
Technische Universität Berlin

The Parameterized Complexity of

Finding Paths with Shared Edges

Masterarbeit

von Till Fluschnik

zur Erlangung des Grades
”
Master of Science“ (M. Sc.) im

Studiengang Wirtschaftsmathematik

Erstgutachter: Prof. Dr. Rolf Niedermeier

Zweitgutachter: Prof. Dr. Martin Skutella

Berlin, den 10.04.2015

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigenhändig sowie

ohne unerlaubte fremde Hilfe und ausschließlich unter Verwendung der aufgeführten

Quellen und Hilfsmittel angefertigt habe.

Die selbstständige und eigenhändige Ausfertigung versichert an Eides statt

Berlin, den

Datum Unterschrift

Zusammenfassung

In dieser Arbeit studieren wir das sogenannte Minimum Shared Edges-Problem auf un-

gerichteten Graphen: Gegeben ist ein ungerichteter Graph G = (V,E), zwei spezielle

Knoten s, t ∈ V und zwei natürliche Zahlen p ≥ 1, k ≥ 0. Die Frage ist, ob es p s-t Pfade

in G gibt, die höchstens k Kanten teilen, wobei eine Kante geteilt heißt, wenn sie in

mindestens zwei s-t Pfaden vorkommt. Das Problem findet zum Beispiel eine Anwen-

dung in dem folgenden Kontext. Wir wollen eine wichtige Person, auch VIP genannt,

von einem Anfangsort zu einem Zielort befördern. Dabei besteht die Gefahr, dass ein

Attentat auf den VIP ausgeübt werden könnte. Daher entschließen wir uns dafür, meh-

rere Konvois vom Anfangsort zum Zielort zu entsenden, wobei nur einer der Konvois

den VIP befördert, um die Erfolgswahrscheinlichkeit eines Anschlags zu reduzieren. Bei

dem Koordinieren der Konvois beachten wir, dass keine Straße oder Ähnliches von mehr

als einem Konvoi genutzt wird, da diese Straßen für einen Anschlag bevorzugt wer-

den könnten. Ist es jedoch nicht zu vermeiden, dass eine Straße von mindestens zwei

Konvois genutzt werden muss, so müssen wir erhöhte Sicherheitsmaßnahmen für diese

Straße durchführen. Wir fragen uns demnach, gegeben eine Anzahl von Konvois, was ist

die kleinstmögliche Anzahl von Straßen, die von mindestens zwei Konvois gemeinsam

genutzt werden müssen.

Wir studieren in dieser Arbeit die Komplexität des Minimum Shared Edges-Problems.

Wir zeigen, dass die Entscheidungsvariante des Problems NP-vollständig ist, auch dann,

wenn der Maximalgrad des zugrundeliegenden Graphen durch fünf beschränkt ist. Darü-

ber hinaus zeigen wir, dass das Problem W [2]-schwer bezüglich der Anzahl der geteilten

Kanten ist. Wir zeigen zudem, dass das Problem fixed-parameter tractable bezüglich der

Anzahl der Pfade ist. Für diesen Zweck verwenden wir die sogenannte Treewidth Re-

duction Technique um den initialen Graphen zu modifizieren und führen anschließend

ein Dynamisches Programm aus, das das Problem bei gegebener Baumzerlegung des

Graphen löst. Wir formulieren ein solches Dynamisches Programm und beweisen seine

Korrektheit. Darüber hinaus präsentieren wir einen Algorithmus, der das Minimum Sha-

red Edges-Problem effizient löst für kleine Werte für die Anzahl von Kanten, die geteilt

werden dürfen.

Zudem stellen wir eine Variation des Problems vor, die zusätzlich eine obere Schranke

für die Länge der Pfade fordert. Wir nennen das Problem das Short Minimum Shared

Edges-Problem. Wir zeigen auf, dass das Problem W [2]-schwer bezüglich der Anzahl der

geteilten Kanten und der oberen Schranke für die Länge der Pfade ist. Weiter geben wir

eine Modifikation unseres Dynamischen Programms an, die das Short Minimum Shared

Edges-Problem löst. Mithilfe des modifizierten Dynamischen Programms zeigen wir, dass

das Problem auf planaren Graphen fixed-parameter tractable bezüglich der Anzahl der

Pfade und der oberen Schranke für die Länge der Pfade ist.

Summary

In this work, we study the so-called Minimum Shared Edges problem on undirected

graphs. Given an undirected graph G = (V,E), two vertices s, t ∈ V , and two integers

p ≥ 1 and k ≥ 0, the question is whether there are p s-t paths in G that share at most

k edges, where an edge is shared if it appears in at least two s-t paths. We show that

the problem is NP-complete, and that it remains NP-complete on graphs of maximum

degree five. Moreover, we show that the problem isW [2]-hard when parameterized by the

number k of shared edges and that it is fixed-parameter tractable when parameterized

by the number p of paths. We provide an FPT algorithm with respect to the number k of

shared edges and the number p of paths that solves the Minimum Shared Edges problem

in (p − 1)k · O(|G|2) time. Moreover, we provide a dynamic program that, given a tree

decomposition of the input graph, solves the problem in FPT-time with respect to the

number p of paths and the width of the tree decomposition. We introduce and study a

variation of the Minimum Shared Edges problem, where the length of the p s-t paths is

upper-bounded by an integer λ. We denote this problem by the Short Minimum Shared

Edges problem. We show that this problem is W [2]-hard with respect to the number k of

shared edges and the upper bound λ. Further, we show that our dynamic program can be

adapted to solve the Short Minimum Shared Edges problem in FPT-time with respect to

the number p of paths, the upper bound λ, and the width of the given tree decomposition

of the input graph. Upon this, we show that the problem is fixed-parameter tractable on

planar graphs when parameterized by the number p of paths and the upper bound λ.

Contents

1 Introduction 6

2 Preliminaries 12

3 Basic Observations 16

4 Grids 25

5 Hardness Results 29

6 An Efficient Algorithm for Small Treewidth 40

7 Fixed-Parameter Tractability with Respect to the Number of Paths 58

8 Conclusion 70

Bibliography 74

The Parameterized Complexity of Finding Paths with Shared Edges 6

1 Introduction

Tegel

Bundestag

Figure 1.1: A sketch of the routes of the convoys. The shapefile of Berlin is derived from a

shapefile provided by http://www.gadm.org/.

Berlin. The president of the United States, Barack Obama, will come to Berlin

to visit our federal chancellor Angela Merkel. We are the head of a security agency,

and we are asked by the United States Secret Service (USSS) to route Mr. Barack

Obama from the airport Berlin-Tegel (TXL) to the German Bundestag, close to Berlin’s

Brandenburger Tor, where he and Angela Merkel planned to meet. The U.S. president is

under threat of attack and, therefore, in need of a high security level. We decide to send

some convoys through the city as sketched in Figure 1.1, where one of the convoys carries

the president. No attacker can know in which convoy the president will be present. When

we route the convoys through the city, we want to avoid that any two or more convoys

share a part of their routes, for example using the same street, since any part that is

shared by at least two convoys could imply a higher potential of any attack. If we cannot

avoid that two or more convoys share a part of their routes, we need to install special

units to increase the security level of that part. These special units provoke costs and

we want to avoid any additional costs. Therefore, our main task is to route a number of

convoys in such a way that the number of shared parts is minimized.

http://www.gadm.org/

Section 1. Introduction 7

In this work, we consider the following decision problem:

Problem: Minimum Shared Edges (MSE)

Input: Graph G = (V,E), s, t ∈ V , p ∈ N, and k ∈ N0.

Parameter: p, k.

Question: Are there p s-t paths in G that share at most k edges?

We say that an edge is shared, if the edge appears in at least two s-t paths. The

problem was first introduced by Omran et al. [16] on directed graphs. Although graph G

can be undirected as well as directed for Minimum Shared Edges, throughout this

work, we consider Minimum Shared Edges on simple, undirected graphs, where simple

means without multiple edges or loops. We say that p is the number of paths, and that

k is the number of shared edges or edges that are allowed to be shared.

According to our introductory example in Berlin, the graph G represents the street

network of Berlin, vertex s is the Tegel Airport and vertex t is the German Bundestag,

p is the number of convoys we want to send and k is the number of parts the convoys

are allowed to share, where the cost of installing special units for all the parts is one

everywhere. We say that vertex s is the source (or the source vertex) and that vertex t is

the sink (or the sink vertex). We remark that we call this problem also the VIP-routing

problem.

If k is equal to zero, then the problem is equivalent to the Disjoint Paths problem

with parameter p. Given a graph G, two vertices s, t ∈ V (G) and p ∈ N, the Disjoint

Paths problem asks whether there are p pairwise edge-disjoint s-t paths in G. We remark

that this problem can be solved in polynomial time using flow techniques [11].

A generalization of Minimum Shared Edges is the following minimization problem:

Problem: Minimum Vulnerability (MV)

Input: Graph G = (V,E, c, u), s, t ∈ V , edge costs c : E → R≥0, edge capacities

u : E → R≥0, and r, p ∈ N.

Parameter: r, p.

Task: Find p s-t paths in G in such a way that the total cost of edges that are used

in more than r of the p s-t paths is minimized?

We remark that for r = 1, edge costs equal to one, and edge capacities equal to the

number p of paths, Minimum Vulnerability is equivalent to the minimization version

of Minimum Shared Edges, where the minimization version of Minimum Shared

Edges asks for a set of p s-t paths in a graph G with s, t ∈ V (G) such that the number

of shared edges is minimized. Thus, Minimum Vulnerability generalizes Minimum

Shared Edges in this sense.

Related Work. Omran et al. [16] introduced and studied the minimization version of

Minimum Shared Edges on directed graphs. That is, given a directed graph D, two

The Parameterized Complexity of Finding Paths with Shared Edges 8

vertices s, t ∈ V (D) and a number p of paths, the problem asks for a set of p s-t paths such

that the number of shared edges is minimized. We point out that in our work, we consider

Minimum Shared Edges as decision version on undirected graphs. Omran et al.

showed that the minimization version of Minimum Shared Edges is NP-hard, by

proving that Minimum Shared Edges on directed graphs is NP-complete, using a

reduction from the Set Cover problem. Their reduction is a parameterized reduction

with respect to the number k of shared edges, and thus, they implicitly showed that

MSE(k) on directed graphs is W [2]-hard, where MSE(k) denotes MSE parameterized

by the number k of shared edges. According to the number p of paths, they presented

a (p − 1)-approximation algorithm for the minimization version of Minimum Shared

Edges on directed graphs. In addition, they proved an inapproxibility result for the

minimization version of Minimum Shared Edges on directed graphs within a factor of

2log
1−ε(n), for any constant ε > 0, where n is the number of vertices in the given graph.

Finally, they discussed some heuristics for Minimum Shared Edges on directed graphs

and presented some experimental results, where one of their examples is the road network

of Rome.

Ye et al. [19] studied the minimization version of Minimum Shared Edges on

simple, undirected graphs. They showed that Minimum Shared Edges can be solved in

polynomial time on graphs with bounded treewidth. They showed that given a graph G,

a tree decomposition of G of width at most ω, two vertices s, t ∈ V (G) and p ∈ N, the

minimum number of shared edges by p s-t paths can be computed in O(|V (G)| · (p +

1)2
ω·(ω+1)/2

+ |V (G)| · (p+ 1)(ω+4)2·ω+8
) time. As a consequence, they showed on the one

hand that MSE(p, ω) is fixed-parameter tractable when parameterized by the number p

of paths and an upper bound ω on the treewidth of the input graph, and on the other

hand that MSE(ω) is in XP.

Assadi et al. [2] introduced and studied Minimum Vulnerability on directed

graphs as a generalization of Minimum Shared Edges on directed graphs. They

provided a b p
r+1c-approximation algorithm for Minimum Vulnerability on directed

graphs using a primal-dual approach, which implicates a bp/2c-approximation algorithm

for Minimum Shared Edges on directed graphs. This result improves the (p − 1)-

approximation algorithm due to Omran et al. [16]. In addition, they presented an

approximation algorithm for Minimum Shared Edges on directed graphs with an ap-

proximation guarantee of O(|V (G)|3/4), where G is the given directed graph. Further,

they showed that Minimum Vulnerability is in XP when parameterized by the num-

ber p of paths.

Aoki et al. [1] studied Minimum Vulnerability on undirected graphs. They showed

that Minimum Vulnerability on undirected graphs is NP-hard, and even NP-hard

on undirected bipartite series-parallel graphs and undirected threshold graphs. They

showed that Minimum Vulnerability on undirected graphs can be solved in polyno-

Section 1. Introduction 9

mial time on graphs with bounded treewidth. In comparison to the algorithm provided

by Ye et al. [19], they provided an algorithm that, given an undirected graph G, two ver-

tices s, t ∈ V (G), an integer p ∈ N and a bound ω on the treewidth of graph G, computes

the minimum number of shared edges for p s-t paths in (p+ 1)O(ωω+1) · |V (G)| time. In

addition, they showed that MV(p) is fixed-parameter tractable on chordal graphs when

parameterized by the number p of paths.

Considering the introductory example, we may want to restrict the length of each

path of the convoys to an upper bound, for example, if there is a per meter cost of each

convoy. This motivates us to consider the following decision problem.

Problem: Short Minimum Shared Edges (SMSE)

Input: Graph G = (V,E), s, t ∈ V , p ∈ N, k ∈ N0, and λ ∈ N.

Parameter: p, k, λ.

Question: Are there p s-t-paths of length at most λ in G that share at most k

edges?

We remark that Short Minimum Shared Edges reduces to Minimum Shared

Edges in the case that λ is at least the number of edges in the graph, since then every

s-t path has length at most λ and the question remains, whether there are p s-t paths that

share at most k edges. We study Short Minimum Shared Edges beside Minimum

Shared Edges, but our main focus in this work is on MSE.

Our Contributions. In this work, we obtain the following results for Minimum

Shared Edges.

• In Section 3, we present an algorithm that solves an instance (G, s, t, p, k) of Min-

imum Shared Edges in (p − 1)k · O(|G|2) time. The algorithm implies that

MSE(p, k) is fixed-parameter tractable (Theorem 3.10), and MSE(k) is in XP.

Moreover, if k is a constant, then Minimum Shared Edges can be solved in

polynomial time. For small values of k, relative to p and the size |G| of the

graph G, this algorithm is of potentially practical interest.

• In Section 4, we show that on the unbounded, undirected Z×Z-grid graph G with

s, t ∈ V (G), any instance (G, s, t, p, k) of Minimum Shared Edges can be solved

in constant time (Theorem 4.1). For this purpose, for every instance (G, s, t, p, k)

we provide a construction of p = 4 + 2 · bk/2c s-t paths that share at most k edges.

• In Section 5, we prove that MSE(k) is W [2]-hard (Theorem 5.1) by giving a

reduction from the Set Cover problem. Further, we show that Minimum Shared

Edges is NP-complete and we prove that MSE remains NP-hard even on graphs

The Parameterized Complexity of Finding Paths with Shared Edges 10

Parameter Complexity Remark

p FPT Theorem 7.1

k XP, W [2]-hard Theorem 5.1

∆ NP-hard for ∆ ≥ 5 Theorem 5.2

d XP k < d, see Corollary 3.2, and Algorithm 3.1

tw XP Ye et al. [19], Aoki et al. [1]

(p, k) FPT Theorem 3.10, Algorithm 3.1

(p, d) FPT k < d, see Corollary 3.2

(k,∆) FPT Corollary 3.11

(p, tw) FPT Theorem 6.1

Table 1.1: Overview of the results for Minimum Shared Edges on undirected graphs.

with maximum degree at least five (Theorem 5.2) by giving a reduction from the

Vertex Cover problem.

• In Section 6, we present a dynamic program on a tree decomposition of width ω

that solves MSE(p, ω) in FPT-time (Theorem 6.1). More precisely, if graph G

is given together with a tree decomposition of width ω, our dynamic program

solves MSE(p, ω) in O(p · (ω + 4)3·p·(ω+3)+4 · |V (G)|) time. Though Ye et al. [19]

and Aoki et al. [1] already provided dynamic programs on a tree decomposition

of width ω solving MSE(p, ω) in FPT-time, we present our dynamic program

because its running time is, in contrast, not double exponentially in any of the

two parameters p and ω, and it allows an adaption for Short Minimum Shared

Edges.

• In Section 7, we prove the main result of our work. We prove that MSE(p) is

fixed-parameter tractable (Theorem 7.1) when parameterized by the number p of

paths. For this purpose, we make use of the treewidth reduction technique due to

Marx et al. [14] to modify the input graph in such a way that the treewidth of the

modified graph is upper-bounded by a function only depending on p. Then, we

make use of the fact that MSE(p, ω) is fixed-parameter tractable.

Our main results are summarized in Table 1.1 and in Figure 1.2. We remark that

in Table 1.1 and in Figure 1.2, we denote by d the diameter of the input graph. In Fig-

ure 1.2, we show a Hasse diagram of the parameter space of Minimum Shared Edges.

Each node in the diagram represents Minimum Shared Edges when parameterized

by the label of the node. Each node is additionally labeled by the complexity of the

represented problem. Two nodes in the diagram are connected, if they include the same

parameter or if any parameter in the lower node can be upper-bounded by at least one

Section 1. Introduction 11

p

FPT

k

XP, W [2]-hard

∆

NP-hard for ∆ ≥ 5

d

XP

tw

XP

(p, k)

FPT

(k,∆) FPT (p, d)FPT(p,∆)FPT

(p, tw)

FPT

Figure 1.2: Hasse diagram of the parameter space for Minimum Shared Edges.

parameter in the upper node.

Our contributions according to Short Minimum Shared Edges are the following.

We show in Section 5 that SMSE(k, λ) is W [2]-hard (Theorem 5.3) by giving a reduc-

tion from the Set Cover problem. Further, we present in Section 6 a modification

of our dynamic program such that SMSE(p, λ, ω) can be solved in FPT-time (Theo-

rem 6.2). Moreover, we show that SMSE(p, λ) is fixed-parameter tractable on planar

graphs (Theorem 6.3).

The Parameterized Complexity of Finding Paths with Shared Edges 12

2 Preliminaries

As a convention, by N we denote the natural numbers without zero, and by N0 the

natural numbers containing zero, i.e. N0 := N ∪ {0}. For every ` ∈ N, we define [`] :=

{1, . . . , `} ⊆ N as the set of positive integers at most `. We remark that our definitions

of s-t flows and tree decompositions differ from the standard.

Graph Theory. Let G = (V,E) be an undirected graph. We write V (G) for the vertex

set of graph G and E(G) for the edge set of graph G. We define the size of graph G as

|G| := |V (G)|+ |E(G)|. For a vertex set W ⊆ V (G), we denote by G[W] the subgraph of

G with vertex set {v ∈ V (G) | v ∈W} and edge set {{v, w} ∈ E(G) | v, w ∈W}. We say

that G[W] is the subgraph of G induced by the vertex set W . For an edge set F ⊆ E(G),

we denote by G[F] the subgraph of G with vertex set {v ∈ V (G) | (e ∈ F) ∧ (v ∈ e)}
and edge set {e ∈ E(G) | e ∈ F}. We say that G[F] is the subgraph of G induced by

the edge set F . For an edge e ∈ E, we denote by G/{e} the contraction of edge e in G,

and we denote by G\{e} the deletion of edge e in G (we write G/e and G\e for short).

Consequently, for a set of edges F ⊆ E we write G/F and G\F for the contraction and

the deletion of the edges in F , respectively. We remark that G/F is well-defined, since

edge contraction is commutative [18]. For graph parameters like the maximum degree

or the diameter we write ∆(G) to denote the maximum degree of graph G and diam(G)

to denote the diameter of G.

Let G be an undirected, connected graph. A cut C ⊆ E is a set of edges such that

the graph G\C is not connected. Let s, t ∈ V (G) be two vertices in G. An s-t cut C

is a cut such that vertices s and t are not connected in G\C. A minimum s-t cut is an

s-t cut C such that |C| = min |C ′|, where the minimum is taken over all s-t cuts C ′ in G.

An s-t cut C in G is minimal if for all edges e ∈ C it holds that C\{e} is not an s-t cut

in G.

For a vertex set S ⊆ V (G), we write G−S for the graph G[V/S]. A vertex set S ⊆ V
is a separator in G if the graph G−S is not connected. An s-t separator in G is a vertex

set S ⊆ V \{s, t} such that s and t are not connected in G − S. An s-t separator S

is a minimum s-t separator if there is no s-t separator S′ in G with |S′| < |S|. An

s-t separator S is a minimal s-t separator if for all v ∈ S holds that S\{v} is not an

s-t separator.

A path is a connected graph with exactly two vertices of degree one and no vertex of

degree at least three. We call the vertices with degree one the endpoints of the path. The

length of a path is defined as the number of edges in the path. For two distinct vertices

s, t ∈ V (G), we call the path with endpoints s and t as subgraph of G an s-t path in

G. An s-t path in G is a shortest s-t path in G, if there is no s-t path in G of smaller

length. We denote by distG(s, t) the length of a shortest s-t path in G.

A graph G has edge capacities if there is a function c : E(G)→ R≥0 that maps each

Section 2. Preliminaries 13

edge in G to a number in R≥0, where R≥0 denotes the non-negative real numbers. For

an edge e ∈ E(G), we say that c(e) is the capacity of edge e in G. We say that graph G

has unit edge capacities if c(e) = 1 for all e ∈ E(G). In this work, if we consider a graph

with edge capacities, then we always consider a graph with unit edge capacities.

Let D be an directed graph with edge capacities c : E(D)→ R≥0 and let s, t ∈ V (D)

be two vertices in D. An s-t flow in D is a function f : E(D)→ R≥0 such that

(i) f(e) ≤ c(e) for all e ∈ E(D),

(ii)
∑

w∈V (D):(v,w)∈E(D) f((v, w)) =
∑

w∈V (D):(w,v)∈E(D) f((w, v)) for all v ∈ V (D)\{s, t},
and

(iii)
∑

w∈V (D):(w,t)∈E(D) f((w, t))−
∑

w∈V (D):(t,w)∈E(D) f((t, w)) ≥ 0.

The value of an s-t flow f in D is defined as |f | :=
∑

w∈V (D):(w,t)∈E(D) f((w, t)) −∑
w∈V (D):(t,w)∈E(D) f((t, w)). An s-t flow f is a maximum s-t flow in D if there is no

s-t flow f ′ in D with |f ′| > |f |.
For an undirected graph G we call the directed graph DG the directed version of

graph G if V (DG) = V (G) and E(DG) = {(u, v), (v, u) | {u, v} ∈ E(G)}. If G has

edge capacities c : E(G) → R≥0, then DG has edge capacities c′ : E(DG) → R≥0 with

c′((u, v)) := c′((v, u)) := c({u, v}) for all edges {u, v} ∈ E(G). We say that a function

f : E(G) → R≥0 is an s-t flow with value |f | :=
∑

w∈V (G):{w,t}∈E(G) f({w, t}) in an

undirected graph G with edge capacities c : E(G) → R≥0 and s, t ∈ V (G), if there is

an s-t flow f ′ in DG such that |f ′| = |f |, and for all edges {u, v} ∈ E(G) it holds that

f ′((u, v)) = 0 and f ′((v, u)) = f({u, v}), or f ′((v, u)) = 0 and f ′((u, v)) = f({u, v}). An

s-t flow f1 is a maximum s-t flow in G if there is no s-t flow f2 in G with |f2| > |f1|. We

remark that our definition of s-t flows on undirected graphs is close to the definition given

by Goldberg and Rao [10]. For more information on flows, in particular on integral flows,

the max-flow min-cut theorem, and Menger’s theorem, we refer to the work of Kleinberg

and Tardos [11].

Let v ∈ V be a vertex in G. The open neighborhood NG(v) of v in G is the set

of vertices that are connected with v by an edge, i.e. NG(v) := {w ∈ V (G) | {v, w} ∈
E(G)}. The closed neighborhood NG[v] of v in G is defined as NG(v)∪{v}. For a vertex

set W ⊆ V (G), we define the open neighborhood of W as NG(W) :=
⋃
v∈W (NG(v)\W)

and the closed neighborhood of W as NG[W] := W ∪NG(W).

Let G = (V,E) be a simple, undirected graph. A tree decomposition of graph G is a

tuple T := (T, (Bα)α∈V (T)) of a tree T and family (Bα)α∈V (T) of sets Bα ⊆ V (G) such

that

(i) for every edge e ∈ E(G) there exists an α ∈ V (T) such that e ⊆ Bα and

(ii) for each v ∈ V (G), the graph induced by the node set {α ∈ V (T) | v ∈ Bα} is a

tree.

The Parameterized Complexity of Finding Paths with Shared Edges 14

The width ω of a tree decomposition T of graph G is defined as ω(T) := max{|Bα| − 1 |
α ∈ V (T)}. The treewidth tw(G) of graph G is defined as the minimum width over

all tree decompositions of G, i.e. tw(G) := min{ω(T) | T is a tree decompositon of G}.
We remark that if an upper bound on the treewidth of graph G is given, then a tree

decomposition for graph G can be computed in linear time [4]. A tree decomposition

T = (T, (Bα)α∈V (T)) is a nice tree decomposition if (i) tree T is rooted and binary, and

(ii) each node α ∈ V (T) is of one of the following types:

• leaf node: α is a leaf of T and Bα = ∅;

• introduce vertex node: α is an inner node of T with exactly one child node β ∈
V (T) such that Bβ ⊆ Bα and |Bα\Bβ| = 1;

• forget node: α is an inner node of T with exactly one child node β ∈ V (T) such

that Bα ⊆ Bβ and |Bβ\Bα| = 1;

• join node: α is an inner node of T with exactly two child nodes β, γ ∈ V (T) such

that Bα = Bβ = Bγ .

We assume that the number of nodes in a nice tree decomposition of width ω of graphG is

in O(ω ·|V (G)|), which follows from Kloks [12]. For more about nice tree decompositions,

we refer to the work of Kloks [12].

A tree decomposition T for graph G is a tree decomposition with introduce edge nodes

if for all edges in E(G) there is exactly one introduce edge node in T, where an introduce

edge node is a node α in the tree decomposition T of G labeled with an edge {v, w} ∈
E(G) with v, w ∈ Bα that has exactly one child node α′ such that Bα = Bα′ . The

number of introduce edge nodes is equal to |E(G)|. Given a tree decomposition of G of

width ω, the number of edges of G is at most ω · |V (G)|, which follows from Kloks [12].

Thus, we can assume that the number of nodes in a tree decomposition with introduce

edge nodes is in O(ω · |V (G)|). For more about tree decompositions with introduce edge

nodes, we refer to the work of Cygan et al. [5].

Parameterized Complexity. An algorithm with running time f(`) · nO(1), where n

denotes the size of the input, ` is part of the input and f is a computable function

only depending on `, is called fixed-parameter tractable algorithm, or FPT algorithm.

Equivalently, for an algorithm with running time f(`) · nO(1) we say that the algorithm

runs in FPT-time. A parameterized problem is a language P ⊆ Σ∗ × N, where Σ is a

fixed, finite alphabet and the second component is called the parameter of the problem.

For example, we write MSE(p) for Minimum Shared Edges parameterized by the

number p of paths, and MSE(p, k) for Minimum Shared Edges parameterized by the

number p of paths and the number k of shared edges. We write (X, `) ∈ P for an instance

of a parameterized problem P with parameter `. A parameterized problem P is called

Section 2. Preliminaries 15

fixed-parameter tractable if there is an FPT algorithm with respect to the parameter `

that solves any instance (X, `) ∈ P of the problem P . The complexity class FPT is the

class containing all parameterized problems that are fixed-parameter tractable.

An algorithm with running time f(`) · ng(`), where n denotes the size of the input,

` is part of the input and f, g are computable functions only depending on `, is called XP

algorithm. We say that a parameterized problem P is in XP if there is an XP algorithm

with respect to the parameter ` that solves any instance (X, `) ∈ P of the problem P .

We say that a reduction from a parameterized problem P to a parameterized prob-

lem Q is a parameterized reduction if given an instance (X, `) ∈ P with parameter `,

the reduction computes an instance (X ′, `′) ∈ Q with parameter `′ in f(`) · |X|O(1) time

for some computable function f , where |X| denotes the size of X, such that (i) instance

(X ′, `′) is a yes-instance if and only if (X, `) is a yes-instance, and (ii) `′ ≤ g(`) for some

computable function g.

A kernelization for a parameterized problem P is an algorithm that reduces a given

instance (X, `) ∈ P of the parameterized problem P in polynomial time to an equivalent

instance (X ′, `′) ∈ P , called the problem kernel, such that |X ′| ≤ f(`) and `′ ≤ f(`),

where f is a computable function only depending on `. The problem kernel (X ′, `′) is

called polynomial if the function f is polynomial in `.

The class W [1] is assumed to be the basic class of parameterized intractability,

that is W [1] 6= FPT. A parameterized problem P is in the parameterized complex-

ity class W [2] if there is a parameterized reduction from the problem P to the following

problem:

Problem: Weighted CNF SAT

Input: A formula φ in conjunctive normal form and a number k ∈ N0.

Parameter: k.

Question: Is there a satisfying assignment for φ with k variables set true?

Accordingly, a parameterized problem P belongs to the parameterized complexity

class W [1] if there is a parameterized reduction from P to Weighted 3 CNF SAT,

where Weighted 3 CNF SAT is defined as Weighted CNF SAT, but every clause

consists of at most three variables. The classes W [1] and W [2] are the first two classes

in the so-called W -hierarchy. The relation of the complexity classes presented so far is

FPT ⊆W [1] ⊆W [2] ⊆ . . . ⊆ XP.

A parameterized problem P is called W [1]-hard if there is a parameterized reduction

from a W [1]-hard problem to P . A parameterized problem is called W [1]-complete if it

is contained in W [1] and W [1]-hard. We define a parameterized problem as W [2]-hard

and as W [2]-complete in an analogous way.

For more information on parameterized complexity, and in particular on the W -

hierarchy, we refer to the work of Downey and Fellows [6], Flum and Grohe [8] and Nie-

dermeier [15].

The Parameterized Complexity of Finding Paths with Shared Edges 16

3 Basic Observations

s

a b

c d e

t

G

s

a b

c d e

t s

c d e

t

G′

s

a b

c d e

ts

a b

c d e

t s

a b

c d e

t

Figure 3.1: Example for a solution for an example instance (G, s, t, 3, 2) of MSE.

In this section, we provide some basic observations on Minimum Shared Edges

and an algorithm that solves Minimum Shared Edges in FPT-time with respect to

the number p of paths and the number k of shared edges.

In Figure 3.1, we provide an example for Minimum Shared Edges on an example

graph G with s, t ∈ V (G). On the top-left, the example graph G is shown. On the

top-middle, a solution for the instance (G, s, t, p, k) for MSE with p = 3 and k = 2 is

shown. The three s-t paths are colored blue, orange, and darkgreen respectively, each

illustrated below the top-middle plot. The red-colored edges correspond to the edges

that are shared. Here, the blue-colored path and the darkgreen-colored path share the

edges {s, a} and {b, t}. On the top-right, graph G′ obtained from G by contracting the

edges {s, a} and {b, t} is shown. As a convention throughout this work, if we contract

an edge incident with vertex s, then we call the obtained vertex s, and if we contract

an edge incident with vertex t, then we call the obtained vertex t. Recall that the two

edges {s, a} and {b, t} are shared by the s-t paths in G. Note that the three s-t paths

that are obtained by contracting the edges {s, a} and {b, t} from the three s-t paths in G

are edge-disjoint in G′. The latter observation motivates the following.

Let G be a graph with s, t ∈ V (G). Let (G, s, t, p, k) be a yes-instance of MSE. Let

P be a set of p s-t paths in G that share at most k edges. Let F ⊆ E(G) be the set of

shared edges. Let P ′ be the set of p s-t paths in G/F obtained from P by contracting all

edges in F . The p s-t paths in P ′ are edge-disjoint in G/F . Hence, by Menger’s theorem

together with the max-flow min-cut theorem, G/F with unit edge capacities allows an

s-t flow of value at least p.

Conversely, let G be a graph with s, t ∈ V (G), p ∈ N, and k ∈ N0. Let F ⊆ E(G)

Section 3. Basic Observations 17

be a set of edges in G with |F | ≤ k such that G/F with unit edge capacities allows

an s-t flow of value at least p. Then, by the max-flow min-cut theorem together with

Menger’s theorem, G/F allows p edge-disjoint s-t paths. Let P be such a set of p edge-

disjoint s-t paths in G/F . Then there is a set P ′ of p s-t paths in G such that each path

in P is obtained from a path in P ′ by contracting the edges in F . Since the paths in P
are edge-disjoint and |F | ≤ k, the p s-t paths in P ′ share at most k edges.

Following these observations, we provide an equivalent formulation of Minimum

Shared Edges as the following contraction problem:

Problem: Minimum Shared Edges - Contraction Equivalent (MSE-CoE)

Input: Graph G = (V,E), s, t ∈ V (G), p ∈ N, and k ∈ N0.

Parameter: p, k.

Question: Is there a subset F ⊆ E of edges of cardinality at most k in G such that

the graph G/F with unit edge capacities allows an s-t flow of value at least p?

We make use of the equivalent problem formulation in our algorithms and proofs.

We call an instance of Minimum Shared Edges trivial, if there is an inequality A

such that A holds on some parameters of the instance and A verifies that the instance is

a yes- or no-instance. For example, if for a graph G with s, t ∈ V (G) the inequality k ≥
E(G) holds, then instance (G, s, t, p, k) is a trivial yes-instance of MSE for every p ≥ 1.

Since if the number k of edges that are allowed to be shared is at least the number of

edges in the graph, then we can construct infinitely many paths connecting the source

with the sink without sharing more than k edges. In the following lemma we state that

if for a given instance of MSE the number k of edges is at least the length of a shortest

path from the source to the sink, then the instance is a trivial yes-instance of MSE.

Lemma 3.1. Let G be a graph and s, t ∈ V (G). If k ∈ N0 is at least the length of

a shortest s-t path in G, that is, if k ≥ distG(s, t), then (G, s, t, p, k) is a yes-instance

of MSE for every p ≥ 1.

Proof. Let P be a shortest s-t path in G. Let p ≥ 1 and let P1, . . . , Pp be s-t paths in

G such that each of the p paths is a copy of path P , i.e. Pi = P for all i = 1, . . . , p. The

paths P1, . . . , Pp share |P | = distG(s, t) ≤ k edges. Therefore, the paths P1, . . . , Pp form

a solution for instance (G, s, t, p, k) of MSE.

Given an instance (G, s, t, p, k) of MSE and the length distG(s, t) of a shortest s-

t path in G, if k ≥ distG(s, t), then (G, s, t, p, k) is a trivial yes-instance of Minimum

Shared Edges by Lemma 3.1. The length of a shortest s-t path in a graph G with s, t ∈
V (G) can be computed in O(|G|) time by using a breadth-first search.

Recall that the length of a shortest path between any pair of vertices in a graph is

at most the diameter of the graph. Therefore, if the number k of edges that are allowed

to be shared is at least the diameter of graph G with s, t ∈ V (G), then (G, s, t, p, k) is a

trivial yes-instance for all p ≥ 1.

The Parameterized Complexity of Finding Paths with Shared Edges 18

Corollary 3.2. Let G be a graph and s, t ∈ V (G). If k ≥ diam(G), then the instance

(G, s, t, p, k) is a yes-instance of MSE for all p ≥ 1.

Proof. Since k ≥ diam(G) ≥ distG(s, t), Lemma 3.1 completes the proof.

With the next lemma, we show that an instance of MSE is a trivial yes-instance if

the number p of paths is at most the value of a maximum flow between the source and

the sink in the graph.

Lemma 3.3. Let G be a graph with unit edge capacities and s, t ∈ V (G). Let f be a

maximum s-t flow in G with value |f |. If p ≤ |f |, then (G, s, t, p, k) is a yes-instance

of MSE for every k ≥ 0.

Proof. Let f be a maximum s-t flow in G with value |f |. By the max-flow min-cut

theorem, the size of any minimum s-t cut inG is equal to |f |. Thus, by Menger’s theorem,

the number of edge-disjoint s-t paths in G is equal to the value |f |. Since p ≤ |f |, there

are at least p edge-disjoint s-t paths in G. Hence, (G, s, t, p, k) is a yes-instance of MSE

for every k ≥ 0, .

Lemmas 3.1 and 3.3 provide inequalities that allow us to verify if an instance of Mini-

mum Shared Edges is a trivial yes-instance. The following lemma provides an inequal-

ity to verify if an instance of Minimum Shared Edges is a trivial no-instance.

Lemma 3.4. Let G be a graph with maximum degree ∆ ≥ 3 and let s, t ∈ V (G).

Let k ∈ N0 with k < distG(s, t). If p > ∆ + bk/2c · (∆ − 2), then (G, s, t, p, k) is a

no-instance of MSE.

With the following two lemmas, we prepare the proof of Lemma 3.4. We remark

that the size of every minimum s-t cut in a graph G with s, t ∈ V (G) is upper-bounded

by the maximum degree ∆(G). By the min-cut max-flow theorem, the value of every

maximum s-t flow is equal to the size of a minimum s-t cut. Therefore, if the number p

of paths is greater than the maximum degree, at least one edge has to be shared. The

next lemma is motivated by the question how the maximum degree of a graph G changes

if we contract a set of edges in E(G).

Lemma 3.5. Let G be a graph with ∆(G) ≥ 2. Let F ⊆ E(G) such that G[F] is con-

nected. Let vF be the vertex in V (G/F)\V (G), i.e. the vertex obtained from contracting

all edges in F . Then degG/F (vF) ≤ ∆(G) + |F | · (∆(G)− 2).

Proof. Let G be a graph with ∆(G) ≥ 2 and F ⊆ E(G) such that G[F] is con-

nected. Since graph G[F] is connected and |E(G|F])| = |F |, graph G[F] has at most

|F | + 1 vertices. Let vF be the vertex in V (G/F)\V (G), i.e. the vertex obtained from

contracting all edges in F . We show that the degree of vF in G/F is upper-bounded

by ∆(G) + |F | · (∆(G)− 2).

Section 3. Basic Observations 19

All edges incident with vertex vF in graph G/F have exactly one endpoint in G[F].

The sum of the degrees of the vertices in V (G[F]) in graph G is at most ∆(G) · (|F |+1).

The graph G[F] has |F | edges, and we counted each edge twice in the sum of the

degrees. Therefore, there are at most ∆(G)·(|F |+1)−|F | edges incident with the vertices

in V (G[F]) in graph G. Subtracting the edges in F , there are ∆(G)·(|F |+1)−|F |−|F | =
∆(G) + |F | · (∆(G)− 2) edges incident with vertex vF in graph G/F .

The statement of the following lemma is that a minimal s-t cut in a graph G

with s, t ∈ V (G) is preserved under the contraction of edges disjoint to the cut.

Lemma 3.6. Let G = (V,E) be a connected graph with s, t ∈ V and let F ⊆ E such

that there exists a minimal s-t cut C in G with F ∩C = ∅. Then C is a minimal s-t cut

in G with F ∩ C = ∅ if and only if C is a minimal s-t cut in G/F .

Proof. “⇐”: Let G′ := G/F and let C be a minimal s-t cut in G′. We suppose that C is

not a minimal s-t cut in G.

Case 1 : C is not an s-t cut in G. Then there exists an s-t path P in G\C. Since F ∩
C = ∅, it follows that F ⊆ E(G\C). Since edge contraction does not disconnect the

path P , the path P ′ after contracting all edges in E(P)∩F is an s-t path in G′\C. This

is a contradiction to the fact that C is a minimal s-t cut in G′, and hence, C is an s-t cut

in G.

Case 2 : C is an s-t cut in G, but C is not a minimal s-t cut in G. Then there

exists an edge e ∈ C such that C ′ := C\{e} is an s-t cut in G. Let Gs and Gt be the

two connected components in G\C ′ with s ∈ V (Gs) and t ∈ V (Gt). Since F ∩ C = ∅,
contracting all edges in F in Gs and Gt yields the disjoint subgraphs G′s and G′t of the

graph G′\C ′. This means that C ′ is an s-t cut in G′ with |C ′| < |C|, contradicting the

fact that C is a minimal s-t cut in G′, and hence, C is a minimal s-t cut in G.

“⇒”: Let C be a minimal s-t cut in G with F ∩C = ∅. Let G′ := G/F . We suppose

that C is not a minimal s-t cut in G′.

Case 1 : C is not an s-t cut in G′. Then there exists an s-t path P in G′\C.

Since F ∩ C = ∅, there exists an s-t path P ′ in G such that P ′ results in P after

contracting all edges in E(P ′) ∩ F . This is a contradiction to the fact that C is a

minimal s-t cut in G, and hence, C is an s-t cut in G′.

Case 2 : C is an s-t cut in G′, but C is not a minimal s-t cut in G′. Then there

exists an edge e ∈ C such that C ′ := C\{e} is an s-t cut in G′. Let G′s and G′t be the

two connected components of G′\C ′ with s ∈ V (G′s) and t ∈ V (G′t). Since F ∩ C = ∅,
the graphs G′s and G′t are obtained from G\C ′ by contracting the edges in F . Since the

contraction of edges does not disconnect a connected graph, C ′ ⊂ C is an s-t cut in G.

This is a contradiction to the fact that C is a minimal s-t cut in G, and hence, C is a

minimal s-t cut in G′.

The Parameterized Complexity of Finding Paths with Shared Edges 20

We are ready to prove Lemma 3.4.

Proof of Lemma 3.4. Let (G, s, t, p, k) be a yes-instance of MSE. Let F ⊆ E(G) with

|F | = k such that G/F with unit edge capacities allows an s-t flow of value p. We

remark that both edge sets incident with s and t form an s-t cut in G/F . We show

that after at most k edge contractions the minimum of the degrees of s and t in G/F is

upper-bounded by ∆ + bk/2c · (∆− 2).

Case 1 : It holds that s 6∈ V (G[F]) or t 6∈ V (G[F]). If s 6∈ V (G[F]), then degG/F (s) ≤
∆. If t 6∈ V (G[F]), then degG/F (t) ≤ ∆. In both cases, it follows that

min{degG/F (s), degG/F (t)} ≤ ∆ ≤ ∆ + bk/2c · (∆− 2).

Case 2: It holds that s, t ∈ V (G[F]). Let Gs be the maximally connected subgraph

of G[F] with s ∈ V (Gs) and let Gt be the maximally connected subgraph of G[F] with t ∈
V (Gt). Since k < distG(s, t), the graphs Gs and Gt are disjoint, i.e. V (Gt)∩ V (Gs) = ∅.
Let Fs := E(Gs) and Ft := E(Gt). Note that Fs ⊆ F , Ft ⊆ F and Fs ∩ Ft = ∅. By

Lemma 3.6, the edges incident with s in G/Fs form a minimal s-t cut in G/F , since the

edges form a minimal s-t cut in G/Fs. Analogously, the edges incident with t in G/Ft
form an minimal s-t cut in G/F . By Lemma 3.5, it holds that

degG/F (s) ≤ ∆ + |Fs| · (∆− 2),

degG/F (t) ≤ ∆ + |Ft| · (∆− 2).

Since |Fs|+ |Ft| ≤ |F |, it follows that min{|Fs|, |Ft|} ≤ |F |/2 = k/2. Since |Fs| and |Ft|
are integers, it follows that min{|Fs|, |Ft|} ≤ bk/2c. Hence, we get

min{degG/F (s), degG/F (t)} ≤ ∆ + bk/2c · (∆− 2).

At least one of the edge sets incident with s and t in G/F is upper-bounded by ∆ +

bk/2c · (∆ − 2). Since each of these edge sets forms a minimal s-t cut in G/F , the

size of a minimum s-t cut in G/F is at most ∆ + bk/2c · (∆ − 2). Since the value of

any s-t flow in G/F is upper-bounded by the size of a minimum s-t cut in G/F , we

get p ≤ ∆ + bk/2c · (∆− 2).

We summarize. Let G be a graph with s, t ∈ V (G). Instance (G, s, t, p, k) is a trivial

instance of Minimum Shared Edges, if one of the following inequalities holds:

• k ≥ distG(s, t) (Lemma 3.1),

• p ≤ |f |, where |f | is the value of a maximum s-t flow in G with unit edge capacities

(Lemma 3.3),

• p > ∆(G) + bk/2c · (∆(G)− 2) and k < distG(s, t) (Lemma 3.4).

Section 3. Basic Observations 21

Input: Graph G, s, t ∈ V (G), p ∈ N, and k ∈ N0 ∪ {−1}.
Output: TRUE if there are at most k edge contractions in graph G such that

there is an s-t flow of value at least p in G with unit edge capacities,

and FALSE otherwise.

1 if k < 0 then

2 return FALSE ;

3 end

4 if k ≥ distG(s, t) then

5 return TRUE ;

6 end

7 C ← any minimum s-t cut in G with unit edge capacities;

8 if |C| ≥ p then

9 return TRUE ;

10 end

11 solvable ← FALSE;

12 for each e ∈ C do

13 solvable ← (solvable ∨ MSE(G/e, s, t, p, k − 1));

14 end

15 return solvable;

Algorithm 3.1: MSE(G, s, t, p, k)

If none of these inequalities holds, then Minimum Shared Edges is hard to solve in

general. In Section 5, Theorem 5.1, we show that MSE(k) is W[2]-hard, that is, when

parameterized only by the number k of edges. Now, we present Algorithm 3.1 that solves

MSE in (p−1)k ·O(|G|2) time on a graph G. As a consequence, we show that MSE(p, k)

is fixed-parameter tractable, that is, when parameterized by the number p of paths and

the number k of shared edges. We remark that in Section 7, Theorem 7.1, we show the

stronger result that MSE(p) is fixed-parameter tractable, that is, when parameterized

only by the number p of paths. However, for small values of k, Algorithm 3.1 performs

well compared to the FPT algorithms with respect to parameter p that we will present

later in this work.

The idea of the algorithm is that in every minimum s-t cut of size smaller than p

in G, at least one edge has to be shared by at least two paths. First, we show that

Algorithm 3.1 is correct. To this end, we make use of the following lemma.

Lemma 3.7. Let G be a graph with s, t ∈ V (G) and at least one minimum s-t cut of size

smaller than p. Then, instance (G, s, t, p, k) is a yes-instance of MSE if and only if for

all minimum s-t cuts C in G there exists an edge e ∈ C such that instance (G/e, s, t, p, k−
1) is a yes-instance of MSE.

The Parameterized Complexity of Finding Paths with Shared Edges 22

Proof. “⇒”: Let (G, s, t, p, k) be a yes-instance of MSE. Let P be a set of p s-t paths

in G that share at most k edges. Let C be an arbitrary minimum s-t cut in G of size

smaller than p, i.e. |C| < p. Since C is a minimum s-t cut of G, each of the p paths in P
contains an edge in C. Since |P| = p and |C| < p, there is an edge e ∈ C that appears

in at least two paths in P, or in other words, that is shared by at least two paths in P.

Let P ′ be the set of paths obtained from P by contracting edge e in each path in P that

contains edge e. Note that every path in P ′ is an s-t path in G/e. The p s-t paths in G/e

in set P ′ share at most k− 1 edges and verifies that (G/e, s, t, p, k− 1) is a yes-instance

of MSE.

“⇐”: Let C be an arbitrary minimum s-t cut in G and let e = {v, w} ∈ C such

that (G/e, s, t, p, k − 1) is a yes instance of MSE. Let P be a set of p s-t paths in G/e

sharing at most k−1 edges. Let vw be the vertex obtained by the contraction of edge e.

Let P ∈ P be an s-t path in the set P of s-t paths containing the vertex vw. Let e′1
and e′2 be the edges incident with vertex vw in path P corresponding to edges e1 and e2
in G. We replace edge e′1 by edge e1, edge e′2 by edge e2 and vertex vw in P in one of

the following ways.

Case 1 : v ∈ e1 and v ∈ e2. Then we replace vertex vw by vertex v.

Case 2 : w ∈ e1 and w ∈ e2. Then we replace vertex vw by vertex w.

Case 3 : v ∈ e1 and w ∈ e2, or w ∈ e2 and v ∈ e1. Then we replace vertex vw by

vertices v and w, and we add edge e to P .

Let P ′ be the set of p paths that results by applying the modifications to each of the

paths in P. Then P ′ is a set of p s-t paths in G that share at most k edges in G. These

are, on the one hand, the at most k − 1 edges that are shared by the paths in set P,

and, on the other hand, edge e, if there are more than two paths in P ′ modified due to

Case 3. Thus, path set P ′ verifies that (G, s, t, p, k) is a yes-instance of MSE.

We show that Algorithm 3.1 correctly determines whether a given instance of Min-

imum Shared Edges is a yes-instance or a no-instance.

Lemma 3.8. Let (G, s, t, p, k) be an instance of MSE. Algorithm 3.1 returns TRUE if

and only if (G, s, t, p, k) is a yes-instance of MSE.

Proof. “⇐”: We prove this direction by induction on k in the input for Algorithm 3.1.

Base case. Let (G, s, t, p, 0) be a yes-instance of MSE and let (G, s, t, p, 0) be the

input for Algorithm 3.1. If s = t, then Algorithm 3.1 returns TRUE (lines 4-6). If

s 6= t, then the algorithm computes a minimum s-t cut C in G with unit edge capacities.

Since (G, s, t, p, 0) is a yes-instance of MSE, there are p edge-disjoint s-t paths in G. By

Menger’s theorem, the size of any minimum s-t cut in G is at least p. Thus, it holds

that |C| ≥ p and Algorithm 3.1 returns TRUE (lines 8-10).

Inductive step. Assume that if (G, s, t, p, k) is a yes-instance of MSE, then Algo-

rithm 3.1 returns TRUE on input (G, s, t, p, k). We show that if (G, s, t, p, k + 1) is a

Section 3. Basic Observations 23

yes-instance of MSE, then Algorithm 3.1 returns TRUE on input (G, s, t, p, k + 1). Let

(G, s, t, p, k + 1) be a yes-instance of MSE. If k + 1 ≥ distG(s, t), then Algorithm 3.1

returns TRUE (lines 4-6). If k + 1 < distG(s, t), then the algorithm computes a mini-

mum s-t cut C. If |C| ≥ p, then Algorithm 3.1 returns TRUE (lines 8-10). Otherwise,

the algorithm executes a recursive call for each edge in C. By Lemma 3.7, there is an

edge e ∈ C such that (G/e, s, t, p, k) is a yes-instance of MSE. By the induction hypoth-

esis, Algorithm 3.1 returns TRUE on input (G/e, s, t, p, k). Thus, the algorithm returns

TRUE on input (G, s, t, p, k + 1) (lines 11-15).

“⇒”: Let (G, s, t, p, k) be a no-instance of MSE(p, k). Then, for all F ⊆ E(G) with

|F | ≤ k holds that the value of any maximum s-t flow in G/F is smaller than p. Let

F ⊆ E(G) with |F | = k and (G/F, s, t, p, 0) be the input for Algorithm 3.1. Then, there

is a minimum s-t cut C of size smaller than p in G/F and the algorithm executes for each

e ∈ C the recursive call ((G/F)/e, s, t, p,−1) (lines 9-13). On each of these inputs, the

algorithm returns FALSE since k < 0 (lines 1-3). Since this holds for all sets F ⊆ E(G)

with |F | = k, Algorithm 3.1 returns FALSE on input (G, s, t, p, k).

Given an instance of Minimum Shared Edges, by Lemma 3.8, we can use Al-

gorithm 3.1 to determine whether the instance is a yes-instance or a no-instance of

Minimum Shared Edges. Next, we discuss the running time of Algorithm 3.1 and we

show that the algorithm runs in FPT-time with respect to the number of paths and the

number of shared edges.

Lemma 3.9. Let G be a connected graph with s, t ∈ V (G). Let p ∈ N and k ∈ N0 two

integers. Then, Algorithm 3.1 with input (G, s, t, p, k) runs in (p− 1)k ·O(|G|2) time.

Proof. We define T [G, s, t, p, k] as the running time of Algorithm 3.1 with respect to the

input (G, s, t, p, k).

If the algorithm is called for k ≥ 0, then the length of a shortest s-t path in G is com-

puted. This can be done in O(|G|) time. If 0 ≤ k < distG(s, t), then a minimum s-t cut

is computed for the input graph G and s, t ∈ V (G). A minimum s-t cut in graph G with

unit edge capacities can be computed in O(|G|2) time [11]. Hence, both computations

in any call of the algorithm for graph G can be done in O(|G|2) time.

If the size of a minimum s-t cut C in G is smaller than p, at most p − 1 edges are

considered in the for-loop. In each recursive call of the algorithm we decrease k by one

and contract an edge in G, until k is equal to zero. Therefore, it holds that

T [G, s, t, p, k] = O(|G|2) +
∑
e∈C

T [G/e, s, t, p, k − 1]

≤ O(|G|2) + (p− 1) ·max
e∈C

T [G/e, s, t, p, k − 1],

where C is the minimum s-t cut in G found by the algorithm. Since |V (G′)| ≤ |V (G)|
and |E(G′)| ≤ |E(G)|, the recursion yields T [G, s, t, p, k] ≤ (p− 1)k ·O(|G|2).

The Parameterized Complexity of Finding Paths with Shared Edges 24

By Lemma 3.9, Algorithm 3.1 runs in FPT-time with respect to the number p of

paths and the number k of shared edges. Thus, with Algorithm 3.1 we can solve an

instance (G, s, t, p, k) of MSE(p, k) in FPT-time with respect to the number p of paths

and the number k of edges that are allowed to be shared. We conclude in the following

theorem.

Theorem 3.10. Minimum Shared Edges is fixed-parameter tractable with respect to

the number p of paths and the number k of edges.

Proof. By Lemma 3.8, Algorithm 3.1 returns TRUE if and only if the input instance

is a yes-instance of Minimum Shared Edges. By Lemma 3.9, Algorithm 3.1 runs in

(p− 1)k ·O(|G|2) time. Therefore, Algorithm 3.1 solves MSE(p, k) in FPT-time.

By Lemma 3.4, we know that the number p of paths is upper-bounded by ∆+bk/2c ·
(∆− 2). This implies the following.

Corollary 3.11. Minimum Shared Edges is fixed-parameter tractable with respect to

the number k of shared edges and the maximum degree ∆ of the given graph.

Section 4. Grids 25

4 Grids

In Section 3, we presented some inequalities that allow us to verify whether an instance

of Minimum Shared Edges is trivial. In addition, we presented an FPT algorithm

that solves Minimum Shared Edges parameterized by the number of paths and the

number of edges that are allowed to be shared.

In this section, we study Minimum Shared Edges on the unbounded, undirected

Z × Z-grid graph. The unbounded, undirected Z × Z-grid graph, or, throughout this

section for short, the grid graph, is the graph G with vertex set V = {(x, y) ∈ Z × Z}
and edge set E = {{(x1, y1), (x2, y2)} ∈ Z2 | |x1 − x2| + |y1 − y2| = 1}. We call

an edge {(x1, y1), (x2, y2)} ∈ E with y1 = y2 a horizontal edge, and we call an edge

{(x1, y1), (x2, y2)} ∈ E with x1 = x2 a vertical edge. We show that any instance of

MSE on the grid graph can be verified in constant time.

We remark that our main intention of this section is giving an insight to Minimum

Shared Edges by presenting a construction for solutions on the grid graph, in the sense

of providing an example for Minimum Shared Edges. Hence, we will not go much

into details. We state our main result of this section in the following theorem.

Theorem 4.1. Let G be the unbounded, undirected Z×Z-grid graph and let s, t ∈ V (G)

be two vertices in G. Let k ∈ N0 and k < distG(s, t). Then, (G, s, t, p, k) is a yes-instance

of MSE if and only if p ≤ 4 + 2 · bk/2c.

In the following, we prepare the proof of the direction “⇐” in the proof of The-

orem 4.1. We provide a construction that, given k ∈ N0, allows p = 4 + 2 · bk/2c
s-t paths sharing at most k edges in G, where s, t ∈ V (G). Recall that by Lemma 3.1, if

k ≥ distG(s, t), then we can construct infinitely many s-t paths sharing at most k edges.

Let s = (xs, ys) and t = (xt, yt) be two vertices in V (G). We assume that xs ≤ xt
and ys < yt − 1, that is, intuitively, vertex s is below-left of vertex t. Later, we discuss

this assumption. Further we assume that the number k of edges is smaller than the

length of a shortest s-t path, i.e. k < (yt − ys) + (xt − xs).
We describe paths in graph G in the following way.

• Let a = (xa, ya), b = (xb, yb) ∈ Z2 with xa = xb. We write a l b for the path with

endpoints a and b using only vertical edges between a and b. We say a l b is a

vertical path.

• Let a = (xa, ya), b = (xb, yb) ∈ Z2 with ya = yb. We write a↔ b for the path with

endpoints a and b using only horizontal edges between a and b. We say a↔ b is a

horizontal path.

We represent s-t paths by their vertical and horizontal subpaths. For example, the path

a l b ↔ c, for three suitable vertices a, b, c ∈ V (G), is the path with subpaths a l b

The Parameterized Complexity of Finding Paths with Shared Edges 26

s

t

s

t

s

t

s

t

(xs, ys − i)

(xt, yt + i)

(xs, ys − i)

(xt, yt + i)

(xt + (i+ 1), ys − i)(xs − (i+ 1), ys − i)

(xt + (i+ 1), yt + i)(xs − (i+ 1), yt + i)

Figure 4.1: Schematic representation of the left and right s-t paths Li and Ri for an i ∈ N in

graph G.

and b↔ c. Now, we construct s-t paths of the following two types. For i ∈ N0, we define

left s-t paths

Li :=(xs, ys) l (xs, ys − i)↔ (xs − (i+ 1), ys − i) l (xs − (i+ 1), yt + i)

↔ (xt, yt + i) l (xt, yt),

and right s-t paths

Ri :=(xs, ys) l (xs, ys − i)↔ (xt + (i+ 1), ys − i) l (xt + (i+ 1), yt + i)

↔ (xt, yt + i) l (xt, yt).

In Figure 4.1, we provide a schematic representation of a left, orange-colored s-t path Li
and a right, blue-colored s-t path Ri for an i ∈ N.

By construction, for the left and right s-t paths holds for all i ∈ N:

(i) Li and Li+1 share exactly the edges in the paths (xs, ys) l (xs, ys− i) and (xt, yt) l
(xt, yt + i).

(ii) Ri and Ri+1 share exactly the edges in the paths (xs, ys) l (xs, ys− i) and (xt, yt) l
(xt, yt + i).

(iii) Li and Ri share exactly the edges in the paths (xs, ys) l (xs, ys − i) and (xt, yt) l
(xt, yt + i).

Note that for any j ∈ N it holds that the set of shared edges by the s-t paths Lj−1 and

Lj is contained in the set of shared edges by the s-t paths Lj and Lj+1, and the same

holds for the right s-t paths. Thus, for every i ∈ N0, the s-t paths L0, . . . , Li+1 as well

as the s-t paths R0, . . . , Ri+1 share exactly the edges in the paths (xs, ys) l (xs, ys − i)
and (xt, yt) l (xt, yt + i). Note that an implication of combining (i) and (iii) is that

the s-t paths Li+1 and Ri share exactly the edges of the paths (xs, ys) l (xs, ys − i)

Section 4. Grids 27

s

t

s

t

s

t

s

t

Figure 4.2: Two examples of the set P(4) of eight s-t paths in graph G, according to the positions

of the vertices s and t.

and (xt, yt) l (xt, yt + i). Hence, the s-t paths L0, . . . , Li+1, R0, . . . , Ri share exactly the

edges in the paths (xs, ys) l (xs, ys − i) and (xt, yt) l (xt, yt + i).

In addition to the left and right s-t paths, we construct a special s-t path

P ∗ := (xs, ys) l (xs, yt − 1)↔ (xt, yt − 1) l (xt, yt).

Note that P ∗ does not share any edge with any of the left and right s-t paths.

For every n ∈ N0, we define a set of s-t paths

P(n) := {P ∗, L0, . . . , Lbn/2c+1, R0, . . . , Rbn/2c}.

In Figure 4.2, we present two examples for P(4) on graph G. On the left-hand side,

the vertices s and t are positioned in such a way that xs = xt and ys = yt − 5. On the

right-hand side, the vertices s and t are positioned in such a way that xs = xt − 4 and

ys = yt − 5. The orange-colored s-t paths correspond to the left s-t paths, the blue-

colored s-t paths correspond to the right s-t paths, and the two green-colored s-t paths

correspond to the special s-t paths. Red-colored edges indicate the edges that are shared

by at least two s-t paths.

We remark that

P(n+ 1) =

{
P(n), if n is even,

P(n) ∪ {Lbn/2c+2, Rbn/2c+1}, if n is odd,

and that |P(n)| ≤ 4 + 2 · bn/2c. Recall that P ∗ does not share any edge with any left or

right s-t path, and that the s-t paths L0, . . . , Lbn/2c+1, R0, . . . , Rbn/2c share exactly the

The Parameterized Complexity of Finding Paths with Shared Edges 28

edges in the paths (xs, ys) l (xs, ys − bn/2c) and (xt, yt) l (xt, yt + bn/2c). Thus, the

s-t paths in set P(n) share bn/2c+bn/2c ≤ n edges. We conclude that for every n ∈ N0,

the set P(n) contains 4 + 2 · bn/2c s-t paths that share at most n edges.

The construction allows us to provide a sketch of a proof of Theorem 4.1, if for

s = (xs, ys) and t = (xt, yt) it holds that xs ≤ xt and ys < yt−1. We show next that the

construction can be adjusted with small effort for any positions of vertex s and vertex t.

If xs ≤ xt, ys ≤ yt and |ys − yt| ≤ 1, then we consider the following two cases.

Case 1 : |xs − xt| ≤ 1. Since |ys − yt| ≤ 1, it follows that distG(s, t) ≤ 2. If

k ≥ distG(s, t), then we can construct infinitely many s-t paths in G sharing at most

k edges. Let k < distG(s, t) ≤ 2. For each k ∈ {0, 1} holds that 4 + 2 · bk/2c = 4. Since

the value of any maximum s-t flow in G is equal to four (stated here without proof), we

can construct p = 4 edge-disjoint s-t paths in G.

Case 2 : |xs−xt| > 1. Then we obtain a feasible construction by switching the x- and

y-coordinates in the constructions. Note that if x′s = ys, y
′
s = xs and x′t = yt, y

′
t = xt,

then x′s ≤ x′t and y′s < y′t − 1, consistently with the basic case yet presented.

Note that for all other cases, we can find a reflection φ : Z × Z → Z × Z such that

φ(xs) ≤ φ(xt) and φ(ys) ≤ φ(yt). Remark that each of the reflections is an involution.

Then, we can apply the construction presented above with s′ = (φ(xs), φ(ys)) and t′ =

(φ(xt), φ(yt)). Since graph G is undirected and φ is a reflection, this yields a construction

for any positions of the vertices s and t in G.

Sketch of a proof of Theorem 4.1. Let k ∈ N0 and k < distG(s, t).

“⇒”: Let p > 4 + 2 · bk/2c. Since the maximum degree of graph G is four, it

follows that p > 4 + 2 · bk/2c = ∆(G) + bk/2c · (∆(G) − 2). Thus, by Lemma 3.4, the

instance (G, s, t, p, k) is a no-instance of Minimum Shared Edges.

“⇐”: We construct the set P(k) of p = 4 + 2 · bk/2c s-t paths. Since the s-t paths

in P(k) share at most k edges, the construction yields a solution for instance (G, s, t, p, k)

of Minimum Shared Edges.

By Theorem 4.1, we know that Minimum Shared Edges can be solved in constant

time on G. However, it remains open whether Minimum Shared Edges on planar

graphs can be solved in polynomial time.

Section 5. Hardness Results 29

5 Hardness Results

s t

v1

v2

v3

v4

w1

w2

w3

w4

1

2

3

4

C2

C4

C1 C3

X

Figure 5.1: Counter example for adapting the reduction due to Omran et al. [16] for the undi-

rected case of Minimum Shared Edges.

In Section 3, we showed that MSE(k) is in XP. In this section, we show that Min-

imum Shared Edges is W [2]-hard with respect to the number k of shared edges. To

this end, we give a parameterized reduction from the Set Cover problem. Upon this

reduction, we show that Minimum Shared Edges is NP-complete. Further, we show

that Minimum Shared Edges remains NP-hard on graphs with maximum degree at

least five, by giving a reduction from the Vertex Cover problem.

Theorem 5.1. Minimum Shared Edges is W [2]-hard with respect to the number k of

shared edges.

In the proof of Theorem 5.1 we provide a reduction from the following problem.

Problem: Set Cover (SC)

Input: A set X, a set of sets C ⊆ 2X , and an integer `.

Parameter: `.

Question: Are there sets C1, . . . , C`′ ∈ C with `′ ≤ ` such that X =
⋃`′

i=1Ci?

Omran et al. [16] showed that Minimum Shared Edges on directed graphs is NP-

hard using a reduction from Set Cover. In addition, since their reduction is a param-

eterized reduction with respect to the number k of shared edges, they showed implicitly

that MSE(k) on directed graphs is W [2]-hard. Illustrated as a counter example in Fig-

ure 5.1, we can not adapt their reduction for MSE on undirected graphs. Here, adapting

means to apply the reduction described by Omran et al. [16] and remove the directions

The Parameterized Complexity of Finding Paths with Shared Edges 30

of the edges in the directed graph to convert it into an undirected graph. The left-hand

side instance of Set Cover in Figure 5.1 does not allow a set cover of at most two sets,

since the sets C2, C3, and C4 are essential to cover the elements 2, 3, and 4. Adapt-

ing the reduction, the right-hand side instance of Minimum Shared Edges resulting

from the adapted reduction should not allow eight s-t-paths sharing at most two edges.

As illustrated, the right-hand instance allows eight s-t-paths sharing two edges, where

blue lines correspond to edges used by exactly one s-t path and red lines correspond to

shared edges. Dashed lines represent paths of length 3. The problem that occurs after

removing the direction of the edges is, roughly speaking, that the paths are allowed to

go backwards, where here backwards is related to if we read the graph as illustrated from

left to right. We remark that the reduction we present next is closely related to their

reduction.

Now, we present a parameterized reduction of each instance (X, C, `) of SC(`) to

an instance (G, s, t, p, k) of MSE(k). We remark that SC(`) is well-known to be W [2]-

complete [6]. In the following, we call a path of length m ∈ N an m-chain, consistently

with Omran et al. [16].

Proof of Theorem 5.1. Let (X, C, `) be an instance of SC(`). Let deg(x) be the number

of sets in C containing element x ∈ X, that is, deg(x) := |{C ∈ C | x ∈ C}| for every

x ∈ X. We reduce the instance (X, C, `) to an instance (G, s, t, p, k) of MSE(k) with

p = |C|+
∑

x∈X deg(x) and k = ` as follows.

Construction. Initially, let G be an empty graph, that is V (G) = E(G) = ∅. First,

we add the vertices s and t to the vertex set V (G) of graph G. Next, we add to V (G)

the following vertex sets:

• VX = {vi | i ∈ X}, the set of vertices corresponding to the elements of X,

• VC = {wj | Cj ∈ C}, the set of vertices corresponding to the sets in C,

• VD = {vi,j | (i ∈ X)∧ (Cj ∈ C)∧ (i ∈ Cj)}, the set of vertices corresponding to the

relation of the elements in X with the sets in C, i.e. a vertex vi,j is in VD if there

is an element i ∈ X and a set Cj ∈ C such that i ∈ Cj , and

• VT = {ti | i ∈ X}.

We connect each vi,j ∈ VD via an (`+1)-chain with vi ∈ VX , with ti ∈ VT and with wj ∈
VC . Next, we connect vertex s with every vertex w ∈ VC via an (`+ 1)-chain and with

each vi ∈ VX via deg(i) (` + 1)-chains. Finally, we connect vertex t with each w ∈ VC
via a single edge each and with each ti ∈ VT via deg(i) − 1 (` + 1)-chains. Figure 5.2

illustrates this construction on an example instance of Set Cover.

Correctness. Suppose that we have p s-t paths in G that share at most k edges. We

show that we can construct a set cover C′ ⊆ C of X with |C′| ≤ `. First, we provide some

observations.

Section 5. Hardness Results 31

s t

v1

v2

v3

w1

w2

w3

v1,1

v1,2

v2,1

v2,3

v3,3

t1

t2t3

1

2

3

C1

C3

C2

X

Figure 5.2: Illustration of the construction of the graph G (right-hand side) in the reduction from

an instance of Set Cover on the left-hand side to an instance of Minimum Shared Edges.

Dashed lines represent (`+ 1)-chains, where ` is the parameter in the instance of Set Cover.

Since every (` + 1)-chain contains ` + 1 edges, every (` + 1)-chain in G appears in

at most one s-t path. Since there are p s-t paths and there are p (`+ 1)-chains incident

with vertex s, every (`+ 1)-chain incident with vertex s appears in exactly one s-t path.

Therefore, each vi ∈ VX appears in at least deg(i) s-t paths and each wj ∈ VC appears in

at least one s-t path. Moreover, since each vi ∈ VX is incident with 2·deg(i) (`+1)-chains,

each vi ∈ VX appears in exactly deg(i) s-t paths.

Each vi,j ∈ VD has exactly degree three and is incident with three (` + 1)-chains.

Therefore, every vi,j ∈ VD appears in at most one s-t path. Moreover, since each vi ∈ VX
appears in deg(i) s-t paths, and there are deg(i) vertices in VD each connected with vi
via an (`+ 1)-chain, each vi,j ∈ VD appears in exactly one s-t path.

Let V ′ := {w ∈ VC | {w, t} is a shared edge}. Set V ′ is the set of vertices in VC
that are incident with the shared edges of the p s-t paths. We claim that if wj ∈ VC
appears in an s-t path P containing a vertex in VX , then wj ∈ V ′. Let vi ∈ VX be

the vertex that appears in path P . Suppose V ′ does not contain vertex wj , and thus,

edge {wj , t} is not shared. Since the (` + 1)-chain connecting vertex s with vertex wj
appears in exactly one s-t path different from P , vertex wj appears in at least two

s-t paths. Since every vertex in VC is incident with vertex t and vertices in VD via

(` + 1)-chains, there is a vertex vi′,j′ ∈ VD different from vertex vi,j , such that one of

the s-t paths containing vertex wj contains vertex vi′,j′ . Let P ′ be the path containing

the vertices wj and vi′,j′ . We know that there is an s-t path containing vertex vi′,j′ and

vertex vi′ different from P ′, since there are p s-t paths. Thus, vertex vi′,j′ appears in at

The Parameterized Complexity of Finding Paths with Shared Edges 32

least two s-t paths, contradicting the fact that each vertex in VD appears in exactly one

s-t path. We conclude that set V ′ contains vertex wj .

We claim that the subset C′ ⊆ C corresponding to vertices in V ′, that is C′ := {Cj ∈
C | wj ∈ V ′}, is a set cover of X of size at most `. Each ti ∈ VT is connected with vertex t

via deg(i) − 1 (` + 1)-chains, and connected with deg(i) vertices in VD. Therefore, for

each i ∈ X, there exists at least one j ∈ [|C|], such that vi, vi,j , and wj appear in an

s-t path. As shown before, it follows that wj ∈ V ′. Thus, for each element i ∈ X there

exists a set Cj ∈ C′ such that i ∈ Cj , and hence, C′ is a set cover of X of size at most `.

Conversely, suppose that we have a set C′ ⊆ C with |C′| ≤ `, such that C′ is a set

cover of X. We show that we can construct p s-t paths in G that share at most k = `

edges.

First, we construct |C| s-t paths in the following way. For each vertex w ∈ VC , we

construct the s-t path containing only the (` + 1)-chain connecting s and w and the

edge {w, t}. It follows that each of the |C| edges connecting a vertex in VC with vertex t

appears in exactly one s-t path.

Next, we construct |X| s-t paths in the following way. We remark that since C′ is a

set cover of X, for each i ∈ X there exists a Cj ∈ C′ such that i ∈ Cj . For each vi ∈ VX ,

we construct an s-t path containing only the (`+ 1)-chains connecting s with vi, vi with

vi,j , vi,j with wj , and the edge {wj , t}, where vertex wj ∈ VC corresponds to a Cj ∈ C′

with i ∈ Cj . Since |C′| ≤ `, there are at most ` edges connecting the vertices in VC with t

that are shared by the s-t paths constructed so far.

Finally, we construct
∑

x∈X deg(x) − |X| s-t paths in the following way. Note that

for each vi ∈ VX , there are deg(i)− 1 (`+ 1)-chains connecting s and vi not covered by

an s-t path and there are deg(i)−1 vertices in VD connected with vi via an (`+ 1)-chain

not covered by an s-t path. Moreover, no vertex in VT is covered by an s-t path, and

thus, ti ∈ VT is not covered by an s-t path. Recall that ti ∈ VT is connected with vertex t

by deg(i) − 1 (` + 1)-chains. Thus, for each vi ∈ VX , we can lead deg(i) − 1 s-t paths

from s over vi, vertices in VD and ti to t without sharing any edge.

In total, we constructed

|C|+ |X|+
∑
x∈X

deg(x)− |X| = |C|+
∑
x∈X

deg(x) = p

s-t paths sharing at most k = ` edges.

By Theorem 5.1, we know that MSE(k) isW [2]-hard. We remark that in the reduction

in the proof of Theorem 5.1, the size of the instance of MSE is polynomial in the size

of the instance of SC, and thus, we showed that MSE is NP-hard. MSE is also in NP,

since we can verify in polynomial time any certificate, that is, whether a given set of

at least p s-t paths share at most k edges. Hence, we conclude that Minimum Shared

Edges is NP-complete.

Section 5. Hardness Results 33

Next, we show that Minimum Shared Edges remains NP-hard even on graphs with

maximum degree five.

Theorem 5.2. Minimum Shared Edges is NP-hard even on graphs with maximum

degree at least five.

We prove Theorem 5.2 by giving a reduction from the following problem:

Problem: Vertex Cover (VC)

Input: An undirected graph G = (V,E) and an integer ` ∈ N.

Parameter: `.

Question: Is there a subset V ′ ⊆ V with |V ′| ≤ ` such that each edge in E is

incident with at least one vertex in V ′?

Garey et al. [9] showed that Vertex Cover remains NP-complete on graphs with

maximum degree three.

Proof of Theorem 5.2. We provide a polynomial time reduction from Vertex Cover

to Minimum Shared Edges. Given an instance (G, `) of VC with ∆(G) ≥ 3, we

construct an instance (G′, s, t, p, k) of MSE with ∆(G′) = ∆(G) + 2 ≥ 5 as follows.

Construction. Let G = (V,E) be the graph given in the instance (G, `) of VC with

maximum degree ∆ := ∆(G) ≥ 3, vertex set V = {xi | 1 ≤ i ≤ |V |} and edge set E =

{ei | 1 ≤ i ≤ |E|}. We construct a graph G′ = (V ′, E′) as follows.

Let G′ = (V ′, E′) be initially the empty graph, i.e. V ′ = E′ = ∅. We add the vertex

sets Ve = {wi | ei ∈ E} and Vv = {vi | xi ∈ V } to V ′. The vertices in Ve correspond to

the edges in G and the vertices in Vv correspond to the vertices in G. Let Ts be a binary

tree rooted at vertex s with b(|V | + |E|)/2c leaves, where the depths of any two leaves

differ by at most one. Let Tt be a binary tree rooted at vertex t with b|V |/2c leaves,

where the depths of any two leaves differ by at most one. We add the trees Ts and Tt to

graph G′. We define

L := |E(Ts)|+ |E(Tt)|+ `+ 1.

We connect the vertices in Vv ∪ Ve with the leaves of tree Ts via L-chains in such a way

that every vertex in Vv ∪ Ve is connected with exactly one leaf of tree Ts, and every leaf

of tree Ts is connected with at least two and at most three vertices in Vv ∪ Ve. This

construction of L-chains is possible since tree Ts contains b(|V | + |E|)/2c leaves and

|Vv ∪Ve| = |V |+ |E|. We add edges to E′ connecting the vertices in Vv with the leaves of

tree Tt in such a way that every vertex in Vv is connected by a single edge with exactly

one leaf of Tt and every leaf of Tt is connected with at least two and at most three

vertices in Vv by a single edge each. This construction of edges is possible, since tree Tt
contains b|V |/2c leaves, and |Vv| = |V |. Finally, for each wi ∈ Ve and each vj ∈ Vv, we

connect vertex wi with vertex vj via an L-chain if and only if vertex xj corresponding

The Parameterized Complexity of Finding Paths with Shared Edges 34

x1 x2

x3x4

x5

e1

e2

e3

e4

e5

e6

s t

w6

w5

w4

w3

w2

w1

v5

v4

v3

v2

v1

Figure 5.3: Example for the construction in the reduction from Vertex Cover to Minimum

Shared Edges. On the left-hand side, the graph G for Vertex Cover is shown. On the

right-hand side, the constructed graph G′ for Minimum Shared Edges is shown. Red lines

correspond to edges in the two binary trees Ts and Tt. Blue lines correspond to the edge set

derived from the incidence relation of the vertices and edges of G. All dashed lines correspond

to L-chains. If ` is the parameter in the instance of Vertex Cover, then L = 11 + `+ 1.

to vj is an endpoint of edge ei corresponding to wi, i.e. xj ∩ ei 6= ∅. In Figure 5.3, we

provide an example for the construction.

We remark that every vertex in V (Ts) and in V (Tt) has degree at most four, each

of the vertices s and t has degree two, every vertex in Ve has degree three, and every

vertex in Vv has degree at most ∆ + 2. Thus, the maximum degree of G′ is ∆ + 2.

With p = |V |+ |E|, k = L− 1, and ∆′ = ∆ + 2, this construction yields an instance

(G′, s, t, p, k) of MSE, where the maximum degree of graph G′ is at least five. We show

that (G, `) is a yes-instance of VC if and only if (G′, s, t, p, k) is a yes-instance of MSE.

Correctness. Suppose that we have p s-t paths in G′ that share at most k edges. We

state the following observations.

(i) Every L-chain appears in at most one s-t path.

To see this, suppose that there is an L-chain that appears in at least two s-t paths. Then

there are L = k + 1 > k shared edges, contradicting the fact that we have p s-t paths

in G′ sharing at most k edges.

(ii) Every L-chain connecting a leaf of Ts with a vertex of Ve ∪ Vv appears in exactly

one s-t path, and every s-t path contains exactly one of the L-chains connecting a

Section 5. Hardness Results 35

leaf of Ts with a vertex in Ve ∪ Vv.

We show that (ii) holds. We remark that there are p = |V | + |E| L-chains connecting

the leaves of Ts with the vertices in Ve ∪ Vv and p s-t paths. Since every s-t path leads

over a leaf of tree Ts, and every L-chain appears in at most one s-t path by (i), there is

a one-to-one correspondence between the p s-t paths and the p L-chains connecting the

leaves of Ts with the vertices in Ve∪Vv. Thus, every vertex in Vv appears in at least one

s-t path, and every vertex in Ve appears in exactly one s-t path since every vertex in Ve
has degree three and is incident with exactly three L-chains.

(iii) All edges in the trees Ts and Tt are shared (these are L− `− 1 many).

In the following, we prove observation (iii). We consider tree Ts. Tree Ts has b(|V | +
|E|)/2c leaves. By construction, there are |V | + |E| L-chains incident with the leaves

of Ts. Recall that there are p = |V |+ |E| s-t paths and each of the p L-chains incident

with the leaves of Ts appears in exactly one s-t path by (ii). Since each of the leaves

of Ts is incident with at least two and at most three L-chains, for every leaf of Ts there

exist at least two s-t paths connecting s with the leaf. Hence, every edge in tree Ts is

shared by the p s-t paths.

We consider tree Tt. Tree Tt has b|V |/2c leaves. We claim that each of the edges

connecting Vv with the leaves of Tt appears in at least one s-t path. Suppose that there

is an edge f that connects a vertex in Vv with a leaf of tree Tt and that does not appear

in any s-t path. Let vi ∈ Vv with vi ∈ f . Vertex vi appears in at least one s-t path P ,

since there is an L-chain connecting vi with a leaf of tree Ts which is used by exactly

one s-t path by (ii). Since P does not contain the edge f , path P uses an L-chain

connecting vertex vi with a vertex wj ∈ Ve. Vertex wj appears in an s-t path P ′ using

the L-chain connecting wj with a leaf of Ts by (ii). Since P 6= P ′, vertex wj appears in

two s-t paths, which contradicts the fact that every vertex in Ve appears in exactly one

s-t path. Hence, each of the edges connecting the vertices in Vv with the leaves of Tt
appears in at least one s-t path. Since, by construction, every leaf of tree Tt is connected

with at least two and at most three vertices in Vv by an edge, and every s-t path leads

over the leaves of Tt to vertex t, every edge in tree Tt is shared by the p s-t paths.

We remark that, as a consequence of (iii), the edges connecting the vertices in Vv
with the leaves of Tt are the only edges that can be shared by the s-t paths beside the

edges in the trees Ts and Tt.

(iv) For every vertex wj ∈ Ve, there is exactly one s-t path that contains wj and a

vertex in Vv.

To see (iv), we know that each vertex in Ve appears in exactly one s-t path, and each

L-chain connecting the leaves of tree Ts with the vertices in Ve appears in exactly one

The Parameterized Complexity of Finding Paths with Shared Edges 36

s-t path by (ii). Since each vertex in Ve is connected with a leaf of Ts and with two

vertices in Vv via L-chains, for each vertex wj ∈ Ve there exists an s-t path containing wj
and a vertex in Vv.

Let Z := {y ∈ Vv | {y, t′} is a shared edge with t′ ∈ V (Tt)}. Set Z is the set of

vertices in Vv such that each vertex is an endpoint of an edge that is connecting the

vertices in Vv with the leaves of Tt and that is shared by the p s-t paths. We claim that

the set C := {xi ∈ V | vi ∈ Z} is a vertex cover of G of size at most `. We consider an

s-t path P containing a vertex wj ∈ Ve and a vertex vi ∈ Vv. We know by (iv) that such

an s-t path exists for every vertex in Ve. We show that vertex vi is in the set Z.

Suppose that vertex vi is not contained in set Z, then the edge connecting vi with

a leaf of tree Tt is covered by at most one s-t path. Since vertex vi appears in an s-

t path P ′ 6= P that contains the L-chain connecting vi with a leaf of tree Ts, vertex vi
appears in at least two s-t paths. Let Q be one of the two s-t paths P and P ′ such that

Q does not contain the edge connecting vertex vi with a leaf of tree Tt. Since vertex vi is

connected with one leaf of tree Ts, one leaf of tree Tt and vertices in Ve, path Q contains

an L-chain connecting vi with a vertex wj′ ∈ Ve different from wj , i.e. wj′ 6= wj . Since

the L-chain connecting vertex wj′ with a leaf of tree Ts appears in exactly one s-t path

different from Q, vertex wj′ appears in at least two s-t paths. This is a contradiction to

the fact that each vertex in Ve appears in exactly one s-t path, and hence, set Z contains

vertex vi.

Since the p s-t paths share at most k = L− 1 edges and, by (iii), all the edges in the

trees Ts and Tt are shared, set Z has size at most `, i.e. |Z| ≤ `. Thus, by the one-to-one

correspondence between the vertices in Vv and the vertices in V (G), the set C has size at

most `, i.e. |C| ≤ `. We show that C is a vertex cover of G. Let ej ∈ E(G) be an arbitrary

edge of G and let wj ∈ Ve be the vertex in G′ corresponding to edge ej . We know by

(iv) that there is exactly one s-t path that contains wj and a vertex vi ∈ Vv. We know

that vertex vi is contained in set Z. Let xi ∈ V (G) be the vertex in G corresponding

to vertex vi. By construction, xi ∩ ej 6= ∅, and since vi ∈ Z, it holds that xi ∈ C. This

means that vertex xi covers edge ej . Since edge ej was chosen arbitrarily, every edge

in G is incident with a vertex in C and thus, C is a vertex cover of G of size at most `.

Conversely, let C be a vertex cover of size at most ` of G. Let Z := {vi ∈ Vv | xi ∈ C}
be the vertices in G′ corresponding to the vertices in the vertex cover C of G. We show

that we can construct p s-t paths in G that share at most k = L− 1 edges.

First, we construct |V | s-t paths in such a way that no vertex in Ve appears in any of

these |V | s-t paths and each s-t path contains exactly one vertex in Vv. We remark that

by that construction, every edge connecting the vertices in Vv with the leaves of tree Tt
appears in exactly one s-t path, and every edge in tree Tt is shared.

Next, we construct the remaining |E| s-t paths in the following way. Each of the |E| s-
t paths contains exactly one vertex in Ve and one vertex in Vv, and no L-chain connecting

Section 5. Hardness Results 37

the leaves of Ts with vertices in Vv appears in any of the |E| s-t paths. Since C is a

vertex cover of G, we can construct the |E| s-t paths in such a way that each of the |E|
s-t paths contains exactly one vertex in Ve and one vertex in Z. We remark that by the

construction of these |E| s-t paths additionally to the |V | s-t paths constructed before,

every edge in tree Ts is a shared edge. Since |Z| ≤ `, there are at most ` edges connecting

the vertices in Vv with the leaves of tree Tt that are shared by the |V | + |E| s-t paths.

Together with the |E(Ts)|+|E(Tt)| shared edges in Ts and Tt, the constructed p s-t paths

share at most k = |E(Ts)|+ |E(Tt)|+ ` = L− 1 edges in G′.

We showed that Minimum Shared Edges remains NP-hard on graphs with bounded

maximum degree at least five. We remark that on graphs with maximum degree at most

two, we can solve Minimum Shared Edges in polynomial time. Let G be a graph with

∆(G) ≤ 2 and s, t ∈ V (G) two vertices in G. If the number p of paths is greater than the

value of a maximum s-t flow in G with unit edge capacities, then the number of edges

that have to be shared is at least the length of a shortest s-t path. Thus, an instance

(G, s, t, p, k) of MSE with ∆(G) ≤ 2 is a yes-instance if and only if k ≥ distG(s, t)

or p ≤ |f |, where |f | is the value of a maximum s-t flow in G with unit edge capacities.

However, it remains an open problem whether Minimum Shared Edges can be solved

in polynomial time on graphs with maximum degree three or four.

In the remainder of this section, we show that Short Minimum Shared Edges

(SMSE) is W [2]-hard when parameterized by the number k of shared edges and the

upper bound λ on the length of the paths.

Theorem 5.3. SMSE(k, λ) is W [2]-hard.

We give a shortened proof of Theorem 5.3, since many of the arguments used in the

proof of Theorem 5.1 can be transferred.

Proof. Let (X, C, `) be an instance of Set Cover. We reduce instance (X, C, `) of SC(`)

to an instance (G, s, t, p, k, λ) of SMSE(k, λ) with p = |X|+ |C|, k = ` and λ = `+ 3 as

follows.

Construction. Initially, let G be an empty graph, that is, V (G) = E(G) = ∅. First,

we add the vertcies s and t to V (G). Next, we add the following vertex sets to V (G):

• VX := {vi | i ∈ X}, the set of vertices corresponding to the elements of X,

• VC := {wj | Cj ∈ C} and Vs := {uj | Cj ∈ C}, two sets of vertices corresponding to

the sets in C.

We connect each vertex in Vs and VX with vertex s via an (`+ 1)-chain. Finally, we add

the following edge sets to E(G):

The Parameterized Complexity of Finding Paths with Shared Edges 38

s t

v1

v2

v3

v4

u1

u2

u3

u4

w1

w2

w3

w4

1

2

3

4

C2

C4

C1 C3

X

Figure 5.4: Example of the reduction from Set Cover to Short Minimum Shared Edges.

On the left-hand side, an instance (X, C, `) of Set Cover is shown. On the right-hand side, the

constructed graph in the reduced instance (G, s, t, p, k, λ) of Short Minimum Shared Edges

is shown with p = 8, k = `, and λ = `+ 3. Dashed lines represent (`+ 1)-chains.

• E1 := {{vi, wj} | (i ∈ X) ∧ (Cj ∈ C) ∧ (i ∈ Cj)},

• E2 := {{uj , wj} | Cj ∈ C},

• E3 := {{wj , t} | Cj ∈ C}.

Note that by construction, every shortest s-t path in G has length `+ 3. In Figure 5.4,

we provide an example for the described construction on an example instance of Set

Cover.

Correctness. Suppose that we have p = |X|+ |C| s-t paths in G of length at most λ =

`+ 3 that share at most k = ` edges. We show that we can construct a set cover C′ ⊆ C
of X with |C′| ≤ `.

Since every (`+ 1)-chain contains (`+ 1) edges, every (`+ 1)-chain in G appears in

at most one s-t path. Since vertex s is incident with exactly p (`+ 1)-chains, each of the

(`+ 1)-chains incident with vertex s appears in exactly one s-t path. As a consequence,

each of the vertices in Vs and VX appears in at least one s-t path. Since each vertex

in VX is connected with s via an (`+ 1)-chain and vertices in VC , each of the s-t paths

containing a vertex in VX contains a vertex in VC . Since each vertex in VC is connected

with exactly one vertex in Vs, each of the vertices in VC appears in at least one s-t path.

Note that the length of each of the p s-t paths is at most λ + 3, and each shortest

s-t path in G has length λ + 3. Thus, each of the p s-t paths is a shortest s-t path

in G. We show that every s-t path contains exactly one vertex in VX ∪ Vs. For every

vertex v ∈ VX ∪ Vs holds that distG(v, t) = 2 and distG(s, v) = (` + 1). For every two

Section 5. Hardness Results 39

vertices v, v′ ∈ VX ∪ Vs holds that distG(v, v′) ≥ 2. Suppose that there is an s-t path P

that contains two vertices v, v′ ∈ VX ∪ Vs. Since the endpoints of P are the vertices s

and t, there exists a subpath P1 in P connecting s with one of the vertices v or v′, a

subpath P2 in P connecting v with v′ and a subpath P3 connecting one of the vertices

v or v′ with t. It holds that

|E(P)| ≥ |E(P1)|+ |E(P2)|+ |E(P3)| ≥ (`+ 1) + 2 + 2 = `+ 5.

This is a contradiction to the fact that P has length at most `+ 3. Hence, each vertex

in Vs and VX appears in exactly one s-t path. Moreover, no edge connecting the vertices

in Vs ∪ VX with the vertices in VC is shared.

Let V ′ := {w ∈ VC | {w, t} is a shared edge}. We claim that if vertex vi ∈ VX and

vertex wj ∈ VC appear in an s-t path, then wj ∈ V ′. Consider an s-t path containing

the vertices vi and wj . Since wj appears in an s-t path containing a vertex in Vs, and

every s-t path contains exactly one vertex in Vs ∪ VX , vertex wj appears in at least

two s-t paths. Since vertex wj is only connected with vertices in Vs ∪ VX ∪ {t}, and

every s-t path contains exactly one vertex in Vs ∪ VX , each of the at least two s-t paths

containing vertex wj uses edge {wj , t}. It follows that wj ∈ V ′.
We claim that C′ := {Cj ∈ C | wj ∈ V ′} is a set cover of X of size at most `. Since

the p s-t paths share at most k = ` edges, it follows that |V ′| ≤ k. We know that for each

vertex in VX , there is exactly one vertex in VC such that both vertices appear in one of

the s-t paths. In addition, if a vertex in VX and a vertex in VC appear on an s-t path,

then the vertex in VC is contained in V ′. Therefore, for each i ∈ X, the corresponding

vertex vi ∈ VX appears in an s-t path containing a vertex in V ′. Thus, each i ∈ X is

covered by a set in C′, and hence, C′ is a set cover of X of size at most `.

Conversely, suppose that we have a set cover C′ of X of size at most `. We show

that we can construct p s-t paths in G of length at most λ = ` + 3 that share at most

k = ` edges.

First, we construct |C| shortest s-t paths as follows. For each vertex uj ∈ Vs, we

construct an s-t path that contains the (` + 1)-chain connecting s with uj and the

edges {uj , wj} and {wj , t}. Each of these |C| s-t paths has length `+ 3 and they do not

share any edge.

Next, we construct |X| shortest s-t paths as follows. For each i ∈ X, we construct

an s-t path that contains the (` + 1)-chain connecting s with vi and the edges {vi, wj}
and {wj , t}, where wj corresponds to a set Cj ∈ C′ with i ∈ Cj . Since C′ is a set

cover of X, such a vertex wj exists for vertex vi. Each of these |X| s-t paths has

length ` + 3. Since there are at most |C′| ≤ k sets in the set cover C′, at most k edges

connecting the vertices in VC with vertex t are shared by the p constructed s-t paths of

length λ = `+ 3.

The Parameterized Complexity of Finding Paths with Shared Edges 40

6 An Efficient Algorithm for Small Treewidth

In the previous section, we showed that MSE(k) is W [2]-hard, and that Minimum

Shared Edges remains NP-hard on graphs with maximum degree at least five. By

Section 3, we know that MSE(p, k) is fixed-parameter tractable. This motivates a

closer study of the parameter p. In this section, we provide a dynamic program that

solves MSE(p, ω) in FPT-time, where ω is the width of a given tree decomposition of the

input graph. We make use of our dynamic program in Section 7 to prove that MSE(p)

is fixed-parameter tractable.

Many problems can be solved efficiently on graphs with bounded treewidth assuming

that a tree decomposition of a graph is given. Ye et al. [19] showed that Minimum

Shared Edges is fixed-parameter tractable with respect to the number p of paths and

an upper bound on the treewidth of the graph. Ye et al. [19] provided an algorithm

that solves MSE(p, ω) in FPT-time, that is, with respect to the number p of paths

and a upper bound ω ≥ tw(G) on the treewidth of graph G. Aoki et al. [1] provided

an algorithm that solves Minimum Vulnerability parameterized by the number p of

paths and a upper bound ω on the treewidth of the input graph in FPT-time, which can

be used to solve MSE(p, ω) in FPT-time, since MV generalizes MSE. Both algorithms

are dynamic programs running on a nice tree decomposition. In contrast, the dynamic

program that we present next runs on a nice tree decomposition with introduce edge

nodes. The running times of the algorithms provided by Ye et al. [19] and Aoki et al. [1]

are both linear in p and double exponential in ω, while the running time of our algorithm

is exponential in p and exponential in ω. Hence, for high values of ω, our algorithm is

preferable. The main result of this section is the following.

Theorem 6.1. Let G be a graph with s, t ∈ V (G) given together with a tree decomposition

of width ω. Let p ∈ N be an integer. Then the minimum number of shared edges

for p s-t paths can be computed in O(p · (ω + 4)3·p·(ω+3)+4 · |V (G)|) time.

In the following, we prepare the proof of Theorem 6.1. We modify the given tree

decomposition to a nice tree decomposition with introduce edge nodes such that each

bag contains the sink and the source node. Cygan et al. [5] showed that given a tree

decomposition, a nice tree decomposition with introduce edge nodes of equal width can

be computed in polynomial time. We remark that adding the vertices s and t to each

bag of the nice tree decomposition with introduce edge nodes can be done in linear

time in the number of nodes in the tree decomposition and increases the width of the

tree decomposition by at most two. Next, we define a graph for every node in the tree

decomposition, as well as a partial solution for a node in the tree decomposition. Finally,

we describe the dynamic program on the tree decomposition, prove its correctness and

discuss its running time.

Let G be graph and let s, t ∈ V (G) be two vertices in G. Let T′ be a nice tree

Section 6. An Efficient Algorithm for Small Treewidth 41

decomposition of G with introduce edge nodes, as defined in Section 2. We add the

vertices s and t to every bag of T′. Let T be the tree decomposition after adding s and t

to every bag. We remark that adding s and t to every bag increases the width of the

tree decomposition T′ by at most two, and thus, tree decomposition T has width ω(T) ≤
ω(T′) + 2.

For each node α in the tree decomposition T of G, we define Vα as the set of vertices

that are introduced in the subtree rooted at node α, and Eα as the set of edges that are

introduced in the subtree rooted at node α. In other words, a vertex v ∈ V (G) is in Vα if

and only if there exists at least one introduce vertex node in the subtree rooted at node α

that introduced vertex v. As a special case, since the vertices s and t are contained in

every bag, we consider s and t as introduced by each leaf node. An edge e ∈ E(G) is

in Eα if and only if there exists an introduce edge node in the subtree rooted at node α

that introduced edge e. Recall that there is a unique introduce edge node for every edge

of graph G. We define Gα := (Vα, Eα) as the graph for node α. For every leaf node α

in T, we set Vα = {s, t} and Eα = ∅.
In Figure 6.1, we show for an example graph G (upper-left) with s, t ∈ V (G) a nice

tree decomposition with introduce edge nodes and vertices s and t contained in each

bag. Moreover, we illustrate the graphs as defined above for some tagged nodes in the

tree decomposition. In the center of the figure, the modified nice tree decomposition

with introduce edge nodes is shown. The graphs around the tree decomposition are the

graphs for some tagged nodes, for example, the graph Gα is the graph for node α in

the tree decomposition. For following examples and illustrations, we make use of this

example throughout this section, and thus, we denote by T∗ the tree decomposition in

Figure 6.1.

We define a set of p forests in Gα as a partial solution Lα for node α. We recall

that a path is also a tree and a tree is also a forest. Therefore, instead of asking for p

s-t paths that share at most k edges, we can ask for p s-t forests that share at most k

edges, where an s-t forest is a forest that contains at least one tree connecting vertices s

and t. Note that every forest that contains a tree containing both vertices s and t can

be reduced to an s-t path. A partial solution Lα has a cost value c(Lα), which is equal

to the number of edges in Gα that appear in at least two of the p forests in Lα.

For each node α in the tree decomposition T of G, we consider p-tuples of pairs

Xα := (Yαq , Zαq)q=1,...,p, where for each q ∈ [p], Zαq ⊆ Bα together with Yαq ⊆ 2Bα is a

partition of Bα, that is,

(i) Zαq ∪
⋃
M∈Yαq M = Bα,

(ii) for all X,Y ∈ Yαq ∪ {Zαq } with X 6= Y holds X ∩ Y = ∅.

We say that Xα is a signature for node α. For each q ∈ [p], we call the pair (Yαq , Zαq) a

segmentation of the vertex set Bα. We call each M ∈ Yαq a segment of the segmentation q

The Parameterized Complexity of Finding Paths with Shared Edges 42

s

a b

c d e

t

G = Gτ

s

a b

c d e

t

Gα

s

a b

c d e

t

Gβ

s

a b

c d e

t

Gγ

s

a b

c d e

t

Gδ

s

a b

c d e

t

Gη

s, b, c, d, t {b, c}(τ)

s, b, c, d, t{c, d}

s, b, c, d, t (α)

s, b, c, d, t s, b, c, d, t

s, b, c, t(β)

s, a, b, c, t{a, b}

s, a, b, c, t{a, c}

s, a, b, c, t

s, a, c, t{s, c}

s, a, c, t{s, a}

s, a, c, t

s, a, t

s, t(η)

s, b, d, t

s, b, d, e, t {d, e}

s, b, d, e, t (γ)

s, b, e, t {b, t}

s, b, e, t {e, t}, (δ)

s, b, e, t

s, e, t

s, t

Figure 6.1: Example for a nice tree decomposition with introduce edge nodes and vertices s

and t contained in every bag on an example graph G (top-left). Node τ is the root node in the

tree decomposition. The graphs around the tree decomposition correspond to the graphs for the

tagged nodes in the tree decomposition. For example, graph Gγ corresponds to the graph for

node γ in the tree decomposition.

and we call Zαq the zero-segment of the segmentation q.

We say that the signature Xα is a valid signature for node α if there is a partial

solution Lα for node α such that for each q ∈ [p], the zero-segment Zαq is the set of nodes

in Bα that do not appear in the forest with index q and for each set M ∈ Yαq , there

is a tree S in the forest with index q such that M = Bα ∩ V (S). In other words, the

sets in Yαq correspond to connected components in the forest with index q of the partial

solution. We say that Xα is a signature induced by the partial solution Lα, if Xα is a

valid signature for node α and the partial solution Lα validates Xα. In this case, for

each q ∈ [p], the pair (Yαq , Zαq) is an induced segmentation. We remark that given Xα,

there can be exactly one, more than one or no partial solution with signature Xα. Given

Section 6. An Efficient Algorithm for Small Treewidth 43

a partial solution Lα for Gα, there is exactly one signature induced by Lα. Let Xα be

a signature for node α such that there is no partial solution for Gα that induces the

signature Xα, then we say that Xα is an invalid signature.

Given Xα and B ⊆ Bα, we define Xα|B as the signature Xα with sets restricted to

the set B, that is, Zαq ∩B and Mα
q ∩B for all Mα

q ∈ Yαq and for all q ∈ [p].

Let T = (TT, (Bα)α∈V (TT)) be a nice tree decomposition of G with introduce edge

nodes and vertices s and t added to every bag. Let ω := ω(T) ≥ tw(G) be the width

of T, upper-bounding the treewidth of graph G. We consider the table T in the following

dynamic program that we apply bottom-up on the tree decomposition T, that is, we start

to fill the entries of the table T at the leaf nodes of the tree decomposition T and we

traverse the tree of the tree decomposition from the leaves to the root. For a node α in

the tree decomposition T and a signature Xα for node α, the entry T [α,Xα] is defined

as

T [α,Xα] :=

{
min c(Lα), if Xα is a valid signature,

∞, otherwise,

where the minimum is taken over all partial solutions Lα in Gα such that Lα induces

the signature Xα.

For each type of node in T, we define a rule on how to fill each entry in T . In addition,

for the types introduce vertex node, forget node, introduce edge node and join node, we

prove the correctness of each rule, and we discuss the running time for applying each

rule and filling all entries in T for the given type of node. We start with the leaf nodes

of the tree decomposition T.

Leaf Node. Let α be a leaf node of T. Since s and t appear in every bag of T, it holds

that Bα = {s, t}. We set

T [α,Xα] :=

{
0, if Yαq = {{s}, {t}} for all q = 1, . . . , p,

∞, otherwise.

We recall that Vα = {s, t} and Eα = ∅ for every leaf node α in T. Since there is

no edge in Eα, the vertices s and t cannot appear together in one tree in a forest in

any partial solution in Gα, and thus, the vertices s and t cannot appear together in one

segment in any segmentation of a signature for a leaf node. Since in any solution to our

problem, s and t appear in each of the p forests, we can set s and t as segments of all

p segmentations.

Introduce Vertex Node. Let α be an introduce vertex node of T and let β be the

child node of α with Bα\Bβ = {v}. Two signatures Xα and X β are compatible if

The Parameterized Complexity of Finding Paths with Shared Edges 44

Xα|Bβ = X β, and v ∈ Zαq or {v} ∈ Yαq for each q ∈ [p]. We claim that

T [α,Xα] =

{
minXβ compatible with Xα T [β,X β], if it exists X β compatible with Xα,

∞, otherwise.

Since α is an introduce vertex node for vertex v ∈ V (G), no edge incident with v

is introduced in any node in the subtree rooted at node α, and thus, vertex v is an

isolated vertex in Gα. As a consequence, in every forest in all partial solutions for Gα,

the introduced vertex v is either a single-vertex tree or does not appear in the forest

since v cannot be connected to any vertex in Gα. A single-vertex tree is a tree that

contains exactly one vertex and does not contain any edge.

Correctness. “≥”: Let Lα be a partial solution for Gα with signature Xα such that

T [α,Xα] = c(Lα). We construct a partial solution Lβ for Gβ and a signature X β such

that Lβ induces X β and X β is compatible with Xα. For each forest in the partial

solution Lα, vertex v is either a single-vertex tree or does not appear in the forest, since

there is no edge incident with vertex v in Gα. If vertex v appears as single-vertex tree

in any forest in Lα, deleting v yields a forest in Gβ. We define the partial solution Lβ
as Lα restricted to Vβ, which are the forests without the isolated vertex v. The partial

solution Lβ is a partial solution for Gβ with valid signature X β := Xα|Bβ . Signature X β

is compatible with signature Xα. It follows that

T [α,Xα] = c(Lα) = c(Lβ) ≥ T [β,X β] ≥ min
X ′β compatible with Xα

T [β,X ′β].

“≤”: Let Lβ be a partial solution for Gβ with signature X β compatible with signa-

ture Xα such that T [β,X β] = c(Lβ) and T [β,X β] = minX ′β compatible with Xα T [β,X ′β].

We construct a partial solution Lα for Gα with signature Xα. For each q ∈ [p], if v ∈ Zαq ,

then we do not add v to the forest with index q in Lβ. If v is a single segment in the

segmentation q, i.e. {v} ∈ Yαq , then we add v as a single-vertex tree to the forest with

index q in Lβ. Since Lβ is a partial solution for Gβ, the constructed Lα is a partial

solution for Gα with signature Xα. It follows that

min
X ′β compatible with Xα

T [β,X ′β] = T [β,X β] = c(Lβ) = c(Lα) ≥ T [α,Xα].

Running time. For each signature Xα, we check for all q ∈ [p] whether v ∈ Zαq
or {v} ∈ Yαq in O(p · |Bα|) time. If for all q ∈ [p] holds that v ∈ Zαq or {v} ∈ Yαq ,

then we check all signatures X β for node β for compatibility with signature Xα, that

means, we check if Xα|Bβ = X β. This can be done in O(p · |Bα|2) time. Since there are

O((|Bβ|+ 1)p·|Bβ |) signatures for node β and |Bβ| ≤ |Bα|, the running time for this step

is in O(p · (|Bα| + 1)p·|Bα|+2). Since there are O((|Bα| + 1)p·|Bα|) signatures for node α

and |Bβ| ≤ |Bα| ≤ ω + 1, the overall running time for filling the entries in T for an

introduce vertex node is in O(p · (ω + 2)2·p·(ω+1)+2).

Section 6. An Efficient Algorithm for Small Treewidth 45

s

a

c
b t

Yβ
′

q = {{s, a, c}, {b}, {t}} Zβ
′

q = ∅

Bβ′

Gβ′

s

a

c b t

Yβq = {{s, c}, {b}, {t}} Zβq = ∅

Bβ

Gβ

Figure 6.2: Example for a segmentation q of two compatible signatures X β and X β′
for a forget

node β with child node β′ in T∗.

Forget Node. Let α be a forget node of T and let β be the child node of α withBβ\Bα =

{v}. Two signatures Xα and X β are compatible if Xα = X β|Bα . We claim that

T [α,Xα] = min
Xβ compatible with Xα

T [β,X β].

Since node α is a forget node for the vertex v ∈ V (G), all edges incident with v have

been introduced in the subtree rooted at α. Therefore, every possible way of v appearing

in a forest has been considered. We remark that Gα and Gβ are equal.

In Figure 6.2, we provide an example for a segmentation q of two compatible sig-

natures X β and X β′ for a forget node β with child node β′ in T∗ of Figure 6.1. All

lines connecting two vertices correspond to the edges in the graphs Gβ′ and Gβ, where

only the solid lines are the edges in the partial solutions that induce the heading seg-

mentations. Node β forgets vertex a. The vertices s, a, c ∈ Vβ′ form a segment in Yβ
′

q .

As node β forgets vertex a, the vertices s, c ∈ Vβ form a segment in Yβq , since they are

connected via the vertex a.

Correctness. “≥”: Let Lα be a partial solution for Gα with signature Xα such

that T [α,Xα] = c(Lα). We construct a partial solution Lβ for Gβ and a signature X β

such that Lβ induces X β and X β is compatible with Xα. Since Gα = Gβ, the set of

p forests Lβ := Lα is a partial solution for Gβ. We set X β|Bα := Xα. For each q ∈ [p],

if vertex v does not appear in the forest with index q, then we set Zβq := Zαq ∪ {v} and

Yβq := Yαq . If vertex v appears in the forest with index q, then we set Zβq := Zαq , and we

add v to the segmentation Yβq as follows. If vertex v appears as a single-vertex tree in

the forest with index q, then we add {v} to Yβq . If vertex v appears in a tree with vertices

in M ∈ Yαq , then we set Yβq := (Yαq \{M}) ∪ {M ∪ {v}}. Signature X β is compatible

with signature Xα, and the partial solution Lβ induces X β. It follows that

T [α,Xα] = c(Lα) = c(Lβ) ≥ T [β,X β] ≥ min
X ′β compatible with Xα

T [β,X ′β].

The Parameterized Complexity of Finding Paths with Shared Edges 46

“≤”: Let Lβ be a partial solution for Gβ with signature X β compatible with Xα such

that T [β,X β] = c(Lβ) and T [β,X β] = minX ′β compatible with Xα T [β,X ′β]. We construct

a partial solution for Gα that induces Xα. Since Gα = Gβ, we set Lα := Lβ as the

partial solution Lα for Gα. Since Xα = X β|Bα , the partial solution Lα induces Xα. It

follows that

min
X ′β compatible with Xα

T [β,X ′β] = T [β,X β] = c(Lβ) = c(Lα) ≥ T [α,Xα].

Running time. For a signature Xα, we check whether Xα = X β|Bα for all sig-

natures X β for node β. This can be done in O(p · (|Bβ| + 1)p·|Bβ |+2) time. Since

|Bα| ≤ |Bβ| ≤ ω+ 1, the overall running time for filling all entries in T for a forget node

is in O(p · (ω + 2)2·p·(ω+1)+2).

Introduce Edge Node. Let α be an introduce edge node of T, let β be the child node

of α, and let e = {v, w} be the edge introduced by node α. Two signatures Xα and X β

are compatible if for each q ∈ [p], one of the following conditions holds:

(i) Yαq = Yβq , or

(ii) Yαq = (Yβq \{M1,M2})∪{M1 ∪M2} with M1,M2 ∈ Yβq , M1 6= M2, and v ∈M1 and

w ∈M2.

If Xα and X β are compatible, then let Q ⊆ [p] be the set of indices such that for all q ∈ Q
(ii) holds and for all q ∈ [p]\Q (i) holds. We say that Xα and X β are share-compatible

if |Q| ≥ 2. We claim that

T [α,Xα] = min
Xβ compatible with Xα

(
T [β,X β] +

{
1, if X β and Xα are share-compatible,

0, otherwise

)
.

In other words, two signatures Xα for node α and X β for node β are compatible, if

and only if for all q ∈ [p], either by (i) it holds that the segmentation q in Xα is equal to

the segmentation q of X β, or by (ii) it holds that the segmentation q of Xα is the result

of merging two segments in the segmentation q of X β, where none of the two segments

is the zero-segment, and vertex v is in the one segment, and vertex w is in the other

segment. This corresponds to connecting two trees by edge e in the forest with index q,

where v is in the one tree and w in the other tree. Note that connecting two vertex-

disjoint trees by exactly one edge yields a tree. The deletion of edge e in every forest of

a partial solution for Gα that includes the edge e yields a partial solution for Gβ. We

remark that Gα = Gβ + {e}, that is, Gα differs from Gβ only by the additional edge e.

In Figure 6.3, we provide an example for a segmentation q of two compatible signa-

tures X δ and X δ′ of an introduce edge node δ with child node δ′ in T∗. Graph Gδ′ does

Section 6. An Efficient Algorithm for Small Treewidth 47

s be t

Yδ′q = {{s}, {e}, {t}} Zδ
′
q = {b}

Bδ′

Gδ′

s be t

Yδq = {{s}, {e, t}} Zδq = {b}

Bδ

Gδ

Figure 6.3: Example for a segmentation q of two compatible signatures X δ and X δ′ of an intro-

duce edge node δ with child node δ′ in T∗.

not contain any edge. Edge {e, t} is introduced by node δ. This allows to connect the

segments containing vertex e on the one hand, and vertex t on the other hand, using

edge {e, t}.
Correctness. “≥”: Let Lα be a partial solution for Gα with signature Xα such that

T [α,Xα] = c(Lα). We construct a partial solution Lβ for Gβ and a signature X β such

that Lβ induces X β and X β is compatible with Xα. For each q ∈ [p], if edge e is not

part of the forest with index q in Lα, then the forest is a forest in Gβ as well. Then,

we set Zβq := Zαq and Yβq := Yαq . If edge e is part of the forest with index q in Lα,

then deleting edge e from the forest with index q disconnects a tree of the forest such

that two trees result, with v in the one tree and w in the other tree. Let M ∈ Yαq be

the segment in the segmentation q with v, w ∈ M . Let M1,M2 be the induced sets by

splitting tree Tα in the forest with index q in Lα at edge e, that is, if T1 and T2 are the

connected subgraphs of Tα\{e}, then M1 := V (T1) ∩ Bα and M2 := V (T2) ∩ Bα. We

set Yβq := (Yαq \{M})∪{M1,M2} and Zβq := Zαq . Signature X β for node β is compatible

with signature Xα for node α.

Let Lβ be the set of p forests in Lα restricted to edge set Eβ. Then, Lβ is a partial

solution for Gβ and induces signature X β. If edge e appears in more than one of the p

forests in Lα, then c(Lβ) = c(Lα)−1 and the signatures Xα and X β are share-compatible.

It follows that

T [α,Xα] = c(Lα) = c(Lβ) + 1 ≥ T [β,X β] + 1 ≥ min
X ′β compatible with Xα

T [β,X ′β] + 1.

If edge e appears in at most one of the p forests in the partial solution Lα, then

T [α,Xα] = c(Lα) = c(Lβ) ≥ T [β,X β] ≥ min
X ′β compatible with Xα

T [β,X ′β].

“≤”: Let Lβ be a partial solution for Gβ with signature X β compatible with Xα such

that T [β,X β] = c(Lβ) and T [β,X β] = minX ′β compatible with Xα T [β,X ′β]. We construct

The Parameterized Complexity of Finding Paths with Shared Edges 48

a partial solution Lα for Gα that induces signature Xα. For each q ∈ [p], if condition (i)

holds, that is, if Yαq = Yβq , then we set the forest with index q in Lα to the forest with

index q in the partial solution Lβ. In case of condition (ii), that is, if v and w belong

to the same segment in the segmentation q of Xα but are not in the same segment in

the segmentation q of X β, then we add edge e to the forest with index q in the partial

solution Lβ and we set the resulting forest as the forest with index q in the partial

solution Lα. Since the vertices v and w are in two vertex-disjoint trees in the forest

with index q in Lβ, adding edge e connects the two trees at the vertices v and w, which

results again in a tree. The set of p forests Lα, constructed as mentioned above, is a

partial solution for Gα and induces signature Xα. If the signatures X β and Xα are

share-compatible, then the partial solution Lα is the result of adding edge e to at least

two forests in Lβ, and thus, the number of common edges of the forests increases by

exactly one, i.e. c(Lβ) = c(Lα)− 1. It follows that

min
X ′β compatible with Xα

T [β,X ′β] = T [β,X β] = c(Lβ) = c(Lα)− 1 ≥ T [α,Xα]− 1.

If the signatures X β and Xα are compatible but not share-compatible, then the partial

solution Lα is the result of adding edge e to at most one forest in Lβ. It follows that

min
X ′β compatible with Xα

T [β,X ′β] = T [β,X β] = c(Lβ) = c(Lα) ≥ T [α,Xα].

Running time. For each signature Xα, we check all signatures X β for node β for

compatibility, that means, we need to check for each q ∈ [p] if the segmentations are

equal (i) or if the segmentation q of Xα is derived by merging two segments in the

segmentation q of X β (ii). To check condition (i) as well as to check condition (ii) can

be done in O(p · |Bα|2) time. Therefore, the overall running time for filling all entries

in T for an introduce edge node is in O(p · (ω + 2)2·p·(ω+1)+2).

Join Node. Let α be a join node of T and let β, γ be the two child nodes of α. A

signature Xα for node α and a pair of two signatures X β for node β and X γ for node γ

are compatible if for all q ∈ [p] it holds that

(i) Zαq = Zβq = Zγq ,

(ii) v, w ∈ Mα ∈ Yαq with v 6= w if and only if there exists ` ≥ 1 and M1, . . . ,M` ∈
Yβq ∪ Yγq with |Mi ∩Mi+1| = 1 for all i = 1, . . . , `− 1 and v ∈M1 and w ∈M`,

(iii) for all Mβ ∈ Yβq and Mγ ∈ Yγq holds |Mβ ∩Mγ | ≤ 1, and

(iv) there do not exist ` ≥ 3 and M1, . . . ,M` ∈ Yβq ∪ Yγq with |Mi ∩Mi+1| = 1 for all

i = 1, . . . , `− 1 and Mi 6= Mj for all i, j ∈ [`], i 6= j, such that v ∈M1 and v ∈M`.

Section 6. An Efficient Algorithm for Small Treewidth 49

not possible not allowed

Figure 6.4: Sketch of scenarios when combining two forests with the same index in two partial

solutions for the two child nodes of a join node.

We claim that

T [α,Xα] = min
(Xβ ,Xγ) compatible with Xα

(T [β,X β] + T [γ,X γ]).

In other words, a signature Xα is compatible with a pair of two signatures X β for

node β and X γ for node γ, if and only if for every q ∈ [p] it holds that

(i) the vertices that appear in the segmentations with index q in all three signatures

are the same,

(ii) every segment in the segmentation q of Xα is a union of segments in the segmen-

tation q in X β and segments in the segmentation q in X γ ,

(iii) every pair of segments with one segment in the segmentation q in X β and one

segment in the segmentation q in X γ has at most one vertex in Bβ = Bγ in

common, and

(iv) there is no chain of at least three segments in the union of the segmentations with

index q in X β and X γ with one vertex in the first and last segment.

We say that segments M1, . . . ,M`, ` ≥ 2, form a chain of segments, if |Mi ∩Mi+1| = 1

for all i = 1, . . . , `− 1 and Mi 6= Mj for all i, j ∈ [`], i 6= j.

Intuitively, (i)-(iv) define how to combine segmentations in signatures of child nodes

to segmentations in a signature of a join node. The condition (ii) ensures that every

forest with index q in a partial solution Lα for Gα is a union of the two forests with

index q in some partial solutions Lβ for Gβ and Lγ for Gγ , respectively.

Figure 6.4 exemplifies three scenarios of cycle creation caused by a union of two

forests, where the colors green and blue indicate each of the two forests. We used curved

lines to highlight that there could be trees connecting two vertices. The scenario on the

left-hand side illustrates a situation that is not possible. The scenario implies that there

are vertices that have been forgotten in the subtrees rooted at each child node of the

The Parameterized Complexity of Finding Paths with Shared Edges 50

s

a

bc dt

Yα`q = {{s, b}, {c}, {t}} Zα`q = {d}

Bα`

Gα`

s bc d

e

t

Yαrq = {{s}, {b, t}, {c}} Zαrq = {d}

Bαr

Gαr

s

a

bc d

e

t

Yαq = {{s, b, t}, {c}} Zαq = {d}

Bα

Gα

Figure 6.5: Example for a segmentation q of three compatible signatures Xα, Xα` , and Xαr for

a join node α with child nodes α` and αr in T∗.

tree decomposition, which is not possible by the definition of a tree decomposition (cf.

Section 2). The two scenarios on the right-hand side illustrate two scenarios that are

not allowed to occur by our definition of compatibility of join nodes. More precisely,

conditions (iii) and (iv) ensure that none of these two scenarios occurs.

The conditions (iii) and (iv) ensure that a union of two forests in Lβ and Lγ does

not close a cycle. Condition (iii) prevents the following creation of cycles. If there is a

tree Tβ in the forest with index q in Lβ and a tree Tγ in the forest with index q in Lγ
that have at least two vertices in common, then the union of these two trees creates a

cycle in Gα. Condition (iv) prevents the following creation of cycles. Let v be a vertex

in Vα such that there exist some trees T1, . . . , T` in the forests with index q in Lβ and Lγ
such that |V (Ti)∩ V (Ti+1)| = 1 for i = 1, . . . , `− 1 and v ∈ V (T1) and v ∈ V (T`). Then

the graph Tα = T1 ∪ . . . ∪ T` as union of the trees in Gα contains a cycle and vertex v

is part of a cycle in Tα.

In Figure 6.5, we provide an example for a segmentation q of three compatible sig-

natures Xα, Xα` , and Xαr for a join node α with child nodes α` and αr in T∗. The

segments {s, b} and {t} in Yα`q together with the segments {s} and {b, t} in Yαrq form

Section 6. An Efficient Algorithm for Small Treewidth 51

segment {s, b, t} in Yαq . Note that the four conditions for compatibility hold. Condi-

tion (i) holds since Zαq = Zα`q = Zαrq = {d}. Moreover, note that condition (iii) holds.

According to condition (ii), note that for any pair in the segment {s, b, t} ∈ Yαq , the seg-

ments {s, b} ∈ Yα`q and {b, t} ∈ Yαrq provide a required chain of segments. Conversely,

for any possible chain of segments in Yα`q ∪ Yαrq , segment {s, b, t} ∈ Yαq is the required

segment in condition (ii). According to condition (iv), note that there is no chain of at

least three segments in Yα`q ∪ Yαrq such that a vertex v ∈ {s, b, c, t} appears in the first

and last segment of the chain.

Correctness. “≥”: Let Lα be a partial solution for Gα with signature Xα such that

T [α,Xα] = c(Lα). We construct a partial solution Lβ for Gβ, a partial solution Lγ for Gγ
and two signatures X β and X γ , such that the pair (X β,X γ) is compatible with Xα, the

partial solution Lβ induces signature X β and the partial solution Lγ induces signa-

ture X γ . If we restrict each forest in Lα to the edge sets Eβ and Eγ , then each forest

restricted to Eβ is a forest in Gβ and each forest restricted to Eγ is a forest in Gγ .

Therefore, restricting each forest in Lα to Eβ yields a partial solution Lβ for Gβ, and

restricting each forest in Lα to Eγ yields a partial solution Lγ for Gγ . We set X β and X γ

as the signatures induced by the partial solutions Lβ and Lγ respectively.

We show that the pair of signatures X β and X γ is compatible with Xα. Condition

(i) holds for every q ∈ [p] since every vertex that does not appear in the forest with

index q in Lα neither appears in the forests with index q nor in Lβ nor in Lγ . Since the

segmentations with index q are induced by Lβ and Lγ , it follows that Zαq = Zβq = Zγq
for all q ∈ [p].

Suppose that there exists a q ∈ [p] such that condition (iii) does not hold for q ∈ [p].

This means that there exist Mβ ∈ Yβq and Mγ ∈ Yγq with |Mβ ∩Mγ | ≥ 2. Let v, w ∈
Mβ ∩Mγ . Let T β be the tree in the forest with index q in Lβ corresponding to Mβ

and let T γ be the tree in the forest with index q in Lγ corresponding to Mγ . Note that

v, w ∈ V (T β)∩V (T γ). By our construction of Lβ and Lγ , there is a tree Tα in the forest

with index q in Lα, such that T β is a subtree of Tα restricted to Eβ, and T γ is a subtree

of Tα restricted to Eγ . Since v, w ∈ V (Tα), there is a v-w path in Tα using only edges

in Eβ and a v-w path in Tα using only edges in Eγ . Since Eβ ∩ Eγ = ∅, the two paths

form a cycle in Tα. This is a contradiction to the fact that Tα is a tree.

For condition (ii), direction “⇒”, we consider q ∈ [p], Mα ∈ Yαq and v, w ∈ Mα,

v 6= w, if such a Mα ∈ Yαq exists. Segment Mα corresponds to a tree Tα in the forest

with index q in Lα. Since v, w ∈ Mα, the vertices v and w appear in tree Tα. Since

Eα = Eβ ∪ Eγ and Eβ ∩ Eγ = ∅, the restriction of Tα to Eβ and Eγ splits the tree in

maximal subtrees T1, . . . , T` alternating by Gβ and Gγ . Note that |V (Ti)∩V (Tj)| ≤ 1 for

all i, j ∈ [`], i 6= j, and Tα = T1∪. . .∪T`. LetM1, . . . ,M` ∈ Yβq ∪Yγq be segments such that

segment Mi corresponds to subtree Ti for all i ∈ [`]. We claim that if |V (Ti)∩V (Tj)| = 1

for some i 6= j and u ∈ V (Ti) ∩ V (Tj), then u ∈ Bα.

The Parameterized Complexity of Finding Paths with Shared Edges 52

Suppose that u 6∈ Bα = Bβ = Bγ . Since the trees T1, . . . , T` are maximal subtrees of

tree Tα restricted to Eβ and Eγ , one of the trees Ti or Tj is a tree in Gβ, and the other

is a tree in Gγ . Therefore, vertex u is incident with an edge in Eβ and an edge in Eγ .

Thus, vertex u appears in the subtree rooted at node β and in the subtree rooted at

node γ. This is a contradiction to the fact that T is a tree decomposition, and hence,

u ∈ Bα = Bβ = Bγ .

Moreover, if |V (Ti)∩ V (Tj)| = 1 for some i 6= j and u ∈ V (Ti)∩ V (Tj), then u ∈Mi

and u ∈ Mj . If there is a j ∈ [`] such that v, w ∈ Mj , then we are done. Thus, let

v ∈ Mj1 and w ∈ Mj2 with j1, j2 ∈ [`], j1 6= j2. Then there exists a subset S1, . . . , S`′

of the trees T1, . . . , T` with `′ ≤ `, S1 = Tj1 , S`′ = Tj2 and |V (Si) ∩ V (Si+1)| = 1 for all

i = 1, . . . , `′− 1. Let MS1 , . . . ,MS`′ be the corresponding segments to S1, . . . , S`′ . Then,

|MSi ∩MSi+1 | = 1 for all i = 1, . . . , `′ − 1, v ∈ MS1 and w ∈ MS`′ , and hence, direction

“⇒” of condition (ii) is proven.

For condition (ii), direction “⇐”, we consider q ∈ [p], ` ≥ 1 and M1, . . . ,M` ∈ Yβq ∪Yγq
with |Mi ∩Mi+1| = 1 for all i = 1, . . . , `− 1, v ∈ M1 and w ∈ M`. We show that there

exists a segment Mα ∈ Yαq with v, w ∈ Mα. Let T1, . . . , T` be trees in the forests

with index q in Lβ and Lγ such that tree Ti corresponds to segment Mi for all i ∈ [`].

Since |Mi ∩Mi+1| = 1 for all i = 1, . . . , ` − 1, it follows that |V (Ti) ∩ V (Ti+1)| = 1 for

all i = 1, . . . , ` − 1. Therefore, T1, . . . , T` are subtrees of a tree Tα in the forest with

index q in Lα with v, w ∈ V (Tα). Let Mα be the segment corresponding to Tα. Then,

segment Mα contains the vertices v and w, i.e. v, w ∈Mα, and hence, direction “⇐” of

condition (ii) is proven.

Suppose that there exists a q ∈ [p] such that condition (iv) does not hold for q ∈ [p].

Then there exist a vertex v ∈ Bα, an integer ` ≥ 3 and segments M1, . . . ,M` ∈ Yβq ∪ Yγq
with |Mi∩Mi+1| = 1 for all i = 1, . . . , `−1 and Mi 6= Mj for all i 6= j, such that v ∈M1

and v ∈ M`. Let T1, . . . , T` be the trees in the forests with index q in Lβ and Lγ such

that tree Ti corresponds to segment Mi for all i ∈ [`]. Note that |V (Ti)∩V (Ti+1)| = 1 for

all i = 1, . . . , `− 1, and vertex v appears in the trees T1 and T`. For all i = 1, . . . , `− 1,

let wi be the vertex in the intersection V (Ti)∩ V (Ti+1) of the vertex sets of the trees Ti
and Ti+1. By construction, the union of the trees T ′ := T1 ∪ . . . ∪ T` is a subtree of

a tree Tα in the forest with index q in Lα. Thus, the tuple (v, w1, w2, . . . , w`−1, v)

represents a cycle in T ′, and thus, in Tα. This is a contradiction to the fact that Lα is

a partial solution for Gα, and hence, condition (iv) holds.

We conclude that the pair of signatures X β and X γ is compatible with Xα. Since

Eβ ∩Eγ = ∅, the number of edges that appear in at least two forests in Lα is the sum of

the number of edges that appear in at least two forests in Lβ and the number of edges

Section 6. An Efficient Algorithm for Small Treewidth 53

that appear in at least two forests in Lγ . It follows that

T [α,Xα] = c(Lα) = c(Lβ) + c(Lγ) ≥ T [β,X β] + T [γ,X γ]

≥ min
(X ′β ,X ′γ) compatible with Xα

(
T [β,X ′β] + T [γ,X ′γ]

)
.

“≤”: Let Lβ and Lγ be partial solutions for Gβ and Gγ with signatures X β and X γ ,

as pair compatible with signature Xα for node α, such that T [β,X β] = c(Lβ), T [γ,X γ] =

c(Lγ) and T [β,X β]+T [γ,X γ] = min
(X ′β ,X ′γ) compatible with Xα(T [β,X ′β]+T [γ,X ′γ]). We

construct a partial solution Lα for Gα with signature Xα. We claim that for each q ∈ [p],

the union of the forests with index q in Lβ and Lγ yields a forest in Gα, that induces

the segmentation (Yαq , Zαq) in signature Xα.

Let B := Bα. We remark that Bα = Bβ = Bγ since α is a join node in T. We claim

that the intersection of the vertex sets of Gβ and Gγ are only the vertices in B, that

is Vβ ∩Vγ = B. Suppose that there is a vertex v ∈ (Vβ ∩Vγ)\B. Then the graph induced

by the node set {ρ ∈ V (TT) | v ∈ Bρ} is not connected. This contradicts the fact that T
is a tree decomposition, and thus, Vβ ∩ Vγ = B.

Recall that for each q ∈ [p], the zero-segments are equal in all three segmentations,

that is, Zαq = Zβq = Zγq . Hence, the vertex sets in both forests with index q in Lβ and Lγ
are the same. In addition, we know that Eβ ∩ Eγ = ∅ and therefore, the two forests

with index q in Lβ and Lγ do not have any edge in common. We need to show that for

all q ∈ [p] the union of the forests with index q in Lβ and Lγ does not contain a cycle

in Gα. Suppose there is a q ∈ [p] such that the union of the forests with index q in Lβ
and Lγ contains a cycle in Gα.

Case 1 : There is a tree T1 in the forest with index q in Lβ and a tree T2 in the forest

with index q in Lγ , such that the union T0 := T1 ∪ T2 contains a cycle. Let M1 ∈ Yβq
and M2 ∈ Yγq , such that segment M1 corresponds to tree T1 and segment M2 corresponds

to tree T2. Since graph T0 contains a cycle in Gα, the trees T1 and T2 have at least two

vertices in common. Because of V (T1) ⊆ Vβ, V (T2) ⊆ Vγ and Vβ ∩ Vγ = B, the common

vertices are in the vertex set B. This means that there are two vertices v, w ∈ B such

that v, w ∈M1 and v, w ∈M2. This contradicts condition (iii), and hence, there are no

two trees in the forests with index q in Lβ and Lγ such that their union contains a cycle

in Gα.

Case 2 : There are trees T1, . . . , T`, ` ≥ 3, in the forests with index q in Lα and Lβ,

such that their union T0 := T1 ∪ . . . ∪ T` contains a cycle in Gα and T0\Ti does not

contain a cycle in Gα for all i ∈ [`]. It follows that |V (Ti) ∩ V (Tj)| ≤ 1 for all i, j ∈ [`]

with i 6= j. Let M1, . . . ,M` ∈ Yβq ∪ Yγq , such that segment Mi corresponds to tree Ti
for all i ∈ [`]. Since T0 contains a cycle in Gα, there exists an ordering π on the

set [`], such that |V (Tπ(i)) ∩ V (Tπ(i+1))| = 1 for all i = 1, . . . , `′ − 1 and |V (Tπ(`)) ∩
V (Tπ(1))| = 1. Since V (Ti) ∩ V (Tj) ⊆ B for all i, j ∈ [`] with i 6= j, it follows that

The Parameterized Complexity of Finding Paths with Shared Edges 54

|Mπ(i)∩Mπ(i+1)| = 1 for all i = 1, . . . , `−1. Let v be the vertex such that {v} = V (Tπ(1))∩
V (Tπ(`)). Since V (Tπ(1))∩V (Tπ(`)) ⊆ B, the segments Mπ(1) and Mπ(`) contain vertex v.

Altogether, this contradicts condition (iv), and hence, there are no trees T1, . . . , T`, ` ≥ 3,

in the forests with index q in Gα and Gβ such that their union T0 = T1∪ . . .∪T` contains

a cycle in Gα.

We conclude that there are no two forests with index q in Lβ and Lγ , such that

their union contains a cycle, and thus, Lα is a partial solution for Gα. Moreover, by

condition (ii), Lα induces signature Xα. It follows that

min
(X ′β ,X ′γ) compatible with Xα

(T [β,X ′β] + T [γ,X ′γ]) = T [β,X β] + T [γ,X γ] = c(Lβ) + c(Lγ)

= c(Lα) ≥ T [α,Xα].

Running time. For each signature Xα, we check all pairs of signatures X β, X γ for

node β and γ for compatibility, that means we check conditions (i)-(iv) for O((|Bβ| +
1)p·|Bβ |·(|Bγ |+1)p·|Bγ |) pairs of signatures with respect to the signature Xα. Let B := Bα.

Recall that Bα = Bβ = Bγ .

For each pair, we can check condition (i) in O(p · |B|3) time. We can check condi-

tions (ii)-(iv) in O(p · |B|3) time as follows.

For each q ∈ [p], we construct a graph Ĝq in the following way. We set V (Ĝq) := {vi |
Mi ∈ Yβq ∪ Yγq } and E(Ĝq) := {{vi, vj} ∈ V (Ĝq)

2 | |Mi ∩Mj | = 1, Mi,Mj ∈ Yβq ∪ Yγq }.
We can construct the graph Ĝq in O(|B|3) time. We can check condition (iii) while

constructing graph Ĝq. If condition (iv) does not hold, then there exists a cycle in Ĝq.

We can detect a cycle in Ĝq in O(|B|2) time, for example by applying a depth-first search

on Ĝq, and thus, we can check condition (iv) in O(|B|2) time.

For condition (ii), we compare the corresponding segments of the vertex sets of the

connected components in Ĝq with the segments in Yαq . Finding the connected compo-

nents in Ĝq can be done in O(|B|2) time, for example by applying a depth-first search

in Ĝq. The comparison of the segments can be done in O(|B|2) time. Thus, condi-

tion (ii) can be verified in O(|B|2) time. We conclude that for each q ∈ [p], we can check

conditions (ii)-(iv) in O(|B|3) time.

We can check conditions (i)-(iv) for each pair of signatures for node β and node γ

in O(p · |B|3) time. Therefore, the overall running time for filling all entries in T for a

join node is in O(p · (ω + 2)3·p·(ω+1)+3).

We described how to fill the entries in the table T of the dynamic program according

to each type of nodes in the tree decomposition T. We proved the correctness of each

rule of filling an entry and discussed the running time for the filling of an entry for each

of the types of nodes. We use the dynamic program to prove Theorem 6.1.

Section 6. An Efficient Algorithm for Small Treewidth 55

Proof of Theorem 6.1. Let G be graph with s, t ∈ V (G) given together with a tree

decomposition T′ = (T ′, (B′α)α∈V (T ′)) of width ω′ := ω(T′) of G. We modify the tree

decomposition T′ in polynomial time to a nice tree-decomposition with introduce edge

nodes of equal width, and add the vertices s and t to every bag. Let T be the nice

tree decomposition with introduce edge nodes and vertices s and t contained in every

bag obtained from T′. Note that ω := ω(T) ≤ ω′ + 2. We apply the dynamic program

described above bottom-up on the tree decomposition T. The dynamic program runs

in O(p · (ω + 2)3·p·(ω+1)+4 · |V (G)|) time. Since ω ≤ ω′ + 2, it follows that the dynamic

program runs in O(p·(ω′+4)3·p·(ω
′+3)+4 ·|V (G)|) time. Finally, we read out the minimum

number of shared edges for p s-t paths in the entries of the root node in T as follows.

Let τ be the root node of T. Note that {s, t} ⊆ Bτ . Let F be the set of all

signatures for node τ such that for all signatures X τ = (Yτq , Zτq)q=1,...,p in F it holds

that for all q ∈ [p] there exists a segment M ∈ Yτq with {s, t} ⊆ M . Due to our

construction, a segment of a segmentation corresponds to a tree in a partial solution for

the given graph. Hence, a set of p segmentations, where for each of the p segmentations

there exists a segment that contains the vertices s and t, corresponds to a solution for

Minimum Shared Edges with p paths. Thus, the minimum number of shared edges

for p s-t paths equals minX τ∈F T [τ,X τ].

We remark that we can modify the dynamic program in such a way that we can solve

the weighted variant of Minimum Shared Edges, that is, with weights w : E(G)→ N
on the edge set of the input graph. The cost of the partial solutions is the sum of the

weights of shared edges, and thus the entry in the table of the dynamic program. For an

introduce edge node, in the case of share-compability, we increase the value of the entry

by the weight of the introduced edge. More precisely, for a introduce edge node α that

introduces edge e and a signature Xα for node α, the filling rule is adjusted by

T [α,Xα] = min

(
T [β,X β] +

{
w(e), if X β and Xα are share-compatible,

0, otherwise

)
,

where the minimum is taken over all signatures X β for node β compatible with Xα.

In the remainder of this section, we study an implication of our dynamic program for

Short Minimum Shared Edges (SMSE).

Theorem 6.2. Let G be a graph and s, t ∈ V (G) given together with a tree decomposition

of G of width ω, and let p, λ ∈ N and k ∈ N0. Then, instance (G, s, t, p, k, λ) of Short

Minimum Shared Edges can be solved in FPT-time with respect to the number p of

paths, the upper bound λ on the length of the paths, and the width ω of the given tree

decomposition.

The Parameterized Complexity of Finding Paths with Shared Edges 56

We show that we can modify the dynamic program given in this section according to

SMSE. Let G be a graph and s, t ∈ V (G) given together with a tree decomposition of G

of width ω. We modify the tree decomposition to a nice tree decomposition with intro-

duce edge nodes and vertices s and t contained in every bag as described above. If α is a

node in the tree decomposition, then we consider the signature Xα := (Yαq , Zαq , `αq)q=1,...,p,

where `αq is an integer in [λ]∪{0}. Intuitively, for each q ∈ [p], the integer `q indicates the

number of edges in the forest with index q. We add the following additional requirements

to each type of node.

• If α is a leaf node, then set `αq = 0 for all q ∈ [p].

• If α is an introduce vertex node or a forget node with child node β, then add as

additional requirement for compatibility that `αq = `βq for all q ∈ [p].

• If α is an introduce edge node of edge e with child node β, then add as additional

requirement for compatibility that `αq = `βq + 1, if the segmentation q for node α

is the result of merging two segments in the segmentation q for node β by edge e,

that is, if Xα and X β are share-compatible, and that `αq = `βq otherwise.

• If α is a join node with two child nodes β and γ, then add as additional requirement

for compatibility that `αq = `βq + `γq for all q ∈ [p]. The number of edges in a forest

that is the result of the union of two edge-disjoint forests is exactly the sum of the

number of edges of the two forests in the union.

If for any signature of a node there is no compatible signature in the child node, or do

not exist two compatible signatures in the two child nodes, then the corresponding entry

in the table of the dynamic program is set to infinity. Note that the number of signatures

for a node α of a tree decomposition of width ω is in O((λ+ 1)p · (ω + 2)p·(ω+1)). Thus,

the adapted dynamic program solves SMSE(p, λ, ω) in O((λ+1)3p ·p · (ω+4)3·p·(ω+3)+4 ·
|V (G)|) time.

Proof of Theorem 6.2. Let G be graph with s, t ∈ V (G) given together with a tree

decomposition T′ = (T ′, (B′α)α∈V (T ′)) of width ω′ := ω(T′) of G. We modify the tree

decomposition T′ as described in the proof of Theorem 6.1 to a nice tree decomposition T
with introduce edge nodes and vertices s and t contained in every bag.

We apply the adapted dynamic program described above bottom-up on the tree

decomposition T. The adapted dynamic program runs in O((λ+1)3p·p·(ω′+4)3·p·(ω
′+3)+4·

|V (G)|) time. Finally, note that the entry for a signature in the table for the root

node is different from infinity if and only if each of the forests corresponding to the

segmentations contains at most λ edges. Thus, we read out the minimum number of

shared edges for p s-t paths in the entries of the root node in T as described in the proof

of Theorem 6.1.

Section 6. An Efficient Algorithm for Small Treewidth 57

Finally, we remark that SMSE(p, λ) is fixed-parameter tractable on planar graphs.

Theorem 6.3. Short Minimum Shared Edges is fixed-parameter tractable on planar

graphs with respect to the number p of paths and the upper bound λ on the length of the

paths.

Proof. To prove Theorem 6.3, we show that we can reduce each instance (G, s, t, p, k, λ)

of Short Minimum Shared Edges to an equivalent instance (G′, s, t, p, k, λ) of Short

Minimum Shared Edges in such a way that diam(G′) ≤ 2·λ, that is, that the diameter

of G′ is upper-bounded by 2 · λ. First, we apply for the vertices s and t a breadth-first

search. If for a vertex v ∈ V (G) it holds that distG(s, v) + distG(v, t) > λ in G, then

we can delete v in G, since no s-t path in G of length at most λ contains vertex v. Let

G′ be the graph obtained from G by deleting all vertices v ∈ V (G) with distG(s, v) +

distG(v, t) > λ in G. It follows that (G, s, t, p, k, λ) is a yes-instance of SMSE if and

only if (G′, s, t, p, k, λ) is a yes-instance of SMSE. Moreover, since for every vertex v ∈
V (G′) holds that distG′(s, v) ≤ λ, for every two vertices w, u ∈ V (G′) it holds that

distG′(v, w) ≤ 2 · λ. Hence, the diameter diam(G) of G is upper-bounded by 2 · λ.

Eppstein [7] showed that any planar graph that allows a rooted spanning tree of

depth at most ` has a tree decomposition of width at most 3 · ` that can be found in

O(` ·n) time, where n denotes the number of vertices in the graph. By our construction,

graph G′ allows a rooted spanning tree of depth at most 2·λ since diam(G′) ≤ 2·λ. Thus,

we can compute a tree decomposition T of G′ of width ω ≤ 6 · λ in O(λ · |V (G′)|) time.

Given G′ and T, by Theorem 6.2, we can solve instance (G′, s, t, p, k, λ) in FPT-time.

Since instance (G′, s, t, p, k, λ) is equivalent to instance (G, s, t, p, k, λ), SMSE(p, λ) can

be solved in FPT-time on planar graphs.

The Parameterized Complexity of Finding Paths with Shared Edges 58

7 Fixed-Parameter Tractability with Respect to the Num-

ber of Paths

In the previous section, we presented an algorithm that solves an instance of MSE in

O(p · (w + 4)3·p·(ω+3)+4 · |V (G)|) time, where G is the graph, p is the number of paths

and ω is an upper bound on the treewidth of graph G. As a consequence, MSE(p, ω)

is fixed-parameter tractable, as we already know due to Ye et al. [19]. Moreover, due

to Ye et al. [19], we know that MSE(ω) is in XP. By Theorem 3.10, MSE(p, k) is fixed-

parameter tractable and MSE(k) is in XP. By Theorem 5.1, MSE(k) is W [2]-hard. This

section completes the picture by studying the tractability of MSE(p). We show that

Minimum Shared Edges is fixed-parameter tractable with respect to the number p of

paths, which is the main result of this section:

Theorem 7.1. Minimum Shared Edges is fixed-parameter tractable with respect to

the number p of paths.

More precisely, we show that MSE(p) can be solved in O(p2 · (h(p) + 4)3·p·(h(p)+3)+4 ·
|G|) time, where G is the input graph, and h is a function only depending on p.

In the following, we prepare the proof of Theorem 7.1. Let G = (V,E) be a graph

with two vertices s, t ∈ V . Let p ∈ N and k ∈ N0 be two integers. We consider

instance (G, s, t, p, k) of Minimum Shared Edges. We apply some modifications on

graph G to finally obtain a graph G∗. We show that, on the one hand, the treewidth

of graph G∗ is upper-bounded by a function only depending on p, since one of our

modifications is the treewidth reduction technique due to Marx et al. [14]. The treewidth

of the graph obtained from the treewidth reduction technique is upper-bounded by a

function only depending on p. Given the upper bound on the treewidth of graph G∗, we

can compute in linear-time a tree decomposition of graph G∗ [4]. By Theorem 6.1, we can

solve instance (G∗, s, t, p, k) in FPT-time with respect to the number p of paths and the

width of the given tree decomposition, where here the width of the tree decomposition is

a function only depending on p. On the other hand, we show that, by our modifications,

there is a one-to-one correspondence between all minimal s-t cuts in graph G∗ of size

at most p − 1 and all minimal s-t cuts in G of size at most p − 1. We show that if an

instance is a yes-instance of MSE, then we can find a solution such that each shared

edge participates in a minimal s-t cut of size at most p − 1. Using this fact, we show

that the instances (G, s, t, p, k) and (G∗, s, t, p, k) are equivalent. Altogether, we show

that we can solve instance (G, s, t, p, k) by solving instance (G∗, s, t, p, k) in FPT-time

with respect to the number p of paths.

Figure 7.1 serves as an overview of the following modifications and the graphs ob-

tained by the sequence of modifications. Let (G, s, t, p, k) be an instance of MSE,

where G is the input graph with s, t ∈ V (G). First, we obtain a graph H by subdi-

viding each edge in G. We denote by VE the set of vertices obtained from the subdivi-

Section 7. Fixed-Parameter Tractability with Respect to the Number of Paths 59

G H H∗ G∗
Subdivide each

edge in G

The Treewidth

Reduction Technique

Contract an incident

edge for each v ∈ V ∗E

Each minimal s-t cut of

size at most p− 1

corresponds to a

minimal s-t separator

of size at most p− 1.

Constructs a graph of

treewidth bounded by

a function in p that preserves

all minimal s-t separators

of size at most p− 1.

Yields a

1-to-1 correspondence

between the

minimal s-t cuts

of size at most p− 1

in G and G∗.

Includes the vertex set VE ,

the vertices corresponding

to the subdivisions.

Each minimal s-t cut in G

of size at most p− 1

corresponds to a

minimal s-t separator in H

of size at most p− 1.

Has treewidth bounded

by a function in p, contains

every minimal s-t separator

of size at most p− 1 in H and

contains the neighborhood of

every vertex in VE
which is part of

a minimal s-t separator

of size at most p− 1 in H.

Has treewidth bounded

by the treewidth of H∗.

An edge set

C ⊆ E(G) ∩ E(G∗)

with |C| < p is a

minimal s-t cut in G∗

if and only if it is a

minimal s-t cut in G.

Figure 7.1: Overview of the strategy behind the proof of Theorem 7.1.

sions. As a consequence, every minimal s-t cut in G of size at most p − 1 corresponds

to a minimal s-t separator in H of size at most p − 1. Next, we apply the treewidth

reduction technique on H to obtain the graph H∗. By the treewidth reduction tech-

nique, graph H∗ contains all minimal s-t separators in H of size at most p− 1 and the

treewidth of graph H∗ is upper-bounded by a function only depending on p. We denote

by V ∗E := {v ∈ V (H∗) | v ∈ VE} the set of vertices in VE which are preserved by the

treewidth reduction technique in H∗. Finally, we contract an incident edge for each

vertex in V ∗E ⊆ V (H∗) to obtain the graph G∗. We already discussed the properties

of G∗ above. We provide some short comments for each modification and for each graph

in the sequence of modifications in Figure 7.1.

In the following, we modify step by step graph G to graph G∗. We discuss each step

and we prove the properties of the obtained graphs described above. Finally, we give a

proof of Theorem 7.1.

We start with the following lemma which states that if our instance is a yes-instance,

then we can find a solution where each of the shared edges is part of a minimal s-t cut

The Parameterized Complexity of Finding Paths with Shared Edges 60

of size smaller than the number p of paths.

Lemma 7.2. If (G, s, t, p, k) is a yes-instance of MSE and G has a minimal s-t cut

of size smaller than p, then there exists a solution F ⊆ E such that each e ∈ F is in a

minimal s-t cut of size smaller than p in G.

Recall that if G does not have a minimal s-t cut of size smaller than p, then we can

find p s-t paths without sharing an edge.

Proof. We make use of the contraction equivalent of MSE introduced in Section 3. We

show that for every minimal solution for MSE it holds that each edge of the solution is

part of a minimal s-t cut of size smaller than p, where a solution is minimal if it is not

a superset of another solution.

Let G = (V,E) be the graph. Let (G, s, t, p, k) be a yes-instance of MSE. Then

there exists a solution L ⊆ E, |L| ≤ k, such that graph GL := G/L with unit edge

capacities allows a maximum s-t flow of value at least p. We call a solution L minimal

if there is no edge e ∈ L such that graph G/(L\{e}) with unit edge capacities allows a

maximum s-t flow of value at least p.

Let L be a minimal solution and let e ∈ L. Suppose that e is not part of a minimal s-t

cut of size smaller than p in G. Let L′ := L\{e} and GL′ := G/L′. We consider the

following two cases.

Case 1: The maximum s-t flow of GL′ has value smaller than p. Then, using the

max-flow min-cut theorem, GL′ has an s-t cut C of size smaller than p. Since e 6∈ C,

contracting edge e in GL′ does not affect cut C. Therefore, C is also an s-t cut of

size smaller than p in GL and, again by the max-flow min-cut theorem, this implies a

maximum flow of value smaller than p in GL. This is a contradiction to the fact that L

is a solution.

Case 2: The maximum s-t flow of GL′ has value at least p. Then L′ is a solution,

which contradicts the minimality of L.

Since |L| ≤ k and each edge in L is in a minimal s-t cut of size smaller than p in G,

this completes the proof.

As mentioned before, as part of our approach we want to use the treewidth reduction

technique due to Marx et al. [14]. Given a graph G = (V,E) with T = {s, t} ⊆ V (G)

and an integer ` ∈ N, first the treewidth reduction technique computes the set C of

vertices containing all vertices in G which are part of a minimal s-t separator of size

at most ` in G. Then, it constructs the so-called torso of graph G given C and T ,

that is the induced subgraph G[C ∪ T] with additional edges between v, w ∈ C ∪ T
with {v, w} 6∈ E(G) if there is a v-w path in G whose internal vertices are not con-

tained in C ∪ T . Finally, each of these additional edges is subdivided and ` additional

Section 7. Fixed-Parameter Tractability with Respect to the Number of Paths 61

s t

v w

T = {s, t}, ` = 2

s t

v

xvw1

xvw2

xvw3

w

xwt1

xwt2

xwt3

T = {s, t}, ` = 2

Figure 7.2: Example for the treewidth reduction technique.

copies of each of that subdivisions are introduced, that is, if {v, w} is one of these ad-

ditional edges, then the vertices xvw1 , . . . , xvw`+1 are added and edge {v, w} is replaced by

the edges {{v, xvw1 }, . . . , {v, xvw`+1}, {xvw1 , w}, . . . , {xvw`+1, w}}. In the following, we denote

these paths by copy paths. The resulting graph contains all minimal s-t separators of

size at most ` in G and has treewidth upper-bounded by h(`) for some function h only

depending on `.

Theorem 7.3 (Marx et al. [14, Theorem 2.15]). Let G be a graph, T ⊆ V (G), and

let ` be an integer. Let C be the set of all vertices of G participating in a minimal s-t

separator of size at most ` for some s, t ∈ T . For every fixed ` and |T |, there is a

linear-time algorithm that computes a graph G∗ having the following properties:

(1) C ∪ T ⊆ V (G∗)

(2) For every s, t ∈ T , a set L ⊆ V (G∗) with |L| ≤ ` is a minimal s-t separator of G∗ if

and only if L ⊆ C ∪ T and L is a minimal s-t separator of G.

(3) The treewidth of G∗ is at most h(`, |T |) for some function h.

(4) G∗[C ∪ T] is isomorphic to G[C ∪ T].

Figure 7.2 shows an example for the application of the treewidth reduction technique.

We use dashed edges and vertices to highlight the changes when applying the treewidth

reduction technique with T = {s, t} and parameter ` = 2. On the left-hand side, the

original graph is shown. On the right-hand side, the resulting graph after applying the

treewidth reduction technique with T = {s, t} and ` = 2 on the left-hand side graph is

shown.

The Parameterized Complexity of Finding Paths with Shared Edges 62

Considering Lemma 7.2, we are interested in minimal s-t cuts of size smaller than p

in G. The treewidth reduction technique guarantees to preserve minimal s-t separators

of a specific size, but does not guarantee to preserve minimal s-t cuts of a specific size.

Thus, we need to modify our graph G in such a way that each minimal s-t cut in G

corresponds to a minimal s-t separator in the modified graph. We modify graph G in

the following way.

Step 1. We subdivide each edge in E(G), that means for each edge e = {v, w} in E(G)

we add a vertex xe and replace edge e by edge {v, xe} and edge {xe, w}. We say that

vertex xe as well as edge {v, xe} and edge {xe, w} correspond to edge e, and vice versa.

We denote by VE := {xe | e ∈ E} and by E′ the edge set replacing the edges in E.

Let H := (V ∪ VE , E′) be the resulting graph.

In the following, we denote by H the graph obtained from G by applying Step 1.

Note that each edge in H is incident with exactly one vertex in VE and one vertex

in V . Thus, no two vertices in VE and no two vertices in V are neighbors. Moreover,

note that each vertex in VE has degree exactly two. It holds that |V ∪ VE | = |V |+ |E|
and |E′| = 2 · |E|, since each edge in E corresponds to exactly one vertex and two edges.

Lemma 7.4. (G, s, t, p, k) is a yes-instance of MSE if and only if (H, s, t, p, 2k) is a

yes-instance of MSE.

Proof. Intuitively, every edge in G corresponds to two edges in H and every two edges

in H both incident with an vertex in VE correspond to an edge in G.

“⇒”: Consider a solution for the yes-instance (G, s, t, p, k) of MSE. For each edge e =

{v, w} ∈ E(G) that is shared in the solution, consider the corresponding two edges {v, xe}
and {xe, w} in graph H. Sharing these at most 2k edges yields a solution for in-

stance (H, s, t, p, 2k) of MSE.

“⇐”: Consider a minimal solution for the yes-instance (H, s, t, p, 2k). Observe that

in such a solution, a vertex in VE is incident with either no or two shared edges. Each

vertex in VE that appears in at least two s-t paths is incident with two shared edges.

Each vertex in VE corresponds to one edge in G. Let F ⊆ E(G) be the set of edges such

that e = {v, w} ∈ F if the edges {v, xe} and {xe, w} in E(H) are shared in the solution

for (H, s, t, p, 2k). Note that |F | ≤ k since there are at most 2k shared edges. Thus, F is

a solution for instance (G, s, t, p, k) of MSE.

Recall that we are interested in s-t cuts in G. By our modification from Step 1 of G

to H, for each edge in G there is a corresponding vertex in VE in H. The following

lemma gives a one-to-one correspondence between s-t cuts in G and those s-t separators

in H that contain only vertices in VE .

Section 7. Fixed-Parameter Tractability with Respect to the Number of Paths 63

Lemma 7.5. If C is an s-t cut in G, then VC := {w ∈ VE | w corresponds to e ∈ C}
is an s-t separator in H. If W ⊆ VE is an s-t separator in H, then CW := {e ∈ E |
e corresponds to w ∈W} is an s-t cut in G.

Proof. Let C be an s-t cut in G. Suppose that the set VC := {w ∈ VE | w corre-

sponds to e ∈ C} is not an s-t separator in H. Then there exists a path P ′ avoiding VC
in H connecting s and t. Since no two vertices in VE are neighbors and no two vertices

in V are neighbors, the vertices in path P ′ alternate in V and VE . Since we know that

the vertices in VE correspond to edges in G, P := P ′ ∩ V describes a path in G con-

necting s and t avoiding all edges in C. This is a contradiction to the fact that C is an

s-t cut in G, and hence set VC is an s-t separator in H.

Let W ⊆ VE be an s-t separator in H. Suppose that the set CW := {e ∈ E |
e corresponds to w ∈W} is not an s-t cut in G. Then there exists a path P avoiding CW
in G connecting s and t. Let VP ⊆ V (H) be the set of vertices in H such that each

vertex in VP either corresponds to an edge in P or is an endpoint of an edge in P . We

remark that W ∩ VP = ∅. Moreover, set VP is the set of vertices of an s-t path in H.

This is a contradiction to the fact that W is an s-t separator in H, and hence set CW is

an s-t cut in G.

In the following lemma, we show that Lemma 7.5 holds also for minimal s-t cuts

and minimal s-t separators. This is important, since we will use a combination of the

treewidth reduction technique and Lemma 7.2 later on.

Lemma 7.6. Every minimal s-t cut in G corresponds to a minimal s-t separator in H.

Proof. Let C be a minimal s-t cut in G. By Lemma 7.5, we know that VC := {w ∈
VE | w corresponds to e ∈ C} is an s-t separator in H. If VC is a minimal s-t separator

in H, then we are done. Thus, suppose that VC is an s-t separator in H, but VC is not

a minimal s-t separator in H. Then there exists a vertex w ∈ VC such that VC\{w}
is an s-t separator in H. Let e ∈ C be the edge in G corresponding to vertex w.

Since VC\{w} ⊆ VE , again by Lemma 7.5 we know that C\{e} is an s-t cut in G. This

is a contradiction to the fact that C is a minimal s-t cut in G, and hence, VC is a

minimal s-t separator in H.

We know that each minimal s-t cut in G corresponds to a minimal s-t separator

in H. Next, we show that every vertex in the neighborhood of each minimal s-t separator

containing only vertices in VE belongs to a minimal s-t separator. Recall that for W ⊆ V
we denote by NG(W) the open neighborhood of the vertex set W in G and by NG[W] :=

W ∪NG(W) the closed neighborhood of the vertex set W in G.

Lemma 7.7. Let W ⊆ VE ⊆ V (H) be the set of vertices corresponding to a mini-

mal s-t cut of size at most ` ∈ N in G. Then, each vertex in NH [W] is part of a

minimal s-t separator of size at most ` in H.

The Parameterized Complexity of Finding Paths with Shared Edges 64

Proof. Let W ⊆ VE ⊆ V (H) be given such that W corresponds to a minimal s-t cut

in G of size at most `. Note that by Lemma 7.6, W is a minimal s-t separator in H.

Let x be an arbitrary vertex in NH(W). First, we show that W ′ := (W\NH(x)) ∪ {x}
is an s-t separator in H.

Suppose that W ′ is not an s-t separator in H. Then there exists an s-t path P in

H −W ′. Note that each vertex in W ∩NH(x) is incident with vertex x and exactly one

other vertex in V (H). Thus, no vertex in W ∩ NH(x) appears in path P . Hence, P is

an s-t path in H −W . This is a contradiction to the fact that W is an s-t separator

in H, and hence, W ′ is an s-t separator in H.

Next, we show that if W ′ is not a minimal s-t separator in H, then there ex-

ists a set U ⊆ W ′\{x} such that W ′\U is a minimal s-t separator in H. Let W ′

be an s-t separator in H, but not a minimal s-t separator in H. Suppose that for

all U ⊆ W ′\{x} it holds that W ′\U is not a minimal s-t separator. Then there ex-

ists a set X ⊆ W ′ with x ∈ X such that W ′\X is a minimal s-t separator in H.

Since W ′\X = W\(NH(x) ∩W)\X ⊆ W , this contradicts the fact that W is a min-

imal s-t separator in H. Hence, there exists a set U ⊆ W ′\{x} such that W ′\U is a

minimal s-t separator in H.

Let U ⊆ W ′\{x} be a set such that W ′′ := W ′\U is a minimal s-t separator. Since

x ∈ W ′′ and |W ′′| ≤ |W ′| ≤ |W |, vertex x appears in a minimal s-t separator in H of

size at most `. Since vertex x was chosen arbitrarily in NH(W), each vertex in NH [W]

is part of a minimal s-t separator of size at most ` in H.

We obtained graph H from graph G by applying Step 1. By Lemma 7.6, we know

that each minimal s-t cut in G corresponds to a minimal s-t separator in H. Moreover,

by Lemma 7.7, if we consider a minimal s-t cut of size smaller than p in G, then, for each

neighbor of the vertex set in H corresponding to the minimal s-t cut in G, there exists

a minimal s-t separator of size smaller than p in H that contains that neighbor. As the

next step (cf. Figure 7.1) we apply the treewidth reduction technique due to Marx et al.

[14] on graph H.

Step 2. We apply the treewidth reduction technique [14] on graph H with T = {s, t}
and p − 1 as upper bound for the size of the minimal s-t separators, which results in

graph H∗.

In the following, we denote by H∗ the graph obtained from G by applying Steps 1

and 2. Let V ∗E := {v ∈ V (H∗) | v ∈ VE}. Graph H∗ contains all minimal s-t separators

of size at most p − 1 in H. By Lemma 7.6, every minimal s-t cut of size at most p − 1

in G corresponds to a minimal s-t separator of size at most p − 1 in H and thus, by

Step 2, to a minimal s-t separator of size at most p − 1 in H∗. By Lemma 7.7, the

neighborhood of each vertex in H corresponding to a vertex in V ∗E is contained in the

vertex set V (H∗). As a consequence, we can reconstruct each edge in graph G that

Section 7. Fixed-Parameter Tractability with Respect to the Number of Paths 65

G

s

a b

c d e

t

Step 1

H

s

a b

xbc

c d e

t

Step 2

H∗

s

a b

x1bc
x2bc

x3bc

c d e

t

Step 3

G∗

s

a b

x1bc
x2bc

x3bc

c d e

t

Figure 7.3: Example of Steps 1 to 3 on the example graph G (top-left) with T = {s, t} and p = 3.

appears in a minimal s-t cut of size at most p − 1 in G as an edge in the graph H∗.

As our next step (cf. Figure 7.1), we contract for each vertex in V ∗E an incident edge in

graph H∗. We remark that if xvw is a vertex in V ∗E , then the only edges incident with

vertex xvw are {v, xvw} and {xvw, w}. In addition, the vertices v and w are the only

neighbors of xvw in graph H and in graph H∗.

Step 3. We contract for each vertex in V ∗E exactly one incident edge in H∗ to obtain

the graph G∗. In other words, we undo the subdivision we applied on G to obtain H.

In the following, we denote by G∗ the graph obtained from G by applying Steps 1

to 3. We remark that tw(G∗) ≤ tw(H∗), since edge contraction does not increase the

treewidth of a graph [17].

In Figure 7.3, we illustrate Steps 1 to 3 on an example graph G with T = {s, t}
and p = 3. The top-left graph is the original graph G. The bottom-left graph is

graph H, obtained from G by applying Step 1. The bottom-right graph is graph H∗,

obtained from H by applying Step 2. The top-right graph is the final graph G∗, obtained

from H∗ by applying Step 3.

Let e = {v, w} ∈ E(G) be an edge in G and xe ∈ VE ⊆ V (H) the corresponding

vertex in H. Then {v, xe} and {xe, w} are the incident edges of xe in H. If xe ∈ V (H∗),

then one of the incident edges {v, xe} and {xe, w} with vertex xe is contracted and

yields edge {v, w} ∈ E(G∗). We say that the edges {v, w} ∈ E(G) and {v, w} ∈ E(G∗)

correspond one-to-one, and, for example, we write {v, w} ∈ E(G) ∩ E(G∗).

Considering the graphs G and G∗, we show that, given an s-t path in the one graph,

The Parameterized Complexity of Finding Paths with Shared Edges 66

s

a
b

c d e

t

P1
Q1 Q2 P2

s

a

x2ac

b

x1bc

c d e

t

P1
Q′1 Q′2 P2

Figure 7.4: The graphs G (left-hand side) and G∗ (right-hand side) from Figure 7.3. The blue

colored edges and vertices belong to an s-t path in G and G∗ respectively. The upper braces

show the range of the consecutive subpaths P1, Q1,Q2, P2 for G and P1, Q′1, Q′2, P2 for G∗.

we can construct an s-t path in the other graph using a common set of edges in E(G)∩
E(G∗).

Lemma 7.8. (i) If P is an s-t path in G, then there exists an s-t path P ∗ in G∗ that

contains all edges in E(P) ∩ E(G∗).

(ii) If P ∗ is an s-t path in G∗, then there exists an s-t path P in G that contains all

edges in E(P ∗) ∩ E(G).

Proof. (i): Let P be an s-t path in G. If P just contains edges in E(G) ∩ E(G∗), then

we set P ∗ = P . If P contains edges in E(G)\E(G∗), then P has a representation of

consecutive subpaths Pi, 1 ≤ i ≤ j, and Qi, 1 ≤ i ≤ `, where {Pi}1≤i≤j is the set

of subpaths of P that just contain edges in E(G) ∩ E(G∗) and {Qi}1≤i≤` is the set of

subpaths of P with endpoints in V (G)∩V (G∗), inner vertices in V (G)\V (G∗) and edges

in E(G)\E(G∗). Since for each 1 ≤ i ≤ `, path Qi is connecting two vertices v, w ∈
V (G)∩V (G∗) in G, there are p edge-disjoint paths of length 2 in G∗ connecting v and w

using the edges in E(G∗)\E(G), that are the copy paths. For each i ∈ [`], let Q′i be one of

the copy paths connecting the endpoints of Qi. Figure 7.4 illustrates this correspondence

on an example graph. Replacing each Qi by such a path Q′i in G∗ yields a path P ′ with

consecutive subpaths Pi, 1 ≤ i ≤ j, and Q′i, 1 ≤ i ≤ `, in G∗ connecting s and t that

contains all edges in E(P) ∩ E(G∗).

(ii): Let P ∗ be an s-t path in G∗. If P ∗ just contains edges in E(G) ∩ E(G∗), then

we set P = P ∗. If P ∗ contains edges in E(G∗)\E(G), then P ∗ has a representation of

consecutive subpaths P ′i , 1 ≤ i ≤ j, and Q′i, 1 ≤ i ≤ `, where {P ′i}1≤i≤j is the set of

subpaths of P ∗ that just contain edges in E(G∗) ∩ E(G) and {Q′i}1≤i≤` is the set of

subpaths of P ∗ with endpoints in V (G∗) ∩ V (G), inner vertices in V (G∗)\V (G), and

edges in E(G∗)\E(G). We remark that each Q′i is one of the copy paths in G∗. By

construction of G∗, each Q′i connects two vertices in V (G∗) ∩ V (G) that are connected

by a path in G with no inner vertices in V (G∗)∩V (G). Therefore, for each i ∈ [`], we can

Section 7. Fixed-Parameter Tractability with Respect to the Number of Paths 67

replace path Q′i by such a path Qi in G. This yields an s-t path P in G with consecutive

subpaths P ′i , 1 ≤ i ≤ j, and Qi, 1 ≤ i ≤ `, that contains all edges in E(P ∗) ∩E(G).

We modified graph G to graph G∗ by applying Steps 1 to 3. By Lemma 7.8, we can

construct s-t paths in G and G∗ that use edges in the common set of edges E(G)∩E(G∗).

The next lemma states that each minimal s-t cut of size smaller than p in one of the

graphs G and G∗ is also a minimal s-t cut of size smaller than p in the other graph.

Lemma 7.9. Let C ⊆ E(G) ∩ E(G∗). Edge set C is a minimal s-t cut in G of size

smaller than p if and only if C is a minimal s-t cut in G∗ of size smaller than p.

Proof. We make use of Lemma 7.8 in the following proof. We remark that no edge

in E(G∗)\E(G) is in any minimal s-t cut of size smaller than p in G∗ since, by the

treewidth reduction technique, for each of these edges there are p− 1 copies in G∗.

“⇒”: Let C be a minimal s-t cut of size smaller than p in G. By Lemma 7.6, C has

a corresponding minimal s-t separator SC of size smaller than p in H. By the treewidth

reduction technique, SC is a minimal s-t separator in H∗. By Lemma 7.7, every neighbor

of SC is contained in H∗. By our contraction of edges of H∗ to G∗, for each vertex of SC
an incident edge is contracted and yields the edge set C again. Since SC is a minimal s-

t separator in H∗ of size smaller than p and each vertex in SC has degree exactly two,

set C is a minimal s-t cut in G∗ of size smaller than p.

“⇐”: Let C be a minimal s-t cut in G∗ of size smaller than p. Suppose C is not a

minimal s-t cut in G of size smaller than p. We distinguish two cases.

Case 1: C is not an s-t cut in G. Then there exists a path P in G connecting s and t

avoiding the edges in C. By Lemma 7.8, there exists an s-t path P ∗ in G∗ that contains

all edges in E(P) ∩ E(G∗). Since no edge in E(G∗)\E(G) is in any minimal s-t cut of

size at most p − 1 of G∗, P ∗ avoids the edges in C. This is a contradiction to the fact

that C is a minimal s-t cut in G∗.

Case 2: C is an s-t cut in G, but C is not a minimal s-t cut in G. Then there

exists e ∈ C such that C ′ := C\{e} is an s-t cut in G. Since C is a minimal s-t cut

in G∗, the set C ′ is not an s-t cut in G∗. Thus, there exists an s-t path P ∗ in G∗ that

avoids the edges in C ′. By Lemma 7.8, there exists an s-t path P in G that contains all

the edges in E(P ∗) ∩ E(G). Since no edge in E(G)\E(G∗) is in any minimal s-t cut of

size at most p−1 in G, path P avoids the edges in C ′. Therefore, set C ′ is not an s-t cut

in G, and thus, C is a minimal s-t cut in G.

Recalling Lemma 7.2, we know that if an instance of MSE is a yes-instance, then

we can find k edges such that the k edges form a solution for the instance and each of

the k edges is part of a minimal s-t cut of size smaller than p in G. By Lemma 7.9,

the graphs G and G∗ have the same set of minimal s-t cuts of size smaller than p in

common. Combining Lemma 7.2 and Lemma 7.9 leads to the following lemma.

The Parameterized Complexity of Finding Paths with Shared Edges 68

Lemma 7.10. (G∗, s, t, p, k) is a yes-instance of MSE if and only if (G, s, t, p, k) is a

yes-instance of MSE.

Proof. We make use of the contraction equivalent of MSE.

“⇒”: Let (G∗, s, t, p, k) be a yes-instance of MSE. By Lemma 7.2, we find a solu-

tion F ⊆ E(G∗) such that each edge in F is part of a minimal s-t cut in G∗ of size

smaller than p. It follows that F ⊆ E(G) ∩ E(G∗), since by our construction no edge

in (E(G∗)\E(G)) is part of a minimal s-t cut of size smaller than p inG∗. LetGF := G/F

be the graph G with all edges in F contracted. Suppose that GF with unit edge capaci-

ties allows a maximum s-t flow of value smaller than p. Then there exists a minimal s-t

cut C of size smaller than p in GF . By Lemma 7.9, C is also a minimal s-t cut of size

smaller than p in G∗F := G∗/F . This is a contradiction to the fact that the value of any

maximum s-t flow in G∗F with unit edge capacities is at least p, and hence, set F is a

solution for instance (G, s, t, p, k).

“⇐”: Let (G, s, t, p, k) be a yes-instance of MSE. By Lemma 7.2, we find a solu-

tion F ⊆ E(G) such that each edge in F is part of a minimal s-t cut in G of size smaller

than p. It follows that F ⊆ E(G) ∩ E(G∗). Suppose that G∗F := G∗/F with unit edge

capacities allows a maximum s-t flow of value smaller than p. Then there exists a min-

imal s-t cut C of size smaller than p in G∗F . By Lemma 7.9, C is a minimal s-t cut of

size smaller than p in GF := G/F . This is a contradiction to the fact that the value of

any maximum s-t flow in GF with unit edge capacities is at least p, and hence, set F is

a solution for instance (G∗, s, t, p, k).

By Lemma 7.10, we know that the instances (G∗, s, t, p, k) and (G, s, t, p, k) are equiv-

alent for MSE. By our construction, we know that the treewidth of G∗ is upper-bounded

by a function only depending on the number p of paths. In addition, we know that Mini-

mum Shared Edges is fixed-parameter tractable with respect to the number p of paths

and an upper bound on the treewidth of the input graph. Thus, we are ready to prove

our main result.

Proof of Theorem 7.1. First we modify our graph G = (V,E) by applying Steps 1 to 3.

Let H, H∗, and G∗ be the according graphs. By Theorem 7.3, the treewidth of H∗ is

upper-bounded by h(p) for some function h. Since edge contractions do not increase

the treewidth of a graph [17], it follows that tw(G∗) ≤ tw(H∗). By Lemma 7.10, the

instances (G∗, s, t, p, k) and (G, s, t, p, k) are equivalent for MSE.

We know that MSE(p, ω) is fixed-parameter tractable when parameterized by the

number p of paths and by an upper bound ω on the treewidth of the input graph. Since

function h only depends on p and h(p) is upper-bounding the treewidth of graph G∗,

we can decide instance (G∗, s, t, p, k) in f(p) ·O(|V (G∗)|) time, where f is a computable

function only depending on parameter p. Since |V (G∗)| ≤ |V (G)|+ p · |E(G)| ≤ p · |G|,

Section 7. Fixed-Parameter Tractability with Respect to the Number of Paths 69

and the instances (G∗, s, t, p, k) and (G, s, t, p, k) are equivalent for MSE, we can decide

instance (G, s, t, p, k) in f(p) · p ·O(|G|) time, that is, in FPT-time.

Finally, note that by Theorem 6.1, any instance (G, s, t, p, k) of MSE(p) can be

solved in O(p2 · (h(p) + 4)3·p·(h(p)+3)+4 · |G|) time with function h as described above.

The Parameterized Complexity of Finding Paths with Shared Edges 70

8 Conclusion

We studied the computational complexity of Minimum Shared Edges. We showed

that Minimum Shared Edges is NP-complete, even on graphs with maximum degree

at least five. Moreover, we showed that MSE(k) is W [2]-hard. We used the treewidth

reduction technique due to Marx et al. [14] to show that MSE(p) is fixed-parameter

tractable, demonstrating the utility of the technique.

Discussion. We showed that Minimum Shared Edges can be solved in constant

time on the unbounded, undirected Z × Z-grid graph. According to our introductory

example in Berlin, this result is of potential interest for applications. Street networks

like in Manhattan have a high similarity to grid graphs.

We presented an algorithm that solves MSE(p, k) in (p − 1)k · O(|G|2) time. This

algorithm performs well for small values of parameter k. Therefore, we think that this

algorithm could be also of practical interest, since in many applications the goal is to

keep the value of k as small as possible.

In our approach, solving MSE(p) in FPT-time depends on applying a dynamic pro-

gram on a tree decomposition. The running times of the dynamic programs are so far of

theoretical interest only. The question is whether better running times of the dynamic

programs are possible. More generally speaking, since we showed that MSE(p) is fixed-

parameter tractable, we see this result as the potential starting point for the race in

finding the smallest function only depending on the parameter p [13].

Our dynamic program provided in Section 6 could maybe improved as follows. If we

define partial solutions as a set of simple paths, then the segments in a segmentation

correspond to endpoints of paths, inner vertices of the paths and vertices not appearing

in any path in the partial solution. This could decrease the total number of signatures,

and implicitly the running time of the dynamic program.

We introduced Short Minimum Shared Edges in this work. We showed that

SMSE(k, λ) is W [2]-hard. Further, we showed that SMSE(p, λ, ω) is fixed-parameter

tractable, where ω is an upper bound on the treewidth of the input graph. We showed

that SMSE(p, λ) is fixed-parameter tractable on planar graphs, which is of potentially

practical interest, according to a practical application as described in our introductory

example at the beginning of this work and the fact that street networks can often be

(approximately) represented as planar graphs [3].

Challenges for future research. We showed that Minimum Shared Edges is NP-

hard on graphs with maximum degree at least five. It remains an open question whether

Minimum Shared Edges remains NP-hard on graphs with maximum degree three and

four. For the latter case, our reduction from Vertex Cover to Minimum Shared

Edges we gave in Section 5 can may be adapted. The critical spot in our reduction is

Section 8. Conclusion 71

the degree of the vertices in the constructed graph that correspond to the vertices in the

graph in the Vertex Cover instance. By our reduction, the degree of these vertices

is upper-bounded by the maximum degree of the graph in the Vertex Cover instance

plus two. Perhaps this can be improved to plus one, which would imply that Minimum

Shared Edges remains NP-hard on graphs with maximum degree four.

It remains an open question whether Minimum Shared Edges on planar graphs

is NP-hard or can be solved in polynomial time. In our opinion, this research question

is of special interest since in applications as described in this work, planar graphs are

likely to be considered, like street networks as mentioned above.

As one of our main results, we showed on the one hand that MSE(p) is fixed-

parameter tractable. As a consequence, MSE(p) admits a problem kernel and accord-

ingly, it remains an open question whether it admits a polynomial problem kernel. On

the other hand, we showed that MSE(k) is W [2]-hard, and additionally, we showed that

MSE(k) is in XP. It remains open whether MSE(k) is W [2]-complete. Due to Ye et al.

[19], we know that MSE(tw) is in XP, that is, when parameterized by the treewidth of

the input graph. It remains open whether MSE(tw) can be proven to be W [i]-hard for

an i ≥ 1. Finally according to Minimum Shared Edges, it remains an open question

whether our FPT algorithm with respect to the number p of paths and the number k of

shared edges can be further improved, or if a running time proportional to pk · nO(1) is

best possible, where n denotes the number of vertices in the input graph.

According to Short Minimum Shared Edges, it remains open whether our result

that SMSE(p, λ) is fixed-parameter tractable on planar graphs can be transferred to

general graphs. The tractability with respect to k only and λ only remains open. The

tractability of SMSE(p) remains open. According to SMSE(p) and SMSE(p, λ), we

believe that there could be a way to adapt our approach using the treewidth reduction

technique. The critical spots in that approach facing SMSE are the subgraphs induced

by the copy paths, since they may allow shorter paths that are not feasible in the original

graph.

As a final remark, we would like to briefly introduce the following variant of Minimum

Shared Edges. Let G be a simple, undirected graph and s, t ∈ V (G) be two vertices

in G. For every s-t path P in G, let the edges in P be labeled with the distance

to vertex s. The question is whether there are p s-t paths in G that time-share at

most k edges, where an edge is called time-shared if the edge appears with the same

label in at least two paths. We call this problem Time Minimum Shared Edges since

the labeling of the edges as their distance to vertex s in the paths can be interpreted

as time values. We consider this problem as interesting since in the context of our

introductory example, the time aspect is not considered. If two or more convoys pass

the same street but at two different points in time, then any possible attacker would not

have any advantage of the fact that the street is shared. Challenges for future research

The Parameterized Complexity of Finding Paths with Shared Edges 72

could address the computational complexity of Time Minimum Shared Edges when

parameterized by the number p of paths or when parameterized by the number k of

time-shared edges. In addition, a challenge could be to provide an FPT algorithm with

respect to the number p of paths and the number k of time-shared edges. Perhaps

some of our approaches presented in this work can be adapted to some extend according

to Time Minimum Shared Edges.

Bibliography 73

Bibliography

[1] Yusuke Aoki, Bjarni V. Halldórsson, Magnús M. Halldórsson, Takehiro Ito, Chris-

tian Konrad, and Xiao Zhou. The minimum vulnerability problem on graphs. In

Zhao Zhang, Lidong Wu, Wen Xu, and Ding-Zhu Du, editors, Combinatorial Opti-

mization and Applications - 8th International Conference, COCOA 2014, Wailea,

Maui, HI, USA, December 19-21, 2014, Proceedings, volume 8881 of Lecture Notes

in Computer Science, pages 299–313. Springer, 2014. 8, 10, 40

[2] Sepehr Assadi, Ehsan Emamjomeh-Zadeh, Ashkan Norouzi-Fard, Sadra Yazdanbod,

and Hamid Zarrabi-Zadeh. The minimum vulnerability problem. Algorithmica, 70

(4):718–731, 2014. 8

[3] Marc Barthelemy. Spatial networks. In Encyclopedia of Social Network Analysis

and Mining, pages 1967–1976. 2014. 70

[4] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of

small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996. 14, 58

[5] Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M.

van Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems param-

eterized by treewidth in single exponential time. In Rafail Ostrovsky, editor, IEEE

52nd Annual Symposium on Foundations of Computer Science, FOCS 2011, Palm

Springs, CA, USA, October 22-25, 2011, pages 150–159. IEEE Computer Society,

2011. 14, 40

[6] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Com-

plexity. Texts in Computer Science. Springer, 2013. 15, 30

[7] David Eppstein. Subgraph isomorphism in planar graphs and related problems.

Journal of Graph Algorithms and Applications, 3(3), 1999. 57

[8] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in The-

oretical Computer Science. An EATCS Series. Springer-Verlag Berlin Heidelberg,

2006. 15

[9] M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified NP-

complete graph problems. Theoretical Computer Science, 1(3):237–267, 1976. 33

[10] Andrew V. Goldberg and Satish Rao. Flows in undirected unit capacity networks.

SIAM Journal on Discrete Mathematics, 12(1):1–5, 1999. 13

[11] Jon M. Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley, 2006. 7, 13,

23

The Parameterized Complexity of Finding Paths with Shared Edges 74

[12] Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture

Notes in Computer Science. Springer, 1994. 14

[13] Christian Komusiewicz and Rolf Niedermeier. New races in parameterized algo-

rithmics. In Branislav Rovan, Vladimiro Sassone, and Peter Widmayer, editors,

Mathematical Foundations of Computer Science 2012 - 37th International Sympo-

sium, MFCS 2012, Bratislava, Slovakia, August 27-31, 2012. Proceedings, volume

7464 of Lecture Notes in Computer Science, pages 19–30. Springer, 2012. 70

[14] Dániel Marx, Barry O’Sullivan, and Igor Razgon. Finding small separators in linear

time via treewidth reduction. ACM Transactions on Algorithms, 9(4):30, 2013. 10,

58, 60, 61, 64, 70

[15] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University

Press, 2006. 15

[16] Masoud T. Omran, Jörg-Rüdiger Sack, and Hamid Zarrabi-Zadeh. Finding paths

with minimum shared edges. Journal of Combinatorial Optimization, 26(4):709–

722, 2013. 7, 8, 29, 30

[17] Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of

tree-width. Journal of Algorithms, 7(3):309–322, 1986. 65, 68

[18] Thomas Wolle and Hans L. Bodlaender. A note on edge contraction. Technical

Report UU-CS-2004, Institute of Information and Computing Sciences, Utrecht

University, Utrecht, The Netherlands, 2004. 12

[19] Z.Q. Ye, Y.M. Li, H.Q. Lu, and X. Zhou. Finding paths with minimum shared

edges in graphs with bounded treewidths. In Proc. Frontiers of Computer Science

(FCS) 2013, pages 40–46, 2013. 8, 9, 10, 40, 58, 71

	Introduction
	Preliminaries
	Basic Observations
	Grids
	Hardness Results
	An Efficient Algorithm for Small Treewidth
	Fixed-Parameter Tractability with Respect to the Number of Paths
	Conclusion
	Bibliography

