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Zusammenfassung

In dieser Arbeit studieren wir die parametrisierte Komplexität der Separierung zweier
Knoten in einem temporalen Graphen. Ein temporaler Graph besteht aus einer Knoten-
menge V und einer Zeitkantenmenge E. Letzters sind binäre Wechselwirkungen zwischen
Knoten, die mit einem Zeitstempel beschriftet sind. Es gibt verschiedene Möglichkeiten
das Verhalten von Pfaden in temporalen Graphen zu modellieren. Wir fokussieren uns
auf die Modelle von strikten und nicht-strikten Pfaden. Ein nicht-strikter (s, z)-Pfad ist
ein Pfad vom Knoten s zum Knoten z, sodass für alle Beschriftungen t1, t2 von zwei
aufeinanderfolgenden Kanten auf einem Pfad stets t1 ¬ t2 gilt. Ein strikter (s, z)-Pfad
ist ein nicht-strikter (s, z)-Pfad mit der zusätzlichen Einschränkung, dass die Ungleich-
ung zwischen t1 und t2 strikt ist (t1 < t2). Das Problem der Nicht-Strikten (s, z)-
Separation (Strikten (s, z)-Separation) fragt, ob es eine Menge S von höchstens k
Knoten gibt, sodass der temporale Graph ohne S keinen nicht-strikten (s, z)-Pfad (strik-
ten (s, z)-Pfad) hat.

Wir zeigen für die Parameter |V |, k + τ , und τ + tw↓, dass Strikte (s, z)-Sepa-
ration

”
fixed-parameter tractable“ ist, wobei τ die maximale Beschriftung und tw↓ die

Baumweite des unbeschrifteten Graphen ist. Des Weiteren zeigen wir für die Parame-
ter |V |, τ+tw↓, k+τ+twmax, dass Nicht-Strikte (s, z)-Separation

”
fixed-parameter

tractable“ ist, wobei twmax die maximale Baumweite des temporalen Graphen zu einem
beliebigen Zeitpunkt ist. Falls NP 6⊆ coNP/poly ist, so hat (Nicht-)Strikte (s, z)-
Separation für die den Parameter k+τ+tw↓+ twmax+∆ jedoch keinen polynomiellen
Kern, wobei ∆ der maximale Knotengrad des unbeschrifteten Graphen ist.

Andererseits zeigen wir, dass (Nicht-)Strikte (s, z)-Separation für die Parame-
ter k, τ , twmax, k+twmax, und τ +twmax (vermutlich) nicht

”
fixed-parameter tractable“

ist. Ein Unterschied ist, dass Nicht-Strikte (s, z)-Separation bereits bei τ = 2 NP-
schwer ist, aber Strikte (s, z)-Separation noch bis τ = 4 in polynomieller Zeit lösbar
ist und erst bei τ ­ 5 NP-schwer wird.

Allerdings ist Strikte (s, z)-Separation auf planaren temporalen Graphen für den
Parameter τ

”
fixed-parameter tractable“. Ein temporaler Graph ist planar, wenn der

unbeschriftete Graph planar ist. Im Bezug auf exakte Lösungen ist ein
”
fixed-parameter

tractable“ Resultat für (Nicht-)Strikte (s, z)-Separation auf planaren temporalen
Graphen das Beste auf was wir (vermutlich) hoffen können, denn wir konnten zeigen,
dass (Nicht-)Strikte (s, z)-Separation auf planaren temporalen Graphen NP-schwer
ist. Hier beantworten wir eine bislang offene Frage von Fluschnik et al. [ICALP 2016]
indem wir zeigen, dass Length-Bounded (s, z)-Separation auf planaren Graphen
NP-schwer ist.

Anschließend betrachten wir β-Gebunde (s, z)-Separation. Dieses Problem ist das-
selbe wie Nicht-Strikte (s, z)-Separation mit der zusätzlichen Einschränkung, dass
die Differenz der Beschriftungen von zwei in einem Pfad aufeinanderfolgenden Kanten
höchstens β ist. Wir beweisen, dass β-Gebunde (s, z)-Separation für den Parame-
ter k W[1]-schwer ist und für den Parameter |V |

”
fixed-parameter tractable“ ist. Jedoch

hat β-Gebunde (s, z)-Separation für den Parameter |V | keinen polynomiellen Kern,
falls NP 6⊆ coNP/poly.
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Abstract

In this work we study the parameterized complexity of separating two vertices in a
temporal graph. A temporal graph consists of a set V of vertices and a set E of time-
edges, i.e. binary interactions between the vertices, labeled with time-stamps. There are
several ways how the notion of a path in temporal graphs can be modeled. We focus
primarily on non-strict and strict path models. A non-strict (s, z)-path is a path from a
vertex s to a vertex z such that for all labels t1, t2 of two consecutive edges on the path
it holds that t1 ¬ t2. A strict (s, z)-path is a non-strict (s, z)-path with the additional
restriction that the inequality between t1 and t2 is strict (t1 < t2). The Non-Strict
(s, z)-Separation (Strict (s, z)-Separation) problem asks whether there is a set S
of at most k vertices such that the temporal graph without S does not have a non-
strict (s, z)-path (strict (s, z)-path).

We present fixed-parameter tractability results for Strict (s, z)-Separation when
parameterized by |V |, k + τ , and τ + tw↓, where τ is the maximum label and tw↓ is
the treewidth of the unlabeled graph. Moreover, we present fixed-parameter tractability
results for Non-Strict (s, z)-Separation when parameterized by |V |, τ+tw↓, and k+
τ + twmax, where twmax is the maximum treewidth of the temporal graph at any point
in time. Unless NP ⊆ coNP/poly, however, (Non-)Strict (s, z)-Separation does not
admit a polynomial kernel when parameterized by k + τ + tw↓+ twmax+∆, where ∆ is
the maximum degree of the unlabeled graph.

On the contrary, we show that (Non-)Strict (s, z)-Separation is (presumably)
fixed-parameter intractable when parameterized by k, τ , twmax, k+twmax, and τ+twmax.
Here, one difference between Non-Strict (s, z)-Separation and Strict (s, z)-Sepa-
ration is that Non-Strict (s, z)-Separation is NP-hard even if the maximum time
label τ = 2 while Strict (s, z)-Separation is polynomial-time solvable if τ ¬ 4 and is
NP-hard even if τ = 5.

However, Strict (s, z)-Separation is fixed-parameter tractable when parameter-
ized by τ on temporal planar graphs. A temporal graph is planar if the unlabeled graph
is planar. In terms of exact solutions a fixed-parameter algorithm for (Non-)Strict
(s, z)-Separation on temporal planar graphs is the best we can (presumably) hope
for because we showed that this problem is still NP-hard on temporal planar graphs.
Here, we settle an open question by Fluschnik et al. [ICALP 2016] by showing that
Length-Bounded (s, z)-Separation is NP-hard on planar graphs.

Then, we consider β-Bounded (s, z)-Separation. This problem is the same as
Non-Strict (s, z)-Separation with the additional restriction that the labels of two
consecutive edges of a path have an upper bound β on their difference. We prove that
β-Bounded (s, z)-Separation is W[2]-hard when parameterized by k and that it is
fixed-parameter tractable, but (presumably) does not admit a polynomial kernel, when
parameterized by |V |.
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Chapter 1

Introduction

Patch Tuesday, Microsoft is fixing a security vulnerability. We are a system administra-
tor of a huge manufacturing company which uses many delicate and highly specialized
software tools. It is likely that an update will break a subset of those tools. This could
cause a manufacturing outage—the worst case. Therefore, we roll out updates in stages
which means that first a small subset of our systems gets the update, and then we slowly
update further systems until all systems are up to date. This process can take days, but
if something breaks it is relatively easy to rollback the update.

The security vulnerability Microsoft is fixing affects a subset of our systems and allows
an attacker to execute code remotely on a computer in its local network. Even worse,
there is an affected system z which is the backbone of our manufacturing process and can
only be updated during the weekend. Since the update is out, everyone has knowledge
about the vulnerability and therefore, the ransomware which uses the vulnerability is
already on the horizon. The time is running! We need to secure the manufacturing
process.

The first stage of the update process shall update k systems because k − 1 of our
coworkers are system administrators. In case something goes wrong, there is at least one
system administrator for each system. A natural question is which systems should be in
the first stage of the update process such that z cannot be infected by a malware which
uses the vulnerability.

We model the situation in a graph as follows: Every system which has this vulnerabil-
ity is a vertex. If two systems can communicate at time point t between Patch Tuesday
and the weekend, then there is an edge between these systems with label t. Furthermore,
there is a special vertex s which models the outside of our infrastructure. This can be
the Internet, a device of a visitor, or other things which are able to get in touch with an
affected system. If the outside can communicate with an affected system at time point t
between Patch Tuesday and the weekend, then there is an edge between s and the system
with label t. We refer to Figure 1.1 for an illustration.

Clearly, each path from s to z where the labels are non-decreasing from s to z
represents a possibility how the outside could infect z and cause a manufacturing outage.
Our goal is to have no such path from s to z in the graph after the first stage of our
update process is completed.

A temporal graph is, informally speaking, a graph where the edge set may change over
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Figure 1.1: Illustration of the introductory example from Chapter 1. Each dot is an af-
fected system. Each edge (solid line) denotes a local network connection between two
systems. A label of an edge denotes on which days the connection is active. Here, “1”
denotes Tuesday, “2” denotes Wednesday, “3” denotes Thursday, and “4” denotes Fri-
day. Note that there is an intranet (gray cloud) which does not have a direct internet
connection. Furthermore, an employee has meetings on Wednesday and Friday where
foreign devices can access the system v. The corresponding edge is dashed (blue). If we
update the systems v and r (dotted/orange), then nobody can execute code on z using
the security vulnerability Microsoft is fixing.

a discrete time interval. In the literature, temporal graphs are also known as evolving
[Fer04] and time-varying [Cas+12; FMS09; Nic+13] graphs, as well as temporal networks
[HS12; KKK02; Mer+13], multidimensional networks [Boc+14], link streams [VLM16],
and edge-scheduled networks [Ber96]. In this work, we use the well-established model in
which each edge has a timestamp [Akr+15; Akr+17; Boc+14; Him+17; HS12; KKK02;
Mer+13; VLM16]. Assuming discrete time steps, this is equivalent to a sequence of static
graphs over a fixed set of vertices [EHK15; Mic16; MS16]. Formally, we define a temporal
graph as follows.

Definition 1.1 (Temporal Graph). A temporal graph G = (V,E, τ) is defined as an
ordered triple consisting of a set of vertices V , a set of time-edges E ⊆

(V
2

)
× {1, . . . , τ},

and a time interval {1, . . . , τ} ⊆ N, where τ ∈ N.

See Figure 1.2 for an example. The vertices and time-edges are represented by black
dots and solid lines, respectively. If there is more than one time-edge between two ver-
tices, then there is just one solid line between these vertices, and the labels of the
time-edges are comma separated.

Note that in contrast to many multilayer models, the labels have a linear order in
temporal graphs and, in contrast to dynamic graphs, all layers of a temporal graph have
the same vertex set.
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Figure 1.2: The temporal graph G := (V,E, 4), where V = {s, a, b, c, z} and E =
{({s, a}, 2), ({s, b}, 1), ({b, a}, 1), ({b, c}, 1), ({a, c}, 3), ({a, z}, 1), ({c, z}, 3), ({c, z}, 4)}.

Wu et al. [Wu+14] collected a large set of real-world scenarios which can be modeled
as a temporal graph. For example, A calls B at time t in telephone network, A sends
message to B at time t in a messaging networks, A follows B at time t in social net-
works, A cites B at time t in citation networks, A works with B at time t in collaboration
networks, and information spreads from A to B at time t in information dissemination
networks. A natural application on a resulting temporal graphs is whether some kind of
information could spread from some vertex s to another vertex z. This work is devoted
to one natural adversary question to this. We search for a set of vertices such that if the
vertices are removed from the temporal graph, then information cannot spread from s
to z. In our introductory example, the information was a ransomware and we removed
vertices from the temporal graph by updating systems.

We mainly focus on two variants of this problem:

Non-Strict (s, z)-Separation
Input: A temporal graph G = (V,E, τ), two distinct vertices s, z, and an inte-

ger k.
Question: Is there a vertex subset S ⊆ (V \{s, z}) of size at most k such that each

path from s to z in G whose labels are non-strictly increasing visits at
least one vertex in S?

Strict (s, z)-Separation
Input: A temporal graph G = (V,E, τ), two distinct vertices s, z, and an inte-

ger k.
Question: Is there a vertex subset S ⊆ (V \{s, z}) of size at most k such that each

path from s to z in G whose labels are strictly increasing visits at least
one vertex in S?

Let G from Figure 1.2 and k = 1 be an instance of Non-Strict (s, z)-Separation
or Strict (s, z)-Separation. Observe that the instance of Non-Strict (s, z)-Sepa-
ration is a no-instance, because we need to remove at least two vertices but k = 1.
However, the instance of Strict (s, z)-Separation is a yes-instance, because we can
remove the vertex a or c from G to achieve the desired goal of Strict (s, z)-Separa-
tion.

Note that we refer by (Non-)Strict (s, z)-Separation to both problems Non-
Strict (s, z)-Separation and Strict (s, z)-Separation. Kempe, Kleinberg, and



14 CHAPTER 1. INTRODUCTION

Kumar [KKK02] showed that (Non-)Strict (s, z)-Separation is NP-hard. A prob-
lem is NP-hard if there is presumably no exact algorithm which solves the problem in
polynomial time.

In the literature, there are basically three ways how to develop efficient algorithms
with provable guarantees for NP-hard problems.

First, an approximation algorithm is an efficient algorithm that computes a solution
which is guaranteed to have at most a certain distance to an optimal solution. Second,
one could restrict the input to have a specific structure and try to solve the problem on
that specific structure efficiently. Third, in parameterized complexity, we parameterize the
NP-hard problem with a parameter k and try to develop a fixed-parameter algorithm with
respect to k. This is an algorithm which computes an optimal solution in f(k)·nO(1) time,
where n is the input size and f is a computable function. Observe that the exponential
blow-up of the running time is restricted to the parameter k. Hence, we have an efficient
algorithm in practical applications where such a parameter is rather small. Note that
assumptions on parameters are often restrictions on the input. We call a problem fixed-
parameter tractable (in FPT) when parameterized by a parameter k if there is a fixed-
parameter algorithm with respect to k for that problem.

An NP-hard problem is presumably fixed-parameter intractable (not fixed-parameter
tractable) when parameterized by the given parameter, if the problem is W[1]-hard
when parameterized by the given parameter. Observe that a problem can admit a fixed-
parameter algorithm when parameterized by a specific parameter, but be W[1]-hard
under another parameterization. Consequently, it is of interest to study an NP-hard
problem with respect to different parameterizations.

This work is primarily devoted to study the parameterized computational complexity
of (Non-)Strict (s, z)-Separation. Afterwards, we consider Non-Strict (s, z)-Sep-
aration with the additional restriction that the labels of two consecutive edges of a
path have an upper bound on the distance in time to each other. We refer to Chapter 5
for a motivation and a formal definition.

Related work. Berman [Ber96] studied an analogue of the well-known theorem of
Menger [Men27] in edge-scheduled networks. Note that edge-scheduled networks are
essentially equivalent to temporal graphs [KKK02]. In particular, Berman [Ber96] de-
veloped an algorithm to compute the minimum number of time-edges such that the
temporal graph without these time-edges does not have a path from vertex s to vertex z
whose labels are non-strictly increasing. Furthermore, Berman [Ber96] showed that the
maximum number of disjoint paths from a vertex s to a vertex z whose labels are
non-strictly increasing is not equal to the minimum number of vertices such that the
temporal graph without these vertices does not have a path from s to z whose labels are
non-strictly increasing. However, Kempe, Kleinberg, and Kumar [KKK02] proved that
if the temporal graph without labels excludes a fixed minor, then the maximum number
of disjoint paths from a vertex s to a vertex z whose labels are non-strictly increasing is
equal to the minimum number of vertices such that the temporal graph without these
vertices does not have a path from s to z whose labels are non-strictly increasing. This
minor the is graph of Figure 1.2 without labels.

Mertzios et al. [Mer+13] derived another analogue of the theorem of Menger [Men27]
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and proved that it holds for temporal graphs. Here, one has to specify at which point
in time a vertex is removed from the temporal graph such that there is no path from
vertex s to vertex z whose labels are strictly increasing. Furthermore, they presented an
algorithm to compute a shortest path from vertex s to vertex z whose labels are strictly
increasing.

Wu et al. [Wu+14] developed, in a slightly different model, efficient algorithms to
find for a source vertex s a minimum path to all other vertices. In their model of a
temporal graph, a time-edge is directed and can have different incoming and outgoing
labels. In temporal graphs, as well as is the model of Wu et al. [Wu+14], it is not clear
what a minimum path is. Wu et al. [Wu+14] considered as a minimum path between
two vertices (i) the path which contains a minimum amount of edges, (ii) the path which
arrives at the earliest point in time, (iii) the path which departures at the latest point
in time, and (iv) the path which has the minimum elapsed time.

Akrida et al. [Akr+17] introduced temporal flows on temporal graphs and presented
an polynomial-time algorithm to compute the maximum amount of flow that can pass
from a source vertex s to a sink vertex z until a given point in time. Accordingly, they
showed that the maximum temporal flow is equal to the minimum number of edges such
that the removal of these edges destroys every path from s to z whose labels are strictly
increasing.

We close the list of related work which have a directed connection to temporal graphs
by referring to the survey of Michail [Mic16] for a broad view on an algorithmic per-
spective on temporal graphs, and to the survey of Holme and Saramäki [HS12] for an
overview of applications of temporal graph as well as related models. Among others
Holme and Saramäki [HS12] describe temporal graphs in cell biology, neural and brain
connections, ecological systems, infra-structural networks, physical proximity, and dis-
tributed computing.

In standard graph theory, a minimum set of vertices whose removal separates a ver-
tex s from another vertex z can be computed in polynomial time (see Lemma 3.5). Many
natural generalizations of this problem become NP-hard. Among others, (Non-)Strict
(s, z)-Separation is one of these generalizations of the graph separation problem for
two vertices. In the last decade, graph separation problems have become one of the most
intensively studied areas of parameterized complexity, leading to various helpful tech-
niques to design fixed-parameter algorithms. The studies include important separators
[Mar06], shadow removal [MR14], treewidth reduction [MOR13], LP- and CSP-branching
[Cyg+13; IWY16], randomized contractions [Chi+16], and homogeneous path systems
[Gui11].

Structure of the work. In the remaining part of Chapter 1 we give an overview
of this thesis and introduce formal definitions from graph theory and parameterized
complexity.

Chapter 2 is about the notion of temporal graphs. We state formal definitions of
temporal graphs and motivate different notions of paths, cuts, and separators in temporal
graphs followed by basic observations of separators in temporal graphs.

Chapter 3 discusses the computational complexity of (Non-)Strict (s, z)-Separa-
tion with respect to the parameters solution size and maximum label.
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In Chapter 4, we study the (Non-)Strict (s, z)-Separation on restricted classes
of temporal graphs. First, we discuss how one can lift the concept of treewidth from
standard graphs to temporal graphs and investigate the computational complexity of
(Non-)Strict (s, z)-Separation on classes of temporal graphs which have bounded
underlying treewidth. The underlying treewidth is the treewidth of the unlabeled graph.
Afterwards, we transfer a framework of Mans and Mathieson [MM14] to show fixed-
parameter tractability from dynamic graphs to temporal graphs with respect to the
maximum treewidth over all layers of a temporal graph. A layer of a temporal graph
is the temporal graph at a specific point in time. Second, we study the computational
complexity of (Non-)Strict (s, z)-Separation on temporal planar graphs. Third, we
show that for almost all fixed-parameter tractability results we establish in this thesis,
we (presumably) do not have polynomial kernels.

In Chapter 5, we generalize the non-strict path model such that we can set an upper
bound on the time between the labels of two consecutive edges of a path and show that
the corresponding separation for two vertices (presumably) does not admit a polynomial
kernel when parameterized by the number of vertices in the temporal graphs.

Finally, in Chapter 6, we recap the thesis and survey emerging future research op-
portunities.

1.1 Our Contributions

In this thesis, we obtain the following results for (Non-)Strict (s, z)-Separation.
In Section 3.1, we show that (Non-)Strict (s, z)-Separation is W[1]-hard when

parameterized by the solution size k (Theorem 3.1 and Corollary 3.2).
In Section 3.2, we prove that Non-Strict (s, z)-Separation is NP-hard if the

maximum label τ ­ 2 (Theorem 3.4), but is polynomial-time solvable if the maximum
label τ = 1 (Observation 3.6). Next, we show that Strict (s, z)-Separation is NP-
hard if the maximum label τ ­ 5 (Theorem 3.4), but is polynomial-time solvable if the
maximum label τ ¬ 4 (Observations 3.7 and 3.8, Theorem 3.13, and Proposition 3.14).
Here, we prove that the Single-Source Shortest Strict Paths problem on temporal
graphs can be solved in O(|V | · τ + |E|) time (Lemma 3.12).

In Section 3.3, we show that Strict (s, z)-Separation is fixed-parameter tractable
when parameterized by the solution size k and the maximum label τ (Theorem 3.15),
as well as that (Non-)Strict (s, z)-Separation is fixed-parameter tractable when
parameterized by the number |V | of vertices (Corollary 3.16). Essential for the upper
bound on the running time of the latter algorithm is the upper bound of the length
of a (non-)strict (s, z)-path by |V |, as well as that |V | is also an upper bound on the
solution size k. Hence, (Non-)Strict (s, z)-Separation is fixed-parameter tractable
when parameterized by a parameter ρ if we can upper bound the solution size k and the
length of a (non-)strict (s, z)-path by ρ. For example the parameter k+ τ + |Vc|, where k
is the solution size, τ the maximum label, and |Vc| is the maximum number of vertices
in a connected component over all layers (Corollary 3.18).

In Section 4.1.1, we prove that (Non-)Strict (s, z)-Separation is fixed-parameter
tractable when parameterized by the maximum label τ and the underlying treewidth.
Hence, (Non-)Strict (s, z)-Separation on classes of temporal graphs of bounded
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underlying treewidth is fixed-parameter tractable when parameterized by the maximum
label τ .

In Section 4.1.2, we transfer a framework of Mans and Mathieson [MM14] from
dynamic graphs to temporal graphs to show fixed-parameter tractability by expressing
the problem in monadic second-order logic. We show that Non-Strict (s, z)-Sepa-
ration is fixed-parameter tractable when parameterized by the solution size k, the
maximum label τ , and the layer treewidth twmax (Theorem 4.17). The latter parameter
is the maximum treewidth of the graph over all points in time. Note that this implies
that (Non-)Strict (s, z)-Separation on classes of temporal graphs of bounded layer
treewidth is fixed-parameter tractable when parameterized by the solution size k and
the maximum label τ (Theorems 3.15 and 4.17). Afterwards, we prove that neither
the parameter maximum label τ nor the parameter solution size k can (presumably) be
dropped from the latter algorithm. In particular, we show NP-hardness of (Non-)Strict
(s, z)-Separation for constant layer treewidth and maximum label (Corollary 4.18), as
well as W[1]-hardness of (Non-)Strict (s, z)-Separation when parameterized by the
solution size k, even if the layer treewidth is one (Corollary 4.19).

In Section 4.2, we define the class of temporal planar graphs and show that (Non-)
Strict (s, z)-Separation is NP-hard (Lemma 4.20), as well as that Strict (s, z)-Sep-
aration is in FPT when parameterized by the maximum label τ on this class (Corol-
lary 4.26). Here, we get that Strict (s, z)-Separation on classes of temporal graphs
of local bounded underlying treewidth is in FPT when parameterized by the maximum
label τ (Corollary 4.25) and settle an open question of Fluschnik et al. [Flu+16] whether
the Length-Bounded (s, z)-Separation is NP-hard on planar graphs (Theorem 4.23).

In Section 4.3, we show that unless NP ⊆ coNP/poly, (Non-)Strict (s, z)-Sep-
aration does not admit a polynomial kernel when parameterized by k + τ + tw↓+∆
(Theorem 4.32), where

• k is the solution size,
• τ is the maximum label,
• tw↓ is the treewidth of the underlying graph, and
• ∆ is the maximum degree in the temporal graph.

We claim that one can show, with the tool from Theorem 4.23 that Theorem 4.32
also holds on temporal planar graphs. Observe that this covers all parameters we have
considered for (Non-)Strict (s, z)-Separation except the number |V | of vertices and
the maximum number |Vc| of vertices in a connected component over all layers.

We refer to Figure 1.3a and Figure 1.3b for an overview of the parameterized complex-
ity of Strict (s, z)-Separation and Non-Strict (s, z)-Separation, respectively.
Furthermore, we refer to Table 1.1 for an survey of the results of this work with respect
to (Non-)Strict (s, z)-Separation.

In Chapter 5, we generalize the non-strict path model such that we can set an upper
bound on the time between the labels of two consecutive edges on a path. The corre-
sponding separation problem for two vertices is called β-Bounded (s, z)-Separation.
We show that β-Bounded (s, z)-Separation is W[2]-hard when parameterized by the
solution size k (Theorem 5.1) and is fixed-parameter tractable (Corollary 5.5), but (pre-
sumably) does not admit a polynomial kernel (Theorem 5.6) when parameterized by the
number |V | of vertices in the temporal graph.
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(b) Non-Strict (s, z)-Separation

Figure 1.3: Overview for the parameterized complexity of (Non-)Strict (s, z)-Sep-
aration. (Non-)Strict (s, z)-Separation is in P, is in FPT, is in W[P], is W[1]-
hard, is p-NP-hard, is open, or has (presumably) no polynomial kernel when param-
eterized by ρ ⊆ {k, τ, tw↓, twmax, |V |} if ρ is placed in the rectangle of the mentioned
property. Hence, k is the solution size, τ is the maximum label, tw↓ is the underlying
treewidth, twmax is the layer treewidth, and |V | is the number of vertices. A problem is
in Pif it has a polynomial-time algorithm. A problem is p-NP-hard if it is NP-hard even
if the parameter is a constant. We refer to Section 1.2 for a definition of W[P]. No PK
stands for “no polynomial kernel under the assumption that NP 6⊆ coNP/poly”. There
is an edge between two parameters if the lower parameter can be upper bounded by the
upper parameter. References for the results can be found in Table 1.1.
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Table 1.1: Survey of the most important results of this work for the (Non-)Strict
(s, z)-Separation with respect to the parameters number |V | of vertices, size k of the
separator, maximum time-edge label τ , layer treewith twmax, underlying treewidth tw↓,
and maximum number |Vc| of vertices in a connected component over all layers. “No
PK ” stands for “no polynomial kernel under the assumption that NP 6⊆ coNP/poly”.
“open” denotes that the parameterized complexity is unknown. “PK?” denotes that it
is open whether a polynomial kernel exists. “MSO-FPT” denotes that the FPT result
is due to a monadic second-order logic formula and a theorem of Mans and Mathieson
[MM14].

(s, z)-Separation

Parameter Strict Paths Non-Strict Paths

k W[1]-h [Thm 3.1],
W[P] [Obs 3.3]

W[1]-h [Cor 3.2],
W[P] [Obs 3.3]

τ
τ = 1 O(|E|) [Obs 3.7] O(k · (|V |+ |E|)) [Obs 3.6]
τ = 2 O(k · (|V |+ |E|)) [Obs 3.8] NP-h [Thm 3.4]
τ = 3 O(k · |V | · |E|) [Prop 3.14] NP-h [Thm 3.4]
τ = 4 O(|E| · |V |2) [Thm 3.13] NP-h [Thm 3.4]
τ ­ 5 NP-h [Thm 3.4] NP-h [Thm 3.4]

τ + k O(τk+3 · |V |+ |E|) [Thm 3.15],
No PK [Thm 4.32]

open,
No PK [Thm 4.32]

τ + k + |Vc| O(τk+3 · |V |+ |E|) [Thm 3.15],
PK?

O((τ · |Vc|)k+3 · |V |+ |E|) [Cor 3.18],
PK?

τ + twmax NP-h [Cor 4.18],
even if τ = 6, twmax = 1

NP-h[Cor 4.18],
even if τ = 4, twmax = 1

τ + twmax+k O(τk+3 · |V |+ |E|) [Thm 3.15],
No PK [Thm 4.32]

MSO-FPT [Thm 4.17],
No PK [Thm 4.32]

τ + tw↓ FPT [Thm 4.6],
No PK [Thm 4.32]

FPT [Thm 4.6],
No PK [Thm 4.32]

twmax+k W[1]-hard [Cor 4.19] W[1]-hard [Cor 4.19]

|V | O(|V ||V |+1 ·τ+|E|) [Cor 3.17],
PK?

O(|V ||V |+1 · τ + |E|) [Cor 3.17],
PK?

Temporal Planar Graphs (Local Bounded Underlying Treewidth)

NP-h [Thm 4.23] NP-h [Thm 4.23]

τ FPT [Cor 4.26],
PK?

open,
PK?
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1.2 Preliminaries

In this section, we present formal definitions from (standard) graph theory and param-
eterized complexity.

As a convention, by N we denote the natural numbers without zero.

Graph Theory. Let G = (V,E) be an (undirected) graph. The set V of vertices is
also denoted by V (G) and the set E of edges by E(G). Usually, we assume that G has
no loops and hence for all {v, w} ∈ E(G) it holds that v 6= w. Two vertices v, w ∈ V (G)
are adjacent if there is an edge {v, w} ∈ E(G). Two edges e1, e2 ∈ E(G) are incident
if e1∩ e2 6= ∅. A vertex v ∈ V (G) is incident with an edge e ∈ E(G) if v ∈ e. For an edge
set E′ ⊆ E, we denote by G \E′ the deletion of edges E′ in G. For a vertex set V ′ ⊆ V ,
we denote by G − V ′ the deletion of V ′ in G with the vertex set V (G) \ V ′ and the
edge set {{v, w} | v, w ∈ V (G) \ V ′}. The neighborhood of a vertex v in G is defined
as N(v) := {w ∈ V (G) | {v, w} ∈ E(G)} and the maximum degree of G is denoted
by ∆(G) := maxv∈V (G) |N(v)|. For a vertex set X ⊆ V (G), we denote by G[X] the
(induced) subgraph G−(V (G)\X) of G and for an edge set Y ⊆ E(G), we denote by G[Y ]
the induced subgraph ({v ∈ V | {v, w} ∈ Y }, Y ). A path P = e1, . . . , e` in G of length `
is a sequence of ` edges such that ∆(G[P ]) = 2, |ei ∩ ei+1| = 1 for all i ∈ {1, . . . ` − 1},
and ei 6= ej for all i 6= j ∈ {1, . . . , `}.
The path P is an (s, z)-path if it starts at vertex s = e1 \ e2 and ends in z = e` \ e`−1
or if P contains only one edge and {s, z} = e1. A cycle is an (s, s)-path. The vertices
visited by a path P = e1, . . . , e` are denoted by V (P ) =

⋃`
i=1 ei.

Two (s, z)-paths P1 and P2 in a graph are vertex-disjoint if (V (P1)\{s, z})∩(V (P2)\
{s, z}) = ∅ and edge-disjoint if P1 and P2 do not have an edge in common.

We say that the subgraph G[X] is a connected component (or connected) if for each
vertex pair v 6= w ∈ X there is a (v, w)-path in G[X]. The maximum connected compo-
nent size of G is the maximum size of a subset V ′ ⊆ V (G) such that G[V ′] is a connected
component.

A graph G = (V1, V2, E) is bipartite if (V1 ∪V2, E) is a graph, V1 ∩V2 = ∅, and G[V1]
and G[V2] are edgeless.

A tree is a connected graph which does not contain a cycle.
An n × n grid is a graph G = (V,E) such that V := {(i, j) | i, j ∈ {1, . . . , n}}

and E := {{(i, j), (i′, j′)} | |i− i′|+ |j − j′| = 1}.
A directed graph G = (V,E) consists of a set of vertices V and a set of edges E =

{(v, w) | v, w ∈ V }. Every edge (v, w) ∈ E has a direction from the source v to destina-
tion w. A (directed) path P = e1, . . . , e` is a sequence of edges such that the destination
of ei is the source of ei+1 for all i ∈ {1, . . . , `−1}. The directed path P is a (directed) (s, z)-
path if the source of e1 is s and the destination of e` is z. A directed graph G = (V,E) is
a directed acyclic graph (DAG) if G does not contain a directed (v, v)-path for all v ∈ V .
For the rest of this work, a graph G is undirected of not stated otherwise. For more
information on classical graph theory, we refer to Diestel [Die16].

Parameterized Complexity. Parameterized complexity is a branch of computational
complexity theory that focuses on classifying computational problems according to their
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inherent difficulty with respect to a parameter. A problem is a formal language L ⊆ Σ∗,
where Σ is a finite alphabet. An instance I ∈ Σ∗ of problem L of length |I| is a yes-
instance if and only if I ∈ L, otherwise we call I a no-instance.

An instance (I, r) of a parameterized problem consists of the actual instance I and of
an integer r referred to as the parameter [Cyg+15; DF13; FG06; Nie06]. A parameter-
ized problem is called fixed-parameter tractable if there is a (fixed-parameter tractable)
algorithm that solves each instance (I, r) in f(r) · |I|O(1) time, where f is a computable
function depending only on the parameter r. For a recent survey on fixed-parameter
algorithm design techniques, we refer to Cygan et al. [Cyg+15].

The class of fixed-parameter tractable problems is denoted by FPT and the class XP
contains all problems where each instance (I, r) can be solved in |I|f(r), where f is a
computable function. One can show that a parameterized problem L is (presumably)
not in XP, and therefore not in FPT, by showing NP-hardness where the parameter is
constant. There is a hierarchy FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[P] ⊆ XP of hardness
classes for parameterized problems. We refer to Downey and Fellows [DF13] and Flum
and Grohe [FG06] for a proper definition of theW-hierarchy. The most important classes
for us areW[1] andW[2]. One can show that a parameterized problem L is (presumably)
not in FPT by devising a parameterized reduction from aW[1]-hard orW[2]-hard problem
to L.

A parameterized reduction from a parameterized problem L to another parameterized
problem L′ is a function that acts as follows: For two computable functions f and g,
given an instance (I, r) of problem L, it computes in f(r)·|I|O(1) time an instance (I ′, r′)
of problem L′ so that r′ ¬ g(r) and (I, r) ∈ L if and only if (I ′, r′) ∈ L′.

A kernelization is an algorithm that, given an instance (I, r) of a parameterized
problem L, computes in polynomial-time an instance (I ′, r′) of L (the kernel) such that
(I, r) is a yes-instance if and only if (I ′, r′) is a yes-instance and |I ′| + r′ ¬ f(r) for
some computable function f only depending on r. We say that f measures the size of
the kernel, and if f ∈ rO(1), we say that L admits a polynomial kernel. It is clear that
any (decidable) parameterized problem which has a kernelization algorithm is in FPT.
Moreover, all problems in FPT have kernelization algorithms [Cai+97]; however, the
kernel size then typically is exponential.





Chapter 2

Temporal Graph Theory

In this chapter, we introduce and motivate certain terms and definitions for temporal
graphs, show that a (non-)strict (s, z)-path can be computed in polynomial-time, and
describe basic properties about paths, cuts, and separators in temporal graphs.

Let G = (V,E, τ) be a temporal graph. Two vertices v, w ∈ V are adjacent if there is
an edge ({v, w}, t) ∈ E. Two time-edges (e1, t1), (e2, t2) ∈ E are incident if e1 ∩ e2 6= ∅.
A vertex v ∈ V is incident with a time-edge (e, t) ∈ E if v ∈ e.

The graph Gi = (V,Ei) is called layer i of the temporal graph G = (V,E, τ) if and
only if {v, w} ∈ Ei ⇔ ({v, w}, i) ∈ E.

The underlying graph G↓ of a temporal graph G = (V,E, τ) is defined as G↓ :=
(V,E↓), where E↓ = {e | (e, t) ∈ E}. In contrast to the temporal graph G, the underlying
graph G↓ has at most one edge between two vertices.

For a vertex set X ⊆ V we define the (induced) temporal subgraph of X by G[X] :=
(X, {({v, w}, t) ∈ E | v, w ∈ X}, τ). The maximum degree ∆(G) of a temporal graph G =
(V,E, τ) is the maximum degree of the underlying graph of G.

Paths in temporal graphs. It is not entirely clear how to lift the notion of a path
to temporal graphs.

Suppose that we model the connectivity of a wireless sensor network as a temporal
graph and want that the way a packet can go in our wireless sensor network corresponds
to a path in our temporal graph. Then, we probably favor the following definition of
a path. Let G = (V,E, τ) be a temporal graph and s, z ∈ V . A non-strictly increasing
(s, z)-path (or non-strict (s, z)-path for short) of length ` in G is a sequence of time-edges

P = ({s, v1}, t1), ({v1, v2}, t2), . . . , ({v`−1, z}, t`),

where no time-edge appears twice in P , ti ¬ ti+1, and ({s, v1}, t1), ({vi, vi+1}, ti+1),
({v`−1, z}, t`) ∈ E for all i ∈ {1, . . . , ` − 1}. In the literature, non-strict paths are also
known as non-decreasing paths [KKK02; Wil10].

Now suppose that we model a public transport system as a temporal graph: every
station and every vessel is a vertex and there is a time-edge ({v, w}, t) in the temporal
graph if

(i) vessel v stops at station w at time t, and
(ii) station w and station v are on the same interchange hub.

23
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Then, a non-strictly increasing path might not correspond to a route a passenger could
take, because it cannot leave a vessel, move to another station on the same hub, and
enter a vessel again at the same point in time. Of course, one could argue that this
depends on how exact the resolution of time is in our temporal graph. However, a
different notation of a path might be more appropriate. A strictly increasing (s, z)-path
(or strict (s, z)-path for short) of length ` in G is a non-strict (s, z)-path where ti < ti+1
for all i ∈ {1, . . . , ` − 1}. In the literature, strict paths are also known as journeys
[Akr+15; Akr+17; Mer+13; Mic16].

Another obvious application of temporal graphs is the spreading of an epidemic. Here,
the population is the set of vertices and there is a time-edge ({v, w}, t) if individual v
and individual w have physical contact at time t. Now, we want that a path from an
individual s to an individual z models how a disease could spread from s to z.

On the one hand, there are diseases, like HIV, which are not contagious to others
directly after the infection and, on the other hand, there are diseases which can be
handled by the immune system and therefore are not contagious to others after some
amount of time. An (α, β)-bounded (s, z)-path P = (e1, t1), . . . , (e`, t`) of length ` is a
non-strict (s, z)-path of length ` where α ¬ ti+1 − ti ¬ β for all i ∈ {1, . . . , `− 1}.

One can observe that in a temporal graph G = (V,E, τ) a non-strict (s, z)-path is
also a (0, τ)-bounded (s, z)-path (or τ -bounded (s, z)-path), a strict (s, z)-path is also
a (1, τ)-bounded (s, z)-path, and every strict (s, z)-path or (α, β)-bounded (s, z)-path is
a non-strict (s, z)-path. Furthermore, there is a close relation to multi-layer graphs—
for each (0, 0)-bounded (s, z)-path P0 in G there exists an i ¬ τ such that there is
an (s, z)-path in Gi which visits the same vertices as P0 and in the same order as P0.

We mainly devote this work to the non-strict (s, z)-path and strict (s, z)-path model,
because those models are widely used is the literature [Akr+15; Akr+17; KKK02;
Mer+13; Mic16; MM14; Wil10], non-strict (s, z)-path is inclusion-wise the most gen-
eral one, and the strict (s, z)-path model is the most simple model in which labels in
a path are strictly increasing (that is α > 0 for the (α, β)-bounded (s, z)-path model).
This is especially interesting for parameterized algorithms because here the parameter τ
of the temporal graph is an upper bound for the length of a strict (s, z)-path.

Another interesting aspect of some path models in temporal graphs is that cycles
might have a special role whenever β < τ , because it is not possible to wait at a vertex
an arbitrary amount of time. But one can go a cycle to bridge the waiting time. In the
literature, this aspect is studied by Akrida et al. [Akr+17] as vertex buffer times and
by Pan and Saramäki [PS11] under the name of waiting time cutoffs. In Chapter 5, we
study the β-bounded (s, z)-path model.

The departure time (arrival time) of a (non-)strict (s, z)-path or (α, β)-bounded (s, z)-
path P = (e1, t1), . . . , (e`, t`) is t1 (t`) and the traversal time of P is t`− t1. The vertices
visited by P are denoted by V (P ) =

⋃`
i=1 ei.

Remark 2.1. In sharp contrast to paths in standard graphs, for all models of a path in
temporal graphs from above the connectivity between vertices is not transitive. Figure 2.1
provides an example for the non-strict path model.

Next, we discuss some basic data reduction rules to simplify a temporal graph which
we will use throughout the whole thesis. We denote a discrete time interval from a ∈ N
to b ∈ N with [a, b] := {x ∈ N | a ¬ x ¬ b}. If an endpoint is excluded from the set then
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s v z2 1

Figure 2.1: A temporal graph which has a non-strict (s, v)-path and a non-strict (v, z)-
path but no non-strict (s, z)-path

we use parentheses instead of brackets. For example, (a, b] := {x ∈ N | a < x ¬ b} if a is
excluded.

Reduction Rule 2.1. Let G = (V,E, τ) be a temporal graph and let [t1, t2] ⊆ [1, τ ]
be an interval where for all t ∈ [t1, t2] the layer Gt is an edgeless graph. Then for
all ({v, w}, t′) ∈ E where t′ > t2 replace ({v, w}, t′) with ({v, w}, t′ − t2 + t1 − 1) in E.

The effect of Reduction Rule 2.1 on a temporal graph is illustrated in Figure 2.2.
Reduction Rule 2.1 is correct and can be exhaustively applied in polynomial-time, as
will be shown below in Lemma 2.1.

If Reduction Rule 2.1 is not applicable on a given temporal graph G = (V,E, τ),
then there might be some edgeless layers at the end of the interval [1, τ ]. These layer are
also removable.

Reduction Rule 2.2. Let G = (V,E, τ) be a temporal graph. If there is a non-empty
interval [t1, τ ] where for all t′ ∈ [t1, τ ] the layer Gt′ is an edgeless graph, then set τ
to t1 − 1.

Lemma 2.1. Reduction Rules 2.1 and 2.2 do not remove or add any (non-)strict (s, z)-
path from/to the temporal graph G = (V,E, τ) and can be exhaustively applied in O(|E|)
time if E is ordered by ascending labels.

Proof. First we discuss Reduction Rule 2.1. Let G = (V,E, τ) be a temporal graph,
s, z ∈ V , [tα, tβ] ⊆ [1, τ ] be an interval where for all t ∈ [tα, tβ] the layer Gt is an edgeless
graph. Let P = (e1, t1), . . . , (ei, ti), (ei+1, tj), . . . , (en, tn) be a (non-)strict (s, z)-path,
and let G′ be the graph after we applied Reduction Rule 2.1 once on G. We distinguish
three cases.

Case 1: If tβ > tn, then no time-edge of P is touched by Reduction Rule 2.1. Hence, P
also exists in G′.

Case 2: If ti < tα < tβ < ti+1, then there is a non-strict (s, z)-path (e1, t1), . . . , (ei, ti),
(ei+1, tj− tβ + tα−1), . . . , (en, tn− tβ + tα−1) in G′, because ti < ti+1− tβ + tα−1.

Case 3: If tβ < t1, then there is clearly a non-strict (s, z)-path (e1, t1 − tβ + tα −
1), . . . , (en, tn − tβ + tα − 1) in G′

The other direction works analogously. We look at a (non-)strict (s, z)-path in G′ and
compute the corresponding (non-)strict (s, z)-path in G.

Reduction Rule 2.1 can be exhaustively applied by iterating over the by time-
edges (ei, ti) in the time-edge set E ordered by ascending labels until the first t1, t2
with the given requirement appear. Set x0 := −t2 + t1 − 1. Then we iterate further
over E and replace each time-edge (e, t) with (e, t + x0) until the next t1, t2 with the
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Figure 2.2: Figure 2.2a shows a temporal graph where Reduction Rule 2.1 is applicable.
In particular, layers 3, 4, 5, 6 are edgeless. Figure 2.2b shows the same temporal graph
after Reduction Rule 2.1 was applied exhaustively.

given requirement appear. Then we set x1 = x0 − t2 + t1 − 1 and iterate further over E
and replace each time-edge (e, t) with (e, t+x1). We repeat this procedure until the end
of E is reached. Since we iterate over E only once, this can be done in O(|E|) time.

Reduction Rule 2.2 can be executed in linear time by iterating over all edges and
taking the maximum label as t1. Note that the vertices V and the time-edges E remain
untouched by Reduction Rule 2.2. Hence, the application of Reduction Rule 2.2 does
not add or remove any (non-)strict (s, z)-path.

A consequence of Lemma 2.1 is that the maximum label τ can be upper-bounded by
the number of time-edges and hence the input size.

Lemma 2.2. Let G = (V,E, τ) be a temporal graph, where Reduction Rules 2.1 and 2.2
are not applicable. Then τ ¬ |E|.

Proof. Let G = (V,E, τ) be a temporal graph, where Reduction Rules 2.1 and 2.2 are
not applicable. Then for each t ∈ {1, . . . , τ} there is a time-edge (e, t) ∈ E. Thus,

τ ¬
τ∑
i=1

|{(e, t) ∈ E | t = i}| ¬ |E|.

Static expansion of a temporal graph. A key tool of Akrida et al. [Akr+17],
Berman [Ber96], Kempe, Kleinberg, and Kumar [KKK02], and Mertzios et al. [Mer+13]
is the time-expanded version of a temporal graph which reduces reachability and other
related questions in temporal graphs to similar questions in directed graphs. Let G =
(V,E, τ) be a temporal graph where V := {v1, . . . , vn} ∪ {s, z}. We say that the non-
strict static expansion of (G, s, z) is a directed graph H := (S,A), where S := {ui,j | 1 ¬
i ¬ τ and 1 ¬ j ¬ n} ∪ {s, z} and

A := {(u(i−1),j , ui,j) | 1 < i ¬ τ} ∪ {(ui,j , ui,j′), (ui,j′ , ui,j) | ({vj , vj′}, i) ∈ E} ∪
{(s, ui,j) | ({s, vj}, i) ∈ E} ∪ {(ui,j , z) | ({vj , z}, i) ∈ E}.

The strict static expansion of (G, s, z) is a directed acyclic graph H ′ := (S,A′) where

A′ := {(u(i−1),j , ui,j) | 2 < i ¬ τ} ∪ {(u(i−1),j , ui,j′), (u(i−1),j′ , ui,j) | ({vj , vj′}, i) ∈ E} ∪
{(s, ui+1,j) | ({s, vj}, i) ∈ E} ∪ {(ui,j , z) | ({vj , z}, i) ∈ E}.
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Figure 2.3: A temporal graph (top), its non-strict static expansion (left) and its strict
static expansion (right). There is a non-strict (s, z)-path (blue/dotted) and a strict (s, u)-
path (orange/dashed).

We say that the set {(u(i−1),j , ui,j) | 2 < i ¬ τ} ⊆ A (or {(u(i−1),j , ui,j) | 2 < i ¬ τ} ⊆ A′)
is the set of column-edges of H (or H ′). Observe that for each non-strict (s, z)-path in G,
there is a corresponding (s, z)-path in H and that for each strict (s, z)-path in G there is
a corresponding (s, z)-path in H ′. We refer to Figure 2.3 for an example. For algorithmic
purposes, the construction time of a (non-)strict static expansion is important.

Lemma 2.3. Let G = (V,E) be a temporal graph, where s, z ∈ V are two distinct
vertices. The (non-)strict static expansion (G, s, z) can be computed in O(|V | · τ + |E|)
time.

Proof. Let G = (V,E) be a temporal graph, where s, z ∈ V are two distinct vertices.
First, we construct the set S of vertices of the (non-)strict static expansion H := (S,A)
of (G, s, z) and add all column-edges to the edge set A. Since H has at most |V | · τ
vertices, this can be done in O(|V | · τ) time.

Second, we iterate once over the set E of time-edges and add the corresponding
edges to A. In the case of a non-strict static expansion each time-edge has exactly one
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corresponding edge in A and in the case of a strict static expansion each time-edge has
at most two corresponding edges in A. Hence, the overall running time is O(|V | ·τ+ |E|).
Because of Lemma 2.2, we have O(|V | · τ + |E|) ¬ O(|V | · |E|).

With help of the (non-)strict static expansion, one can compute a (non-)strict (s, z)-
path in a temporal graph in polynomial-time.

Lemma 2.4. Let G = (V,E, τ) be a temporal graph and s, z ∈ V . A (non-)strict (s, z)-
path can be computed in O(|V | · τ + |E|) ¬ O(|V | · |E|) time.

Proof. First, we show how a non-strict (s, z)-path can be computed and then how the
algorithm can be adjusted such that we only find strict (s, z)-paths.

The algorithm for a non-strict (s, z)-path works as follows:

(i) Construct the non-strict static expansion H = (S,A) of (G, s, z).

(ii) Perform a breadth-first search from s to z in H to find an (s, z)-path P .

(iii) Reconstruct a non-strict (s, z)-path P ′ from P by ignoring the edges from a
vertex ui,j to vertex ui+1,j and take for each edge (ui,j , ui,j′) ∈ P the time-
edge ({j, j′}, i) ∈ E.

One can observe that there is a non-strict (s, z)-path in G if and only if there is an (s, z)-
path in the non-strict static expansion of (G, s, z). This implies the correctness of this
algorithm.

If we want to decide whether there is a strict (s, z)-path in G, then we use the same
algorithm but instead of the non-strict static expansion of (G, s, z) we construct the
strict static expansion of (G, s, z) in (i).

Note that |S| ∈ O(|V | · τ) and |A| ∈ O(|E| + τ · |V |). The running time of this
algorithm is O(|V | · τ + (|E| + τ · |V |)) = O(|V | · τ + |E|). Because of Lemma 2.2, we
know that we can compute a temporal graph equivalent to G where τ ¬ |E|. Hence, the
running time is in O(|V | · |E|).

Cuts and separators in temporal graphs. To be consistent with Diestel [Die16] we
call path elimination problems by edge deletion cuts and by vertex deletion separators.
Since we mainly focus on the non-strict (s, z)-path model and the strict (s, z)-path model,
we will define cuts and separators only for those models. Later in Chapter 5, we will also
define separators for the β-bounded (s, z)-path model.

Let G = (V,E, τ) be a temporal graph, S ⊆ V a set of vertices, and C ⊆ E a set of
time-edges. We denote the temporal graph G without S by G−S := (V \S, {({v, w}, t) ∈
E | v, w ∈ V \ S}, τ) and the temporal graph G without C by G \ C := (V,E \ C, τ).
Since we have two different notions of a path, we need two different kinds of cuts and
separators.

• A vertex set S is a non-strict (s, z)-separator if there is no non-strict (s, z)-path
in G − S and a time-edge set C is a non-strict (s, z)-cut if there is no non-
strict (s, z)-path in G \ C.
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Figure 2.4: A temporal graph with a non-strict (s, z)-separator S (dotted/orange)
where R is the set of vertices which are reachable from s. Note that v, w, x, y 6∈ S and
the time-edges ({v, x}, 1) and ({w, y}, 1) have one endpoint in R and the other endpoint
not in R.

• A vertex set S is a strict (s, z)-separator if there is no strict (s, z)-path in G − S
and a time-edge set C is a strict (s, z)-cut if there is no strict (s, z)-path in G \C.

Remark 2.2. In a graph G = (V,E), for each (s, z)-cut C there is a set R of vertices which
are reachable from s. Then, each edge in C has one endpoint in R and one endpoint
in V \R. Analogously, if we want an (s, z)-separator S, then at least one of the endpoints
of an edge in C is in S. This is not the case with temporal graphs. As an example consider
the temporal graph in Figure 2.4 with a non-strict (s, z)-separator (orange/dotted), a
set of vertices (blue/dashed) which are reachable by a non-strict path from s, and two
time-edges where one endpoint is in the reachable set, but none of the endpoints is in
the non-strict (s, z)-separator.

Now, we can express the (Non-)Strict (s, z)-Separation problem in terms of our
definitions.

Non-Strict (s, z)-Separation
Input: A temporal graph G = (V,E, τ), two distinct vertices s, z, and an inte-

ger k.
Question: Is there a non-strict (s, z)-separator S of size at most k?

Strict (s, z)-Separation
Input: A temporal graph G = (V,E, τ), two distinct vertices s, z, and an inte-

ger k.
Question: Is there a strict (s, z)-separator S of size at most k?

For both problems, we assume over the whole thesis that there is no time-edge
between s and z because these instances are trivial no-instances.

In the remaining part of this section we discuss how the minimum size of a (non-)
strict (s, z)-separator can be lower- and upper-bounded.
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We say that two (non-)strict (s, z)-paths P1 and P2 in a graph are vertex-disjoint
if (V (P1) \ {s, z}) ∩ (V (P2) \ {s, z}) = ∅ and edge-disjoint if P1 and P2 do not have a
time-edge in common.

The famous theorem of Menger [Men27] in graph theory uncovers one of the most
important properties of a graph.

Theorem 2.5 (Menger [Men27]). Let G = (V,E) be a (directed) graph, s, z ∈ V
and {s, z} 6∈ E. Then,

(i) the maximum number of pairwise vertex-disjoint (s, z)-paths in G is equal to the
minimum size of an (s, z)-separator in G, and

(ii) the maximum number of pairwise edge-disjoint (s, z)-paths in G is equal to the
minimum size of an (s, z)-cut in G.

Berman [Ber96] observed that, in temporal graphs, condition (i) of Theorem 2.5 does
not hold for (non-)strict (s, z)-paths. Kempe, Kleinberg, and Kumar [KKK02] showed
that condition (i) of Theorem 2.5 holds for a given temporal graph with respect to (non-)
strict (s, z)-paths if its underlying graph does not have a fixed minor. As already mention
that fixed minor is the underlying graph of the temporal graph of Figure 1.2.

However, observe that the maximum number of vertex-disjoint (non-)strict (s, z)-
paths is a lower bound for the minimum size of a (non-)strict (s, z)-separator.

Observation 2.6. Let G = (V,E, τ) be a temporal graph and s, z ∈ V . The maximum
number of vertex-disjoint (non-)strict (s, z)-paths in G is at most the minimum size of
a (non-)strict (s, z)-separator in G.

Proof. Let G = (V,E, τ) be a temporal graph and s, z ∈ V .

⇒: Suppose that there are k vertex-disjoint (non-)strict (s, z)-paths P1, . . . , Pk and as-
sume towards a contradiction that there is a (non-)strict (s, z)-separator S of size k− 1.
Since S is a (non-)strict (s, z)-separator, it holds that |V (Pi)∩S| ­ 1 for all i ∈ {1, . . . , k}.
This is a contradiction because the size of S is k − 1 and P1, . . . , Pk are vertex-disjoint.

⇐: Let S be a (non-)strict (s, z)-separator of size k and assume towards a contradiction
that there are k + 1 vertex-disjoint (non-)strict (s, z)-paths P1, . . . , Pk+1. Since S is a
(non-)strict (s, z)-separator, it holds that |V (Pi)∩S| ­ 1 for all i ∈ {1, . . . , k+1}. Hence,
there are i, j ∈ {1, . . . , k + 1} with i 6= j such that V (Pi) ∩ V (Pj) 6= ∅ because there are
only k vertices in S. This is a contradiction.

Kempe, Kleinberg, and Kumar [KKK02] showed that the gap between the maximum
number of vertex-disjoint (non-)strict (s, z)-paths and the minimum size of a (non-)
strict (s, z)-separator can be arbitrarily large. Furthermore, the maximum number of
vertex-disjoint (non-)strict (s, z)-paths in a temporal graph is NP-hard to compute.

Theorem 2.7 (Kempe, Kleinberg, and Kumar [KKK02]). Let G = (V,E, t) be a tempo-
ral graph and s, z ∈ V . It is NP-complete to decide whether there exist two vertex-disjoint
(non-)strict (s, z)-paths.
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Figure 2.5: Temporal graph G = (V,E, t + 1) with the (non-)strict (s, z)-separator {v}
of minimum size one and the (non-)strict (s, z)-cut {({s, v}, i) ∈ E | i ¬ t} of minimum
size t.

Since it is NP-hard to decide if there is a constant number of vertex-disjoint (non-)
strict (s, z)-paths in a temporal graph, there is no hope that the problem whether there
are k vertex-disjoint (non-)strict (s, z)-paths in a temporal graph is fixed-parameter
tractable when parameterized by k. Hence, this is presumably not an efficient way to
compute a lower bound on the minimum size of a (non-)strict (s, z)-separator.

Now, we discuss an upper bound for the minimum size of a (non-)strict (s, z)-sepa-
rator. In the proof of the next lemma, Theorem 3.4, and Proposition 3.14 we will make
use of the NP-complete Vertex Cover problem [Kar72].

Vertex Cover
Input: A graph G = (V,E) and k ∈ N.
Question: Is there a subset V ′ ⊆ V of size at most k such that for all {v, w} ∈ E

it holds {v, w} ∩ V ′ 6= ∅?

Let (G = (V,E), k) be a Vertex Cover instance. We say that V ′ ⊆ V is a vertex cover
in G of size k if |V ′| = k and V ′ is a solution to (G = (V,E), k).

Lemma 2.8. Let G = (V,E, τ) be a temporal graph and s, z ∈ V . The minimum size of
a (non-)strict (s, z)-separator is at most the minimum size of a (non-)strict (s, z)-cut.

Proof. Let G = (V,E, τ) be a temporal graph, s, z ∈ V , and X ⊆ E be a (non-)
strict (s, z)-cut. We know that the temporal graph (V,E\X, τ) has no (non-)strict (s, z)-
path. Now consider the underlying graph H of G[X]. Let S be a vertex cover of H. Note
that H has at most one edge between two vertices and that H has at most |X| edges
in total. We can create a vertex cover of size at most |X| by iterating over the edges
of H. For each {v, w} ∈ E(H), take v or w into the vertex cover and delete all incident
edges from of v or w, respectively. Hence, |S| ¬ |X|. The graph H becomes edgeless if we
delete S from H. Therefore, G does not contain any time-edge which corresponds to an
edge in X if we delete S from G. Thus, G−S has no non-strict (s, z)-path. This completes
the proof for non-strict (s, z)-paths. The same argument holds for strict (s, z)-paths.

This gap between the minimum size of a (non-)strict (s, z)-separator and the mini-
mum size of a (non-)strict (s, z)-cut can also be arbitrarily large. To see this, consider
the temporal graph G = ({s, z, v}, E, t + 1) in Figure 2.5, with time-edges ({s, v}, i)
and ({v, t}, i+1) for all i ∈ {1, . . . , t}. Clearly, the minimum (non-)strict (s, z)-separator
is of size one but the minimum (non-)strict (s, z)-cut is of size t.

However, the minimum size of a (non-)strict (s, z)-cut and hence an upper bound on
the minimum size of a (non-)strict (s, z)-separator can be computed in polynomial-time.
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Lemma 2.9 (Berman [Ber96]). Let G = (V,E, t) be a temporal graph and s, z ∈ V . The
maximum number of edge-disjoint (non-)strict (s, z)-paths is equal to the minimum size
of a (non-)strict (s, z)-cut and can be computed in O(k · |E|) time.

This lemma was proven by Berman [Ber96] in terms of edge-scheduled networks
which is a model essentially equivalent to temporal graphs [KKK02].

We close this section by presenting a polynomial-time algorithm to compute an upper-
bound on the minimum size of a (non-)strict (s, z)-separator which is at most k ·τ , where
k is the minimum size of a (non-)strict (s, z)-separator and τ the maximum label.

Observation 2.10. Let G = (V,E, τ) be a temporal graph, s, z ∈ V , and k ∈ N. If G
has a (non-)strict (s, z)-separator of size at most k, then a (non-)strict (s, z)-separator
of size at most k · τ can be computed in O(|V | · |E|2 + (|V | · |E|)2).

Proof. Let G = (V = {s = v1, v2, . . . , vn = z}, E, τ) be a temporal graph, X be a (non-)
strict (s, z)-separator of size at most k, and H = (S,A) be the (non-)strict static expan-
sion of (G, s, z). One can observe that the vertex set X ′ := {uj,i ∈ S | vi ∈ X and j ∈
{1, . . . , τ}} is of size at most k · τ and a (s, z)-separator in H.

Furthermore, H is a directed graph and hence, we can computed the minimum (s, z)-
separator by an algorithm by Orlin [Orl13] in O(|S|·|A|) = O((|V |·|E|)·(|E|+|V |·|E|)) =
O(|V | · |E|2 + (|V | · |E|)2).



Chapter 3

Natural Parameters

In this chapter, we study (Non-)Strict (s, z)-Separation with respect to parameters
that are natural to consider. First, we show in Section 3.1 that (Non-)Strict (s, z)-
Separation isW[1]-hard when parameterized by the solution size k. In the introductory
example of Chapter 1, this is the number of administrators of the manufacturing company
and thus, can be very small in real-world scenarios.

Second, we study the computational complexity of (Non-)Strict (s, z)-Separa-
tion when parameterized by the maximum label τ . In the introductory example of
Chapter 1, this is the time between Patch Tuesday and the weekend, because we can
update the system z on the backbone of our manufacturing process only on weekends.
We believe that this parameter can also be very small in many cases. For example, we
could alter the introductory scenario from Chapter 1 such that it takes only one hour of
preparation to update the system z on the backbone of our manufacturing process. One
can observe that this parameter depends on the precision of the discretization of time.

We prove that Non-Strict (s, z)-Separation is NP-hard, even if τ = 2, and that
Strict (s, z)-Separation is NP-hard, even if τ = 5. Afterwards, we present polynomial-
time algorithms for Strict (s, z)-Separation when τ ¬ 4 and for Non-Strict (s, z)-
Separation when τ = 1.

Third, we consider (Non-)Strict (s, z)-Separation when parameterized by the
solution size k and the maximum label τ and present a fixed-parameter algorithm for
Strict (s, z)-Separation which relies on an upper bound on the length of a strict (s, z)-
path. Hence, we can also derive a fixed-parameter algorithm for (Non-)Strict (s, z)-
Separation, when parameterized by the number |V | of vertices, as well as when pa-
rameterized by the solution size k, the maximum label τ , and the maximum number |Vc|
of vertices in a connected component over all layers.

In this work, we leave open the question whether Non-Strict (s, z)-Separation is
fixed-parameter tractable when parameterized by the solution size k and the maximum
label τ .

3.1 Solution Size

In this section, we show that (Non-)Strict (s, z)-Separation is W[1]-hard when pa-
rameterized by the solution size k.

33
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First, we will introduce a few problems which will be helpful to show hardness for
some of our temporal graph separation problems.

Length-Bounded (s, z)-Separation
Input: A graph G = (V,E), two distinct vertices s, z, and integers `, k.
Question: Is there a subset X ⊆ (V \ {s, z}) of size at most k such that there is

no (s, z)-path in G−X of length at most `?

Note that there is also a cut variant of this problem.

Length-Bounded (s, z)-Cut
Input: A graph G = (V,E), two distinct vertices s, z, and integers `, k.
Question: Is there a subset Y ⊆ E of size at most k such that there is no (s, z)-

path G \ Y of length at most `?

Length-Bounded (s, z)-Separation (Length-Bounded (s, z)-Cut) is studied
by Baier et al. [Bai+10] under the name L-length-bounded node cut (L-length-
bounded edge cut). Golovach and Thilikos [GT11] studied Length-Bounded (s, z)-
Separation and Length-Bounded (s, z)-Cut under the name Bounded Vertex
Undirected (s, t)-Cut and Bounded Edge Undirected (s, t)-Cut, respectively.
Fluschnik et al. [Flu+16] studied at Length-Bounded (s, z)-Cut and conjectured
that most of their results hold for Length-Bounded (s, z)-Separation. Since we call
path elimination problems by edge deletion cuts and by vertex deletion separators, a
new name for this problem was necessary. Both problems are essentially equivalent with
respect to the solution size k and the maximum length of a path ` [GT11].

First, we are reduce from Length-Bounded (s, z)-Separation to Strict (s, z)-
Separation with respect to the solution size k. Afterwards, we show a reduction from
Strict (s, z)-Separation to Non-Strict (s, z)-Separation with respect to the so-
lution size k and the maximum label τ .

Theorem 3.1. Strict (s, z)-Separation is W[1]-hard, when parameterized by the
solution size k.

Proof. We reduce from Length-Bounded (s, z)-Separation. Golovach and Thilikos
[GT11] showed that this problem is W[1]-hard with respect to k. Let I := (G =
(V,E), s, z, `, k) be a Length-Bounded (s, z)-Separation instance. We construct a
Strict (s, z)-Separation instance Ô := (Ĝ = (V, Ê, `), s, z, k′) where {v, w} ∈ E if
and only if ({v, w}, i) ∈ Ê for all i ∈ {1, . . . , `}. Set the parameter k′ to k. Since ` ¬ |V |,
this can be computed in polynomial-time. One can observe that for every path in G of
length at most ` there is at least one corresponding strict path in Ĝ and that for each
strict path in Ĝ there is a path in G of length at most `. Therefore, X ⊆ (V \ {s, z})
is a solution for I if and only if X is solution for Ô. Note that k′ = k, hence this is a
parameterized reduction with respect to k.

Now, we reduce from Strict (s, z)-Separation to Non-Strict (s, z)-Separa-
tion to show W[1]-hardness for Non-Strict (s, z)-Separation when parameterized
by the solution size k.

Corollary 3.2. Non-Strict (s, z)-Separation is W[1]-hard, when parameterized by
the solution size k.
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Proof. The idea is to reduce from Strict (s, z)-Separation and replace each edge by
two vertices of degree two to make sure that two incident time-edges cannot be used.

Let I := (G = (V,E, τ), s, z, k) be a Strict (s, z)-Separation instance. We con-
struct a Non-Strict (s, z)-Separation instance Ô := (G′ = (V ′, E′, 2τ), s, z, k) where
V ′ := V ∪ {e1, e2 | e ∈ E} and for each ({v, w}, t) ∈ E we introduce the following time-
edges into E′:

({v, e1}, 2t− 1), ({e1, w}, 2t), ({w, e2}, 2t− 1), ({e2, v}, 2t).

The vertices in {e1, e2 | e ∈ E} are called edge-vertices. Note that this can be done
in O(|V |+2·|E|+|E|) = O(|V |+|E|) time, that |V ′| = |V |+2·|E|, and that |E′| = 4·|E|.
Let v, w ∈ V . Observe that for each strict (v, w)-path

P = ({v, v1}, t1), . . . , ({vi−1, vi}, ti), . . . , ({v`−1, w}, t`)

of length ` in G there is a strict (v, w)-path

P̂ = ({v, e1}, 2t1 − 1), ({e1, v1}, 2t1), . . . ,
({vi−1, ei}, 2ti − 1), ({ei, vi}, 2ti), . . . ,
({v`−1, e`}, 2t` − 1), ({e`, w}, 2t`)

of length 2` in G′, where e1, . . . , e` are edge-vertices. Furthermore, there is no time-
edge ({v, w}, t) ∈ E′, therefore each non-strict (v, w)-path P ′ in G′ has to visit at least
one edge-vertex. Each edge-vertex has exactly two incident time-edges where both have
distinct labels. Hence we can conclude that P ′ must be a strict (v, w)-path. For each
sequence ({vi, ei}, 2ti−1), ({ei, vi+1, 2ti+1) in P ′ there is a time-edge ({vi, vi+1}, ti) ∈ E,
where vi, vi+1 ∈ V and ei is an edge-vertex. Thus, we can construct a strict (v, w)-path
in G from P ′. See Figure 3.1 for an example.

Now we are going to show that there is a strict (s, z)-separator in G if and only if
there is a non-strict (s, z)-separator in G′.

⇒: Let S ⊆ V be a strict (s, z)-separator of size at most k in G. We have already
shown for each strict (s, z)-path G there is a strict (s, z)-path in G′ and that there is
no non-strict (s, z)-path in G′ which is not a strict (s, z)-path. This implies that S is a
non-strict (s, z)-separator of size at most k in G′.

⇐: Let S ⊆ V be a non-strict (s, z)-separator of size at most k in G′, ei ∈ S be an edge-
vertex, and v ∈ N(ei). Each non-strict (s, z)-path which visits ei also visits v because
an edge-vertex has degree two. Therefore, (S \ {ei}) ∪ {v} is also a non-strict (s, z)-
separator in G′. As a preprocessing step we replace each edge-vertex in S which one
of its neighbors to get a non-strict (s, z)-separator S′ ⊆ V of size at most k. For each
strict (s, z)-path G there is strict (s, z)-path in G′ and each non-strict (s, z)-separator is
also a strict (s, z)-separator. Hence, S′ is a strict (s, z)-separator in G, because S′ ⊆ V .

Theorem 3.1 and Corollary 3.2 imply that (Non-)Strict (s, z)-Separation is in
the complexity class W[1] or higher up in the hierarchy of hardness classes for param-
eterized problems. On the other hand, we can observe that the (Non-)Strict (s, z)-
Separation is in W[P]. The class W[P] is the class of parameterized problems where
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Figure 3.1: An example for the reduction in Corollary 3.2 of a temporal graph from
a Strict (s, z)-Separation instance (left) to a temporal graph for a Non-Strict
(s, z)-Separation instance (right). The edge-vertices are drawn by black dots. For each
time-edge between vertices v, w in the Strict (s, z)-Separation instance with label t
there is a strict (v, w)-path and a strict (w, v)-path with departure time 2t and arrival
time 2t+ 1.

each instance (I, r) can be decided in h(r) · |I|O(1) time by a non-deterministic Turing-
machine that makes at most f(r) · log |I| non-deterministic choices, where h and f are
computable functions [FG06, Theorem 25.2.1].

Observation 3.3. (Non-)Strict (s, z)-Separation is in W[P] when parameterized
by the solution size k.

Proof. Let I := (G = (V,E, τ), s, z, k) be a (Non-)Strict (s, z)-Separation instance.
Without loss of generality, we assume that each vertex v ∈ V has a binary encoding and
hence, can be addressed with log |I| bits. The non-deterministic Turing-machine guesses
a set S ⊆ V of at most k vertices. Note that these are k · log |I| many non-deterministic
choices. Observe that I is a no-instance if and only if we find a (non-)strict (s, z)-path
in G− S. This can be checked in polynomial-time by the algorithm from Lemma 2.4. It
follows that (Non-)Strict (s, z)-Separation is in W[P] when parameterized by the
solution size k.

3.2 Maximum Label

In this section we study the parameterized complexity of (Non-)Strict (s, z)-Sep-
aration when parameterized by the maximum label τ . First, we show that Strict
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(s, z)-Separation is NP-hard, even if τ = 5, and Non-Strict (s, z)-Separation is
NP-hard, even if τ = 2. This means that (Non-)Strict (s, z)-Separation is (probably)
not in XP and hence, there is no fixed-parameter algorithm for (Non-)Strict (s, z)-
Separation when parameterized by the maximum label τ .

Second, we discuss the open cases of Non-Strict (s, z)-Separation when the
maximum label is τ = 1 and of Strict (s, z)-Separation when the maximum label
is τ = 1, 2, 3, 4 by showing polynomial-time algortihms for all of these cases.

Theorem 3.4. Strict (s, z)-Separation is NP-hard, even if τ = 5, and Non-Strict
(s, z)-Separation is NP-hard, even if τ = 2.

Proof. Baier et al. [Bai+10] showed that Length-Bounded (s, z)-Separation is NP-
hard, even if ` = 5. Let I := (G, s, z, `, k) be a Length-Bounded (s, z)-Separa-
tion instance. First, we use the reduction from Theorem 3.1 to compute an equivalent
Strict (s, z)-Separation instance O1 := (G1 = (V1, E1, τ1), s1, z1, k1) in polynomial-
time, where τ1 = `. This proves the first part of the theorem.

For the second part of the theorem, we are going to refine the gadget of Baier et al.
[Bai+10] and reduce directly from Vertex Cover to Non-Strict (s, z)-Separation.
Let I := (G = (V,E), k) be a Vertex Cover instance and n := |V |. We construct a
Non-Strict (s, z)-Separation instance Ô := (Ĝ = (V̂ , Ê, 2), s, z, k + n), where

V̂ := V ∪ {v1, v2 : v ∈ V } ∪ {s, z}

are the vertices and the time-edges are defined as

Ê :=

vertex-edges︷ ︸︸ ︷
{({s, v1}, 1), ({v1, v}, 1), ({v, v2}, 2), ({v2, z}, 2), ({s, v}, 2), ({v, z}, 1) : v ∈ V } ∪
{({v1, w2}, 1), ({w1, v2}, 1) : {v, w} ∈ E}︸ ︷︷ ︸

edge-edges

.

For each vertex v ∈ V there is a vertex gadget which consists of three vertices v1, v, v2
and six vertex-edges. In addition, for each edge {v, w} ∈ E there is an edge gadget
which consists of two edge-edges connecting v1 with w2 and v2 with w1. See Figure 3.2
for an example. The Non-Strict (s, z)-Separation instance Ô can be computed in
polynomial-time, because |V̂ | = 3 · n+ 2 and |Ê| = 6 · |V̂ |+ 2 · |E|.

It remains to be shown that there is a vertex cover for G of size at most k if and
only if there is a non-strict (s, z)-separator in Ĝ of size at most n+ k.

⇒: Assume that V ′ ⊆ V is a vertex cover of size k′ ¬ k for G. Now, we build a non-
strict (s, z)-separator S := (V \V ′)∪{v1, v2 | v ∈ V ′}. There are |V |−|V ′| = n−k′ vertices
not in the vertex cover V ′ and for each of them there is exactly one vertex in S. For each
vertex in the vertex cover V ′ there are two vertices in S. Hence, |S| = n−k′+2k′ ¬ n+k.
First, we consider just the vertex-gadget of a vertex v ∈ V . Note that there are two
distinct non-strict (s, z)-separators in the vertex-gadget of v. One is {v}, and the other
is {v1, v2}. Therefore, we can already observe that there is no non-strict (s, z)-path
in Ĝ − S which does not contain an edge-edge. Second, let e = {v, w} ∈ E and let Pe
and P ′e be the non-strict (s, z)-paths which contain the edge-edges of edge-gadget of e
such that V (Pe) = {s, v1, w2, z} and V (P ′e) = {s, w2, v1, z}. Since V ′ is a vertex cover
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Figure 3.2: The Vertex Cover instance (G, 1) (left) and the corresponding Non-
Strict (s, z)-Separation instance from the reduction of Theorem 3.4 (right). The
edge-edges are orange (dotted), the vertex-edges are blue (solid), and the vertex gadgets
are in dashed boxes.

of G we know that at least one element of e is in V ′. Without loss of generality, we
assume v ∈ V ′. Thus, v1, v2 ∈ S and therefore neither Pe nor P ′e do exist in Ĝ− S. This
completes this direction, because there are no other non-strict (s, z)-path in Ĝ.

⇐: Assume that there is a non-strict (s, z)-separator S in Ĝ of size n+ k′ ¬ n+ k and
let v ∈ V . Recall that there are two distinct non-strict (s, z)-separators in the vertex
gadget of v, namely {v} and {v1, v2} and that all vertices in V̂ \ {s, z} are from a vertex
gadget. We start with a preprocessing to ensure that for vertex gadget only one of these
two separators are in S. Let Sv = S ∩ {v, v1, v2}. We iterate over Sv for each v ∈ V and

Case 1: If Sv = {v} or Sv = {v1, v2} then we do nothing.

Case 2: If Sv = {v, v1, v2} then we remove v from S and decrease k′ by one. One can
observe that all non-strict (s, z)-paths which are visiting v are still separated by v1
or v2.

Case 3: If Sv = {v, v1} then we remove v from S and add v2. One can observe that S is
still a non-strict (s, z)-separator of size k in Ĝ.
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Case 4: If Sv = {v, v2} then we remove v from S and add v1. One can observe that S is
still a non-strict (s, z)-separator of size k in Ĝ.

That is a valid distinction of cases because v1 or v2 alone do not separate all non-
strict (s, z)-paths in the vertex gadget in v. Now we construct a vertex cover V ′ for G
by taking v into V ′ if both v1 and v2 are in S. The size of V ′ is |S|−n = k′ ¬ k, because
there are n vertex gadgets in Ĝ and each vertex gadget containing either one or two
nodes from S.
Assume towards a contradiction that V ′ is not a vertex cover of G. Therefore, there is
an edge {v, w} ∈ E where v, w 6∈ V ′. Hence, v1, v2, w1, w2 6∈ S and v, w ∈ S. This con-
tradicts that S is a non-strict (s, z)-separator in Ĝ, because there is the non-strict (s, z)-
path P{v,w} = (({s, v1}, 1), ({v1, w2}, 1), ({w2, z}, 2)).

Theorem 3.4 does not settle the computational complexity of the Non-Strict (s, z)-
Separation problem when τ = 1 and of the Strict (s, z)-Separation problem
when τ = 1, 2, 3, 4.

A Non-Strict (s, z)-Separation instance where τ = 1 has only one layer which
implies that there is no temporal component left in the problem. Hence we can solve the
problem by checking whether there is an (s, z)-separator of size k on the layer one.

Lemma 3.5 (Ford and Fulkerson [FF56]). Let G = (V,E) be a (directed) graph, s, z ∈ V
two distinct vertices, and k ∈ N. It is decidable in O(k · (|V |+ |E|)) time whether there
is an (s, z)-separator of size at most k in G.

Proof. Let G = (V,E) be a (directed) graph, s, z ∈ V two distinct vertices, and k ∈ N.
We construct a directed graph D := (H,A1 ∪A2) such that

• H := {v1, v2 | v ∈ V },

• A1 := {(v1, v2) | v ∈ V }, and

• A2 := {(x2, y1) | {x, y} ∈ E(G)} (if G is a directed graph A2 := {(x2, y1) | (x, y) ∈
E(G)}).

Now, we define a weight function

ω : A1 ∪A2 → {1,∞}, (x, y) 7→
{

1, if (x, y) ∈ A1
∞, otherwise

and run k rounds of the algorithm by Ford and Fulkerson [FF56] on D with source s2,
sink z1, and weight ω. One can observe that D has a (s2, z1)-cut C of weight

∑
e∈C ω(e) =

k if and only if there is an (s, z)-separator of size k in G [MOR13]. The residual graph
from Ford and Fulkerson [FF56] contains an (s2, z1)-path if and only if the maximum
flow from s2 to z1 is at least k + 1. If the reader is not familiar with the definition of
maximum flow, then we refer to Ford and Fulkerson [FF56]. By the Max-Flow-Min-Cut
Theorem [FF56], the maximum flow from s2 to z1 is equal to the weight of the minimum
(s2, z1)-cut.

The running time of each round of the algorithm by Ford and Fulkerson [FF56]
can be upper-bounded by in O(|H| + |A1| + |A2|). We can find an (s2, z1)-path in the
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residual graph by a breadth-first search which also runs in O(|H| + |A1| + |A2|) time.
Hence, the algorithm runs in O(k · (|V | + |E|)) time, because |H| = 2 · |V |, |A1| = |V |,
and |A2| = 2 · |E|.

If the maximum label τ = 1 in a temporal graph, then we can interpret the temporal
graph as a standard graph. Hence, we have the following observation.

Observation 3.6. Non-Strict (s, z)-Separation can be solved in O(k · (|V |+ |E|))
time when the maximum label τ = 1.

Hence, Non-Strict (s, z)-Separation is polynomial-time solvable for τ = 1 and
becomes NP-hard even if τ = 2.

The case of Strict (s, z)-Separation where τ = 1 is trivial, because then all
strict (s, z)-paths have length one, and thus, there must be a time-edge ({s, z}, 1). We
excluded this case by assumption for the whole thesis, because these are trivial no-
instances. Nonetheless, we can test if there is such a time-edge by iterating over the
time-edges set.

Observation 3.7. The Strict (s, z)-Separation problem for τ = 1 can be solved
in O(|E|) time.

The case of Strict (s, z)-Separation where τ = 2 can be solved by the following
data reduction rule.

Reduction Rule 3.1. Let (G = (V,E, τ), s, z, k) be a (Non-)Strict (s, z)-Separa-
tion instance and let P be a (non-)strict (s, z)-path of length two where V (P ) \ {s, z} =
{v}. Then delete v and decrease k by one.

It is quite easy to see that v is the one and only option to separate s from z on P .
Hence v must be in every (non-)strict (s, z)-separator of G. A (non-)strict (s, z)-path can
be found in O(|V | · τ + |E|) time by the breadth-first search from Lemma 2.4, but here
we store for each node of the breadth-first search how many non-column edges we need
to reach this node. Furthermore, we ensure that we do not explore paths which have
more than two non-column edges. Consequently, we get only (non-)strict (s, z)-paths of
length two.

It is rather obvious that we can decide the Strict (s, z)-Separation problem
where τ = 2 in O(k · (|V | + |E|)) time by executing Reduction Rule 3.1 at most k
times and check afterwards if there is still a strict (s, z)-path in the temporal graph.

Observation 3.8. The Strict (s, z)-Separation problem for τ = 2 can be solved
in O(k · (|V |+ |E|)) time.

To study the cases of Strict (s, z)-Separation where τ ∈ {3, 4}, we introduce
two more data reduction rules. Note that these data reduction rules are also useful for
Non-Strict (s, z)-Separation and for an arbitrary maximum label τ .

Reduction Rule 3.2. Let (G = (V,E, τ), s, z, k) be a (Non-)Strict (s, z)-Separa-
tion instance, and v ∈ V . If there is no (non-)strict (s, z)-path P with v ∈ V (P ), then
delete v.
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To see the correctness of this rule, let G be a temporal graph, G′ = G − {v} be
the temporal graph after the application of Reduction Rule 3.2, and let S be a (non-)
strict (s, z)-separator in G′. Then, S is also a (non-)strict (s, z)-separator in G, because v
is not visited by any (non-)strict (s, z)-path. Furthermore, if S′ is a (non-)strict (s, z)-
separator in G, then S′ \ {v} is a (non-)strict (s, z)-separator in G′ because G′ is a
temporal subgraph of G.

Reduction Rule 3.3. Let (G = (V,E, τ), s, z, k) be a (Non-)Strict (s, z)-Separa-
tion instance, and e ∈ E. If there is no (non-)strict (s, z)-path P which contains e, then
delete e.

To see the correctness of this rule, let G be a temporal graph, G′ = G\ e be the tem-
poral graph after the application of Reduction Rule 3.3, and let S be a (non-)strict (s, z)-
separator in G′. Then, S is also a (non-)strict (s, z)-separator in G, because there is no
(non-)strict (s, z)-path which contains e. Furthermore, if S′ is a (non-)strict (s, z)-sep-
arator in G, then S′ is a (non-)strict (s, z)-separator in G′ because G′ is a temporal
subgraph of G.

Lemma 3.9. Let (G = (V,E, τ), s, z, k) be an instance of (Non-)Strict (s, z)-Sepa-
ration. Reduction Rules 3.2 and 3.3 can be exhaustively applied in O(|V | · τ + |E|) ¬
O(|V | · |E|) time.

Proof. We provide an algorithm to apply Reduction Rules 3.2 and 3.3 simultaneously
and exhaustively.

First, we show the algorithm for Strict (s, z)-Separation. Second, we explain how
the algorithm must be altered to work for Non-Strict (s, z)-Separation. Let I =
(G = (V,E, τ), s, z, k) be a Strict (s, z)-Separation input instance.

(i) Construct the strict static expansion H = (S,A) of (G, s, z).

(ii) Perform a breadth-first search in H from s and mark all vertices in the search tree
as reachable. Let R(s) ⊆ S be the reachable vertices from s.

(iii) Construct H ′ := (R(s), A′), where A′ := {(w, v) : (v, w) ∈ A and v, w ∈ R(s)}.
Observe that H ′ is the reachable part of H from s, where all directed arcs change
their direction.

(iv) If z 6∈ R(s), then our instance I is a yes-instance.

(v) Perform a breadth-first search from z in H ′ and mark all vertices in the search
tree as reachable. Let R(z) ⊆ R(s) be the reachable set of vertices from z. In the
graph H[R(s) ∩ R(z)] = H[R(z)], all vertices are reachable from s and from each
vertex the vertex z is reachable.

(vi) Output the temporal graph G′ := (V ′, E′, τ), where V ′ := {vi ∈ V | ∃j : xj,i ∈
R(z)} and E′ := {({vj , vj′}, i) : (x(i−1),j , xi,j′) ∈ E(H[R(z)])}.

One can observe thatG′ is a temporal subgraph ofG. Aside from the two breadth-first
searches (ii),(v) and the construction of the strict static expansion (i), all subroutines are
computable in linear time. By Lemma 2.3, (i) can be done in O(|V | · τ + |E|) time. The
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running time estimations of the breadth-first searches in (ii) and (v) work identically to
Lemma 2.4 and is therefore O(|V | · τ + |E|). Because of Lemma 2.2, we have O(|V | · τ +
|E|) ¬ O(|V | · |E|). Consequently, G′ can be computed in O(|V | · τ + |E|) ¬ O(|V | · |E|)
time.

We are about to show that Reduction Rules 3.2 and 3.3 are not applicable in G′.
Let vj ∈ V ′ and assume towards a contradiction that there is no strict (s, z)-path P
in G′ such that vj ∈ V (P ). Since vj ∈ V , there is an i such that there is an (s, xi,j)-path
in H. Note that, because of the column-edges, R(s) contains all xi′,j where i < i′ ¬ τ .
Furthermore, there must be an xi′,j ∈ R(z) where i ¬ i′ ¬ τ , also because of vj ∈ V ′
and hence there is an (s, z)-path P ′ in H such that xi′,j ∈ V (P ′). This is a contradiction
because then there is strict (s, z)-path in G as well as in G′—Reduction Rule 3.2 is not
applicable.

Let e = ({vj , vj′}, i) ∈ E′ and assume towards a contradiction that there is no
strict (s, z)-path P in G′ which contains e. From the construction of G′ we know
that (x(i−1),j , xi,j′) ∈ E(H[R(z)]) or (x(i−1),j′ , xi,j) ∈ E(H[R(z)]). Similarly as we
have concluded before, there is an (s, z)-path in H which contains either {x(i−1),j , xi,j′}
or {x(i−1),j′ , xi,j}.

This implies that there is a strict (s, z)-path in G as well as in G′. This is a contra-
diction. Reduction Rule 3.3 thus is not applicable.

It remains to be shown that each strict (s, z)-path P in G is also a strict (s, z)-path
in G′. Since P is a strict (s, z)-path in G there is a corresponding (s, z)-path P ′ in H.
Note that P ′ is a witness that all vertices in V (P ′) are in R(s) as well as in R(z). It
follows from the construction of G′ that P is also a strict (s, z)-path in G′.

This algorithm works also for Non-Strict (s, z)-Separation when we construct
the static expansion instead of the strict static expansion.

Lovász, Neumann-Lara, and Plummer [LNLP78] showed that the minimum size of
an (s, z)-separator for paths of length at most four in a graph is equal to the number
of vertex-disjoint (s, z)-paths of length at most four in a graph. We are about to adjust
their idea to strict paths on temporal graphs. The idea behind Lemma 3.11 is similar
to the idea of the proof of Lovász, Neumann-Lara, and Plummer [LNLP78] and based
on the following helper graph. However, since the connectivity by strict paths between
vertices is not transitive, see Remark 2.1, we have to cover a lot more cases than Lovász,
Neumann-Lara, and Plummer [LNLP78].

Definition 3.10. Let G = (V,E, τ = 4) be a temporal graph, s, z ∈ V two distinct
vertices, and Reduction Rules 3.1 to 3.3 are not applicable on G. The directed path cover
graph from s to z is a directed graph D = (V, ~E) such that (v, w) ∈ ~E if and only if

(i) v, w ∈ V ,

(ii) ({v, w}, t) ∈ E, where t can be arbitrary,

(iii) v ∈ V(i,j) and w ∈ V(i′,j′) such that i < i′ or v ∈ V(2,2) and w ∈ V(2,1),

where a vertex x ∈ V is in the set V(i,j) if the shortest strict (s, x)-path is of length i
and the shortest strict (x, z)-path is of length j.
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The directed path cover graph of a temporal graph with maximum time-edge label
four has the following property.

Lemma 3.11. Let G = (V,E, τ = 4) be a temporal graph, s, z ∈ V two distinct vertices,
Reduction Rules 3.1 to 3.3 are not applicable on G, and let D = (V, ~E) be the directed
path cover graph from s to z of G. Then S ⊆ V \ {s, w} is a strict (s, z)-separator in G
if and only if S is an (s, z)-separator on D.

Proof. Let G = (V,E, τ = 4) be a temporal graph, s, z ∈ V two distinct vertices,
Reduction Rules 3.1 to 3.3 are not applicable on G, and let D = (V, ~E) be the directed
path cover graph from s to z of G.

We say that a strict (s, z)-path P of length n in G is chordless if G[V (P )] does
not contain a strict (s, z)-path P ′ of length n − 1. If such a P ′ exists, we call P ′ a
chord of P . Obviously, for a set X of vertices, if G−X does not contain any chordless
strict (s, z)-path, then G−X does not contain any strict (s, z)-path.

Now, we discuss the appearance of the directed path cover graph D. Assume towards
a contradiction that there is a vetex v ∈ V(1,1). Due to Reduction Rule 3.1 there are no
strict (s, z)-paths of length two. Thus, if there is a vertex v ∈ V(1,1), then there must be
time-edges ({s, v}, t1) and ({v, z}, t2) such that t2 ¬ t1. We distinguish two cases.

Case 1: Let t2 ¬ t1 ¬ 2. Since Reduction Rule 3.3 is not applicable, we know that
there is a strict (s, z)-path P which contains ({v, z}, t2). The strict (s, z)-path P
must be of length at least three, because otherwise Reduction Rule 3.1 would be
applicable. Observe that the length of a strict (s, z)-path is a lower bound for the
arrival time. Hence, the arrival time of P is at least three. This is a contradiction
because ({v, z}, t2) is the last time-edge of P and therefore, t2 ¬ 2 is equal to the
arrival time. Consequently, v 6∈ V(1,1).

Case 2: Let 3 ¬ t2 ¬ t1. Since Reduction Rule 3.3 is not applicable, we know that
there is a strict (s, z)-path P which contains ({s, v}, t1). The strict (s, z)-path P
must be of length at least three, because otherwise Reduction Rule 3.1 would be
applicable. Observe that ({s, v}, t1) is the first time-edge of P . Hence, the departure
time of P is at least three. Since, P is of length at least three, the arrival time
of P is at least five. This is a contradiction because the maximum label is four.
Consequently, v 6∈ V(1,1).

Observe that the sets V(1,3), V(2,2), V(3,1), V(1,2), V(2,1) are a partition of V , because all
strict (s, z)-paths are of length at most four and V(1,1) = ∅. In Figure 3.3, we can see the
appearance of the directed path cover graph D from s to z of G.

We claim that for each chordless strict (s, z)-path P in G, there is an (s, z)-path PD
such that V (P ) = V (PD). Let P be a chordless strict (s, z)-path in G. Due to Reduction
Rule 3.1, P is of length three or four.

Case 1: Let the length of P be three and V (P ) = {s, v1, v2, z} such that v1 is visited
before v2. Since there is no strict (s, z)-path of length two, P forces v1 into V(1,2)
and v2 ∈ V(2,1). It is easy to see that v1 ∈ V(1,2), just by the existence of P .
That v1 ∈ V(1,2) is, just by the existence of P , easy to see. For v2 ∈ V(2,1), we need
that there is no strict (s, v2)-path of length one.
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s

V(1,3) V(2,2) V(3,1)

z

V(1,2) V(2,1)

Figure 3.3: The directed path cover graph D from s to z of a temporal graph with
maximum time-edge label τ = 4. An arc from vertex set V(i,j) to vertex set V(i′,j′) denote
that for two vertices v ∈ V(i,j) and w ∈ V(i′,j′) there can be an arc from v to w in D.

Assume towards a contradiction that there would be a strict (s, v2)-path of length
one or in other words there is a time-edge ({s, v2}, t) ∈ E. All labels of the time-
edge between v2 and z are at least three thus t is at least three, otherwise there is
a strict (s, z)-path of length two. There must be a strict (s, z)-path P ′ which uses
the time-edge ({s, v2}, t), otherwise Reduction Rule 3.3 would be applicable. Fur-
thermore, P ′ must be of length at least three, otherwise Reduction Rule 3.1 would
be applicable. Thus, P ′ has departure time at most two. The time-edge ({s, vw}, t)
is the first time-edge in P ′, because it is incident with s. Hence, t < 2. This con-
tradicts the existence of a strict (s, v2)-path of length one, and hence v2 ∈ V(2,1).
From Definition 3.10, we know that there is an (s, z)-path PD such that V (P ) =
V (PD).

Case 2: Let the length of P be four. Thus, it has the following appearance

P = ({s, v1}, 1), ({v1, v2}, 2), ({v2, v3}, 3), ({v3, z}, 4).

It follows immediately, that the shortest strict (s, v1)-path is of length one. Fur-
thermore, the shortest strict (s, v2)-path is of length two, otherwise P would not
be chordless.

Now, we claim that v3 ∈ V(2,1) ∪ V(3,1). Assume towards a contradiction that v3 6∈
V(2,1)∪V(3,1). Observe that v3 6∈ V(2,2), because ({v3, z}, 4) is a shortest strict (v3, z)-
path of length one. Thus, there is a time-edge ({s, v3}, t) ∈ E. This time-edge
must be part of a strict (s, z)-path, otherwise Reduction Rule 3.3 is applicable.
Since v2 6= z, we have t ¬ 3. Note that ({s, v3}, t ¬ 3), ({v3, z}, 4) would be a
strict (s, z)-path of length two. Hence, ({s, v3}, t) 6∈ E and v3 ∈ V(2,1) ∪ V(3,1).
From Definition 3.10 we know that there is an (s, z)-path PD such that V (P ) =
V (PD).

Let S ⊆ (V \ {s, z}) be an (s, z)-separator in D. Until now, we know that S is also a
strict (s, z)-separator in G, because for each chordless strict (s, z)-path in G there is an
(s, z)-path in D. Let L ⊆ (V \ {s, z}) be a strict (s, z)-separator in G. It remains to be
shown that L is an (s, z)-separator in D.

Assume towards a contradiction that L is not an (s, z)-separator in D. Thus, there
is an (s, z)-path PD in D − L. The length of PD is either three or four, see Figure 3.3.
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Case 1: Let the length of PD be three and V (PD) = {s, v1, v2, z} such that v1 is visited
before v2. Thus, v1 ∈ V(1,2) and v2 ∈ V(2,1), see Figure 3.3. From Definition 3.10,
we know that there are time-edges ({s, v1}, t1), ({v1, v2}, t2), ({v2, z}, t3) ∈ E. Note
that each time-edge in G must be part of a strict (s, z)-path and that there are
no strict (s, z)-paths of length two. Hence, t1 ∈ {1, 2}, t2 ∈ {2, 3}, and t3 ∈ {3, 4}.
Since ({s, v1}, t1), ({v1, v2}, t2), ({v2, z}, t3) is not a strict (s, z)-path in G by our
assumption, we have either t1 = t2 = 2 or t2 = t3 = 3.

Case 1.1: Let t1 = t2 = 2. The time-edge ({v1, v2}, t2 = 2) must be part of a
strict (s, z)-path, and therefore we have either ({s, v2}, 1) ∈ E or ({s, v1}, 1) ∈
E. As time-edge ({s, v2}, 1) cannot exist, v2 ∈ V(2,1). Hence, ({s, v1}, 1) ∈
E, t1 = 1 6= 2, ({s, v1}, t1), ({v1, v2}, t2), ({v2, z}, t3) is a strict (s, z)-path
in G, and {v1, v2} ∩ L 6= ∅. This contradicts the existence of PD in D − L.

Case 1.2: Let t2 = t3 = 3. There is a strict (s, z)-path which contains ({v1, v2}, t3 =
3). Since t3 = 3, there is either a ({v1, z}, 4) ∈ E or ({v2, z}, 4) ∈ E. The
time-edge ({v1, z}, 4) cannot exist, because v1 ∈ V(1,2). Hence ({v2, z}, 4) ∈
E, t3 = 4 6= 3, ({s, v1}, t1), ({v1, v2}, t2), ({v2, z}, t3) is a strict (s, z)-path
in G, and {v1, v2} ∩ L 6= ∅. This contradicts the existence of PD in D − L.

Case 2: Let the length of PD be four, and V (PD) = {s, v1, v2, v3, z} such that v1 is
visited before v2 and v2 is visited before v3. From Figure 3.3, one can observe
that v1 ∈ V(1,3) ∪ V(1,2) and v2 ∈ V(2,2). From Definition 3.10, we know that there
are time-edges ({s, v1}, t1), ({v1, v2}, t2), ({v2, v3}, t3), ({v3, z}, t4) ∈ E. There is
a strict (s, z)-path P which contains ({v1, v2}, t2), otherwise Reduction Rule 3.3
would be applicable. Since v2 ∈ V(2,2), we know that P is of length four and the
first two time-edges of P .

Now assume towards a contradiction that P visits v2 before v1. Hence, ({v1, v2}, t2)
is the third time-edge in P . The first two time-edges of P are a strict (s, v2)-path
of length two and arrival time at least two. Thus, t2 ­ 3. Observe that there is
no strict (v1, z)-path of length one and hence there is no time-edge ({v1, z}, 4),
because v1 ∈ V(1,2) ∪ V(1,3). This contradicts P visiting v2 before v1. Consequently,
the strict (s, z)-path P visits v1 before v2 and ({v1, v2}, t2) is the second time-edge
in P . Hence, t2 = 2 and there is a time-edge ({s, v1}, 1) in P . This implies t1 = 1.

The vertex v3 ∈ V(2,1)∪V(3,1), see Figure 3.3. There is a strict (s, z)-path which con-
tains ({v2, v3}, t3), otherwise Reduction Rule 3.3 would be applicable. Since v3 ∈
V(2,1) ∪ V(3,1) and v2 ∈ V(2,2), all strict (s, v2)-paths and strict (s, v3)-paths have
length at least two and thus also arrival time at least two. Hence, t3 ­ 3. Be-
cause v2 6= z 6= v3 and there is a strict (s, z)-path which contains ({v2, v3}, t3),
we have t3 < 4 ⇒ t3 = 3 and there is either a time-edge ({v2, z}, 4) ∈ E
or ({v3, z}, 4) ∈ E. The time-edge ({v2, z}, 4) cannot exist, otherwise there would
be a strict (v2, z)-path of length one, but v2 ∈ V(2,2). This implies that ({v3, z}, 4) ∈
E and t4 = 4. Hence, ({s, v1}, t1), ({v1, v2}, t2), ({v2, v3}, t3), ({v3, z}, t4) forms a
strict (s, z)-path and {v1, v2, v3} ∩ L 6= ∅. This contradicts the existence of PD
in D − L.

In summary, PD cannot exist inD−L. Consequently, L is an (s, z)-separator inD.



46 CHAPTER 3. NATURAL PARAMETERS

s

x

v

y

z3 3

1 2

4 5

3

Figure 3.4: A temporal graph with maximum label τ = 5 on which Lemma 3.11 does not
hold. The vertex v would be in the vertex set V(1,1) which implies that v must be in an
(s, z)-separator of the directed path cover graph. Hence, the strict (s, z)-separator {x, y}
in the temporal graph is not an (s, z)-separator in the directed path cover graph.

One can observe that Lemma 3.11 does not hold when the maximum label τ > 4.
We refer to Figure 3.4 for an example.

To construct the directed path cover graph D from s to z of G, we need to know the
length of a shortest strict (s, v)-path and the length of a shortest strict (v, z)-path, for
all v ∈ V . That is the single-source shortest path problem on temporal graphs.

Single-Source Shortest Strict Paths
Input: A temporal graph G = (V,E, τ), a vertex s
Task: Find the shortest strict (s, v)-path in G, for all v ∈ V \ {s}.

Lemma 3.12. Single-Source Shortest Strict Paths can be solved in O(|V | · τ +
|E|) time.

Proof. In O(|V | · τ + |E|) time, we compute the strict static expansion H = (S,A)
of (G, s, z) and define a weight function

ω : A→ {0, 1}, (x, y) 7→
{

0, if (x, y) is a column-edge

1, otherwise

Observe that H with ω is a weighted directed acyclic graph and that the weight of an
(s, z)-path in H with ω is equal to the length of the corresponding strict (s, z)-path in G.
Hence, we can use an algorithm, which makes use of the topological order of S on H, to
compute for all v ∈ S a shortest (s, v)-path in H in O(|S|+ |A|) time [Cor+09, Theorem
24.5]. For each wi ∈ V \{s, z}, there are τ vertices w1,i, . . . , wτ,i in H. Note that shortest
(s, wj,i)-path over all j ∈ {1, . . . , τ} in H corresponds to a shortest strict (s, wi)-path
in G. Hence, for each vertex wi ∈ V \ {s, z}, we can find the shortest strict (s, wi)-path
in G in O(τ) time, if we already know all shortest paths from s in H.
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The overall running time is

O(|S|+ |A|+ |V | · τ) = O((|V | · τ) + (|V | · τ + |E|) + |V | · τ) = O(|V | · τ + |E|).

Note that Wu et al. [Wu+14] developed, in a slightly different model, algorithms
which are similar to ours of Lemma 3.12. In their model of a temporal graph, a time-
edge is directed and must have different incoming and outgoing labels. Therefore a path
in their model is akin with a strict path in our model.

We can use the directed path cover graph and Lemma 3.11 to solve Strict (s, z)-
Separation in polynomial-time, when the maximum time-edge label τ is at most four.

Theorem 3.13. Strict (s, z)-Separation for maximum label τ = 4 can be solved
in O(|E| · |V |2) time.

Proof. Let I := (G = (V,E, τ = 4), s, z, k) be an instance of Strict (s, z)-Separation.
At first we exhaustively apply Reduction Rules 3.1 to 3.3 in O(k · (|V | · τ + |E|)) time
on G, see Lemma 3.9.

To construct the directed path cover graph D from s to z of G, we compute the
length of a shortest strict (s, v)-path and the length of a shortest strict (v, z)-path by
Lemma 3.12, for all v ∈ V . Let v ∈ V . To compute the length of the shortest strict (v, z)-
path in G, we construct the strict static expansion Hv of (G, v, z) and execute the
algorithm of Lemma 3.12 again. Thus, we can compute the directed path cover graph D
from s to z of G in O(|V | · (|V | · τ + |E|)) time. By Lemma 3.5, we can check whether D
has an (s, z)-separator of size k in O(k · (|V | + |E|) time. Note that τ = 4. Hence, the
overall running time is O(|E| · |V |2).

Hence, Non-Strict (s, z)-Separation is polynomial-time solvable for τ ¬ 4 and
becomes NP-hard even if τ = 5. Nevertheless, the running time can be improved if the
maximum time-edge label is τ = 3.

Proposition 3.14. Strict (s, z)-Separation with maximum label τ = 3 can be solved
in O(k · |V | · |E|) time.

Proof. Let (G = (V,E, τ = 3), s, z, k) be an instance of Strict (s, z)-Separation.
First of all, there is no strict (s, z)-path of length at least four in G. As a preprocessing,
Reduction Rules 3.1 to 3.3 are exhaustively applied. Without loss of generality assume
that there is still a strict (s, z)-path in G, otherwise (G = (V,E, τ = 3), s, z, k) is
a trivial yes-instance. Because of Reduction Rule 3.1 there is no strict (s, z)-path of
length two in G, and because of Reduction Rule 3.2 each vertex in G is visited by
a strict (s, z)-path. One can observe that each strict (s, z)-path P has the following
appearance ({s, v1}, 1), ({v1, v2}, 2), ({v2, z}, 3). First, there is a time-edge with label
one. Second, there is a time-edge with label two. Third, there is a time-edge with label
three.

A bipartite graph (or triangle-free graph) has a partition of the vertex set into two
sets such that the induced graph of each partition set is edgeless.

We claim that the layer two of G, namely G2, is a bipartite graph. Assume towards a
contradiction that G2 is not a bipartite graph. Thus, there are vertices v, w, x ∈ V such
that G2[{v, w, x}] is a triangle. Since Reduction Rule 3.3 is not applicable, we have
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• either a strict (s, z)-path Pe1 = ({s, v}, 1), ({v, w}, 2), ({w, z}, 3), or
P ′e1 = ({s, w}, 1), ({w, v}, 2), ({v, z}, 3),

• either a strict (s, z)-path Pe2 = ({s, v}, 1), ({v, x}, 2), ({x, z}, 3), or
P ′e2 = ({s, x}, 1), ({x, v}, 2), ({v, z}, 3), and

• either a strict (s, z)-path Pe3 = ({s, w}, 1), ({w, x}, 2), ({x, z}, 3), or
P ′e3 = ({s, x}, 1), ({x,w}, 2), ({w, z}, 3).

Note that the Pe1 and P ′e1 cannot exist simultaneously, because otherwise there would
be a strict (s, z)-path of length two which visits v or w. The same holds for Pe2 and P ′e2
and also for Pe3 and P ′e3 . Hence, there are eight cases in which P1 ∈ {Pe1 , P ′e1}, P2 ∈
{Pe2 , P ′e2}, and P3 ∈ {Pe3 , P ′e3} exist in G. One can observe that in all these cases there
is a vertex y ∈ {v, w, x} such that there are time-edges ({s, y}, 1), ({y, z}, 3) ∈ E. This is
a contradiction because ({s, y}, 1), ({y, z}, 3) would be a strict (s, z)-path of length two
in G. Thus, G2 is a bipartite graph.

We claim that each strict (s, z)-separator S is a vertex cover of G2. Since there are no
strict (s, z)-paths of length two, we know that each vertex v ∈ S is incident with an edge
of layer two. Assume towards a contradiction that S is not a vertex cover of G2. Thus,
there is an edge {v, w} in G2−S. There must be strict (s, z)-path ({s, v}, 1), ({v, w}, 2),
({w, z}, 3) or ({s, w}, 1), ({v, w}, 2), ({v, z}, 3), otherwise Reduction Rule 3.3 would be
applicable. This contradicts S being a strict (s, z)-separator in G.

Finally, we can compute a vertex cover of a bipartite graph with König’s theorem
(see [Die16]) and an algorithm by Hopcroft and Karp [HK73] in O(|E| ·

√
|V |) time,

because Reduction Rules 3.1 to 3.3 are exhaustively applied in O(k · (|V | · τ + |E|)) ¬
O(k · (|V | · |E|)) time (cf. Lemma 3.9 and Observation 3.8). This gives an overall time
complexity of O(k · |V | · |E|).

3.3 Solution Size and Maximum Label

In this section, we consider the combined parameter of the solution size k and the max-
imum label τ . We show that Strict (s, z)-Separation is fixed-parameter tractable
when parameterized by k + τ . The idea behind this algorithm also leads to fixed-
parameter algorithms for (Non-)Strict (s, z)-Separation when parameterized by the
number |V | of vertices.

In the end, we discuss whether Non-Strict (s, z)-Separation is fixed-parameter
tractable when parameterized by the solution size k and the maximum label τ .

Theorem 3.15. Strict (s, z)-Separation can be solved in O(τk+3 · |V |+ |E|) time,
where k is the solution size, τ is the maximum label, |V | is the number of vertices, and |E|
is the number of time-edges.

Proof. We present a depth-first search algorithm (see Algorithm 1) to show fixed-parame-
ter tractability. Let I := (G = (V,E, τ), s, z, k) be a Strict (s, z)-Separation instance.
The basic idea of this algorithm is simple: at least one vertex of each strict (s, z)-path
must be in the strict (s, z)-separator. Thus, we compute an arbitrary strict (s, z)-path
(Line 4) and branch over all visited vertices of that strict (s, z)-path (Line 9) until we
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Algorithm 1: The algorithm of Theorem 3.15 to compute a strict (s, z)-separator
of a temporal graph.

Data: Temporal graph G = (V,E, τ), two distinct vertices s, z, and integer k ∈ N.
Result: A strict (s, z)-separator of G.

1 getSeparator(∅, k);
2 output no;
3 function getSeparator(S,k)
4 compute strict (s, z)-path P in G− S;
5 if there is no strict (s, z)-path in G− S then
6 output yes;
7 exit;
8 else if k > 0 then
9 for v ∈ V (P ) \ {s, z} do
10 getSeparator(S ∪ {v}, k − 1);
11 end
12 end

cannot find a strict (s, z)-path in G − S or until we already picked k vertices to be in
strict (s, z)-separator. Hence, if the algorithm outputs yes, then S is a strict (s, z)-sepa-
rator.

We claim that if there is a strict (s, z)-separator in G, then Algorithm 1 outputs yes.
Let S′ be a strict (s, z)-separator in G. Let P1 be the first strict (s, z)-path computed by
Line 4. Then there is a vertex v such that v ∈ (V (P1) \ {s, z}) ∩ S′, otherwise S′ is not
a strict (s, z)-separator in G. Thus, at some point the algorithm chooses the vertex v in
the for-loop in Line 9. Observe that the function call getSeparator({v}, k − 1) in G is
equivalent to a call getSeparator(∅, k′) on G− {v}, where k′ = k − 1. Hence, from here
one can argue inductively that the algorithm choose the correct vertex in each recursive
call. This implies the correctness of the algorithm.

From Lemma 2.4, we know that we can compute Line 4 in O(|V | · τ + |E|) time.
Now, we upper-bound the size of the search tree in which each node is a call of the
getSeparator() function. We can upper-bound the maximum depth of the search tree
by k + 1 as in each recursive call we decrease k by one, until k = 0. Furthermore, the
length of a strict (s, z)-path P is at most τ . Hence, there are at most τ − 1 vertices
in V (P ) which implies that each node in the search tree has at most τ − 1 child nodes.
Thus we can upper-bound the running time of Algorithm 1 by

O((τ − 1)k+2 · |V | · τ + |E|) = O(τk+3 · |V |+ |E|).

Note that in an implementation of Algorithm 1 it would not make sense to pick
a degree-two vertex v ∈ V (P ) in Line 4 if there is a vertex w ∈ V (P ) of degree at
least three, because both v and w cover the strict (s, z)-path P , but in a sharp contrast
to v, the vertex w might also cover other strict (s, z)-paths. However, there are temporal
graphs in which each vertex has degree at least three and hence, this does not give us a
better upper bound on the running time.
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One can observe that the length of a strict (s, z)-path is essential to bound the
running time of this algorithm. We can upper-bound the length of a non-strict (s, z)-path
by |V |−1. In standard graph theory we can upper-bound the size of the graphG = (V,E),
and therefore the input size for many graph problems, by O(|V |+ |V |2). This is not the
case for temporal graphs, because the maximum size of a temporal graph also depends
on the number of layers. Hence, the number |V | of vertices in a temporal graph is an
interesting parameter for which the algorithmic idea of Theorem 3.15 is also applicable.

Corollary 3.16. (Non-)Strict (s, z)-Separation can be solved in O((|V | − 2)k+2 ·
|V | · τ + |E|) time, where k is the solution size, |V | is the number of vertices, and |E| is
the number of time-edges.

Since k ¬ |V | − 2, (Non-)Strict (s, z)-Separation is fixed-parameter tractable
when parameterized by the number |V | of vertices.

Corollary 3.17. (Non-)Strict (s, z)-Separation can be solved in O((|V | − 2)|V | ·
|V | · τ + |E|) time, where |V | is the number of vertices, τ the maximum label, and |E| is
the number of time-edges.

Corollary 3.17 has the consequence that there are (presumably) no computable func-
tions f , g and no set of reduction rules which can be applied in g(τ) · |V | · |E| time on
a temporal graph G = (V,E, τ) such that it holds for the resulting equivalent temporal
graph G′ = (V ′, E′, τ ′) that |V ′| ¬ f(τ), because this would be a polynomial-time algo-
rithm for (Non-)Strict (s, z)-Separation, where the maximum label τ is constant.
This would imply P = NP, because of Theorem 3.4.

The maximum number |Vc| of vertices in a connected component over all layer of
a temporal graph G = (V,E, τ) is defined as |Vc| := maxi∈{1,...,τ} |Vi|, where Vi is the
maximum connected component of layer Gi, for all i ∈ {1, . . . , τ}. Hence, we can upper-
bound the length of a non-strict (s, z)-path by τ · |Vc|, because a non-strict (s, z)-path
can visit at most |Vc| many vertices in one layer and there are at most τ layers in G.

Corollary 3.18. (Non-)Strict (s, z)-Separation can be solved in O((τ ·|Vc|)k+3·|V |+
|E|) time, where k is the solution size, |V | is the number of vertices, |E| is the number of
time-edges, and |Vc| is the maximum number of vertices in a connected component over
all layers.

It remains open whetherNon-Strict (s, z)-Separation is fixed-parameter tractable
when parameterized by the solution size k and the maximum label τ .

On the one hand, we are not able to present a W[1]-hardness reduction with respect
to the solution size k for Non-Strict (s, z)-Separation where the maximum label τ
is constant or also bounded by parameter of the W[1]-hardness reduction. Also, we are
not able to present an NP-hardness reduction for Non-Strict (s, z)-Separation for
constant k and τ .

On the other hand, it seems that none of the approaches of important separators
[Mar06], shadow removal [MR14], treewidth reduction [MOR13], LP-branching and CSP-
branching [Cyg+13; IWY16], randomized contractions [Chi+16], and homogeneous path
systems [Gui11] are applicable to Non-Strict (s, z)-Separation. The major difficulty
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is that connectivity is not transitive (see Remark 2.1) and that a non-strict (s, z)-sepa-
rator can look very different from an (s, z)-separator (see Remark 2.2).

In the Section 4.1 we take a long journey through the discussion of the treewidth of
a temporal graph. Originally, the intention for this was to lift the treewidth reduction
technique to temporal graphs. This will not be achieved in this work and thus, can be
seen as further research opportunity.





Chapter 4

Temporal Graph Classes

In this chapter, we study (Non-)Strict (s, z)-Separation on several (structurally)
restricted temporal graphs.

In Section 4.1 we extend the concept of treewidth, see Definition 4.1, to temporal
graphs. One way to do that is to consider the underlying treewidth, that is, the treewidth
of the underlying graph of a temporal graph. In Section 4.1.1, we devise a fixed-parameter
algorithm for (Non-)Strict (s, z)-Separation when parameterized by the underlying
treewidth and the maximum label τ . Hence, (Non-)Strict (s, z)-Separation is in
FPT on classes of temporal graphs of constant bounded underlying treewidth when
parameterized by the maximum label. Furthermore, we discuss whether (Non-)Strict
(s, z)-Separation is fixed-parameter tractable when parameterized by the underlying
treewidth.

Another way to extend the concept of treewidth to temporal graphs is to consider
the layer treewidth. That is, the maximum treewidth over all layers of a temporal graph.
In Section 4.1.2, we use a technique by Mans and Mathieson [MM14] to show fixed-
parameter tractability of Non-Strict (s, z)-Separation when parameterized by the
solution size, the maximum label, and the layer treewidth. Hence, Non-Strict (s, z)-
Separation is in FPT on classes of temporal graphs of constant layer treewidth when pa-
rameterized by the solution size and the maximum label. Afterwards, we discuss whether
one of the parameters of the latter algorithm can be dropped.

In Section 4.3, we show that, unless NP ⊆ coNP/poly, (Non-)Strict (s, z)-Sepa-
ration does not admit a polynomial kernel when parameterized by any subset of the
parameters

• solution size,
• maximum label,
• underlying treewidth,
• layer treewidth, and
• maximum degree of the temporal graph.

4.1 Treewidth of Temporal Graphs

One of the tools from the standard repertoire for designing fixed-parameter algorithms
for graph problems is the tree-decomposition [Cyg+15; DF13; Die16; FG06; Nie06]. A

53
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tree-decomposition is a mapping of a graph into a related tree-like structure. For many
graph problems this tree-like structure can be used to formulate a bottom-up dynamic
program that starts at the leaves and ends at the root of the tree-decomposition [Cyg+15;
DF13; FG06; Nie06].

Definition 4.1. A tree-decomposition of a graph G is a pair T := (T, (Bi)i∈V (T )) con-
sisting of a tree T and a family (Bi)i∈V (T ) of bags Bi ⊆ V (G), such that

(i) for all vertices v ∈ V (G) the set B−1(v) := {i ∈ V (T ) | v ∈ Bi} is non-empty and
induces a subtree of T and

(ii) for every edge e ∈ E(G) there is i ∈ V (T ) with e ⊆ Bi.
The width of T is max{|Bi| − 1 | i ∈ V (T )}. The treewidth tw(G) of G is defined as the
minimal width over all tree-decompositions of G.

For algorithmic purposes, it is important to compute tree-decompositions efficiently.
In general this cannot be done in polynomial time with respect to the input size.

Theorem 4.2 (Arnborg, Corneil, and Proskurowski [ACP87]). The problem to decide,
given a graph G and k ∈ N, whether tw(G) ¬ k is NP-complete.

However, there are fixed-parameter algorithms computing an optimal tree-decompo-
sitions in linear time for constant treewidth.

Theorem 4.3 (Bodlaender [Bod96]). There is an algorithm which, on input G, computes
a tree-decomposition of G of width tw(G) in 2O(tw(G)

3) · |V (G)| time.

Hence, for a graph G of treewidth tw(G), we can first compute the tree-decom-
position T of G in f(tw(G)) · |V (G)| time and then solve the given problem on T
in g(tw(G)) · |V (G)|O(1) time, where f and g are computable functions. This would show
fixed-parameter tractability of the given problem when parameterized by the treewidth.

We can derive two straightforward parameters from Definition 4.1 for temporal
graphs: the underlying treewidth which is the treewidth of the underlying graph of a
temporal graph, and the layer treewidth which is the maximum treewidth over all layers
of a temporal graph. Note that the underlying treewidth is at least the layer treewidth,
because each layer is a subgraph of the underlying graph. On the other hand, one can con-
struct a temporal graph such that the underlying graph has arbitrarily large treewidth
while each layer has constant treewidth. In Figure 4.1, we show a temporal graph with
two layers which both have treewidth two, but the underlying graph contains a large
grid and hence the underlying treewidth depends on the size of the grid. To see that
both layers have treewidth two, let Gi−{z} one of the layers without z. One can observe
that Gi − z is a tree and has therefore treewidth one. Now, we add z to every bag of a
tree-decomposition of Gi − {z} and obtain a tree-decomposition of width two for Gi.

In Section 4.1.1, we focus on the underlying treewidth and show that (Non-)Strict
(s, z)-Separation in fixed-parameter tractable when parameterized by the underlying
treewidth and the maximum label.

In Section 4.1.2, we focus on the layer treewidth and use a technique of Mans and
Mathieson [MM14] to show fixed-parameter tractability of Non-Strict (s, z)-Sepa-
ration, when parameterized by the solution size, the maximum label, and the layer
treewidth. Afterwards, we show that we cannot drop the parameter solution size or max-
imum label from that algorithm.
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Figure 4.1: A temporal graph in which each layer has treewidth two but the underlying
graph contains an arbitrarily large grid, and hence has an arbitrarily large treewidth.

4.1.1 Underlying Treewidth

In this section, we show that (Non-)Strict (s, z)-Separation is fixed-parameter
tractable when parameterized by the underlying treewidth and the maximum label.
Subsequently, we discuss, but leave open, whether (Non-)Strict (s, z)-Separation is
fixed-parameter tractable when parameterized only by the underlying treewidth.

A tree-decomposition with a particularly simple structure is given by the following.

Definition 4.4. A tree-decomposition T := (T, (Bi)i∈V (T )) of a graph G is a nice tree-
decomposition if the following conditions are satisfied:

(i) T is rooted.

(ii) Every node of the tree T has at most two children nodes.

(iii) If i ∈ V (T ) has two children nodes k, j ∈ V (T ) in T , then Bi = Bk = Bj . In this
case i is called a join node.

(iv) If a node i ∈ V (T ) has one child node j, then one of the following conditions must
hold:
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(a) Bi = Bj ∪ {v}. In this case i is called an introduce node of v.

(b) Bi = Bj \ {v}. In this case i is called a forget node of v.

(v) If node i ∈ V (T ) is a leaf in T , then |Bi| = 1. In this case i is called a leaf node.

Furthermore, for the node i ∈ V (T ), the tree Ti is the subtree of T rooted at i, that
means Ti contains i itself and j ∈ V (T ) if every path from j to the root of T visits i.
The set B(Ti) :=

⋃
j∈V (Ti)Bj is the union of all bags of Ti.

It is not hard to transform a given tree-decomposition into a nice tree-decomposition.
To be exact, the following result holds by Theorem 4.3 and Lemma 13.1.13 of Kloks
[Klo94].

Lemma 4.5 (Kloks [Klo94]). There is an algorithm which computes a nice tree-decom-
position of a graph G of width tw(G) with O(tw(G) · |V (G)|) nodes in 2O(tw(G)

3) · |V (G)|
time.

We formulate a dynamic program on the nice tree-decomposition of the underlying
graph to solve (Non-)Strict (s, z)-Separation.

Theorem 4.6. (Non-)Strict (s, z)-Separation is fixed-parameter tractable when pa-
rameterized by the underlying treewidth and the maximum label τ .

The proof of Theorem 4.6 relies on a dynamic program on a nice tree-decomposition
for the Non-Strict (s, z)-Separation. The dynamic program can also be applied to
Strict (s, z)-Separation by the reduction from Corollary 3.2. First, we describe the
dynamic program and give the proof of Theorem 4.6, subsequently.

We denote a sequence of sets A1, . . . , An with A[1:n].
We are going to color V with τ + 2 colors 〈A[1:τ ], S, Z〉. A vertex v ∈ V of color Y ∈

{A[1:τ ], S, Z} is denoted by v ∈ Y and therefore each color is a set of vertices. The
meaning of colors is that if v ∈ S, then v is in the non-strict (s, z)-separator, if v ∈ Z,
then v is not reachable from s in G− S, and if v ∈ Ai, then v cannot be reached before
time point i from s.

We say 〈A[1:τ ], S, Z〉 is a coloring of X ⊆ V (G) if X = A1 ] · · · ] Aτ ] S ] Z. A
coloring 〈A[1:τ ], S, Z〉 of vertex set X ⊆ V (G) is valid if

(i) s ∈ A1,

(ii) z ∈ Z,

(iii) for all a ∈ Ai, a′ ∈ Aj , and b ∈ Z

• there is no non-strict (a, b)-path with departure time at least i in G[X]− S,
and

• there is no non-strict (a, a′)-path with departure time at least i and arrival
time at most j − 1 in G[X]− S.

We call a coloring 〈A[1:τ ], S, Z〉 of X ⊆ Y ⊆ V (G) extendible to Y if there is a valid
coloring 〈A′[1:τ ], S

′, Z ′〉 of Y such that S ⊆ S′, Z ⊆ Z ′, and Ai ⊆ A′i, for all i ∈ {1, . . . , τ}.
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Lemma 4.7. Let G = (V,E, τ) be a temporal graph, and s, z ∈ V . There is a valid
coloring 〈A[1:τ ], S, Z〉 of V such that |S| = k if and only if there is a non-strict (s, z)-
separator S′ of size k in G

Proof. ⇒: Assume that 〈A[1:τ ], S, Z〉 is a valid coloring of V such that |S| = k. The
vertex s has the color A1 and the vertex z has the color Z. We know that there is no
non-strict (s, z)-path in G[V ] − S = G − S, otherwise (iii) of the definition of a valid
coloring does not hold. Hence, the vertex set S is a non-strict (s, z)-separator of size k
in G.

⇐: Assume that S′ is a non-strict (s, z)-separator of size k in G. We construct a valid
coloring as follows. All vertices in S′ are of color S. Let A ⊆ V (G) all from s reachable
vertices in G−S. The vertices in the set V (G)\ (A∪S′) are of color Z. Note that z ∈ Z.
We set s ∈ A1. Let v ∈ A and t ∈ {1, . . . , τ} be the earliest time point in which v can
be reached from s. We set v ∈ At. As consequence there cannot be a w ∈ At′ , such
that there is a non-strict (w, v)-path with departure time at least t′ and arrival time at
most t − 1, because otherwise there would be a non-strict (s, v)-path with arrival time
at most t − 1. This would imply that t is not the earliest time point in which v can
be reached from s. Finally, we can observe that there are no a ∈ Ai and b ∈ Z such
that there is a non-strict (a, b)-path with departure time at least i, because a can be
reached at time point i from s and all vertices of color Z are not reachable in G − S.
Hence, 〈A[1:τ ], S, Z〉 is a valid coloring for V .

Let (G = (V,E, τ) be a temporal graph, s, z ∈ V , G↓ be the underlying graph of G,
and T = (T, (Bi)i∈V (T )) be a nice tree-decomposition of G↓ of width tw(G↓). We add s, z
to every bag of T . Thus, T is of width at most tw(G↓) + 2.

In the following, we give a dynamic program on T . For each node x in T we compute
a table Dx which stores for each coloring 〈A[1:τ ], S, Z〉 of Bx the minimum size of S′ over
all valid colorings 〈A′[1:τ ], S

′, Z ′〉 of B(Tx) such that S ⊆ S′, Z ⊆ Z ′, and Ai ⊆ A′i, for
all i ∈ {1, . . . , τ}.

Dx[A[1:τ ], S, Z] :=


min |S′|, there is a valid coloring 〈A′[1:τ ], S

′, Z ′〉
of B(Tx) where S ⊆ S′, Z ⊆ Z ′, and Ai ⊆ A′i
for all i ∈ {1, . . . , τ}.

∞, otherwise

(4.1)

Let r ∈ V (T ) be the root of T . If Dr[A[1:τ ], S, Z] = k′ <∞, then the coloring 〈A[1:τ ], S, Z〉
of Br is extendible to B(Tr) = V (G) and there is a non-strict (s, z)-separator of size k′

in G. Hence, the input instance I is a yes-instance if and only if k′ ¬ k.
The dynamic program first computes the tables for all leaf nodes of T and then in a

“bottom-up” manner, all tables of nodes of which all child nodes are already computed.
The computation of Dx, x ∈ V (T ), depends on the type of x, that is, whether x is a
leaf, introduce, forget, or join node.

Leaf node. Let x ∈ V (T ) be a leaf node of T . Thus, Bx = {s, v, z}. We test each
coloring of Bx and set Dx[A[1:τ ], S, Z] = ∞ if s 6∈ A1 or z 6∈ Z, because the coloring
cannot be valid. Assume s ∈ A1 or z ∈ Z. We distinguish three cases.
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Case 1: If v ∈ S, then this is clearly a valid coloring. We set Dx[A[1:τ ], S, Z] = 1.

Case 2: If v ∈ Z, then we set

Dx[A[1:τ ], S, Z] =

{
∞, if there is a ({s, v}, t) ∈ E(G[Bx]),

0, otherwise.

Case 3: If v ∈ Ai, then we set

Dx[A[1:τ ], S, Z] =


∞, if there is a ({s, v}, t) ∈ E(G[Bx]) with t < i,

∞, if there is a ({v, z}, t) ∈ E(G[Bx]) with i ¬ t,
0, otherwise,

where i ∈ {1, . . . , τ}.

Lemma 4.8. Let G be a temporal graph and T be a tree-decomposition of G as described
above, x ∈ V (T ) be a leaf node, and 〈A[1:τ ], S, Z〉 be a coloring of Bx. Then the following
holds:

(i) Dx[A[1:τ ], S, Z] <∞ if and only if 〈A[1:τ ], S, Z〉 is a valid coloring of Bx.

(ii) If 〈A[1:τ ], S, Z〉 is a valid coloring of Bx, then Dx[A[1:τ ], S, Z] = |S|.

(iii) The table entry Dx[A[1:τ ], S, Z] can be computed in O(|E|) time .

Proof. We start with (i).

⇐: Let Dx[A[1:τ ], S, Z] = ∞ and assume towards a contradiction that 〈A[1:τ ], S, Z〉 is a
valid coloring of Bx. There are five cases in which Dx[A[1:τ ], S, Z] is set to ∞. Either s 6∈
A1, z 6∈ Z, v ∈ Z and there is a time-edge ({s, v}, t) ∈ E(G[B(Tx)]), or v ∈ Ai and there
is a time-edge ({s, v}, t) ∈ E(G[B(Tx)]) with t < i or there is a time-edge ({v, z}, t) ∈
E(G[B(Tx)]) with i ¬ t, where i ∈ {1, . . . , τ}. All these cases contradict 〈A[1:τ ], S, Z〉
being a valid coloring of Bx.

⇒: Let Dx[A[1:τ ], S, Z] <∞. Note that s must be of color A1 and z must be of color Z.
Observe that Dx[A[1:τ ], S, Z] = 0 or Dx[A[1:τ ], S, Z] = 1. Assume Dx[A[1:τ ], S, Z] = 1.
Thus, v ∈ S. This implies that G[B(Tx)]− S is time-edgeless and therefore 〈A[1:τ ], S, Z〉
is a valid coloring of Bx. Now assume Dx[A[1:τ ], S, Z] = 0. If v ∈ Z, then there is no
time-edge from s to v which means 〈A[1:τ ], S, Z〉 is a valid coloring of Bx. If v ∈ Ai, then
there is no time-edge ({s, v}, t) such that t < i and there is no time-edge from ({z, v}, t)
such that i ¬ t. In both cases 〈A[1:τ ], S, Z〉 is a valid coloring of Bx.

Clearly, if 〈A[1:τ ], S, Z〉 is a valid coloring of Bx, then Dx[A[1:τ ], S, Z] = |S| because
we set Dx[A[1:τ ], S, Z] only to one if v ∈ S. Furthermore, regardless of the coloring we
can check by iterating over the time-edge set if 〈A[1:τ ], S, Z〉 is a valid coloring of Bx.
Thus, (ii) and (iii) hold as well.
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Introduce node. Let x ∈ V (T ) be an introduce node of T , x′ ∈ V (T ) denote its child
node, and Bx \Bx′ = {v}. We distinguish three cases.

Case 1: If v ∈ S, then we set Dx[A[1:τ ], S, Z] = Dx′ [A[1:τ ], S \ {v}, Z] + 1.

Case 2: If v ∈ Z, then we set

Dx[A[1:τ ], S, Z] =


Dx′ [A[1:τ ], S, Z \ {v}], if for all w ∈ V with ({w, v}, t) ∈

E(G[B(Tx)]) holds, w ∈ Ai ⇒ t < i,
∞, otherwise.

Case 3: If v ∈ Ai, then we set

Dx[A[1:τ ], S, Z] =



Dx′ [A[1:i−1], Ai \ {v}, A[i+1:τ ], S, Z], if for all ({v, w}, t) ∈
E(G[B(Tx)]) holds: t ­
i⇒ w ∈

⋃t
j=1Aj∪S and

t < i⇒ w ∈
⋃τ
j=t+1Aj∪

S ∪ Z,
∞, otherwise,

where i ∈ {1, . . . , τ}.

First, we show the correctness of Case 1.

Lemma 4.9. Let G and T be as described above, x ∈ V (T ) be an introduce node
of v, x′ ∈ V (T ) be the child node of x, 〈A[1:τ ], S, Z〉 be a coloring of Bx and v ∈ S.
Then the following holds:

(i) Coloring 〈A[1:τ ], S \ {v}, Z〉 of Bx′ is extendible to B(Tx′) if and only if color-
ing 〈A[1:τ ], S, Z〉 of Bx is extendible to B(Tx).

(ii) The value of Dx[A[1:τ ], S, Z] corresponds to Equation (4.1) and can be computed
in O(1) time.

Proof. ⇒: Let 〈A[1:τ ], S \ {v}, Z〉 be a coloring of Bx′ which is extendible to B(Tx′).
Then there is a valid coloring 〈A′[1:τ ], S

′, Z ′〉 of B(Tx′) such that S \ {v} ⊂ S′, Z ⊆ Z ′,
and Ai ⊆ A′i, for all i ∈ {1, . . . , τ}, where S′ is a non-strict (s, z)-separator in G[B(Tx′)]
of size Dx′ [A[1:τ ], S \ {v}, Z]. Note that v 6∈ S′, because v 6∈ B(Tx′), because x is the
introduce node for v (see (i) of Definition 4.1). Since B(Tx) \ B(Tx′) = {v}, we know
that G[B(Tx′)] − S′ is the same temporal graph as G[B(Tx)] − (S′ ∪ {v}). Hence, the
coloring 〈A[1:τ ], S, Z〉 is extendible to B(Tx) and |S′ ∪ {v}| = |S′| + 1 implies that the
table entry Dx[A[1:τ ], S, Z] = Dx′ [A[1:τ ], S \ {v}, Z] + 1.

⇐: Let 〈A[1:τ ], S \{v}, Z〉 not be extendible to B(Tx′) then 〈A[1:τ ], S, Z〉 is not extendible
toB(Tx) becauseG[B(Tx′)] is a temporal subgraph ofG[B(Tx)], where v 6∈ V (G[B(Tx′)]).
Hence, Dx[A[1:τ ], S, Z] = Dx′ [A[1:τ ], S \ {v}, Z] + 1 =∞+ 1 =∞.

Note that Dx[A[1:τ ], S, Z] can be computed in O(1) time because we just have to look
up the value of Dx′ [A[1:τ ], S, Z].



60 CHAPTER 4. TEMPORAL GRAPH CLASSES

Second, we show the correctness of Case 2.

Lemma 4.10. Let G and T be as described above, x ∈ V (T ) be an introduce node
of v, x′ ∈ V (T ) be the child node of x, 〈A[1:τ ], S, Z〉 be a coloring of Bx and v ∈ Z. Then
the following holds:

(i) Coloring 〈A[1:τ ], S, Z〉 of Bx is extendible to B(Tx) if and only if coloring 〈A[1:τ ], S,
Z \ {v}〉 of Bx′ is extendible to B(Tx′) and for all ({w, v}, t) ∈ E(G[B(Tx)]) it
holds that if w ∈ Ai then t < i.

(ii) The value of Dx[A[1:τ ], S, Z] corresponds to Equation (4.1) and can be computed
in O(|E|) time.

Proof. ⇒: Let coloring 〈A[1:τ ], S, Z〉 be extendible to B(Tx). Then, there is a valid color-
ing 〈A′[1:τ ], S

′, Z ′〉 of B(Tx) such that S ⊆ S′, Z ⊆ Z ′, and Ai ⊆ A′i, for all i ∈ {1, . . . , τ}.
Since B(Tx′) = B(Tx) \ {v} and (Z \ {v}) ⊆ Z ⊆ Z ′, the coloring 〈A[1:τ ], S, Z \ {v}〉
of Bx′ is extendible to B(Tx′). Furthermore, v ∈ Z implies that if there is a time-
edge ({w, v}, t) ∈ E(G[B(Tx)]) then t < i.

⇐: First, if coloring 〈A[1:τ ], S, Z \ {v}〉 of Bx′ is not extendible to B(Tx′) then color-
ing 〈A[1:τ ], S, Z〉 of Bx cannot be extendible to B(Tx) because G[B(Tx′)] is a temporal
subgraph of G[B(Tx)]. Hence, Dx[A[1:τ ], S, Z] =∞.

Let 〈A[1:τ ], S, Z \ {v}〉 be a coloring of Bx′ which is extendible to B(Tx′) and for
all ({w, v}, t) ∈ E(G[B(Tx)] it holds that w ∈ Ai implies t < i. Assume towards a con-
tradiction that coloring 〈A[1:τ ], S, Z〉 of Bx is not extendible to B(Tx). Since 〈A[1:τ ], S, Z\
{v}〉 is extendible to B(Tx′) we know that there is a valid coloring 〈A′[1:τ ], S

′, Z ′〉 of B(Tx′)
such that S ⊆ S′, Z \{v} ⊆ Z ′, and Ai ⊆ A′i, for all i ∈ {1, . . . , τ}. Therefore, s ∈ A′1, z ∈
Z ′, and for all a ∈ A′i and a′ ∈ A′j there is no non-strict (a, a′)-path with departure time at
least i and arrival time at most j−1 in G[B(Tx′)]−S, for all i, j ∈ {1, . . . , τ}. Thus, there
must be an a ∈ A′i and b ∈ Z ′ such that there is a non-strict (a, b)-path P in G[B(Tx)]−S
with departure time at least i, for some i ∈ {1, . . . , τ}. Since B(Tx) \B(Tx′) = {v}, the
vertex v must be the first vertex of color Z which is visited by P . Furthermore, there
is a time-edge ({w, v}, t) ∈ E(G[B(Tx)]) such that w ∈ Ai, where i ¬ t. This contra-
dicts i being larger then t. Hence, 〈A[1:τ ], S, Z〉 is extendible to B(Tx). Because v ∈ Z,
we have Dx[A[1:τ ], S, Z] = Dx′ [A[1:τ ], S, Z \ {v}].

Note that Dx[A[1:τ ], S, Z] can be computed in O(|E|) time, because we can iterate
once over the time-edges set E and decide if for all ({w, v}, t) ∈ E(G[B(Tx)] it holds
that w ∈ Ai implies t < i.

Third, we show the correctness of Case 3.

Lemma 4.11. Let G and T be as described above, x ∈ V (T ) be an introduce node
of v, x′ ∈ V (T ) be the child node of x, 〈A[1:τ ], S, Z〉 be a coloring of Bx and v ∈ Ai,
where i ∈ {1, . . . , τ}. Then the following holds:

(i) Coloring 〈A[1:τ ], S, Z〉 of Bx is extendible to B(Tx) if and only if coloring 〈A[1:i−1],
Ai \ {v}, A[i+1:τ ], S, Z〉 of Bx′ is extendible to B(Tx′) and for each ({v, w}, t) ∈
E(G[B(Tx)]) it holds that
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• if t ­ i then w ∈
⋃t
j=1Aj ∪ S, and

• if t < i then w ∈
⋃τ
j=t+1Aj ∪ S ∪ Z.

(ii) The value of Dx[A[1:τ ], S, Z] corresponds to Equation (4.1) and can be computed
in O(|E|) time.

Proof. ⇒: Let coloring 〈A[1:τ ], S, Z〉 be extendible to B(Tx). Then, there is a valid color-
ing 〈A′[1:τ ], S

′, Z ′〉 of B(Tx) such that S ⊆ S′, Z ⊆ Z ′, and Aj ⊆ A′j , for all j ∈ {1, . . . , τ}.
Since B(Tx′) = B(Tx) \ {v} and (Ai \ {v}) ⊆ Ai ⊆ A′i, the coloring 〈A1, . . . , Ai \
{v}, . . . , Aτ , S, Z〉 of Bx′ is extendible to B(Tx′).

Let ({v, w}, t) ∈ E(G[B(Tx)]). We to distinguish into two cases. First, let t ­ i. Note
that w ∈ Bx because x is the introduce node for v. Since 〈A′[1:τ ], S

′, Z ′〉 is a valid coloring
of B(Tx), w 6∈ Z because there cannot be a non-strict (v, w)-path with departure time t
in G[B(Tx)]−S′. Assume towards a contradiction that w ∈ Aj , where j ∈ {t+ 1, . . . , τ}.
Then the time-edge ({v, w}, t) is a non-strict (v, w)-path with departure time at least i
and arrival time at most j − 1. Since, 〈A′[1:τ ], S

′, Z ′〉 is a valid coloring of B(Tx), such a

non-strict (v, w)-path does not exist. This is a contradiction. Hence, w ∈
⋃t
j=1Aj ∪ S.

Second, let t < i. Again, 〈A′[1:τ ], S
′, Z ′〉 is a valid coloring of B(Tx) and therefore w 6∈⋃t

j=1Aj because otherwise there would be a non-strict (w, v)-path in G[B(Tx)]−S′ with
departure time at least t and arrival time t < i and this would contradicts 〈A′[1:τ ], S

′, Z ′〉
being a valid coloring. Hence w ∈

⋃τ
j=t+1Aj ∪ S ∪ Z.

⇐: First, if coloring 〈A1, . . . , Ai \ {v}, . . . , Aτ , S, Z〉 of Bx′ is not extendible to B(Tx′)
then coloring 〈A[1:τ ], S, Z〉 of Bx cannot be extendible to B(Tx) because G[B(Tx′)] is a
temporal subgraph of G[B(Tx)]. Hence, Dx[A[1:τ ], S, Z] =∞.

Let coloring 〈A1, . . . , Ai \ {v}, . . . , Aτ , S, Z〉 of Bx′ be extendible to B(Tx′) and for
each ({v, w}, t) ∈ E(G[B(Tx)]) it holds that: if t ­ i then w ∈

⋃t
j=1Aj ∪ S and if t < i

then w ∈
⋃τ
j=t+1Aj ∪ S ∪Z. Assume towards a contradiction that coloring 〈A[1:τ ], S, Z〉

ofBx is not extendible toB(Tx). The coloring 〈A1, . . . , Ai\{v}, . . . , Aτ , S, Z〉 is extendible
to B(Tx′) and therefore we have a valid coloring 〈A′[1:τ ], S

′, Z ′〉 of B(Tx′) such that
S ⊆ S′, Z ⊆ Z ′, Ai\{v} ⊆ A′i, and Aj ⊆ A′j , for all j ∈ {1, . . . , τ}\{i}. But 〈A′1, . . . , A′i∪
{v}, . . . , S′, Z ′〉 is not a valid coloring for B(Tx). We know s ∈ A′1 and z ∈ Z ′. Thus there
must be either an a ∈ A′j and a′ ∈ A′` such that there is a non-strict (a, a′)-path P1 with
departure time at least j and arrival time at most ` − 1 or an b ∈ Z such that there is
a non-strict (a, b)-path P2 with departure time at least j, for some j, ` ∈ {1, . . . , τ}. We
will show that P1 and P2 do not exist, and hence coloring 〈A[1:τ ], S, Z〉 of Bx is extendible
to B(Tx). One can observe that this is a contradiction.

Suppose towards a contradiction that P1 exists. Since coloring 〈A′[1:τ ], S
′, Z ′〉 ofB(Tx′)

is valid, we know that P1 visits v. Thus, there are time-edges ({w1, v}, t1), ({v, w2}, t2) ∈
E(G[B(Tx)]) in P2 such that w1 is visited before v and v is visited before w2, where w1 ∈
A′u1 , w2 ∈ A

′
u2 . Refer to Figure 4.2 for an illustration.

We know u1 ¬ t1 because there is no non-strict (a,w1)-path with departure time
at least j and arrival time at most u1 − 1. We know t1 ­ i because otherwise w1 ∈⋃τ
j′=t1+1Aj′ , but u1 ¬ t1. We know i ¬ t2 because P1 is a non-strict (a, a′)-path which

implies t1 ¬ t2. We know that u2 ¬ t2 because i ¬ t2 and therefore the vertex w2 ∈
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a
∈ A

′
j

w1

∈ A
′
u1

v
∈ A

′
i

w2

∈ A
′
u2

a′
∈ A

′
`

t1 t2

exist in B(Tx′) exist in B(Tx′)

Figure 4.2: The non-strict (a, a′)-path P1 from the proof of Lemma 4.11. One can observe
that u1, i ¬ t1 ¬ t2 and u2 ¬ t2.

⋃t2
j′=1Aj′ and w2 ∈ Au2 . This contradicts the existence of P1 because there is a non-

strict (w2, a′)-path with departure time at least u2 ¬ t2 and arrival time `−1. Otherwise,
coloring 〈A′[1:τ ], S

′, Z ′〉 of B(Tx′) is not valid. Hence, P1 does not exist.
Now suppose towards a contradiction that P2 exists. The vertex v ∈ Ai is the last

vertex visited by P2 which is not colored by Z, otherwise we would be able to find a
subsequence of P2 similar to P1. Thus, there are time-edges ({w1, v}, t1), ({v, b}, t2) ∈
E(G[B(Tx)]) which are in P2 such that w1 is visited before v and v is visited before b,
where w1 ∈ A′u1 . We conclude equivalent to the case of P1 that u1 ¬ t1, i ¬ t1, i ¬ t2.
Therefore, we have b ∈

⋃t
j=1Aj ∪S, because of the time-edge ({v, b}, t2) and i ¬ t2. This

contradicts the existence of P2, because b 6∈ Z.
Clearly, Dx[A[1:τ ], S, Z] = Dx′ [A1, . . . , Ai \ {v}, . . . , Aτ , S, Z] because v 6∈ S.
Note that Dx[A[1:τ ], S, Z] can be computed in O(|E|) time, because we can iterate

once over the time-edge set E and decide if for all ({w, v}, t) ∈ E(G[B(Tx)] it holds that
if t ­ i then w ∈

⋃t
j=1Aj ∪ S and if t < i then w ∈

⋃τ
j=t+1Aj ∪ S ∪ Z.

Forget node. Let x ∈ V (T ) be a forget node of T , x′ ∈ V (T ) its child, and Bx′ \Bx =
{v}. We set

Dx[A[1:τ ], S, Z] = min


mini∈{1,...,τ}Dx′ [A[1:i−1], Ai ∪ {v}, A[i+1,τ ], S, Z],
Dx′ [A[1:τ ], S ∪ {v}, Z],
Dx′ [A[1:τ ], S, Z ∪ {v}]

 .
Lemma 4.12. Let G and T be as described above, x ∈ V (T ) be a forget node of v, x′ ∈
V (T ) be the child node of x, and 〈A[1:τ ], S, Z〉 be a coloring of Bx. Then the following
holds:

(i) Coloring 〈A[1:τ ], S, Z〉 of Bx is extendible to B(Tx) if and only if there is a color-
ing 〈A′[1:τ ], S

′, Z ′〉 of Bx′ which is extendible to B(Tx′) such that S ⊆ S′, Z ⊆ Z ′,
and Ai ⊆ A′i, for all i ∈ {1, . . . , τ}.

(ii) The value of Dx[A[1:τ ], S, Z] corresponds to Equation (4.1) and can be computed
in O(|E|) time.

Proof. ⇒: Let coloring 〈A[1:τ ], S, Z〉 of Bx be extendible to B(Tx). Then there is a
valid coloring 〈A′′[1:τ ], S

′′, Z ′′〉 of B(Tx) such that S ⊆ S′′, Z ⊆ Z ′′, and Ai ⊆ A′′i , for
all i ∈ {1, . . . , τ}. Since x′ is a child of x and Bx ⊆ Bx′ , we know that B(Tx) = B(Tx′)
and therefore there is a coloring 〈A′[1:τ ], S

′, Z ′〉 of Bx′ which is extendible to B(Tx′),
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where S′ ⊆ S′′, Z ′ ⊆ Z ′′, and A′i ⊆ A′′i , for all i ∈ {1, . . . , τ}. It follows from Bx ⊆ Bx′ ,
that S ⊆ S′, Z ⊆ Z ′, and Ai ⊆ A′i, for all i ∈ {1, . . . , τ}.
⇐: It is easy to see that coloring 〈A[1:τ ], S, Z〉 of Bx is extendible to B(Tx) if there is
a coloring 〈A′[1:τ ], S

′, Z ′〉 of Bx′ which is extendible to B(Tx′), where S ⊆ S′, Z ⊆ Z ′

andAi ⊆ A′i, for all i ∈ {1, . . . , τ}, becauseG[B(Tx)] is a temporal subgraph ofG[B(Tx′)].
Since we want to extend the coloring of Bx such that we have a minimum size S, we take
the minimum of all possible colorings 〈A′[1:τ ], S

′, Z ′〉 of Bx′ such that S ⊆ S′, Z ⊆ Z ′

and Ai ⊆ A′i, for all i ∈ {1, . . . , τ}.
Note that we can compute the table entry Dx[A[1:τ ], S, Z] in O(|E|) time, because

we have to look up τ + 2 entries in Dx′ and τ ¬ |E|, see Lemmata 2.1 and 2.2.

Join node. Let x ∈ V (T ) be a join node of T , x′, x′′ ∈ V (T ) be children of x, and
hence Bx = Bx′ = Bx′′ . We set

Dx[A[1:τ ], S, Z] = Dx′ [A[1:τ ], S, Z] +Dx′ [A[1:τ ], S, Z]− |S|.

Lemma 4.13. Let G be a temporal graph and T be a tree-decomposition of G as de-
scribed above, x ∈ V (T ) be a join node of v, x′, x′′ ∈ V (T ) be the child nodes of x,
and 〈A[1:τ ], S, Z〉 be a coloring of Bx. Then the following holds:

(i) Coloring 〈A[1:τ ], S, Z〉 of Bx = Bx′ = Bx′′ is extendible to B(Tx) if and only if it
is extendible to B(Tx′) and B(Tx′′).

(ii) The value of Dx[A[1:τ ], S, Z] corresponds to Equation (4.1) and can be computed
in O(1) time.

Proof. ⇒: Let coloring 〈A[1:τ ], S, Z〉 of Bx = Bx′ = Bx′′ be extendible to B(Tx). Then
there is a valid coloring 〈A′[1:τ ], S

′, Z ′〉 of B(Tx) such that S ⊆ S′, Z ⊆ Z ′, and Ai ⊆ A′i,
for all i ∈ {1, . . . , τ}. Since B(Tx′), B(Tx′′) ⊆ B(Tx) and Bx = Bx′ = Bx′′ , we know
that 〈A[1:τ ], S, Z〉 is extendible to B(Tx′) and B(Tx′′).

⇐: Let coloring 〈A[1:τ ], S, Z〉 be extendible to B(Tx′) and B(Tx′′). Assume towards a
contradiction that 〈A[1:τ ], S, Z〉 is not extendible B(Tx). Thus, there is a valid color-
ing 〈A′[1:τ ], S

′, Z ′〉 for B(Tx′) such that S ⊆ S′, Z ⊆ Z ′, Ai ⊆ A′i, and there is a color-
ing 〈A′′[1:τ ], S

′′, Z ′′〉 for B(Tx′′) such that S ⊆ S′′, Z ⊆ Z ′′, Ai ⊆ A′′i , for all i ∈ {1, . . . , τ}.
Since 〈A[1:τ ], S, Z〉 is not extendible to B(Tx), we know that 〈A′1 ∪A′′1, . . . , A′τ ∪A′′τ , S′ ∪
S′′, Z ′ ∪ Z ′′〉 cannot be a valid coloring. Hence, there is a vertex v ∈ B(Tx′′) ∩ B(Tx′)
which has different colors in 〈A′[1:τ ], S

′, Z ′〉 and 〈A′′[1:τ ], S
′′, Z ′′〉. The set B−1(v) induces

a non-empty subtree of T , otherwise T would not be a tree-decomposition. There-
fore, v ∈ Bx = Bx′ = Bx′′ . This cannot be the case because, then v would have two
colors in 〈A[1:τ ], S, Z〉. Hence, 〈A′1 ∪A′′1, . . . , A′τ ∪A′′τ , S′ ∪S′′, Z ′ ∪Z ′′〉 is a valid coloring
of B(Tx), which contradicts 〈A[1:τ ], S, Z〉 being not extendible to B(Tx).

Furthermore, this implies that for all vertices w ∈ B(Tx) it holds that w ∈ S′ ∩ S′′
implies w ∈ S. Hence, |S′|+ |S′′| − |S| = |S′|+ |S′′| − |S ∩ S′′| = |S′ ∪ S′′|.

Note that we can compute the table entry Dx[A[1:τ ], S, Z] in O(1) time, because we
just have to look up one table entry of Dx′ and one in Dx′′ .
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Having shown the previews Lemmata 4.7 to 4.13, we are now all set to prove Theo-
rem 4.6.

Proof of Theorem 4.6. First, we show an algorithm for Non-Strict (s, z)-Separation
and conclude afterwards that the algorithm can be adapted to Strict (s, z)-Separa-
tion. The algorithm works as follows on the Non-Strict (s, z)-Separation input
instance I = (G = (V,E, τ), s, z, k).

(i) Compute a nice tree-decomposition T for the underlying graph G↓ in 2O(tw(G↓)
3) ·

|V | time.

(ii) Add s and z to every bag inO(tw(G↓)·|V |) time. Note that |V (T )| ∈ O(tw(G↓)·|V |)
and that each bag is of size at most tw(G↓) + 2.

(iii) Compute the dynamic program of Equation (4.1) on T . This can be done in O((τ+
2)tw(G↓)+2 · tw(G↓) · |V | · |E|), because there are at most (τ + 2)tw(G↓)+2 possible
colorings for each bag, there are at most O(tw(G↓) · |V |) many bags, and table
entry for one coloring can be computed in O(|E|) time, see Lemmata 4.8 to 4.13.

(iv) Iterate over the root table Dr. If there is an entry of size at most k, then output
yes, otherwise output no. The correctness of this step follows from Lemma 4.7.

Hence, the input instance I can be decided in

O((τ + 2)O(tw(G↓)
3) · tw(G↓)︸ ︷︷ ︸

=:f(τ,tw(G↓))

·|V | · |E|) time.

Now let I1 = (G = (V,E, τ), s, z, k) be a Strict (s, z)-Separation instance. By
the reduction of Corollary 3.2 we compute an equivalent Non-Strict (s, z)-Separa-
tion instance I2 = (G′ = (V ′, E′, 2τ), s, z, k) such that |V ′| = |V | + 2 · |E| and |E′| =
4 · |E|. The underlying treewidth tw(G′↓) of G′ can be upper bounded by tw(G↓) + 2 ·(tw(G↓)
2

)
· τ , because there are at most

(tw(G↓)
2

)
· τ time-edges in the temporal subgraph

of a bag of a tree-decomposition of G↓. Hence, the input instance I1 can be decided
in O(f(2τ, tw(G↓) + 2 ·

(tw(G↓)
2

)
· τ) · |V | · |E|+ |E|2) time.

In order to answer the question from Section 3.3 whether Non-Strict (s, z)-Sepa-
ration is fixed-parameter tractable when parameterized by the solution size k and the
maximum label τ , one could ask whether the underlying treewidth of a temporal graph
can be upper-bounded by a computable function f in k and τ . In general, the treewidth
of a graph and the minimum size of a (s, z)-separator are incomparable. We refer to
Figure 4.3 for an example.

This implies that such a function f does not exist. However, the treewidth reduction
technique of Marx, O’sullivan, and Razgon [MOR13] modifies a graph such that we can
upper-bound the treewidth by a function in k. It is not clear whether this technique can
be lifted to temporal graphs.

A natural question is whether we can drop one of the parameters from Theorem 4.6.
From Theorem 3.4, we know that (Non-)Strict (s, z)-Separation is not fixed-pa-
rameter tractable when parameterized by the maximum label τ , unless P = NP.
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s v z

(a) tw(G1) > k

s z

(b) k > tw(G2)

Figure 4.3: Figure 4.3a shows a graph G1 in which {v} is an (s, z)-separator of size one,
but the treewidth of G1 depends on the size of the clique in G1. Figure 4.3b shows a
graph G2 where each vertex, except s and z, must be in an (s, z)-separator, but the
treewidth of G2 is at most two. To see this, we can construct a tree-decomposition of G2
by putting each vertex together with s, z in one bag of size three and then create a root
bag which contains s, z. Finally, we connect each non-root bag with the root bag. That
is a tree-decomposition for G2 of width two.

Now, we are going to discuss whether the (Non-)Strict (s, z)-Separation is fixed-
parameter tractable when parameterized by the underlying treewidth, without fully an-
swering this question.

On the one hand, a naive dynamic program for a problem with connectivity con-
straints on a graph G keeps track of every path in G. On a graph of bounded treewidth,
this leads to a running time of tw(G)O(tw(G)) · |V (G)|O(1) for many problems. The
Cut&Count technique of Cygan et al. [Cyg+11] is a tool to improve those dynamic
programs to a running time of ctw(G) · |V (G)|O(1), where c is a small constant. The idea
behind Cut&Count seems to be promising to improve the running time of the dynamic
program of Theorem 4.6 to f(tw↓(G)) · (|V | · |E|)O(1), where f is a computable function.

On the other hand, we there is evidence that (Non-)Strict (s, z)-Separation is
W[1]-hard when parameterized by the underlying treewidth, which we now will try to
explain. Note that the evidence that (Non-)Strict (s, z)-Separation in W[1]-hard is
rather weak.

A path-decomposition of a graph G is a tree-decomposition (T, (Bi)i∈V (T )), where T
is a path and the pathwidth pw(G) of G is defined as the minimal width over all path-
decompositions of G. Hence, the treewidth of a graph can be upper-bounded by the
pathwidth.

Dvořák and Knop [DK15] proved that Length-Bounded (s, z)-Cut is W[1]-hard
with respect to the pathwidth, and hence treewidth, of the input graph. Length-
Bounded (s, z)-Cut and Length-Bounded (s, z)-Separation usually behave simi-
larly in computational complexity [Bai+10; Flu+16; GT11]. However, to the best of our
knowledge, it is open whether Length-Bounded (s, z)-Separation isW[1]-hard when
parameterized by the treewidth of the input graph. If Length-Bounded (s, z)-Sep-
aration is W[1]-hard when parameterized by the treewidth of the input graph, then
(Non-)Strict (s, z)-Separation is also W[1]-hard when parameterized by underly-
ing treewidth, by the reductions of Theorem 3.1 and Corollary 3.2. Note that in the
polynomial reduction of Golovach and Thilikos [GT11] from an instance (G, s, z, k, `) of
Length-Bounded (s, z)-Cut to an instance (G′, s′, z′, k, `+ 1) of Length-Bounded
(s, z)-Separation, the graph G′ is the line graph of G plus two vertices.
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The line graph of an graph G is a graph G′ that represents the adjacencies between
edges of G. To the best of our knowledge, there is no way to upper-bound the pathwidth
(or treewidth) of G′ by the pathwidth (or treewidth) of G. For a precise definition of a
line graph and further discussions about the treewidth of line graphs, we refer to Harvey
[Har14].

Cliquewidth is a similar graph parameter to treewidth, for which we do not want to
give a precise definition. Instead, we refer to Courcelle and Engelfriet [CE12]. Roughly
speaking, there is an efficient algorithm for a problem on graphs of bounded treewidth
or cliquewidth, if it is definable in monadic second-order logic [CE12]. Note that Sec-
tion 4.1.2 is about definability of temporal graph problems in monadic second-order logic.
Furthermore, we can upper bound the treewidth of a graph by its cliquewidth [CR01].
Hence, if a graph problem is fixed-parameter tractable with respect to the treewidth,
then it is also fixed-parameter tractable with respect to the cliquewidth.

Corollary 4.14. Strict (s, z)-Separation is W[1]-hard when parameterized by the
cliquewidth of the underlying graph.

Proof. Let I1 = (G, s, z, k, `) be a Length-Bounded (s, z)-Cut instance, where G has
pathwidth pw(G). We compute the Length-Bounded (s, z)-Separation instance I2 =
(G′, s′, z′, k, `+ 1) with the polynomial reduction of Golovach and Thilikos [GT11]. Note
that G′−{s′, z′} is the line graph of G. This implies that the cliquewidth of G′−{s′, z′}
can be upper-bounded by a computable function in f(pw(G)) [GW07], and therefore
Length-Bounded (s, z)-Separation is W[1]-hard with respect to the cliquewidth.
We construct the Strict (s, z)-Separation instance Ô := (Ĝ, ŝ, ẑ, k) from I2 with
the reduction of Theorem 3.1. Note that the vertex sets of G′ and Ĝ′ are equal and
that (e, t) ∈ E(Ĝ) ⇔ e ∈ E(G′). Consequently, G′ is the underlying graph of Ĝ. Thus,
the cliquewidth of the underlying graph of Ĝ is also upper-bounded by f(pw(G)). Hence,
Strict (s, z)-Separation is W[1]-hard when parameterized by the cliquewidth of the
underlying graph.

It seems that, with little effort, Corollary 4.14 could be extended to Non-Strict
(s, z)-Separation using the reduction from Corollary 3.2. However, there are problems
which are W[1]-hard when parameterized by cliquewidth, but fixed-parameter tractable,
when parameterized by treewidth [Fom+10]. Thus, (Non-)Strict (s, z)-Separation
can be fixed-parameter tractable as well.

4.1.2 Monadic Second-Order Logic on Temporal Graphs

In this section, we transfer a powerful tool of Mans and Mathieson [MM14] from dynamic
graphs to temporal graphs, which shows fixed-parameter tractability by expressing the
problem in monadic second-order (MSO) logic. Afterwards, we use this tool to show
that Non-Strict (s, z)-Separation is fixed-parameter tractable when parameterized
by the solution size k, the maximum label τ and the layer treewidth twmax. Finally,
we show that there is (presumably) no hope that (Non-)Strict (s, z)-Separation is
fixed-parameter tractable when parameterized by

(i) the maximum label τ and the layer treewidth twmax , or
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(ii) the solution size k and the layer treewidth twmax.

Mans and Mathieson [MM14] studied the treewidth of dynamic graphs. In their
model, time is not necessarily linearly ordered and edges as well as vertices can appear
and disappear over time. Thus, their model is more powerful than temporal graphs.
For example, they can easily model scenarios on a multi-core processor, where time
is partially ordered. However, they also looked into dynamic graphs where the time is
linearly ordered and showed that there are logical structures for temporal graphs where
the layer treewidth can be preserved.

A structure A consists of a finite set A of elements, called universe, and a non-empty
set Φ of relations of finite arity called the vocabulary, along with an interpretation of
each relation in Φ over A. To be precise, for each relation R ∈ Φ of arity r there is a set
of tuples from Ar that define when R is true.

Let G = (V,E, τ) be a temporal graph. We define the structure A(G) := (A,Φ)
obtained from G with universe A and vocabulary Φ, where

• A := {vt | v ∈ V and t ∈ {1, . . . , τ}} ∪ {t | t ∈ {1, . . . , τ}} ∪ {b} equipped with a
function fV such that fV (vt) = fV (ut

′
) if and only if vt, ut

′
are derived from the

same v ∈ V , and

• Φ := {V, E , T,R} such that

– vt ∈ V if and only if v ∈ V and t ∈ {1, . . . , τ},
– (vt, wt, t) ∈ E if and only if ({v, w}, t) ∈ E,

– t ∈ T if and only if t ∈ {1, . . . , τ},
– (t1, t2) ∈ R if and only if t1, t2 ∈ {1, . . . , τ} and t1 + 1 = t2, and

– (b, ti) ∈ R if and only if ti = min{1, . . . , τ} = 1.

The relation V describes whether an element is a vertex of the temporal graph, the
relation E describes whether there is a time-edge between these vertices at a specific
time, the relation T describes if an element is a time point, and the relation R describes
the linear order of the time points, where b is before the first time point.

Given a structure, the Gaifman graph is obtained by taking the universe of the logical
structure as the vertex set, with an edge between two vertices if they ever appear in the
interpretation of any relation in the vocabulary together.

Theorem 4.15 (Mans and Mathieson [MM14]). Let G be a temporal graph and A(G)
the logical structure obtained by G, and twmax := maxi∈{1,...,τ} tw(Gi) the layer treewidth
of G. Then the treewidth of the Gaifman graph is at most twmax+1.

Figure 4.4 shows a Gaifman graph of a temporal graph. The tree-decomposition of a
Gaifman graph G of a structure A(G) obtained from a temporal graph G = (V,E, τ) is
constructed as follows: Let ω = maxi∈{1,...,τ} tw(Gi) be the layer treewidth of G. Hence,
for each layer i of G there is a tree-decomposition of width at most ω. Note that the
elements of T from A(G) form a path in the Gaifman graph. Thus, there is a tree-
decomposition of T of width one. Let ti ∈ T . Now, we pick a bag Bx which contains ti,
add ti to every bag in the tree-decomposition of Gi and connect Bx to an arbitrary bag
of the tree-decomposition of Gi. This gives us a tree-decomposition of G of width ω+ 1.
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b t1 ti tτ

. . . . . . . . .

G1
. . . Gi . . . Gτ

Figure 4.4: The Gaifman graph of a structure A(G) obtained from a temporal graph G.
The edges corresponding to the relation R are blue (solid) and the edges corresponding
to the relation E are orange (dashed).

Monadic second-order (MSO) logic consists of a countably infinite set of (individual)
variables, unary relation variables, and a vocabulary Φ. We assume that Φ matches the
vocabulary of the structure the logic is being applied to. A formula in monadic second-
order logic is constructed from the variables, vocabulary, the relations =,∧,∨,¬, and
the quantifiers ∀ and ∃. A sentence is a formula where all variables are bounded by a
quantifier. We omit the precise semantic of how an MSO sentence is applied to a structure
and refer to Ebbinghaus and Flum [EF05] and Ebbinghaus, Flum, and Thomas [EFT94]
for further information, as Mans and Mathieson [MM14] have done. Mans and Mathieson
[MM14] stated that Courcelle [Cou06; Cou90] have shown the following theorem in a
series of papers (see also Courcelle and Engelfriet [CE12]).

Theorem 4.16 (Courcelle and Engelfriet [CE12]). Let A(G) be the structure obtained
from a temporal graph G, and G be the Gaifman graph of A(G). The problem whether
the structure A(G) satisfies an MSO sentence ρ is fixed-parameter tractable when pa-
rameterized by the treewidth of the Gaifman graph tw(G) and the length of the MSO
sentence |ρ|.

Theorem 4.16 together with Theorem 4.15 gives us a powerful tool to show fixed-
parameter tractability for problems on temporal graphs. But admittedly these algorithms
are far from practical, because the running time can contain a tetration in the power of
the parameter.

However, we are able to show fixed-parameter tractability of Non-Strict (s, z)-Sep-
aration when parameterized by the solution size, the maximum label, and the layer
treewidth. Note that the following approach also works for Strict (s, z)-Separation,
but Theorem 3.15 already gives us a faster algorithm.

Theorem 4.17. Non-Strict (s, z)-Separation is fixed-parameter tractable when pa-
rameterized by the solution size k, the maximum label τ , and the layer treewidth twmax =
maxi∈{1,...,τ} tw(Gi), where Gi is layer i of the temporal input graph.

Proof. We will show that Non-Strict (s, z)-Separation is expressible in an MSO
sentence for the structure obtained from the temporal input graph, and that the length
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of the MSO sentence can be upper bounded by the solution size k and the maximum
label τ .

Let G = (V,E, τ) be a temporal graph, s, z ∈ V two distinct vertices and k ∈ N
be an integer. One can observe that the structure A(G) and its Gaifman graph can be
constructed in polynomial-time.

We ask for elements s1, . . . , sk and t1, . . . , tτ such that V(si) = true, T (tj) = true,
and t1, . . . , tτ are ordered by the distance to b in the Gaifman graph, where i ∈ {1, . . . , k},
j ∈ {1, . . . , τ}. That is, s1, . . . , sk are vertices and t1, . . . , tτ are time points in G. In the
end, {s1, . . . , sk} will be the separator. That the distance of ti to b is smaller than the
distance of ti+1 to b can be expressed by the recursive MSO sentence [MM14]

ti < ti+1 :=
τ∨
`=1

d`(ti) ∧ ¬d`(ti+1), (4.2)

where i ∈ {1, . . . , τ − 1} and

d1(ti) = R(s, ti),

dn(ti) = ∃t [T (t) ∧R(t, ti) ∧ dn−1(t)] .

The recursion depth of dτ (ti), and therefore the length of the MSO sentence in Equa-
tion (4.2) is bounded in τ .

For each ti ∈ {t1, . . . , tτ}, we ask for a non-empty connected component Pi of ver-
tices, ∀v ∈ P : V(v) = true, such that all vertices in Pi are connected to ti, ∀v ∈ Pi :
E(v, ti). One can observe that Pi is a connected component of Gi. Connectivity of a ver-
tex set can be expressed in an MSO sentence by requesting an edge between all possible
partitions of the vertex set into two vertex sets.

CONN(P ) := ∀S ⊆ P [(∀x(S(x)) ∨ ∀y(¬S(y))) ∨ ∃x, y (S(x) ∧ S(y) ∧ E(x, y))]

To get a non-strict (s, z)-path we assure that P1 contains s1, Pτ contains zτ , and
two consecutive Pi, Pi+1 have a vertex in common under the function fV , where i ∈
{1, . . . , τ − 1}. Note that Pi can consist of just one vertex and that P1, . . . , Pτ may
not exactly correspond to the visited vertices of a non-strict (s, z)-path, but there are
subsets P ′1 ⊆ P1, . . . , P

′
τ ⊆ Pτ such that there is a non-strict (s, z)-path which exactly

visits the vertices {fV (v) | v ∈ P ′1 ∪ . . . ,∪P ′τ}.

To separate s from z, we want that one of the vertex sets P1, . . . , Pτ contains at least
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one vertex of s1, . . . , sk under the fV function. We get the following MSO sentence ρ :=

∃s1, . . . , sk, ∀t1, . . . , tτ , P1, . . . , Pτ (
τ−1∧
i=1

ti < ti+1∧
τ∧
i=1

∀v(Pi(v) ∧ V(v) ∧ E(ti, v)) ∧ CONN(Pi)

∧ P1(s1) ∧ Pτ (zτ )∧
τ−1∧
i=1

∃x, y (Pi(x) ∧ Pi+1(y) ∧ fV (x) = fV (y))

∧ ∃w(
τ∨
i=1

Pi(w) ∧

 k∨
j=1

fV (w) = fV (sj)


)

)

(4.3)

One can observe that the length of ρ is upper-bounded by a computable function in k+τ .
We claim that there is a non-strict (s, z)-separator S of size at most k in G if and

only if ρ is satisfied.

⇒: Let S = {v1, . . . , vk} be a non-strict (s, z)-separator of size at most k in G. We
assign s1 = v11, . . . , sk = v1k. Assume towards a contradiction that there are t1, . . . , tτ
and P1, . . . , Pτ from A(G) such that

τ−1∧
i=1

ti < ti+1

τ∧
i=1

∀v(Pi(v) ∧ V(v) ∧ E(ti, v)) ∧ CONN(Pi)

∧ P1(s1) ∧ Pτ (zτ )
τ−1∧
i=1

∃x, y (Pi(x) ∧ Pi+1(y) ∧ fV (x) = fV (y)) ,

(4.4)

and let w0, . . . , wτ ∈ V such that w0 = s, wτ = z, and wii ∈ Pi and wi+1i ∈ Pi+1,
for i ∈ {1, . . . , τ−1}. Then, we know that Pi contains just one vertex or there is a subset
P ′i ⊂ Pi such that there is a path Wi from wi−1 to wi in Gi such that V (Wi) = P ′i ,
for i ∈ {1, . . . , τ}. If |Pi| = 1, then we set P ′i = Pi, for all i ∈ {1, . . . , τ}. Clearly, we
can obtain a non-strict (s, z)-path X from P ′i1 , . . . , P

′
ij

. Since S is a non-strict (s, z)-sep-
arator, we know that there is a v` ∈ S ∩ V (X). Hence, there is an i ∈ {1, . . . , τ} such
that vi` ∈ P ′i ⊆ Pi and therefore fV (vi`) = fV (v1` ) = fV (s`). This is a contradiction and
implies that ρ is satisfiable.

⇐: Let ρ be satisfied. We set S := {fV (s1), . . . , fV (sk)}. Note that |S| ¬ k. Assume
towards a contradiction that there is a non-strict (s, z)-path P in G − S. Now, we
construct a sequence of sets P1, . . . , Pτ such that Pt := {vt | (e, t) ∈ E and v ∈ e}
and s1 to P1 and zτ to Pτ , where t ∈ {1, . . . , τ}. Some of the sets might be empty.
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Let Pt = ∅, t1 = arg maxi∈{1,...,t−1} Pi 6= ∅, and t2 = arg mini∈{t+1,...,τ} Pi 6= ∅, for
some t ∈ {1, . . . , τ}. Since P is a non-strict (s, z)-path, we know that there is a w ∈ V (P )
such that wt1 ∈ Pt1 and wt2 ∈ Pt2 . We add wt

′
to Pt′ , for all t′ ∈ {t1 + 1, . . . , t2 − 1}.

The sentence ρ is satisfied implies that there is j ∈ {1, . . . , k} and a wt ∈ Pt such
that fV (wt) = fV (sj). This contradicts P being a non-strict (s, z)-path in G − S, be-
cause w ∈ S.

Hence Non-Strict (s, z)-Separation is expressible in an MSO sentence, where
the length of the sentence can be upper bounded in k + τ . By Theorems 4.15 and 4.16,
this shows fixed-parameter tractability of Non-Strict (s, z)-Separation when pa-
rameterized by k + τ + twmax, where twmax = maxi∈{1,...,τ} tw(Gi) and Gi is the layer i
of G.

A natural question is whether we can drop one of the parameters from Theorem 4.17.
In the following theorem we are going to show that we cannot drop k, unless NP = P.

Corollary 4.18. Strict (s, z)-Separation is NP-hard, even if τ = 6 and twmax =
1 and Non-Strict (s, z)-Separation is NP-hard, even if τ = 4 and twmax = 1 ,
where twmax = maxi∈{1,...,τ} tw(Gi) and Gi is the layer the temporal input graph.

Proof. We say a graph is k-regular if all vertices have degree exactly k. We will reduce,
similarly to Theorem 3.4, from Vertex Cover on 3-regular graphs. For this, we need
to introduce the very similar problem of finding an Independent Set in a graph.

Independent Set
Input: A graph G = (V,E) and an integer k.
Question: Is there a subset V ′ ⊆ V of size at most k such that there is no edge

between two vertices in V ′?

Fricke, Hedetniemi, and Jacobs [FHJ98] showed that Independent Set is NP-hard
on 3-regular graphs, and therefore, Vertex Cover is NP-hard on 3-regular graphs,
because a graph with n vertices has an Independent Set of size k if and only if it has
a Vertex Cover of size n− k [Kar72].

Let (G = (V,E), k) be a Vertex Cover instance, where G is 3-regular and |V | =
n. We call an edge coloring f : E → {1, . . . , h} of h colors valid if for all incident
edges e1, e2 ∈ E it holds that f(e1) 6= f(e2). By an algorithm of Misra and Gries [MG92]
for Vizing’s Theorem, we can compute a valid edge-coloring with at most ∆ + 1 colors
in polynomial-time. Since G has maximum degree ∆ = 3, we can compute a valid edge-
coloring f : E → {1, . . . , 4} with four colors for G in polynomial-time.

We construct a Non-Strict (s, z)-Separation instance Ô := (Ĝ = (V̂ , Ê, τ =
4), s, z, k + n), where

V̂ := V ∪ {v1, v2 : v ∈ V } ∪ {s, z}

are the vertices and the time-edges are defined as

Ê :=

vertex-edges︷ ︸︸ ︷
{({s, v1}, 1), ({v1, v}, 1), ({v, v2}, 3), ({v2, z}, 4), ({s, v}, 3), ({v, z}, 2) : v ∈ V } ∪
{({v1, w2}, f({v, w})), ({w1, v2}, f({v, w})) : {v, w} ∈ E}︸ ︷︷ ︸

edge-edges

.
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Figure 4.5: The Vertex Cover instance (G, 1) (left) and the corresponding Non-
Strict (s, z)-Separation instance from the reduction of Corollary 4.18 (right). The
edge-edges are orange (dotted), the vertex-edges are blue (solid), and the vertex gadgets
are in dashed boxes. The function f is an edge coloring of the input graph G.

Observe that |V̂ | = 3 · n+ 2, |Ê| = 6 · |V̂ |+ 2 · |E|, τ = 4, and that Ĝ can be computed
in polynomial time. To see that there is a vertex cover for G of size at most k if and only
if there is a non-strict (s, z)-separator in Ĝ of size at most n + k, we refer to the proof
of Theorem 3.4.

The label of an edge-edge for {v, w} ∈ E depends on the color of {v, w} under f .
Since all incident edges are of different colors, there is no layer where two edge-edges are
incident to each other. One can observe that each layer of Ĝ is a forest and therefore
has treewidth one. Consequently, twmax = maxi∈{1,...,τ} tw(Gi) = 1 and Non-Strict
(s, z)-Separation is NP-hard, even if τ = 4 and twmax = 1.

With one small adjustment, we can reduce from Vertex Cover on 3-regular graphs
to Strict (s, z)-Separation. Here, the time-edges are defined as

Ê :=

vertex-edges︷ ︸︸ ︷
{({s, v1}, 1), ({v1, v}, 2), ({v, v2}, 5), ({v2, z}, 6), ({s, v}, 4), ({v, z}, 3) : v ∈ V } ∪
{({v1, w2}, f({v, w}) + 1), ({w1, v2}, f({v, w}) + 1) : {v, w} ∈ E}︸ ︷︷ ︸

edge-edges

.

Hence, Strict (s, z)-Separation is NP-hard, even if τ = 6 and twmax = 1.
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Furthermore, we can observe that (Non-)Strict (s, z)-Separation is W[1]-hard
when parameterized by the solution size k and the layer treewidth twmax. Hence, we
(presumably) cannot drop the parameter τ from Theorem 4.17.

Corollary 4.19. (Non-)Strict (s, z)-Separation is W[1]-hard when parameterized
by the solution size k, even if the layer treewidth twmax is one.

Proof. Let I := (G = (V,E, τ), s, z, k) be an instance of Strict (s, z)-Separation.
From Theorem 3.1, we already know that Strict (s, z)-Separation isW[1]-hard when
parameterized by the solution size.

Now, we construct an instance O1 := (G′ = (V ′, E′, 2 · τ), s, z, k) of Non-Strict
(s, z)-Separation by the reduction of Corollary 3.2. Recall from the proof of Corol-
lary 3.2, that there is a strict (s, z)-separator in G if and only if there is non-strict (s, z)-
separator in G′. Hence, the correctness of this reduction is already shown.

Let Ve ⊆ V ′ be the set of all edge-vertices in V ′. Note that each vertex v ∈ Ve
has degree at most one in layer i of G′, where i ∈ {1, . . . , 2 · τ}. Furthermore, there
are no two non-edge-vertices w,w′ ∈ V ′ \ Ve such that there is a time-edge between w
and w′. Thus, each layer of G′ is a disjoint union of stars. A graph is called star if it is
connected and has only one vertex of degree more than one. Since a star is a tree, we
have treewidth at most one for each layer in G′. Hence, we can upper-bound k + twmax
by k + 1, where twmax := maxi∈{1,...,2τ} tw(G′i). This already shows that Non-Strict
(s, z)-Separation isW[1]-hard when parameterized by the solution size k and the layer
treewidth twmax of temporal input graph.

Now, we construct an instance O2 = (G′, s, z, k) of Strict (s, z)-Separation. Note
that O1 and O2 have the same temporal graph G′. Since each non-strict (s, z)-separator is
also a strict (s, z)-separator in a temporal graph, we know that there is a strict (s, z)-sep-
arator in G if and only if there is a strict (s, z)-separator in G′. Hence, I is a yes-instance
if and only if O2 is a yes-instance, which completes this proof.

From the reduction of Corollary 4.19 one can observe that in the strict path model
we can always construct a temporal graph where the layer treewidth is one without
creating or destroying any strict (s, z)-path. Hence, for many problems in the strict path
model we can show fixed-parameter tractablility by the length of the MSO sentence of
the problem. However, we already showed by Theorem 3.15 that Strict (s, z)-Sepa-
ration is fixed-parameter tractable when parameterized by the solution size k and the
maximum label τ .

Now, we discuss whether one can drop the parameter twmax from Theorem 4.17. One
can observe that this would answer the open question from the end of Section 3.3 whether
Non-Strict (s, z)-Separation is fixed-parameter tractable when parameterized by
solution size k and maximum label τ . We will not settle this question in this thesis.

The treewidth reduction technique of Marx, O’sullivan, and Razgon [MOR13] seems
to be a promising approach to upper bound twmax by k, but unfortunately we could not
bring this idea to work without introducing too many elements to the universe of A(G)
of Theorem 4.17. In the treewidth reduction technique, one constructs a helper graph G′

for the input graph G by, roughly speaking, contracting all parts of G which cannot
help to find an (s, z)-separator. Thus, every (s, z)-separator of G is also present in G′.
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The main difficulty of using this idea in the Gaifman graph seems to be that a non-
strict (s, z)-path could start to use edges from another layer in those parts of the current
layer which are contracted by the treewidth reduction technique.

Nevertheless, if we consider a multilayer setting, then the treewidth reduction tech-
nique is a helpful tool. We ask for a set S ⊆ V of size at most k in a temporal
graph G = (V,E, τ) such that there is no (s, z)-path in Gi − S for any layer i of G,
where s, z ∈ V . One can observe that we ask for a 0-bounded (s, z)-separator. Now,
we can run the treewidth reduction technique on the induced subgraph of the Gaifman
graph which represents the layer i of the temporal graph. Hence, we conjecture that
0-Bounded (s, z)-Separation is fixed-parameter tractable when parameterized by the
solution size k and the maximum label τ .

4.2 Temporal Planar Graphs

In Chapter 1, we noticed that we can model public transport systems in temporal graphs.
Some of these systems, like bus and train systems, operate often on so-called planar
graphs. Hence, it is of interest to determine the computational complexity of (Non-)
Strict (s, z)-Separation on the class of temporal planar graphs.

In this section, we give a definition of temporal planar graphs, show that (Non-)
Strict (s, z)-Separation is NP-hard on temporal planar graphs, and give an FPT-
algorithm with respect to τ for Strict (s, z)-Separation on classes of underlying
graphs of bounded local treewidth. This algorithm applies also to Strict (s, z)-Sepa-
ration on temporal planar graphs.

A polygonal line is a subset X ⊂ R2 such that there is a homeomorphism h : [0, 1]R →
X, where [0, 1]R is the closed interval from 0 to 1 in R. We can think of this as a finite
line in the plane. A graph G = (V,E) is planar if there are functions fV : V → R2
and fE : E → 2R

2
such that

(i) for all distinct vertices v, w ∈ V it holds that fV (v) 6= fV (w),

(ii) for all edges {v, w} ∈ E the set fE({v, w}) is a polygonal line for which there exists
a homeomorphism h : [0, 1]R → fE({v, w}) such that h(0) = fV (v) and h(1) =
fV (w),

(iii) for all distinct edges e1, e2 ∈ E with e1 ∩ e2 = ∅ it holds that fE(e1) ∩ fE(e2) = ∅,
and

(iv) for all distinct edges e1, e2 ∈ E with e1 ∩ e2 = {v} it holds that fE(e1) ∩ fE(e2) =
{fV (v)}.

The function set {fV , fE} is called an embedding of G in the plane. We say a temporal
graph is a temporal planar graph if its underlying graph is planar.

Fluschnik et al. [Flu+16] showed that Length-Bounded (s, z)-Cut is NP-hard on
planar graphs by a reduction from Vertex Cover on planar graphs with maximum
degree ∆ = 3. By examining the proof of this result, one can observe that instance of
Length-Bounded (s, z)-Cut has maximum degree ∆ = 6.
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Lemma 4.20 (Fluschnik et al. [Flu+16]). Length-Bounded (s, z)-Cut is NP-hard
on planar graph with maximum degree ∆ = 6 and the degrees of the special vertices s, z
are three.

First, we show that Length-Bounded (s, z)-Separation is NP-hard on planar
graphs. Second, we will use the reductions from Theorem 3.1 and Corollary 3.2 to show
that (Non-)Strict (s, z)-Separation in NP-hard on temporal planar graphs.

Lemma 4.21. Length-Bounded (s, z)-Separation is NP-hard on planar graphs.

Proof. Let I := (G = (V,E), s, z, `, k) be an instance of Length-Bounded (s, z)-Cut,
where G is planar, has maximum degree ∆ = 6, and the degree of s and z is three. It is
NP-hard to decided whether I is a yes-instance, see Lemma 4.20. We will now provide
a reduction from Length-Bounded (s, z)-Cut to Length-Bounded (s, z)-Separa-
tion.

Construction. We construct an instance O := (G′, s′, z′, `′, k) of Length-Bounded
(s, z)-Separation as follows.

For a vertex v ∈ V , we introduce a vertex-gadget Gv which is a grid of size (2k +
1)× (2k+ 1). There are six pairwise disjoint connector sets C(v,1), . . . , C(v,6) ⊆ V (Gv) of
size k+ 1. Two above of Gv, two below of Gv, one on the left side of Gv, and one on the
right side of Gv. See Figure 4.6 for an example.

One can observe that all cycle-free (x, y)-paths are of length at most k′ := (2k+2)2−1,
for all x, y ∈ V (Gv), because there are only (2k + 2)2 vertices in V (Gv). For each
vertex v ∈ V , we add such a vertex-gadget Gv to G′.

Without loss of generality, we assume that the neighborhoodN(v) of a vertex v ∈ V is
ordered clockwise with respect to the embedding of G. Such an order can be computed
in polynomial-time, by comparing the angle of the vertical bar which crosses fV (v)
with the angle of the straight line which crosses fV (v) and fV (w) at the point fV (v),
where w ∈ N(v). Let {v, w} ∈ E be an edge such that v is at position i ∈ {1, . . . , 6} in
the neighborhood ordering of w and w at position j ∈ {1, . . . , 6} in the neighborhood
ordering of v. We introduce an edge-gadget G{v,w} which is a path consisting of (`+ 1) ·
k′ − 1 vertices, where one endpoint is adjacent to each vertex in C(v,j) and the other
endpoint is adjacent to each vertex in C(w,i). Hence, a path between two vertex-gadgets
has length at least (`+ 1) · k′ + 1. See Figure 4.6 for an example.

Next, we choose connector sets C(s,i′) and C(z,j′) such that no vertex v ∈ C(s,i′)∪C(z,j′)
is adjacent to a vertex from an edge-gadget. Such i′ and j′ always exist because the degree
of s and z is three. Now, we add two special vertices s′ and z′ and edges between s′ and
each vertex in C(s,i′), as well as between z′ and each vertex in C(z,j′). See Figure 4.6 for
an example. Finally, we set

`′ := 2 + (`+ 1) · k′ + `
(
(`+ 1) · k′ + 1

)
.

One can observe that G′ is a planar graph and

|V (G′)| = |V | · (k′ + 1) + |E| ·
(
(`+ 1) · k′ − 1

)
+ 2.

Hence, G′ can be computed in polynomial-time.
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Figure 4.6: A planar graph G (top) and the obtained G′ in the reduction from
Lemma 4.21. The vertex-gadget Gs of s is orange (dashed/dotted) and the edge-
gadgets G{s,v} and G{v,z} are blue (solid/dotted).

Correctness. We claim that I is a yes-instance if and only if O is a yes-instance.

⇒: Let I be a yes-instance. Thus, there is a solution C ⊂ E of size at most k such
that there is no (s, z)-path of length at most ` in G \ C. We construct a set S ⊂ V (G′)
of size |C| ¬ k by taking for each {v, w} ∈ C one arbitrary vertex from the edge-
gadget G{v,w} into S.

Assume towards a contradiction that there is an (s′, z′)-path P ′ of length at most `′

in G′ − S. Without loss of generality, we assume that P ′ is cycle free. Since a path
between two vertex-gadgets has length at least (` + 1) · k′ + 1, we know that P ′ goes
through at most ` edge-gadgets. Otherwise P ′ would be of length at least

edge from s′ to Gs
and from Gz to z′︷ ︸︸ ︷

2 +(`+ 1) ·
[
(`+ 1) · k′ + 1

]
= 2 + (`+ 1) · k′ + ` ·

[
(`+ 1) · k′ + 1

]︸ ︷︷ ︸
=`′

+1.

Now, we reconstruct the corresponding (s, z)-path P in G to P ′ by taking an edge e ∈ E
into P if P ′ goes through the edge-gadget Ge. Hence, the length of P is at most `. There
is no (s, z)-path of length ` in G \ C, and therefore there exists an edge e ∈ C which is
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in P . This contradicts P ′ being an (s′, z′)-path in G−S as due to the construction of S,
we know that P ′ visits a vertex in S. Consequently, there is no (s′, z′)-path of length at
most `′ in G′ − S and O is a yes-instance.

⇐: Let O be a yes-instance. Thus, there is a solution S ⊆ V (G′) of size at most k
such that there is no (s′, z′)-path of length at most `′ in G′ − S. We construct an edge
set C ⊆ E of size at most k by taking {v, w} ∈ E into C if there is a y ∈ V (G{v,w})∩S.

Assume towards a contradiction that there is a cycle-free (s, z)-path of length `
in G \ C. We reconstruct an (s′z′)-path P ′ in G′ which corresponds to P as follows.
First, we take an edge {s′, v} ∈ E(G′) such that v ∈ C(s,i′) \ S. Such a v always exists,
because |C(s,i′)| = k + 1 and |S| ¬ k. Let {s, w} ∈ E be the first edge of P . and w at
position i in the neighborhood ordering of s. Then we add a (v, v′)-path Ps in Gs − S,
such that v′ ∈ C(s,i) S. We claim that such a (v, v′)-path Ps always exists in Gs − S.

Claim 4.22. Let Gv be a vertex-gadget and C(v,i), C(v,j) two connector sets of Gv,
where i, j ∈ {1, . . . , 6} with i 6= j. Then, for each vertex set S ⊆ V (Gv) of size at most k
it holds that there is a (v1, v2)-path of length at most (2k+ 2)2 − 1, where v1 ∈ C(v,i) \ S
and v2 ∈ C(v,j) \ S.

For now, we assume that this claim is true and prove it directly after this proof.
Now, we take an edge-gadget Ge into P ′ if e is in P . Recall, that an edge-gadget is a

path of length (`+1)·k′+1. One can observe that, because of Claim 4.22, we can connect
the edge-gadgets G{v1,v2}, G{v2,v3} of two consecutive edges {v1, v2}, {v2, v3} in P by a
path of length at most k′ in Gv2 . Let {v`, z} be the last edge in P , v` be at position j
in the neighborhood ordering of z, v ∈ C(z,j), and v′ ∈ Cz,j′ . We add a (v, v′)-path of
length k′ in Gz−S by Claim 4.22. Note that P ′ visits at most `+1 vertex-gadgets and `
edge-gadgets. The length of P ′ is at most

2 + (`+ 1) · k′ + `
[
(`+ 1) · k′ + 1

]
= `.

Hence, there is a vertex x ∈ S which is visited by P ′. The vertex x must be part of an
edge-gadget Ge′ , because by the construction of P ′, the strict (s′, z′)-path P ′ does not
visit any vertex of a vertex-gadget which is also in S. Thus, e′ ∈ C. This contradicts P
being a strict (s, z)-path in G \ C. Consequently, there is no (s, z)-path of length at
most ` in G− C and I is a yes-instance.

Proof of Claim 4.22. Let Gv be a vertex-gadget and C(v,i), C(v,j) two connector sets
of Gv, where i, j ∈ {1, . . . , 6} and i 6= j. We add vertices s and z and edges {s, s′}
and {z, z′} to Gv, where s′ ∈ C(v,i) and z′ ∈ C(v,j). There are

(6
2

)
different cases in

which i 6= j. In all of them it is obvious that there are k + 1 vertex-disjoint (s, z)-paths.
Consider Figure 4.7 for examples.

By Menger’s Theorem (Theorem 2.5), we know that a (s, z)-separator is at least of
size k+1. Hence, for any vertex set S ⊆ V (Gv)\{s, z} of size at most k, there is at least
one (s, z)-path in Gv which visits one vertex from C(v,i) and one vertex from C(v,j).

Note that Lemma 4.21 settles an open question by Fluschnik et al. [Flu+16].
One can observe that in the reduction of Theorem 3.1 from Length-Bounded (s, z)-

Separation to Strict (s, z)-Separation the underlying graph of the temporal graph
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Figure 4.7: Three cases from the proof of Claim 4.22. The grid is pictured by a dashed
square, the connector sets are pictured by dotted ellipsoids and the vertex disjoint paths
are pictured by lines. The rest of the cases are analogous to these three cases.

from Strict (s, z)-Separation is equal to the input graph from Length-Bound-
ed (s, z)-Separation, and therefore this reduction preserves the property of planarity.
Furthermore, we can observe that the reduction of Corollary 3.2 from Strict (s, z)-Sep-
aration to Non-Strict (s, z)-Separation also preserves the property of planarity of
the temporal graph. Consequently, we have proven the following theorem.

Theorem 4.23. (Non-)Strict (s, z)-Separation is NP-hard on temporal planar
graphs.

From Theorem 3.4, we know that (Non-)Strict (s, z)-Separation is not fixed-
parameter tractable when parameterized by the maximum label τ , unless P = NP.
Nevertheless, if we restrict the class of underlying graphs, then we can use the algorithm
from Theorem 4.6 to show fixed-parameter tractability of Strict (s, z)-Separation
when parameterized by the maximum label τ .

Definition 4.24. The local treewidth of a graph G is the function ltwG : N→ N defined
as

ltwG(r) := max{tw(G[NG
r [v]]) | v ∈ V (G)}.

A class C of graphs has bounded local treewidth, if there is a computable function h :
N→ N such that ltwG(r) ¬ h(r) for all graphs in C and r ∈ N.

For example the class of planar graphs has bounded local treewidth with the func-
tion h : N→ N, r 7→ 3r [FG06]. We refer to Flum and Grohe [FG06] for more details.

Corollary 4.25. Strict (s, z)-Separation on the class of temporal graphs where the
underlying graph has bounded local treewidth is fixed-parameter tractable when parame-
terized by the maximum label τ .
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Proof. Let I = (G = (V,E, τ), s, z, k) be a Strict (s, z)-Separation input instance,
where the underlying graph G↓ has bounded local treewidth. Hence, there is a com-

putable function h : N → N such that tw(G↓[N
G↓
r [v]]) ¬ h(r). Let V ′ = N

G↓
τ [s]. We

claim that P is a strict (s, z)-path in G if and only if P is a strict (s, z)-path in G[V ′].

⇒: Let P be a strict (s, z)-path in G. Since for all consecutive time-edges (e1, t1), (e2, t2)
in P , label t1 is smaller than t2, we know that P is of length at most τ . For each
vertex v ∈ V (P ) there is a path from s to v of length at most τ in G↓ and therefore v ∈
N
G↓
τ [s] = V ′. Hence, P exists in G[V ′].

⇐: This direction is easy to see because G[V ′] is a temporal subgraph of G and therefore
every strict (s, z)-path in G[V ′] is also a strict (s, z)-path in G.

Thus, it is sufficient to solve Strict (s, z)-Separation on G[V ′]. The treewidth of
the underlying graph G[V ′]↓ of G[V ′] is upper-bounded by h(τ) By Theorem 4.6, we can

solve the instance I in O((2τ + 2)O((h(τ)+2·(
h(τ)
2 )·τ)3) · h(τ) + 2 ·

(h(τ)
2

)
· τ · |V | · |E|+ |E|2)

time.

As already mentioned above, for every planar graph G, ltwG(r) ¬ 3r [FG06]. Hence,
from Corollary 4.25, we can derivei the following fixed-parameter tractability result.

Corollary 4.26. Strict (s, z)-Separation on temporal planar graphs is fixed-param-
eter tractable when parameterized by the maximum label τ .

Unfortunately, the idea of Corollary 4.25 is not transferable to Non-Strict (s, z)-
Separation. It can be seen as further research opportunity to investigate the computa-
tional complexity of Non-Strict (s, z)-Separation on temporal planar graphs, when
parameterized by the maximum label τ .

4.3 No Polynomial Kernels

We already discovered that Strict (s, z)-Separation is in FPT when parameterized
by k+τ , τ+tw↓, and |V |, and Non-Strict (s, z)-Separation is in FPT when parame-
terized by k+τ+twmax, τ+tw↓, and |V |, where k is the solution size, τ is the maximum
label, tw↓ is the underlying treewidth, twmax is the layer treewidth, and |V | is the
number of vertices. This implies the existence of kernels for Strict (s, z)-Separation
and Non-Strict (s, z)-Separation with these parameterizations [DF13, Proposition
4.8.1]. But all of them are of exponential size with respect to the parameterization.

This section is devoted to showing lower bounds on the size of these kernels. We show
that, unless NP ⊆ coNP/poly, there is no polynomial kernel for (Non-)Strict (s, z)-
Separation when parameterized by k+τ+tw↓+∆, where k is the solution size, τ is the
maximum label, tw↓ is the underlying treewidth, and ∆ is the maximum degree in the
temporal graph. Note that twmax ¬ tw↓, where tw↓ is underlying treewidth and twmax
is the layer treewidth.

On the one hand, this is a negative result. If we consider instances of a problem P
with small parameter k, then we would like to have a small kernel size because in this
case we can shrink an arbitrarily large instance to a small kernel in polynomial-time.
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One the other hand, this is a positive result. Suppose we are a vendor of a general
purpose solver for the problem P . Since our customers want to solve all kinds of instances
of the problem P , we probably cannot identify a specific parameter to be small in general.
Hence, in the first place fixed-parameter algorithms are not especially attractive to us.
But in contrast to that, regardless of the parameterization for which they are useful,
reduction rules are fast and help us to shrink the size of the input instance. A hard
instance is an input instance, onto which no reduction rule can applied to. Now, we have
to solve hard instances of size n. Let r be a parameter such that (P, r) admits a kernel
of size f(r). Hence, we can upper bound the size of any hard instance by f(r), and
consequently, we also have the lower bound r ­ f−1(n) on the parameter. For example,
if f is linear then r ∈ O(n) and hence, the benefit of a fixed-parameter algorithms for
the parameter r is always highly limited. But if we have that f is exponential in r, then
the lower bound on r for a hard instance is logarithmic in r and thus, r can be rather
small with respect to the input size n.

Consequently, we have a high interest in developing fast fixed-parameter algorithms
for parameters whose values are easy to determine. In such a scenario, we can enhance
our general purpose solver such that it checks whether one of these parameters is small
in a hard instance and apply the fixed-parameter algorithm.

One can observe that the parameters k, τ , |V |, and ∆ can be computed in polynomial-
time, where k is the solution size, τ is the maximum label, |V | is the number of vertices,
and ∆ is the maximum degree in the temporal graph.

Bodlaender et al. [Bod+09] developed a framework which can be helpful to show
a lower bound on a kernel size. Note that this framework assumes NP 6⊆ coNP/poly
which is widely believed, because otherwise the polynomial hierarchy [Sto76] collapses
as Fortnow and Santhanam [FS11] have shown. Here, we will use a generalized version
of this framework which is also used by Fluschnik et al. [Flu+16].

Definition 4.27 (Polynomial Equivalence Relation). Given an NP-hard problem L, an
equivalence relation R on the instance of L is a polynomial equivalence relation if

(i) one can decide for any two instances in time polynomial in their sizes whether they
belong to the same equivalence class, and

(ii) for any finite set S of instances, R partitions the set into at most (maxx∈S |x|)O(1)
equivalence classes.

Definition 4.28 (OR-Cross-Composition). Given an NP-complete problem L, a pa-
rameterized problem P , and a polynomial equivalence relation R on the instances of L,
an OR-cross-composition of L into P (with respect to R) is an algorithm that takes p
R-equivalent instances I1, . . . , Ip of L and constructs in time polynomial in

∑p
i=1 |Ii| an

instance (I, k) of P such that

(i) k is polynomially upper-bounded in maxi∈{1,...,p} |Ii|+ log(p) and

(ii) (I, k) is a yes-instance of P if and only if there is at least one i ∈ {1, . . . , p} such
that Ii is a yes-instance of L.
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If a parameterized problem P admits an OR-cross-composition for some NP-complete
problem L, then P does not admit a polynomial kernel with respect to its parameter-
ization, unless NP ⊆ coNP/poly [BJK14]. Note that we can assume without loss of
generality that p = 2q, because we can add trivial no-instances to reach a power of two
for some q ∈ N.

Fluschnik et al. [Flu+16] showed that, unless NP ⊆ coNP/poly, Length-Bounded
(s, z)-Cut does not admit a polynomial kernel, when parameterized by the solution size
and the maximum path length. Unfortunately, they did not prove that for Length-
Bounded (s, z)-Separation, but conjectured that the same result can also be shown
for this problem. This conjecture seems to be highly convincing, since they even state
how to adjust their construction. They achieved the no polynomial kernel result for
Length-Bounded (s, z)-Cut by introducing the so-called T-fractal. Later, we extend
this idea by constructing a temporal T-fractal.

Definition 4.29. For q ­ 1, the T-fractal ∆q is the graph constructed as follows:

(i) Set the graph ∆0 := ({σ, δ}, {{σ, δ}}) with {σ, δ} being a marked edge with end-
points σ and δ, subsequently referred to as special vertices.

(ii) Let F be the set of marked edges and set F ′ = ∅.

(iii) For each edge e ∈ F , add a new vertex and connect it by two new edges with the
endpoints of e, and add the two added edges into F ′.

(iv) Unmark all edges in F and mark all edges in F ′.

(v) Repeat (ii)-(iv) q − 1 times.

Roughly speaking, a T-fractal can be constructed by iteratively putting triangles on
top of each other.

Figure 4.8 gives an idea how Fluschnik et al. [Flu+16] have used T-fractal to OR-
cross-compose p = 8 input instances of Length-Bounded (s, z)-Cut, all with the
same parameters, to one output instance of Length-Bounded (s, z)-Cut where σ
and δ are the special vertices. One can observe that each possible (σ, δ)-cut selects one
input instance such that every (σ, δ)-path is going through this input instance. For more
details, we refer to Fluschnik et al. [Flu+16].

Lemma 4.30. Unless NP ⊆ coNP/poly, Non-Strict (s, z)-Separation does not ad-
mit a polynomial kernel when parameterized by k + τ + tw↓, where

• k is the solution size,
• τ is the maximum label, and
• tw↓ is the treewidth of the underlying graph.

Proof. We OR-cross-compose p = 2q instances of the Non-Strict (s, z)-Separation
problem into one instance of the Non-Strict (s, z)-Separation problem with respect
to k + τ and afterwards construct a tree-decomposition for the underlying graph whose
width is also an upper bound for the treewidth of the layer treewidth.

A Non-Strict (s, z)-Separation instance (Gi = (Vi, Ei, τi), si, zi, ki) is called bad
if max{ki, τi} > |Ei| or min{ki, τi} < 1. We define the polynomial equivalence rela-
tion R on the instances of the Non-Strict (s, z)-Separation problem as follows: two
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Figure 4.8: A visualization of the OR-cross-composition of [Flu+16]. Eight instances of
Length-Bounded (s, z)-Cut (top) with special vertices si, zi, where i ∈ {1, . . . , 8}. A
T-fractal ∆3 (bottom) with special vertices σ and δ (white vertices). The (σ, δ)-path on
the outer boundary (solid edges with orange background). A tree (rectangle vertices,
dotted edge with blue background) which is not part of the OR-cross-composition but
shows all possible (σ, δ)-cuts in ∆3 of size 4. Every (r, `i)-path symbolize a (σ, δ)-cut
in ∆3 of size 4, where i ∈ {1, . . . , 8}. The arrows show which special vertex of a Length-
Bounded (s, z)-Cut instance is merged with which vertex of ∆3.

instances (Gi = (Vi, Ei, τi), si, zi, ki) and (Gj = (Vj , Ej , τj), sj , zj , kj) are R-equivalent
if and only if ki = kj and τi = τj , or both are bad. Clearly, the relation R fulfills con-
dition (i) of Definition 4.27. Observe that the number of equivalence classes of a finite
set J := {I1, . . . , Ip} is upper-bounded by mj

2 + 1, where mj is the maximum size of
a time-edge set over the instances in J , hence condition (ii) of Definition 4.27 holds as
well.

Thus, we consider p = 2q R-equivalent input instances Ii = (Gi = (Vi, Ei, τ), si, zi, k)
and OR-cross-compose into the output instance Ô := (G = (V,E, τ), s, z, k′), where i ∈
{1, . . . , p} and

k′ := (q + 1) · (k + 1) + k = (log(p) + 1) · (k + 1) + k.

One can already see that the parameter k′ + τ of Ô is polynomially upper-bounded
in maxi∈{1,...,p} |Ii|+ log(p).

We construct a temporal T-fractal 4̂q := (Vq, Eq, τ), which is defined analogously
to the T-fractal 4q from Definition 4.29. For each v ∈ V (4q) there is a set of k′ + 1
vertices which is called the node-vertex set of v. For each edge {v, w} ∈ E(4q) we add
a set of k+ 1 vertices and connect each of them with all vertices in the node-vertex sets
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Figure 4.9: The temporal T-fractal ∆̂3. The node-vertex sets are highlighted by dashed
circles (orange). The edge-vertex sets are highlighted by dotted circles (blue). A time-
edge between two sets of vertices A and B means that for all vertices a ∈ A and b ∈ B
there is such a time-edge between a and b.

of v and w with two time-edges labeled by one and τ , respectively. We will call this set
of vertices the edge-vertex set of {v, w}. Finally, we add the special vertices s and z such
that there is a time-edge from s to all vertices in the node-vertex set of σ with label one
and from z to all vertices in the node-vertex set of δ with label τ . See Figure 4.9 for an
example.

As in the construction from Fluschnik et al. [Flu+16] we put the input instances on
the outer boundary of 4̂q. Let vi be the i-th internal vertex of a path from σ to δ on
the outer boundary of 4q and let Ci be the corresponding node-vertex set of vi in 4̂q.
For clarification, σ is v1 and δ is vp+1.

Fluschnik et al. [Flu+16] stated that 4q has p + 1 vertices and 2q+1 − 1 = 2p − 1
edges. Thus, we know the number of vertices in 4̂q is

|V (4̂q)| = 2 + (p+ 1) · (k′ + 1).

Each vertex from an edge-vertex sets has two time-edges to 2(k′+1) vertices plus 2(k′+1)
time-edges for the special vertices s and z. Therefore, we have that

|E(4̂q)| = (2p− 1) · (k + 1) · 4(k′ + 1) + 2(k′ + 1).

Now, we create G by taking 4̂q and

• add each Gi − {si, zi} to G,
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• add for each time-edge ({si, w}, t) ∈ E(Gi) a time-edge ({v, w}, t) ∈ E(G) for all
vertices v from the node-vertex set of vi, and

• add for each time-edge ({w, zi}, t) ∈ E(Gi) a time-edge ({v, w}, t) ∈ E(G) for all
vertices v from the node-vertex set of vi+1.

One can observe that the time required to compute G can be upper-bounded by a
polynomial in

∑p
i=1 |Ii|.

Note that each node-vertex set has more than k′ vertices and there is no non-
strict (s, z)-separator of size k′ which can contain all vertices of a node-vertex set. Hence,
only vertices from edge-vertex sets are relevant in a non-strict (s, z)-separator. To be pre-
cise, let S = X]Y be a non-strict (s, z)-separator in 4̂q, where X only contains vertices
from node-vertex sets and Y only contains vertices from edge-vertex sets. Then, Y is
also a non-strict (s, z)-separator in 4̂q.

We know that the T-fractal 4q has a minimum cut size of exactly q + 1 and that
there are p different cuts of size q+1 [Flu+16]. Analogously, we can conclude that a non-
strict (s, z)-separator of 4̂q must contain q + 1 edge-vertex sets. Note that k′ is chosen
such that a non-strict (s, z)-separator of size at most k′ cannot contain q+2 edge-vertex
sets. Hence, we know that 4̂q will work as an instance selector in G by selecting q + 1
edge-vertex sets. We refer to Fluschnik et al. [Flu+16] for more information about the
instance selection.

For all i ∈ {1, . . . , p} and each non-strict (si, zi)-path P in Gi there is a non-
strict (s, z)-path in G, because of the construction of 4̂q there is a non-strict (s, si)-
path P− in G with departure and arrival time one, where si ∈ Ci. Furthermore, there is
non-strict (zi, z)-path P+ in G with departure and arrival time τ , where zi ∈ Ci+1. The
concatenation of P−,P , and P+ gives a non-strict (s, z)-path in G.

We claim that there is an i ∈ {1, . . . , p} such that Ii is a yes-instance if and only if Ô
is a yes-instance.

⇒: Assume that there is an i ∈ {1, . . . , p} such that Ii is a yes-instance. Let si ∈ Ci
and zi ∈ Ci+1. Then we can select Ii by taking q + 1 edge-vertex sets into S such that
there is no non-strict (s, z)-path, no non-strict (s, zi)-path, and no non-strict (si, z)-
path in 4̂q which means that all non-strict (s, z)-paths in G − S go through Gi. Note
that |S| = (q+ 1)(k+ 1). Since Ii is a yes-instance, we know there is a non-strict (si, zi)-
separator Si of size at most k in Gi. Hence, S ∪ Si is a non-strict (s, z)-separator of
size k′.

⇐: Now let each input instance be a no-instance. Assume towards a contradiction there is
a non-strict (s, z)-separator S in G of size at most k′. Since 4̂q is a subgraph of G which
contains s and z, S is also a non-strict (s, z)-separator in 4̂q. Let S = S4]S′, where S4
is the non-strict (s, z)-separator of4q. We need q+1 edge-vertex sets in S4 otherwise S4
cannot be a non-strict (s, z)-separator in 4̂q. Note that the number of vertices of q + 2
edge-vertex sets is more than k′. There are p different (σ, δ)-cuts in 4q and for each of
them there is a vi in the connected component of σ where the vi+1 is in the connected
component of δ [Flu+16]. Thus, there are si ∈ Ci and zi ∈ Ci+1 such that there is a
non-strict (s, si)-path and a non-strict (zi, z)-path in G − S. Note that |S \ S4| ¬ k.
There is no non-strict (si, zi)-separator of size at most k in Gi. Hence, |S| > k′. This
contradicts Ô being a no-instance.
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Next, we are going to construct a tree-decomposition for the underlying graph of G.
Baker [Bak94] showed that outerplanar graphs have treewidth two. Since the T-fractal ∆q

is outerplanar, it has treewidth at most two. Let T = (T, (Bx)x∈V (T )) be such a tree-
decomposition of ∆q of width at most two. Now, we construct a tree-decomposition T ′ =
(T ′, (B′x)x∈V (T ′)) for the underlying graph of ∆̂q − {s, z}, by

(i) copying T into T ′,

(ii) replacing each vertex v ∈ B′x with its node-vertex set, and

(iii) if v, w ∈ Bx, where {v, w} is an edge of ∆q, then we introduce the edge-vertex set
of {v, w} intro B′x.

The width of T ′ is at most 3 · (k′ + 1) + 3 · (k + 1) = 3 · (k′ + k + 2), because each
bag of T contains at most three vertices and edges. We extend T ′ such that all vertices
of Gi − {si, zi} are in B′x if vi or vi+1 is in Bx, where i ∈ {1, . . . , p}. Note that this is a
tree-decomposition of G−{s, z}. Finally, we add s and z to every bag of T ′ and obtain a
tree-decomposition of the underlying graph of G. Since every bag of T has at most three
vertices and every input instance is connected to two node-vertex sets in 4̂q, we can
upper bound the width of T ′ by 3 · (k′+k+ 2) + 6 ·nmax, where nmax = maxi∈{1,...,p} |Vi|.
Hence, the treewidth of the underlying graph of G is upper bounded by a polynomial
in maxi∈{1,...,p} |Ii|+ log(p).

We can adjust the temporal T-fractal further to extend the result from Lemma 4.30
to Strict (s, z)-Separation.

Lemma 4.31. Unless NP ⊆ coNP/poly, Strict (s, z)-Separation does not admit a
polynomial kernel, when parameterized by k + τ + tw↓, where

• k is the solution size,
• τ is the maximum label, and
• tw↓ is the treewidth of the underlying graph.

Proof. We will OR-cross-compose from p = 2q input instances I1, . . . , Ip of Strict
(s, z)-Separation to one output instance Ô := (G = (V,E, τ ′), s, z, k′) of Strict
(s, z)-Separation with respect to k + τ + tw↓ and use the polynomial equivalence
relation R from Lemma 4.30 again, but this time for Strict (s, z)-Separation. An
input instance is denoted by Ii = (Gi = (Vi, Ei, τ), si, zi, k). The OR-cross-composition
works essentially in the same way as in Lemma 4.30. There are three adjustments.

First, we have to ensure that each input instance is reachable from s. Let D ⊆ E(4q).
Fluschnik et al. [Flu+16] showed that every vertex in the connected component of σ
in 4q \D can be reached with a path of length at most q+ |D|+ 1 from σ. Let si ∈ Ci,
where i ∈ {1, . . . , p} and Ci be the i-th node-vertex set on the outer boundary of 4̂q.
This implies that after the removal of q+1 edge-vertex sets from 4̂q, either there is a non-
strict (s, si)-path with departure and arrival time one of length at most ` := 2(2q + 2),
or there is no non-strict (s, si)-path. Now we start to construct the strict temporal T-
fractal 4q by taking all vertices from 4̂q and add for each time-edge ({v, w}, 1) ∈ E(4̂q)
exactly ` many time-edges ({v, w}, j) ∈ E(4q), where j ∈ {1, . . . , `}. Hence, for each
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non-strict (s, si)-path in 4̂q with departure and arrival time one there is a strict (s, si)-
path with departure time one and arrival time at most `.

Second, we have to shift each label in an input instance by ` time steps. Therefore,
each time-edge ({v, w}, t) in Gi will be replaced by a time-edge ({v, w}, t+`). The shifted
instance of Gi is denoted by ~Gi. One can observe that for each strict (si, zi)-path with
departure time a ­ 1 and arrival time b ¬ τ in Gi there is a strict (si, zi)-path with
departure time `+ a and arrival time `+ b in ~Gi.

Third, analogously to the first part we have to ensure that we can reach z from each
input instance. Let zi ∈ Ci, where i ∈ {2, . . . , p + 1} and Ci be the i-th node-vertex
set on the outer boundary of 4̂q. For each time-edge ({v, w}, τ) ∈ E(4̂q) we add `
many time-edges ({v, w}, `+ τ + j) ∈ E(4q), where j ∈ {1, . . . , `}. Thus, for each non-
strict (zi, z)-path with departure and arrival time τ in 4̂q there is a strict (zi, z)-path
with departure time τ + `+ 1 and arrival time at most τ + 2`.

One can observe that |V (4q)| = |V (4̂q)| and that |E(4q)| = |E(4̂q)| · `.
Now we OR-cross-compose from the instances ~I1, . . . , ~Ip into Ô in exactly the same

way as we did in Lemma 4.30 but instead of 4̂q the T-fractal 4q is used, where ~Ii :=
( ~Gi, si, zi, k) for all i ∈ {1, . . . , p}. The first part of the parameter of Ô is

k′ + τ ′

⇔ (log(p) + 1) · (k + 1) + k + τ + 2 · `
⇔ (log(p) + 1) · (k + 1) + k + τ + 2 · [2(2q + 2)]

⇔ (log(p) + 1) · (k + 1) + k + τ + 8 · log(p) + 8.

Furthermore, the underlying graph of 4q is identical to the underlying graph of 4̂q.
Hence, k′ + τ ′ + tw↓ is polynomially upper bounded in maxi∈{1,...,p} |Ii|+ log(p).

Now, we claim that there is an i ∈ {1, . . . , p} such that Ii is a yes-instance if and only
if Ô is a yes-instance. The correctness argumentation is identical to argumentation in
the proof of Lemma 4.30 if we substitute non-strict with strict and adjust the departure
and arrival time of P−, P , and P+.

Fluschnik et al. [Flu+16] showed that the maximum degree ∆ of a 4q is exactly 2q.
Each vertex from an edge-vertex set in 4̂q has degree 4·(k′+1). If a vertex v from4q has
degree d, then a vertex in the node-vertex set of v has degree 2d · (k + 1). Furthermore,
in 4q we have ` = log(p) + 8 time-edges for each time-edge in 4̂q. Thus, the maximum
degree in 4̂q is exactly 4q ·(k+1) and the maximum degree in 4q is exactly 4q ·(k+1) ·`.

We can use this knowledge to strengthen Lemma 4.30 and Lemma 4.31 and finally
state the desired theorem.

Theorem 4.32. Unless NP ⊆ coNP/poly, (Non-)Strict (s, z)-Separation does not
admit a polynomial kernel, when parameterized by k + τ + tw↓+∆, where

• k is the solution size,
• τ is the maximum label,
• tw↓ is the treewidth of the underlying graph, and
• ∆ is the maximum degree in the temporal graph.
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In Section 4.2, we developed a method to maintain planarity from Length-Bound-
ed (s, z)-Cut to Length-Bounded (s, z)-Separation, when the maximum degree is
bounded by introducing grids for vertices (see Lemma 4.21). This idea seems to be also
applicable in the OR-cross-composition of Lemmata 4.30 and 4.31. Therefore, we con-
jecture that Theorem 4.32 also holds for temporal planar graphs. Furthermore, we claim
that this is the key tool to settle the open question of Fluschnik et al. [Flu+16] whether
Length-Bounded (s, z)-Separation has a polynomial kernel on planar graphs, when
parameterized solution size k, the maximum length ` of a path, and the treewidth of the
input graph.
(Non-)Strict (s, z)-Separation is in FPT, when parameterized by the number |V |

of vertices, but we could not determine whether there is a polynomial kernel for this
parameter.





Chapter 5

A General Path
Model: β-Bounded Paths

In this chapter, we introduce a new path notion for temporal graphs where the difference
between the labels of two consecutive time-edges in a path are bounded.

Suppose a disease is going around and we, here called z, do not want to get ill in
the next six weeks because we have to perform at the Olympic Games. There is an
inoculation for this disease but we would need to reduce our training for one week if we
take the inoculation. This is something we cannot afford in the last six weeks before the
Olympic Games. Until the Olympic Games begin, we will stay at a training camp where
nobody is allowed to have visitors and nobody else is going to compete in the Olympic
Games. So, they are willing to do the inoculation if the pressure is high enough. Of
course, our training schedule is extremely tight and therefore we can only persuade at
most k athletes to take the inoculation. Furthermore, everything is well premeditated
in the training camp. We know who also stays in the training camp and which schedule
they follow. Unfortunately, some of the athletes already have the disease.

We model a temporal graph for the next weeks as follows: All athletes, including z,
are vertices plus a special vertex s. If two athletes meet somewhere, then there is a
time-edge between those vertices labeled by the timestamp of the meeting. We replace
the vertex v of an athlete who has the disease with vertex set of k+ 1 vertices such that
the neighborhood of each new vertex is equal to the neighborhood of v. Then we add a
time-edge from s to each new vertex labeled with one. Obviously, a non-strict (s, z)-sep-
arator of the temporal graph would tell us which k athletes we can persuade to take the
inoculation such that we will not get ill in the next six weeks.

But if there is no non-strict (s, z)-separator, it does not mean that we cannot persuade
at most k athletes to take the inoculation such that we will not get ill in the next six
weeks, because the immune system will cure the disease after some time β. Hence, if
an athlete gets the disease at time point t, then one cannot infect others after time
point t+ β. Consider Figure 5.1 for an example.

A (0, β)-bounded (s, z)-path P = (e1, t1), . . . , (e`, t`) (or β-bounded (s, z)-path for
short) of length ` is a non-strict (s, z)-path of length ` where ti+1 − ti ¬ β for all i ∈
{1, . . . , `−1}. In the literature, this model of a path is also known as vertex buffer times
[Akr+17] and as waiting time cutoffs [PS11].

89
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Day Training
(1) Mon A,E endurance
(2) Tue A,E max-power
(3) Wed B,E endurance
(4) Thur B,E max-power
(5) Fri E, z endurance
(6) Sat E, z balance
(7) So B,E mobilization
(8) Mo A, z max-power

(a) Schedule

s

A

z

B
E

1

1

3, 4, 7

1, 2

8

5, 6

(b) Temporal Graph G

Figure 5.1: Figure 5.1a shows a schedule of a training camp for Alice (A), Bob (B), Emma
(E), and us (z). Figure 5.1a shows the temporal graph G obtained by the construction
from the introductory example of Chapter 5 for the schedule in Figure 5.1a. We can
only persuade at most k athletes to take the inoculation. Alice (A) and Bob (B) just got
the disease while Emma (E) is healthy. Hence, Alice and Bob are represented by k + 1
vertices, respectively (blue/dashed). In this example the disease is contagious for seven
days after the infection. Thus, each 6-bounded (s, z)-path in G denotes a way how we
can get the disease. Note that we can only get the disease from Emma because on the
second Monday (8) Alice is not contagious anymore.

This is a generalization of the non-strict path model because a non-strict (s, z)-path
is a τ -bounded (s, z)-path and vice versa. Note that it is not possible to wait at a vertex
for an arbitrary amount of time and hence one has to go a cycle to bridge the waiting
time. Furthermore, there is a close relation to multi-layer graphs—for each (0, 0)-bound-
ed (s, z)-path P0 in a temporal graph G = (V,E, τ) there exists an i ¬ τ such that there
is an (s, z)-path in the layer Gi which visits the same vertices as P0 and in the same
order as P0.

A β-bounded (s, z)-separator is a set S ⊆ V \ {s, z} of vertices such that there is
no β-bounded (s, z)-path in G− S.

β-Bounded (s, z)-Separation
Input: A temporal graph G = (V,E, τ), two distinct vertices s, z, and an inte-

ger k ∈ N.
Question: Is there a β-bounded (s, z)-separator S of size at most k?

In the remaining part of this section, we show that β-Bounded (s, z)-Separation
isW[2]-hard when parameterized by the solution size k and that β-Bounded (s, z)-Sep-
aration is fixed-parameter tractable when parameterized by the number |V | of vertices.
Afterwards, we show that β-Bounded (s, z)-Separation does not admit a polynomial
kernel when parameterized by |V |, unless NP ⊆ coNP/poly.

Theorem 5.1. β-Bounded (s, z)-Separation is W[2]-hard when parameterized by the
solution size k.

Proof. We reduce from the Hitting Set problem which is known to beW[2]-hard, when
parameterized by the solution size.
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Hitting Set Problem
Input: A universe U = {u1, . . . , um}, a collection C = {C1, . . . , Cn} where Ci ⊆

U for all i ∈ {1, . . . , n} and k ∈ N
Question: Is there a subset H ⊆ U of size at most k such that H ∩ Ci 6= ∅ for

all i ∈ {1, . . . , n}?

Let (U,C, k) be a Hitting Set problem instance, where |U | = n and |C| = m.
We construct a β-Bounded (s, z)-Separation instance (G = (V,E, (β + 1) · (m −
1) + 1), s, z, k) as follows: set V := U ∪ {s, z}. For all u, u′ ∈ Ci ∈ C add a time-
edge ({u, u′}, (i− 1) · (β + 1) + 1) to E, where u 6= u′ . Fix an arbitrary linear order f :
U → {1, . . . , n} for U . We denote an element u ∈ U by uj if and only if f(u) = j. For
each Ci ∈ C add time-edges ({s, uα}, (i−1)·(β+1)+1)) and ({uβ, z}, (i−1)·(β+1)+1))
in E, where α = minu∈Ci f(u) and β = maxu∈Ci f(u).

We claim that S ⊆ (V \ {s, z}) is a β-bounded (s, z)-separator of size at most k if
and only if S is a solution to the Hitting Set instance (U,C, k).

⇒: Let S be a β-bounded (s, z)-separator in G, Ci ⊆ C, and c1, . . . , cr ∈ Ci be all
elements in Ci such that f(cj) < f(cj+1) for all j ∈ {1, . . . , r − 1}. There is a β-bound-
ed (s, z)-path P = ({s, c1}, (i− 1) · (β + 1) + 1), . . . , ({cr, z}, (i− 1) · (β + 1) + 1) in G.
Hence, S contains at least one vertex of Ci. Thus, S is a solution to the Hitting Set
instance (U,C, k).

⇐: Let S be a solution for the Hitting Set instance (U,C, k). Assume towards a
contradiction that S is not a β-bounded (s, z)-separator in G. One can observe that G[P ]
is the layer (i− 1) · (β + 1) + 1 and that all layers that do not correspond to a β-bound-
ed (s, z)-path containing all elements of a set in C are edgeless. Since S in not β-
bounded (s, z)-separator, there must exist a β-bounded (s, z)-path P ′ which contains
two consecutive time-edges (e1, t1) and (e2, t2) where t1 6= t2. From the construction
of G, we know that there are i < i′ ∈ {1, . . . ,m} such that t1 = (i − 1) · (β + 1) + 1
and t2 = (i′ − 1) · (β + 1) + 1. Without loss of generality, we assume i+ 1 = i′. Since P ′

is a β-bounded (s, z)-path, the following hold:

t2 − t1 ¬ β
⇔ (i′ − 1) · (β + 1) + 1− ((i− 1) · (β + 1) + 1) ¬ β

⇔ ((i+ 1)− 1) · (β + 1) + 1− ((i− 1) · (β + 1) + 1) ¬ β
⇔ i · (β + 1)− (i− 1) · (β + 1) ¬ β

⇔ (i− 1) · (β + 1) + (β + 1)− (i− 1) · (β + 1) ¬ β
⇔ β + 1 6¬ β

This is a contradiction and therefore S is a β-bounded (s, z)-separator.

Next, we show that we can apply the idea behind Reduction Rule 2.1 also in the
path model of β-bounded (s, z)-path.

Reduction Rule 5.1. Let G = (V,E, τ) be a temporal graph and let [t1, t2] ⊆ [1, τ ] be an
interval where t2−t1 ­ β−1 and for all t ∈ [t1, t2] the layer Gt is an edgeless graph. Then
for all ({v, w}, t′) ∈ E where t′ > t2, replace ({v, w}, t′) with ({v, w}, t′− t2+ t1− 1 + β)
in E.
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Lemma 5.2. Reduction Rule 5.1 does not remove or add any β-bounded (s, z)-path from
the temporal graph G = (V,E, τ) and can be applied exhaustively in O(|E|) time if E is
ordered by ascending labels.

Proof. First we discuss the soundness of this rule and then the algorithm to compute it
in O(|E|) time. Let G = (V,E, τ) be a temporal graph, s, z ∈ V , and [ta, tb] ⊆ [1, τ ] be
an interval where tb − ta ­ β − 1 and for all t ∈ [ta, tb] the layer Gt is an edgeless graph.
Furthermore, let P = (e1, t1), . . . , (ei, ti), (ei+1, tj), . . . , (en, tn) be a β-bounded (s, z)-
path in G, and let G′ be the graph after we applied Reduction Rule 5.1 on G.

Assume towards a contradiction that t1 < ta or tb < tn. Since for all t ∈ [ta, tb]
the layer Gt is edgeless, we have t1 < ta < tb < tn. Let t′ be the maximum label such
that t′ < ta and there is a time-edges in P which is labeled by t′ and let t′′ be the minimum
label such that tb < t′′ and there is a time-edge in P which is labeled by t′′. Observe
that there are two consecutive time-edges (e′, t′), (e′′, t′′) in P . This contradicts P being
a β-bounded (s, z)-path, because tb− ta ­ β− 1⇔ t′′− ta ­ β ⇔ t′′− t′ > β. Hence, we
distinguish two cases.

Case 1: If tn < ta, then no time-edge of P is touched by Reduction Rule 5.1. Hence, P
also exists in G′.

Case 2: If tb < t1, then clearly there is a β-bounded (s, z)-path (e1, t1 − tβ + ta − 1 +
β), . . . , (en, tn − tβ + ta − 1 + β) in G′

The other direction works analogously. We look at a β-bounded (s, z)-path in G′ and
compute the corresponding β-bounded (s, z)-path in G.

Reduction Rule 5.1 can be applied exhaustively by iterating over the time-edges (ei, ti)
in the time-edge set E ordered by ascending labels, until the first t1, t2 with the given
requirement appear. Set x0 := −t2 + t1 − 1 + β. Then we iterate further over E and re-
place each time-edge (e, t) with (e, t+x0) until the next t1, t2 with the given requirement
appear. Then we set x1 = x0− t2+ t1−1+β and iterate further over E and replace each
time-edge (e, t) with (e, t+ x1). We repeat this procedure until the end of E is reached.
Since, we iterate only once over E, this can be done in O(|E|) time.

If Reduction Rule 5.1 is not applicable on a given temporal graph G = (V,E, τ), then
we might have edgeless layers at the end of the interval [1, τ ]. In case Reduction Rule 2.2
can be applied. Recall from Lemma 2.1 that Reduction Rule 2.2 can be executed in
linear time by iterating over all edges and take the maximum label as t1, and that the
vertices V and the time-edges E remain untouched by Reduction Rule 2.2. Hence, the
application of Reduction Rule 2.2 does not add or remove any β-bounded (s, z)-path.

A consequence of Lemma 5.2 is that maximum label τ can be upper-bounded by the
input size and β, because for each interval [t1, t2] ⊆ [1, τ ] where t2− t1+ 1 = β+ 1 there
is at least one edge (cf. Lemma 2.2).

Lemma 5.3. Let G = (V,E, τ) be a temporal graph, where Reduction Rules 2.2 and 5.1
are not applicable. Then τ ¬ (β + 1) · |E| .

Now, we show that a β-bounded (s, z)-path can be computed in polynomial time.
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Lemma 5.4. Let G = (V,E, τ) be a temporal graph and s, z ∈ V . It is decidable
in O(|V |2 · |E|) time whether there is a β-bounded (s, z)-path in G.

Proof. Let G = (V,E, τ) be a temporal graph, where V := {s = v1, . . . , vn = z}. We
present an algorithm to solve this problem. Without loss of generality, we assume that
Reduction Rules 2.2 and 5.1 are not applicable. Let (x1, . . . , xn) ∈ Nn. The value xi
denotes how long we can stay in vertex vi until the we have to take another time-edge.
We start with the vector (1, 0, . . . , 0). The value of x1 will be always be one because
a β-bounded (s, z)-path can have an arbitrary departure time.

We iterate over t = 1, . . . , τ . For each i ∈ {1, . . . , n} where xi > 0, we perform
a breadth-first search from vi on the layer t of G. Let Rt(vi) be the set of reachable
vertices from vi in the layer t and let Rt := {vr ∈ V | ∃i ∈ {1, . . . , n} s. t. : xi >
0 and vr ∈ Rt(vi)}.

Now, we adjust the vector. If vr ∈ Rt \ {s}, then we set xr to β. If vr 6∈ Rt ∪ {s},
then we decrease xr by one if it is not already 0.

The next step is to increase t and repeat this procedure until xn > 0 or t exceeds τ .
The running time of this algorithm is O(|V |2 · |E|), because we compute at most |V |

times a breadth-first search for each t ∈ {1, . . . , τ}. By Lemma 5.3, τ ∈ O(|E|).
We claim that there is a t ∈ {1, . . . , τ} where xn > 0 if and only if there is a β-

bounded (s, z)-path P in G.

⇒: This direction is easy because from the behavior of the algorithm we can conclude
that vj is reachable from s with a β-bounded (s, vj)-path. Hence, if xn > 0, then there
is a β-bounded (s, z)-path because vn = z.

⇐: Let P a β-bounded (s, z)-path in G with arrival time ta and assume towards a
contradiction that for all t ∈ {1, . . . , τ} xn = 0. Let xn(t) be the value of xn for t.
We are about to make an induction over the time-edges of P . Let ({s, vi1}, t1) be the
first time-edge in P . Then, xi1(t1) = β. Now let ({vi1 , vi2}, t1), ({vi2 , vi3}, t2) where P
visits the vertices in the following order vi1 , vi2 , vi3 and assume, induction hypothesis,
that xi2(t1) = β. Since t2 − t1 ¬ β, we know that xi2(t2) > 0 and hence xi3(t2) = β.
Consequently, xn(ta) = β 6= 0.

One can observe that the algorithm of Corollary 3.17 solves the β-Bounded (s, z)-
Separation, when algorithm of Lemma 2.4 is replaced with the algorithm of Lemma 5.4.

Corollary 5.5. β-Bounded (s, z)-Separation can be solved in O((|V | − 2)|V | · |V |2 ·
|E|).

In standard graph theory the size of a graph G = (V,E) can be upper-bounded
by O(|V |2). Thus, the number of vertices in a graph is usually not an useful parameter.
In temporal graphs the number of time-edges can be much larger than the number of
vertices. This makes the number of vertices to an interesting parameter. Furthermore,
we are about to show that there are instances where the input size is even exponential in
the number of vertices and there does not exist a polynomial-time algorithm to decrease
the instance such that there is a polynomial upper bound in the number of vertices for
the input size, unless the broadly believed assumption that NP 6⊆ coNP/poly breaks.

Theorem 5.6. Unless NP ⊆ coNP/poly, β-Bounded (s, z)-Separation does not ad-
mit a polynomial kernel when parameterized by the number of vertices |V |.
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Proof. We OR-cross-compose p = 2q instances of β-Bounded (s, z)-Separation into
one instance of β-Bounded (s, z)-Separation.

A β-Bounded (s, z)-Separation instance Ii = (Gi = (Vi, Ei, τi), si, zi, ki) is called
bad if ki > |Vi|, τi > |Ei|, ki < 0 or τi < 1. We define the polynomial equivalence
relation R on I0, . . . , Ip−1 as follows: two instances Ii = (Gi = (Vi, Ei, τi), si, zi, ki)
and Ij = (Gj = (Vj , Ej , τj), sj , zj , kj) are R-equivalent if and only if ki = kj , τi = τj ,
and |Vi| = |Vj | or both are bad. Clearly, the relation R fulfills condition (i) of Defini-
tion 4.27. Observe that the number of equivalence classes of finite set J := {I0, . . . , Ip−1}
is upper bounded by |Imax|3 + 1 where |Imax| is the maximum input size of an el-
ement in J , because |Vmax|, |Emax| ¬ |Imax|. Hence, condition (ii) holds and R is a
polynomial equivalence relation. Without loss of generality, we assume that there is a
set V = {s = v1, . . . , vn = z} of vertices such that there is a bijective between V
and Vi where s = si and z = zi for all i ∈ {0, . . . , p − 1}. Thus, we consider p = 2q R-
equivalent instances Ii = (Gi = (V,Ei, τ), s′, z′, k) as input and OR-cross-compose into
an instance Ô := (G = (V̂ , Ê, τ̂), s, z, k′), where i ∈ {0, . . . , p − 1}. For now, G, and k′

are variables. Later in the construction, we will give a proper definitions for V̂ , Ê, τ̂ ,
and k′.

The overall idea is to shift all labels of an instance Ii and store the time-edges
of Ii with shifted labels in Êi. For each time-edge ({v, w}, t) ∈ Ei we have a time-
edge ({v, w}, i · τ + t) ∈ Êi. Observe that Êi contains all time-edges of Ei but its
labels are at least i · τ + 1 and at most i · τ + τ . We denote the label t of Ei in Êi
by σ(i, t) := i · τ + t. Therefore, ({v, w}, t) ∈ Ei ⇔ ({v, w}, σ(i, t)) ∈ Êi. Now, we need
gadgets such that all β-bounded (s, z)-paths have at least a specific departure time and
at most a specific arrival time. Before we state the construction and prove its correctness,
we introduce two gadgets.

Departure gadget. Now we will introduce the departure gadget Gd = (Vd, Ed, σ(p−
1, 1) +β+ 1). It will ensure that every β-bounded (s, z)-path in G has at least a specific
departure time. In the example of Figure 5.2 the departure gadget is the upper part
of the figure. The vertex set Vd consists of q + 1 vertex sets C1, . . . , Cq+1, the special
vertices s′, z′, and 2q selection vertex sets L1,0, L1,1, . . . , Lq,0, Lq,1 , where C1, . . . , Cq+1
contains k′ + 1 vertices and Li,x contains k + 1 vertices for all i ∈ {1, . . . , q} and x ∈
{0, 1}. Let b(j, 1), . . . , b(j, q) be the binary encoding of the number j ∈ {0, . . . , p − 1}.
Therefore, b(j, q) is the least significant bit and b(j, 1) is the most significant bit. Let v1 ∈
C1 and vi ∈ Ci. There are time-edges

({s′, v1}, σ(j, 1)), ({vi, `i,b(j,i)}, σ(j, 1)), ({`i,b(j,i), vi+1}, σ(j, 1)) ∈ Ed,

where j ∈ {0, . . . , p − 1} and `i,x ∈ Li,x for all i ∈ {1, . . . , q} and x ∈ {0, 1}. Fur-
thermore, there are time-edges ({s′, `i,0}, σ(p − 1, 1) + β + 1), ({`i,0, `i,1}, σ(p − 1, 1) +
β + 1), ({`i,1, z′}, σ(p − 1, 1) + β + 1) ∈ Ed, where `i,x ∈ Li,x for all i ∈ {1, . . . , q}
and x ∈ {0, 1}. Notice that a vertex in Li,0 has a time-edge to all vertices in Li,1 and
vice versa, where i ∈ {1, . . . , q}.

Note that |Vd| = 2 + (q + 1) · (k′ + 1) + 2q · (k + 1) and |Ed| = 2q · (k′ + 1)(k + 1) +
2q · (k + 1) + q · (k + 1)2.

One can observe that there are k + 1 vertex-disjoint β-bounded (s′, z′)-paths of the
form Pi = ({s′, `i,1}, σ(p− 1, 1) + β + 1), ({`i,0, `i,1}, σ(p− 1, 1) + β + 1), ({`i,0, z′}, σ(p−
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G0, . . . , G3

s

C1

σ(0, 1), . . . , σ(3, 1)

L1,1 L1,0

σ(0, 1), σ(1, 1)σ(2, 1), σ(3, 1)

σ(3, 1) + β + 1

C2

σ(0, 1), σ(1, 1)σ(2, 1), σ(3, 1)

L2,1 L2,0

σ(0, 1), σ(2, 1)σ(1, 1), σ(3, 1)

σ(3, 1) + β + 1

C3

σ(0, 1), σ(2, 1)σ(1, 1), σ(3, 1)

σ(3, 1) + β + 1

D1

R2,0 R2,1

σ(0, τ), σ(2, τ) σ(1, τ), σ(3, τ)

D2

σ(0, τ), σ(2, τ) σ(1, τ), σ(3, τ)

σ(3, τ) + β + 1

R1,0 R1,1

σ(0, τ), σ(1, τ) σ(2, τ), σ(3, τ)

D3

σ(0, τ), σ(1, τ) σ(2, τ), σ(3, τ)

σ(3, τ) + β + 1

z

σ(0, τ), . . . , σ(3, τ)

σ(3, τ) + 2β + 2 σ(3, τ) + 2β + 2σ(3, τ) + 2β + 2σ(3, τ) + 2β + 2

σ(3, 1) + β + 1

σ(3, τ) + β + 1

σ(3, τ) + β + 1, σ(3, τ) + 2β + 2

σ(3, τ) + 2β + 2

σ(3, τ) + 2β + 2

σ(3, τ) + 2β + 2

σ(3, τ) + 2β + 2

σ(3, τ) + 2β + 2

σ(3, τ) + 2β + 2

σ(3, τ) + 2β + 2

σ(3, τ) + 2β + 2

vloop1, . . . , σ(p− 1, τ)

Figure 5.2: Example of the OR-cross-composition of Theorem 5.6 for p = 4 input in-
stances, where time-edges between vertex sets with the same label are illustrated by
one time-edge. The selector paths of the departure gadget are dash-dotted (orange), the
selector path of the arrival gadget are dashed (blue) and the controller paths are dotted.

1, 1) + β + 1), where `i,x ∈ Li,x for all i ∈ {1, . . . , q} and x ∈ {0, 1}. We call Pi a
selector path. In Figure 5.2, the selector paths of the departure gadget are dash-dotted
(orange). Furthermore, Pj and Pi are vertex-disjoint if i 6= j, where j, i ∈ {1, . . . , q}.
Besides, |Ci| > k′ and therefore cannot be contained in a β-bounded (s′, z′)-separator
of Gd. Hence, for each i ∈ {1, . . . , q} one of the selection vertex sets Li,0 or Li,1 must
be in a β-bounded (s′, z′)-separator.

Moreover, there is no β-bounded (s′, z′)-path P ′ which is not equal to a Pi, where i ∈
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{1, . . . , q}. This is the case because all time-edges which are incident with z′ are labeled
with σ(p− 1, 1) + β + 1 and all other labels in the departure gadget are labeled with at
most σ(p− 1, 1). Since, σ(p− 1, 1) + β + 1− σ(p− 1, 1) > β, no β-bounded (s′, z′)-path
in Gd uses a time-edge labeled below σ(p− 1, 1) + β + 1.

We denote the negation of b(j, i) by b(j, i) = 1 − b(j, i), where b(j, 1), . . . , b(j, q) is
the binary encoding of j ∈ {0, . . . , p − 1}. Thus, there is a β-bounded (s′, z′)-separa-
tor S(d)j =

⋃q
i=1 Li,b(j,i) of size q · (k + 1) of Gd and in total there are 2q = p different β-

bounded (s′, z′)-separator of size at most q·(k+1) in the departure gadget, where d in S(d)j
is just a symbol to denote that this is a β-bounded (s′, z′)-separator in the departure
gadget Gd. Note that each of these 2q = p β-bounded (s′, z′)-separator in Gd are of size
exactly q · (k + 1). This will be helpful to select an instance.

Claim 5.7. Let vq+1 ∈ Cq+1 and j ∈ {0, . . . , p− 1}. Then Gd − S
(d)
j admits

(i) a β-bounded (s′, vq+1)-path with arrival time σ(j, 1), and

(ii) no β-bounded (s′, vq+1)-path with arrival time at most σ(j, 1)− 1.

For now, assume that this claim holds. We will prove it directly after we completed
the current proof under the assumption that Claim 5.7 holds.

Arrival gadget. Next, we introduce the arrival gadget Ga = (Va, Ea, σ(p−1, τ)+β+1).
It ensures that a β-bounded (s, z)-path in G has at most a specific arrival time. In the
example of Figure 5.2 the arrival gadget is the lower part of the figure. The vertex set Va
consists of q+1 vertex sets D1, . . . , Dq+1, the special vertices s′, z′, and 2q selection vertex
sets R1,0, R1,1, . . . , Rq,0, Rq,1, where Di contains k′ + 1 vertices and Ri,x contains k + 1
vertices. Let wi ∈ Di and wq+1 ∈ Dq+1. There are time-edges

({wi, rq−(i−1),b(j,q−(i−1))}, σ(j, τ)), ({rq−(i−1),b(j,q−(i−1)), wi+1}, σ(j, τ)),

({wq+1, z′}, σ(j, τ)) ∈ Ea,

where rq−(i−1),0 ∈ Rq−(i−1),0 and rq−(i−1),1 ∈ Rq−(i−1),1 for all j ∈ {0, . . . , p − 1}
and all i ∈ {1, . . . , q}, Furthermore, there are time-edges ({s′, ri,0}, σ(p − 1, τ) + β +
1), ({ri,0, ri,1}, σ(p− 1, τ) + β + 1), ({ri,1, z′}, σ(p− 1, τ) + β + 1) ∈ Ea, where ri,0 ∈ Ri,0
and ri,1 ∈ Ri,1 for all i ∈ {1, . . . , q}. Notice that a vertex in Ri,0 has a time-edge to all
vertices in Ri,1 and vice versa, where i ∈ {1, . . . , q}.

Note, in the contrast to the departure gadget in the arrival gadget, a β-bound-
ed (w1, z′)-path visits at first a vertex from the selection vertex sets for the least signifi-
cant bit (Rq,0 or Rq,1) and move towards the most significant bit (R1,0 or R1,1) The arrival
gadget has the same size as the departure gadget. Hence, |Va| = |Vd| and |Ea| = |Ed|.

Similar to the departure gadget, we observe that there are 2q = p many β-bound-
ed (s′, z′)-separators of size at most q · (k + 1) in Ga and that each of same has exactly
the size of q · (k + 1). We denote the j-th β-bounded (s′, z′)-separator in Ga by S

(a)
j =⋃q

i=1Ri,b(j,i), where j ∈ {0, . . . , p− 1}.

Claim 5.8. Let w1 ∈ D1 and j ∈ {0, . . . , p− 1}. Then Ga − S(a)j admits
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(i) a β-bounded (w1, z′)-path with departure time σ(j, τ), and

(ii) no β-bounded (w1, z′)-path with departure time at least σ(j, τ) + 1.

For now, assume that this claim holds. We will prove it, as well as Claim 5.7, after
we completed the current proof under the assumption that Claim 5.8 holds.

Construction. Next, we construct G = (V̂ , Ê, τ̂). The maximum time-edge label
is τ̂ = σ(p − 1, τ) + 2β + 2 and the maximum size of any β-bounded (s′, z′)-separa-
tor is k′ := 2q · (k + 1) + k. The vertices are V̂ := Vd ∪ Va ∪ (V \ {s, z}) ∪ {vloop}. Note
that Vd ∩ Va = {s′, z′} and that

|V̂ | = |Va|+ |Vb| − 2 + |V | − 2 + 1

= |Va|+ |Vb|+ |V | − 3

= 2
[
2 + (q + 1) · (k′ + 1) + 2q · (k + 1)

]
+ |V | − 3

= 4 + 2(q + 1) · (k′ + 1) + 4q · (k + 1) + |V | − 3

= 4 + 2(q + 1) · (2q · (k + 1) + k + 1) + 4q · (k + 1) + |V | − 3

= 2(log(p) + 1) · (2 log(p) · (k + 1) + k + 1) + 4 log(p) · (k + 1) + |V |+ 1

¬ 2(log(p) + 1) · (2 log(p) · (|V |+ 1) + |V |+ 1) + 4 log(p) · (|V |+ 1) + |V |+ 1

Recall that for each j ∈ {0, . . . , p−1} we have a time-edge set Êj such that (e, t) ∈ Ej ⇔
(e, σ(j, t)) ∈ Êj . Let Êj \ {s, z} := {({v, w}, t ∈ Êj | v, w ∈ V \ {s, z}}. The time-edge set
of G is

Ê := {({s′, `i,0}, τ̂), ({`i,0, ri,1}, τ̂), ({ri,1, z′}, τ̂) | `i,0 ∈ Li,0, ri,1 ∈ Ri,0, i ∈ {1, . . . , q}}
∪ {({s′, `i,1}, τ̂), ({`i,1, ri,0}, τ̂), ({ri,0, z′}, τ̂) | `i,1 ∈ Li,1, ri,0 ∈ Ri,0, i ∈ {1, . . . , q}}
∪ {({vq+1, v}, σ(j, t)) | ({s, v}, t) ∈ Ej , vq+1 ∈ Cq+1}
∪ {({v, w1}, σ(j, t)) | ({v, z}, t) ∈ Ej , w1 ∈ D1}
∪ {({w1, vloop}, t) |w1 ∈ D1 and t ∈ {1, . . . , σ(p− 1, τ)}}

∪
p⋃
j=1

(Êj \ {s, z}) ∪ Ed ∪ Ea

Here, we capture the intent of each part of Ê. The first two time-edges sets

{({s′, `i,0}, τ̂), ({`i,0, ri,1}, τ̂), ({ri,1, z′}, τ̂) | `i,0 ∈ Li,0, ri,1 ∈ Ri,0, i ∈ {1, . . . , q}}, and

{({s′, `i,1}, τ̂), ({`i,1, ri,0}, τ̂), ({ri,0, z′}, τ̂) | `i,1 ∈ Li,1, ri,0 ∈ Ri,0, i ∈ {1, . . . , q}}

ensure that S(d)j is the β-bounded (s′, z′)-separator of the departure gadget Gd in G if

and only if S(a)j is the β-bounded (s′, z′)-separator of arrival gadget Ga in G. For ev-
ery i ∈ {1, . . . , q} and x ∈ {0, 1} there is a β-bounded (s, z)-path Pc where V (Pc) =
{s′, `i,x, ri,|x−1|, z′}, where `i,x ∈ Li,x and ri,|x−1| ∈ Ri,|x−1|. We call Pc a controller path.
In Figure 5.2, controller paths are dotted. The sets {({vq+1, v}, σ(j, t)) | ({s, v}, t) ∈
Ej , vq+1 ∈ Cq+1} and {({v, w1}, σ(j, t)) | ({v, z}, t) ∈ Ej , w1 ∈ D1} replace s and z
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with Cq+1 and D1, respectively. The sets together with
⋃p
j=1(Êj \ {s, z}) are the time-

edges of the instance I0, . . . , Ip−1. The sets Ed and Ea are the time-edges from the depar-
ture and arrival gadgets. Observe that all time-edges labeled with at least σ(j, 1) and at
most σ(j, τ) correspond to the input instance Ij . The time-edge set {({w1, vloop}, t) |w1 ∈
D1 and t ∈ {1, . . . , σ(p − 1, τ)}} ensures that for each β-bounded (vq+1, w1)-path with
arrival time t in G there is a β-bounded (vq+1, w1)-path with arrival time t′, where t′ ∈
{t+ 1, . . . , σ(p− 1, τ)}, vq+1 ∈ Cq+1 and w1 ∈ D1.

Note that |Ê| ∈ O(6q · (k + 1) + σ(p − 1, τ) + |Emax| + k · |V |), where |Emax| is the
maximum size of the time-edge set of an instance I0, . . . , Ip−1.

Correctness. We claim that there is a j ∈ {0, . . . , p− 1} such that Ij is a yes-instance
if and only if Ô is a yes-instance.

⇒: Let j ∈ {0, . . . , p − 1} and S ⊆ V \ {s′, z′} be a β-bounded (s, z)-separator of size
at most k in Gj . Set S′ := S ∪ S(d)j ∪ S

(a)
j . Clearly, |S′| ¬ 2q · (k + 1) + k. We already

know that S(d)j is a β-bounded (s′, z′)-separator of Gd in G and that S(a)j is a β-bound-
ed (s′, z′)-separator of Ga in G. Observe that no controller path exist in G− S′ because
of S(d)j and S

(a)
j . From Claim 5.7, we know that there is a β-bounded (s′, vq+1)-path

in G − S′ with arrival time σ(j, 1) and there is no β-bounded (s′, vq+1)-path in G − S′
with arrival time at most σ(j, 1)− 1, where vq+1 ∈ Cq+1. From Claim 5.8, we know that
there is a β-bounded (w1, z′)-path in G−S′ with departure time σ(j, τ) and there is no β-
bounded (w1, z′)-path in G−S′ with departure time at most σ(j, τ)−1, where w1 ∈ D1.
Since S is a β-bounded (s, z)-separator in Gj , we can conclude that there is no β-bound-
ed (vq+1, w1)-path in G − S′ with departure time at least σ(j, 1) and arrival time at
most σ(j, τ). Hence, S′ is a β-bounded (s′, z′)-separator in G and Ô a yes-instance.

⇐: Now let I0, . . . , Ip−1 be no-instances and assume towards a contradiction that there
is a β-bounded (s′, z′)-separator S′ of size at most k′ in G. The departure gadget Gd and
arrival gadgetGa is a temporal subgraph ofG. Thus, no β-bounded (s′, z′)-path inGd−S′

and Ga−S′ exist. Hence, there are j, j′ ∈ {0, . . . , p−1} such hat S(d)j , S
(a)
j′ ⊆ S′. Let Pc be

a controller path for an i ∈ {1, . . . , q} such that V (Pc) = {s′, `i,x, ri,|x−1|, z′}, where `i,x ∈
Li,x and ri,|x−1| ∈ Ri,|x−1| for x ∈ {0, 1}. Therefore, either `i,x ∈ S′ or ri,|x−1| ∈ S.
Since there is a controller path for every vertex pair in Li,x × Ri,|x−1|, either Li,x ⊆ S′

or Ri,|x−1| ⊆ S′, where i ∈ {1, . . . , q} and x ∈ {0, 1}. Thus, j = j′. Let S = S′ \ (S(a)j ∪
S
(d)
j ). Observe that |S| ¬ k and hence there is no Li,x and no Ri,x such that Li,x ⊆
S or Ri,x ⊆ S. Consequently, there is β-bounded (s′, vq+1)-path P1 in G − S′ with
arrival time σ(j, 1) and there is β-bounded (w1, z′)-path P2 with departure time σ(j, τ),
where vq+1 ∈ Cq+1 and w1 ∈ D1. Since S(d)j ∩ V = ∅ and S

(a)
j′ ∩ V = ∅, we know that S

is a β-bounded (vq+1, w1)-separator of G and therefore S is also a β-bounded (s, z)-sep-
arator of Gj . This contradicts Ij being a no-instance.

It remains to be shown that the claims are correct.

Proof of Claim 5.7. We keep the notations and definitions from the proof of Theo-
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rem 5.6. We prove (i) by stating the β-bounded (s′, vq+1)-path

Pj = ({s′, v1}, σ(j, 1)), ({v1, `1,b(j,1)}, σ(j, 1)), ({`1,b(j,1), v2}, σ(j, 1)), . . . ,

({vq, `q,b(j,q)}, σ(j, 1)), ({`q,b(j,q), vq+1}, σ(j, 1))

with arrival time σ(j, 1) in Gd − S
(d)
j , where vi ∈ Ci, vq+1 ∈ Cq+1, `i,x ∈ Li,x for i ∈

{1, . . . , q} and x ∈ {0, 1}. Observe that Pj visits a vertex from each selection vertex set

not in S
(d)
j .

To show (ii), assume towards a contradiction that P ′ is a β-bounded (s′, vq+1)-path

in Gd − S
(d)
j with arrival time at most σ(j, 1) − 1, where vq+1 ∈ Cq+1. Note that all

time-edges (e, t) in the time-edges set of the departure gadget Ed, either t = σ(p −
1, 1) + β + 1 or there is a j′ ∈ {0, p − 1} such that t = σ(j′, 1). Furthermore, note that
there is no β-bounded (s′, vq+1)-path with a time-edge which is also in a controller path,
because all time-edges ({vq+1, v}, t) it holds that t ¬ σ(p − 1, τ) and all time-edges in
a controller path are labeled by σ(p − 1, τ) + 2β + 2. Thus there is a j′ < j such that
the arrival time of P ′ is σ(j′, 1). We know from the construction of Gd that V (P ′) \
({s′, vq+1}∪C1∪· · ·∪Cq) = L1,b(j,1)∪· · ·∪Lq,b(j,q) and that P ′ must be of length 2q+ 1.
Let P ′ = (e1, σ(j′1, 1)), . . . , (e2q+1, σ(j′2q+1, 1)). Since P ′ is a β-bounded (s′, vq+1)-path
with arrival time σ(j′, 1), we know 1 ¬ σ(j′1, 1) ¬ · · · ¬ σ(j′2q+1, 1) = σ(j′, 1). The β-
bounded (s′, vq+1)-path P ′ visits, as well as Pj , one vertex from each selection vertex
sets L1,b(j,1), . . . , Lq,b(j,q), because all other selection vertex sets are in the β-bound-

ed (s′, z′)-separator S(d)j . From the construction of Gd, we know that there must be a
sequence σ(j′i1 , 1) ¬ · · · ¬ σ(j′iq , 1), where 1 ¬ i1 ¬ · · · ¬ iq ¬ 2q+ 1, such that the time-
edge (eiu , σ(j′iu , 1)) is incident with `u,b(j,u) ∈ Lu,b(j,u), for all u ∈ {1, . . . , q}. Note that
the u-th bit of the binary encoding of j is equal to the u-th bit of the binary encoding
of j′iu (b(j, u) = b(j′iu , u)), otherwise (eiu , σ(j′iu , 1)) is not incident with `u,b(j,u) ∈ Lu,b(j,u).

We are about to do an induction over q. Observe, as base case, that j′i1 < j and that j′i1
and j have the most significant bit in common (b(j, 1) = b(j′i1 , 1)). Hence, j−j′i1 < 2q−1−
1. Now let j−j′iu−1 < 2q−(u−1)−1. Since j′iu−1 ¬ jiu , it must hold that j−j′iu < 2q−u−1−1
Furthermore, we already observed that b(j, u) = b(j′iu , u). Thus, j − j′iu < 2q−u − 1. It
follows that j− j′iq < 2q−q− 1 = 0. This is a contradiction. Hence, P ′ does not exist.

Proof of Claim 5.8. We keep the notations and definitions from the proof of Theo-
rem 5.6. We prove (i) by stating the β-bounded (w1, z′)-path

Pj = ({w1, rq,b(j,q)}, σ(j, τ)), ({rq,b(j,q), w2}, σ(j, τ)),

({w2, rq−1,b(j,q−1)}, σ(j, τ)), ({rq−1,b(j,q−1), w3}, σ(j, τ)), . . . ,

({wq, r1,b(j,1)}, σ(j, τ)), ({r1,b(j,r), wq+1}, σ(j, τ)),

({wq+1, z′}, σ(j, τ))

with departure time σ(j, τ) in Ga − S(a)j , where wq+1 ∈ Dq+1 ,wi ∈ Di and ri,x ∈ Ri,x
for i ∈ {1, . . . , q} and x ∈ {0, 1}. Observe that Pj is visiting a vertex of each selection

vertex sets not in S
(a)
j .

To show (ii), assume towards a contradiction that P ′ is a β-bounded (w1, z′)-path
in Ga − S(a)j with departure time at least σ(j, τ) + 1. Note that all time-edges (e, t) in
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the time-edges set of the arrival gadget Ea, either t = σ(p − 1, τ) + β + 1 or there is
a j′ ∈ {0, p − 1} such that t = σ(j′, τ). Furthermore, note that there is no β-bound-
ed (w1, z′)-path with a time-edge which is also in a controller path, because for all time-
edges ({w1, v}, t) it holds that t ¬ σ(p− 1, τ) and all time-edges in a controller path are
labeled by σ(p− 1, τ) + 2β+ 2. Thus there is a j′ > j such that the departure time of P ′

is σ(j′, τ). We know from the construction ofGa that V (P ′)\({z′}∪D1∪· · ·∪Dq∪Dq+1) =⋃q
i=1Ri,b(j,i) and that P ′ must be of length 2q + 1.

Let P ′ = (e1, σ(j′1, τ)), . . . , (e2q+1, σ(j′2q+1, τ)). Since P ′ is a β-bounded (w1, z′)-path
with departure time σ(j′, τ), we know j′ ¬ j′1 ¬ · · · ¬ j′2q+1. The β-bounded (w1, z′)-
path P ′ visits, as well as Pj , a vertex of each selection vertex set Rq,b(j,q), . . . , R1,b(j,1),

because all other selection vertex sets are in the β-bounded (s′, z′)-separator S(a)j .
From the construction of Ga, we know that there must be a sequence j′i1 ¬ · · · ¬ j

′
iq ,

where 1 ¬ i1 ¬ · · · ¬ iq ¬ 2q + 1, such that the time-edge (eiu , σ(j′iu , τ)) is inci-
dent with rq−(u−1),b(j,q−(u−1)), for all u ∈ {1, . . . , q}. Note that b(j, q − (u − 1)) =
b(j′iu , q − (u − 1)), otherwise (eiu , σ(j′iu , τ)) is not incident with rq−(u−1),b(j,q−(u−1)) ∈
Rq−(u−1),b(j,q−(u−1)) which is not according to the construction.

We are about to do an induction over q. Observe, as base case, that j < j′iq and that j′iq
and j have the most significant bit in common (b(j, 1) = b(j′i1 , 1)). Hence, j′iq − j <

2q−1 − 1. Now let j′iq−((u+1)−1) − j < 2q−((u+1)−1) − 1. Since j′iq−(u−1) ¬ j′iq−((u+1)−1) ,

it must hold that j′iq−(u−1) − j < 2q−((u+1)−1) − 1. Furthermore, we already observed

that b(j, q − (u − 1)) = b(j′iu , q − (u − 1)). Thus, j′iq−(u−1) − j < 2q−u − 1. It follows

that j − j′i1 < 2q−q − 1 = 0. This is a contradiction. Hence, P ′ does not exist.



Chapter 6

Conclusion and Outlook

We studied the computational complexity of (Non-)Strict (s, z)-Separation and β-
Bounded (s, z)-Separation with respect to the parameters solution size k, maximum
label τ , underlying treewidth tw↓, layer treewidth twmax, number |V | of vertices, and
maximum number |Vc| of vertices in a connected component over all layers.

We showed that Non-Strict (s, z)-Separation is polynomial-time solvable for τ =
1 and turns NP-hard if τ ­ 2, while Strict (s, z)-Separation is polynomial-time
solvable for τ ¬ 4 and becomes NP-hard if τ ­ 5. However, Strict (s, z)-Separation
on temporal planar graphs is fixed-parameter tractable when parameterized by τ . This
result is based on a fixed-parameter algorithm for the (Non-)Strict (s, z)-Separation
when parameterized by τ + tw↓.

In terms of exact solutions a fixed-parameter algorithm for (Non-)Strict (s, z)-
Separation on temporal planar graphs is the best we can (presumably) hope for be-
cause we showed that this problem is NP-hard on temporal planar graphs. Here, we
settled an open question of Fluschnik et al. [Flu+16] by showing that Length-Bound-
ed (s, z)-Separation is NP-hard on planar graphs.

Algorithm 1 is a simple depth-first search tree algorithm which solves Strict (s, z)-
Separation in O(τk+3 · |V |+ |E|) time. One can observe that this algorithm performs
well for small values of parameter k. Hence, this algorithm could be of practical interest
since in many applications the goal is to keep the value of k as small as possible.

Note that there is also a variation of Algorithm 1 which solves Non-Strict (s, z)-
Separation but, unfortunately, this is not a fixed-parameter algorithm which respect
to k + τ . A key argument in the running time estimation of Algorithm 1 for Strict
(s, z)-Separation is that the length of strict (s, z)-paths is at most τ . This does not
hold for non-strict (s, z)-paths. However, we managed to upper-bound the exponential
part of the running time of Algorithm 1 for Non-Strict (s, z)-Separation by the
parameters k+τ+ |Vc| and |V |. Consequently, Non-Strict (s, z)-Separation is fixed-
parameter tractable when parameterized by k+ τ + |Vc|, as well as when parameterized
by |V |. Therefore, we think that Algorithm 1 is of practical interest, even for applications
of Non-Strict (s, z)-Separation because in many settings one observes a network
with a constant number of vertices over a long amount of time.

Furthermore, we spotted that Non-Strict (s, z)-Separation is fixed-parameter
tractable when parameterized by k+ τ + twmax. This results is based on a framework of
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Mans and Mathieson [MM14] to show fixed-parameter tractability by expressing a prob-
lem for dynamic graphs in monadic second-order logic. We transferred this framework
to temporal graphs.

Moreover, (Non-)Strict (s, z)-Separation becomes fixed-parameter intractable
if one drops the parameter k or τ from the latter algorithm. In particular, we showed
that (Non-)Strict (s, z)-Separation is W[1]-hard when parameterized by k, even
if twmax = 1, as well as it is still NP-hard, if twmax = 1 and τ = 6.

We proved that, unless NP ⊆ coNP/poly, (Non-)Strict (s, z)-Separation does
not admit a polynomial kernel when parameterized by k + τ + tw↓+∆, where ∆ is the
maximum degree of the temporal graph. Note that twmax ¬ tw↓.

The most general path model of temporal graphs we studied is the β-bounded
path model. We showed that β-Bounded (s, z)-Separation is W[2]-hard when pa-
rameterized by k and fixed-parameter tractable when parameterized by |V |. But un-
less NP ⊆ coNP/poly, β-Bounded (s, z)-Separation does not admit a polynomial
kernel when parameterized by |V |. The latter result shows, in sharp contrast to almost
every problem on standard graphs, that we can not give a polynomial bound on the
number of time-edges in |V | for β-Bounded (s, z)-Separation.

Future research opportunities. First, we summarize further research opportunities
we have already mentioned in this work. It is open whether

• Non-Strict (s, z)-Separation is fixed-parameter tractable when parameterized
by k + τ ,

• (Non-)Strict (s, z)-Separation is fixed-parameter tractable when parameter-
ized by tw↓,

• (Non-)Strict (s, z)-Separation admits polynomial kernel when parameterized
by |V |, and

• Non-Strict (s, z)-Separation on temporal planar graphs is fixed-parameter
tractable when parameterized by τ .

It could be fruitful to study approximation algorithms of (Non-)Strict (s, z)-
Separation. One might have already observed that Observation 2.10 can be formu-
lated as a τ -approximation algorithm for (Non-)Strict (s, z)-Separation. An α-
approximation is a polynomial-time algorithm which produces a solution whose value
is within a factor of α of an optimum solution. To the best of our knowledge this is
the only approximation algorithm known for (Non-)Strict (s, z)-Separation. No-
tably, the closely related Length-Bounded (s, z)-Separation and Length-Bound-
ed (s, z)-Cut have already some approximation algorithms as well as inapproximability
results [Bai+10; Kol17].

In this work, we focused on the strict and non-strict path model for temporal graphs
and later, in Chapter 5, we started to discuss the computational complexity of the more
general model of β-bounded paths. One can extend this line of research by studying
further parameters, as well as the notion of (α, β)-bounded (s, z)-paths (see Chapter 2
for a definition).

A major difficulty in designing fixed-parameter algorithms for (Non-)Strict (s, z)-
Separation seems to be that there is not necessarily a structural relation between two
consecutive layers. But in many applications the layers i and i+1 of the temporal graph
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are similar. For example, suppose that the temporal graph is a road network and an
edge is not present in layer i if the corresponding street is closed for maintenance work
at day i. In these applications the layers i and i + 1 of a temporal graph differ only in
few edges. Hence, one might be interested in fixed-parameter algorithms with respect to
the maximum edit distance between two consecutive layers.

Kempe, Kleinberg, and Kumar [KKK02] showed that the maximum number of
vertex-disjoint non-strict (s, z)-paths is equal to the minimum size of a non-strict (s, z)-
separator if the underlying graph excludes a fixed minor. But there are temporal graphs
which do not exclude the fixed minor of Kempe, Kleinberg, and Kumar [KKK02] and
the maximum number of vertex-disjoint non-strict (s, z)-paths is equal to the minimum
size of a non-strict (s, z)-separator–for example, all temporal graphs with maximum la-
bel τ = 1. We would like to have an exact characterization for the class of temporal
graphs where the maximum number of vertex-disjoint non-strict (s, z)-paths is equal
to the minimum size of a non-strict (s, z)-separator. One could try to extend this line
of research by defining a temporal minor and trying to express the class of temporal
graphs where the maximum number of vertex-disjoint non-strict (s, z)-paths is equal to
the minimum size of a non-strict (s, z)-separator by a finite set of temporal minors.

Finally, an aspect of separators in temporal graphs which is not studied in this work
is that one might want to remove layers instead of vertices to separate two vertices of a
temporal graph. We think that the minimum label cut problem studied by Dutta et al.
[Dut+16], Fellows, Guo, and Kanj [FGK10], and Zhang et al. [Zha+11] is related to this
scenario.
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