parameter vertex dele-
tion distance to Π.

1 Main Algorithm (Restated from Algorithm 5.2)
2 Call Initialize().
3 Let Q1 be a list containing the initially active vertices in arbitrary order.
4 Set i := 1.
5 while there are active vertices do
6 Set ` := |Qi| and initialize Qi+1 as an empty list.
7 for j := 1, . . . , ` do
8 Let v be the j-th element of Qi.
9 repeat

10 if there is a vertex w such that there is an atomic v–w-path in Df

then
11 Call Push(v, w).
12 if w 6∈ Qi+1 then append w to Qi+1.

13 else
14 Call Relabel(v).
15 end

16 until exf (v) = 0 or d(v) is increased.
17 if v is active then append v to Qi+1.

18 end
19 Increase i by one.

20 end

21 end

22 Procedure Initialize() (Restated from Algorithm 5.3)
23 Set d(s) := k, and set d(v) := 0 for all v 6= s.
24 For each atomic s–v-path in Df , call Push(s, v)

(Assume exf (s) to be ∞ during Initialize() and −∞ afterwards.)

25 end

26 Procedure Push(v, w) (A generalization of procedure Push of Algorithm 5.3)
27 In Df , find all atomic v–w-paths P = {P1, . . . , P`}.
28 Compute v–w-flow fv,w on

⋃P such that val(f) is maximized, but does not
exceed exf (v).

29 Set f := f + fv,w.

30 end

31 Procedure Relabel(v) (Restated from Algorithm 5.3)
32 Set d(v) := min{d(w) + 1 | there is an atomic v–w-path in Df}.
33 end

Towards showing the correctness of the general algorithm we first show that pro-
cedure Push in Algorithm 5.4 maintains the invariant that f is a preflow. Consider a
call to Push(v, w), v, w ∈ V stop, and let P be the set of all atomic v–w-paths. Let f
be the preflow before, fv,w be the flow computed during, and f ′ = f + fv,w be the
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preflow after the call to Push(v, w). Assume that f is a valid preflow and that fv,w is
a valid v–w-flow in graph

⋃P ⊆ Df of maximal value such that val(fv,w) ≤ exf (v).
Since val(fv,w) ≤ exf (v), preflow f ′ still fulfills the relaxed conservation constraint (see
Definition 5.1) after a call to Push. Further, since fv,w is a valid flow on

⋃P ⊆ Df , we
have fv,w(a) ≤ cf (a) for every arc a ∈ A(

⋃P). By Definition 2.2 it then follows that f ′

also fulfills the capacity constraint, and thus f ′ is a valid preflow.
Having shown that procedure Push in Algorithm 5.4 maintains a valid preflow, by

careful observation one can find that Lemmata 5.11 and 5.12 and Proposition 5.13 also
hold for the general algorithm. Hence, the general algorithm is correct.

We now show that the general algorithm runs inO(k4m) time. Since the general algo-
rithm uses the same procedure Relabel as Algorithm 5.3, Lemmata 5.14 to 5.16 trivially
hold. Towards upper-bounding the number of calls to Push, note that Lemmata 5.18
and 5.19 hold as well for the general algorithm. Thus we have at most 4k2 iterations
over the while-loop in line 5 of Algorithm 5.4. Recall that in each of these iterations,
we iterate over a list of active vertices. Note that there are at most |V stop | ≤ k + 2
active vertices. Let v ∈ V stop and let W ⊆ V stop be the set of vertices such that for
each w ∈ W there is an admissible atomic v–w-path. After a call to Push(v, w) result-
ing in a saturating push, neither exf (v) = 0 nor d(v) increased. Hence there are at
most (k + 2) · (k + 2) · (4k2) ∈ O(k4) calls to Push resulting in a saturating push.

Towards determining the running time of procedure Push(v, w) of the general al-
gorithm observe that G(

⋃P − {v, w}) ⊆ G(Df − V stop) ∈ Π, and since G(
⋃P) ⊆

G(Df ) ⊆ G(D) and Π is nifty, flow fv,w can be computed in O(f(I|)) time. Finding
all atomic v–w-paths in Df and increasing f by fv,w can be done in O(m) time by a
breadth-first search starting at v and by iterating over the arcs of Df , respectively. Thus
procedure Push(v, w) operates in f(|I|) time. As shown in the proof of Theorem 5.20,
procedure Relabel operates in O(m) time, and for each iteration over the while-loop in
line 5 of Algorithm 5.4, for each active vertex v in the list we require O(m) time to find
all atomic admissible paths starting in v.

Overall, we have at most O(k2) calls to Relabel, at most O(k4) calls to Push and
at most O(k2) iterations over the while-loop in line 4 of Algorithm 5.2, in each of which
we may iterate over O(k) vertices. Hence, the running time of the general algorithm
is k4f(|I|).

The bottleneck in the running time of the general algorithm is the bound on the
number of saturating pushes. As one can see we did not manage to bound the number
of saturating pushes by O(k3) as in Lemma 5.17 of the previous section. We leave it
as an open question to whether the running time bound of the general algorithm, and
thus, of our systematic approach, can be improved to k3f(|I|).

5.4 Maximum Flow With Feedback Vertex Number

Having stated our systematic approach, we now present a parameterized algorithm for
Maximum Flow with respect to the undirected feedback vertex number of the input
graph based on our approach. Since a feedback vertex set is the same as a vertex deletion
set to a forest, we only need to show that forests are nifty. In our main theorem we make
use of the data reduction rules introduced in Chapter 3, so we restate them here.
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Reduction Rule 3.2 (BFS-Rule; Restated). Let I = (D, s, t, c) be an instance of
Maximum Flow and let v ∈ V (D) be a vertex such that there exists no s–v-path or
no v–t-path. Then delete v.

Reduction Rule 3.3 (Cut-Rule; Restated). Let I = (D, s, t, c) be an instance of Max-
imum Flow where the BFS-Rule is not applicable, and let w ∈ V (D) be a cut vertex.
Let v ∈ V (D) \ {s, t} be a vertex such that all s–v-paths and all v–t-paths visit w. Then
delete v.

Reduction Rule 3.4 (Deg-2-Rule; Restated). Let I = (D, s, t, c) be an instance of
Maximum Flow and let v ∈ V (D) \ {s, t} be a vertex of combined degree two, and let u
and w be the neighbors of v. If there exists a u–w-path, then ensure that (u,w) ∈ A(D) (if
necessary, add (u,w) with capacity zero), and increase c(u,w) by min{c(u, v), c(v, w)}.
Proceed analogously if there exists a w–u-path. Then remove v from D.

Reduction Rule 3.5 (SVT-Rule; Restated). Let I = (D, s, t, c, k) be an instance of k-
Flow and let v ∈ V (D) \ {s, t} such that there is a path P = svt in D. Then decrease k
by min{c(s, v), c(v, t)}, and decrease c(s, v) and c(v, t) by the same value. If arc a ∈ A(P )
has capacity zero, delete it.

We can now state the main theorem of this section.

Theorem 5.24. Forests are nifty.

Proof. Let I = (D, s, t, c) be an instance of Maximum Flow such that G := G(D −
{s, t}) is a forest. Since every s–t-path in D can only visit vertices of at most one of
the components of G, we assume without loss of generality that G is a tree. We prove
first that by applying Reduction Rules 3.2 to 3.5 exhaustively we can reduce I to a
constant-size kernel, second, that we can apply the reduction rules in O(nG) time, and
third, that we then can compute a maximum s–t-flow f for I in O(nG) time.

We first apply Reduction Rules 3.2 and 3.4 to remove sources and sinks as well as
all degree-two vertices v ∈ V (G) whose neighbors u and w are in the tree. Clearly,
arcs (u,w) and (w, u) cannot exist, since otherwise G would contain a cycle uvwu,
contradicting the assumption that it is a tree. Thus, we can introduce arcs (u,w)
and (w, u) in constant time. Next, by iterating through the neighborhoods of s and t we
remember for each vertex v ∈ V (G) whether the arc (s, v) or the arc (v, t) exists. This
allows us to check in constant time whether arcs (s, v) or (v, t) exist.

The next step is to show that we can delete a leaf v of tree G with a constant number
of applications of Reduction Rules 3.2 to 3.5, requiring constant time overall. Let u be
the unique neighbor of v in G. Observe that we have at least one of the arcs (u, v)
and (v, u), and that there may exist arcs (s, v) and (v, t) in D. If neither arc (s, v) nor
arc (v, t) exists, then v is connected to the rest of the graph only via u and by Reduction
Rule 3.3 we can delete v. If one of the two arcs exists, then it is adjacent to two vertices.
Assume that arc (s, v) exists. If arc (v, u) exists, then we can apply Reduction Rule 3.4.
Since we can check in constant time whether arc (s, u) exists, the application of the
reduction rule on v takes constant time. If arc (v, u) does not exist, then v is a sink and
can be removed by Reduction Rule 3.2. The case that arc (v, t) exists can be approached
analogously. Lastly, if v is connected to both s and t, then we have a path P = svt, and
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by Reduction Rule 3.5 we can delete at least one of the arcs (s, v) and (v, t). Then, v is
adjacent to one or two vertices, so one of the previous case applies and v can be deleted.
Since the degree of v is at most three, it is easy to see that removing the vertex by taking
the steps above can be done in constant time.

Trees can be eliminated by consequently deleting leaves, hence, applying the four
reduction rules exhaustively reduces instance I to an instance I ′ that consists of only
the vertices s and t which may or may not be connected by an arc (s, t). Instance I ′

can be solved trivially. Towards computing f , we keep a list of actions A1, . . . A`, each
representing an application of a reduction rule, to remember in which order we applied
which reduction rule on which vertex. For each action we remember

(1) the vertex v that was removed and the capacities of the arcs incident to v, if we
apply Reduction Rule 3.2 or 3.3,

(2) the vertex v that was removed, its incident arcs to neighbors u and w and their
capacities, and the capacities c(u,w) and c(w, u), if the corresponding arcs existed,
if we apply Reduction Rule 3.4, and

(3) the removed arc and its capacity, if we apply Reduction Rule 3.5.

Let I0 = I, and let instance Ij be the instance that we obtain from applying action Aj
to instance Ij−1, for 1 ≤ j ≤ `. Thus I` = I ′. Now, given an instance Ij = (Dj , s, t, cj), a
corresponding solution fj and action Aj , we can reconstruct the previous instance Ij−1 =
(Dj−1, s, t, cj−1) and compute a solution fj−1 as follows:

(1) If Aj is an application of Reduction Rule 3.2, then add the remembered vertex v
and its incident arcs with their capacities. Set the flow fj−1 of those arcs to zero.

(2) If Aj is an application of Reduction Rule 3.4, then add the remembered vertex v
and its incident arcs to D. Set the capacities cj−1 of the arcs between the ver-
tices u, v and w to the remembered values. If fj(u,w) ≤ cj−1(u,w), then set
flow fj−1(u,w) = fj(u,w) and set fj−1(u, v) = fj−1(v, w) = 0. If fj(u,w) >
cj−1(u,w), then set fj−1(u,w) = cj−1(u,w) and set fj−1(u, v) = fj−1(v, w) =
fj(u,w)− fj−1(u,w). Proceed analogously with the arcs (w, u), (w, v), and (v, u)
in the opposite direction, if existing.

(3) If Aj is an application of Reduction Rule 3.5, then assume that the arc removed
by Aj is (s, v). Add arc (s, v) with the remembered capacity c(s, v), set cj−1(v, t) =
cj(v, t) = c(s, v), set fj−1(s, v) = c(s, v) and set fj−1(v, t) = fj(v, t) + c(s, v). If
arc (v, t) is removed by Aj , then proceed analogously.

The restored instance then is equal to the original instance since we only introduce tree
leaves in cases (1) and (2), and we add arcs to tree leaves in case (3).

Next, we need to show that given instance Ij and action Aj for 1 ≤ j ≤ ` and
the corresponding maximum flow fj , the computed flow fj−1 for Ij−1 is a maximum
flow. To this end, observe that in cases (1) and (2) we do not add any s–t-paths, and
that val(fj−1) = val(fj). In case (3) we introduce a saturated arc incident to either s or t.
So, while val(fj−1) ≥ val(fj), we do not obtain any additional s–t-paths in Df . Thus
in all three cases the computed flow fj−1 is a maximum flow for Ij−1. Since instance I`
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can be trivially solved, the flow f0 computed in the last step is a maximum flow for
instance I0 = I.

Finally, observe that for every action A1, . . . , A` reconstructing the previous instance
takes constant time. The exhaustive application of Reduction Rules 3.2 and 3.4 on
tree vertices takes linear time, a tree elimination order is found in linear time, and, as
shown above, each leaf of tree G is eliminated by applying a constant number of data
reduction rules, and thus actions. This gives us that we require O(nG) time overall to
solve instances I as described above, and concludes the proof.

Using Theorems 5.23 and 5.24 and the linear-time constant-factor approximation
for finding an undirected feedback vertex set by Bar-Yehuda et al. [BY+98], we obtain
a parameterized algorithm for Maximum Flow with respect to the feedback vertex
number. Since we only need O(nG) time to solve Maximum Flow on forests plus
two vertices, we can improve the running time upper bound for a call to Push in the
generalized algorithm from O(|I|) to O(m).

Corollary 5.25. Maximum Flow can be solved in O(k4m) time, where k is the undi-
rected feedback vertex number of the input graph.

Are other graph classes nifty? Apart from forests we also investigated into whether
other graph classes may be nifty. As already mentioned, it is unlikely that the class
bipartite graphs, the class of graphs of bounded degree or any class of graphs that contain
complete graphs are nifty (see Corollaries 4.6 and 4.14 and Theorem 4.7). Recall that
Maximum Flow on planar graphs can be solved in O(n log n) time [BK09; Wei97].
This does not imply though that planar graphs would become f -nifty for a quasilinear
function f . This is easy to see since one cannot add two arbitrarily connected vertices
to a planar graph while maintaining the planarity of the graph. The same also holds for
outerplanar graphs: Adding one (arbitrarily connected) vertex to an outerplanar graph
maintains planarity, but adding the second vertex may break the planarity of the graph.

Note that grid graphs are planar and thus Maximum Flow on grid graphs can be
solved in O(n log n) time. Hence, it would be interesting to know whether grid graphs
are f -nifty for a quasilinear f , or whether it is unlikely for then to be f -nifty.
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Conclusion

This work provides the first systematic study on parameterized algorithms for Maximum
Flow in spirit of the FPT in P program [GMN17]. On the one hand it turns out that
the restrictions of several graph parameters, i.e., any parameter that is upper-bounded
by maximum degree or distance to cliques, do not help to solve Maximum Flow more
efficiently. That is, a fixed-parameter algorithm cannot be more efficient than an algo-
rithm for the general problem. However, we also provide positive results: Maximum
Flow admits a quasilinear-time linear-size kernelization when parameterized by the
feedback edge number of the underlying undirected graph, being—to the best of our
knowledge—the first nontrivial kernelization for the problem. Further, we introduced
a systematic approach for designing fixed-parameter algorithms for Maximum Flow.
This is based on the idea that the operation Push of the Push-Relabel method [GT88]
can be generalized to push along subgraphs instead of arcs. Applications of this ap-
proach yield fixed-parameter algorithms with respect to the vertex cover number τ of
the underlying undirected input graph running in O(τ3m) time, and with respect to
the feedback vertex number k of the underlying undirected graph running in O(k4m)
time. While there exists a (conceptually different) algorithm for Maximum Flow with
respect to the smaller parameter treewidth [Hag+98], its running time is 2O(tw

2)n and
thus exponential in the parameter.

Comparing the outcome of this work with the results for fixed-parameter algorithms
for Maximum Matching [Fom+17; IOO17; KN18; MNN17; Yus13] it seems that Maxi-
mum Flow is slightly harder to solve than Maximum Matching. Both problems admit
a linear kernel with respect to the feedback edge number, and for both problems there
are fixed-parameter algorithms with respect to the vertex cover number and the feed-
back vertex number. But the algorithms for Maximum Matching with respect to the
latter two parameters run in O(k(n+m)) time [MNN17], while the running times of the
corresponding algorithms for Maximum Flow depend polynomially on the parameter.

Further research opportunities. Throughout this work we already stated a few
open questions gathered here:

– Can we show that the parameter maximum degree does not help to solve Maximum
Flow more quickly, even if the maximum capacity of the input is upper-bounded
by a constant?
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– Can we improve the upper bound on the running time of our systematic approach
for fixed-parameter algorithms (Theorem 5.23) from k4f(|I|) to k3f(|I|) in order to
match the running time of our algorithm with respect to the vertex cover number?

– Are grid graphs f -nifty for quasilinear functions f , that is, can Maximum Flow on
grid graphs plus two arbitrarily connected terminals be solved in quasilinear time
(see Section 5.3 for a definition of f -nifty graph classes)? This would yield a third
application for our systematic approach with f being at most quasilinear.

We conclude this work with further research directions.

Treewidth and other width parameters. While there exists a fixed-parameter algorithm
for Maximum Flow with respect to treewidth [Hag+98], it requires time exponential
in the parameter. Fomin et al. [Fom+17] state in their work fully polynomial fixed-
parameter algorithms with respect to treewidth for unit-capacitated Maximum Vertex
Flow and for Maximum Matching, and state as an open question whether one can find
a fully polynomial fixed-parameter algorithm for unit-capacitated Maximum Flow with
respect to treewidth. We supplement this question by also asking for fully polynomial
fixed-parameter algorithms for Maximum Flow with (or without) unit capacities with
respect to the parameters pathwidth or bandwidth, which upper-bound the treewidth.

Kratsch and Nelles [KN18] presented a fixed-parameter algorithm for Maximum
Matching with respect to modular width, and stated in their concluding remarks that
Maximum Flow parameterized by modular width is not easier than general Maximum
Flow. But this does not necessarily hold for Maximum Flow with unit capacities.
Since the modular width of a graph can be computed in linear time it would be interesting
to see whether one can find a fixed-parameter algorithm for Maximum Flow with unit
capacities with respect to modular width.

Implementation. In this work we provide two fixed-parameter algorithms for Maxi-
mum Flow. Investigating whether they prove efficient also in practice and comparing
them with the best known practical algorithms for Maximum Flow on real-world in-
stances would be an interesting next step. Also, it would be interesting to see how our
fixed-parameter algorithms practically compete with the algorithm parameterized by the
crossing number due to Hochstein and Weihe [HW07].

Possibly even more promising for running time improvements in practice are the four
data reduction rules introduced in Chapter 3. We state a few questions with respect to
the practicality of our rules: How far can the instance size of real-world instances be
reduced by our reduction rules? How long does an exhaustive application of the four
reduction rules take in practice? How big is the time improvement of running the best
known practical Maximum Flow algorithms on instances reduced by our rules versus
running the algorithms on the non-reduced instances?

Further kernelization results and data reduction rules. Liers and Pardella [LP11] pre-
sented some data reduction rules that work well in practice but have a worst-case running
time of O(n5). Is it possible to simplify these rules towards a running time improvement,
or even find further data reduction rules for Maximum Flow? Ideally these rules would
yield further kernelizations for the problem.
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We have shown that the four data reduction rules can be applied exhaustively to-
gether in O(nm) time (Theorem 3.20), and by carefully analyzing the dependencies of
the rules, we have seen that applying the rules in quasilinear time turns out to be chal-
lenging; see Section 3.3. Similarly, with Weihe’s Rule (Reduction Rule 3.1 [Wei97]), it
remains open how one can apply the rule in quasilinear time. Clearly, an algorithm that
applies these rules exhaustively in quasilinear time would yield a highly efficient prepro-
cessing for Maximum Flow; but we would be surprised if such an algorithm existed. If
one further does not succeed in finding such an algorithm, can one state conditional run-
ning time lower bounds à la Vassilevska Williams [VW15] for the exhaustive application
of our four reduction rules, or of Weihe’s Rule? Such a lower bound result would be of
special interest given the lack of lower bound results for the Maximum Flow problem.
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