
Technische Universität Berlin
Electrical Engineering and Computer Science
Institute of Software Engineering and Theoretical Computer Science
Algorithmics and Computational Complexity (AKT)

Feedback Sets in Temporal Graphs

Masterarbeit

von Roman Haag

zur Erlangung des Grades
”
Master of Science“ (M. Sc.)

im Studiengang Computer Science (Informatik)

Erstgutachter: Prof. Dr. Rolf Niedermeier
Zweitgutachter: Prof. Dr. Markus Brill

Betreuer: Hendrik Molter, Malte Renken, Prof. Dr. Rolf Niedermeier

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie
ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten
Quellen und Hilfsmittel angefertigt habe.

Die selbstständige und eigenständige Anfertigung versichert an Eides statt:

Ort, Datum Unterschrift

3

Abstract

In this thesis, we define two temporal analogues to the well-known Feedback Edge
Set problem and study their parameterized complexity. Our work is based on an estab-
lished model called a temporal graph which consists of a set of vertices V , a lifetime τ ∈ N,
and set of time-labeled edges E ⊆

(
V
2

)
× [τ]. The underlying graph of a temporal graph

is the static graph obtained by removing all time-labels and keeping only one edge from
every multi-edge. A sequence of time-labeled edges that form a closed walk in the under-
lying graph is called a temporal tour, if its time-labels are strictly increasing (strict case)
or non-decreasing (non-strict case). We distinguish between two variants to define feed-
back sets, i.e., sets whose deletion makes the graph tour-free: time-edge deletion removes
an edge at one specific point in time and connection deletion removes all edges between
a pair of vertices. We will call the corresponding problems of finding such deletion sets
with minimum cardinality (Strict) Temporal Feedback Edge Set ((S)TFES)
and (Strict) Temporal Feedback Connection Set ((S)TFES), respectively.

In contrast to the polynomial-time results known for the static case, we show that
(S)TFES and (S)TFCS are NP-hard and presumably do not admit an XP algorithm
when parameterized by the lifetime τ of the temporal graph. For the parameter solu-
tion size k we prove W[1]-hardness for all variants. Combining both parameters, we
achieve a positive result and present a simple search tree algorithm solving the strict
variants STFES and STFCS in O(τ k · |V | · |E|2) time. Our main algorithmic contribu-

tion is a dynamic program which solves STFES in O(22|V |2 · |V |3 · τ) time and TFES in

O(23|V |2 · |V |2 · τ) time, thus proving the fixed-parameter tractability of (S)TFES for the
parameter |V | (a result which is obtained trivially for (S)TFCS).

5

Zusammenfassung

In dieser Arbeit definieren wir zwei temporale Varianten des bekannten Feedback
Edge Set Problems und studieren ihre parameterisierte Komplexität. Wir arbeiten mit
dem als temporaler Graph bekannten Modell, welches aus einer Knotenmenge V , einer
Lebensdauer τ ∈ N und einer Zeitkantenmenge E ⊆

(
V
2

)
× [τ] besteht. Der unterliegende

Graph eines temporalen Graphen ist der statische Graph, den man erhält, wenn man
die Zeitstempel der Zeitkanten entfernt und von jeder entstandenen Mehrfachkante nur
eine Kante behält. Eine Sequenz von Zeitkanten, die einen geschlossenen Weg im unter-
liegenden Graphen bildet, nennen wir eine temporale Tour, wenn ihre Zeitstempel strikt
ansteigend (strikter Fall) oder nicht fallend (nicht-strikter Fall) sind. Um Feedback Sets,
also Mengen deren Entfernung alle temporalen Touren zerstört, zu definieren, unterschei-
den wir zwei Varianten der Kantenentfernung: Zeitkantenentfernung löscht eine einzelne
Kante an einem bestimmten Zeitpunkt und Verbindungsentfernung löscht alle Kanten
zwischen einem Knotenpaar. Wir nennen die Probleme, entsprechende Entfernungs-
mengen mit minimaler Größe zu finden, (Strict) Temporal Feedback Edge Set
((S)TFES) und (Strict) Temporal Feedback Connection Set ((S)TFES).

Entgegengesetzt zu den bekannten Polynomialzeitergebnissen für den statischen Fall
zeigen wir, dass (S)TFES und (S)TFCS NP-schwer sind und vermutlich keinen XP-
Algorithmus für den Parameter “Lebensdauer τ” besitzen. Für den Parameter “Lösungs-
größe k” beweisen wir W[1]-Härte für alle Varianten. Für die Kombination aus diesen
beiden Parametern erhalten wir ein positives Ergebnis und präsentieren einen einfachen
Suchbaumalgorithmus, der die strikten Varianten STFES und STFCS in der Zeit O(τ k ·
|V | · |E|2) löst. Der aus algorithmischer Sicht wichtigste Beitrag unserer Arbeit ist ein

dynamisches Programm, das STFES in der Zeit O(22|V |2 · |V |3 · τ) und TFES in der Zeit

O(23|V |2 · |V |2 · τ) löst, was beweist, dass (S)TFES “fixed-parameter tractable” für den
Parameter |V | ist (für (S)TFCS ist dasselbe Ergebnis trivial).

7

Contents

1 Introduction 11
1.1 Related Work . 14
1.2 Our Contributions . 15

2 Preliminaries 19
2.1 Static and Temporal Graphs . 19
2.2 Parameterized Complexity . 20

3 Basic Observations 23

4 Computational Hardness Results 25
4.1 NP-hardness and Parameterization by Lifetime of the Graph 25
4.2 Parameterization by Solution Size . 29

5 Algorithmic Results 35
5.1 Parameterization by Solution Size and Parameters Related to Tour Length 35
5.2 Parameterization by Number of Vertices 36

6 Conclusion 43

Literature 45

9

1 Introduction

Computer scientists and mathematicians model network-like data as graphs which con-
sist of nodes, called vertices, and the connections between them, called edges. The
countless applications of this model (e.g., analysis of transportation and social networks)
have encouraged decades of research. However, many real-world networks are not static
but evolve over time. This leads to the study of temporal graphs whose edges are only
present at certain times, a property which occurs naturally in many applications such
as time schedules of transportation networks or communication data with time stamps.

We use an established temporal graph model (see e.g., [AF16; KKK02; MMS19; MS16;
Zsc+18]) where the vertex set V is fixed and each time-edge in the edge set E has a
discrete time-label t ∈ {1, 2, . . . , τ} where τ denotes the lifetime of the temporal graph.
Figure 1.1 shows a small example with four time layers (τ = 4). If we assume that this
temporal graph represents a schedule for a public bus transportation system, then we can
see that buses will be available, e.g., between stations a and b at 1 and 2 o’clock (t = 1, 2).
Informally speaking, a temporal tour in such a network is a time-respecting sequence
of edges starting and ending at the same vertex. For example, the graph in Figure 1.1
contains, among others, the temporal tours a→ b→ a and b→ a→ b, both starting at
t = 1 and ending at t = 2. Our main research topic is the search for small feedback sets,
i.e., sets of vertices or edges whose removal from the temporal graph destroys all tours.
In this work, we will consider the following three types of feedback sets.

Temporal feedback edge set. These sets contain time-edges, that is, connections be-
tween two specific vertices at a specific time. In the bus network example, this could
represent a road that is temporarily blocked (i.e., for one time slot t ∈ τ). The graph
in Figure 1.1 shows such a set as dashed lines in the layer representation in the bottom
row.

Temporal feedback connection set. These sets contain vertex pairs {v, w} which define
that all time-edges between v and w will be removed. In our example, this corresponds
to a permanently blocked road (i.e., for the lifetime of the temporal graph).

Temporal feedback vertex set. These sets contain vertices to be removed along with
all adjacent time-edges. In our example, such a set could represent bus stations that are
out of service during the lifetime of the temporal graph.

One motivation for the study of temporal feedback sets is the following application in
fraud detection: Consider the trading history of some product or trade good (e.g., stocks
of one company) given as a temporal graph. Here, the vertices are agents in the market
(i.e., buyers/sellers) and an edge between two agents with time label t represents a trade
between them on day t. If a sequence of trades forms a tour, then this might indicate a
common type of fraud: artificially increasing trade volume by buying your own goods via

11

1 Introduction

a b

cd

a b

cd

t = 1

a b

cd

t = 2

a b

cd

t = 3

a b

cd

t = 4

1, 2

2

3

2, 3
4

Figure 1.1: A temporal graph with time-labeled edges (top) and its four time layers
(bottom). The two dashed edges form a strict temporal feedback edge set of
minimal size.

intermediaries. From a computational perspective, occurrences of this can be detected
rather easily in O(|E|2 · |V |) time (as will be shown in Lemma 3.2). A more difficult
problem is to measure the amount of fraud, i.e., the number of transactions or agents
that, if removed, leave a graph without tours. These form temporal feedback sets of the
temporal graph.

In static graphs, feedback set problems have been extensively studied and have known
applications in circuit design [Joh75], program verification [Sha79], deadlock preven-
tion [WLS85], and Bayesian inference [BJG08]. Whenever the application contains a
temporal component (e.g., resource access times in deadlock prevention), including this
temporal data by considering the corresponding temporal feedback set problem might
provide additional insight. Analogously to static graphs, the size of the smallest solu-
tion is also an interesting structural parameter of a given temporal graph. For time-edge
deletion, we will call this parameter the temporal feedback edge number. When the ap-
plication implies that temporal tours are unwanted (as in the fraud detection example
above), the temporal feedback edge number gives us a measurement for the magnitude
of the problem. On the other hand, if tours represent desired connections as, e.g., in a
public transportation network, then the feedback edge number can serve as an indicator
for the robustness or fault tolerance of network.

Defining feedback set problems in temporal graphs is not straight-forward and in-
cludes a set of decisions with multiple viable choices depending on the application. We
now introduce and motivate these choices and the resulting problem variants (formal

12

definitions are presented in Chapter 2).
First, we note that we only consider undirected temporal graphs, that is, we assume

that each time-edge represents a connection available in both directions. However, this
assumption does not hold for many applications (e.g., for most transportation networks).
While this simplification constitutes a limitation of our model, it is commonly used as
starting point for research as the directed problem variants are often harder to solve.
E.g., in static graphs, the (directed) Feedback Arc Set Problem is NP-hard [Kar72] while
the undirected variant can be solved in polynomial time by computing a spanning tree.

Two temporal walk models. Temporal tours are a special case of the more general
concept of temporal walks which are time-respecting connections between two vertices.
Throughout this work, we will distinguish between the following two models for such
time-respecting connections. Strict temporal walks have strictly increasing time labels
on consecutive time-edges (an obvious requirement for, e.g., travel in a transportation
network). Non-strict temporal walks have non-decreasing time labels on consecutive
time-edges. This model can be used whenever the traversal time per edge is very short
compared to the scale of the time dimension (e.g., sending messages in a communication
network or propagation of electric current in circuits). More complex variants also exist,
e.g., with individual traversal times for each time-edge and restrictions on the dwell time
in each vertex [Him18], but are not considered in this work.

A special type of temporal walks, called a temporal path, is often considered in research
(e.g., [AF16; KKK02; Zsc+18]). For paths, we have the additional requirement that all
vertices must be pairwise distinct. We will call the corresponding special case of a
temporal tour a temporal cycle. Comparing both models, we believe that temporal
tours represent real-world applications more faithfully than cycles. For instance, when
we consider a public transportation network, it is reasonable to assume that people
travel through the network towards some destination and then take the same route back
home (visiting the same vertices). In a market network, items might go back and forth
between owners due to miscalculations or unexpected price changes (or to commit fraud
as described above). However, most of our results also extend to temporal cycles and
we will discuss the required changes at the end of the corresponding proofs.

Problem variants. We will focus on finding temporal feedback edge sets and tem-
poral feedback connection sets (formalized in Chapter 2) of minimum cardinality, each
using both the strict and non-strict temporal walk model. We call the correspond-
ing problems (Strict) Temporal Feedback Edge Set and (Strict) Temporal
Feedback Connection Set, respectively.

(Strict) Temporal Feedback Edge Set - (S)TFES

Input: A temporal graph G = (V,E, τ) and k ∈ N.
Question: Is there a (strict) temporal feedback edge set E ′ of G with |E ′| ≤ k?

(Strict) Temporal Feedback Connection Set - (S)TFCS

Input: A temporal graph G = (V,E, τ) and k ∈ N.
Question: Is there a (strict) temporal feedback connection set C ′ of G with

|C ′| ≤ k?

13

1 Introduction

We chose not to include a formal analysis of temporal feedback vertex sets as this
problem is already NP-hard in static graphs [Kar72], but see Chapter 6 for a short
overview on how our results might be extended to the (Strict) Temporal Feedback
Vertex Set problem.

1.1 Related Work

To the best of our knowledge, the problems introduced above have not been studied
before. Agrawal et al. [Agr+18] study feedback vertex sets in α-edge-colored graphs, a
graph model where the edge set is partitioned into α color classes, and obtain anO∗(23αk)
time1 algorithm for the NP-hard α−Simultaneous Feedback Vertex Set problem.
While both edge-colored and temporal graphs consist of multiple edge layers connecting
a fixed vertex set, the ordering (over time) of these layers is only considered in tem-
poral graphs. More precisely, the cycles considered by α−Simultaneous Feedback
Vertex Set must exist in a single layer while temporal tours/cycles can stretch over
multiple layers.

Our work falls into the general context of analyzing temporal variants of well-studied
static graph problems. Among the first works in this category is the research on temporal
analogues of Menger’s Theorem by Berman [Ber96]. For static graphs, this theorem
states that, between any pair of vertices, the size of a minimum cut set is equal to the
maximum number of disjoint paths and holds for both vertex and edge cut sets. Cut
set problems are closely related to feedback set problems as both ask for optimal ways
to destroy certain connections in a graph (making cut set problems good candidates to
reduce from when attempting to prove computational hardness). Berman [Ber96] showed
that the time-edge version of Menger’s Theorem also holds in temporal graphs while
the vertex version does not. Continuing the work on temporal analogues of Menger’s
Theorem, Kempe, Kleinberg, and Kumar [KKK02] showed that the vertex version of the
theorem does hold, “in the spirit of Kuratowski’s theorem”, in temporal graphs that do
not contain a subdivision of a specific temporal graph. For such graphs, they provided a
polynomial-time algorithm computing the maximum number of time-respecting vertex-
disjoint paths between two vertices. They further showed that the Temporal (s, z)-
Separation problem, which asks for a minimum cardinality vertex separator between
two vertices s and z, is NP-hard for τ ≥ 12. Zschoche et al. [Zsc+18] later completed the
analysis of this boundary by showing NP-completeness for τ ≥ 5 and polynomial-time
solvability for τ < 5 for the strict problem variant and NP-completeness for τ ≥ 2 for
the non-strict variant.

For static graphs, it is well known that removing a minimum size feedback edge set
from the graph results in a spanning tree. Given this duality, it is natural to compare
temporal feedback edge sets to the temporal analogue of a spanning tree. This analogue
is known as the minimum2 temporally connected (sub)graph, which is a graph containing

1The O∗-notation suppresses polynomial time factors. The variable k denotes the size of the feedback
vertex set (solution size).

2After removing any time-edge, the graph is not temporally connected anymore.

14

1.2 Our Contributions

a time-respecting path from each vertex to every other vertex. The concept was first
introduced by Kempe, Kleinberg, and Kumar [KKK02], together with an open question
on the maximum density of time-edges that is possible in an n-vertex minimum tempo-
rally connected graph. The question was resolved by Axiotis and Fotakis [AF16] who
showed that the maximum number of time-edges is in Ω(n2). Additionally, both Axiotis
and Fotakis [AF16] and Akrida et al. [Akr+15] provide proofs showing that, given a
temporal graph, computing a minimum temporally connected subgraph is APX-hard
(lower and uppers bound on the approximation ratio are presented in [AF16]).

Further examples for the analysis of classic graph problems in the temporal setting
include works on the Traveling Salesman Problem by Michail and Spirakis [MS16], on the
Clique Problem by Himmel et al. [Him+17] and Viard, Latapy, and Magnien [VLM16],
an on the Vertex Cover Problem by Akrida et al. [Akr+18].

1.2 Our Contributions

The results presented in this thesis are divided into the two categories computational
hardness results (Chapter 4) and algorithmic results (Chapter 5).

On the topic of computational hardness, we obtain multiple results based on a reduc-
tion from 3-SAT to all four problem variants (Section 4.1). While the reduction shows
NP-hardness directly, the properties of the constructed temporal graph offer additional
implications on the parameterized complexity of the problems. More precisely, the con-
structed graph uses τ = 8 distinct time labels for the strict variants and τ = 3 labels
for the non-strict variants, showing that there can be no XP algorithm for the param-
eter lifetime τ of the graph, unless P = NP. The same argument holds if we consider
the parameter “maximum number of time-edges between any pair of vertices”, which
has the value 1 in the constructed graph. This also implies that the problems remain
NP-hard when restricted to simple temporal graphs, i.e., temporal graphs with at most
one time-edge between any pair of vertices. Based on the Exponential Time Hypothesis,
we derive an additional result stating that there is presumably no subexponential time
algorithm solving (S)TFES or (S)TFCS. In Section 4.2, we show that all four problem
variants are W[1]-hard when parameterized by the solution size k by reducing from the
problem Directed Multicut in DAGs. A key idea of our proof is that DAGs can
transformed into undirected temporal graphs with equivalent reachability. This is ac-
complished by using an acyclic ordering (also known as topological ordering) to add
time-labels to the edges in such a way that the direction of original arcs is preserved.

On the positive side (algorithmic results), we are able to show in Section 5.1 that all
problem variants are fixed-parameter tractable with respect to the combined parame-
ter L+ k where L is the maximum length of a minimal temporal tour, i.e., a tour that
does not contain any subtour. The result is based on a simple search tree algorithm:
For any temporal tour in the graph, we have to take one of its at most L edges into
the feedback edge/connection set, resulting in a search tree of size O(Lk). One obvious
upper bound for L is the number of vertices. For the strict problem variants, it is also
clear that L ≤ τ , giving us an FPT result for the combined parameter τ + k. Searching

15

1 Introduction

Table 1.1: Overview of our results for (Strict) Temporal Feedback Edge Set
(marked with *) and (Strict) Temporal Feedback Connection Set
(marked with **). Unmarked results apply to both variants. The parameters
k and τ denote the solution size and the lifetime of the temporal graph,
respectively. L denotes the maximum length of a minimal temporal tour.

Parameterization Complexity

Strict variant Non-strict variant

none NP-hard
[Thm. 4.1*/Cor. 4.2**]

NP-hard
[Cor. 4.3]

k W[1]-hard [Thm. 4.5] W[1]-hard [Thm. 4.5]

τ τ ≥ 8: NP-hard
[Thm. 4.1*/Cor. 4.2**]

τ ≥ 3: NP-hard
[Cor. 4.3]

k + L O(Lk · |V | · |E|2)
[Proposition 5.1]

O(Lk · |V | · |E|2)
[Proposition 5.1]

k + τ O(τ k · |V | · |E|2)
[Cor. 5.3]

open

|V | O(22|V |2 · |V |3 · τ)*
[Thm. 5.5*]

O(2
1
2
(|V |2−|V |) · |V | · |E|2)**

O(23|V |2 · |V |2 · τ)*
[Thm. 5.5*]

O(2
1
2
(|V |2−|V |) · |V | · |E|2)**

for additional upper bounds for L, we analyze the structure of the underlying graph, i.e.,
the static graph obtained by removing the time-labels and keeping only one edge from
every multi-edge. We show that L can be upper-bounded by a function of the vertex
cover number of the underlying graph, but not by a function of the feedback vertex num-
ber. In Section 5.2, we prove the fixed-parameter tractability of (S)TFES with respect
to the number of vertices |V | (for (S)TFCS, the same result is obtained trivially as there
are 1

2
(|V |2 − |V |) vertex pairs to consider).

Our results are summarized in Table 1.1. Overall, we achieved similar results for all
problem variants suggesting that the models are equally expressive/useful. However,
there are a few noteworthy exceptions. Intuitively, the non-strict variants seem more
complex as there are more options to construct temporal tours. This is supported by our
result for the combined parameter k+τ for which the non-strict case remains unsolved as
we cannot use τ to upper-bound the length of temporal tours. Comparing feedback edge
sets to feedback connection sets, we note a disparity for the parameter number of ver-
tices |V |. While both (S)TFES and (S)TFCS are fixed-parameter tractable with respect
to |V |, proving this result for (S)TFES was much more involved, because the maximum
number of time-edges depends on τ and |V | whereas the number of “connections” only

16

1.2 Our Contributions

depends on |V |.
For the parameter lifetime τ , it remains open whether there exists a polynomial-time

algorithm for instances with 3 ≤ τ ≤ 7 in the strict case and τ = 2 in the non-strict
case.

17

2 Preliminaries

In this chapter, we introduce the notations and concepts used in this work.
We denote the set of natural numbers (not including zero) with N. For a ∈ N, we

write [a] to refer to the set {1, . . . , a}.

2.1 Static and Temporal Graphs

For static graphs, we use established basic notations from graph theory [Die12]. Let G =
(V,E) be an undirected (static) graph. We denote the vertex set of G with V (G) and
the edge set with E(G). For a vertex set V ′ ⊆ V , we write G[V ′] := {V ′, {{v, w} ∈
E | v, w ∈ V ′}} to refer to the subgraph of G induced by V ′. The graph without the
vertices V ′ is denoted by G − V ′ := G[V \ V ′]. For an edge set E ′ ⊆ E, the graph
without the edges in E ′ is denoted by G− E ′ := (V,E \ E ′).

Let D = (V,A) be a directed graph. A cycle in D is a sequence of arcs C :=
(a1, a2, . . . , a`) with ai = (vi, vi+1) ∈ A for i ∈ [`] in which all vertices are pairwise
distinct except for v1 = v`+1. A directed graph that contains no cycle is called a directed
acyclic graph (DAG).

Temporal Graphs. Formally, we work with the following definition in which the
vertex set does not change with time and each time-edge has a discrete time label.

Definition 2.1. (Temporal Graph, Underlying Graph). A (undirected) temporal graph
G = (V,E, τ) is an ordered triple consisting of a set of vertices V , a set E ⊆

(
V
2

)
× [τ] of

time-edges, and a lifetime τ ∈ N. The underlying graph G↓ is the static graph obtained
by removing all time labels from G and keeping only one edge from every multi-edge. We
call a temporal graph simple if each vertex pair is connected by at most one time-edge.

In the literature, temporal graphs are also known as time-varying [KRP19; LM17] and
evolving graphs [Fer04], temporal networks [Hol18; KKK02; MMS19], edge-scheduled
networks [Ber96], and link streams [LVM18; VLM16].

Let G = (V,E, τ) be a temporal graph. For i ∈ [τ], let Ei(G) := {{v, w} | ({v, w}, i) ∈
E} be the set of edges with time label i. We call the static graph Gi(G) = (V,Ei(G))
layer i of G. For t ∈ [τ], we denote the temporal subgraph consisting of the first t layers
of G as G[t](G) := (V, {(e, i) | i ∈ [t]∧e ∈ Ei(G)}, t). We omit the function parameter G
if it is clear from context.

Definition 2.2. (Temporal walk, temporal path). Given a temporal graphG = (V,E, τ),
a temporal walk of length ` in G is a sequence P = (e1, e2, . . . , e`) of time-edges ei =
({vi, vi+1}, ti) ∈ E where ei 6= ej for all i, j ∈ [`] and ti ≤ ti+1 for all i ∈ [` − 1]. If a

19

2 Preliminaries

temporal walk P has the property vi 6= vj for all i, j ∈ [`+ 1], then P is a temporal path.
A temporal walk or path is called strict if ti < ti+1 for all i ∈ [`− 1].

The following definitions and are based on temporal walks and paths and, thus, all
have strict and non-strict versions. We write “(strict)” before edge sets and problem
names to refer to both versions at once.

Definition 2.3. (Temporal tour, temporal cycle). Let G = (V,E, τ) be a temporal
graph. A temporal tour in G is a temporal walk P = (({v1, v2}, t1), ({v2, v3}, t2), . . . ,
({v`, v`+1}, t`)) with v1 = v`+1 and ` ≥ 2. A temporal tour is called minimal if it
does not contain a subtour, i.e., there are no i, j ∈ [`] such that P ′ = (({vi, vi+1}, ti),
({vi+1, vi+2}, ti+1), . . . , ({vj, vj+1}, tj)) is temporal tour. A temporal cycle is a minimal
temporal tour of length ` ≥ 3.

Note that temporal walks may use each time-edge only once, and thus a single time-
edge does not form a non-strict temporal tour. Also note that a minimal temporal tour
has either length ` = 2 (i.e., it has the form v → w → v) or all vertices except the first
and last are pairwise distinct and it is a temporal cycle.

The definitions of (Strict) Temporal Feedback Edge Set and (Strict) Tem-
poral Feedback Connection Set (see Chapter 1) are based on the following two
sets (problem and set names are identical).

Definition 2.4. Let G = (V,E, τ) be a temporal graph. A time-edge set E ′ ⊆ E is
called a (strict) temporal feedback edge set of G if G′ = (V,E \E ′, τ) does not contain a
(strict) temporal tour.

Definition 2.5. Let G = (V,E, τ) be a temporal graph with underlying graph G↓ =
(V,E↓). An edge set C ′ ⊆ E↓ is a (strict) temporal feedback connection set of G if
G′ = (V,E ′, τ) with E ′ = {({v, u}, t) ∈ E | {v, u} /∈ C ′} does not contain a (strict)
temporal tour.

The elements in a feedback connection set are known as multi-edges or underlying edges
(edges of G↓). While we chose to deviate from this in the problem name “Temporal
Feedback Connection Set”, we will use the term underlying edges to refer to edges
in C ′.

2.2 Parameterized Complexity

We assume basic knowledge about complexity theory. In Chapter 4, we will prove that
the problems introduced above are NP-hard. When dealing with the task of finding
exact solutions to NP-hard problems, one of the options available in computer science is
to perform a parameterized analysis. Here, we try to determine how certain properties
of the problem input contribute to the computational hardness and search for efficient
algorithms by exploiting knowledge about these properties.

Formally, a parameterized (decision) problem is defined as a language L ⊆ Σ∗ × Σ∗

where Σ∗ is the set of all words over some finite alphabet Σ. Instances of L have the form

20

2.2 Parameterized Complexity

(I, k) ∈ Σ∗×Σ∗ and we call the second component, k, the parameter of the problem. An
instance I = (I, k) is a yes-instance if I ∈ P and a no-instance otherwise. An algorithm

that decides whether I is a yes-instance in time f(k) · |I|O(1) for some computable
function f only depending on k is called an FPT algorithm for the problem L. If such
an algorithm exists, then we say that L is fixed-parameter tractable and that it belongs
to the corresponding complexity class FPT. Further, the complexity class XP is defined
as the set of all parameterized problems which can be solved in f(k) · |I|g(k) time with
the functions f and g only depending on the parameter k. In between, we have a set
of complexity classes called the W-hierarchy which we will not formally define here, but
instead refer to the literature recommendations at the end of this section. Overall, we
have the following hierarchy of parameterized complexity classes: FPT ⊆ W[1] ⊆ W[2]
⊆ . . .⊆ XP. It is known that FPT (XP and conjectured that all other inclusions are
also strict.

Analogously to the theory of NP-hardness, one can show parameterized hardness (i.e.,
presumably no FPT algorithm exists) via reduction from a problem assumed not to be
in FPT. The technique is called parameterized reduction and we define it as follows. Let
L,L′ ⊆ Σ∗ × Σ∗ be two parameterized problems. A parameterized reduction from L
to L′ is a function f : Σ∗ × Σ∗ → Σ∗ × Σ∗ : (I, k) 7→ (I ′, k′) with the properties

1. f(I, k) can be computed in g(k) · |I|O(1) time for some computable function g,

2. k′ ≤ h(k) for some computable function h, and

3. (I, k) ∈ L⇔ (I ′, k′) ∈ L′.

For a more detailed introduction into this topic, we refer to the books by Downey and
Fellows [DF13], Flum and Grohe [FG06], Cygan et al. [Cyg+15], and
Niedermeier [Nie06].

21

3 Basic Observations

Before analyzing how temporal tours can be disconnected in Chapters 4 and 5, we
describe a method to determine whether a given graph contains a temporal tour. In
particular, we are interested in finding a shortest tour, that is, a tour of minimal length,
which will be the basis for some of the algorithms shown Chapter 5. To this end, we will
use the following result by Xuan, Ferreira, and Jarry [XFJ03] as a subroutine to find
shortest temporal walks. Note that a shortest temporal walk is always a temporal path.

Theorem 3.1. [XFJ03] (Proposition 1). Let G = (V,E, τ) be a temporal graph. For
any vertex v ∈ V , we can compute a list of shortest temporal paths to all other vertices
in O(|E| · |V |) time.

Remark. The original proposition in [XFJ03] states a running time of O(M ·D) where
M is the number of edges in the underlying graph and D is the length of the longest
temporal path (the “hop diameter”). Clearly, M = |E↓| ≤ |E| and D ≤ |V |.

We now use Theorem 3.1 to find shortest temporal tours by fixing a starting vertex v
and then computing the shortest path from each neighbor back to v.

Lemma 3.2. Let G = (V,E, τ) be a temporal graph. In O(|E|2 · |V |) time, we can
find a shortest (strict) temporal tour of G or confirm that G does not contain a (strict)
temporal tour.

Proof. For each vertex v ∈ V , we can find the shortest tour starting and ending at v
as follows. For every edge e = ({v, w}, t) incident to v, we fix e as first edge of a
potential temporal tour and construct the temporal graph G′ := (G,E ′, τ) with E ′ =
E \ {{e} ∪ {({w, u}, t′) ∈ E | u ∈ V ∧ t′ ≤ t} (we use t′ < t for the strict case). This
ensures that no path in G′ with w as first vertex starts before time t (the time label of
our fixed time-edge e). If we can find a (strict) temporal path W from w to v in G′

using Theorem 3.1, then e + W is a temporal tour in G of length |W | + 1. We repeat
this process for every vertex while storing the shortest tour. Overall, each edge will be
considered twice (once for each endpoint), resulting in a running time ofO(|E|2 ·|V |).

Note that a shortest temporal tour is always a minimal temporal tour (i.e., a tour not
containing any subtour) but not necessarily a temporal cycle. The shortest possible tour
has length two (visiting a neighbor of the starting vertex and then going back) while the
shortest possible cycle has length three. However, we can observe that a shortest tour
in a temporal graph has always length smaller than |V |.

Observation 3.3. Let G be a temporal graph which is not tour-free and let C be a
shortest temporal tour in G. Then, |C| ≤ |V |.

23

3 Basic Observations

Proof. Let C ′ = (({v1, v2}, t1), ({v2, v3}, t2), . . . , ({v`, v1}, t`)) be an arbitrary temporal
tour in G. If |C ′| ≤ |V |, then we are done. In the other case, we know due to the
pigeon hole principle that, for some i, j ∈ [`] with i < j, we have vi = vj. Hence,
(({vi, vi+1}, ti), ({vi+1, vi+2}, ti+1), . . . , ({vj−1, vj}, tj−1)) is a temporal tour of length j −
i < `. The process can be repeated until the length of the resulting tour is at most |V |.

In Section 4.1, we will show that (S)TFES and (S)TFCS are NP-hard for τ ≥ 8
(strict) and τ ≥ 3 (non-strict). For τ = 1 however, all STFES and STFCS instances
are yes-instances as a temporal graph with τ = 1 contains no strict temporal tours.
Furthermore, the non-strict variants TFES and TFCS are identical to the Feedback
Edge Set Problem in static graphs which can easily be solved by computing a spanning
tree.

Observation 3.4. Let G = (V,E, τ) be a temporal graph with lifetime τ = 1. Then,
STFES and STFCS can be solved in constant time. Additionally, TFES and TFCS can
be solved in O(|V |+ |E|) time.

For τ = 2, we can solve STFES and STFCS easily due to the fact that strict temporal
tours of length ` = 2 must have the form v → w → v.

Observation 3.5. Let G = (V,E, τ) be a temporal graph with lifetime τ = 2. Then,
STFES and STFCS can be solved in O(|V |2) time.

Proof. Clearly, all strict temporal tours in a temporal graph with τ = 2 have the
form C = (({v, w}, 1), ({v, w}, 2)) for some v, w ∈ V . As both time-edges cannot be
used in a tour other than C, taking either one them into an STFES solution is optimal.
For STFCS, is is easy to see that the underlying edge {v, w} must be in the solution.
Assuming that we can find, for each pair of vertices (v, w), the at most two time-edges
between v and w in constant time, we can construct the solution in O(|V |2) time.

As seen in the previous proof, any vertex pair which is connected by more than one time-
edge, must be in the solution set of (S)TFCS. It is easy to see that, given an (S)TFCS
instance, we can construct an equivalent instance in which no vertex pair is connected
by more than one time-edge. In complexity theory, this concept is known as a reduction
rule. However, we will not formalize this reduction rule as it will not be used in this
work.

In contrast to static graphs, FPT results for the parameter |V | are not always trivial
in temporal graphs because the maximum number of time-edges |E| also depends on the
lifetime τ . However, the number of underlying edges depends only on |V | which provides
the following fixed-parameter tractability result for (S)TFCS.

Observation 3.6. (S)TFCS can be solved in O(2
1
2
(|V |2−|V |) · |V | · |E|2) time.

Proof. Let G be a temporal graph with underlying graph G↓ = (V,E↓). As G↓ is a static

graph, we have |E↓| ≤ 1
2
(|V |2−|V |). Thus, there are 2|E↓| ≤ 2

1
2
(|V |2−|V |) possible feedback

connection sets, each of which can be tested in O(|E|2 · |V |) time (Lemma 3.2).

24

4 Computational Hardness Results

In this chapter, we present our proofs for NP-hardness and parameterized hardness with
respect to the parameters solution size k and lifetime τ of the temporal graph. We start
with these results for two reasons. First, the parameters analyzed in this chapter appear
directly in the problem definitions and can be assumed to be small for some real-world
graphs. For instance, we can assume the vertex set to be small when we analyze the
train schedule between cities with a population of, e.g., over one million. The lifetime of
the graph mainly depends on the scale chosen for the time dimension and can be kept
low by opting for coarse grained time labels (e.g., using days instead of hours). Second,
the negative results for these parameters will motivate the analysis of larger (combined)
parameters in Chapter 5.

4.1 NP-hardness and Parameterization by Lifetime of
the Graph

In this section, we first prove the NP-hardness of (S)TFES and (S)TFCS by reducing
from the well known 3-SAT problem. We then derive additional results by analyzing
the properties of the temporal graph constructed for the reduction. Finally, we use the
Exponential Time Hypothesis to show a lower bound result.

Theorem 4.1. Strict Temporal Feedback Edge Set (STFES) is NP-hard even
for simple temporal graphs with τ ≥ 8.

Proof. We show NP-hardness via a polynomial-time many-one reduction from 3-SAT.
For a boolean formula Φ in conjunctive normal form (CNF) with at most three variables
per clause, 3-SAT asks if there is a satisfying truth assignment for Φ. 3-SAT is known to
be NP-complete ([GJ79], [Kar72]). Let Φ be such a formula with variables x1, x2, . . . , xn
and clauses c1, c2, . . . , cm of the form cj = (`1j ∨`2j ∨`3j). We construct an STFES instance
with temporal graph G(Φ) and k = n+ 2m as follows.

For each variable xi, we introduce a variable gadget (see Figure 4.1a) with vertices vi,
vTi , and vFi and edges eTi := ({vi, vTi }, 2), eFi := ({vi, vFi }, 3), and ehi := ({vTi , vFi }, 1).
As these three edges form the temporal tour (ehi , e

T
i , e

F
i), any solution for STFES must

contain at least one of them. For each clause cj, we introduce a clause gadget with
four vertices, wj, w

1
j , w

2
j , and w3

j , and the edges faj = ({w1
j , w

2
j}, 1), f bj = ({w2

j , w
3
j}, 2),

f 1
j := ({cj, w1

j}, 7), f 2
j := ({cj, w2

j}, 6), f 3
j := ({cj, w3

j}, 5) (see Figure 4.1b). The clause
gadget contains three tours which overlap in such a way that any solution has to contain
at least two out of its five edges.

25

4 Computational Hardness Results

vi

vTi vFi

eTi , 2 eFi , 3

ehi , 1

(a)

w1
j w2

j w3
j

wj

f 1
j , 7

f 2
j , 6

f 3
j , 5

faj , 1 f bj , 2

(b)

Figure 4.1: Variable gadget (a) and clause gadget (b) used in the proof of Theorem 4.1.
Edges are labeled with their name and time label.

s

x1

T F
1

2 3

x2

T F
1

2 3

x3

T F
1

2 3

x4

T F
1

2 3

7
6

5

1 2

4

4 4

(x1 ∨ ¬x2 ∨ x3)

7
6

5

1 2

4 4 4

1

8

(¬x2 ∨ ¬x3 ∨ x4)

Figure 4.2: Example: Reduction from 3-SAT to STFES/STFCS.

We connect clauses to variables as follows (see Figure 4.2 for an example). Let cj =
(`1j ∨ `2j ∨ `3j) be a clause of Φ. If `1j = xi, then we add the edge ({w1

j , v
T
i }, 4) and, if

`1j = ¬xi, we add ({w1
j , x

F
i }, 4) (edges for `2j and `3j analogously). Further, we connect a

new vertex s to all variable gadgets by ({s, vi}, 1) for all i ∈ [n] and to all clause gadgets
by ({s, wj}, 8) for all j ∈ [m]. This creates three additional tours per clause, each start-
ing and ending in s. More precisely, if xi (¬xi is handled analogously) is the z-th literal of
clause cj, thenG(Φ) contains the tour Cz

ij = (({s, vi}, 1), ({vi, vTi }, 2, ({vTi , wzj}, 4), ({wzj , wj}, 8−
z), ({wj, s}, 8)).

It is easy to see that G(Φ) can be computed in polynomial time. The general idea of
this reduction is to use the solution size constraint to ensure that exactly one edge from
each variable gadget and exactly two edges from each clause gadget are taken. Thus,
out of the three tours starting in s and going through the clause gadget of cj, only two
can be disconnected by picking two edges from {f 1

j , f
2
j , f

3
j }. The remaining tour has to

be disconnected inside its variable gadget by picking either eTi or eFi which “selects” the
variable that will satisfy the clause and gives us its truth assignment. Now we show that

26

4.1 NP-hardness and Parameterization by Lifetime of the Graph

(G(Φ), k) is a yes-instance of STFES if and only if Φ is satisfiable.
(⇒) : Let E ′ be a solution to the constructed STFES instance. Due to the size

constraint k ≤ n+ 2m and the tours existing inside the gadgets, E ′ contains exactly one
edge from each variable gadget and none of the edges adjacent to s or connecting variable
and clause gadgets. We obtain the solution for the 3-SAT instance by setting xi to true
if eTi ∈ E ′ and to false if eFi ∈ E ′ or ehi ∈ E ′. Assume towards contradiction that there
is a clause cj = (`1j ∨ `2j ∨ `3j) which is not satisfied. Then, in all three variable gadgets
connected to wj, the edge needed to go from s to the corresponding literal vertex of cj is
present in G(Φ) \ E ′. As E ′ contains only two of the edges from the clause gadget, the
path of one of the three literals can be extended to the vertex wj and from there back
to s, contradicting that G(Φ) \ E ′ is tour-free.

(⇐) : For the other direction, suppose we have a satisfying truth assignment for Φ.
We obtain a solution E ′ = EVar ∪ ECl for the STFES instance (G(Φ) = (V,E, τ = 8),
k = n+ 2m) as follows. For the variable gadgets, we use the variable assignment to add
the feedback edges

EVar = {eTi | i ∈ [n], xi = true} ∪ {eFi | i ∈ [n], xi = false}.

For each clause cj = (`1j ∨ `2j ∨ `3j), let zj ∈ [3] be the number of one of the literals
satisfying the clause, i.e., `

zj
j = true. We add the edges between wj and the other two

literal vertices to the feedback edge set:

ECl = {f zj | j ∈ [m], z ∈ [3], z 6= zj}.

Note that this breaks all tours inside the variable and clause gadgets and that |E ′| =
|EVar| + |ECl| = n + 2m. Tours going through multiple gadgets but not starting in s
are not possible as they would use at least two edges with time label 4. It remains to
show that G− E ′ does not contain any tour starting and ending in s. Assume towards
contradiction that there is such a tour going through the variable gadget of xi and the
clause gadget of cj. Further, assume that xi was set to true (the other case is handled
analogously) and that, therefore, ({vi, vFi }, 3) ∈ G \ E ′. Then, the tour begins with
({s, vi}, 1), ({vi, vFi }, 3), ({vFi , w

y
j }, 4) for some y ∈ [3]. Note that the edges ehi , f

a
j , and

f bj cannot be used due to the time labels. By construction of G(Φ), we know that if
({vFi , w

y
j }, 4) exists, then `yj is one of the literals satisfying the clause if xi = false. Since

we assumed that xi = true, it holds that y 6= zj and, thus, f yj ∈ ECl. It follows that
there is no edge which can be appended to the temporal walk and, in particular, no
possibility of reaching s, thus contradicting the assumption.

In the proof for Theorem 4.1, G(Φ) does not contain any pair of vertices which is
connected by more than one time-edge. Hence, each underlying edge corresponds to a
single time-edge and the same reduction can be applied in order to obtain the following
corollary.

Corollary 4.2. Strict Temporal Feedback Connection Set (STFCS) is NP-
hard even for simple temporal graphs with τ ≥ 8.

27

4 Computational Hardness Results

s

x1

T F
1

2 2

x2

T F
1

2 2

x3

T F
1

2 2

x4

T F
1

2 2

3
3

3

1 1

2

3

2

3

2

3

(x1 ∨ ¬x2 ∨ x3)

3
3

3

1 1

2 2 2

3 3 3

1

3

(¬x2 ∨ ¬x3 ∨ x4)

Figure 4.3: Example: Reduction from 3-SAT to TFES/TFCS.

As shown in Chapter 3, STFES and STFCS can be solved in polynomial time for τ ≤ 2
which leaves the question whether they admit polynomial-time algorithms for 3 ≤ τ ≤ 7
open.

A very similar reduction can also be used for problem variants using the non-strict
temporal walk model. The changes are shown in Figure 4.3. Here, we have to subdivide
the edges between variable and clause gadgets in order to avoid tours which go through
multiple gadgets but not through s. In turn, only three different time labels are needed
to create the required tours.

Corollary 4.3. Temporal Feedback Edge Set (TFES) and Temporal Feed-
back Connection Set (TFCS) are both NP-hard even for simple temporal graphs
with τ ≥ 3.

In terms of parameterized complexity, the results in this section imply that for the
parameter lifetime τ there can be no XP algorithm (and, thus, no FPT algorithm)
for (S)TFES or (S)TFCS, unless P = NP. In order to verify this implication, consider

that the running time of an XP algorithm (f(τ) · |I|g(τ)) is polynomial for any fixed
value for τ . Thus, we could use such an algorithm to solve the NP-hard problem STFES
in polynomial time. We can use the same argument when considering the parameter
maximum number of time-edges between two vertices which has the value 1 in both
reductions. It also follows that all problem variants remain NP-hard when restricted to
simple temporal graphs.

Without formal proof, we observe that the temporal graphs constructed in this section
do not contain any temporal tour which is not also a temporal cycle (as no vertex pair is

28

4.2 Parameterization by Solution Size

connected by multiple time-edges). Thus, all results in this section can also be extended
to the problem variants based on temporal paths and cycles.

Finally, we show that (S)TFES and (S)TFCS presumably cannot be solved in subex-
ponential time. We derive this result from the well accepted assumption known as
the Exponential Time Hypothesis (ETH) which implies that 3-SAT cannot be solved in
2o(m+n) · (m+ n)O(1) time [IP01; IPZ01].

Proposition 4.4. Assuming the ETH, (S)TFES and (S)TFCS cannot be solved in
2o(|E|+|V |)·f(τ) · (|E|+ |V |)O(1) time for any computable function f : N 7→ N.

Proof. Assume towards contradiction that we have an algorithm A solving (S)TFES or
(S)TFCS in 2o(|E|+|V |)·f(τ) · (|E|+ |V |)O(1) time. Given a 3-SAT instance with n variables
and m clauses, we use the reductions described above to construct an equivalent instance
(G = (V,E, τ), k) of (S)TFES or (S)TFCS in polynomial time. By construction, we have
|E| ≤ 4n + 12m and |V | ≤ 3n + 7m + 1. Additionally, we have τ = 8 (strict) or τ = 3
(non-strict), making f(τ) a constant, and it follows that o(|E|+ |V |) · f(τ) = o(m+ n)
and that O(|E|+ |V |) = O(m+ n). Thus, algorithm A can be used to solve the 3-SAT
instance in 2o(m+n) · (m+ n)O(1) time, contradicting the ETH.

4.2 Parameterization by Solution Size

In the previous section, we have shown that the problems we are interested in are NP-
hard and presumably cannot be solved efficiently. Common next steps include the search
for approximation algorithms and a parameterized analysis. We will focus on the latter
for the remainder of this work, beginning with the parameter solution size in this section.
This parameter is usually among the first to be considered as we are often only interested
in small solutions (e.g., when limited by a budget). In this case, an FPT algorithm would
allow us to find such small solutions efficiently, if they exist. However, for (S)TFES and
(S)TFCS such an algorithm is presumably not possible as we will show by proving the
next theorem.

Theorem 4.5. (S)TFES and (S)TFCS, parameterized by the solution size k, are W[1]-
hard.

We prove W[1]-hardness with a parameterized reduction from Directed Multicut
in DAGs parameterized by the solution size.

Directed Multicut in DAGs
Input: A DAG D = (V,A), a set of terminal pairs T = {(si, ti) | i ∈

[r] and si, ti ∈ V }, and an integer k.
Question: Is there a set Z of at most k nonterminal vertices of G, such that for

all i ∈ [r] the terminal ti is not reachable from si in G \ Z?

This problem was shown to be W[1]-hard when parameterized by the size k of the
cut set by Kratsch et al. [Kra+15] who also provided the following lemma which will
simplify our proof by further restricting the input instance.

29

4 Computational Hardness Results

a b :=
t t+ 2

a b

v1ab

v2ab

...

vk+1
ab

w1
ab

w2
ab

...

wk+1
ab

t

t

t

t+ 1

t+ 1

t+ 1

t+ 2

t+ 2

t+ 2

Figure 4.4: Heavy time-edge h(a, b, t).

Lemma 4.6. [Kra+15]. There exists a polynomial-time algorithm that, given a Di-
rected Multicut in DAGs instance (D, T , k) with D = (V,A), computes an equiv-
alent instance (D′, T ′, k′) with D′ = (V ′, A′) such that

1. |T | = |T ′| and k = k′;

2. T ′ = {(s′i, t′i) | i ∈ [r]} and all terminals s′i and t′i are pairwise distinct;

3. for each v ∈ V and i ∈ [r] we have (v, s′i) /∈ A′ and (t′i, v) /∈ A′.

We will from now on assume that we have an instance with these properties. The
goal of our reduction will be to create one temporal tour for each terminal pair. Since
there is a temporal walk from si to ti (the pair can be ignored otherwise), we can create
a tour by adding a back edge from ti to si. To preserve the direction of the arcs in the
(undirected) temporal graph, we will subdivide each arc into small paths with ascending
time labels. As Multicut in DAGs asks for a vertex set, we also need to subdivide
each nonterminal vertex v into two new vertices vin and vout which are connected by one
edge. Then, the vertex v is in the cut set of the original problem if the edge between vin
and vout is in the solution edge set of the STFES instance.

Before stating our reduction, we introduce two auxiliary concepts. First, when we
want to exclude edges from (S)TFES/(S)TFCS solutions, we will employ a gadget we
call heavy time-edge which connects two vertices using k + 1 parallel paths.

Definition 4.7. (Heavy time-edge). Let I = (G = (V,E, τ), k) be an instance of
(S)TFES or (S)TFCS. For a, b ∈ V and t ≤ τ − 2, a heavy time-edge of G is a subgraph
h(a, b, t) := (Vh, Eh, τh = t+ 2) connecting vertex a to vertex b with

Vh = {a, b} ∪ {viab, wiab | i ∈ [k + 1]} and

Eh = {({a, viab}, t), ({viab, wiab}, t+ 1), ({wiab, b}, t+ 2) | i ∈ [k + 1]}.

30

4.2 Parameterization by Solution Size

a
3

b
2

c
1

d
7

e
4

f
5

g
8

h
9

j
6

(a)

c b a e f j d g h

(b)

Figure 4.5: A DAG with values for π(v) (derived from an acyclic ordering) for each
vertex v (a) and with the vertices aligned on a line according to π (b).

The construction is shown in Figure 4.4. Let eh := h(a, b, t) be a heavy time-edge.
Due to the time labels, the gadget only connects a to b (and not b to a) which we will use
to model directed arcs with (undirected) time-edges. For (S)TFES/(S)TFCS solutions,
it is easy to see that if there is a temporal path from b to a, then the k + 1 tours going
through eh cannot be disconnected by removing edges inside the gadget. Thus, we can
assume w.l.o.g. that a given solution contains no edges from eh. We also note that, for
each specific temporal walk model (i.e., strict or non-strict), it is possible to design a
smaller gadget with identical properties, but we opted to use one which works for both
models simultaneously.

Second, in order to assign time labels while preserving all paths of the input graph D,
we will use an acyclic ordering (also known as topological ordering) of D. For a directed
graph D = (V,A), an acyclic ordering < is a linear ordering of the vertices with the
property (v, w) ∈ A ⇒ v < w. In other words, if we place the vertices on a line in the
order given by <, then all arcs point in one direction (see Figure 4.5 for an example). If
D is a DAG, then such an ordering exists and can be computed in linear time [BJG08,
Theorem 4.2.1]. For convenience, we represent this ordering as a function π : V → N
which maps each vertex to its position in the ordering. We now have all the ingredients
to prove the theorem.

Proof of Theorem 4.5. Let I = (D, T , k) be an instance of Directed Multicut in
DAGs with terminal vertices VT := {si, ti | (si, ti) ∈ T }. We construct an instance
I ′ = (G, k′ = k) of (S)TFES as follows.

1. We compute an acyclic ordering of the vertices V := V (D) and store it as a
function π : V → N (see Figure 4.5). We use π to transform D into an equivalent
temporal graph G1 = (V ′, E, τ = 4|V |) by replacing each arc (v, w) ∈ A with the
heavy time-edge evw := h(v, w, 4π(v) + 1). It is easy to verify that, for two vertices
s, t ∈ V , the graph D contains a path from vertex s to vertex t if and only if G
contains a temporal walk from s to t. Note that starting each heavy time-edge

31

4 Computational Hardness Results

D

a b c →

G

a bin bout c
5 7 8 9 11

1618

Figure 4.6: Example: Reduction from Directed Multicut in DAGs with input di-
graph D and one terminal pair (a, c) to TFES. Double lines represent heavy
time-edges (Definition 4.7).

with time label 4π(v) + 1 leaves layer 4π(v) empty which we will use in the next
step.

2. In G1, we replace each nonterminal vertex v ∈ V \ VT with two new vertices vin
and vout connected by time-edge ev = ({vin, vout}, 4π(v)) and update the edges
adjacent to v as follows. For each (incoming) edge of the form euv := ({u, v}, t)
with t < 4π(v), replace euv with ({u, vin}, t). For each (outgoing) edge of the form
evw := ({v, w}, 4π(v) + 1), replace evw with ({vout, w}, 4π(v) + 1). Let G2 denote
the resulting graph. Clearly, for two vertices s, t ∈ V , removing v in G1 disconnects
all (s, t)-paths if and only if removing ev in G2 disconnects all (s, t)-paths.

3. We obtain G3 = G by adding a back edge h(ti, si, τbe) with τbe = 4|V + 1| for each
terminal pair (si, ti). Since there is a temporal path from si to ti, this creates at
least one tour for each terminal pair.

Figure 4.6 shows a small example. It is easy to see that the construction can be done
in polynomial time. Now we show that I = (D, T , k) is a yes-instance of Directed
Multicut in DAGs if and only if I ′ = (G, k′ = k) is a yes-instance of (S)TFES.

(⇒) : Let Z be a solution of I. We claim that E ′ = {({vin, vout}, 4π(v)) | v ∈ Z}
is a solution of I ′. We first show that, for any terminal pair (si, ti), the graph G − E ′
contains no temporal walk from si to ti. For G2, this is easily verified as D−Z contains
no (si, ti)-path. In G = G3, this claim holds if no temporal walk from si to ti contains
a back edge etjsj = h(tj, sj, τbe) added in step 3. Due to the starting time label of the
back edges, no walk can contain more than one back edge and, if it does, this back edge
must be at its end. Clearly, the walk cannot end at both ti and sj, unless ti = sj which
we excluded by applying Lemma 4.6. Now, assume towards contradiction that G − E ′
contains a tour C. Since G2 was tour-free, C must use some back edge etisi introduced
in step 3 and, as reasoned above, this back edge must be the last edge of C. However,
there is no temporal walk from si to ti in G − E ′ and, thus, C cannot be a temporal
tour.

(⇐) : Let E ′ be a solution of I ′, i.e., G − E ′ contains no tours. Recall that VT :=
{si, ti | (si, ti) ∈ T } is the set of terminal vertices of I. As observed above, E ′ does not
contain any edges from heavy time-edges, thus we have E ′ ⊆ {ev | v ∈ V \ VT } and
define the solution for I as Z = {v | ev ∈ E ′}. Assume towards contradiction that D−Z

32

4.2 Parameterization by Solution Size

contains a (si, ti)-path for some terminal pair (si, ti). This path induces a temporal walk
from si to ti in G−E ′ which we can extend back to si by appending the back edge etisi

to obtain a tour in G− E ′ and, thus, a contradiction.
For both directions, we have |Z| = |E ′| ≤ k = k′ meeting the requirements for the

solution size.
As the constructed temporal graph G contains no pair of vertices connected by more

than one time-edge, we can easily transform a minimal feedback edge set of G into a
minimal feedback connection set. Thus, the arguments presented in this proof also hold
for (S)TFCS.

Finally, we remark that Theorem 4.5 also extends to the problem variants based on
temporal cycles since, in the proof of the theorem, we used a graph in which every
temporal tour is a temporal cycle.

33

5 Algorithmic Results

After showing computational hardness for the parameters solution size k and lifetime τ
in Chapter 4, we now consider larger/combined parameters and present two FPT algo-
rithms for (S)TFES and (S)TFCS.

5.1 Parameterization by Solution Size and Parameters
Related to Tour Length

In this section, we show fixed-parameter tractability for multiple parameter pairs, each
consisting of the solution size k and another parameter related to the tour length, using
the following proposition. Recall that a minimal temporal tour does not contain any
(shorter) subtours (Definition 2.3).

Proposition 5.1. Let G = (V,E, τ) be a temporal graph and L ∈ N the length of the
longest minimal temporal tour in G. Then, (S)TFES and (S)TFCS can be solved in
O(Lk · |V | · |E|2) time.

Proof. We can construct a simple search tree based on the fact that at least one edge
from each tour has to be in the solution. According to Lemma 3.2, we can confirm
that G is tour-free or find some shortest tour C in O(|E|2 · |V |) time. If we find a
tour C, then we branch over all of its |C| ≤ L time-edges and recursively solve the
instance I ′ remaining after removing this time-edge (underlying edge for (S)TFCS) and
lowering k by one. Clearly, removing any time-edge cannot create a new temporal tour
and, thus, L is also an upper-bound for the length of a minimal temporal tour in I ′.
The size of the resulting search tree is bounded by Lk.

Due to Observation 3.3, we know that the length of a minimal tour cannot exceed the
number of vertices, i.e., L ≤ |V |. Thus, we immediately obtain the following corollary.

Corollary 5.2. (S)TFES and (S)TFCS can be solved in O(|V |k+1 · |E|2) time.

For the strict temporal walk model, it is easy to see that the length of any walk or tour
is limited by the life time τ of the temporal graph. We can use this to derive another
corollary showing that the strict problem variants are fixed-parameter tractable with
respect to the combined parameter τ + k.

Corollary 5.3. STFES and STFCS can be solved in O(τ k · |V | · |E|2) time.

35

5 Algorithmic Results

Next, we consider two structural parameters of the underlying graph as potential
upper bounds for the length L of the longest minimal temporal tour. Given a static
graph G = (V,E) and an integer k, the Vertex Cover problem asks whether there is
a vertex set V ′ ⊆ V of size at most k such that G− V ′ does not contain any edges.

Corollary 5.4. Let G be a temporal graph with underlying graph G↓. Further, let X be
a minimum cardinality vertex cover of G↓. Then, (S)TFES and (S)TFCS can be solved

in O(|X|k · 2k · |V | · |E|2) time.

Proof. By definition of the Vertex Cover problem, the vertices in I = V \ X do
not share an edge in G↓ and, therefore, also do not share a time-edge in G. Thus, no
temporal walk can consecutively visit two vertices in I. This limits the length L of the
longest minimal temporal tour to L ≤ 2|X|. Combined with Proposition 5.1, we obtain
the claimed running time.

As a second example for parameters of the underlying graph, consider the feedback
vertex number of G↓ (i.e., the size of a minimum cardinality feedback vertex set of G↓).
For this parameter, we cannot obtain an FPT result using Proposition 5.1 due to the
following counter example. In a simple temporal graph that consist of a single temporal
cycle, the feedback vertex number of the underlying graph is one, but the length of
the temporal cycle can be arbitrarily large. Note however that this does not prove
parameterized hardness for the feedback vertex number of the underlying graph.

5.2 Parameterization by Number of Vertices

As we have shown in Observation 3.6, (S)TFCS is trivially fixed-parameter tractable
with respect to the number of vertices |V |. For (S)TFES however, the same result is

more difficult to show as the size of the search space is upper-bounded by 2τ(|V |
2−|V |).

Here, the dependence on τ prevents us from using the (brute force) approach that worked
for (S)TFCS. In this section, we confirm that (S)TFES is fixed-parameter tractable with
respect to the number of vertices |V | by proving the following theorem.

Theorem 5.5. STFES can be solved in O(22|V |2 · |V |3 · τ) time and TFES can be solved

in O(23|V |2 · |V |2 · τ) time, both requiring O(2|V |
2

) space.

We will prove Theorem 5.5 using a dynamic program which computes the minimum
number of time-edges which have to be removed to achieve a specified connectivity at
a specified point in time. The key idea is that in order to compute optimal solutions
for time t we only need to know which temporal walks were possible at time t − 1. In
particular, we will only need the start and end points of these temporal walks and, thus,
avoid storing the time-edges that were removed before t which would cause problems
when aiming at an FPT result for the parameter |V |. With the dynamic programming
table available, we can solve (S)TFES by looking up the entry at time τ for a connectivity
specification that excludes temporal tours.

36

5.2 Parameterization by Number of Vertices

vertices

time
t− 1 t

vi

...

vk

...
vj

vi

vk

vj

vi

vk

vj“bik = ?”

e

Figure 5.1: Illustration of the subproblem solved by srd/nrd(G,B,A). If we want to
make sure that no temporal walk from vi to vj exists at time t (that is,
we have aij = 0), then the time-edge e has to be removed from the graph
because there might be a temporal walk from vi to vk (bik = ?, dotted line).

Before formally defining the dynamic program, we need to introduce some nota-
tions and intermediate results. Let G = (V,E, τ) be a temporal graph with V =
{v1, v2, . . . , vn}. The first dimension of the dynamic programming table will be the
connectivity between the vertices of G. We will store this as a connectivity matrix A ∈
{0, ?}n×n encoding the connectivity relationships

aij = 0 ⇒ there is no non-trivial temporal walk from vertex vi to vj and

aij = ? ⇒ there might be a temporal walk from vi to vj.

We will use aii = 0 to specify that there must not be a temporal walk starting and
ending at vertex vi. Excluding trivial temporal walks, i.e., walks of length 0, these are
exactly all possible temporal tours.

Next, we define two functions, srd(G,B,A) (strict required deletions) and nrd(G,B,A)
(non-strict required deletions), which return the solution to the following subproblem.
Given connectivity B (before) at time t− 1, what is the minimum number of edge dele-
tions required in Gt to ensure connectivity A (after) at time t? Figure 5.1 illustrates
this problem for two vertices vi and vj. If aij = 0 and there is some vertex vk which
might be reachable from vi (i.e., bik = ? represented by the dotted path), then we must
remove the edge between vk and vj. In order to guarantee correctness, we have to as-
sume that every “?” in B represents an existing path. Additionally, if A and B encode
incompatible connectivity, then the function value is defined as ∞. For strict temporal
walks, we formalize this as follows.

Definition 5.6. Let G = (V,E) be a static graph with |V | = n and let A,B ∈ {0, ?}n×n
be two connectivity matrices. The function srd(G,B,A) is defined as follows.

If ∃i, j ∈ [n] : bij =? ∧ aij = 0, then srd(G,B,A) =∞.
Otherwise, srd(G,B,A) = |{{vk, vj} ∈ E | ∃i ∈ [n] : aij = 0 ∧ (bik = ? ∨ i = k)}|.

37

5 Algorithmic Results

Algorithm 1 Algorithm computing srd(G,B,A) (for strict temporal walks)

Parameters
G: a static graph
A,B: connectivity matrices

Output
srd(G,B,A)

1: function StrictRequiredDeletions(G,B,A)
2: E ′ ← {}
3: for i, j ∈ [n] do
4: if bij =? ∧ aij = 0 then
5: return ∞
6: else if bij = 0 ∧ aij = 0 then
7: for all e := {vk, vj} ∈ E(G) with bik =? do
8: E ′ ← E ′ ∪ {e}
9: end for
10: end if
11: end for
12: return |E ′|
13: end function

There is one special case considered in Definition 5.6. Note that bik =? is used to
determine if vk was reachable from vi in the past. However, for i = k, the vertex vk = vi
is always reachable from vi (even if bik = 0) by a trivial temporal walk. Next, we show
that srd(G,B,A) can be computed in polynomial time.

Lemma 5.7. Algorithm 1 computes the function srd(G,B,A) in O(|V |3) time.

Proof. In order to show correctness, we first point out that lines 4 and 5 check for
the case where srd(G,B,A) = ∞ in a straightforward manner. For the other case of
Definition 5.6, it can be easily verified that the loops and conditions in lines 3 and 6
to 9 will count an edge {vk, vj} ∈ E if ∃i, j, k ∈ [n] : bij = 0 ∧ aij = 0 ∧ bik = ?. The
running time is determined by the loops in line 3 (O(|V |2)) and line 7 (O(|V |) as we have
|{{vk, vj} ∈ E(Gt)}| ≤ |V | for any fixed vertex vj). Using a hashset as data structure
for E ′, we can add edges in constant time for an overall running time of O(|V |3).

Since, in the non-strict case, a temporal walk can successively use multiple edges
from Gt, it is not possible to consider each entry aij = 0 separately (a single edge might
be part of multiple unwanted temporal walks). Instead, we have to find an optimal edge
cut disconnecting all “problematic” pairs (vk, vj) in Gt where ∃i ∈ [n] : aij = 0 ∧ (bik =
? ∨ i = k)}. This problem is known as the Multicut problem.

38

5.2 Parameterization by Number of Vertices

Multicut (Optimization variant)

Input: An undirected, static graph G = (V,E) and a set of r terminal pairs
T = {(si, ti) | i ∈ [r] and si, ti ∈ V }.

Output: A minimum cardinality edge set E ′ ⊆ E whose removal disconnects all
terminal pairs in T .

We use this problem to define the second function, nrd(G,B,A).

Definition 5.8. Let G = (V,E) be a static graph with |V | = n and let A,B ∈ {0, ?}n×n
be two connectivity matrices. The function nrd(G,B,A) is defined as follows.

If ∃i, j ∈ [n] : bij =? ∧ aij = 0, then nrd(G,B,A) =∞.
Otherwise, let E ′ be a solution to Multicut (G, T) with T = {(vk, vj) | ∃i ∈ [n] :

aij = 0 ∧ (bik = ? ∨ i = k)}. Then, nrd(G,B,A) = |E ′|.

In order to compute nrd(G,B,A), we have to solve Multicut which was shown to
be APX-hard [Dah+94]. While there exist FPT algorithms [Guo+08; MR14] for the
parameter solution size, our best upper bound for the solution size is |V |2 − |V | which
results in a running time worse than the brute force approach we will use to prove the
next lemma.

Lemma 5.9. The function nrd(G,B,A) can be computed in O(2|V |
2 · |V |2) time.

Proof. The number of subsets of E is at most 2|V |
2−|V | and we can verify if a subset is

a Multicut solution by performing a breadth-first search in O(|V | + |E|) = O(|V |2)
time. Thus, nrd(G,B,A) can be computed in O(2|V |

2 · |V |2) time.

We can now define the dynamic program which we will use to prove Theorem 5.5.
Let A ∈ {0, ?}n×n be a connectivity matrix. The table entry T (A, t) ∈ N contains the
minimum number of time-edges which have to be removed from G[t] in order to achieve
the connectivity specified by A. We define T as follows.

T (A, 0) = 0 ∀A ∈ {0, ?}n×n (5.1)

strict walks: T (A, t) = min
B∈{0,?}n×n

T (B, t− 1) + srd(Gt, B,A) (5.2a)

non-strict walks: T (A, t) = min
B∈{0,?}n×n

T (B, t− 1) + nrd(Gt, B,A) (5.2b)

Lemma 5.10. Let G = (V,E, τ) be a temporal graph with |V | = n and let A ∈ {0, ?}n×n
be a connectivity matrix. Then, there exists no E ′ ⊆ E with |E ′| < T (A, t) for which
(G− E ′)[t] possesses the connectivity specified by A.

Proof. We prove the lemma via induction over t. Recall that the connectivity matrix A
can only encode that certain temporal walks must not exist. Thus, the correctness of
the initialization T (A, 0) = 0 is easy to see since no temporal walks exist at time t = 0.
For the correctness of the update step (Equations (5.2a) and (5.2b)), we note that, by
minimizing over all possible B ∈ {0, ?}n×n, we always find the optimal state B for the

39

5 Algorithmic Results

time t− 1. With some B fixed, it remains to show that T (B, t− 1) + srd/nrd(Gt, B,A)
is minimal for achieving both connectivity B at time t− 1 and connectivity A at time t.
By induction hypothesis, we know that T (B, t− 1) is minimal. To show correctness and
minimality of srd(Gt, B,A) and nrd(Gt, B,A), we analyze how the time-edges of layer Gt

influence the possible temporal walks up to time t and which changes (i.e., time-edge
deletions) are required to achieve connectivity A. For any two vertices vi, vj ∈ V , we
compare the connectivity for time t − 1 given by bij to the target connectivity given
by aij and identify the following four cases.

(Case 1) bij = ? ∧ aij = ?: Here, we do not care if vj is reachable from vi and, thus,
we do not need to remove any edges.

(Case 2) bij = ? ∧ aij = 0: We cannot disconnect a temporal walk that already exists
at time t− 1 by removing edges in layer t and, therefore, cannot guarantee aij = 0. In
this case, there is no solution for the input parameters. Both functions are defined (see
Definitions 5.6 and 5.8) to return ∞ in this case.

(Case 3) bij = 0 ∧ aij = ?: Identical to Case 1.

(Case 4) bij = 0 ∧ aij = 0: We have to ensure that vj is not reachable from vi in G[t].
Both srd(Gt, B,A) and nrd(Gt, B,A) are defined based on the following concept. If there
is a vertex vk which was reachable from vi in the past, then we cannot keep an edge
(strict case) or any path (non-strict case) connecting vk and vj in layer t. Assuming that
Case 2 is already excluded for all vertex pairs, it can be easily verified that Definition 5.6
uses exactly the set of such edges {vk, vj}. For the non-strict case, the set T of terminal
pairs in Definition 5.8 is defined to exactly contain all such pairs (vk, vj). The minimality
and correctness of nrd(Gt, B,A) follows from the definition of Multicut.

Finally, we must show that assuming “bij = ?⇒ there is a temporal walk from vi to vj”
at time t− 1 for the functions srd/nrd(Gt, B,A) did not result in unnecessary time-edge
deletions. To this end, assume bij = ? and that there is no temporal walk from vi to vj at
time t−1. Let B′ be a connectivity matrix identical to B except for b′ij = 0. As the walk
from vi to vj does not exist, we have T (B, t−1) = T (B′, t−1). If the entry bij = ? resulted
in an unnecessary time-edge deletion, i.e., srd/nrd(Gt, B,A) > srd/nrd(Gt, B

′, A), then
the minimum function in Equations (5.2a) and (5.2b) will not chose the value computed
using B.

Since we are only interested in specifying that certain walks (tours) must not exist,
we chose to use “?”-entries in the connectivity matrices to represent entries we do not
care about. The advantage is evident in Cases 1 and 3 of the previous proof. We now
have all required ingredients to prove the main theorem.

Proof of Theorem 5.5. Let (G, k) be an instance of (S)TFES. Further, let A∗ be an n×
n connectivity matrix with a∗ij = 0 if i = j and a∗ij = ? otherwise. As “?”-entries
cannot require more time-edge deletions than “0”-entries, A∗ is the cheapest connectivity
specification that does not allow any temporal tour to exist. Thus, it follows from
Lemma 5.10 that (G, k) is a yes-instance if T (A∗, τ) ≤ k, and a no-instance otherwise.

For the running time, we first note that a connectivity matrix has size |V |2 with two

possible choices for each entry resulting in 2|V |
2

possible connectivity matrices. Thus,

40

5.2 Parameterization by Number of Vertices

the table size of the dynamic program is 2|V |
2 · τ . To compute each table entry, we

have to compute srd/nrd(Gt, B,A) for each of the 2|V |
2

possible choices for B. Together
with Lemmas 5.7 and 5.9, we obtain the running times stated in the theorem. The
computation requires O(2|V |

2

) space as we only need the table entries for time t − 1 in
order to compute the entries for time t. Thus, it is not necessary to store more than two
columns of the table, each of size 2|V |

2

.

We note that our dynamic program solves the optimization variant of (S)TFES. That
is, given a temporal graph G, it finds the smallest k for which (G, k) is a yes-instance of
the decision variant stated defined in Chapter 1. As shown in the previous proof, we can
easily use the result to solve any instance (G, k′) of the decision variant by comparing k′

to k.
Aiming for a theoretical result, we did not store the actual solution, that is, the

feedback edge set of size T (A, t). However, the functions srd(Gt, B,A) and nrd(Gt, B,A)
can easily be changed to return the solution edge sets for each layer t. Using linked lists,
which can be concatenated in constant time, it is possible to include the solutions sets
in the dynamic programming table without (asymptotically) changing the running time.

41

6 Conclusion

This work provides a first study on the (parameterized) complexity of feedback set
problems in temporal graphs. We focused on the two edge-deletion variants (S)TFES and
(S)TFCS while leaving the analysis of the vertex-deletion variant for future research (see
below). We showed that all considered problem variants are NP-hard and, presumably,
not fixed-parameter tractable when parameterized by either the solution size k or the
lifetime of the temporal graph τ . As the Feedback Edge Set problem in static graphs
can be solved in polynomial time, this supports the intuitive assumption that temporal
problems are generally harder to solve than their static counterparts.

On the positive side, we described an algorithm solving (S)TFES and (S)TFCS in
O(Lk · |V | · |E|2) time where L is the length of the longest minimal temporal tour.
We obtained additional FPT results, by showing that L ≤ |V |, L ≤ τ (strict case
only), and L ≤ |X| where X is a minimum cardinality vertex cover. While (S)TFCS
is trivially fixed-parameter tractable for the parameter |V |, showing the same result for

(S)TFES was surprisingly difficult. The developed dynamic program takes O∗(22|V |2)

time1 (strict) or O∗(23|V |2) time (non-strict) to compute which is likely not feasible for
practical applications. If the vertex set is small, then the tour length based algorithm
with running time O(|V |k+1 · |E|2) is presumably a better candidate for implementation.

Future work. We conclude this work by describing future research opportunities
and open questions.

Approximation algorithms. In the introduction, we suggested that minimum solution
sizes for the different feedback set problems are interesting structural parameters of
temporal graphs. However, these parameters are only useful if they can be computed
reasonably fast. In static graphs, for instance, the Feedback Vertex Set Problem
is both fixed-parameter tractable (with respect to the solution size) [Che+08] and can
be approximated up to a constant factor of 2 [BBF99; BG96]. As we have shown W[1]-
hardness for (S)TFES and (S)TFCS, finding an answer to the question whether they
admit a constant-factor approximation is crucial to determine their usefulness both as
a structural parameter and in practical applications.

Unsolved parameterizations. One promising parameter that was not covered in this
work is the size of the temporal core [Zsc+18] which consists of all vertices that are
incident to edges which are not permanently present. Both hardness proofs in Chapter 4
use temporal graphs in which the temporal core contains all vertices of the graph which
leads us to believe that this parameter is generally large in hard instances, and thus
likely to yield an FPT result.

1The O∗-notation suppresses polynomial time factors.

43

6 Conclusion

For the parameter lifetime τ , it remains open whether there exists a polynomial-time
algorithm for instances with 3 ≤ τ ≤ 7 in the strict case and τ = 2 in the non-strict
case. We believe that, for the strict case, the 3-SAT reduction shown in Section 4.1
can be changed to use only seven time-labels by removing the vertex s and connecting
the clause gadgets directly to the variable gadgets. Similar to the results obtained for
Temporal (s, z)-Separation by Zschoche et al. [Zsc+18], we expect that there is
some 3 ≤ τp ≤ 6 for which STFES and STFCS are polynomial-time solvable for τ < τp
and NP-hard for τ ≥ τp.

Another similarity to the work of Zschoche et al. [Zsc+18], is that we could not
resolve the question whether the non-strict variants are fixed-parameter tractable for
the combined parameter τ + k. Proving parameterized hardness for this parameter
would confirm our assumption that the non-strict variants are harder to solve than the
strict ones.

In Section 5.1, we introduced two parameters based on the structure of the underlying
graph. This approach offers a large number of additional, potentially interesting pa-
rameters. An overview can be found online [Rid] and in an unpublished work by Sorge
and Weller [SW]. A related research opportunity is the study of (S)TFES and (S)TFCS
versions that are restricted to specific temporal graph classes (see the work by Fluschnik
et al. [Flu+19] for an overview).

Temporal feedback vertex set. While we did not include the vertex-deletion variant of
in the main part of this work, we want give a short outlook on the problem.

(Strict) Temporal Feedback Vertex Set - (S)TFVS

Input: A temporal graph G = (V,E, τ) and k ∈ N.
Question: Is there a vertex set V ′ ⊆ V with |V ′| ≤ k such that G[V \V ′] does not

contain a (strict) temporal tour?

The non-strict variant TFVS is clearly NP-hard as it includes the NP-hard Feedback
Vertex Set Problem in static graphs as special case for τ = 1. Based on our proofs
in Chapter 4, we conjecture that the strict variants also (presumably) not admit an XP
algorithm for the parameter τ and that all variants are W[1]-hard when parameterized
by the solution size k. The 3-SAT reduction in Section 4.1 is probably adaptable to
vertex-deletion by removing the vertex s and tweaking the variable and clause gadgets.
For W[1]-hardness, recall that we reduced from Directed Multicut in DAGs in
Section 4.2, a problem which ask for cut set consisting of vertices. In the reduction for
the edge-deletion variants, this required an additional step where we subdivided the non-
terminal vertices into two vertices. For (S)TFVS, this step is not necessary; instead, we
need to find a gadget which allows us to distinguish between terminal and non-terminal
vertices.

44

Literature

[AF16] K. Axiotis and D. Fotakis. “On the Size and the Approximability of Mini-
mum Temporally Connected Subgraphs”. In: 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy. 2016, 149:1–149:14 (cit. on pp. 11, 13, 15).

[Agr+18] A. Agrawal, D. Lokshtanov, A. E. Mouawad, and S. Saurabh. “Simultaneous
feedback vertex set: A parameterized perspective”. In: ACM Transactions
on Computation Theory 10.4 (2018), p. 18 (cit. on p. 14).

[Akr+15] E. C. Akrida, L. Gasieniec, G. B. Mertzios, and P. G. Spirakis. “On Tem-
porally Connected Graphs of Small Cost”. In: Approximation and Online
Algorithms - 13th International Workshop, WAOA 2015, Patras, Greece,
September 17-18, 2015. Revised Selected Papers. 2015, pp. 84–96 (cit. on
p. 15).

[Akr+18] E. C. Akrida, G. B. Mertzios, P. G. Spirakis, and V. Zamaraev. “Temporal
Vertex Cover with a Sliding Time Window”. In: 45th International Collo-
quium on Automata, Languages, and Programming, ICALP 2018, July 9-13,
2018, Prague, Czech Republic. 2018, 148:1–148:14 (cit. on p. 15).

[BBF99] V. Bafna, P. Berman, and T. Fujito. “A 2-Approximation Algorithm for the
Undirected Feedback Vertex Set Problem”. In: SIAM Journal on Discrete
Mathematics 12.3 (1999), pp. 289–297 (cit. on p. 43).

[Ber96] K. A. Berman. “Vulnerability of scheduled networks and a generalization of
Menger’s Theorem”. In: Networks 28.3 (1996), pp. 125–134 (cit. on pp. 14,
19).

[BG96] A. Becker and D. Geiger. “Optimization of Pearl’s Method of Conditioning
and Greedy-Like Approximation Algorithms for the Vertex Feedback Set
Problem”. In: Artificial Intelligence 83.1 (1996), pp. 167–188 (cit. on p. 43).

[BJG08] J. Bang-Jensen and G. Z. Gutin. Digraphs: Theory, Algorithms and Appli-
cations. Springer Science & Business Media, 2008 (cit. on pp. 12, 31).

[Che+08] J. Chen, Y. Liu, S. Lu, B. O’sullivan, and I. Razgon. “A fixed-parameter
algorithm for the directed feedback vertex set problem”. In: Journal of the
ACM 55.5 (2008), p. 21 (cit. on p. 43).

[Cyg+15] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015
(cit. on p. 21).

45

Literature

[Dah+94] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M.
Yannakakis. “The Complexity of Multiterminal Cuts”. In: SIAM Journal on
Computing 23.4 (1994), pp. 864–894 (cit. on p. 39).

[DF13] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complex-
ity. Texts in Computer Science. Springer, 2013 (cit. on p. 21).

[Die12] R. Diestel. Graph Theory, 4th Edition. Vol. 173. Graduate Texts in Mathe-
matics. Springer, 2012 (cit. on p. 19).

[Fer04] A. Ferreira. “Building a reference combinatorial model for MANETs”. In:
IEEE Network 18.5 (2004), pp. 24–29 (cit. on p. 19).

[FG06] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theo-
retical Computer Science. An EATCS Series. Springer, 2006 (cit. on p. 21).

[Flu+19] T. Fluschnik, H. Molter, R. Niedermeier, M. Renken, and P. Zschoche. “Tem-
poral graph classes: A view through temporal separators”. In: Theoretical
Computer Science (2019) (cit. on p. 44).

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, 1979 (cit. on p. 25).

[Guo+08] J. Guo, F. Hüffner, E. Kenar, R. Niedermeier, and J. Uhlmann. “Complexity
and exact algorithms for vertex multicut in interval and bounded treewidth
graphs”. In: European Journal of Operational Research 186.2 (2008), pp. 542–
553 (cit. on p. 39).

[Him+17] A.-S. Himmel, H. Molter, R. Niedermeier, and M. Sorge. “Adapting the
Bron–Kerbosch algorithm for enumerating maximal cliques in temporal graphs”.
In: Social Network Analysis and Mining 7.1 (2017), p. 35 (cit. on p. 15).

[Him18] A.-S. Himmel. “Algorithmic Investigations into Temporal Paths”. MasterThe-
sis. TU Berlin, 2018 (cit. on p. 13).

[Hol18] P. Holme. “Temporal Networks”. In: Encyclopedia of Social Network Anal-
ysis and Mining, 2nd Edition. 2018 (cit. on p. 19).

[IP01] R. Impagliazzo and R. Paturi. “On the complexity of k-SAT”. In: Journal
of Computer and System Sciences 62.2 (2001), pp. 367–375 (cit. on p. 29).

[IPZ01] R. Impagliazzo, R. Paturi, and F. Zane. “Which problems have strongly
exponential complexity?” In: Journal of Computer and System Sciences 63.4
(2001), pp. 512–530 (cit. on p. 29).

[Joh75] D. B. Johnson. “Finding all the elementary circuits of a directed graph”. In:
SIAM Journal on Computing 4.1 (1975), pp. 77–84 (cit. on p. 12).

[Kar72] R. M. Karp. “Reducibility Among Combinatorial Problems”. In: Proceedings
of a symposium on the Complexity of Computer Computations, held March
20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, USA. 1972, pp. 85–103 (cit. on pp. 13, 14, 25).

46

[KKK02] D. Kempe, J. Kleinberg, and A. Kumar. “Connectivity and inference prob-
lems for temporal networks”. In: Journal of Computer and System Sciences
64.4 (2002), pp. 820–842 (cit. on pp. 11, 13–15, 19).

[Kra+15] S. Kratsch, M. Pilipczuk, M. Pilipczuk, and M. Wahlström. “Fixed-parameter
Tractability of Multicut in Directed Acyclic Graphs”. In: SIAM Journal on
Discrete Mathematics 29.1 (2015), pp. 122–144 (cit. on pp. 29, 30).

[KRP19] S Khodayifar, M. Raayatpanah, and P. Pardalos. “A polynomial time algo-
rithm for the minimum flow problem in time-varying networks”. In: Annals
of Operations Research 272.1-2 (2019), pp. 29–39 (cit. on p. 19).

[LM17] Q. Liang and E. Modiano. “Survivability in Time-Varying Networks”. In:
IEEE Transactions on Mobile Computing 16.9 (2017), pp. 2668–2681 (cit.
on p. 19).

[LVM18] M. Latapy, T. Viard, and C. Magnien. “Stream graphs and link streams
for the modeling of interactions over time”. In: Social Network Analysis and
Mining 8.1 (2018), p. 61 (cit. on p. 19).

[MMS19] G. B. Mertzios, O. Michail, and P. G. Spirakis. “Temporal Network Opti-
mization Subject to Connectivity Constraints”. In: Algorithmica 81.4 (2019),
pp. 1416–1449 (cit. on pp. 11, 19).

[MR14] D. Marx and I. Razgon. “Fixed-parameter tractability of multicut param-
eterized by the size of the cutset”. In: SIAM Journal on Computing 43.2
(2014), pp. 355–388 (cit. on p. 39).

[MS16] O. Michail and P. G. Spirakis. “Traveling salesman problems in temporal
graphs”. In: Theoretical Computer Science 634 (2016), pp. 1–23 (cit. on
pp. 11, 15).

[Nie06] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford Univer-
sity Press, 2006 (cit. on p. 21).

[Rid] H. N. de Ridder. Information System on Graph Classes and their Inclusions
(ISGCI). url: http://www.graphclasses.org (visited on 05/15/2019)
(cit. on p. 44).

[Sha79] A. Shamir. “A linear time algorithm for finding minimum cutsets in reducible
graphs”. In: SIAM Journal on Computing 8.4 (1979), pp. 645–655 (cit. on
p. 12).

[SW] M. Sorge and M. Weller. “The graph parameter hierarchy”. Unpublished
Manuscript (cit. on p. 44).

[VLM16] T. Viard, M. Latapy, and C. Magnien. “Computing maximal cliques in link
streams”. In: Theoretical Computer Science 609 (2016), pp. 245–252 (cit. on
pp. 15, 19).

[WLS85] C.-C. Wang, E. L. Lloyd, and M. L. Soffa. “Feedback Vertex Sets and Cycli-
cally Reducible Graphs”. In: Journal of the ACM 32.2 (1985), pp. 296–313
(cit. on p. 12).

47

http://www.graphclasses.org

Literature

[XFJ03] B. B. Xuan, A. Ferreira, and A. Jarry. “Computing shortest, fastest, and
foremost journeys in dynamic networks”. In: International Journal of Foun-
dations of Computer Science 14.02 (2003), pp. 267–285 (cit. on p. 23).

[Zsc+18] P. Zschoche, T. Fluschnik, H. Molter, and R. Niedermeier. “The Com-
plexity of Finding Small Separators in Temporal Graphs”. In: 43rd Inter-
national Symposium on Mathematical Foundations of Computer Science,
MFCS 2018, August 27-31, 2018, Liverpool, UK. 2018, 45:1–45:17 (cit. on
pp. 11, 13, 14, 43, 44).

48

	Introduction
	Related Work
	Our Contributions

	Preliminaries
	Static and Temporal Graphs
	Parameterized Complexity

	Basic Observations
	Computational Hardness Results
	NP-hardness and Parameterization by Lifetime of the Graph
	Parameterization by Solution Size

	Algorithmic Results
	Parameterization by Solution Size and Parameters Related to Tour Length
	Parameterization by Number of Vertices

	Conclusion
	Literature

