
Exact Algorithms for the

Longest Common Subsequence Problem

for Arc-Annotated Sequences

Jiong Guo

May 13, 2002

2

Contents

1 Introduction 5

2 Biological Motivation 9

2.1 Some Molecular Biology . 9

2.2 Biological Motivation . 12

3 Some Basic Definitions 13

3.1 LCS and Some Problems from Graph Theory 13

3.2 Parameterized Complexity . 15

3.3 Arc Annotation . 20

4 Previous Results 27

4.1 Classical Complexity . 27

4.2 Parameterized Complexity . 29

4.3 Complexity of Arc-Preserving Subsequence Problem 30

4.4 Overview of This Work . 31

5 c-fragment, c-diagonal LAPCS 33

5.1 c-fragment LAPCS(crossing,crossing) 33

5.2 c-diagonal LAPCS(crossing, crossing) 38

5.3 LAPCS(unlimited, unlimited) 40

6 An Algorithm for LAPCS(nested, nested) 43

7 Arc-Preserving Subsequence Problems 53

7.1 NP-Hardness of APS(crossing, chain) 53

3

4 CONTENTS

7.2 APS(nested, nested) . 57

8 Conclusions 69

8.1 Summary of Results . 69

8.2 Future Work . 70

Chapter 1

Introduction

Algorithms on sequences of symbols have been studied for a long time and

now form a fundamental part of computer science. One of the very important

problems in analysis of sequences is the LONGEST COMMON SUBSE-

QUENCE (LCS) problem. The computational problem of finding the longest

common subsequence of k sequences has been researched extensively over the

last twenty years and it plays a special role in the field of sequence algorithms.

This is partly for historical reasons (many sequence and alignment ideas were

first worked out for the special cases of LCS), and partly because LCS often

seems to capture the desired relationship between the strings of interest. This

problem has many applications [6, 14, 25]. For k = 2, the longest common

subsequence is a measure for the similarity of two sequences and is, thus, useful

in pattern recognition [21], text compression [22] and, particularly, in molecular

biology.

Sequence-level investigation has become essential in modern molecular biol-

ogy. “The digital information that underlies biochemistry, cell biology, and cell

development can be represented by a simple string over letters G, A, T and

C. This string is the root data structure of an organism’s biology [23].” But

to consider genetic molecules only as long sequences consisting of the 4 basic

constituents is too simple to determine the function and physical structure of

the molecules. For this purpose, other information about the sequences and

their parts should be added to the sequences. One prominent source of such

5

6 CHAPTER 1. INTRODUCTION

information in molecular biology is the secondary and tertiary structure of the

molecules. For example, it is well known that the secondary and tertiary struc-

tural features of RNAs are important in molecular mechanism involving their

functions. While the primary structure of a molecule is the sequence of bases,

its secondary and tertiary structures reveal how the sequence folds into a three-

dimensional structure. RNA secondary and tertiary structures are represented

as a set of bonded pairs of bases. A bonded pair of bases (base pair) is usually

represented as an edge between the two complementary bases involved in the

bond. In tertiary structure, the bonds can cross each other, while secondary

structure has no crossing bonds. A bond in secondary structure can either in-

side or outside other bonds. Hence, the ability to analyze molecules requires

taking into account all the primary, secondary and tertiary information. More

biological background is discussed in Chapter 2.

Early works with these additional information are primary structure based, the

sequence comparison is basically done on the primary structure while trying to

incorporate secondary structure data [3, 8]. This approach has the weakness

that it does not treat a base pair as a whole entity. Recently, an improved model

was proposed [10, 11]. In this model, the secondary and tertiary information is

combined into the basic sequence, which represents the primary information, to

affect subsequent analysis. The system of representing additional information

is called annotation scheme. The objects used in this annotation are so-called

arcs. An arc is a link or an edge that joins two symbols of the sequence, it

corresponds to the chemical bonds between base pairs in the RNA sequence.

The RNA structure can then be represented as a base sequence with arc anno-

tations. We call these sequences arc-annotated sequences. Arc annotations

are defined and discussed in Chapter 3. For related studies concerning algo-

rithm aspects of (protein) structure comparison using “contact maps”, refer to

[13, 18].

In this work, we will follow this new model and exam the classical LCS prob-

lem for the sequences with different arc annotations. The focal points are two

arc annotations, (crossing, crossing), where two sequences represent tertiary

7

structures of two RNA’s, and (nested, nested), which corresponds to an in-

stance of two RNA sequences with secondary structure. Since superimposing

arc structures on the basic sequences creates many natural parameters, we ex-

plore both the classical and parameterized complexity [1, 9, 12] of the LCS

problem for sequences with different arc annotation schemes. A summary of

previous work will be given in Chapter 4. In Chapter 5, we will prove that the c-

fragment (or c-diagonal) LAPCS(crossing, crossing), parameterized by

the length l of the desired subsequence, is fixed-parameter tractable, i.e., it be-

longs to the complexity class FPT. In Chapter 6, we will give an FPT-algorithm

for the LAPCS(nested, nested) with parameters k1 and k2, where k1 and k2

are the number of the deletions from the two sequences, that we have to make

to get an arc-preserving common subsequence. In Chapter 7, we answer some

open questions for the Arc-Preserving Subsequence problem and give an

algorithm which solves the Arc-Preserving Subsequence problem with arc

structure (nested, nested) in polynomial time. The last chapter summarizes

our results in this work and gives some aspects for future research.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Biological Motivation

The purpose of this chapter is to provide a brief introduction to molecular

biology, especially to DNA and RNA sequences. Here, we only give a few

basics; more details can be found in [26].

2.1 Some Molecular Biology

A cell has two classes of molecules: large and small. The large molecules, known

as macromolecules, are of three types: DNA, RNA, and protein, among which

DNA and RNA are the molecules of most interest to us.

DNA is the basis of heredity and it is constituted of small molecules called

nucleotides, which are referred to as bases: adenine (A), cytosine (C), guanine

(G), and thymine (T). For our purpose, a DNA molecule can be viewed as

a long sequence over the four letter alphabet Σ = {A, C, G, T}. The DNA

contained in the cell is known as the genome. A genome of a human has about

3 × 109 letters, and each human cell contains the same DNA. For each base,

there is a complementary base. A is paired with T , and C is paired with G.

This pairing is formed by hydrogen bonds and it is essential for the structure

of the DNA and for the replication and transcription of its code. The idea

is that a single DNA sequence (or strand), e.g., ACCTGAA is paired to a

complementary strand TGGACTT , as shown in Figure 2.1.

DNA usually occurs double stranded and the bases on one strand fit together

9

10 CHAPTER 2. BIOLOGICAL MOTIVATION

A C T G A A

T G A C T T

C

G

Figure 2.1: 2 DNA strands

with a complementary sequence of bases on the other strand. These two strands

form a helical three-dimensional structure. Figure 2.2 presents such a structure.

A T

T A

G C

T
A

AT
G

C
A

T

T
A

C
G

G C

Figure 2.2: The double helix

DNA can be replicated from another DNA already existing. This replication

starts with a double helix that has been separated into two single strands.

Then, each single strand is used to template new double strands. In this way,

two identical DNA molecules are produced, each has one strand of the original

molecule. DNA strands can also be transcribed into RNA. RNA is a related

ribonucleic acid and it can be modeled by a word over another four letter al-

phabet of ribonucleotides Σ = {A, C, G, U}, where thymine (T) is replaced by

uracil (U). RNA is single-stranded. One strand of the DNA is used to template

a single strand of RNA that is made by moving alone the DNA strand. Finally,

the double stranded DNA remains as before and a single strand of RNA has

been generated. A specific type of RNA, message RNA (mRNA), is read to pro-

duce a protein. The genetic code on the mRNA is a language in which triples of

the 4 bases - these are 64 possible combinations - specify either a single amino

acid or the termination of the protein sequence; such a triple of nucleotides is

2.1. SOME MOLECULAR BIOLOGY 11

calledcodon.

Proteins are built at the ribosomes of a cell, where the mRNA picks up comple-

mentary transfer RNA, tRNA. tRNA is another RNA molecule, which is also

single stranded, without complementary strand that DNA has. This molecule

tends to fold back on itself to form a three-dimensional cloverleaf structure built

from approximately 80 bases. See Figure 2.3 for a tRNA.

A

G

C

A
U
C
G

U
C A C U

C
G

A

UG

A

U

U
U

G

G
C

G
A
A
A

U
G

CCUAG
G

U U A G
G

C
G

A

Figure 2.3: A tRNA

Amino acids are linked to these smaller tRNA molecules, and the tRNA inter-

acts with the codon of mRNA. In this way, tRNA carries the appropriate amino

acid to the mRNA. The ribosomes, which is a complex made of RNA and pro-

tein where the protein defined by a messenger RNA is synthesized, have also

RNA whose three-dimensional structure enables them to interact with the other

molecules physically. The three-dimensional structure of RNA can, thus, be ex-

tremely important for its function, and evolution is likely to preserve common

structures. Determining the correct fold of a protein is a major open prob-

lem in protein analysis. The converse problem, to find an amino acid sequence

12 CHAPTER 2. BIOLOGICAL MOTIVATION

that will produce a particular folding or structure, is another great challenge in

molecular biology.

2.2 Biological Motivation

Arc-annotated sequences can be applied to describe the secondary and tertiary

structures of RNA and protein sequences. Therefore, the problem of comparing

arc-annotated sequences has applications in the structural comparison of RNA

and protein sequences and it has received much attention in the literature re-

cently. One common way to measure the similarity of two sequences is pairwise

sequence comparison, e.g., the longest common subsequence algorithm.

RNA performs a wide range of functions in biological systems. In particular, it

is RNA that contains genetic information of viruses such as HIV and therefore

regulates the functions of such viruses. Furthermore, it is also widely known

that secondary and tertiary structural features of RNA are essential for the

molecular mechanisms involved in their function. Thus, it is of massive interest

to know how RNA folds to achieve its specific biological functions. A typical

feature of RNA molecules is that the comparison of individual sequences can

provide information concerning their common features in structure. During the

course of evolution, a number of mutations have occurred in these molecules.

Comparative analysis of those variations may clarify how such mutations can

happen. The common features preserved in course of evolution are likely to be

of importance for function. Hence, the ability to compare RNA structure builds

the fundament for further study of RNA. When we represent the secondary and

tertiary structure of RNA as a basic sequence with arc annotation, algorithms

for the longest common subsequence problem for two arc-annotated sequences

can play a key role in resolving a preserved secondary and tertiary structure,

which corresponds to a preserved molecular conformation and to a preserved

function.

Chapter 3

Some Basic Definitions

Since we will explore the classical and parameterized complexity of the LCS

problem of arc-annotated sequences, this chapter gives some basic definitions

and terminologies which we will use in the following chapters. In the first

section, we will give a formal definition of the LCS problem and introduce

some problems that originally arise in graph theory und are useful for our

analysis of LCS of arc-annotated sequences. Section 3.2 is concerned with

parameterized complexity. Since we cannot cover all aspects of parameterized

complexity, interested readers are referred to [9]. Arc annotation and the LCS

problem of arc-annotated sequences are the main objects of the last section.

The definitions of various levels of arc annotation and of the Longest Arc-

Preserving Common Subsequence problem are taken from [11].

3.1 LCS and Some Problems from Graph Theory

As mentioned in Chapter 1, our main method to analyze the similarity of se-

quences is the pairwise comparison. Thus, the central problem in this work

comes from the LCS problem, which is very important in classical and param-

eterized complexity. Here, we give a definition for subsequence and the LCS

problem.

Definition 3.1 Subsequence

Given two sequences S1, S2 over some given alphabet Σ, S2 is a subsequence

13

14 CHAPTER 3. SOME BASIC DEFINITIONS

of S1, if S2 can be obtained from S1 by deleting some letters from S1.

The length of a sequence is denoted by |S|. For simplicity, we use S[i] to refer

to the ith letter in S, and S[i1, i2] to denote the subsequence of S from the i1th

letter to the i2th letter (1 ≤ i1 ≤ i2 ≤ |S|).

Definition 3.2 Longest Common Subsequence Problem (LCS)

Given a set of k sequences S1, S2, . . . , Sk over some alphabet Σ, the longest com-

mon subsequence problem asks for a longest sequence P that is a subsequence

of S1, S2, . . . and Sk.

To date, most research has focused on deriving efficient algorithms for the LCS

problem when k = 2. This problem can be solved by dynamic programming in

time O(|S1| · |S2|) [15]. If the number of sequences k is unrestricted, the LCS

problem is NP-complete [22]. However, certain algorithms for the case k = 2

have been extended to yield algorithms that require O(nk−1) time and space,

where n is the length of the longest of the k sequences [2, 16].

In order to prove some complexity results of the LCS problem of arc-annotated

sequences, we will use reductions to or from some problems in graph theory with

known complexity. These problems are vertex cover, independent set and

clique.

Definition 3.3 Vertex Cover, VC

An edge e of an undirected graph G = (V, E) is incident to a vertex v if v is

one of the endpoints of e. A set of vertices V
′

⊆ V is called a vertex cover in G

if for each e ∈ E, there exists a v ∈ V
′

such that e is incident to v (∃u ∈ V

such that (u, v) = e). Given an undirected graph G = (V, E) and a positive

integer k, the vertex cover problem asks whether G has a vertex cover of

size at most k.

Definition 3.4 Independent Set, IS

Let G = (V, E) be an undirected graph, and let I ⊆ V . We say that I is an

independent set if for each pair i, j ∈ I, i 6= j, there is no edge between i

3.2. PARAMETERIZED COMPLEXITY 15

and j. The independent set problem asks, given a parameter k, if there is

an independent set I with |I| ≥ k.

Definition 3.5 clique

Given an undirected graph G = (V, E), and a parameter k, the clique problem

asks whether there is a vertex set C ⊆ V with |C| ≥ k such that for all vertices

u, v ∈ C with u 6= v there is an edge between v and u.

These three problems are all known to be NP-complete [24]. It is easy to see

that a set V C is a vertex cover in G if and only if V \ V C is an independent

set in G. Also, there is a vertex cover in G of size k if and only if there

is an independent set in G of size |V | − k. The vertex cover problem is,

conveniently, a minimization problem, while the independent set problem is

a maximization problem.

3.2 Parameterized Complexity

In this section, we give an overview of the aspects of parameterized complexity,

which are relevant to this work. Classical polynomial complexity, its reductions

and NP-hardness are discussed in depth by Paradimitriou [24]. Parameterized

complexity was introduced by Downey and Fellows [9].

Many natural problems have now been shown to be NP-complete or worse,

which means, it is highly unlikely that there exits efficient algorithm for these

problems. However, we can find for some of the problems algorithms such

that a main part of the problem instance contributes to the overall running

time “in a good way” (e.g., polynomially), and identify aspects of the input,

which determine the combinatorial explosion of the running time. Then, these

aspects can be used as parameters in the hope that these parameters are small

in applications.

While the notation of polynomial time is central to the classical formulation of

computional complexity, central to parameterized complexity is the notion of

fixed-parameter tractability .

16 CHAPTER 3. SOME BASIC DEFINITIONS

Definition 3.6 Fixed-Parameter Tractability A parameterized problem L

is fixed-parameter tractable, if and only if there is an algorithm which can in

time f(k)nc decide whether (x, k) ∈ L, where x is the input and k is the param-

eter. Further n := |x|, c is a constant that is independent of both n and k, and

f : N 7→ R is an arbitrary function.

We denote the family of all fixed-parameter tractable parameterized problems

by FPT .

Here, we give an example for fixed-parameter tractability, which will be used

in Chapter 5.

Definition 3.7 Maximum Independent Set-B, MAXIS-B

Given a simple graph G = (V, E) in which each vertex has degree at most B,

the MAXIS-B problem asks for a maximum independent set of G.

Lemma 3.8 MAXIS-B, parameterized by the size k of the independent set, can

be solved by an FPT-algorithm in time O((B + 1)kB2).

Proof. We use the notation G− {u} to denote the deletion of the vertex u and

all edges incident to u from the graph G. We can construct a search tree of

height k as follows.

The root of the tree is labeled with an empty independent set I and the graph G.

First, we find the vertex u with minimum degree which can have at most B

neighbors {v1, v2, . . .}. Any independent set of G can contains at least either u

or one of its neighbors, so we create the children of the root corresponding to

these possibilities. The first child is labeled with {u} and G−{u}− {all neigh-

bors of u}, and the second is labeled with {v1} and G − {v1} − {all neighbors

of v1}, and the other children are labeled in the same way for the remaining

neighbors of u. There are at most B + 1 children of the root node. The set of

vertices labeling a node represents a “possible” independent set, and the graph

labeling the node represents what remains to be checked in G. In general, for

a node labeled with the set of vertices S and the subgraph H of G, we choose

the vertex v with minimum degree in H and create at most B + 1 child nodes.

These child nodes are labeled in a similar way as the children of the root node.

3.2. PARAMETERIZED COMPLEXITY 17

If we can create a node at height k in the tree, then an independent set of car-

dinality at least k has been found. There is no need to explore the tree beyond

height k. As we can easily see, each node has at most B + 1 children. Thus,

the tree can have a maximum size of (B + 1)k. At each node, the deletion of

vertex u and its neighbors and all edges incident to u and its neighbors can

be done in time O(B2). Therefore, this algorithm takes O((B + 1)kB2) many

steps. 2

As we have seen in classical complexity, the basic idea behind virtually all

completeness results is the notion of a reduction. Therefore, we will need a new

kind of reduction which is “parameter preserving” and can be used to show

that two problems have the same parameterized complexity.

Definition 3.9 Fixed-Parameter Reducibility

Let L and L
′

be two parameterized problems, L ⊆ Σ∗ × N and L
′

⊆ Γ∗ × N.

We say that L is fixed-parameter reducible to L
′

, if there are functions k 7→ k
′

and k 7→ k
′′

on N and a function (x, k) 7→ x
′

from Σ∗ × N to Γ∗ such that

(a) (x, k) 7→ x
′

is computable in time k
′′

|x|O(1),

(b) (x, k) ∈ L ⇔ (x
′

, k
′

) ∈ L
′

.

Before we establish a hierarchy of parameterized complexity, we need some

definitions, which help to define the classes in the hierarchy.

Definition 3.10 Boolean Circuit

A Boolean circuit is a directed graph G = (V, E), where the nodes in V =

{1, . . . , n} are called the gates of G. There are no cycles in the graph. All

nodes in the graph have fan-in (the number of incoming edges). Each gate

i ∈ V in the graph has a sort s(i) associated with it, where s(i) ∈ { TRUE,

FALSE, AND, OR, NEGATION } ∪ {x1, x2, . . .}. If s(i) ∈ { TRUE, FALSE

} ∪ {x1, x2, . . . }, then the fan-in of i is 0, that is, i has no incoming edges.

Gates with no incoming edges are called the input gate. Finally, there is a

gate, which has no outgoing edges. It is called output gate of the circuit.

18 CHAPTER 3. SOME BASIC DEFINITIONS

Circuits can have gates of two types: a small gate has bounded fan-in, while

a large gate has unbounded fan-in.

A circuit, which has no inputs of sort TRUE or FALSE, can be thought of as

representing a Boolean expression. Conversely, given a Boolean expression δ,

there is a simple way to construct a circuit Cδ such that, for any truth as-

signment T appropriate to both (all variables in δ and Cδ are defined in T),

T (Cδ) = TRUE if and only if δ is satisfied by the assignment T . A truth as-

signment T satisfies a Boolean expression δ, if all variables in δ are defined in T

and δ becomes true with variables replaced by their truth values in T . A cir-

cuit C has a weight k satisfying assignment, if the Boolean expression δ, which

corresponds to C, has a satisfying assignment, where δ hat exactly k variables

set to be TRUE. The construction of Cδ follows the inductive definition of δ,

and builds a new gate i for each subexpression encountered.

Definition 3.11 Circuit Depth

The depth of a circuit is the maximum number of gates on any path from an

input gate to the output gate.

Definition 3.12 Circuit Weft

The weft of a circuit is the maximum number of large gates on any path from

an input gate to the output gate.

Let Γ = {C1, C2, C3, . . .} be a family of circuits. Associated with Γ is a basic pa-

rameterized language LΓ = {〈Ci, k〉 | Ci has a weight k satisfying assignment}.

By LΓ(t,h), we denote the subset of LΓ of circuits with weft t and depth h.

Definition 3.13 Basic Hardness Class

A parameterized problem L is in the complexity class W [t] if it is fixed-parameter

reducible to LΓ(t,h), where the depth h is constant.

Definition 3.14 W -hierarchy

The W -hierarchy is the set of the classes W [t] together with two other classes,

W [SAT] and W [P]. W [P] denotes the class obtained by having no restriction

3.2. PARAMETERIZED COMPLEXITY 19

on the depth, i.e, P -size circuits, and W [SAT] denotes the restriction to boolean

formulas of P -size. Hence, the W -hierarchy is

FPT ⊆ W [1] ⊆ W [2] ⊆ . . . ⊆ W [SAT] ⊆ W [P].

We conjecture that each of the containments is proper.

W [SAT] denotes the class of problems reducible to weighted satisfiabil-

ity, while W [P] denotes the class of problems reducible to weighted cir-

cuit satisfiability. Given a Boolean formula X and a positive integer k,

weighted satisfiability asks whether X has a weight k satisfying assign-

ment. weighted circuit satisfiability asks whether a given decision circuit

C has a weight k satisfying assignment.

Some common problems known to be NP-complete in classical complexity fall

into different classes in the W -hierarchy when their natural parameters are

used. For example, if the parameter is the desired size of the vertex sub-

set, independent set and clique are both W [1]-complete, while vertex

cover∈ FPT . vertex cover can be solved by an algorithm with running

time O(kn + 1.2852k) [7].

Definition 3.15 Parameterized Variations of LCS

Given a set of k sequences S1, . . . , Sk and a positive integer m, parameterized

variations of LCS ask for a sequence P of length at least m that is a subsequence

of all of S1, . . . , Sk. We refer to the variation with parameter k as LCS-1, with

parameter m as LCS-2, with parameters k and m as LCS-3.

The parameterized complexity of the variations of the LCS problem is summa-

rized in the following table (Table 3.1). The results are all due to Bodlaender

et al. [5, 4].

The fixed-parameter tractability of a problem can illustrate some of the possi-

bilities for problem parameterization. It is frequently complained by computer

scientists with a practical orientation that the classical complexity framework

is not sufficiently realistic. As shown by the example of vertex cover, pa-

rameterization provides a way how to cope with NP-hardness.

20 CHAPTER 3. SOME BASIC DEFINITIONS

Problem Parameter |Σ| Unbounded |Σ| Fixed

LCS-1 k W [t]-hard, t ≥ 1 unknown

LCS-2 m W [2]-hard FPT

LCS-3 k, m W [1]-complete FPT

Table 3.1: Parameterized complexity of LCS

3.3 Arc Annotation

While the previous two sections have provided some basic knowledge of classical

and parameterized complexity, we will from now focus on the main problem of

this work, the Longest Arc-Preserving Common Subsequence problem.

The purpose of having arc annotation is to express additional information about

a sequence in a way that the sequence and the additional information can

be analyzed and manipulated simultaneously. Arcs represent binary relations

between sequence symbols. Hence, they can be used to join base pairs that are

chemically bonded in the represented biological sequence. This application is

particularly relevant to RNA sequences, whose chemical bonds can be described

by annotating the sequence with these arcs. Figure 3.1 shows a part of tRNA

and its corresponding arc-annotated sequence.

Definition 3.16 Arc Annotation

The arc annotation set A of a sequence S is a set of pairs of positions in S:

A = { (i1, i2) | 1 ≤ i1 < i2 ≤ |S|} ⊆ {1, . . . , |S|}2

Then, the sequence S with such an arc annotation is called an arc-annotated

sequence, denoted by (S,A).

Since we incorporate both arcs and sequences into an overall measure of similar-

ity, the definition of LCS must be adjusted to incorporate the arc structure. A

common subsequence should also have the common arcs of the input sequences.

To preserve arcs, a subsequence that selects both endpoints of an arc from one

sequence must map those endpoints to the endpoints of some arc from the other

sequence.

3.3. ARC ANNOTATION 21

A
U

C

G
A
C

GU

A
G

G
U
A
G

G

C

G
G

CC

C

A
U
G

C

A C G U G A C G U A G C G U A G G G C C C G U A C

Figure 3.1: A tRNA and its corresponding arc-annotated sequence

Definition 3.17 Longest Arc-Preserving Common Subsequence Prob-

lem (LAPCS)

Given two arc-annotated sequences (S1,A1) and (S2,A2), the LAPCS problem

asks to find the longest common subsequence of S1 and S2 which preserves the

arcs, i.e., to find a mapping MS ⊆ {1, . . . , |S1|} × {1, . . . , |S2|} such that

1. the mapping is one-to-one and preserves the order of the subsequence:

∀(i1, j1), (i2, j2) ∈ MS

i1 = i2 ⇐⇒ j1 = j2 and

i1 < i2 ⇐⇒ j1 < j2

2. the arcs induced by the mapping are preserved:

∀(i1, j1), (i2, j2) ∈ MS

(i1, i2) ∈ A1 ⇐⇒ (j1, j2) ∈ A2

3. the mapping produces a common subsequence:

∀(i, j) ∈ MS, S1[i] = S2[j]

22 CHAPTER 3. SOME BASIC DEFINITIONS

We name the pair 〈i, j〉 a base match, if S1[i] = S2[j] for some pair of positive

integers i and j. If S1[i1] = S2[j1], S1[i2] = S2[j2], (i1, i2) ∈ A1 and (j1, j2) ∈ A2

for some integers i1 < i2 and j1 < j2, then the pair 〈(i1, i2), (j1, j2)〉 is an arc

match.

A restricted version of the above problem is defined as follows.

Definition 3.18 Arc-Preserving Subsequence Problem (APS)

Given two arc-annotated sequences (S1,A1) and (S2,A2), |S1| ≤ |S2|, the APS

problem asks whether there is an arc-preserving mapping from S1 to S2, i.e.,

S1 can be obtained from S2 by deleting some bases and arcs incident on these

bases from S2.

When arcs are used to link sequence symbols to represent nonsequential infor-

mation, comparing the resulting annotated sequences is much more complex

than classical LCS. Since in practice of RNA and protein sequence comparison

arc sets are likely to satisfy some constraints (e.g. bond arcs do not cross in the

case of tRNA sequences), it is of interest to consider various restrictions on arc

structure. As we will see, the different restrictions on arc annotation can alter

the computational complexity of the LCS problem.

Definition 3.19 Restricted Variations of LAPCS

There are four natural restrictions on the arc set A of a sequence S:

1. no two arcs share an endpoint:

∀(i1, i2), (i3, i4) ∈ A

(i1 6= i4) ∧ (i2 6= i3) ∧ (i1 = i3 ⇐⇒ i2 = i4)

2. no two arcs cross each other:

∀(i1, i2), (i3, i4) ∈ A

i1 ∈ [i3, i4] ⇐⇒ i2 ∈ [i3, i4]

3. no two arcs nest:

∀(i1, i2), (i3, i4) ∈ A

3.3. ARC ANNOTATION 23

i1 ≤ i3 ⇐⇒ i2 ≤ i3

4. no arcs:

A = ∅

These four restrictions produce five levels of permitted arc structures:

• unlimited: no restrictions,

• crossing: restriction (1),

• nested: restrictions (1) and (2),

• chain: restrictions (1), (2), and (3),

• plain: restriction (4).

In the following, LAPCS(x, y) represents an LAPCS problem where the arc

structure of S1 is of level x and the arc structure of S2 is of level y. Assume

that x is at the same level of or higher than y.

Note that the problem LAPCS(nested, nested) effectively models the simi-

larity between two tRNA sequences, particularly the secondary structures.

The following table (Table 3.2) shows the inclusion relation between the levels

of restrictions on LAPCS(x, y). Moreover, we give the definitions of two spe-

cial cases of the LAPCS problem, which were first studied in [20]. The special

cases are motivated from biological applications [14, 19].

Definition 3.20 c-fragment LAPCS Problem (c ≥ 1)

Given two arc-annotated sequences which are divided into fragments of lengths

exactly c (the last fragment can have a length less than c), the allowed matches

are those between fragments at the same location.

For example, all matches induced by a 2-fragment LAPCS are required to

have the form

〈2i −
1

2
±

1

2
, 2i −

1

2
±

1

2
〉, i ≥ 1.

24 CHAPTER 3. SOME BASIC DEFINITIONS

unlim, unlim

∪

unlim, cross ⊃ cross, cross

∪ ∪

unlim, nest ⊃ cross, nest ⊃ nest, nest

∪ ∪ ∪

unlim, chain ⊃ cross, chain ⊃ nest, chain ⊃ chain, chain

∪ ∪ ∪ ∪

unlim, plain ⊃ cross, plain ⊃ nest, plain ⊃ chain, plain ⊃ plain, plain

Table 3.2: Problem inclusions for different levels of restriction.

We use x, y to denote the arc structures of two arc-annotated sequences. The symbol ⊃

indicates the inclusion relation between different levels resulting by the restriction hierar-

chy. unlim, unlim is the most general Longest arc-preserving Common Subsequence

problem, and plain, plain is the unannotated Longest Common Subsequence problem.

Definition 3.21 c-diagonal LAPCS problem (c ≥ 0)

c-diagonal LAPCS is an extension of c-fragment LAPCS, where base

S1[i] is allowed only to match bases in the range S2[i − c, i + c].

The c-diagonal and c-fragment LAPCS problems are relevant in the com-

parison of conserved RNA sequences where we already have a rough idea about

the correspondence between bases in the two sequences.

The arc structure can provide many natural parameters for the Longest Arc-

Preserving Common Subsequence problem. In the following, we give two

examples of such parameters concerning arc structure.

Definition 3.22 Cutwidth

Given an arc-annotated sequence (S, A), the cutwidth of the arc structure is

the maximum number of arcs that pass by or end at any position of the sequence.

Definition 3.23 Bandwidth

Given an arc-annotated sequence (S, A), the bandwidth of the arc structure

is the maximum distance between the two endpoints of an arc, i.e., if we denote

3.3. ARC ANNOTATION 25

S

d

k

1 4 5 7 82 3 6

Figure 3.2: Cutwidth and Bandwidth.

The arc-annotated sequence S has 8 bases. There are 3 arcs passing by or ending at the 4th

base and no other base has more arcs passing by or ending at it. Thus, S has a cutwidth of 3,

denoted by c. It is obvious that the arc between the 2nd and 8th bases is the longest arc of S.

The bandwidth of S is then 6, denoted by d.

bandwidth as d, then for any (i1, i2) ∈ A, i2 − i1 ≤ d.

Figure 3.2 illustrates an arc-annotated sequence with cutwidth of 3 and band-

width of 6.

26 CHAPTER 3. SOME BASIC DEFINITIONS

Chapter 4

Previous Results

As already mentioned in Chapter 3, for referring to the problems, we follow

the convention that at the arc structure of sequence S1 is at least as complex

as that of sequence S2. Using five levels of arc structures, we distinguish 15

distinct variations of LAPCS where S1 and S2 may have different level of arc

structure (see Table 3.2). This chapter summarizes previous results of these 15

LAPCS variations, not only in classical but also in parameterized complexity

framework. Various parameters have been used to exam LAPCS, such as the

length l of the desired subsequence, the cutwidth k and the bandwidth d. The

third section is concerned with the arc-preserving subsequence problem.

The 5 levels of arc structure can also be used to APS. At last, we will address

the problems that we will explicitly discuss in this work.

4.1 Classical Complexity

When the arc structure x of sequence S1 is at least crossing, LAPCS(x,y)

is NP-hard [11]. independent set, which is known to be NP-complete, can

be reduced to LAPCS(unlimited, plain) or LAPCS(crossing, plain). If

the arc structures of both sequences are lower than nested, then the LAPCS

problem is solvable in polynomial time [11, 15]. The NP-hardness of the prob-

lem LAPCS(nested, nested) was shown in [20]. Jiang et al. [17] presented

a dynamic programming algorithm to compute the LAPCS(nested, chain)

27

28 CHAPTER 4. PREVIOUS RESULTS

and LAPCS(nested, plain) in running time O(nm3). LAPCS(crossing,

crossing) admits a 2-approximation algorithm running in O(nm), and LAPCS

(unlimited, plain) cannot be approximated within ratio nǫ for any ǫ ∈ (0, 1
4),

where n denotes the length of the longer input sequence [17]. Table 4.1 gives a

summary of results concerning classical complexity of LAPCS.

unlimited crossing nested chain plain

unlimited NP − c∗ [11]

crossing — NP − c+ [11]

nested — NP − c# [20] O(nm3) [17]

chain — O(nm) [11]

plain — O(nm) [15]

*: not approximable within nǫ, ǫ < 1/4 [17]

+: 2-approximable, MAXSNP-Hard [17]

#: 2-approximable

Table 4.1: Classical Complexity

Lin et al. [20] showed also the NP-hardness results for the c-fragment (with

c > 2) and c-diagonal (with c > 1) LAPCS. The 1-fragment LAPCS

(crossing, crossing) and 0-diagonal LAPCS (crossing, crossing) are

solvable in time O(n). See Table 4.2.

unlimited crossing nested chain plain

unlimited NP-hard [20] ?

crossing — NP-hard [20] ?

nested — NP − hard# [20] ?

#: admits a PTAS

Table 4.2: Complexity result for c-fragment (c > 1) and c-diagonal (c > 0)

LAPCS

4.2. PARAMETERIZED COMPLEXITY 29

4.2 Parameterized Complexity

Since many of these 15 variations of LAPCS are NP-hard or have no currently

known polynomial time algorithm, the parameterized complexity of these prob-

lems has also been investigated in some of the above works. The parameters

being used include: the length l of the desired subsequence , the cutwidth k of

the arc structure and the bandwidth d of the arc structure. The length of de-

sired subsequence l is independent of the other parameters, while the cutwidth

of an arc structure lower than unlimited is upper-bounded by the bandwidth

of the arc structure.

If parameterized by the length of the desired subsequence, the LAPCS problem

with at least one sequence having an unlimited arc structure was shown to be

W [1]-complete [11]. If the arc structures of both sequences are crossing, the

problem also turns out to be W [1]-complete [11]. The same reductions as for

the classical hardness result can be used to show the corresponding parameter-

ized complexity. For other variations, in which the arc structure of sequence S1

is crossing or nested and the arc structure of S2 is at most nested, the

parameterized complexity of LAPCS is still unknown. Table 4.3 summarizes

the parameterized complexity of LAPCS, when parameterized by the length

of the desired subsequence.

unlimited crossing nested chain plain

unlimited W [1] − complete [11]

crossing — W [1] − complete [11] ?

nested — ?

Table 4.3: Parameterized by the length l of desired subsequence

Evans [11] presented an algorithm running in time O(9knm), where k is the

cutwidth or bandwidth of the arc structure, to solve the LAPCS problem for

variations with arc structure of both sequences being at most crossing. It

uses multiple tables to compute the length of longest arc-preserving common

subsequence in a manner similar to the algorithm without arcs. To enable

30 CHAPTER 4. PREVIOUS RESULTS

matched final endpoints to be aligned with matched starting endpoints of arcs,

the algorithm uses a tree data structure to keep track of all combinations of

initial endpoints matches that lie on a path that produces this maximum value.

Since the bandwidth of a crossing arc structure is an upper bound of cutwidth,

the algorithm developed for the parameter cutwidth can also be used for the

parameter bandwidth. Therefore, Table 4.4 and Table 4.5 are identical.

unlimited crossing nested chain plain

unlimited ?

crossing — O(9knm) [11]

nested — O(k24knm) [11]

Table 4.4: Parameterized by the cutwidth k of arc structure of both sequences

unlimited crossing nested chain plain

unlimited ?

crossing — O(9dnm) [11]

nested — O(d24dnm) [11]

Table 4.5: Parameterized by the bandwidth d of arc structure of both sequences

4.3 Complexity of Arc-Preserving Subsequence Prob-

lem

The exact matching version of LAPCS, arc-preserving subsequence problem,

arises in widely varying applications. For example, searching a specific pattern

in DNA/RNA database. The existing works that analyze the LAPCS problem

give no hardness result for this problem. But we can extend the reductions for

classical complexity of LAPCS to show that even the APS problem of some

arc structures is NP-hard. Assuming the shorter sequence always has the same

4.4. OVERVIEW OF THIS WORK 31

or lower level of arc structure, we also summarize the classical complexity of

APS problem in Table 4.6.

unlimited crossing nested chain plain

unlimited NP − hard [11]

crossing — NP − hard [11] ?

nested — ? O(nm3) [20]

Table 4.6: Classical complexity for APS problem

4.4 Overview of This Work

Comparing the summaries in the previous three sections with the fact that clas-

sical LCS for two sequences can be solved in polynomial time, we can come

to the conclusion that adding the arc annotation to the basic sequences makes

the LCS problem much more complex. However, the arc annotation model

provides the most natural and most intuitive way to describe the structure

of the large molecules. Thus, to find exact and effective algorithms for the

LAPCS problem with various arc annotations, is the main goal of this work.

At first, we will prove the fixed-parameter tractability for the restricted versions

of LAPCS, c-fragment and c-diagonal LAPCS, when taking the length of

the common subsequence as the problem parameter. Lin et al. [20] gave poly-

nomial time approximation schemes (PTAS) for c-fragment and c-diagonal

LAPCS(nested, nested). Our fixed-parameter tractability result is also ten-

able for more general arc structures, (crossing, crossing) and even (un-

limited, unlimited) with the degree of sequences as the second parameter

(see Chapter 5). For the most important variant of LAPCS problem, general

LAPCS(nested, nested), there are only an FPT-algorithm from Evans [11]

with cutwidth as parameter and a quadratic time factor-2-approximation al-

gorithm from Jiang et al. [17]. However, the fixed-parameter tractability of

this problem is still an open question, when parameterized by the length l

of the desired subsequence. We will give an exact, fixed-parameter algorithm

32 CHAPTER 4. PREVIOUS RESULTS

that solves the LAPCS(nested, nested) problem in time O(3.31k1+k2 · n),

where n is the maximum input sequence length and k1 and k2 are the num-

ber of deletions allowed for S1 and S2 respectively. It should be clear that

l = |S1| − k1 and l = |S2| − k2. This algorithm provides an effective solution

for the case of reasonably small values of k1 and k2 (see Chapter 6). Further-

more, we will answer some open questions in Table 4.6, namely the complex-

ity for APS(crossing, chain), APS(crossing, plain) and APS(nested,

nested) (see Chapter 7).

Chapter 5

c-fragment, c-diagonal

LAPCS

In this chapter, we investigate the c-fragment LAPCS(crossing, cross-

ing) and the c-diagonal LAPCS(crossing, crossing) problems. We give

algorithms for these problems when parameterized by the length l of the de-

sired subsequence. The restricted versions c-diagonal and c-fragment of

LAPCS(crossing, crossing) were already treated by Lin et al. [20]. They

gave PTAS’s for these problems. We want to remark that the running times

for the following algorithms are based on worst case analysis. The algorithms

are expected to perform much better in practice.

5.1 c-fragment LAPCS(crossing, crossing)

Before entering into details of the algorithm for c-fragment LAPCS(crossing,

crossing), we review briefly an algorithm which solves 1-fragment LAPCS

(crossing, crossing) in linear time [20].

Let (S1, A1) and (S2, A2) be an instance of 1-fragment LAPCS (crossing,

crossing). We assume that n = |S1| = |S2|. If the sequences do not have the

same length, we can extend the shorter one by adding a sequence of a letter

not in the alphabet at its end. We construct a graph G as follows. If the two

sequences induce a base match 〈i, i〉, then we create a vertex vi. If the sequences

33

34 CHAPTER 5. C-FRAGMENT, C-DIAGONAL LAPCS

induce a pair of base matches 〈i, i〉 and 〈j, j〉 and (i, j) is an arc in either A1

or A2 but not both, then we impose an edge connecting vi and vj in G. It is

clear that G has maximum degree 2 and every independent set of G one-to-one

corresponds to an arc-preserving common subsequence of (S1, A1) and (S2, A2).

Since G is composed only of a collection of disjoint cycles and paths, we can

compute a maximum independent set of G in linear time. Therefore, the 1-

fragment LAPCS(crossing, crossing) is solvable in O(n) time.

Since 1-fragment limits the base matches to bases at the same position in the

two sequences, the resulting graph G is simple. c-fragment relaxes this limi-

tation and allows base matches of the form 〈i, j〉, where S1[i] and S2[j] are not

at the same position but in the same fragment. Using the above reduction, the

resulting graph will be much more complicated. However, we will show in the

following that this graph has a bounded degree, such that the fixed-parameter

tractable algorithm in Lemma 3.8 can be used to find out the maximum inde-

pendent set of such a graph.

Lemma 5.1 The c-fragment LAPCS (crossing, crossing) is polynomi-

ally reducible and fixed-parameter reducible to MAXIS-B, in time O(c3n).

Proof.

Reduction: Let (S1, A1) and (S2, A2) be an instance of c-fragment LAPCS

(crossing, crossing), where S1 and S2 are over a fixed alphabet Σ. We

assume that both sequences have the same length as in the algorithm for the

1-fragment variant, n = |S1| = |S2| = p · c, where p ∈ N. We construct a

graph G = (V, E) as follows.

Each base of S1 in the ith fragment (1 ≤ i ≤ p) can only be matched to the

bases in the ith fragment of S2. If there is a such base match, then we create

a vertex in G, i.e., we define

V := {vi,j | S1[i] = S2[j] and ⌈i/c⌉ = ⌈j/c⌉}.

As explained in Definition 3.17, the LAPCS problem asks for a matching, which

is one-to-one, order-preserving and arc-preserving. Since we want to translate

5.1. C-FRAGMENT LAPCS(CROSSING,CROSSING) 35

the LAPCS instance into an instance of the independent set problem on G,

the edges of G will represent all conflicting matches. Therefore, for each two ver-

tices vi1,j1 and vi2,j2 , i.e, for two base matches S1[i1] = S2[j1] and S1[i2] = S2[j2]

(i1 6= i2 or j1 6= j2), such a conflict may arise from three different situations:

1. Both matches are in the same fragment and both matches involve the

same position in S2 or in S1, i.e., (i1 6= i2 ∧ j1 = j2) ∨ (i1 = i2 ∧ j1 6= j2).

2. Both matches are in the same fragment and they cross each other, they

do not preserve the order of the subsequence, i.e., ((i1 < i2) ∧ (j1 >

j2)) ∨ ((i1 > i2) ∧ (j1 < j2)).

3. The two matches represented by vi1,j1 and vi2,j2 are not arc-preserving,

i.e., ((i1, i2) ∈ A1 ∧ (j1, j2) /∈ A2) ∨ ((i1, i2) /∈ A1 ∧ (j1, j2) ∈ A2)

Figure 5.1 illustrates an example of this reduction.

For the running time analysis of this construction, note that there can be up

to c2 vertices in G for each fragment of the sequence. Hence, we have a total

of cn vertices. Each vertex in G can have at most c2 + 2c − 1 adjacent edges,

which come from following three groups:

• If a base match 〈i, j1〉 shares with another base match 〈i, j2〉 the same

base S1[i], then an edge must be imposed between vertices vi,j1 and vi,j2 .

There can be at most c − 1 such base matches, which share S1[i] with

〈i, j〉, and at most c−1 base matches, which share S2[j] with 〈i, j〉. Thus,

vi,j can have at most 2(c − 1) adjacent edges due to the first situation.

• If S1[i] is the first base in one fragment of S1 and S2[j] is the last base in

the same fragment of S2, then the base match 〈i, j〉 can violate the order

of the original sequences with at most (c− 1)2 other base matches. Thus,

at most (c − 1)2 edges will be imposed on vertex vi,j due to the second

situation.

• If S1[i] and S2[j] both are endpoints of arcs (i, i
′

) and (j, j
′

), then all

base matches involving S1[i
′

] or S2[j
′

] (but not both) with base match

36 CHAPTER 5. C-FRAGMENT, C-DIAGONAL LAPCS

(1)
(3)

(2)

(3)

c

2j
S1

S2

c

2i

G

2j

i

v2j,2j−1

v2j−1,2j

a b

2i

ba

a

j

v2i−1,2i−1

v2i−1,2i

2i − 1 2j − 1

2j − 12i − 1

a a b

Figure 5.1: 2-fragment LAPCS

There are four base matches in the two segments shown in this figure. They correspond to the

four vertices in G. The edge (1) in G is imposed due to the first situation in our construction,

the base matches 〈2i − 1, 2i − 1〉 and 〈2i − 1, 2i〉 share the base S1[2i−1]. Since base matches

〈2j − 1, 2j〉 and 〈2j, 2j − 1〉 fit the second situation, their corresponding vertices are joined

by an edge denoted by (2). While an arc joins bases S1[2i − 1] and S1[2j − 1], there is no

arc in S2 between ith and jth fragments. According to the third situation, edges are imposed

between the vertices which correspond the base matches involving the endpoints of the arc

(2i − 1, 2j − 1). These edges are marked with (3).

〈i, j〉 cannot be arc-preserving. Since S1[i
′

] and S2[j
′

] can be in two dif-

ferent fragments and each of them has at most c matched bases, the edges

imposed on vertex vi,j due to the third situation can amount to 2c.

Thus, the resulting graph G has a vertex degree bounded by B = c2 + 2c − 1.

Moreover, since we have cn vertices, G can have at most O(c3n) edges. The

construction of G can be carried out in time O(c3n).

To show that the above construction is a correct reduction from c-fragment

LAPCS(crossing,crossing) to MAXIS-B, we need to verify that there is a

5.1. C-FRAGMENT LAPCS(CROSSING,CROSSING) 37

mapping MS of size l,

MS ⊆ {1, . . . , |S1|} × {1, . . . , |S2|}

i.e., there is an APCS with length l if and only if the graph G has an independent

set of size l.

”=⇒”: Assume that there is an APCS with length l, then there is a mapping

MS of size l for (S1, A1) and (S2, A2),

MS = { (j1, j2) | S1[j1] = S2[j2], ⌈j1/c⌉ = ⌈j2/c⌉ }.

For each element (j1, j2) in MS, there is a vertex vj1,j2 in the graph G. We

claim that these vertices form an independent set. To prove this, we show that

its opposite is not correct. If the set of these vertices is not an independent set,

there are at least two vertices joined by an edge. Assume that there is an edge

between vertices vj1,j2 and vj3,j4 . From the construction above, one of following

cases must hold for the two matches (j1, j2) ∈ MS and (j3, j4) ∈ MS:

• j1 = j3 or j2 = j4 but not both. In this case, these two matches cannot

be both in MS, because they violate the property that the matching is

one-to-one.

• (j1 < j3) ∧ (j2 > j4) or (j1 > j3) ∧ (j2 < j4). Then they violate the order

of the subsequence, and thus, they cannot be both in MS.

• There is an arc between (j1, j3) or between (j2, j4), but not both. If this

holds true, the mapping is not arc-preserving, because there is only one

arc between two base matches.

Consequently, the two vertices cannot be connected by an edge. Hence, the

vertex set {vj1,j2 |(j1, j2) ∈ MS} is an independent set of G and its size is l.

”⇐=”: Assume that there is an independent set V
′

of size l of G, we have a

mapping T of size l, i.e., T = { (j1, j2) | vj1,j2 ∈ V
′

}. Because a vertex of G is

created only if the two bases of the positions match, we have S1[j1] = S2[j2],

and both bases are in the same fragment, so each element (j1, j2) ∈ T represents

38 CHAPTER 5. C-FRAGMENT, C-DIAGONAL LAPCS

a base match of S1 and S2. Then, T induces a common subsequence.

Since a pair of vertices vj1,j2 and vj3,j4 in V
′

is not linked by an edge, the matches

(j1, j2) ∈ T and (j3, j4) ∈ T cannot fit one of the three situations. This means

that j1 6= j3 and j2 6= j4 and T is an one-to-one matching. Furthermore, they

preserve the order of subsequence, i.e., j1 < j3 ⇐⇒ j2 < j4. They preserve the

arcs too, i.e., there can be arcs between both (j1, j2) and (j3, j4) or there is no

arc between both. Thus, the sequence induced by T is an APCS of (S1, A1)

and (S2, A2) and its length is l. 2

Theorem 5.2 The c-fragment LAPCS(crossing, crossing) problem, pa-

rameterized by the length l of the desired subsequence, is fixed-parameter tractable

and can be solved in time O((B + 1)lB2 + c3n), where B = c2 + 2c − 1.

Proof. The problem MAXIS-B has a straight bounded search tree FPT-algorithm

(see Lemma 3.8) and c-fragment LAPCS(crossing, crossing), parameter-

ized by the length l of the desired subsequence, is fixed-parameter reducible to

MAXIS-B in time O(c3n). The resulting graph has cn vertices and a bounded

degree B = c2 + 2c − 1. Thus, c-fragment LAPCS(crossing, crossing) is

also fixed-parameter tractable and solvable in time O((B + 1)lB2 + c3n). 2

5.2 c-diagonal LAPCS(crossing, crossing)

The reduction in the last section can be easily extended to a reduction from

c-diagonal LAPCS(crossing, crossing) to MAXIS-B.

For given arc-annotated sequences (S1, A1), (S2, A2), the set of vertices now

becomes

V := {vi,j | S1[i] = S2[j] and j ∈ [i − c, i + c]},

since each position i in sequence S1 can only be matched to positions j ∈

[i − c, i + c] of S2. The definition of the edge set E can be adapted from the case

for c-fragment. We put an edge {vi1,j2 , vi2,j2} iff the corresponding matches

〈i1, j1〉 and 〈i2, j2〉 (1) share a common base, (2) are not order-preserving, or

(3) are not arc-preserving. Figure 5.2 illustrates an example of the extended

reduction.

5.2. C-DIAGONAL LAPCS(CROSSING, CROSSING) 39

1
2

3
4

j
S2

S1

X Y

BA

c c

c c

i

3 2

14

G
vi,j

Figure 5.2: c-diagonal LAPCS

The vertex vi,j is created for the base match 〈i, j〉. The dashed lines 1, 2, 3 and 4 represent

other four base matches, each of them corresponds a vertex in G. Since the base match 1

shares with the base S1[i] with 〈i, j〉, an edge is imposed between vertex vi,j and vertex 1.

The base matches 2 and 〈i, j〉 cross each other. Hence, an edge is also imposed between their

corresponding vertices. It is clear that neither the pair of base matches 3 and 〈i, j〉 nor 4 and

〈i, j〉 can preserve the arc of the sequences. Two edges are added to the graph G. Note that

A, B, X and Y are all substrings of length c.

Obviously, |V | ≤ (2c + 1) · n. In the following, we argue that the degree of

G = (V, E) is upper-bounded by B = 2c2 + 7c + 2:

• Because a base can be matched to at most 2c+1 bases in another sequence,

a base match can have common bases with up to 2c + 2c = 4c other base

matches. In Figure 5.2, base match 〈i, j〉 share with base matches, which

are between S1[i] and bases in substrings X and Y or between S2[j] and

bases in substrings A and B. Since all these substrings have the length

c, there can be at most 4c such bases matches. One example is the base

match denoted by 1.

• We can observe in Figure 5.2 that a vertex in G has a maximum number

of edges imposed due to the second situation, if the distance between the

bases involved in its corresponding base match is equal to c. Consider,

e.g., the base match 〈i, j〉 in Figure 5.2. There, a base matches crossing

〈i, j〉 must be from one of the following sets: M1 = { 〈i1, j1〉 | S1[i1] is

in substring B, S2[j1] is in substring X }, M2 = { 〈i2, j2〉 | S1[i2] is in

substring B, S2[j2] is in substring Y , and j2−i2 ≤ c } and M3 = { 〈i3, j3〉 |

40 CHAPTER 5. C-FRAGMENT, C-DIAGONAL LAPCS

S1[i3] is in substring A, S2[j3] is in substring X, and j3− i3 ≤ c }. The set

M1 can have at most c2 elements. The elements of the other two sets can

amount to c2 − c. Therefore, each vertex in V can have at most 2c2 − c

edges which are imposed to guarantee the order-preserving property.

• If the two bases, which form a base match, both are endpoints of two

arcs, like the base match 〈i, j〉 in Figure 5.2, then this base match cannot

be in an arc-preserving match with base matches, which involve only one

of the other endpoints of the arcs. Two such base matches are marked in

Figure 5.2 with 3 and 4. Those base matches can amount to 4c + 2.

Consequently, the graph G has degree bounded by B = 2c2 + 7c + 2. With

(2c + 1)n vertices, G has at most O(c3n) edges. The construction of G can be

done in time O(c3n).

Proof of correctness of the reduction works analogously to the one shown in

Section 3.1.

Theorem 5.3 The c-diagonal LAPCS(crossing, crossing) problem, pa-

rameterized by the length l of the desired subsequence, is fixed-parameter tractable

and can be solved in time O((B + 1)lB2 + c3n), where B = 2c2 + 7c + 2.

Proof. Analogous to the proof of Theorem 5.1. 2

5.3 c-fragment(c-diagonal)

LAPCS(unlimited, unlimited)

Note that the fact that the graph G = (V, E) constructed in the previous

sections has bounded degree heavily depends on the fact that the two under-

lying sequences have crossing arc structure. Hence, the same method does

not directly apply for c-fragmented(c-diagonal) LAPCS(unlimited, un-

limited). However, if we use the so-called “degree of a sequence” as an

additional parameter, we can upper-bound the degree of G. The degree of

5.3. LAPCS(UNLIMITED, UNLIMITED) 41

an arc-annotated sequence (S, A) with unlimited arc-structure is the maxi-

mum number of arcs from A that start or end in a base in S. Clearly, the

cutwidth (see Definition 4.4) of an arc-annotated sequence is an upper bound

on the degree. The amount of vertices in the resulting graph G is not changed,

but the bounded degree is changed. In the construction for the arc struc-

ture (crossing, crossing), we have added three groups of edges to G. Since

the first two groups have nothing to do with arcs, these edges remain in the

graph for unlimited arc structure. Due to the third situation, 2c edges for

c-fragment and 4c + 2 edges for c-diagonal are added for a base match

〈i, j〉 with two arc endpoints, (i, i1) ∈ A1 and (j, j1) ∈ A2. These edges are

between vertex vi,j and the vertices, which correspond to the base matches

involving one of S1[i1] and S2[j1]. In unlimited arc structure with bounded

degree b, a base S1[i] can be endpoint of at most b arcs, we denote them by

(i, i1), (i, i2), . . . , (i, ib). The third group of edges must be extended to include

the edges between vi,j and all vertices, which correspond to base matches in-

volving one of S1[2], . . . , S1[b], S2[2], . . . , S2[b]. The amount of edges in this

set can increase to b(2c) for c-fragment and to b(4c + 2) for c-diagonal

LAPCS(unlimited, unlimited). The degree of the resulting graph for c-

fragment is then bounded by B = c2 + 2bc − 1, and the one for c-diagonal

by B = 2c2 + (4b + 3)c + 2b. The construction can be carried out in time

O((c3+bc2)n). Thus, c-fragment and c-diagonal LAPCS(unlimited, un-

limited) is also fixed-parameter tractable, when the parameters are the length l

of the desired subsequence and the maximum degree b of the two sequences; they

can be solved in time O((B + 1)lB2 + (c3 + 2bc2)n), where B = c2 + 2bc − 1,

and in time O((B′ + 1)lB′2 + (c3 + 2bc2)n), where B′ = 2c2 + (4b + 3)c + 2b,

respectively.

42 CHAPTER 5. C-FRAGMENT, C-DIAGONAL LAPCS

Chapter 6

An Algorithm for

LAPCS(nested, nested)

In this chapter, we describe and analyze Algorithm LAPCS which solves the

LAPCS(nested, nested) problem in time O(3.31k1+k2 · n), where n is the

maximum length of the input sequences. It is a search tree algorithm and, for

sake of clarity, we choose the presentation in a recursive style: Based on the

current instance, we make a case distinction, branch into one or more subcases

of somehow simplified instances and invoke the algorithm recursively on each

of these subcases. Note, however, that we require to traverse the resulting

search tree in breadth-first manner, which will be important in the running time

analysis. Before presenting the algorithm, we define the employed notation.

Recall that the considered sequences are seen as arc-annotated sequences; a

comparison S1 = S2 includes the comparison of arc structures. Additionally,

we use a modified comparison S1 ≈i,j S2 that is satisfied when S1 = S2 after

deleting at most i bases in S1 and at most j bases in S2. Note that we can

check whether S1 ≈1,0 S2 or whether S1 ≈0,1 S2 in linear time. The subsequence

obtained from an arc-annotated sequence S by deleting S[i] is denoted by S −

S[i]. For handling branches in which no solution is found, we use a modified

addition operator “+̇” defined as follows: a+̇b := a + b if a ≥ 0 and b ≥ 0, and

a+̇b := −1 otherwise. We abbreviate n1 := |S1| and n2 := |S2|.

The most involved case in the algorithm is Case (2.5), which will also deter-

43

44 CHAPTER 6. AN ALGORITHM FOR LAPCS(NESTED, NESTED)

mine our upper bound on the search tree size. The focus of our analysis will,

in particular, be on Subcase (2.5.3). For sake of clarity, we, firstly, give an

overview of the algorithm which omits the details of Case (2.5), and, then,

present Case (2.5) in detail separately. Although the algorithm as given re-

ports only the length of a longest arc-preserving common subsequence (lapcs),

it can easily be extended to compute the lapcs itself within the same running

time.

Algorithm LAPCS(S1, S2, k1, k2)

Input: Arc-annotated sequences S1 and S2, positive integers k1 and k2.

Return value: Integer denoting the length of an lapcs of S1 and S2 which can

be obtained by deleting at most k1 symbols in S1 and at most k2 symbols in S2.

Return value −1 if no such subsequence exists.

(Case 0) /* Recursion ends. */

If k1 < 0 or k2 < 0 then return −1. /* No solution found. */

If |S1| = 0 and |S2| = 0, then return 0. /* Success! Solution found.*/

If |S1| = 0 and |S2| > 0, then /* One sequence done... */

if k2 ≥ |S2|, then return 0, else return −1.

If |S1| > 0 and |S2| = 0, then /* ...but not the other. */

if k1 ≥ |S1|, then return 0, else return −1.

(Case 1) /* Non-matching bases. */

If S1[1] 6= S2[1], then return the maximum of the following values:

• LAPCS(S1[2, n1], S2, k1 − 1, k2) /* delete S1[1] */

• LAPCS(S1, S2[2, n2], k1, k2 − 1) /* delete S2[1] */.

(Case 2) /* Matching bases */

If S1[1] = S2[1], then

(2.1) /* No arcs involved. */

If both S1[1] and S2[1] are not endpoints of arcs, then return

1+̇LAPCS(S1[2, n1], S2[2, n2], k1, k2).

/* Since no arcs are involved, it is safe to match the bases. */

45

(2.2) /* Only one arc. */

If S1[1] is left endpoint of an arc (1, i) but S2[1] is not endpoint of an arc,

then return the maximum of the following values:

• LAPCS(S1[2, n1], S2, k1 − 1, k2) /* delete S1[1] */,

• LAPCS(S1, S2[2, n2], k1, k2 − 1) /* delete S2[1] */, and

• 1+̇LAPCS(S1[2, n1] − S1[i], S2[2, n2], k1 − 1, k2) /* match */.

/* Since there is an arc in one sequence only, S1[1] and S2[1] can be

matched only if S1[i] and arc (1, i) is deleted. */

(2.3) /* Only one arc. */

If S2[1] is left endpoint of an arc (1, j) but S1[1] is not endpoint of an arc,

then proceed analogously as in (2.2).

(2.4) /* Non-matching arcs. */

If S1[1] is left endpoint of an arc (1, i), S2[1] is left endpoint of an arc (1, j)

and S1[i] 6= S2[j], then return the maximum of the following values:

• LAPCS(S1[2, n1], S2, k1 − 1, k2) /* delete S1[1] */,

• LAPCS(S1, S2[2, n2], k1, k2 − 1) /* delete S2[1] */, and

• 1+̇LAPCS(S1[2, n1]−S1[i], S2[2, n2]−S2[j], k1−1, k2−1) /*match */.

/* Since the arcs cannot be matched, S1[1] and S2[1] can be matched only

if S1[i], S2[j], and the arcs are deleted. */

(2.5) /* An arc match is possible. */

If S1[1] is left endpoint of an arc (1, i), S2[1] is left endpoint of an arc (1, j),

and S1[i] = S2[j], then go through Cases (2.5.1), (2.5.2), and (2.5.3) which

are presented below (one of them will apply and will return the length of

the lapcs of S1 and S2, if such an lapcs can be obtained with k1 deletions

in S1 and k2 deletions in S2, or will return −1 otherwise).

In Case (2.5), it is possible to match arcs (1, i) in S1 and (1, j) in S2 since S1[1] =

S2[1] and S1[i] = S2[j]. Our first observation is that, if S1[2, i−1] = S2[2, j−1]

(which will be handled in Case (2.5.1)) or if S1[i + 1, n1] = S2[j + 1, n2] (which

will be handled in Case (2.5.2)), it is safe to match arc (1, i) with arc (1, j): no

46 CHAPTER 6. AN ALGORITHM FOR LAPCS(NESTED, NESTED)

longer apcs would be possible when not matching them. We match the equal

parts of the sequences (either those inside arcs or those following the arcs)

and call Algorithm LAPCS recursively only on the remaining subsequences.

These cases only simplify the instance and do not require to branch into several

subcases:

(2.5.1) /* Sequences inside the arcs match. */

If S1[2, i − 1] = S2[2, j − 1], then return

i+̇LAPCS(S1[i + 1, n1], S2[j + 1, n2], k1, k2).

(2.5.2) /* Sequences following the arcs match. */

If S1[i + 1, n1] = S2[j + 1, n2], then return

2+̇(n1 − i)+̇LAPCS(S1[2, i − 1], S2[2, j − 1], k1, k2).

If neither Case (2.5.1) nor Case (2.5.2) applies, this is handled by Case (2.5.3),

which branches into four recursive calls: we have to consider breaking at least

one of the arcs (handled by the first three recursive calls in (2.5.3)) or to match

the arcs (handled by the fourth recursive call in (2.5.3)):

(2.5.3) Return the maximum of the following four values:

• LAPCS(S1[2, n1], S2, k1 − 1, k2) /* delete S1[1]. */,

• LAPCS(S1, S2[2, n2], k1, k2 − 1) /* delete S2[1]. */,

• 1+̇LAPCS(S1 − S1[i], S2 − S2[j], k1 − 1, k2 − 1)

/* match S1[1] and S2[1], but do not match arcs (1, i) and (1, j); this implies

the deletion of S1[i], S2[j], and the incident arcs. */,

• l (computed as given below) /* match the arcs. */

Value l denotes the length of the lapcs of S1 and S2 in case of matching arc (1, i)

with arc (1, j). It can be computed as the sum of the lengths l′, denoting the

length of an lapcs of S1[2, i−1] and S2[2, j−1], and l′′, denoting the length of an

lapcs of S1[i+1, n1] and S2[j +1, n2]; each of l′ and l′′ can be computed by one

recursive call. Remember that we already excluded S1[2, i−1] = S2[2, j−1] (by

Case (2.5.1)) and S1[i+1, n1] = S2[j +1, n2] (by Case (2.5.2)). For the analysis

47

of running time, however, we will require that the deletion parameters k1 and k2

will be decreased by two in both recursive calls computing l′ and l′′. Therefore,

we will further exclude those special cases in which l′ or l′′ can be found by

exactly one deletion, either in S1 or in S2 (this can be checked in linear time);

then, we need only one recursive call to compute l. Only if this is not possi-

ble, we will invoke the two calls for l′ and l′′. Therefore, l is computed as follows:

l :=







j+̇LAPCS(S1[i + 1, n1], S2[j + 1, n2], k1 − 1, k2) if S1[1, i] ≈1,0 S2[1, j],

i+̇LAPCS(S1[i + 1, n1], S2[j + 1, n2], k1, k2 − 1) if S1[1, i] ≈0,1 S2[1, j],

2+̇(n2 − j)+̇LAPCS(S1[2, i − 1], S2[2, j − 1], k1 − 1, k2)

if S1[i + 1, n1] ≈1,0 S2[j + 1, n2],

2+̇(n1 − i)+̇LAPCS(S1[2, i − 1], S2[2, j − 1], k1, k2 − 1)

if S1[i + 1, n1] ≈0,1 S2[j + 1, n2],

2+̇l′+̇l′′ (defined below) otherwise.

Computing l′, we credit the two deletions that will certainly be needed when

computing l′′. Depending on the length of S1[i+1, n1] and S2[j+1, n2], we have

to decide which parameter to decrease: If |S1[i+1, n1]| > |S2[j +1, n2]|, we will

certainly need at least two deletions in S1[i+1, n1], and can start the recursive

call with parameter k1 − 2 (and, analogously, with k2 − 2 if |S1[i + 1, n1]| <

|S2[j + 1, n2]| and both k1 − 1 and k2 − 1 if S1[i + 1, n1] and S2[j + 1, n2] are of

same length):

l′ :=







LAPCS(S1[2, i − 1], S2[2, j − 1], k1 − 2, k2) if n1 − i > n2 − j,

LAPCS(S1[2, i − 1], S2[2, j − 1], k1, k2 − 2) if n1 − i < n2 − j,

LAPCS(S1[2, i − 1], S2[2, j − 1], k1 − 1, k2 − 1) if n1 − i = n2 − j.

Computing l′′, we decrease k1 and k2 by the deletions already spent when

computing l′, k′

1,1 := i − 2 − l′ denoting the deletions spent in S1[1, i] and

k′

2,1 := j − 2 − l′ denoting the deletions spent in S2[1, j]:

l′′ := LAPCS(S1[i + 1, n1], S2[j + 1, n2], k1 − k′

1,1, k2 − k′

2,1).

Correctness of Algorithm LAPCS. To show the correctness, we have to

make sure that, if an lapcs with the specified properties exists, then the al-

gorithm finds one; the reverse can be seen by checking, for every case of the

48 CHAPTER 6. AN ALGORITHM FOR LAPCS(NESTED, NESTED)

above algorithm, that we only make matches when they extend the lapcs and

that the bookkeeping of the “mismatch counters” k1 and k2 is correct. In the

following, we omit the details for the easier cases of our search tree algorithm

and, instead, focus on the most involved situation, Case (2.5).

In Case (2.5), S1[1] = S2[1], there is an arc (1, i) in S1 and an arc (1, j) in

S2, and S1[i] = S2[j]. In Cases (2.5.1) and (2.5.2), we handled the special

situation that S1[1, i] = S2[1, j] or that S1[i + 1, n1] = S2[j + 1, n2]. Observe

that, if we decide to match the arcs (Case (2.5.3)), we can divide the current

instance into two subinstances: bases from S1[2, i − 1] can only be matched

to bases from S2[2, j − 1] and bases from S1[i + 1, n1] can only be matched

to bases from S2[j + 1, n2]. We will, in the following, denote the subinstance

given by S1[2, i− 1] and S2[2, j − 1] as part 1 of the instance and the one given

by S1[i + 1, n1] and S2[j + 1, n2] as part 2 of the instance. We have the choice

of breaking at least one of the arcs (1, i) and (1, j) or to match them.

We distinguish two cases. Firstly, suppose we want to break at least one arc.

This can be achieved by either deleting S1[1] or S2[1]. If we do not delete

either of these bases, we obtain a base match. But, in addition, we must delete

both S1[i] and S2[j], since otherwise we cannot maintain the arc-preserving

property.

Secondly, we can match the arcs (1, i) and (1, j). Then, we know, since neither

Case (2.5.1) nor (2.5.2) applies, that an optimal solution will require at least

one deletion in part 1 and will also require at least one deletion in part 2. We

can further compute, in linear time, whether part 1 (or part 2, resp.) can be

handled by exactly one deletion and start the algorithm recursively only on

part 2 (part 1, resp.), decreasing one of k1 or k2 by the deletion already spent.

In the remaining case, we start the algorithm recursively first on part 1 (to com-

pute l′) and, then, on part 2 (to compute l′′). At this point we know, however,

that an optimal solution will require at least two deletions in part 1 and will

also require at least two deletions in part 2. Thus, when starting the algorithm

on part 1, we can “spare” two of the k1 + k2 deletions for part 2; depending on

part 2 (as outlined above). Having, thus, found an optimal solution for part 1

49

of length l′, the number of allowed deletions remaining for part 2 is determined:

we have, in part 1, already spent k′

1,1 := i − 2 − l′ deletions in S1[2, i − 1] and

k′

2,1 := j−2− l′ deletions in S2[2, j−1]. Thus, there remain, for part 2, k1−k′

1,1

deletions for S1[i + 1, n1] and k2 − k′

2,1 deletions for S2[j + 1, n2].

This discussion showed that, in Case (2.5.3), our case distinction covers all

subcases in which we can find an optimal solution and, hence, Case (2.5.3) is

correct.

Running time of Algorithm LAPCS.

Lemma 6.1 Given two arc-annotated sequences S1 and S2, suppose that we

have to delete k′

1 symbols in S1 and k′

2 symbols in S2 in order to obtain an

lapcs.1 Then, the search tree size (i.e., the number of the nodes in the search

tree) for a call LAPCS(S1, S2, k
′

1, k
′

2) is upperbounded by 3.31k′

1
+k′

2 .

Proof. Algorithm LAPCS constructs a search tree. In each of the given cases,

we do a branching and we perform a recursive call of LAPCS with a smaller

value of the sum of the parameters in each of the branches. We now discuss

some cases which, in some sense, have a special branching structure. Firstly,

Cases (2.1), (2.5.1), and (2.5.2) do not cause any branching of the recursion.

Secondly, for Case (2.5.3), in total, we perform five recursive calls. For the

following running time analysis, the last two recursive calls of this case (i.e.,

the ones needed to evaluate l′ and l′′) will be treated together. More precisely,

we treat Case (2.5.3) as if it were a branching into four subcases, where, in each

of the first three branches we have one recursive call and in the fourth branch

we have two recursive calls.

In a search tree produced by Algorithm LAPCS, every search tree node corre-

sponds to one of the cases mentioned in the algorithm. Let m be the number

of nodes corresponding to Case (2.5.3) that appear in such a search tree. We

prove the claim on the search tree size by induction on the number m.

1Note that there might be several lapcs for two given sequences S1 and S2. The length ℓ

of such an lapcs, however, is uniquely defined. Since, clearly, k′

1 = |S1| − ℓ and k′

2 = |S2| − ℓ,

the values k′

1 and k′

2 also are uniquely defined for given S1 and S2.

50 CHAPTER 6. AN ALGORITHM FOR LAPCS(NESTED, NESTED)

For m = 0, we do not have to deal with Case (2.5.3). Hence, we can determine

the search tree size by the corresponding branching vectors: Suppose that in

one search tree node with current sequences S1, S2 and parameters k′

1, k′

2, we

have q branches. Moreover, suppose that in branch t, 1 ≤ t ≤ q, we call LAPCS

with new parameter values k′

1,t and k′

2,t. Then, the branching vector for this

branch is given by p = (p1, . . . , pq), where pt := (k′

1+k′

2)−(k′

1,t+k′

2,t). Assuming

that all branchings in the search tree had branching vector p, we can compute a

basis cp which yields an upper bound on the search tree size of the form c
k′

1
+k′

2
p .

The branching vectors which appear in our search tree are (1, 1) (Case 1),

(1, 1, 1) (Cases 2.2, 2.3), (1, 1, 2) (Case 2.4), (1, 1, 2) (Case 2.5.3 with m = 0).

The worst case basis for these branching vectors is given for p = (1, 1, 1) with

cp = 3 ≤ 3.31.

Now suppose that the claim is true for all values m′ ≤ m − 1. In order to

prove the claim for m we have to, for a given search tree, analyze a search tree

node corresponding to Case (2.5). Suppose that the current sequences in this

node are S1 and S2 with lengths n1 and n2 and that the optimal parameter

values are k′

1 and k′

2. Our goal is to show that the branching of the recursion

for Case (2.5.3) has branching vector p = (1, 1, 2, 1) which corresponds to a

basis cp = 3.31. As discussed above, for the first three branches of Case (2.5.3),

we only need one recursive call of the algorithm. The fourth branch is more

involved. We will have a closer look at this fourth subcase of (2.5.3) in the

following. Let us evaluate the search tree size for a call of this fourth subcase.

It is clear that the optimal parameter values for the subsequences S1[2, i − 1]

and S2[2, j − 1] are k′

1,1 = (i − 2) − l′ and k′

2,1 = (j − 2) − l′. Moreover, the

optimal parameter values for the subsequences S1[i+1, n1] and S2[j +1, n2] are

k′

1,2 = (n1 − i) − l′′ and k′

2,2 = (n2 − j) − l′′. Since by Cases (2.5.1) and (2.5.2)

and by the first four cases in the fourth branch of Case (2.5.3) the cases where

k′

1,1 + k′

2,1 ≤ 1 or k′

1,2 + k′

2,2 ≤ 1 are already considered, we may assume that

we have k′

1,1 + k′

2,1, k
′

1,2 + k′

2,2 ≥ 2.

Hence, by induction hypothesis, the search tree size for the computation of l′ is

3.31k′

1,1+k′

2,1 , and the computation of l′′ needs a search tree of size 3.31k′

1,2+k′

2,2 .

51

This means that the total search tree size for this fourth subcase is upper-

bounded by

3.31k′

1,1+k′

2,1 + 3.31k′

1,2+k′

2,2 . (6.1)

Note that, since k′

t is assumed to be the optimal value, we have

k′

t = nt − l′ − l′′ − 2 for t = 1, 2,

and, hence, an easy computation shows that

k′

t,1 + k′

t,2 = k′

t for t = 1, 2.

From this we conclude that,

3.31k′

1,1+k′

2,1 + 3.31k′

1,2+k′

2,2 ≤ 3.31k′

1
+k′

2
−1. (6.2)

Inequality (6.2) holds true since, by assumption, k′

1,1 + k′

2,1, k
′

1,2 + k′

2,2 ≥ 2.

Plugging Inequality (6.2) in Expression (6.1) we see that the search tree size

for this fourth case of (2.5.3) is upperbounded by 3.31k′

1
+k′

2
−1. Besides, by

induction hypothesis the search trees for the first and the second branch of

Case (2.5.3) also have size upperbounded by 3.31k′

1
+k′

2
−1 and the search tree

for the third branch of Case (2.5.3) has size upperbounded by 3.31k′

1
+k′

2
−2

Hence, the overall computations for Case (2.5.3) can be treated as branching

vector p = (1, 1, 2, 1). The corresponding basis cp of this branching vector

is 3.31, which again is the worst case basis among all branchings. Hence, the

full search tree has size 3.31k′

1
+k′

2 . 2

Now, suppose that we run algorithm LAPCS with sequences S1, S2 and param-

eters k1, k2. As before let k′

1 and k′

2 be the number of deletions in S1 and S2

needed to find an lapcs. As pointed out at the beginning of this section, the

search tree will be traversed in breadth-first manner. Hence, on the one hand,

we may stop the computation if at some search tree node an lapcs is found (even

though the current parameters at this node may be non-zero). On the other

hand, if it is not possible to find an lapcs with k1 and k2 deletions, then the

algorithm terminates automatically by Case (0). Observe that the time needed

in each search tree node is upperbounded by O(n) if both sequences S1 and S2

52 CHAPTER 6. AN ALGORITHM FOR LAPCS(NESTED, NESTED)

have length at most n. This gives a total running time of O(3.31k1+k2 · n) for

the algorithm. The following theorem summarizes the results of this section.

Theorem 6.2 The problem LAPCS(nested, nested) for two sequences S1

and S2 with |S1|, |S2| ≤ n can be solved in time O(3.31k1+k2 · n) where k1 and

k2 are the number of deletions needed in S1 and S2.

Chapter 7

Arc-Preserving Subsequence

Problems

In this chapter, we deal with the Arc-Preserving Subsequence problem

(APS). Such a problem can be encountered when we search a certain RNA

pattern in an RNA database, or when one of the two parameters of the algo-

rithm in the previous chapter is equal to zero. This problem is NP-complete,

whenever one of the input sequences has an unlimited arc structure or the

arc structures of both sequences are crossing [11].Up to our knowledge, the

complexity of this problem for arc structures (crossing, nested), (crossing,

chain), (crossing, plain) and (nested, nested) seemly has not been in-

vestigated prior to this work. In Section 7.1, we show that APS(crossing,

chain) is NP-hard. This implies that APS(crossing, nested) is NP-hard,

too. Section 7.2 is concerned with an algorithm which can solve APS(nested,

nested) in polynomial time.

7.1 NP-Hardness of APS(crossing, chain)

The NP-hardness of LAPCS(crossing, crossing) can be shown by a reduc-

tion form clique [11]. We use a similar construction to find a reduction from

independent set to APS(crossing, chain). From a given independent

set instance, we construct an instance for the APS(crossing, chain) prob-

53

54 CHAPTER 7. ARC-PRESERVING SUBSEQUENCE PROBLEMS

lem consisting of two arc-annotated sequences, S1 and S2, where S2 represents

the graph and S1 represents an independent set of size k. Since the informa-

tion about the edges in the graph must also be incorporated in S2, we use a

fragment of S2
1 with length equal to the number of the vertices of the graph

in order to encode a vertex and use arcs between fragments in order to encode

the edges. A similar concept can be used to build S1, but in S1, there is no arc

between fragments, because it represents an independent set. Then, the ques-

tion, whether the graph has an independent set of size k, can be transformed

to the question, whether S1 is an arc-preserving subsequence of S2.

2

4 5 3

1

baaaaabbaaaaabbaaaaab

baaaaabAlignment:
of

baaaaab

baaaaabbaaaaabbaaaaabbaaaaabbaaaaab

baaaaab
in

S1

S2

G

S1 S2

Figure 7.1: APS(crossing,chain)

A small example of this construction is illustrated in Figure 7.1. The graph G

in Figure 7.1 has 5 vertices and we want to know if G has an independent set of

size 3, i.e., n = 5 and k = 3. We construct the sequence S2 with five fragments,

each fragment has five a symbols and two b symbols. Two b symbols of the same

fragment are joined by an arc. They are used to separate fragments from each

other. Each edge in G is represented by an arc between two a symbols from

1Note that we use fragment of S2 here to denote a substring of S2 with the arcs of S2

between two bases in this substring.

7.1. NP-HARDNESS OF APS(CROSSING, CHAIN) 55

two different fragments in S2. For example, edge {1, 2} has a corresponding

arc between the second a in the first fragment and the first a in the second

fragment. Sequence S1, which should represent a graph with k vertices and

no edge, has only three such fragments and none of the symbols a in S1 is

an endpoint of an arc. The alignment of S1 in S2 indicates that the three

fragments of S1 can be matched to the first, the third and the fifth fragment

of S2. Therefore, the graph G has an independent set of size three, namely

{1, 3, 5}. Note that S1 has a chain arc structure and S2 has a crossing arc

structure.

In the following, we give a more detailed description of the construction. Given

a graph G = (V, E), where V = {v1, v2, . . . , vn}, we first construct the shorter

sequence S1 with chain arc structure representing an independent set of size k

in the same way as illustrated in Figure 7.1. For each vertex in the independent

set, we create a fragment in S1, which consists of n symbols a and two symbols b.

S1 has length k(n + 2). The two b symbols build the beginning and the end of

the fragment. We join the pair of b’s with an arc. Because we want to encode

an independent set by S1 and no two vertices in an independent set are joined

by an edge, there is no arc between the a’s in S1. Therefore, S1 has a chain

arc structure. Next, we construct the second sequence S2 to denote G in the

similar way. For each vertex in V , we create again a fragment of n symbols a

and two symbols b. The length of S2 is n(n + 2). The two b’s are again joined

by an arc. If there is an edge between two vertices vi and vj in G, we impose

an arc between the ith and the jth fragment in S2. This arc, which represents

the edge between vi and vj , starts at the jth a in the ith fragment and ends

at the ith a in the jth fragment. Since the arcs between two a’s are between

two different fragments, they definitively cross the arcs between b’s of these

fragments. Thus, the arc structure of S2 is crossing.

The construction above can be formally described by:

S2 = (banb)n,

A2 =
{
((i − 1)(n + 2) + 1, i(n + 2)) | vi ∈ V

}

∪
{
((i − 1)(n + 2) + j + 1, (j − 1)(n + 2) + i + 1) | {vi, vj} ∈ E

}
;

56 CHAPTER 7. ARC-PRESERVING SUBSEQUENCE PROBLEMS

S1 = (banb)k,

A1 =
{
((i − 1)(n + 2) + 1, i(n + 2)) | vi ∈ V

}
.

Based on the construction, there are only two types of base matches, one is the

matching between symbols a, the other one is the matching between symbols b.

In order to verify if S1 is an arc-preserving subsequence of S2, we observe that a

fragment in S1 can only be matched to an entire fragment in S2 because of the

arc between the two b symbols, which indicates the beginning and the end of the

fragment. If there are no edges between vertices in G, which induces that S2 has

no arc between symbols a, then S1 definitively is an arc-preserving subsequence

of S2. If G has some edges and an independent set I of size k, where k < n,

S1 has length k(n + 2). According to the construction above, S2 has then arcs

between two symbols a, one of which is in the fragments, which represent the

vertices in I, and the other of which is in the fragments, which represent the

vertices in V \ I. Nevertheless, no arcs in S2 are imposed between two a’s in

the same fragment or in two different fragments, which correspond two vertices

in I. Thus, by deleting the fragments, which correspond to vertices in V \ I, S2

also has no arcs between two symbols a. Now, we have two identical sequences

and can affirm that S1 is an arc-preserving subsequence of S2. Thus, this

construction can reduce independent set to APS(crossing, chain). Since

the length of the sequence is bounded by a polynomial in n, this construction

can be done in polynomial time.

Lemma 7.1 independent set is polynomially reducible to APS(crossing,

chain).

Proof. We have shown above that independent set can be transformed to

APS (crossing, chain) and the construction works in polynomial time. The

only thing that we must prove is that the graph G = (V, E) has an independent

set of size k if and only if S1 is an arc-preserving subsequence of S2.

=⇒: Let V
′

⊆ V be an independent set in G of size k. Each vertex u ∈ V
′

corresponds to a fragment of S2. We match each of the fragments, which corre-

spond to the vertices in V
′

, to an entire fragment of S1 and denote this matching

7.2. APS(NESTED, NESTED) 57

as MS. Because there is no arc between two symbols a in two such fragments

of S2, we only have arcs between two symbols b from the same fragment and

no arcs between symbols a in MS. Thus, MS is an arc-preserving matching.

And there are exactly k such fragments in S2. Hence, S1 is an arc-preserving

subsequence of S2.

⇐=: Assume S1 an arc-preserving subsequence of S2. The linked pairs of sym-

bols b in both sequences enforce the matching of symbols which come from

only k fragments of S2. Since all fragments in S1 are not linked with each other

and S1 is an arc-preserving subsequence of S2, there is also no arc between the k

selected fragments of S2. Since, according to the construction, every edge in G

results in an arc linking two corresponding fragments in S2, the vertices in G

which correspond to these k selected segments in S2 cannot be joined by edges.

Hence, these k vertices form an independent set of G. 2

Theorem 7.2 APS(crossing, chain) is NP-complete.

Proof. NP-completeness of APS(crossing, chain) can be directly followed

from Lemma 7.1 and the fact that independent set is NP-complete. 2

The NP-completeness result for APS(crossing, chain) implies that the APS

problem for arc structure (crossing, nested) is also NP-complete, which an-

swers two open questions in Table 4.6.

7.2 APS(nested, nested)

In this section, we investigate the APS problem for the arc structure (nested,

nested) and describe an algorithm which solves this problem in time O(n4m),

where n is the length of the shorter sequence and m is the length of the longer

sequence. Note that, in the fixed-parameter algorithm for the NP-complete

LAPCS(nested, nested) in Chapter 6, we have an APS(nested, nested)

problem, if one of the parameters becomes 0. Using this polynomial time al-

gorithm, the size of the search tree can be significantly reduced, because there

is no need to make a branching at search tree nodes with one parameter equal

to 0.

58 CHAPTER 7. ARC-PRESERVING SUBSEQUENCE PROBLEMS

Assume that we have an instance of APS(nested, nested), (S1, A1) and

(S2, A2). The sequences are over some alphabet Σ. We denote the length of S1

and S2 by n and m, respectively, and we assume that S1 is the shorter sequence,

i.e., n ≤ m. As shown in [17], the problems LAPCS(nested, chain) and

LAPCS(nested, plain) can be solved by a dynamic programming algorithm

in time O(n3m). Since the APS problem is easier than the LAPCS problem,

we can also use this algorithm to solve the problems APS(nested, chain)

and APS(nested, plain) in polynomial time. With nested arc structure of

both sequences, we use the algorithm from [17] recursively from the inner arcs

to the outer arcs in S1. We want to find, for all arcs in S1, all possible matching

arcs in S2 and mark these possible candidates for the arcs in S1 with some new

letters, which are not in Σ. These markings enable us to treat the arcs in S1

and the substrings inside these arcs as black boxes, thereby the nested arc

structure of S1 can be resolved into a chain structure. At the end, we have an

instance of APS(nested, chain), which the dynamic programming algorithm

from [17] for LAPCS(nested, chain) can solve in polynomial time.

Before giving a formal description of the algorithm in detail, we define some

notation employed. As mentioned above, we will use the dynamic programming

algorithm from [17] to determine whether the sequence inside an arc of S1 is

an arc-preserving subsequence of the sequence inside an arc of S2. We call this

algorithm DPA. The cutwidth of S1 is denoted by d (for cutwidth see Def-

inition 3.22). We can divide the arc set A1 of S1 into d subsets A1
1, . . . , A

d
1.

A1
1 includes the arcs which are not inside any other arcs. The arcs in At

1 are

directly inside the arcs from At−1
1 , which means that there are no arcs, that

are between an arc from At−1
1 and an arc from At

1 in the nested arc structure.

It can be easily seen that the arcs from the same subset can form at most a

chain arc structure and that each arc in A1 can belong to only one of the d

subsets. If we use k to denote the size of A1 and ki to denote the size of a

subset Ai
1, then we have k =

∑d
i=1 ki. In order to identify the arcs of S1, we use

a set of symbols to denote the arcs in A1. This set has k symbols, a1, a2, . . .,

ak. Because the subsets of A1 have no common element, we can assume that a

7.2. APS(NESTED, NESTED) 59

. . .

S1

S2

a a a

a

d.fed b bce f e ebeda

a. . . a d e d f b . . . a a d e b e f bc

a1 a2
a3

b1

b4

b3
b2

a4 a5

Figure 7.2: An instance of APS(nested, nested).

S1 has 5 arcs, denoted by symbols a1, a2, a3, a4, and a5. The cutwidth of S1 is 2. Hence,

the arcs can be divided into 2 groups. The first group has 2 arcs, a4 and a5, which are not

inside any arcs. We call these arcs external arcs. The other three arcs, a1, a2, and a3, which

are inside a4 or a5, form the second group. They are called internal arcs. The arcs a1 and a3

can be matched to arcs b1, b2, and b4, where b2 is inside b4. However, the matches between a1

or a3 and b2 are more advantageous for other bases of S1 than the matches between a1 or a3

and b4, because more bases of S2 are left to be matched to other bases of S1. For example,

the match between a1 and b4 excludes the possible match between arcs a2 and b3, while the

match between a1 and b2 does not. Therefore, we ignore the arc matches between a1 or a3

and b4. The arc a2 can only be matched to arc b3.

subset Ai
1 is given by Ai = {ai+δ | δ = 0, . . . , ki − 1}. In the following, we will

use an example, illustrated in Figure 7.2, to explain the steps of the algorithm.

Algorithm for APS(nested, nested)

This algorithm has three phases. The first phase checks and replaces the in-

nermost arcs, i.e., the arcs in Ad
1. The second phase uses DPA to process and

resolve the arcs in the subsets Ai
1, i = d − 1, . . . , 1, until S1 has a chain arc

structure. In the last phase, we then use DPA to verify whether the remain-

ing S1 is an arc-preserving subsequence of S2.

Phase 1:

For each arc ad+δ with left endpoint S1[i1] and right endpoint S1[i2] in Ad
1,

0 ≤ δ ≤ kd − 1, we search all arcs in A2 whose corresponding endpoints are the

60 CHAPTER 7. ARC-PRESERVING SUBSEQUENCE PROBLEMS

same as S1[i1] and S1[i2] and denote the resulting arc set by Ad+δ
2 . The set Ad+δ

2

has at least one element, otherwise S1 cannot be an arc-preserving subsequence

of S2. Assume that arc (j1, j2) is in Ad+δ
2 . Because the arc structure of the

sequence S1[i1 +1, i2 − 1] must be plain and the sequence S2[j1 +1, j2 − 1] has

at most nested arc structure, we use DPA to check whether S1[i1 +1, i2−1] is

an arc-preserving subsequence of S2[j1 +1, j2−1]. If the answer is negative, we

delete the arc (j1, j2) from the set Ad+δ
2 . If the set Ad+δ

2 is empty, after all arcs

in Ad+δ
2 have been checked, S1 cannot be an arc-preserving subsequence of S2,

because for the arc ad+δ we cannot find a matching arc in S2. If the set is not

empty, we replace S1[i1, i2] by an arc connecting symbols xd+δ and yd+δ; this

arc is also inserted directly outside all arcs in Ad+δ
2 . The bases xd+δ and yd+δ

are new symbols, which do not come from Σ. For example, for an arc (j1, j2)

in Ad+δ
2 , we insert xd+δ directly before S2[j1] and yd+δ directly behind S2[j2]

and join the two new symbols xd+δ and yd+δ by an arc. Figure 7.3 illustrates

the example after this step. Note that an arc in Ad
1 can have more than one

possible matching arc in S2. If some of these possible matching arcs form

a nested structure, i.e., one arc is inside another arc, we consider only the

innermost arcs, because a match between an arc of S1 and the innermost arcs

of S2 leaves more bases of S2 for other bases of S1. The arc a1 in Figure 7.2 is

an example for such arcs of S1. It has three possible matching arcs in S2. Two

among them, b2 and b4, form a nested structure. Hence, we consider only the

match between a1 and b2. Note that the original two sequences are changed

after this phase. The innermost arcs of S1 are replaced, together with the bases

inside them, by some new arcs with endpoints not in Σ; the same new arcs

are also insert into S2 directly outside the appropriate arcs of S2. We use Sd
1

and Sd
2 to denote the new sequences. After all arcs in Ad

1 have been processed,

we go to the second phase.

Phase 2:

In this phase, we deal with the remaining arcs of the original sequence S1 in

a recursive manner, starting with the arcs in Ad−1
1 and continuing up to the

arcs in A1
1. Each iteration processes one subset. In the (d − i)th iteration,

7.2. APS(NESTED, NESTED) 61

a4 a5

S2
1

a x1 d.by2 ey3ex3

. . .

S
2
2

. . . d e d fax1ax3 d ea bx1a x3 ay1y3 x2 y2ce fb . . .y1y3 b

b3

b4

b1 b2

x2y1

Figure 7.3: The instance after processing of the internal arcs a1, a2, and a3.

The arcs a1, a2, and a3 and the substrings inside them are now replaced by three arcs (x1, y1),

(x2, y2), and (x3, y3). Note that there are no bases between the endpoints of the three new

arcs. The sequence S2 is extended by the arcs (x1, y1), (x2, y2), and (x3, y3), which record all

possible arc matches involving the internal arcs of S1.

1 ≤ i ≤ d − 1, the arcs in the subset Ai
1 are processed in a similar way as the

arcs in Ad
1, i.e., we search and mark all possible matching arcs in S2 for them and

delete them afterwards. However, there are two differences between the process

for the arcs in these subsets and the process for the arcs in Ad
1. One is that the

sequences inside the arcs in Ai
1, i < d, is not of plain arc structure. They can

have arcs with two endpoints not in Σ, which are the replacements of the arcs

in Ai+1
1 inside the arcs in Ai

1. Note that, while processing the subset Ai
1, all

arcs inserted before processing Ai+1
1 have been deleted. As we have mentioned,

the arcs in Ai+1
1 form at most a chain structure. Hence, their replacements

can also be of at most chain structure. However, the DPA algorithm can be

applied to arc structure (nested, chain), too. The second difference relates

to the arcs inserted into the longer sequence as markings for the arcs in Ai+1
1 .

Since all arcs in Ai+1
1 are inside the arcs in Ai

1, their matching arcs must also be

in the matching arcs of the arcs in Ai
1. While searching possible matching arcs

for the arcs in Ai
1, we take into account the markings for the arcs in Ai+1

1 , which

record the possible matching arcs for the arcs in Ai+1
1 . If we have found and

marked, for each arc in Ai
1, all possibly matching arcs in A2, then these newly

inserted marking arcs represent not only that the arcs in Ai
1 have a possibly

62 CHAPTER 7. ARC-PRESERVING SUBSEQUENCE PROBLEMS

a5

S
1
1

d . . .ey3ex3

S
1
2

. . . a

. . . x4 y4 . . .

d e d fa b

b1

x3 y3 d ea ba a ce fx3 y3

b3b2

. . .

b4

bx4 y4

Figure 7.4: The instance after processing of the external arc a4

In Figure 7.3, we can see that the arc a4 can be matched to the arc b4 in S2 and the substring

inside a4 is of chain arc structure. This is the first difference between the first phase and the

second phase. We replace a4 and the substring inside it by an arc (x4, y4) and add the same

arc outside b4. It is also clear that the arcs (x1, y1) and (x2, y2) will be no more needed, so

we can delete them, this is the second difference.

matching arc but also that all arcs in Ai+1
1 have possibly matching arcs inside

the marking arcs. This means that, for the following iterations, we do not need

the markings for the arcs in Ai+1
1 . Hence, we can delete all arcs from S2, which

were inserted while processing Ai+1
1 . These two differences are also illustrated

in Figure 7.4.

Phase 3:

After all arcs in A1 are processed, we have only a chain arc structure in S1 and

the arc structure of S2 throughout this algorithm is nested. Therefore, DPA

can find out if the remaining sequence of S1 is an arc-preserving subsequence

of S2. If it is, then the original S1 must be also an arc-preserving subsequence

of S2.

(Note that, if we make a copy of S2 before deleting arcs from S2 in each iter-

ation of the second phase, we can also back trace the positions in S2, where a

base of S1 has a matching.)

Correctness of the algorithm:

The DPA algorithm can verify whether a sequence with plain or chain arc

7.2. APS(NESTED, NESTED) 63

structure is an arc-preserving subsequence of a sequence with nested sequence.

Since the first phase and all iterations of the second phase have only instances of

APS(nested, chain) or APS(nested, plain), by using DPA, we can find

out recursively, from inner arcs to outer arcs, whether the arcs of S1 together

with the subsequences inside them are arc-preserving subsequences of some sub-

sequences of S2. After DPA gives positive answers for all arcs in A1
1, we treat

then S1 entirely. By using DPA in each phase and in each iteration, the one-

to-one and order-preserving properties are checked for each subsequences of S1

and, at the end, the entire S1. The recursive way of processing arcs in A1 corre-

sponds exactly to the nested arc structure and guarantees that two matchings

arcs in A2 for two nested arcs in A2 have also a corresponding nested struc-

ture. This implies the arc structure of S1 is also preserved.

Running time analysis:

After the first phase and each iteration of the second phase, the two sequences

in our instance are changed. We use then Sd
1 to denote the first sequence and Sd

2

to denote the second sequence after the arcs in Ad
1 have been processed, namely

after the first phase. Similarly, Si
1 denotes the first sequence and Si

2 denotes

the second sequence after the arcs in Ai
1 having been processed. Further new

notations employed in the running time analysis are in the following list:

• ni+δ: the length of the δth arc of Ai
1 in sequence Si+1

1 . (Note that, for

our purpose, the length of an arc does not include the endpoints of this

arc. For example, an arc ai+δ with endpoints Si+1
1 [i1] and Si+1

1 [i2] has

length of i2 − i1 − 1.)

• Ai+δ
2 : the set of arcs in A2, which are possible matching arcs for the

arc ai+δ.

• li+δ: the size of the set Ai+δ
2 .

• b
(j)
i+δ: the jth arc in the set Ai+δ

2 .

• m
(j)
i+δ: the length of the arc b

(j)
i+δ in sequence Si+1

2 .

64 CHAPTER 7. ARC-PRESERVING SUBSEQUENCE PROBLEMS

Phase 1:

In this phase, we use DPA algorithm to check whether the sequences inside the

innermost arcs in Ad
1 are arc-preserving subsequences of the sequences inside

arcs of S2. Because of its dynamic programming property, DPA needs at most

O((nd+δ)
3m

(j)
d+δ) time to find a matching arc b

(j)
d+δ in S2 for an arc ad+δ in Ad

1.

Since 0 ≤ δ ≤ kd − 1 and 1 ≤ j ≤ ld+δ, the total time for the first phase sums

to
kd−1
∑

δ=0

ld+δ∑

j=1

O((nd+δ)
3m

(j)
d+δ).

Phase 2:

Actually, this phase consists of (d− 1) iterations of the first phase with the two

mentioned differences. The first difference, that the subsequence to be checked

in this phase can have chain structure, does not affect the running time of the

DPA algorithm, because DPA works both for (nested, chain) and (nested,

plain) in time O(n3m). However, by inserting new arcs in the second sequence

in each iteration, the length of S2 is increased by the amount of the endpoints of

the new arcs. We must upper-bound this amount, otherwise we cannot have a

polynomial time algorithm at the end. The second difference, which is deleting

the marking arcs from previous iterations, can help us to have such an upper

bound. In the first iteration, i.e., for the subset Ad−1
1 , the two sequences have

the following lengths:
∣
∣
∣Sd

1

∣
∣
∣ = n −

kd−1
∑

δ=0

nd+δ,

∣
∣
∣Sd

2

∣
∣
∣ = m + 2

kd−1
∑

δ=0

ld+δ.

Since kd ≤ n and ld+δ ≤ m, we obtain
∣
∣Sd

2

∣
∣ ≤ m + 2nm. At the end of the

ith iteration, which processes the subset Ad−i
1 , the arcs inserted into the second

sequence in the (i − 1)th iteration are deleted. There are no new arcs in the

second sequence, which are not in S2, and thus, the second sequence is now the

same as the original sequence S2. After new arcs, that represent the matching

possibilities for arcs in Ad−i
1 , are inserted into the second sequence, we have

now Sd−i
2 , whose length is the same as the sum of |S2| and the amount of the

7.2. APS(NESTED, NESTED) 65

endpoints of the new arcs inserted in this iteration:

∣
∣
∣Sd−i

2

∣
∣
∣ = m + 2

kd−i−1
∑

δ=0

ld−i+δ ≤ m + 2nm.

The upper bound for the length of Sd−i
2 is the same as the one for Sd

2 . And the

first sequence becomes shorter after each iteration:

∣
∣
∣Sd−i

1

∣
∣
∣ =

∣
∣
∣Sd−i+1

1

∣
∣
∣ −

kd−i−1
∑

δ=0

nd−i+δ.

For an arc ad−i+δ in Ad−i
1 , 0 ≤ δ ≤ kd−i, the DPA algorithm needs time

ld−i+δ∑

j=1

O((nd−i+δ)
3m

(j)
d−i+δ)

to find all possible matching arcs. Note that nd−i+δ and m
(j)
d−i+δ are the length

of arc ad−i+δ and arc b
(j)
d−i+δ in the sequences Sd−i+1

1 and Sd−i+1
2 . Hence, the

ith iteration takes a total time:

kd−i−1
∑

δ=0

ld−i+δ∑

j=1

O(nd−i+δ)
3m

(j)
d−i+δ).

The deletion of arcs inserted in the (i− 1)th iteration and the insertion of new

arcs can be done in time O(nm). Putting the time for all d − 1 iterations

together, we have the total time for the second phase:

d−1∑

i=1

ki−1∑

δ=0

li+δ∑

j=1

O((ni+δ)
3m

(j)
i+δ).

After all arcs in A1
1 having been processed, we have two sequences with the

following lengths:

∣
∣S1

1

∣
∣ =

∣
∣S2

1

∣
∣ −

k1−1∑

δ=0

n1+δ,

∣
∣S1

2

∣
∣ = m + 2

k1−1∑

δ=0

l1+δ ≤ m + 2nm

for the third phase.

Phase 3:

In this phase, we do not have any arcs of the original S1. Thus, we use the

DPA algorithm only once for S1
1 and S1

2 and the running time is:

O(
∣
∣S1

1

∣
∣
3 ∣
∣S1

2

∣
∣).

66 CHAPTER 7. ARC-PRESERVING SUBSEQUENCE PROBLEMS

The overall running time of the whole algorithm is then equal to the sum of the

running time of the three phase:

kd−1
∑

δ=0

ld+δ∑

j=1

O((nd+δ)
3m

(j)
d+δ)

︸ ︷︷ ︸

1.Phase

+
d−1∑

i=1

ki−1∑

δ=0

li+δ∑

j=1

O((ni+δ)
3m

(j)
i+δ)

︸ ︷︷ ︸

2.Phase

+O(
∣
∣S1

1

∣
∣
3 ∣
∣S1

2

∣
∣)

︸ ︷︷ ︸

3.Phase

.

With following three conditions:

• regarding Phase 1:
∑ld+δ

j=1 m
(j)
d+δ ≤ |S2| = m,

• regarding Phase 2:
∑li+δ

j=1 m
(j)
i+δ ≤

∣
∣
∣Sd−1−i

2

∣
∣
∣ = m + 2

∑kd−1−i−1
δ=0 ld−1−i+δ ≤ m + 2nm, for all

ith iteration, 1 ≤ i ≤ d − 1, and

• regarding Phase 3:
∣
∣S1

2

∣
∣ ≤ m + 2nm,

we can give an upper bound for the length of the second sequence in all phases,

m + 2nm. The overall running time has also an upper bound as the following:

kd−1
∑

δ=0

O((nd+δ)
3(m + 2nm))

︸ ︷︷ ︸

1.Phase

+
d−1∑

i=1

ki−1∑

δ=0

O((ni+δ)
3(m + 2nm))

︸ ︷︷ ︸

2.Phase

+O(
∣
∣S1

1

∣
∣
3
(m + 2nm))

︸ ︷︷ ︸

3.Phase

.

7.2. APS(NESTED, NESTED) 67

Because the subset A1
1, . . . , Ad

1 are disjoint and we define ni+δ as its length in

sequence Si+1
1 , we have a fourth condition:

d∑

i=1

ki−1∑

δ=0

ni+δ +
∣
∣S1

1

∣
∣ = n.

Therefore, we can conclude that the total running time of the algorithm cannot

exceed O(n4m). The next theorem summarizes the results in this section.

Theorem 7.3 APS(nested, nested) can be solved in time O(n4m), where n

is the length of the shorter sequence and m is the length of the longer sequence.

68 CHAPTER 7. ARC-PRESERVING SUBSEQUENCE PROBLEMS

Chapter 8

Conclusions

8.1 Summary of Results

In this study, we considered the LAPCS problems for arc-annotated sequences

with various types of arc structures, a problem motivated by biological struc-

ture comparison. The results of classical and parameterized complexity with

various parameters previous to this work have been summarized in Chapter 4.

The present work examined a new aspect for c-fragment and c-diagonal

LAPCS problem, namely the parameterized complexity with the length l of the

desired subsequence as parameter. In particular, we provide an algorithm to

solve c-fragment LAPCS(crossing, crossing) in time O((B+1)lB2+c3n),

where B = c2 + 2c − 1, and c-diagonal LAPCS(crossing, crossing) in

time O((B + 1)lB2 + c3n), where B = 2c2 + 7c + 2. This indicates that these

problems are fixed-parameter tractable, when none of the two sequences has

an unlimited arc structure. This algorithm can also be extended to solve a

restricted version of c-fragment and c-diagonal LAPCS(unlimited, un-

limited) where the sequences both have a bounded degree b, it works in

time O((B + 1)lB2 + (c3 + 2bc2)n), where B = c2 + 2bc − 1, and in time

O((B′+1)lB′2 +(c3 +2bc2)n), where B′ = 2c2 +(4b+3)c+2b, respectively. Lin

et al. [20] have shown that c-fragment and c-diagonal LAPCS(nested,

nested) admit a PTAS. However, our algorithm is the first fixed-parameter

solution for the c-fragment and c-diagonal LAPCS, even for the more gen-

69

70 CHAPTER 8. CONCLUSIONS

eral arc structure, (crossing, crossing).

The parameterized complexity of LAPCS(nested, nested) problem with the

length l of the desired subsequence as parameter is still unknown. In posi-

tive aspect, we have shown in this work that this problem is fixed-parameter

tractable, when parameterized by k1 and k2, the number of deletions allowed

in the sequences, respectively. We designed an algorithm, which finds a longest

arc-preserving common subsequence in time O(3.31k1+k2 · n). This algorithm

works efficiently for small values for k1 and k2 and initiates future work on the

LAPCS problem with the length l of the desired subsequence as parameter

(Note that l = |S1| − k1 = |S2| − k2).

The APS problem for arc-annotated sequences has not been discussed explic-

itly before this work. Because the LAPCS problem for many arc structures is

known to be NP-complete and W [1]-complete, examining the exact-matching

version of this problem is significant for practice. Algorithms verifying that

an arc-annotated sequence is an arc-preserving subsequence of another arc-

annotated sequence, can be used for pattern searching in DNA/RNA databases.

In this work, we have shown that APS is also NP-complete, if one of the se-

quences has an unlimited arc structure or one sequence has a crossing arc

structure and the other sequence is of an arc structure higher than plain.

An algorithm was given to solve the APS(nested, nested) problem in time

O(n4m), where n is the length of the shorter sequence and m is the length of

the longer sequence.

8.2 Future Work

The obvious next step is to optimize the algorithms in this work. For exam-

ple, the algorithm for LAPCS(nested, nested) with k1 and k2 as param-

eters is not very efficient for large values of k1 and k2. The algorithm for

APS(nested, nested) is based on the algorithm from [17], which is designed

for LAPCS(nested, plain) and LAPCS(nested, chain) and has a run-

ning time O(n3m). We are confident that the problems APS(nested, plain)

and APS(nested, chain) can be solved more efficiently than the LAPCS

8.2. FUTURE WORK 71

problems. If so, to get the degree of the polynomial as small as possible re-

mains a research issue. It is also a topic of future investigations to study the

practical usefulness of our algorithms by implementations and experiments. As

we observed in Chapter 4, there are still many unsolved LAPCS problems for

arc-annotated sequences. One of the most interesting points is to determine the

parameterized complexity of LAPCS(nested, nested) when parameterized

by the length of the desired subsequence. Another interesting research topic

would be to examine some restricted versions of the LAPCS problem, for ex-

ample, we can allow the resulting longest common subsequence to have some

arc mismatches whose amount is fixed. Algorithms for this restricted LAPCS

may provide a compromise between NP-hardness of LAPCS and the need for

efficient exact solutions.

72 CHAPTER 8. CONCLUSIONS

Bibliography

[1] J. Alber, J. Gramm, and R. Niedermeier. Faster exact solutions for hard

problems: a parameterized point of view. Discrete Mathematics, 229:3–27,

2001.

[2] R.A. Baeza-Yates. Searching subsequences. Theoret. Computer Sci.,

78:363–376, 1991.

[3] V. Bafna, S. Muthukrishnan, and R. Ravi. Comparing similarity between

rna strings. Proceedings of the 6th Annual Symposium on Combinatorial

Pattern Matching, LNCS 937:1–16, 1995.

[4] H.L. Bodlaender, R.G. Downey, M.R. Fellows, M.T. Hallet, and H.T.

Wareham. Parameterized complexity analysis in computational biology.

CABIO, 11(1):49–57, 1994.

[5] H.L. Bodlaender, R.G. Downey, M.R. Fellows, and H.T. Wareham. The

parameterized complexity of sequence alignment and consensus. Theoret.

Computer Science, 147:31–54, 1995.

[6] P. Bonizzoni, G. Della Vedova, and G. Mauri. Experimenting an approxi-

mation algorithm for the LCS. Discrete Applied Mathematics, 110:13–24,

2001.

[7] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further ob-

servations and further improvements. Journal of Algorithms, 41:280–301,

2001.

73

74 BIBLIOGRAPHY

[8] F. Corpet and B. Michot. Rnalign program: alignment of rna sequences us-

ing both primary and secondary structures. Comput. Appl. Biosci., 10:389–

399, 1994.

[9] R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer-

Verlag New York Inc., 1999.

[10] P. A. Evans. Finding common subsequences with arcs and pseudoknots.

Proceedings of 10th Annual Symposium on Combinatorial Pattern Match-

ing, LNCS 1645:270–280, 1999.

[11] P.A. Evans. Algorithm and Complexity for Arc-Annotated Sequence Anal-

ysis. PhD Thesis, University of Victoria, 1999.

[12] M. R. Fellows. Parameterized complexity: the main ideas and some re-

search frontiers. Proc. of 12th ISAAC, LNCS 2223:291–307, 2001.

[13] D. Goldman, S. Istrail, and C. H. Papadimitriou. Algorithmic aspects of

protein structure similarity. Proc. of 40th IEEE FOCS, pages 512–521,

1999.

[14] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Sci-

ence and Computational Biology. Cambridge University Press, 1997.

[15] D.S. Hirschberg. The Longest Common Subsequence Problem. PhD Thesis,

Princeton University, Canada, 1975.

[16] R.W. Irving and C.B. Fraser. Two algorithms for the longest common

subsequence of three (or more) strings. Proceedings of the 3rd Annual

Symposium on Combinatorial Pattern Matching, LNCS 644:214–229, 1992.

[17] T. Jiang, G.H. Lin, B. Ma, and K.Z. Zhang. The longest common sub-

sequence problem for arc-annotated sequences. Proceedings of the 11th

Annual Symposium on Combinatorial Pattern Matching, LNCS 1848:154–

165, 2000.

BIBLIOGRAPHY 75

[18] G. Lancia, R. Carr, B. Walenz, and S. Istrail. 101 optimal pdb structure

alignments: a branch-and-cut algorithm for the maximum contact map

overlap problem. Proc. of 32nd ACM STOC, pages 425–434, 2000.

[19] M. Li, B. Ma, and L. Wang. Near optimal multiple alignment within a

band in polynomial time. Cambridge University Press, 1997.

[20] G.H. Lin, Z.Z. Chen, T. Jiang, and J.J. Wen. The longest common subse-

quence problem for sequences with nested arc annotations. Proceedings of

the 28th International Colloquium on Automata, Languages and Program-

ming, LNCS 2076:444–455, 2001.

[21] S.Y. Lu and K.S. Fu. A sentence-to-sentence clustering procedure for pat-

tern analysis. IEEE Tran. Syst., 8:381–389, 1978.

[22] D. Maier. The complexity of some problems on subsequences and super-

sequences. J. ACM, 25:322–336, 1978.

[23] M.V. Olson. A time to sequence. Science, 270:394–396, 1995.

[24] C.H. Papadimitrion. Computational Complexity. Addison-Wesley Publish-

ing Company, 1994.

[25] D. Sankoff and J. Kruskal (eds.). Time Warps, String Edits, and Macro-

molecules. Addison-Wesley, 1983 (Reprinted in 1999 by CSLI Publica-

tions).

[26] M. Waterman. Introduction to Computational Biology. Chapman and Hall,

1995.

