
Technische Universität Berlin
Electrical Engineering and Computer Science
Institute of Software Engineering and Theoretical Computer Science
Algorithmics and Computational Complexity (AKT)

Leveraging Graph Structure to
Untangle Temporal Networks

Efficiently

Carsten Schubert
Thesis submitted in fulfillment of the requirements for the degree

“Master of Science” (M. Sc.) in the field of Computer Science

Oktober 2023

Supervisor and first reviewer: Prof. Dr. Mathias Weller
Second reviewer: Prof. Dr. Martin Skutella
Co-Supervisors: Pascal Kunz and Philipp Zschoche

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigen-
händig sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwen-
dung der angeführten Quellen und Hilfsmittel angefertigt habe.

Die selbstständige und eigenhändige Ausfertigung versichert an Eides statt

Berlin, den
Datum Unterschrift

3

Abstract

In this work, we study the parameterized computational complexity of the NET-
WORK UNTANGLING problem, which has recently emerged from applications
with a need to summarize large temporal networks. This temporal version of
the well-known VERTEX COVER problem asks whether all time-edges in a given
temporal graph can be covered, if each vertex is only allowed to cover incident
edges for a limited number of time step intervals. It thereby helps with identi-
fying entities that are of special importance for several short time spans in the
network. We investigate two variants of this problem, which differ in the way
these time spans are restricted: One of them requires that each individual vertex
interval has a short length, while the other demands that the total sum of all
these intervals is small.

Both variants are NP-hard, which is why efficient parameterized algorithms
can be an especially powerful tool to solve various restricted NETWORK UNTANG-
LING instances. Froese, Kunz, and Zschoche (2022) have already initiated the
search for fixed-parameter-tractable cases of both problem variants. However,
they only studied specific input parameters of NETWORK UNTANGLING in
combination with the number of vertices n, not analyzing any other graph
structural parameters. Hence, in their concluding remarks, they emphasized
the need for further research on the parameterized complexity regarding graph
parameters smaller than n.

Following that suggestion, we now almost completely clarify the problems’
parameterized complexity concerning the graph parameters treewidth (tw),
tree partition width (tpw), edge-treewidth (etw), feedback vertex set number
(fvs) and vertex cover number (vc), each combined with the problem-specific
parameters k∞, ℓ and τ. Most notably, we provide novel FPT-algorithms for
both problem variants w.r.t. tw + τ and w.r.t. tpw + k∞ + ℓ. We also present
various new parameterized hardness results and prove a previously unknown
parameter relationship between tpw and etw.

4

Deutsche Zusammenfassung

In dieser Arbeit untersuchen wir die parameterisierte Komplexität des Problems
der sogenannten „NETZWERK-ENTWIRRUNG“ (englisch „NETWORK UNTANG-
LING“). Dieses Problem, eine temporale Variante des allgemein bekannten Kno-
tenüberdeckungsproblems, wurde kürzlich aus diversen Anwendungen her-
geleitet, die das Ziel haben, die Informationen großer temporaler Netzwerke
zusammenzufassen. Konkret stellt das Problem die Frage, ob alle Zeit-Kanten
eines gegebenen temporalen Graphen überdeckt werden können, falls jeder
Netzwerkknoten seine angrenzenden Kanten nur für eine beschränkte Zahl
an Zeitintervallen überdecken kann. Somit hilft das Problem dabei, für kurze
Zeitspannen besonders wichtige Entitäten im Netzwerk zu identifizieren. Wir be-
trachten zwei Versionen dieses Problems, welche sich in der Art der geforderten
Beschränkung dieser Zeitspannen unterscheiden: In einer davon verlangen wir,
dass jedes individuelle Zeitintervall kurz ist. In der anderen Version geht es
darum, die Gesamtsumme aller Intervalllängen zu minimieren.

Beide Problemfälle sind NP-schwer, weshalb effiziente parameterisierte Algo-
rithmen eine besonders wirkungsvolle Methode darstellen können, um dennoch
bestimmte Instanzen dieser Probleme zu lösen. Froese, Kunz und Zschoche
(2022) haben bereits einige FPT-Algorithmen für beide Varianten formulieren
können. Allerdings haben sie dabei nur bestimmte problemspezifische Parameter
in Kombination mit der Anzahl der Knoten des Netzwerks n untersucht und sich
keine kleineren strukturellen Graphparameter als n angesehen. Entsprechend
haben sie auch in ihren Schlussworten darauf hingewiesen, dass zukünftige For-
schung sich der Frage widmen solle, ob parameterisierte Algorithmen bezüglich
kleinerer Graphparameter als n zur NETZWERK-ENTWIRRUNG existieren.

Wir nehmen uns nun diesem Vorschlag an und erkunden die parameterisierte
Landschaft der beiden Problemversionen fast vollständig hinsichtlich der Graph-
parameter Baumweite (tw), Baumpartitionsweite (tpw), Kanten-Baumweite
(etw), kreiskritische Knotenzahl (fvs, englisch „Feedback Vertex Number“) und
Knotenüberdeckungszahl, in Kombination mit den problemspezifischen Para-
metern k∞, ℓ und τ. Besonders ist dabei hervorzuheben, dass wir neue FPT-
algorithmen für die kombinierten Parameter tw + τ sowie tpw + k∞ + ℓ (jeweils
für beide Versionen des Problems) präsentieren können. Weiterhin stellen wir
mehrere vorher unbekannte parameterisierte Härtefälle vor und zeigen eine
ebenfalls bislang unbekannte Parameterbeziehung zwischen tpw und etw auf.

5

Contents

1 Introduction 8
1.1 Problem Definitions . 9
1.2 Our contributions . 10
1.3 Related Work . 13
1.4 Preliminaries . 13

1.4.1 Basic Graph Theory . 14
1.4.2 Graph Parameters . 15
1.4.3 Temporal Graphs . 16
1.4.4 Classical and Parameterized Complexity Theory 16

2 NP-Hardness of Network Untangling on Restricted Graph Classes 18
2.1 NP-Hardness on Trees . 18

2.1.1 Star Graphs . 18
2.1.2 Caterpillar Trees with Constant Maximum Degree 20

2.2 NP-Hardness on Bipartite Graphs with Constant Number of Lay-
ers and Maximum Degree . 22

3 Searching for Efficiently Computable Cases Using Parameterized
Methods 27
3.1 FPT when Parameterized by Treewidth and Number of Layers . 27

3.1.1 MINTIMELINE∞ Algorithm 27
3.1.2 MINTIMELINE+ Algorithm 31

3.2 W[2]-Hardness w.r.t. k∞ + ℓ on Temporal Graphs with dlf = 1 . . 35
3.3 FPT when Parameterized by Tree Partition Width, k∞ and ℓ . . . 38

3.3.1 MINTIMELINE∞ Algorithm 38
3.3.2 MINTIMELINE+ Algorithm 45

3.4 Further Research regarding the Edge-Treewidth Parameter 49

4 Notes on the Uniform Versions of Network Untangling 52
4.1 NP-Hardness on Bipartite Graphs with Constant Number of Layers 52
4.2 Star NP-Hardness . 53
4.3 Caterpillar Tree NP-Hardness . 53
4.4 W[2]-Hardness w.r.t. k∞ + ℓ on Temporal Graphs with dlf = 1 . . 54

6

Contents

5 Conclusion and Outlook 56
5.1 Summary . 56
5.2 Future Research Opportunities . 57

References 59

7

1 Introduction

The analysis of temporally changing networks has emerged as a major trend in
the domain of data analysis in recent years. Many real-life phenomena which
develop over time can be modeled using temporal graphs, combining the already
large body of knowledge on conventional networks with a time-dependant as-
pect (Holme and Saramäki 2012; Wang et al. 2019). However, summarizing large
amounts of temporal network data (i.e. extracting concentrated information) is
often challenging—both in the sense of finding a representative network model
for a particular application and in the sense of algorithmically computing opti-
mal solutions in a model (Holme 2015; Fluschnik et al. 2020b; Molter, Renken,
and Zschoche 2021).

A recently introduced notion of extracting relevant data from temporal graphs
is suggested by the NETWORK UNTANGLING problem: Herein, we search for
timelines consisting of different network entities at different time intervals which
together relate to every recorded interaction. The aim is thus to explain all
interactions while needing only a relatively small number of vertices for a small
number of consecutive time steps each.

Applications involve e.g. identifying users in a social network who spread
certain sensitive information at different times, or finding positions from which
an ever-changing environment can be fully monitored if each position is usable
for a short amount of time only. Futhermore, Rozenshtein, Tatti, and Gionis
(2021) describe the use case of pinpointing important past events from a given
chronology of online news data. Computed solutions in such a scenario could
additionally be of use as labeled training data to adapt supervised learning
algorithms for similar settings that may occur in the future.

NETWORK UNTANGLING is proved to be NP-hard, even in several restricted
settings (Froese, Kunz, and Zschoche 2022). As a consequence, there are no algo-
rithms for efficiently computing solutions in general (unless P = NP). Still, some
algorithmic strategies have been proposed, for instance using heuristics (Rozen-
shtein, Tatti, and Gionis 2021) or parameterized methods (Froese, Kunz, and
Zschoche 2022; Dondi and Lafond 2023). We focus on the latter and explore
graph structural properties to advance the previously existing research.

In particular, the only graph parameter previously considered for parameteri-
zation of all NETWORK UNTANGLING variants was the number of vertices in
the input (Froese, Kunz, and Zschoche 2022), which is usually rather large.
Accordingly, in their conclusion, the authors of the respective work pointed
out that smaller parameters like the underlying graph’s treewidth or its vertex

8

1 Introduction

cover number should be considered for potential FPT-algorithms by further
research. We follow this train of thought, thereby finding new special cases
where we obtain efficient computation and new parameterized hardness results
alike (see Table 1.1 for details). We especially exploit certain “tree-like” input
structures, combined with other small input parameters, to present efficient
algorithms.

1.1 Problem Definitions

NETWORK UNTANGLING was introduced by Rozenshtein, Tatti, and Gionis
(2021) and subsequently further analyzed by Froese, Kunz, and Zschoche (2022),
Dondi (2022, 2023), Dondi and Lafond (2023), and Dondi and Popa (2023). In this
problem, vertices of a given temporal graph can be activated at particular time
steps and stay active for a restricted amount of time. Intuitively, NETWORK
UNTANGLING then asks whether all edges in all layers of the temporal graph can
be covered by active vertices if each vertex is activated only a limited number of
times. In a layer, an edge is covered if it is incident to an active vertex. In this sense,
the problem can be seen as a temporal version of the well-known VERTEX COVER
problem, since we are looking for a vertex cover in every layer. However, note
that these vertex covers do not need to be of minimum size. Instead, we require
the total number of activations for each vertex to be restricted.

In order to formally define the problem, we first introduce the notion of k-
activity timelines.

Definition 1.1: k-Activity Timeline

Given a temporal graph G = (V, E1, . . . , Eτ) and a vector k with an entry
kv ∈ N for each v ∈ V, a k-activity timeline is a set C ∈ V × [τ]× [τ] with

• a ≤ b for each (v, a, b) ∈ C,
• |{(v, a, b) ∈ C}| ≤ kv for each v ∈ V, and
• if {v, w} ∈ Gt for any layer Gt of G, then (v, a, b) ∈ C or (w, a, b) ∈ C

for some a ≤ t ≤ b.

Each (v, a, b) ∈ C is called an interval of vertex v from time step a to b with
length (b− a). The vertex v is activated at time step a and is active at each time step
t ∈ [a, b] if (v, a, b) ∈ C. We call any (v, t) ∈ V × [τ] a vertex occurence. The last
condition in Definition 1.1 is thus also referred to as covering all temporal edges
using vertex occurences (i.e. vertices at time steps) which belong to intervals of
C.

We study two variants of NETWORK UNTANGLING, which differ in the way
that timeline intervals are restricted:

9

1 Introduction

Problem Definition 1.2: (NON-UNIFORM) MINTIMELINE∞

Input: A temporal graph G = (V, E1, . . . , Eτ), a vector k ∈ N|V|, and
a number ℓ ∈ [0, τ − 1].

Question: Is there a k-activity timeline C for G and k, such that b− a ≤ ℓ
for all (v, a, b) ∈ C?

Problem Definition 1.3: (NON-UNIFORM) MINTIMELINE+

Input: A temporal graph G = (V, E1, . . . , Eτ), a vector k ∈ N|V|, and
a number ℓ ∈ N.

Question: Is there a k-activity timeline C for G and k, such that
∑

(v,a,b)∈C
(b− a) ≤ ℓ?

Intuitively, in MINTIMELINE∞ (the “maximum variant”) each interval has a
fixed length of ℓ. In MINTIMELINE+ (the “sum variant”), all interval lengths
may sum up to at most ℓ. Note that both variants are identical as long as ℓ = 0.

1.2 Our contributions

Table 1.1 summarizes the contributions of this work and references the cor-
responding theorems. Since many results are derived via parameter relation-
ships (of which we even discovered a previously unknown one), we provide
an overview of all graph parameters investigated in this work, as well as their
relationships, in Figure 1.1. If not stated otherwise, our conception of both
NETWORK UNTANGLING variants is non-uniform, meaning that we allow each
vertex to have a separate number of activation intervals. This slightly differs
from previous problem definitions, e.g. by Rozenshtein, Tatti, and Gionis (2021).
However, all of our results can be modified to work with those uniform problem
formulations as well (see Chapter 4).

We especially highlight that we formulated FPT-algorithms for both problem
variants concerning the combined parameter tw + τ (Algorithms 3.1 and 3.2) as
well as tpw + k + ℓ (Algorithms 3.3 and 3.4), but showed that no such algorithm
exists regarding the parameter tw + k + ℓ (unless W[2] = FPT).

10

1 Introduction

Graph Parameter Landscape

vc

dlf

fvs

tpw

tw

etw

tw + ∆

∆

Figure 1.1: Outline of all mentioned graph parameters and their relationships in
the form of a Hasse Diagram. This means parameter A upper-bounds
B if there is a path from A to B which only uses downward-going
lines. E.g. the edge-treewidth (etw) upper-bounds the treewidth (tw)
of any simple graph, but not vice-versa. If two parameters are not
shown to have a relationship where one upper-bounds the other,
then they are known to be parametrically incomparable—like the
tree partition width (tpw) and the feedback vertex set number (fvs).
Other depicted parameters include the distance to a linear forest
(dlf), the vertex cover number (vc) and the maximum degree (∆).
The etw parameter was introduced by Magne et al. (2023), definitions
of the other depicted graph parameters can be found in Section 1.4.2.
The relationship between etw and tpw is proved in Theorem 3.21.

11

1 Introduction

Parameterized Complexity of
NON-UNIFORM NETWORK UNTANGLING

+ τ k∞ + ℓ ℓ

∆
paraNP-hard

(on bipartite graphs)
[Thm. 2.7]

paraNP-hard
(on bipartite graphs)

[Thm. 2.7]

paraNP-hard
(on caterpillar trees)

[Thm. 2.4]

dlf FPT
[Thm. 3.1,Thm. 3.4]

XP, W[2]-hard
(with dlf = 1)

[Thm. 3.1,Thm. 3.4,
Thm. 3.8]

paraNP-hard
(on stars)
[Thm. 2.1]

fvs FPT
[Thm. 3.1,Thm. 3.4]

XP, W[2]-hard
(with fvs = 1)

[Thm. 3.1,Thm. 3.4,
Thm. 3.8]

paraNP-hard
(on stars)
[Thm. 2.1]

tw FPT
[Thm. 3.1,Thm. 3.4]

XP, W[2]-hard
(with tw = 2)

[Thm. 3.1,Thm. 3.4,
Thm. 3.8]

paraNP-hard
(on stars)
[Thm. 2.1]

tpw FPT
[Thm. 3.1,Thm. 3.4]

FPT
[Thm. 3.12,Thm. 3.17]

paraNP-hard
(on stars)
[Thm. 2.1]

vc FPT
[Thm. 3.1,Thm. 3.4]

FPT
[Thm. 3.12,Thm. 3.17]

paraNP-hard
(on stars)
[Thm. 2.1]

etw FPT
[Thm. 3.1,Thm. 3.4]

FPT
[Cor. 3.23]

paraNP-hard
(on caterpillar trees)

[Thm. 2.4]

tw + ∆ FPT
[Thm. 3.1,Thm. 3.4]

FPT
[Thm. 3.12,Thm. 3.17]

paraNP-hard
(on caterpillar trees)

[Thm. 2.4]

Table 1.1: Summary of our parameterization results regarding MINTIMELINE∞
and MINTIMELINE+. Each row represents a graph parameter for
the underlying graph of the input and each column represents an
additional input parameter. Consequently, a table cell displays the
classification of NETWORK UNTANGLING w.r.t. a combination of the
corresponding two parameters. The graph parameter abbreviations
and their relationships (using which many shown results are derived)
are described in Figure 1.1. The parameters on the columns are the
number of temporal layers τ, the maximal number of activations per
vertex k∞ and the interval length bound ℓ (see Section 1.1 for detailed
explanations). All results apply to both studied variants of NETWORK
UNTANGLING similarly. Every hardness result holds even if ℓ = 0.

12

1 Introduction

1.3 Related Work
As already stated, UNIFORM MINTIMELINE∞ and UNIFORM MINTIMELINE+
as well as their general term “NETWORK UNTANGLING” were introduced by
Rozenshtein, Tatti, and Gionis (2021), who showed that both problems are NP-
hard and APX-hard (in our formulation with unbounded k). They also provided
and tested some heuristic approaches to solve these problems. Subsequently,
Froese, Kunz, and Zschoche (2022) initiated the exploration of parameterized
algorithms for both problem variants, for example by discovering that both are
in FPT w.r.t. n + k (n being the number of vertices). Moreover, they derived
the non-uniform variants of NETWORK UNTANGLING, which we use by default.
Thus, our paper builds on their foundation by refining the parameterization and
exploring novel algorithmic approaches. For instance, we strengthen their result
of paraNP-hardness w.r.t. τ + k + ℓ by showing that it also holds on bipartite
graphs. Furthermore, we present algorithms to solve both variants in FPT-
time w.r.t. tpw + k∞ + ℓ, which is more fine-tuned in comparison to their n + k
algorithm at the expense of including ℓ in the time bound.

The special variant of UNIFORM MINTIMELINE+ where k = 1 has been exten-
sively researched by Dondi (2022, 2023), Dondi and Lafond (2023), and Dondi
and Popa (2023), who proved it to be fixed-parameter-tractable w.r.t. ℓ, for in-
stance. Another problem relatively similar to NETWORK UNTANGLING with
ℓ = 0 is TEMPORAL VERTEX COVER as introduced by Akrida et al. (2020).
The main difference to our scenario is that in their setting each edge of the under-
lying graph needs to be covered in only one layer, whereas we require it to be
covered in every layer where it is present. As a consequence, we also drop their
condition to find minimum vertex covers. Of course, if ℓ ̸= 0, our problems also
add intervals to the vertex appearances. In contrast, they use a notion of sliding
windows to fit vertex covers into the flow of time instead. In a broader view, the
literature also contains very different variants of vertex covering on temporal
graphs (Fluschnik et al. 2022) and dynamic graphs (Iwata and Oka 2014; Alman,
Mnich, and Williams 2020).

1.4 Preliminaries

We denote by N and N+ the natural numbers including and excluding zero,
respectively. The short notation [n] for any n ∈ N describes the set of natural
numbers from 1 to n, i.e. [n] = {x ∈ N | 1 ≤ x ≤ n}. Similarly, we declare [n, m]
for any n, m ∈ N as the set {x ∈ N | n ≤ x ≤ m}. For any set S, we denote
its power set by P(S). For any vector k, ki refers to its i-th entry and |k| is its
number of entries. Sometimes we will use other identifiers than natural numbers
for i, in these cases the order of entries in k is not relevant (just the mapping from
i to ki is). k∞ represents the maximum norm of a vector k, i.e. k∞ = max

i∈[|k|]
|ki|.

13

1 Introduction

1.4.1 Basic Graph Theory

A (simple) graph G = (V, E) is a structure which contains a finite non-empty
set V of vertices (or nodes) and a finite set E ⊆ {{u, w} | {u, w} ⊆ V, u ̸= w}
of edges. The vertices u and w are called endpoints of the edge {u, w} and the
edge lies between (or is incident to) its two endpoints. We say that a vertex v or
an edge e = {a, b} is (included or contained) in G if v ∈ V or e ∈ E, respectively.
The former can also be denoted by v ∈ G and the latter can also be denoted by
{a, b} ∈ G if clear in context. We define the size of G, denoted by |G|, as the total
number of vertices and edges in G. A graph G′ = (V′, E′) is a subgraph of another
graph G = (V, E) if V′ ⊆ V and E′ ⊆ E. The induced subgraph of a vertex set
S ⊆ V for a graph G = (V, E), denoted by G[S], is the graph G′ = (S, E′), where
E′ = {{a, b} ∈ G | {a, b} ⊆ S}. Further, G \ S describes the graph obtained by
deleting vertices S, i.e. G \ S = G[V \ S]. When clear from context, we may also
write G \ v instead of G \ {v} for a vertex v.

The set of neighbors N(v) of a vertex v in a graph G = (V, E) is defined as
N(v) = {w ∈ V : {v, w} ∈ E}. Two vertices are adjacent if they are neigbors.
The closed neighborhood of v, meaning the neighbors of v together with v itself
will be denoted by N[v], i.e. N[v] = N(v) ∪ {v}. If it is otherwise unclear which
graph we are referring to, we will specify this graph explicitly, like NG(v) or
NG[v]. The degree of a vertex v in a graph G = (V, E) refers to the number of its
neigbors and is abbreviated by degG(v). Again, if the graph is clear from context
we will just use deg(v).

A path Pn is a graph with n ∈ N+ vertices which can be relabeled and listed as
the sequence (v1, . . . , vn), such that {{vi, vi+1} | i ∈ [n− 1]} is the edge set of Pn.
We say that this path starts in the vertex relabeled as v1 and ends in the vertex
relabeled as vn. A graph G is connected, if for each two distinct vertices a and b
included in G there is a path subgraph of G starting in a and ending in b. If there
is exactly one such path subgraph from each vertex a to each other vertex b in
G, then G is called a tree. When picking some vertex r in a tree T as root (node),
the structure becomes a rooted tree (T, r). In such a rooted tree each vertex v with
v ̸= r has a unique parent w, which is the next vertex after v on the path starting
in v and ending in r. If w is the parent of v, then v is w’s child. This means that
each vertex w in a rooted tree has a unique set of children. If this set is empty,
then w is called a leaf (node). The set of ancestors of v contains all vertices in the
path starting in v’s parent and ending in the root node r (if v = r, then v has no
ancestors). Similarly, the set of descendants of v consists of all vertices which are
in any path starting in a child of v and ending in some leaf node. The subtree
of vertex v in a rooted tree is the induced subgraph of v and its descendants,
usually viewed as rooted in v.

A (connected) component C of G is an inclusion-maximal connected subgraph
of G. Note that if G is connected, it contains only one component. A forest is
a graph where each of its components is a tree and a linear forest is a graph

14

1 Introduction

where each of its components is a path. A vertex s ∈ G is called cut vertex, if
the number of components of G \ s is larger than the number of components
of G. A biconnected component or block of G is an inclusion-maximal connected
subgraph of G which in itself contains no cut vertices. Thus, the only vertices in
G which are contained in multiple blocks are the cut vertices of G.

A connected graph in which the vertices of degree higher than one induce a
path subgraph is called a caterpillar tree. A star is a connected graph where there
is one special center vertex which forms an endpoint of each edge in the graph.
Thus, each other vertex in the star has a degree of one. We usually denote the star
with n + 1 vertices by Sn for each n ∈ N. The sets X1, . . . , Xn form a partition of a
set X if each of these Xi is a non-empty subset of X and each x ∈ X is contained
in exactly one of these Xi. A graph G is called bipartite if its vertex set can be
partitioned into two sets L and R such that each edge in G has one endpoint in
L and the other endpoint in R. Usually, L is called the left side and R is called
the right side of the graph. A complete bipartite graph is a graph G = (V, E) with
such a partition (L, R) where E = {{a, b} | a ∈ L, b ∈ R}. A complete bipartite
graph with n ∈ N+ vertices on the left and m ∈ N+ vertices on the right side is
denoted by Kn,m.

1.4.2 Graph Parameters

Next we want to define some parameters which are special for graphs. A graph
parameter is a function from a graph to a natural number (including zero).

The maximum degree ∆(G) describes the highest degree among vertices in G,
i.e. ∆(G) = max

v∈G
(degG(v)). A vertex cover is a set of vertices S ⊆ V of a graph

G = (V, E) such that each edge in G has an endpoint in S, i.e. e ∩ S ̸= ∅ for each
e ∈ E. The vertex cover number vc(G) describes the lowest natural number x for
which there exists a vertex cover S of graph G with |S| = x. A feedback vertex set
S ⊆ V in a graph G = (V, E) is a set of vertices such that G \ S is a forest. The
feedback vertex set number fvs(G) is the lowest number x for which there exists a
feedback vertex set of size x in G. Similarly, the distance to linear forest dlf(G) is
the lowest number x for which there exists a set of vertices S ⊆ V in G = (V, E)
with |S| = x and G \ S is a linear forest. A k-coloring for k ∈ N+ of a graph
G = (V, E) is a function from V to [k]. Informally speaking, this function assigns
a color c ∈ [k] to each vertex in G. A k-coloring is proper (or valid) if for each
{a, b} ∈ E the vertices a and b are assigned different colors.

A tree decomposition of a graph G = (V, E) is a tree D = (B, E′), where
•

⋃
b∈B

b = V,

• for each {a, b} ∈ E there exists at least one b ∈ B with {a, b} ⊆ b, and
• if a ∈ b1 ∩ b2 for two distinct vertices b1, b2 ∈ B, then also a ∈ b3 for each

vertex b3 ∈ B included in the unique path from b1 to b2 in D.
The vertices B of a tree decomposition are also called bags. The treewidth tw(G)

15

1 Introduction

is the lowest number x, such that there is a tree decomposition D of G where
each bag in D has size at most x + 1.

A tree partition of a graph G = (V, E) is also a tree D = (B, E′) whose vertices
are subsets of V and are often called bags. However, for a tree partition it holds
that

• each v ∈ V is contained in exactly one b ∈ B, and
• for each {a, b} ∈ E there exists either a bag b ∈ B with {a, b} ⊆ b or two

bags b1 and b2 which are neigbors in D and where a ∈ b1 and b ∈ b2.
Accordingly, the tree partition width tpw(G) is the lowest number x, such that
there is a tree partition D of G where each bag in D has size at most x.

If the graph is clear from context, we will sometimes just write p instead of
p(G) for any graph parameter p.

1.4.3 Temporal Graphs

The concept of temporal graphs is a generalization of simple graphs, introducing
the possibility to feature multiple edge sets. Specifically, a temporal graph is
a tuple G = (V, E1, . . . , Eτ) with τ ∈ N, where Gi = (V, Ei) is a simple graph for
each time step i ∈ [τ]. These Gi are called layers or snapshots of G.

Equivalently, one can define a temporal graph by introducing timestamps to the
edges of a simple graph, i.e. G = (V, E) with E ⊆ E× [τ], τ ∈ N and (V, E) being
a simple graph. We call each ({a, b}, t) ∈ E a temporal edge of G with timestamp
t. We will use those equivalent definitions interchangeably and notate v ∈ G as
well as ({a, b}, t) ∈ G for vertices and temporal edges in G like we did for simple
graphs. We also use the basic terminology we established for simple graphs, if
unambiguous.

The underlying graph G↓ of a temporal graph G = (V, E1, . . . , Eτ) is the simple
graph obtained from joining all its edge sets together, i.e. G↓ = (V,

⋃
i∈[τ]

Ei).

In order to use our previous graph parameters on temporal graphs as well, we
define temporal graph parameters by using the underlying graph as intermediate:
p(G) = p(G↓) for each temporal graph G if p is a parameter defined on simple
graphs.

If not otherwise stated, we will assume that all temporal graphs we work with
have connected underlying graphs. Further, we will usually describe simple
graphs as just graphs, which we do not do for temporal graphs to avoid confusion.

1.4.4 Classical and Parameterized Complexity Theory

Let Σ be a finite alphabet. In classical complexity theory, a problem is defined as a
language L ⊆ Σ∗. Given an instance x ∈ Σ∗ of L the task then arises to decide
whether x is a YES-instance, i.e. x ∈ L, or a NO-instance (x ̸∈ L). Two instances
x, x′ of problems L, L′ are equivalent if x ∈ L⇔ x′ ∈ L.

16

1 Introduction

In parameterized complexity theory, we study problems always with respect
to some problem parameter k ∈ N. A parameterized problem L is then a subset
L ⊆ {(x, k) ∈ Σ∗ × N}. Again, an instance (x, k) of L is a YES-instance if
(x, k) ∈ L and a NO-instance otherwise. We also call two instances (x, k), (x′, k′)
of parameterized problems L, L′ equivalent if (x, k) ∈ L⇔ (x′, k′) ∈ L. We call
a parameterized problem L fixed-parameter tractable or in FPT if there is an
algorithm deciding for each input instance (x, k) if it is a YES-instance of L in
f (k) · |x|O(1) time, where f is some computable function which only depends
on k. Similarly, we say that a parameterized problem L is in XP if there is an
algorithm deciding for each input instance (x, k) if it is a YES-instance of L in
|x| f (k) time, again f being some computable function only dependent on k.

In classical complexity theory we often show NP-hardness of a problem L′ by
describing a polynomial-time many-one (“Karp”) reduction from an NP-hard
problem L to L′, i.e. an algorithm that takes an input instance x of L and then
generates in O(|x|O(1)) time an instance x′ of L′ such that x and x′ are equivalent.
This equivalence property is called correctness of the reduction. If a problem is
NP-hard, it is assumed to not be decidable in polynomial time (w.r.t. its input
size). If a problem is paraNP-hard regarding some parameter, i.e. NP-hard on
instances of which the respective parameter is constant, then it is assumed to not
be contained in XP, analogously.

In a similar way, in parameterized complexity theory we often show W[t]-
hardness of a parameterized problem L′ for any t ∈ N by describing a parame-
terized reduction from a W[t]-hard problem L to L′. This is an algorithm which
takes an input instance (x, k) of L and computes in f (k)|x|O(1) time an equivalent
instance (x′, k′) of L′ such that k′ is upper-bounded by g(k), where both f and
g are computable functions only depending on k. A W[1]-hard problem is not
fixed-parameter tractable unless W[1] = FPT and each W[t + 1]-hard problem
is also W[t]-hard for any t ∈ N.

Obviously, any meaningful parameter p can equivalently be viewed as a
function p : L → N which maps instances of a certain classical problem L to a
natural number. (x, p(x)) with x ∈ L then forms the respective parameterized
problem instance. In this sense, we often use graph parameters as previously
defined to study the parameterized complexity of problems involving graphs or
temporal graphs. We will use these two perspectives on the term “parameter”
interchangeably.

Let p : L→ N and p′ : L→ N both be parameters (in the function format) for
the same problem L. We say that p is (polynomially) upper-bounded by p′ if there
is a computable (polynomial) function f : N → N such that p(x) ≤ f (p′(x))
for each x ∈ L. If p′ (polynomially) upper-bounds p and p also (polynomially)
upper-bounds p′, we say that p and p′ are (polynomially) tied or (polynomially)
equivalent. If neither p upper-bounds p′ nor p′ upper-bounds p, then p and p′ are
incomparable.

17

2 NP-Hardness of Network
Untangling on Restricted Graph
Classes

This chapter is dedicated to presenting different scenarios where MINTIMELINE∞
and MINTIMELINE+ are NP-hard and where consequently no efficient algorithm
deciding these problems is expected to exist. Concretely, in Section 2.1 we show
that both variants are NP-hard on temporal graphs with underlying tree graphs,
if there are no further restrictions. In Section 2.2, we strengthen a previous
NP-hardness result by extending it to hold on bipartite temporal graphs. We will
later build upon all that knowledge to detect cases for which efficient algorithms
exist.

2.1 NP-Hardness on Trees

Trees are one of the most fundamental graph classes. Containing no cycles by
definition, they are usually regarded as rather easily approachable graphs from
the algorithmic perspective and indeed many classical NP-hard graph problems
are efficiently decidable or outright trivial if their input graph is a tree (e.g.
INDEPENDENT SET, DOMINATING SET, or COLORING). In the setting of temporal
graphs, some otherwise NP-hard problems are solvable in polynomial time on
underlying trees as well (Fluschnik et al. 2020a; Fluschnik et al. 2023).

However, this is unfortunately not the case for our NETWORK UNTANGLING
problems, even if ℓ = 0. As we show in this section, both variants stay NP-hard
on temporal graphs whose underlying graph is a tree. Moreover, we can restrict
this condition further to either stars, or trees with a constant maximum degree.

2.1.1 Star Graphs

As already indicated, we want to prove the following:

Theorem 2.1: NP-Hardness on Star Graphs

MINTIMELINE+ and MINTIMELINE∞ are both NP-hard even if the under-
lying graph is a star, each layer contains at most 3 edges, and ℓ = 0.

18

2 NP-Hardness of NETWORK UNTANGLING on Restricted Graph Classes

We show Theorem 2.1 by providing a reduction from the NP-hard VERTEX
COVER problem to MINTIMELINE∞ (which is identical to MINTIMELINE+ as
long as ℓ = 0). The reduction closely resembles a reduction presented by Akrida
et al. (2020) from the HITTING SET problem to their TEMPORAL VERTEX COVER
problem. This is due to the fact that HITTING SET is a generalization of VERTEX
COVER and TEMPORAL VERTEX COVER bears some similarity to MINTIMELINE∞
with ℓ = 0 as mentioned in Section 1.3.

Problem Definition 2.2: VERTEX COVER

Input: A graph G = (V, E) and an integer k.
Question: Is there a vertex cover of size at most k within G?

VERTEX COVER is NP-hard even if the maximum degree of G is 3 (Garey,
Johnson, and Stockmeyer 1976), so we assume to be given a respective input
graph to our reduction. We also assume its vertices are named 1 to |V|.

Reduction 2.3: Let V′ = E ∪ {c}, where c is a new vertex. Construct
a temporal graph G with vertex set V′ by creating a layer Gv for each v ∈ V
which contains the edges {{c, e} | e ∈ E, v ∈ e}.

For the output vector k′, set k′c = k and set k′e = 1 for each ver-
tex e ∈ E. The whole output instance of MINTIMELINE∞ is now (G =
(V′, E1, . . . , E|V|), k′, 0). ♦

Using Reduction 2.3, we can immediately prove Theorem 2.1.

Proof of Theorem 2.1. It is easy to see that the temporal graph constructed by
Reduction 2.3 has an underlying star graph with vertex c at its center. Also,
each constructed layer has at most three edges, as ∆(G) = 3. It remains to
show that the reduction’s input and output instances are equivalent.

(⇒) If the input is a YES-instance of VERTEX COVER, let S ⊆ V be its
solution. For the solution to the output instance we activate vertex c in each
layer Gv, v ∈ S. This is possible, as |S| ≤ k = k′c. Observe that for each
constructed vertex e ∈ E, at least one of its two incident temporal edges is
now covered by c, because S is a vertex cover in the input instance. Thus, the
remaining temporal edge incident to any vertex e ∈ E can be covered by e
itself with k′e = 1.

(⇐) Assume the constructed instance is YES with a solution K. Let S′ ⊆
[|V|] be the set of numbers of constructed layers where vertex c is activated in
K. Observe that |S| ≤ k. As each vertex e ∈ E is adjacent to c in exactly two
layers Ga and Gb, K is a solution, and k′e = 1, we know that a ∈ S′ or b ∈ S′.
Since vertex e was constructed for the input edge e = {a, b}, this directly
shows that S′ is a solution vertex cover in the input instance.

19

2 NP-Hardness of NETWORK UNTANGLING on Restricted Graph Classes

2.1.2 Caterpillar Trees with Constant Maximum Degree

After having established that NETWORK UNTANGLING is NP-hard on trees,
we wondered whether that hardness is only due to the unrestricted maximum
degree of the constructed underlying graph in the previous reduction. However,
further study revealed that the problems remain NP-hard even on trees with a
constant maximum degree, yielding the theorem below.

Theorem 2.4: NP-Hardness on Caterpillar Trees

MINTIMELINE∞ and MINTIMELINE+ with ℓ = 0 are NP-hard even if the
underlying graph is a caterpillar tree with a maximum degree of 3.

Note that since ℓ = 0, we again refrain from treating MINTIMELINE+ sepa-
rately and just speak of MINTIMELINE∞ in the following.

We show Theorem 2.4 by another reduction from VERTEX COVER, which is
a modification of the previous Reduction 2.3: Instead of one single vertex in
the center, we use a long path to “attach” the other vertices, thereby forming a
caterpillar tree with constant maximum degree. Apart from that, both reductions
share similar ideas in terms of correctness. For technical reasons, we assume to
be given an instance (G = (V, E), k) in which the vertices are named v1 to vn
and the edges are named e1 to em.

Reduction 2.5: Let E∗ = {e∗j | j ∈ [m + 1]} and let E∗∗ = {e∗∗j | j ∈ [m]}.
Let V′ = E∪ E∗ ∪ E∗∗. We construct an instance (G = (V′, E1, . . . , En), k′, 0)
with vertex set V′ in the following way:

Set k′e∗ = n − k for each e ∈ E∗ and set k′e∗∗ = k for each e ∈ E∗∗.
For each e ∈ E, set k′e = 1.

Let Ei = {{e, e∗∗} | vi ∈ e}∪
⋃

j∈[m]

{
{e∗j , e∗∗j }, {e∗∗j , e∗j+1}

}
for each vi ∈ V.

This means that the vertices in E∗ and in E∗∗ together form a path in every
layer and additionally there is an edge between ej and e∗∗j in each layer Gi
for which vi is an endpoint of ej in the input instance. Figure 2.1 shows an
example of this reduction.

♦

Before proving Theorem 2.4, we introduce a lemma which highlights an im-
portant aspect of Reduction 2.5.

20

2 NP-Hardness of NETWORK UNTANGLING on Restricted Graph Classes

Depiction of Reduction 2.5

v2 v1

v3 v4

1, 2 2, 3 3, 4 2, 4

Figure 2.1: The first graph shows an input instance to Reduction 2.5 and the sec-
ond graph shows the underlying graph of the corresponding output
instance. For the latter, labeled edges are present in the respective
layers and unlabeled edges are present in every layer. The printed
colors match input instance edges to parts of the output instance
created for them. For instance, the three red vertices and their specific
edge-label (2, 3) are constructed for the red input edge {v2, v3}.

Lemma 2.6: In every solution to an instance of MINTIMELINE∞ constructed
by Reduction 2.5, in each layer, either all vertices in E∗ or all vertices in
E∗∗ are active. There are n− k layers where all vertices of E∗ are active and
in the remaining k layers all vertices of E∗∗ are active.

Proof. The vertices E∗ ∪ E∗∗ form a path in the underlying graph, such that any
edge {a, b} on this path has one endpoint a ∈ E∗ and one endpoint b ∈ E∗∗.
As {a, b} appears in all n layers and its two incident vertices a and b can only
be active in ka + kb = (n − k) + k = n layers in total, each corresponding
temporal edge ({a, b}, t) has to be covered by exactly one of a or b in its
respective layer Gt. As this holds for all path edges, it proves the lemma.

Using Reduction 2.5 and Lemma 2.6, we can now prove the theorem.

Proof of Theorem 2.4. It is easy to see that a temporal graph G constructed by
Reduction 2.5 has ∆(G↓) ≤ 3. We next show that the reduction’s output
instance has a solution for MINTIMELINE∞ if and only if the input instance
has a solution for VERTEX COVER.

(⇒) Without loss of generality, we assume the input instance has a vertex

21

2 NP-Hardness of NETWORK UNTANGLING on Restricted Graph Classes

cover S of size exactly k. Then for each vi ∈ S, we choose all vertices in E∗∗

to be activated in layer Gi of the output instance. Note that this is possible,
because k′e∗∗ = k for each e∗∗ ∈ E∗∗ and |S| ≤ k.

With this, the only remaining uncovered temporal edges in G are the edges
of the layers {Gi|vi ̸∈ S}. It is easy to see that the path edges among them, i.e.
edges with one endpoint in E∗∗ and the other endpoint in E∗, can be covered
by activating all vertices in E∗ in those layers. This is again possible, because
|V \ S| = n− k = k′e∗ for each e∗ ∈ E∗.

Each vertex e ∈ E has at most one incident temporal edge within layers
{Gi|vi ̸∈ S}, since S is a vertex cover and by construction e has only two
temporal edges, one in each layer corresponding to an endpoint of e in the
input instance. Thus, all yet-uncovered temporal edges incident to any e ∈ E
can be covered by these vertices.

(⇐) By Lemma 2.6 we know that any solution to an output instance of
Reduction 2.5 has exactly k layers where all the vertices in E∗∗ are active, and
they are active in no other layer. Let S ⊆ {G1, . . . ,Gτ} be the set of those layers
with |S| = k.

Any vertex e ∈ E in the output instance has exactly two incident temporal
edges, both to the same corresponding vertex e∗∗ ∈ E∗∗. Let Ga and Gb
be the two layers including these temporal edges. They were constructed
to represent two input instance vertices va and vb, such that e = {va, vb}.
Since both temporal edges need to be covered and k′e = 1, e∗∗ has to be active
in at least one of Ga or Gb, directly meaning that Ga ∈ S or Gb ∈ S.

As e ∈ E was chosen arbitrarily and each edge in the input instance is
represented by one constructed vertex of E, it follows that S implies a vertex
cover of size k in the input instance.

2.2 NP-Hardness on Bipartite Graphs with
Constant Number of Layers and Maximum
Degree

In the previous section, we showed that MINTIMELINE∞ and MINTIMELINE+
with ℓ = 0 are NP-hard on temporal trees. However, for both reductions we
presented so far the number of layers τ of the constructed temporal graph was
unbounded. Later, in Section 3.1, we will exactly find out why this unbounded τ
is indeed necessary for the NP-hardness on trees. For now, we want to use this
insight as motivation to explore additional graph classes on which our problems
stay NP-hard—but this time while also assuming that τ is small.

For this restriction, there is already an interesting hardness result by Froese,
Kunz, and Zschoche (2022), which effectively states that NETWORK UNTANG-
LING with ℓ = 0 and τ = 3 is NP-hard on all underlying graphs on which

22

2 NP-Hardness of NETWORK UNTANGLING on Restricted Graph Classes

Vertex Control Subgraph

c

b

a

Figure 2.2: Our vertex control subgraph (used in the proof of Theorem 2.10),
which can have an arbitrarily large number of 6-vertex chunks (shown
above with four chunks for illustration purposes). As vertices a, b
and c are precolored, it is easy to see that in any valid 3-coloring all
vertices depicted on the same line must have the same color. Dot-
marked vertices belong to the right-hand side of the bipartite graph.
Using such a vertex control subgraph, every other vertex in the graph
can have its color fixed or restricted by linking it to one unique chunk
in an appropriate way.

the classic 3-COLORING is NP-hard as well. This for instance includes planar
graphs with a constant maximum degree (Garey, Johnson, and Stockmeyer 1976).
However, to our knowledge, no similar result for NETWORK UNTANGLING on
bipartite underlying graphs with a constant number of layers was known thus far.
Consequently, we researched if the restriction to bipartite temporal graphs with
few layers still retains the NP-hardness. We arrived at the following theorem.

Theorem 2.7: NP-Hardness on Bipartite Graphs with τ = 3

MINTIMELINE∞ and MINTIMELINE+ are NP-hard even if the underlying
graph of the input is bipartite, ℓ = 0, τ = 3 and ∆ = 12.

In order to prove the theorem, we use a reduction closely resembling the one
presented by Froese, Kunz, and Zschoche (2022). In particular, they reduced from
3-COLORING to UNIFORM MINTIMELINE∞ with ℓ = 0 by essentially copying
the input graph into 3 identical layers and setting k to 2. As 3-COLORING is not
NP-hard on bipartite graphs, we provide a reduction from a slightly different
coloring problem instead. That problem was introduced by Biró, Hujter, and
Tuza (1992) and later shown to be NP-hard on bipartite graphs (Bodlaender,
Jansen, and Woeginger 1994):

23

2 NP-Hardness of NETWORK UNTANGLING on Restricted Graph Classes

Problem Definition 2.8: 1-PRECOLORING EXTENSION WITH 3 COLORS

Input: A graph G = (V, E) and three special vertices a, b, c ∈ V.
Question: Is there a proper 3-coloring of G such that a, b and c receive

colors 1, 2 and 3 respectively?

The requirement of these special vertices receiving particular colors effectively
from the beginning is called precoloring of those vertices. If a vertex v is adjacent
to a vertex w and w has an always fixed (e.g. precolored) color, then we call v
color-restricted for that color, since it can not be assigned that same color.

Bodlaender, Jansen, and Woeginger (1994) did not explicitly show that 1-
PRECOLORING EXTENSION is also NP-hard on bipartite graphs with a constant
maximum degree, however their reduction can be slightly modified to reflect
this. In order to do so, we utilize a lemma they already proved:

Lemma 2.9 (Bodlaender, Jansen, and Woeginger 1994, restated):
A graph which includes two distinct vertices x and y can be extended
by introducing three disjoint paths between x and y containing three
additional color-restricted vertices each, such that any proper 3-coloring of
the resulting graph assigns different colors to x and y.

With this, we show the following.

Theorem 2.10

1-PRECOLORING EXTENSION WITH THREE COLORS is NP-hard on bipartite
graphs even if ∆ = 12 and the special vertices a, b and c are on the same
graph side.

Proof. We reduce from the NP-hard 3-COLORING problem on graphs with a
maximum degree of four (Garey, Johnson, and Stockmeyer 1976). We assume
our input graph is named G = (V, E) and the output graph is named G′ =
(L ∪ R, E′), where G′ is bipartite with respective sides L and R.

Like Bodlaender, Jansen, and Woeginger (1994), we create a so-called vertex
control subgraph in G′, which includes the precolored vertices a, b and c. But
unlike theirs, our vertex control subgraph contains 6 · 9 · |E| vertices, organized
into groups of 6 vertices each, which we call chunks. The chunks are connected
to one another as portayed in Figure 2.2. This way, each chunk contains
exactly two known vertices of each color, one of them in L and the other in R.

We introduce a vertex v to L for each v ∈ V. For each {x, y} ∈ E, we intro-
duce three paths from x to y using three vertices each as Lemma 2.9 states.
We can color-restrict these path vertices as necessary by linking each of them

24

2 NP-Hardness of NETWORK UNTANGLING on Restricted Graph Classes

Outline of Reduction 2.11

X

a b c

G \ {a, b, c}

X

a b c

G \ {a, b, c}

X

a b c

G \ {a, b, c}G \ {a, b, c} G \ {a, b, c} G \ {a, b, c}

Figure 2.3: Depiction of the three layers of Reduction 2.11. All edges of the input
graph are copied to every layer. All newly constructed edges are
incident to X and are depicted as continuous lines.

to the respective vertex in a unique chunk of the vertex-control subgraph.
Note that x and y are indeed both allowed to be in L, as those connecting
paths all contain an odd number of vertices. By Lemma 2.9, we now know
that x and y are assigned different colors for each {x, y} ∈ E, directly showing
the correctness of the reduction.

We also know that a, b and c are all on the left graph side and that ∆(G′) ≤
12, since each edge of G was replaced by 3 paths and ∆(G) = 4. The vertices
in the vertex control subgraph and in the added paths clearly have degrees of
less than 12.

Using Theorem 2.10, we can next prove Theorem 2.7 by providing another
Karp reduction. This time, we reduce from 1-PRECOLORING EXTENSION WITH
THREE COLORS to MINTIMELINE∞. Of course, we assume the input graph G is
bipartite, has ∆(G) = 12, and the precolored vertices are on the same side, as
Theorem 2.10 states.

Reduction 2.11: Given an input graph G = (V, E) with three special ver-
tices a, b, c ∈ V, we construct a temporal graph G = (V′, E1, E2, E3) in the
following way:

• Let V′ = V ∪ {X}, where X is a new vertex.

• Let E1 = E ∪ {{X, b}, {X, c}}.

• Let E2 = E ∪ {{X, a}, {X, c}}.

25

2 NP-Hardness of NETWORK UNTANGLING on Restricted Graph Classes

• Let E3 = E ∪ {{X, a}, {X, b}}.

The three layers essentially just copy the input graph, except for some
edges of the introduced vertex X (delineated in Figure 2.3). Together with
kv = 2 for each v ∈ V, kX = 0 and ℓ = 0, the temporal graph G then forms
the output instance. ♦

Proof of Theorem 2.7. It is easy to see that the output temporal graph of Reduc-
tion 2.11 is bipartite and has a maximum degree of twelve, as long as the input
is an instance satisfying the requirements of Theorem 2.10. In the following,
we prove that there is a solution to the input instance if and only if there is
a solution to the output instance.

Since kX = 0, b and c have to be in any output solution’s vertex cover
of layer G1—which also holds for a and c in G2, as well as for a and b in G3,
respectively. As kv = 2 and τ = 3, in any maximal solution each v ∈ V is in the
vertex cover of exactly one layer. Thus, there are three disjoint independent
sets of vertices in G′ \ X = G (i.e. three disjoint sets of vertices such that
G′ \ X contains no edge between two separate vertices of the same set). Using
the layer numbers of the independent sets as color numbers, this directly
translates (and retranslates) to G′ having a proper 3-coloring with a, b, and c
being assigned colors 1, 2, and 3, thereby concluding the proof.

26

3 Searching for Efficiently
Computable Cases Using
Parameterized Methods

In this chapter, we analyze NETWORK UNTANGLING from the perspective of
parameterized complexity theory. In doing so, we identify two different pa-
rameter combinations for which MINTIMELINE∞ and MINTIMELINE+ are both
fixed-parameter tractable and present corresponding algorithms that solve these
problems (Sections 3.1 and 3.3). We also include a parameterized hardness result
in Section 3.2. Finally, we derive another FPT result for NETWORK UNTANGLING
by proving a relationship between two graph parameters in Section 3.4, which
was previously unknown to us. For readability purposes, we point out that all
algorithms in this chapter span across multiple pages and are therefore divided
into several smaller parts.

3.1 FPT when Parameterized by Treewidth and
Number of Layers

Previously, we established that NETWORK UNTANGLING is NP-hard on under-
lying trees, but that hardness result only holds for large numbers of τ, i.e. for
temporal graphs with many time steps. Encouraged by this discovery, we tried
to find algorithms for efficiently solving both problem variants on temporal trees
if τ is small—and this time, we were successful. Moreover, we could generalize
this to all temporal graphs with bounded treewidth. Therefore, in this section we
present two algorithms which reveal that MINTIMELINE∞ and MINTIMELINE+
are both in FPT w.r.t. tw + τ.

3.1.1 MinTimeline∞ Algorithm

Starting with the MINTIMELINE∞ variant, we are going to prove the following:

Theorem 3.1: MinTimeline∞ in FPT w.r.t. tw+ τ

MINTIMELINE∞ is decidable in |V| · |G| ·
(
τk∞ · k∞

)O(tw)
+ 2O(tw3) time.

27

3 Searching for Efficiently Computable Cases Using Parameterized Methods

Note that this implies the problem is in XP w.r.t. k∞ and FPT w.r.t. τ on temporal
graphs with bounded treewidth, the latter because k∞ < τ for any instance of
MINTIMELINE∞ which cannot be trivially reduced. In particular, if kv ≥ τ for
some v ∈ V, then v is assumed to be always active and can thus be removed
along with its incident temporal edges.

Algorithm 3.1: FPT w.r.t. tw + τ for MINTIMELINE∞ (Part 1)
Data: A temporal graph G = (V, E1, . . . , Eτ), a number ℓ ∈ N, an integer

vector k ∈ N|V| and a tree decomposition D of G↓ with set of bags B.
We assume D to be rooted in a bag r ∈ B, meaning that each bag
other than r has a unique parent bag.

/* The high-level goal of the algorithm is to fill its array T
in the form of a dynamic program over the given tree
decomposition D. In order to do so, child bags have to be
processed before their parents (i.e. using bottom-up
traversal). Finally, the instance is YES if the root bag
has a non-empty array entry. */

1 procedure main ()
2 Initialize globally-accessible array T with T[b] = ∅ for each b ∈ B
3 foreach bag b ∈ B in bottom-up-order do process_bag(b)
4 if T[r] is ∅ then return NO else return YES
5 end procedure

The corresponding Algorithm 3.1 solves MINTIMELINE∞ with a rather typical
dynamic programming approach on a precomputed tree decomposition of the
underlying graph of an input instance. Traversing the tree from the leafs up-
wards, at each bag, each possible way of activating the bag’s vertices across the
τ layers is tested out, specifically by checking if it forms a local solution. This is
mainly what results in the high dependency of the running time on tw and τ.
Successful test results are written in a table and later revisited at the respective
parent bags in order to verify that these local solutions can be properly extended.

28

3 Searching for Efficiently Computable Cases Using Parameterized Methods

Algorithm 3.1: FPT w.r.t. tw + τ for MINTIMELINE∞ (Part 2)
/* process_bag finds all possible vertex occurrence

combinations for a given bag with regards to its descendants
(see Lemma 3.2 for details). They are then stored in the
array T. */

6 procedure process_bag (b ∈ B)
7 foreach function f : b→ P([τ]) with | f (v)| ≤ kv for each v ∈ b do
8 if check_covering(b, f , b, f) is false then continue
9 store← true

10 foreach child bag c of b in D do
11 if there is no function g in T[c] such that

check_covering(b, f , c, g) is true then store← false
12 end foreach
13 if store is true then T[b]← T[b] ∪ { f }
14 end foreach
15 end procedure

/* Given two vertex sets S and Q and respective vertex
occurrences for those sets, check_covering checks if all
temporal edges with endpoints both in S and in Q are
correctly covered, assuming all their vertices are activated
at the corresponding given time steps. */

16 procedure check_covering (S ⊆ V, f : S→ P([τ]), Q ⊆ V,
g : Q→ P([τ]))

17 foreach v ∈ S ∩Q do
18 if f (v) ̸= g(v) then return false
19 end foreach
20 foreach temporal edge e = ({v, w}, t) in G with v ∈ S and w ∈ Q do
21 if f (v) ∪ g(w) contains no t′ such that t′ ≤ t ≤ t′ + ℓ then
22 return false
23 end if
24 end foreach
25 return true
26 end procedure

29

3 Searching for Efficiently Computable Cases Using Parameterized Methods

In order to show Theorem 3.1 using Algorithm 3.1, we initially state two
lemmas about this algorithm.

Lemma 3.2: Let Gb be the subgraph of G induced by the vertices in bag b
and its descendant bags in D. Let k′ be the corresponding subvector of
k, i.e. the unique vector with only k′v = kv for each v ∈ Gb. A function f
is saved in T[b] by the procedure process_bag(b) of Algorithm 3.1 if and
only if there is a solution to the instance (Gb, k′, ℓ) in which each v ∈ b is
activated at time steps f (v).

Proof. In order for a function f to be saved in T[b], the function has to pass
several calls to check_covering. The first call in Line 8 ensures that each
temporal edge between vertices in b is covered by activating each v ∈ b at the
time steps in f (v). The other calls (Line 11) ensure that for each child c of b
in D, there is a saved function g in T[c] such that all temporal edges between
vertices in b and c can be covered by activating each v ∈ b at times f (v) and
each w ∈ c at times g(w).

Note that each vertex v is activated for at most kv times by each function
(see Line 7) and two functions f and g can only pass check_covering if they
map same vertices to same time step sets. By induction over the descendants
of b in D (which were processed before b), this means that all remaining
temporal edges of Gb can be covered after activating each v ∈ b within layers
f (v), while still activating each u ∈ Gb only for at most ku times.

Lemma 3.3: Let k′ = min(k∞, τ
2). Algorithm 3.1 runs in time

O
((

(τ
k′) · k∞ + 1

)2tw+2 · |V| · |G|
)

, when given a tree decomposition D
with minimum treewidth.

Proof. For every bag b, the algorithm tries out at most
(
(τ

k′) · k∞ + 1
)tw+1 func-

tions (Line 7) and compares each of them against at most the same number of
functions of every child bag of b. This number results from having at most
1 + ∑

i∈[kv]
(τ

i) ≤ 1 + k∞(τ
k′) distinct ways to map each v ∈ b individually and

having at most tw + 1 vertices in b.
The check_covering procedure called for each such combination takes time

O(|G|). Every bag is only processed once and its functions are only compared
against functions of at most one parent bag. We assume that D contains fewer
than |V| bags, because otherwise it can be transformed in O(|V| · |G|) time
into such a tree decomposition without changing the treewidth (Bodlaender
1996).

30

3 Searching for Efficiently Computable Cases Using Parameterized Methods

Thus, the total running time is in O
((

(τ
k′) · k∞ + 1

)2tw+2 · |V| · |G|
)

.

With this knowledge, we can now prove Theorem 3.1.

Proof of Theorem 3.1. By choosing b to be the root bag r in Lemma 3.2, we
directly infer that Algorithm 3.1 saves at least one function in T[r] if the input
is a YES-instance and does not save a function there otherwise. The algorithm
then returns YES or NO accordingly (see Line 4). Lemma 3.3 proves the
algorithm’s running time, if we previously use the algorithm of Bodlaender
(1996) to compute a minimum tree decomposition D of G↓.

3.1.2 MinTimeline+ Algorithm

Having addressed MINTIMELINE∞ in the previous section, we now want to
provide a similar theorem for MINTIMELINE+:

Theorem 3.4: MinTimeline+ in FPT w.r.t. tw+ τ

MINTIMELINE+ can be solved in time |G| · |V| ·
min

(
2O(tw·τ), (tw · τ)O(tw·k∞+ℓ)

)
+ 2O(tw3) · |V|.

This implies that MINTIMELINE+ is also in XP w.r.t. k∞ + ℓ and in FPT w.r.t. τ
on temporal graphs with constant treewidth.

Algorithm 3.2 uses a method similar to the previous Algorithm 3.1 for solving
MINTIMELINE+, i.e. it is based on a dynamic program on a given tree decompo-
sition. We again try out all possible ways to activate vertices of each individual
bag and construct a global solution step by step from these local ones. Since this
problem variant additionally imposes a limit on the total sum of interval lengths
of any global solution, we additionally record the sum of interval lengths if each
local solution in our dynamic programming table.

31

3 Searching for Efficiently Computable Cases Using Parameterized Methods

Algorithm 3.2: FPT w.r.t. tw + τ for MINTIMELINE+ (Part 1)
Data: A temporal graph G = (V, E1, . . . , Eτ), a number ℓ ∈ N, an integer

vector k ∈ N|V| and a tree decomposition D of G↓ with set of bags B.
We assume D to be rooted in a bag r ∈ B, meaning that each bag
other than r has a unique parent bag.

/* Similar to the corresponding routine of Algorithm 3.1. */
1 procedure main ()
2 Initialize globally-accessible array T with T[b] = ∅ for each b ∈ B
3 foreach bag b ∈ B in bottom-up-order do process_bag(b)
4 if T[r] is ∅ then return NO else return YES
5 end procedure

/* Modified for this problem variant from Algorithm 3.1.
Additionally computes and stores an interval price for each
saved function which is not allowed to exceed ℓ. */

6 procedure process_bag (b ∈ B)
7 foreach function f : b→ P([τ]) with ∑

v∈b
| f (v)| ≤ ∑

v∈b
kv + ℓ do

8 if check_covering(b, f , b, f) is false then continue
9 y← compute_sum(b, f)

10 foreach child bag c of b in D do
11 let (g, x) ∈ T[c] such that check_covering(b, f , c, g) is true and x

is minimal
12 if g is undefined then y← ℓ+ 1
13 else y← y + x − compute_sum(c ∩ b, f)
14 end foreach
15 if y ≤ ℓ then T[b]← T[b] ∪ {(f , y)}
16 end foreach
17 end procedure

32

3 Searching for Efficiently Computable Cases Using Parameterized Methods

Algorithm 3.2: FPT w.r.t. tw + τ for MINTIMELINE+ (Part 2)
/* A greedy sub-algorithm to calculate the necessary interval

price for realizing the given vertex occurrences of a set.
*/

18 procedure compute_sum (S ⊆ V, f : S→ P([τ]))
19 result← 0
20 foreach v ∈ S do
21 if kv is zero and f (v) is not ∅ then return ℓ+ 1
22 T ← f (v)
23 while |T | > kv do
24 let t′ ∈ f (v) and t ∈ T such that t′ < t and t− t′ is minimal
25 result← result + (t− t′)
26 T ← T \ {t}
27 end while
28 end foreach
29 return result
30 end procedure

/* Similar to the respective procedure in Algorithm 3.1, except
it does not need to account for vertex intervals. */

31 procedure check_covering (S ⊆ V, f : S→ P([τ]), Q ⊆ V,
g : Q→ P([τ]))

32 foreach v ∈ S ∩Q do
33 if f (v) ̸= g(v) then return false
34 end foreach
35 foreach temporal edge e = ({v, w}, t) in G with v ∈ S and w ∈ Q do
36 if t ̸∈ f (v) ∪ g(w) then return false
37 end foreach
38 return true
39 end procedure

33

3 Searching for Efficiently Computable Cases Using Parameterized Methods

For the purpose of showing Theorem 3.4 with Algorithm 3.2 we again make
use of various lemmas.

Lemma 3.5: Assume we have an instance of MINTIMELINE+ as described
by Algorithm 3.2. Let S ⊆ V such that kv > 0 for each v ∈ S and let
f : S → P([τ]). For each v ∈ S, let Lv be the minimum number x ∈ N
of time steps where v has to be active but not activated in order to be
active at the time steps f (v) while using only kv activations. The procedure
compute_sum(S, f) of Algorithm 3.2 outputs ∑

v∈S
Lv.

Proof. The procedure handles each v ∈ S separately and sums up the indivi-
dual Lv. We assume that | f (v)| > kv, as otherwise Lv is trivially zero.
Each time step b ∈ f (v) at which v is active but not activated increases
Lv by the length of the shortest interval from any other a ∈ f (v) to b.

In this sense, the time steps in f (v) effectively only differ by their in-
terval lengths and are otherwise exchangeable. In order to minimize Lv,
compute_sum can thus select the time steps at which v should not be activated
using a greedy strategy, i.e. by repeatedly taking the shortest still available
interval between any distinct a, b ∈ f (v) (marking b as time step where v is
active but not activated), until only kv activations of v remain.

Lemma 3.6: Let Gb be the subgraph of G induced by the vertices in bag b
and its descendant bags in D. Let k′ be the corresponding subvector of
k, i.e. the unique vector with only k′v = kv for each v ∈ Gb. A function f
is saved in T[b] by the procedure process_bag(b) of Algorithm 3.2 if and
only if there is a solution to the instance (Gb, k′, ℓ) in which each v ∈ b is
activated at time steps f (v).

Proof. The proof is nearly identical to the proof of Lemma 3.2 —except this
time we additionally need to keep track of the minimum number x ≤ ℓ for
each saved function f , such that the instance (Gb, k′, x) has a corresponding
solution using f on the vertices of b. This way, we can ensure that x never
exceeds ℓ for a saved function. We call x the function’s interval price.

In order to compute that price for each function f , we use the procedure
compute_sum on bag b with f as described by Lemma 3.5 (if kv = 0 and
f (v) ̸= ∅ for some v ∈ b, then compute_sum signifies that there is no respective
solution by returning ℓ+ 1). Additionally, we add the interval prices of the
used functions of each child c of b to the interval price of f (counting vertices
in c ∩ b only once), so that the saved interval price of f on bag b reflects the
lowest possible total price of the sub-instance that the lemma refers to.

34

3 Searching for Efficiently Computable Cases Using Parameterized Methods

Lemma 3.7: Let p = (tw + 1) · k∞ + ℓ. Algorithm 3.2 runs in time

O
(

τ · |G| · |V| ·min
(

2(tw+1)·τ, p · ((tw + 1)τ)p
)2

)
when given a tree de-

composition D with minimum treewidth.

Proof. The set of all vertex occurences including vertices of a bag b has size
at most (tw + 1) · τ . At Line 7, the algorithm iterates over all its subsets
with size at most p. This yields at most min(2(tw+1)·τ, p · ((tw + 1)τ)p) such
subsets, limiting the number of functions which are checked per bag.

Each such function of a bag b is compared against at most the same number
of saved functions of each child bag of b and these comparisons (i.e. calling
the check_covering and compute_sum procedure for each function pair) take
at most O(|G| · τ) time each. This results in the above running time, since we
assume that D has at most |V| bags (otherwise D can be accordingly modified
beforehand using a procedure described by Bodlaender (1996)).

Using these lemmas, we can prove Theorem 3.4.

Proof of Theorem 3.4. By choosing b to be the root bag r in Lemma 3.6, we
directly infer that Algorithm 3.2 saves at least one function in T[r] if the input
is a YES-instance and does not save a function there otherwise. The algorithm
then returns YES or NO accordingly (see Line 4). Adapting Lemma 3.7 shows
the stated running time, assuming we previously use the method described by
Bodlaender (1996) to compute a tree decomposition D of minimum treewidth.

3.2 W[2]-Hardness w.r.t. k∞ + ℓ on Temporal
Graphs with dlf = 1

In the previous section, we learned that both introduced variants of NETWORK
UNTANGLING are fixed-parameter tractable for the combined parameter tw + τ.
A natural question to ask would be if these results can be improved by replacing
the bound on the number of layers τ with a bound on k∞ + ℓ, because at least
regarding the MINTIMELINE∞ problem we know that k∞ + ℓ < τ for any non-
reducible instance. However, we have to answer this question in the negative, as
the following theorem indicates.

Theorem 3.8: W[2]-Hardness w.r.t. dlf + k∞ + ℓ

MINTIMELINE+ and MINTIMELINE∞ are both W[2]-hard w.r.t. k∞, even
if the underlying graph’s distance to a linear forest is one and ℓ = 0.

35

3 Searching for Efficiently Computable Cases Using Parameterized Methods

Illustration of Reduction 3.10

S0
1 S1

1 S2
1 S3

1 S6
1

S1

S0
2 S1

2 S3
2 S4

2 S6
2

S2

S0
3 S2

3 S4
3 S5

3 S6
3

S3

X

1 2 3 1 3 4 2 4 5

Figure 3.1: Output temporal graph of Reduction 3.10 for the HITTING SET
instance (U, (S1, S2, S3), k) = ([5], ({1, 2, 3}, {1, 3, 4}, {2, 4, 5}), k).
The edges annotated with numbers are present in that numbered
layer. All non-annotated edges are present within a unique layer
only containing that single temporal edge. The number k in the in-
put instance is only relevant for setting the vector entry k′X in the
constructed instance. For each other constructed vertex v with un-
derlying degree 3, we set k′v = 2. If the underlying degree of v is 1
instead, then we set k′v = 0.

Note that W[2]-hardness w.r.t. tw+ k∞ + ℓ follows from the theorem, as tw(G) ≤
dlf(G) + 1 for each simple graph G. We next show Theorem 3.8 by providing
an appropriate FPT-reduction from HITTING SET, which is W[2]-hard w.r.t. its
parameter k (Downey and Fellows 1999).

Problem Definition 3.9: HITTING SET

Input: A finite set U ⊆ N, a collection of subsets S1, . . . , Sm ⊆ U and
a number k ∈ N.

Question: Is there an H ⊆ U with |H| ≤ k and H ∩ Sj ̸= ∅ for all j ∈ [m]?

Reduction 3.10: Given an instance (U, (S1, . . . , Sm), k) of HITTING SET we
construct a temporal graph G in the following way.

For each given set Sj, create a set Sj containing |Sj| + 2 new vertices.

Formally, let Sj =
⋃

u∈Sj

{
Su

j

}
∪
{
S0

j ,Sm+1
j

}
for each j ∈ [m]. Let X be a new

36

3 Searching for Efficiently Computable Cases Using Parameterized Methods

vertex and let V =
⋃

j∈[m]
Sj ∪ {X}. We use V as the vertex set of G. For each

u ∈ U, let the layer Gu have the edge set Eu =
{
{X,Su

j } | Su
j ∈ V \ {X}

}
.

For each j ∈ [m], for each Su
j ∈ Sj \ {Sm+1

j }, let Sv
j ∈ Sj with u < v

so that there is no Sw
j ∈ Sj with u < w < v. With each such pair of Su

j
and Sv

j create a new unique layer containing only an edge between these
two vertices. This way, the constructed underlying graph contains a path
subgraph from S0

j to Sm+1
j for each Sj. An example for this construction is

illustrated in Figure 3.1.
To construct a vector k′ for MINTIMELINE∞, set k′X = k. Afterwards,

set k′S0
j

and k′Sm+1
j

to zero for each j ∈ [m] and set k′v = 2 for all remaining

vertices v ∈ V. Together with ℓ = 0, G and k′ form the output instance. ♦

Using Reduction 3.10 we can directly prove the previous theorem.

Proof of Theorem 3.8. First note that the order of created layers in Reduc-
tion 3.10 does not matter except for description purposes, because ℓ = 0.
To prove the reduction’s correctness, we show that its output is a YES-instance
of MINTIMELINE∞ if and only if its input was a YES-instance of HITTING SET.
This is sufficient to prove the theorem, as the reduction runs in polynomial
time, k′∞ = k, and only the vertex X needs to be deleted for the underlying
graph of any constructed instance to become a linear forest.

(⇒) If the input instance has a solution H, then we build up a solution to
the constructed instance by first using X in the vertex cover of the correspon-
ding layers {Gu | u ∈ H}. Since X is an endpoint of all edges in those layers,
no other node needs to be activated there. For each j ∈ [m], there is now at
least one v ∈ Sj with an incident temporal edge covered by X, because H is a
hitting set solution. As v has only three temporal edges in total (one to X and
two on the path from S0

j to Sm+1
j) and k′v = 2, v can be activated to cover its

other adjacent temporal edges. It is then easily seen that we can cover so-far
uncovered temporal edges using the vertices Sj \ {v,S0

j ,Sm+1
j }. Specifically,

those nodes cover either their temporal edge closer to S0
j if they are on the

path from v to S0
j or their temporal edge closer to Sm+1

j if they are on the path

from v to Sm+1
j . Additionally, they all cover a temporal edge to the vertex X if

otherwise uncovered. This is possible, because each vertex apart from X is
activated at most two times this way.

(⇐) If the input is a NO-instance, then each H′ ⊆ U with |H′| ≤ k has at
least one set Sj where Sj ∩ H = ∅. Since k′X = k, this means that for every
potential solution of the output instance there is at least one Sj where no v ∈ Sj

37

3 Searching for Efficiently Computable Cases Using Parameterized Methods

has an incident temporal edge covered by X. The number of temporal edges
incident to vertices in Sj is (|Sj|+ 1) + |Sj| = 2 · |Sj|+ 1, since they consist of
an underlying path of |Sj|+ 2 vertices (with each edge being present in just
one layer) and |Sj| additional temporal edges to X. Each of those temporal
edges lies in a distinct layer. But the maximum number of layers where
vertices of Sj can be active is only 2 · |Sj|, because k′S i

j
= 2 for each i ∈ Sj,

k′S0
j
= k′Sm+1

j
= 0, and ℓ = 0. Thus, at least one temporal edge cannot be

covered and the output consequently is a NO-instance of MINTIMELINE∞.

3.3 FPT when Parameterized by Tree Partition
Width, k∞ and ℓ

Knowing that an FPT-algorithm for NETWORK UNTANGLING with the combined
parameter tw + k∞ + ℓ does not exist unless FPT = W[2], we realize that we
should try finding FPT-algorithms for larger parameters. Of course, we still
want to keep the parameterization as small as possible in terms of parameter
relationships. Additionally, we are still interested in cases where k∞ + ℓ is
small, since we handled the cases with bounded τ and tw in Section 3.1 already.
Thus, we looked for a graph parameter that is hopefully only slightly larger than
treewidth, but is not upper-bounded by the distance to a linear forest (because of
Theorem 3.8). We arrived at the tree partition width parameter. Using tpw,
we were successful in formulating parameterized algorithms for our problems
in cases where k∞ + ℓ is small. The current section is dedicated to delineating
these algorithms.

3.3.1 MinTimeline∞ Algorithm

Beginning with the MINTIMELINE∞ problem, we first observe the following:

Observation 3.11: If the number of temporal edges between two distinct
vertices a and b exceeds (ka + kb) · (ℓ+ 1) in an instance of MINTIMELINE∞,
then it is a NO-instance.

Proof. With a single activation of the vertex a at most ℓ+ 1 of those temporal
edges can be covered and the same holds for vertex b. Since a and b can
be activated for (ka + kb) times in total, (ka + kb) · (ℓ+ 1) upper-bounds the
number of temporal edges with endpoints a and b that can be covered.

From now on, because of Observation 3.11, we assume to be given instances of
MINTIMELINE∞ where each edge is present in at most 2k∞ · (ℓ+ 1) layers.

With that, we are now ready to state this part’s main theorem.

38

3 Searching for Efficiently Computable Cases Using Parameterized Methods

Theorem 3.12: MinTimeline∞ in FPT w.r.t. tpw + k∞ + ℓ

MINTIMELINE∞ can be solved in time (k∞ · (ℓ+ 1) · tpw2)
O(k2

∞·tpw2) · |G| ·
|V| when given a tree partition of G↓ of width tpw.

It follows that the problem is in FPT w.r.t. tpw + k∞ + ℓ, since a tree partition of
minimum width can be polynomially approximated in polynomial time (Bod-
laender, Groenland, and Jacob 2022).

Algorithm 3.3: FPT w.r.t. tpw + k∞ + ℓ for MINTIMELINE∞ (Part 1)
Data: A temporal graph G = (V, E1, . . . , Eτ), a number ℓ ∈ N, an integer

vector k ∈ N|V| and a tree partition D of G↓ with set of bags B. We
assume D to be rooted in a bag r ∈ B, meaning that each bag other
than r has a unique parent bag.

/* The high-level goal of the algorithm is to fill its array T
in the form of a dynamic program over the given tree
partition D. In order to do so, child bags have to be
processed before their parents (i.e. using bottom-up
traversal). Finally, the instance is YES if the root bag
has a non-empty array entry. */

1 procedure main ()
2 Initialize globally-accessible array T with T[b] = ∅ for each b ∈ B
3 foreach bag b ∈ B in bottom-up-order do process_bag(b)
4 if T[r] is ∅ then return NO else return YES
5 end procedure

/* process_bag finds all possible vertex occurrences for a
given bag with regards to its descendants (see Lemma 3.13
for details). They are then stored in the array T. */

// parent : B→ B ∪∅ denotes a bag’s parent bag in D (yields ∅
for root bag).

// children : B→ P(B) denotes set of a bag’s child bags in D.
6 procedure process_bag (b ∈ B)
7 T ← {t | ({a, b}, t) ∈ G, {a, b} ⊆ (b ∪ parent(b))}
8 foreach function f : b→ P(T) with | f (v)| ≤ kv for each v ∈ b do
9 if check_covering(b, f , b, f) ̸= ∅ then continue

10 if distribute(b, f , children(b)) is false then continue
11 T[b]← T[b] ∪ { f }
12 end foreach
13 end procedure

39

3 Searching for Efficiently Computable Cases Using Parameterized Methods

Algorithm 3.3: FPT w.r.t. tpw + k∞ + ℓ for MINTIMELINE∞ (Part 2)

/* This function is the main addition when compared to the
previous Algorithm 3.1. It is a bounded search tree
algorithm to check if a given bag b’s function f can be
extended such that all temporal edges to child bags (given
as the set C) are covered as well. This is also why the
function recursively calls itself. */

14 procedure distribute (b ∈ B, f : b→ P([τ]), C ⊆ B)
15 foreach v ∈ b do
16 if | f (v)| > kv then return false
17 end foreach
18 if C = ∅ then return true

19 choose any c ∈ C
20 foreach g ∈ T[c] do
21 if check_covering (b, f , c, g)= ∅ then
22 return distribute (b, f , C \ {c})
23 end if
24 end foreach
25 foreach g ∈ T[c] do
26 f ′ ← extend (b, f , check_covering (b, f , c, g))
27 if distribute (b, f ′, C \ {c}) is true then return true
28 end foreach
29 return false
30 end procedure

The presented Algorithm 3.3 decides MINTIMELINE∞ in FPT-time w.r.t. tpw+
k∞ + ℓ by interleaving the dynamic programming method already known from
Algorithm 3.1 with an additional bounded search tree paradigm. The main
reason for this change is that we do not parameterize by τ as we did in the
setting of the previous two algorithms, and consequently cannot try out all
possible ways to activate the vertices of a particular bag. Instead, we limit these
checked vertex activations per bag to a number of layers depending only on
tpw + k∞ + ℓ. We specifically use the layers where we have temporal edges
between nodes of the bag itself when joined with its parent bag.

For each bag, the algorithm subsequently allocates the remaining possible
activations of its vertices with a bounded search tree approach, so that it can
cover otherwise uncovered temporal edges to vertices in child bags. Technically,
this is also why we need to use a tree partition instead of the previous tree
decomposition as the foundation of this dynamic program (as Theorem 3.8
further demonstrated): A tree partition guarantees that all neighbors of each

40

3 Searching for Efficiently Computable Cases Using Parameterized Methods

vertex are either in the same bag as the vertex itself or in an adjacent bag, which
in our case ensures that we can indeed construct a global solution from the local
solutions that we find by utilizing bounded search trees.

In order to prove Theorem 3.12 based on Algorithm 3.3, we first introduce
some lemmas, as usual.

Lemma 3.13: Let Gb be the subgraph of G induced by vertices in bag b and
its descendant bags of the tree partition D. Let k′ be the corresponding
subvector of k, i.e. the unique vector with only k′v = kv for each v ∈ Gb.
Let p be the parent bag of b in D, or p = ∅ if b is the root. Let T ⊆ [τ] be
the time steps where temporal edges between vertices in b ∪ p are present.
The procedure process_bag(b) of Algorithm 3.3 saves every function
f : b→ P(T) in T[b], for which there is a solution to the instance (Gb, k′, ℓ)
where each v ∈ b is activated at time steps f ′(v) ⊇ f (v).

Proof. Clearly, the algorithm examines all such functions (Line 8). For each
function f which gets saved in T[b], a call to check_covering in Line 9 ensures
that each temporal edge between vertices in b is covered when each v ∈ b is
activated at the time steps in f (v).

Let C be the set of child bags of b in D. As D is a tree partition, all remaining
temporal edges in Gb that any v ∈ b potentially has to cover are between itself
and vertices in C.

For each c ∈ C, let Tc ⊆ [τ] be the set of time steps where temporal edges
between vertices in b∪ c are present. By induction of the lemma, for each child
bag c ∈ C, we previously saved every function g : c → P(Tc) in T[c] such
that a solution to the instance of the temporal graph Gc with a corresponding
subvector of k′ and ℓ can be constructed, where each v ∈ c is activated at a set
of time steps including g(v). We know that all bags in C ∪ {b} are pairwise
disjoint, since D is a tree partition. This especially means that if we pick one
function for each one of those bags, using the bag as the function’s domain,
then no vertex is mapped by multiple picked functions.

Thus, it remains to check if there is a set of functions G = {gc | c ∈ C}
where each gc ∈ G is saved in T[c] and where we can find a function f ′ : b→
P(τ) with f (v) ⊆ f ′(v) and | f ′(v)| ≤ kv for each v ∈ b, such that for each
c ∈ C every temporal edge between any w ∈ c and any v ∈ b is covered if
we activate w at time steps gc(w) and v at time steps f ′(v). We call a function
f ′ : b→ P(τ) with f (v) ⊆ f ′(v) for all v ∈ b an extension of the function f .

Clearly, if a solution exists and the correct set G is known, then f ′ can be
directly constructed from f by covering otherwise uncovered temporal edges
to vertices in child bags using the vertices in b. For this reason, the distribute
routine (Line 14), when called by process_bag, recursively goes through all

41

3 Searching for Efficiently Computable Cases Using Parameterized Methods

c ∈ C and searches for G by looking at each gc ∈ T[c].
If there are no uncovered temporal edges between vertices of b and the

current c ∈ C using the intermediate functions f ′ for b and gc for c, then it
is clearly correct to pick gc and to avoid trying out all other saved functions
for c (see Line 21). Otherwise, for each gc saved in T[c], the procedure checks
if f can be extended to an intermediate f ′ such that activating each w ∈ c
at time steps gc(w) and activating each v ∈ b at time steps f ′(v) covers all
temporal edges between v and w. If yes, then the next recursive call continues
this branch by looking at the next child bag in C. If not, then the current
branch can not lead to a correct G and is therefore discarded. Such a stepwise
extension of f to f ′ is possible, since each intermediate f ′ is given to the
subsequent recursive call and the function extensions are monotone in the
sense that they never make a set of time steps a particular vertex is mapped
to lose elements.

Note that distribute ensures that each vertex v is activated for at most kv
times when applying each function, even if extended (see Line 16). By induc-
tion over the descendants of b in D, this means that all temporal edges in Gb
can be covered after activating each v ∈ b in layers f ′(v), while still activating
each u ∈ Gb only for at most ku times.

Lemma 3.14: The procedure distribute(b, f , C) (see Line 14) runs in time
O(xk∞·tpw · (|C|+ 1) · |G|), where x = max

c∈C
|T[c]|, whenever called by the

process_bag procedure.

Proof. Consider an arbitrary call of the distribute procedure and let c ∈ C
be the child of b chosen in this call.

Assume that there is a function g ∈ T[c] such that the check in Line 21 suc-
ceeds. Then, the algorithm does not branch and returns distribute(b, f , C \
{c}). The recursion depth of these distribute calls is at most |C|+ 1, as with
each subsequent call one element is removed from C and C = ∅ is a base case.
Every iteration looks at up to x functions and calls check_covering for each
of them, and checks the base cases, so in total all calls of this case take at most
O(x · (|C|+ 1) · |G|) time.

Let us now consider the other case, i.e. that there is no function g ∈ T[c]
such that check_covering(b, f , c, g)= ∅. Then the procedure branches over all
g ∈ T[c] and makes a recursive call on each branch with f extended to f ′ and C
reduced by c. Since f ′(v) > f (v) for at least one v ∈ b, these calls can happen
at most tpw · k∞ times until a base case (Line 16) is reached. Thus, the total
time spent on distribute calls in this case for one bag b is O(xk∞·tpw · |G|)).

Note that the distribute procedure essentially forms a bounded search
tree algorithm inside the larger algorithm.

42

3 Searching for Efficiently Computable Cases Using Parameterized Methods

Lemma 3.15: Algorithm 3.3 runs in time

O
((

8k∞ · (ℓ+ 1) · tpw2)(k2
∞+k∞)tpw2

· |G| · |V|
)

, if the tree partition

D has width tpw.

Proof. The set T in Line 7 has a size of at most 2k∞ · (ℓ + 1) · (2tpw)2 ≤
8k∞ · (ℓ + 1) · tpw2 (see Observation 3.11). Accordingly, there are
at most 1 + ∑

i∈[k∞]
(8k∞·(ℓ+1)·tpw2

i) ≤ 1 + k∞ ·
(
8k∞ · (ℓ+ 1) · tpw2)k∞ ≤(

8k∞ · (ℓ+ 1) · tpw2)k∞+1 subsets of T to which each individual v ∈ b can be
mapped in Line 8. Consequently, the total number of functions tried out and

potentially saved for each bag b is at most
(
8k∞ · (ℓ+ 1) · tpw2)(k∞+1)tpw.

With each of these functions the distribute procedure is called by

process_bag. Using Lemma 3.14 with x =
(
8k∞ · (ℓ+ 1) · tpw2)(k∞+1)tpw

reveals that each process_bag step on bag b with set of children C in D takes

total time at most O
((

8k∞ · (ℓ+ 1) · tpw2)(k2
∞+k∞)tpw2

· |G| · (|C|+ 1)
)

.

As process_bag is called once with each bag b in D, the total running time

of the algorithm is in O
((

8k∞ · (ℓ+ 1) · tpw2)(k2
∞+k∞)tpw2

· |G| · |V|
)

.

We are now set to prove Theorem 3.12.

Proof of Theorem 3.12. If we choose b to be the root bag r, then Lemma 3.13
shows that Algorithm 3.3 saves a function in the table entry T[b] if and only if
the input instance is YES. Clearly, the main procedure of the algorithm then
and only then returns YES, accordingly. The specified running time bound of
the algorithm is proven by adapting Lemma 3.15.

43

3 Searching for Efficiently Computable Cases Using Parameterized Methods

Algorithm 3.3: FPT w.r.t. tpw + k∞ + ℓ for MINTIMELINE∞ (Part 3)

/* Modifies f to cover additional given layers. */
31 procedure extend (S ⊆ V, f : S→ P([τ]), R ⊆ S× [τ])
32 f ′ ← f
33 while R ̸= ∅ do
34 let (v, t) ∈ R such that t is minimal
35 f ′(v)← f ′(v) ∪ {t} // Updates function entry of v
36 R← R \ {(v, t′) | t ≤ t′ ≤ t + ℓ}
37 end while
38 return f ′

39 end procedure

/* Given two vertex sets S and Q and respective vertex
occurrences for those sets, check_covering validates if all
temporal edges with endpoints both in S and in Q are
correctly covered by activating their vertices at the given
time steps. If yes, it returns ∅. Otherwise, it returns
the additional vertex occurrences which are needed to cover
those temporal edges with vertices in S. */

40 procedure check_covering (S ⊆ V, f : S→ P([τ]), Q ⊆ V,
g : Q→ P([τ]))

41 R← ∅
42 foreach temporal edge ({v, w}, t) in G with v ∈ S and w ∈ Q do
43 if f (v) ∪ g(w) contains no t′ such that t′ ≤ t ≤ t′ + ℓ then
44 R← R ∪ {(v, t)}
45 end if
46 end foreach
47 return R
48 end procedure

44

3 Searching for Efficiently Computable Cases Using Parameterized Methods

3.3.2 MinTimeline+ Algorithm

Having just described this section’s algorithm for deciding MINTIMELINE∞,
we adapt it for solving MINTIMELINE+ next (resulting in Algorithm 3.4). Again,
we have a useful observation about that problem variant to work with.

Observation 3.16: If the number of temporal edges between two distinct
vertices a and b exceeds ka + kb + ℓ in an instance of MINTIMELINE+, then
it is a NO-instance.

Proof. In MINTIMELINE+, each activation of a or b which lasts for more than
one layer induces a cost respective to its interval length and the sum of all
those costs is bounded by ℓ. Since a and b can be activated for at most ka and
kb times respectively, this limits the total number of coverable temporal edges
between a and b by ka + kb + ℓ.

Due to Observation 3.16 we from now on assume to be given instances of
MINTIMELINE+ where each edge is present in at most 2k∞ + ℓ layers.

While keeping this observation in mind, we focus on another theorem.

Theorem 3.17: MinTimeline+ in FPT w.r.t. tpw + k∞ + ℓ

MINTIMELINE+ can be solved in time 2O(tpw4·(ℓ+1)2·k2
∞) · |V| · |G| when

given a tree partition of G↓ of width tpw.

Similar to Theorem 3.12 earlier, this theorem implies that MINTIMELINE+ is in
FPT w.r.t. tpw + k∞ + ℓ if combined with the polynomial-time approximation of
a minimum-width tree partition described by Bodlaender, Groenland, and Jacob
(2022).

The algorithm we present to show Theorem 3.17 is Algorithm 3.4. It adapts the
previous Algorithm 3.3 to solve the MINTIMELINE+ variant and thus features
a similar strategy, involving bounded search trees and dynamic programming
on an underlying tree partition. The main difference to Algorithm 3.3 is the
introduction of saved counters for the sums of interval lengths (called “interval
prices”) at each saved local solution, in a way that matches the previous Algo-
rithm 3.2. These counters, which are saved in the dynamic programming table,
again ensure that no saved solution violates the total interval length limit of
MINTIMELINE+.

45

3 Searching for Efficiently Computable Cases Using Parameterized Methods

Algorithm 3.4: FPT w.r.t. tpw + k∞ + ℓ for MINTIMELINE+ (Part 1)
Data: A temporal graph G = (V, E1, . . . , Eτ), a number ℓ ∈ N, an integer

vector k ∈ N|V|, and a tree partition D of G↓ with a set of bags B. We
assume D to be rooted in a bag r ∈ B, meaning that each bag other
than r has a unique parent bag.

/* Main routine: Dynamic program as in Algorithm 3.3. */
1 procedure main ()
2 Initialize globally-accessible array T with T[b] = ∅ for each b ∈ B
3 foreach bag b ∈ B in bottom-up-order do process_bag(b)
4 if T[r] is ∅ then return NO else return YES
5 end procedure

/* Similar to the corresponding procedure of Algorithm 3.3,
additionaly storing the computed interval price in T. */

6 procedure process_bag (b ∈ B)
7 T ← {t | ({a, b}, t) ∈ G, {a, b} ⊆ (b ∪ parent(b))}
8 foreach function f : b→ P(T) with ∑

v∈b
| f (v)| ≤ ∑

v∈b
kv + ℓ do

9 if check_covering(b, f , b, f) ̸= ∅ then continue
10 x ← distribute(b, f , children(b), ℓ)
11 if x ≤ ℓ then T[b]← T[b] ∪ {(f , x)}
12 end foreach
13 end procedure

/* Similar to the respective procedure in Algorithm 3.3, except
it also returns the minimum interval price for realizing the
given input. */

14 procedure distribute (b ∈ B, f : b→ P([τ]), C ⊆ B, y ∈ Z)
15 if y < 0 or ∑

v∈b
| f (v)| ≤ ∑

v∈b
kv + y then return ℓ+ 1

16 if C = ∅ then return compute_sum(b, f)

17 choose any c ∈ C
18 foreach (g, x) ∈ T[c] do
19 if x = 0 and check_covering (b, f , c, g) = ∅ then
20 return distribute (b, f , C \ {c})
21 end if
22 end foreach
23 result← ℓ+ 1
24 foreach (g, x) ∈ T[c] do
25 f ′ ← extend (b, f , check_covering (b, f , c, g))
26 result← min(result, distribute (b, f ′, C \ {c}, y− x) + x)
27 end foreach
28 return result
29 end procedure

46

3 Searching for Efficiently Computable Cases Using Parameterized Methods

Algorithm 3.4: FPT w.r.t. tpw + k∞ + ℓ for MINTIMELINE+ (Part 2)

/* A greedy sub-algorithm to calculate the necessary interval
price for realizing given vertex occurrences of a set.
Identical to the corresponding procedure of Algorithm 3.2.
*/

30 procedure compute_sum (S ⊆ V, f : S→ P([τ]))
31 result← 0
32 foreach v ∈ S do
33 if kv is zero and f (v) is not ∅ then return ℓ+ 1
34 T ← f (v)
35 while |T | > kv do
36 let t′ ∈ f (v) and t ∈ T such that t′ < t and t− t′ is minimal
37 result← result + (t− t′)
38 T ← T \ {t}
39 end while
40 end foreach
41 return result
42 end procedure

/* Modifies f to cover additional given layers. Identical to
the corresponding procedure of Algorithm 3.3. */

43 procedure extend (S ⊆ V, f : S→ P([τ]), R ⊆ S× [τ])
44 f ′ ← f
45 while R ̸= ∅ do
46 let (v, t) ∈ R such that t is minimal
47 f ′(v)← f ′(v) ∪ {t} // Updates function entry of v
48 R← R \ {(v, t′) | t ≤ t′ ≤ t + ℓ}
49 end while
50 return f ′

51 end procedure

/* Same as the respective procedure of Algorithm 3.3, except it
does not need to account for vertex intervals. */

52 procedure check_covering (S ⊆ V, f : S→ P([τ]), Q ⊆ V,
g : Q→ P([τ]))

53 R← ∅
54 foreach temporal edge ({v, w}, t) in G with v ∈ S and w ∈ Q do
55 if t ̸∈ f (v) ∪ g(w) then R← R ∪ {(v, t)}
56 end foreach
57 return R
58 end procedure

47

3 Searching for Efficiently Computable Cases Using Parameterized Methods

For eventually proving Theorem 3.17, we once again highlight important
aspects about Algorithm 3.4 by different lemmas.

Lemma 3.18: Let Gb be the subgraph of G induced by vertices in bag b and
its descendant bags in the tree partition D. Let k′ be the corresponding
subvector of k, i.e. the unique vector with only k′v = kv for each v ∈ Gb.
Let p be the parent bag of b in D, or p = ∅ if b is the root. Let T ⊆ [τ] be
the time steps where temporal edges between vertices in b ∪ p are present.
The procedure process_bag(b) of Algorithm 3.4 saves every function
f : b→ P(T) in T[b], for which there is a solution to the instance (Gb, k′, ℓ)
where each v ∈ b is activated at time steps Fv ⊇ f (v).

Proof. The proof is nearly identical to that of Lemma 3.13. The only notable
difference is the computation of an interval price of each function which is
not allowed to exceed ℓ, as we described in the proof of Lemma 3.6.

In this algorithm, the distribute procedure therefore returns a number of
the minimum interval price with which the function f has a respective solution
to the current sub-instance. To this end, it is sufficient to call compute_sum
(see Lemma 3.5) at each base case of the recursion with the fully extended
function and then subsequently add all interval prices of used functions of
child bags, since D is a tree partition and thus b ∩ c for each two bags b and c
in D. Obviously, if there are multiple saved functions for a particular child bag
which can be used together with f so that all necessary temporal edges are
covered, then distribute chooses the option that induces the lowest possible
interval price.

Lemma 3.19: The procedure distribute(b, f , C) (see Line 14) runs in time
O(xk∞·tpw+ℓ · (|C|+ 1) · |G|), where x = max

c∈C
|T[c]|, whenever called by

the process_bag procedure.

Proof. The proof is identical to the proof of Lemma 3.14, except that the
recursion depth of its second case is bounded by k∞ · tpw + ℓ instead of
k∞ · tpw. This is due to the fact that with each recursive call either f is
extended to f ′ with | f ′(v)| > | f (v)| for at least one v ∈ b or the parameter y is
reduced by at least one. Since y ≤ ℓ, it then takes at most k∞ · tpw+ ℓ recursive
calls until the base case in Line 15 is reached. This results in the above total
running time of the distribute procedure, when called by process_bag.

48

3 Searching for Efficiently Computable Cases Using Parameterized Methods

Lemma 3.20: Algorithm 3.4 runs in time
O
((

2(8k∞+4ℓ)·tpw3·(k∞·tpw+ℓ)
)
· |V| · |G|

)
, if the tree partition D has

width tpw.

Proof. The set T in Line 7 contains at most (2k∞ + ℓ) · (2tpw)2 = (8k∞ +
4ℓ) · tpw2 elements (see Observation 3.16). Accordingly, there are at most(

2(8k∞+4ℓ)·tpw2
)tpw

= 2(8k∞+4ℓ)·tpw3
functions which are tried out for each

processed bag b in Line 8.
For each of these functions the distribute procedure is called by

process_bag. Using Lemma 3.19 with x = 2(8k∞+4ℓ)·tpw3
reveals

that each process_bag step on bag b with set of children C in D

takes total time at most O
((

2(8k∞+4ℓ)·tpw3
)k∞·tpw+ℓ

· (|C|+ 1) · |G|
)

=

O
(

2(8k∞+4ℓ)·tpw3·(k∞·tpw+ℓ) · (|C|+ 1) · |G|
)

,
As process_bag is called once with each bag b in D, the overall running

time of the algorithm is in O
(

2(8k∞+4ℓ)·tpw3·(k∞·tpw+ℓ) · |V| · |G|
)

.

Similar to the way we showed Theorem 3.12 previously, we can use Algo-
rithm 3.4 and its corresponding lemmas to prove Theorem 3.17.

Proof of Theorem 3.17. If we choose b to be the root bag r, then Lemma 3.18
shows that Algorithm 3.4 saves a function in the table entry T[b] if and only if
the input instance is YES. Clearly, the main procedure of the algorithm then
and only then returns YES, accordingly. The specified running time bound of
the algorithm is proven by adapting Lemma 3.20.

3.4 Further Research regarding the
Edge-Treewidth Parameter

We previously showed that MINTIMELINE∞ and MINTIMELINE+ are in FPT
w.r.t. the parameter tpw + k∞ + ℓ (see Theorems 3.12 and 3.17). We now want to
extend these results from tree partition width to a parameter recently introduced
by Magne et al. (2023), namely edge-treewidth (from now on abbreviated etw).
So far, seemingly, no relationship between the parameters tpw and etw was
known. But studying these two graph parameters, we found out that tpw is
always polynomially upper-bounded by etw—implying that our FPT-algorithm
w.r.t. tpw + k∞ + ℓ is indeed an FPT-algorithm w.r.t. etw + k∞ + ℓ as well.

49

3 Searching for Efficiently Computable Cases Using Parameterized Methods

Theorem 3.21: Edge-Treewidth Quadratically Upper-Bounds Tree Par-
tition Width

For any graph G, tpw(G) ≤ 12 · etw(G)2.

In order to prove this theorem, we make use of the fact that etw is related to the
treewidth and the maximum degree of the blocks (i.e. biconnected components)
of G. We will use the following theorem by Ding and Oporowski (1995) on each
block in G. This way, we get an appropriate tree partition for each block, which
we can later piece together to obtain a tree partition of appropriate width for G.

Theorem 3.22: Ding and Oporowski (1995), restated

For any G = (V, E) and any set of vertices S ⊆ V with 4 · tw(G) ≤
|S| ≤ 12 · tw(G)∆(G), there is a tree partition of G with width at most
24 · tw(G)∆(G) where all vertices from S are in the same bag.

Proof to Theorem 3.21. Let B be the set of all blocks and C be the set of all cut
vertices of G. Let T be a block-rooted block-cut tree of G, i.e. T = (B ∪ C, E′, r)
is a graph with a vertex set B ∪ C, an edge set E′ and a dedicated root node
r ∈ B, such that {x, y} ∈ E′ if and only if x ∈ C ∩ y. This T is a tree, because
otherwise two distinct blocks were connected via multiple disjoint paths in G,
which would contradict them being biconnected components.

For every block b ∈ B \ {r}, let sb ∈ C be the parent vertex of b in T
(which is a cut vertex in G). Let b′ = b \ {sb}. We next show that tpw(b′) ≤
24 · tw(b)∆(b). If b has fewer than 4 · tw(b) + ∆(b) vertices, this is trivially
attainable by putting all vertices in b′ in one bag. Otherwise, let X be a set of
vertices in b with Nb[sb] ⊆ X and |X| = 4 · tw(b) + ∆(b). Using Theorem 3.22
on the graph b and the vertex set X, we obtain that there is a tree partition
of b with a width of at most 24 · tw(b)∆(b) and where crucially all vertices of
Nb[sb] are in the same bag. Since b′ = b \ {sb}, the same tree partition is also
valid for b′, after removing sb from that bag.

Clearly, the subgraph r of G also has a tree partition width of at most
24 · tw(r)∆(r) using a similar argument involving Theorem 3.22. Putting
together all those tree partitions of each b′ and of r, we can now construct
a tree partition of G with width at most 24 ·max

b∈B
(tw(b) · ∆(b)). For this we

only have to link one bag of the previously regarded tree partition of each b′ —
namely the bag containing the neighbors of sb in b—to the one bag containing
sb (which is part of a different block’s tree partition, namely the parent block
of sb in T). Note that since T is a block-cut tree and we put each sb in exactly
one bag, which is in turn adjacent to all other bags including neighbors of sb,
this scheme indeed yields a tree partition for G.

50

3 Searching for Efficiently Computable Cases Using Parameterized Methods

Magne et al. (2023) already proved that tw(b) ≤ etw(G) and ∆(b) ≤ etw(G)
2

for each b ∈ B. As we just showed that tpw(G) ≤ 24 ·max
b∈B

(tw(b) · ∆(b)), this

concludes our proof.

Combining Theorem 3.21 with Theorem 3.12 and Theorem 3.17, the following
result about NETWORK UNTANGLING becomes apparent.

Corollary 3.23: Network Untangling in FPT w.r.t. etw + k∞ + ℓ

MINTIMELINE∞ and MINTIMELINE+ are both fixed-parameter tractable
w.r.t. etw + k∞ + ℓ.

Theorem 3.21 gives a true upper bound in the sense that etw(G) is not upper-
bounded by tpw(G) as well. To corroborate this claim, consider the graph K2,n
for any integer n ≥ 2. It is clear that this graph has a constant tree partition
width, since one can just put the two left-sided vertices together in one bag and
each other vertex in a separate bag. But since the whole graph consists of only
one block and ∆(K2,n) = n, its edge-treewidth is polynomially tied to n as shown
by Magne et al. (2023).

We additionally note that the parameters etw and vc (vertex cover number)
are parametrically incomparable. This further distinguishes etw from tpw, as
tpw(G) ≤ vc(G) for each simple graph G. The incomparability claim can easily
be supported by the example of a K2,n as stated above for one direction and a Pn
for the other direction.

51

4 Notes on the Uniform Versions
of Network Untangling

At the beginning of this work, we defined our two main problem variants to
be non-uniform. In particular, every vertex v ∈ V in the input instance has a
separate limit kv of activations, together compactly represented in the vector k.
This notion stands in contrast with previous conceptions of the problem, e.g. by
Rozenshtein, Tatti, and Gionis (2021) and Froese, Kunz, and Zschoche (2022),
which usually perceived NETWORK UNTANGLING to be uniform. In those
formulations, one is thus given only a number k instead of a vector and each
vertex v is allowed to be activated at most k times in any solution.

In this chapter, we want to explain how our previous results carry over to
the uniform problem variants. Clearly, our presented algorithms work for them
similarly by just setting each kv to k in their input. For the hardness results,
we next describe how to modify our reductions in order to output equivalent
uniform instances. All these modifications work by adding more layers and
temporal edges.

4.1 NP-Hardness on Bipartite Graphs with
Constant Number of Layers

Among our reductions, the simplest to adjust for UNIFORM MINTIMELINE∞ and
UNIFORM MINTIMELINE+ is Reduction 2.11. Hence, we start with proving the
following adaptation of Theorem 2.7:

Corollary 4.1: Uniform NP-Hardness on Bipartite Graphs with τ = 7

UNIFORM MINTIMELINE∞ and UNIFORM MINTIMELINE+ are NP-hard
even if the underlying graph of the input is bipartite, ℓ = 0, τ = 7 and
∆ = 12.

Proof. We use the steps described by Reduction 2.11, but set k = 2 uniformly.
We additionally introduce a new vertex Y and four new layers G4, G5, G6 and
G7, which each contain exactly one temporal edge between X and Y. Clearly,
X and Y then must be activated in two of these additional layers each in order

52

4 Notes on the Uniform Versions of NETWORK UNTANGLING

to build up a solution and X can consequently not be active in the first three
layers. This makes this uniform instance equivalent to the original constructed
instance while increasing τ to seven. It is easy to see that the underlying graph
is still bipartite with a maximum degree of twelve.

4.2 Star NP-Hardness

We also showed that MINTIMELINE∞ with ℓ = 0 is NP-hard on stars. By modi-
fying Reduction 2.3 and revisiting Theorem 2.1, we prove another corollary.

Corollary 4.2: Uniform NP-Hardness on Star Graphs

UNIFORM MINTIMELINE+ and UNIFORM MINTIMELINE∞ are both NP-
hard even if the underlying graph is a star, each layer contains at most 3
edges, and ℓ = 0.

Proof. W.l.o.g. we now assume that each vertex in the input instance of Re-
duction 2.3 has at least two neighbors, such the original instructions stated
by Reduction 2.3 only construct layers with two or more edges. Additionally
to following those instructions, we then want to add k − 1 separate layers
for each vertex e ∈ E to cover. This way, we can increase each ke to kc = k
and effectively create a uniform instance. Naturally, the instances have to be
equivalent and the constructed temporal graph must still be an underlying
star.

Fortunately, we can just add k− 1 layers for each e ∈ E only including the
edge {e, c} to achieve this. It is never optimal for those additional temporal
edges to be covered by the center vertex c, because the total number of tempo-
ral edges between c and e becomes k + 1 and thus only one of them has to be
covered by c (remember that e has no other neighbors than c). This one tempo-
ral edge can always be in a layer where activating c covers even more edges,
i.e. one of the layers originally created by Reduction 2.3. As a consequence,
the remaining proof works as for Theorem 2.1, when only considering such
optimal solutions.

4.3 Caterpillar Tree NP-Hardness

For modifying Reduction 2.5 such that it outputs an equivalent instance of
UNIFORM MINTIMELINE∞ with ℓ = 0, we combine the approaches used in
the proofs of the previous two Corollaries 4.1 and 4.2, yielding the following
corollary of Theorem 2.4.

53

4 Notes on the Uniform Versions of NETWORK UNTANGLING

Corollary 4.3: Uniform NP-Hardness on Caterpillar Trees

UNIFORM MINTIMELINE∞ and UNIFORM MINTIMELINE+ with ℓ = 0 are
both NP-hard even if the underlying graph is a caterpillar tree with a
maximum degree of 4.

Proof. Reduction 2.5 introduced three pairwise disjoint sets of vertices: E, E∗,
and E∗∗. Remember that we used n to denote the number of input vertices,
as well as k to denote the respective input parameter of VERTEX COVER, and
we constructed a vector k′ for the output instance of MINTIMELINE∞. In the
following we extend that output instance, so that we can set k′v = n for each
included vertex v, while keeping the instances equivalent.

Each e∗ ∈ E∗ had k′e∗ = n− k and each e∗∗ ∈ E∗∗ had k′e∗∗ = k previously.
For each e∗ ∈ E∗ we thus add a unique new vertex with a single edge to
e∗ in n + k additional unique layers. This new vertex may of course also
be activated at exactly n time steps in order to make the instance uniform.
Since there are n + k such newly-created layers, e∗ has to cover at least k
of them. This amounts to n− k original layers (described by Reduction 2.5)
which e∗ can cover, as desired. We do the same thing for each e∗∗ ∈ E∗∗, except
that we create 2n− k new layers there. This increases the maximum degree
of the constructed underlying graph by one in comparison to the original
reduction.

For each e ∈ E, we cannot add an additional vertex in the same way, since
we still want the constructed underlying graph to be a caterpillar tree. Instead,
we add n− 1 new layers containing only the edge {e, e∗∗}. We know that they
have to be covered by e, since the budget of activations of e∗∗ is already used
up on other layers (described by Lemma 2.6 in addition to the layers added
above).

4.4 W[2]-Hardness w.r.t. k∞ + ℓ on Temporal
Graphs with dlf = 1

The last theorem we want to adapt to the uniform problem variants is Theo-
rem 3.8. In order to do this, we use a similar adaptation strategy as in the proof
of Corollary 4.2, arriving at the following:

Corollary 4.4: Uniform W[2]-Hardness w.r.t. dlf + k∞ + ℓ

UNIFORM MINTIMELINE+ and UNIFORM MINTIMELINE∞ are both W[2]-
hard w.r.t. k, even if the underlying graph’s distance to a linear forest is
one and ℓ = 0.

54

4 Notes on the Uniform Versions of NETWORK UNTANGLING

Proof. Additionally to the steps described by Reduction 3.10, for each Sj and
for each u ∈ Sj, we add k− 2 unique layers to G which only include the edge
{Su

j , X}. We also add a new vertex for each S0
j and for each Sm+1

j , both having

edges to S0
j and Sm+1

j respectively in exactly 2k new unique single-edge layers.
Afterwards, we set k′v = k for each vertex v included in G, thereby effectively
creating a uniform instance (remember that k′X = k).

Every solution to the input instance is still a solution to that uniform
output instance, since if no additionally added layer is covered by X, then
the budget of allowed activations for each other vertex in the original layers
of Reduction 3.10 effectively remains unchanged (we added exactly as many
layers as we can cover by the budget increases to k). Thus, this direction in
the proof of Theorem 3.8 still holds.

The other direction also works as in the proof of Theorem 3.8, except the
numbers need to be updated. If the input is a NO-instance, there is still at least
one Sj where no v ∈ Sj has an incident temporal edge covered by X, since
k′X remained unchanged. The number of temporal edges incident to vertices
in this Sj is then (|Sj| + 1) + |Sj| + |Sj| · (k − 2) + 2 · 2k = 4k + k · |Sj| + 1,
each lying in a distinct layer. The newly-created vertices at the start and at
the end of the path can together cover 2k of those temporal edges, such that
2k + k · |Sj|+ 1 = k · (|Sj|+ 2) + 1 temporal edges remain to be covered with
the |Sj|+ 2 vertices in Sj. Since each of them can be activated at a number of
k time steps at most, we have a NO-instance, as desired.

Clearly, the constructed graph has still only a distance of one to a linear
forest, thus concluding the proof.

55

5 Conclusion and Outlook

We analyzed two variants of NETWORK UNTANGLING in the context of com-
putational complexity, focussing on restricted and parameterized settings. In
particular, we combined the study regarding structural graph parameters with
studying parameters specific to NETWORK UNTANGLING. By doing so, we found
several new hardness results but could also formulate multiple parameterized
exact algorithms.

In the next Section 5.1, we further review our findings. Subsequently, in
Section 5.2, we conclude by discussing opportunities for future research based
on our discoveries, including potential enhancements to our algorithms.

5.1 Summary

We provided an extensive study on the parameterized complexity landscape of
NETWORK UNTANGLING regarding any combination of the graph parameters
tw, fvs, dlf, tpw, etw, and vc on one side and problem parameters specific
to NETWORK UNTANGLING and temporal graphs, namely ℓ, k∞ + ℓ, and τ,
on the other side (see Table 1.1 at the beginning of this work). To the best of
our knowledge, we are the first to explicitly research a parameterization of
MINTIMELINE∞ and MINTIMELINE+ with graph parameters that are smaller
than the number of input vertices. Thus, this work helps demarcating the
border of fixed-parameter tractability especially in structurally restricted settings.
We mainly focussed on the non-uniform formulations of the problems, but our
presented results carry over to uniform settings as well (Chapter 4).

Our two main results establish that both problem variants are fixed-parameter
tractable when parameterized by either tw + τ or tpw + k∞ + ℓ (Theorems 3.1,
3.4, 3.12 and 3.17). We provided concrete algorithm descriptions in both cases,
employing the strategy of dynamic programming in the former and a fusion of
dynamic programming and bounded search trees in the latter case. We proved
that FPT-algorithms w.r.t. tw + k∞ + ℓ, which is smaller than tw + τ or tpw +
k∞ + ℓ at least for the MINTIMELINE∞ variant, cannot exist unless FPT = W[2]
(Theorem 3.8). However, we could ascertain that NETWORK UNTANGLING is in
XP regarding this usually smaller parameter.

Additionally, we found three more graph structural cases where both problems
remain NP-hard, thereby adding to previous knowledge. In particular, we
strengthened a result of Froese, Kunz, and Zschoche (2022) by essentially proving

56

5 Conclusion and Outlook

that it also holds on bipartite temporal graphs (Theorem 2.7). We also showed
that MINTIMELINE+ and MINTIMELINE∞ are NP-hard even if vc = 1 and ℓ = 0
(Theorem 2.1). In settings with constant ℓ, this displays a clear tractability
border between vc and the number of vertices n, considering that Froese, Kunz,
and Zschoche (2022) proved MINTIMELINE+ to be in FPT and MINTIMELINE∞
to be in XP for n + ℓ. We further observe that we could not distinguish the
parameterized complexity of MINTIMELINE+ and MINTIMELINE∞ in any of our
settings, despite the fact that Froese, Kunz, and Zschoche (2022) found a case
where the former is in FPT and the latter is W[1]-hard.

Last but not least, we considered edge-treewidth, a graph parameter recently
introduced by Magne et al. (2023). We then proved it to be related to tree partition
width in the sense that the edge-treewidth of a graph always polynomially upper-
bounds its tree partition width.

5.2 Future Research Opportunities

At their current state, our presented algorithms are primarily suited for classi-
fication purposes. To make them more useful in practical applications, several
enhancements can be considered: First, it would certainly be beneficial to refine
the analysis of which vertex occurences an algorithm needs to try out. Additio-
nally, one could quickly discard branches that are recognized as not leading to
an improved solution (i.e. by establishing powerful branch and bound methods)
and utilize efficient data structures, among other ideas. In practice, it may also
be advantageous to integrate our algorithms with heuristic approaches. For in-
stance, strategies could involve initially decomposing a temporal graph’s dense
areas using a heuristic, followed by the utilization of our exact algorithms to
provide solutions of the resulting subgraphs.

On the theoretical front, in addition to refining our algorithms, we find the
following open questions to be particularly interesting for expanding our re-
search on NETWORK UNTANGLING:

• Do MINTIMELINE∞ and/or MINTIMELINE+ admit polynomial (Turing)
kernels concerning any parameter for which we showed them to be fixed-
parameter tractable, such as vc + τ?

• Are MINTIMELINE∞ and MINTIMELINE+ in FPT if parameterized by the
combination of the parameters treedepth, k∞ and ℓ?

• What about the parameter tpw+ k∞ in the setting where ℓ is large? Our pre-
sented FPT-algorithms only work regarding tpw + k∞ + ℓ, since they rely
on bounding the number of time steps at which any specific edge is present.

• What running time lower bounds (e.g. based on the Exponential Time Hy-
pothesis) exist for these problems regarding the cases where they exhibit
fixed-parameter tractability?

57

5 Conclusion and Outlook

Of course, exploring alternative—potentially further restricted—versions of
NETWORK UNTANGLING may also unveil novel research-worthy questions.

58

References

Akrida, Eleni C., George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev.
2020. Temporal vertex cover with a sliding time window. Journal of Computer and
System Sciences 107 (February 1, 2020). (Cited on pages 13, 19)

Alman, Josh, Matthias Mnich, and Virginia Vassilevska Williams. 2020. Dynamic
Parameterized Problems and Algorithms. ACM Transactions on Algorithms 16, no.
4 (July 6, 2020). (Cited on page 13)

Biró, M., M. Hujter, and Zs. Tuza. 1992. Precoloring extension. I. Interval graphs.
Discrete Mathematics 100, no. 1 (May 15, 1992). (Cited on page 23)

Bodlaender, Hans L. 1996. A Linear-Time Algorithm for Finding Tree-Decompositions
of Small Treewidth. SIAM Journal on Computing 25 (6). (Cited on pages 30, 31,
35)

Bodlaender, Hans L., Carla Groenland, and Hugo Jacob. 2022. On the Parameter-
ized Complexity of Computing Tree-Partitions. 17th International Symposium
on Parameterized and Exact Computation (IPEC 2022). Schloss-Dagstuhl -
Leibniz Zentrum für Informatik. (Cited on pages 39, 45)

Bodlaender, Hans L., Klaus Jansen, and Gerhard J. Woeginger. 1994. Scheduling
with incompatible jobs. Discrete Applied Mathematics 55, no. 3 (December 13,
1994). (Cited on pages 23, 24)

Ding, Guoli, and Bogdan Oporowski. 1995. Some results on tree decomposition of
graphs. Journal of Graph Theory 20 (4). (Cited on page 50)

Dondi, Riccardo. 2022. Insights into the Complexity of Disentangling Temporal Graphs,
vol. 3284. Proceedings of the 23rd Italian Conference on Theoretical Com-
puter Science (ICTCS 2022). September 7, 2022. (Cited on pages 9, 13)

Dondi, Riccardo. 2023. Untangling temporal graphs of bounded degree. Theoretical
Computer Science 969 (August 21, 2023). (Cited on pages 9, 13)

Dondi, Riccardo, and Manuel Lafond. 2023. An FTP Algorithm for Temporal Graph
Untangling (July 3, 2023). (Cited on pages 8, 9, 13)

Dondi, Riccardo, and Alexandru Popa. 2023. Timeline Cover in Temporal Graphs:
Exact and Approximation Algorithms. In Combinatorial Algorithms. Lecture
Notes in Computer Science. Cham: Springer Nature Switzerland. (Cited on
pages 9, 13)

59

http://dx.doi.org/10.1016/j.jcss.2019.08.002
http://dx.doi.org/10.1145/3395037
http://dx.doi.org/10.1145/3395037
http://dx.doi.org/10.1016/0012-365X(92)90646-W
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.1137/S0097539793251219
http://dx.doi.org/10.4230/LIPIcs.IPEC.2022.7
http://dx.doi.org/10.4230/LIPIcs.IPEC.2022.7
http://dx.doi.org/10.1016/0166-218X(94)90009-4
http://dx.doi.org/10.1016/0166-218X(94)90009-4
http://dx.doi.org/10.1002/jgt.3190200412
http://dx.doi.org/10.1002/jgt.3190200412
http://dx.doi.org/10.1016/j.tcs.2023.114040
http://arxiv.org/abs/2307.00786
http://arxiv.org/abs/2307.00786
http://dx.doi.org/10.1007/978-3-031-34347-6_15
http://dx.doi.org/10.1007/978-3-031-34347-6_15

References

Downey, R. G., and M. R. Fellows. 1999. Parameterized Complexity. Monographs
in Computer Science. New York, NY: Springer. (Cited on page 36)

Fluschnik, Till, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp
Zschoche. 2020a. As Time Goes By: Reflections on Treewidth for Temporal Graphs.
In Treewidth, Kernels, and Algorithms: Essays Dedicated to Hans L. Bodlaender
on the Occasion of His 60th Birthday. Lecture Notes in Computer Science.
Springer International Publishing. (Cited on page 18)

Fluschnik, Till, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp
Zschoche. 2020b. Temporal graph classes: A view through temporal separators.
Theoretical Computer Science 806 (February 2, 2020). (Cited on page 8)

Fluschnik, Till, Rolf Niedermeier, Valentin Rohm, and Philipp Zschoche. 2022.
Multistage Vertex Cover. Theory of Computing Systems 66, no. 2 (April 1, 2022).
(Cited on page 13)

Fluschnik, Till, Rolf Niedermeier, Carsten Schubert, and Philipp Zschoche. 2023.
Multistage s–t Path: Confronting Similarity with Dissimilarity. Algorithmica 85,
no. 7 (July 1, 2023). (Cited on page 18)

Froese, Vincent, Pascal Kunz, and Philipp Zschoche. 2022. Disentangling the
Computational Complexity of Network Untangling (April 6, 2022). (Cited on
pages 4, 5, 8, 9, 13, 22, 23, 52, 56, 57)

Garey, M. R., D. S. Johnson, and L. Stockmeyer. 1976. Some simplified NP-complete
graph problems. Theoretical Computer Science 1, no. 3 (February 1, 1976). (Cited
on pages 19, 23, 24)

Holme, Petter. 2015. Modern Temporal Network Theory: A Colloquium. The European
Physical Journal B 88, no. 9 (September 21, 2015). (Cited on page 8)

Holme, Petter, and Jari Saramäki. 2012. Temporal networks. Physics Reports, Tem-
poral Networks, 519, no. 3 (October 1, 2012). (Cited on page 8)

Iwata, Yoichi, and Keigo Oka. 2014. Fast Dynamic Graph Algorithms for Parame-
terized Problems. In Algorithm Theory – SWAT 2014. Springer International
Publishing. (Cited on page 13)

Magne, Loïc, Christophe Paul, Abhijat Sharma, and Dimitrios M. Thilikos. 2023.
Edge-treewidth: Algorithmic and combinatorial properties. Discrete Applied Mathe-
matics 341 (December 31, 2023). (Cited on pages 11, 49, 51, 57)

Molter, Hendrik, Malte Renken, and Philipp Zschoche. 2021. Temporal Reacha-
bility Minimization: Delaying vs. Deleting. In 46th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2021), vol. 202. Leib-
niz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. (Cited on page 8)

60

http://dx.doi.org/10.1007/978-1-4612-0515-9
http://dx.doi.org/10.1007/978-3-030-42071-0_6
http://dx.doi.org/10.1016/j.tcs.2019.03.031
http://dx.doi.org/10.1007/s00224-022-10069-w
http://dx.doi.org/10.1007/s00453-022-01077-w
http://arxiv.org/abs/2204.02668
http://arxiv.org/abs/2204.02668
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1140/epjb/e2015-60657-4
http://dx.doi.org/10.1016/j.physrep.2012.03.001
http://dx.doi.org/10.1007/978-3-319-08404-6_21
http://dx.doi.org/10.1007/978-3-319-08404-6_21
http://dx.doi.org/10.1016/j.dam.2023.07.023
http://dx.doi.org/10.4230/LIPIcs.MFCS.2021.76
http://dx.doi.org/10.4230/LIPIcs.MFCS.2021.76

References

Rozenshtein, Polina, Nikolaj Tatti, and Aristides Gionis. 2021. The Network-
Untangling Problem: From Interactions to Activity Timelines. Data Mining and
Knowledge Discovery 35, no. 1 (January 1, 2021). (Cited on pages 8–10, 13, 52)

Wang, Yishu, Ye Yuan, Yuliang Ma, and Guoren Wang. 2019. Time-Dependent
Graphs: Definitions, Applications, and Algorithms. Data Science and Engineering
4, no. 4 (December 1, 2019). (Cited on page 8)

61

http://dx.doi.org/10.1007/s10618-020-00717-5
http://dx.doi.org/10.1007/s10618-020-00717-5
http://dx.doi.org/10.1007/s41019-019-00105-0
http://dx.doi.org/10.1007/s41019-019-00105-0

	Introduction
	Problem Definitions
	Our contributions
	Related Work
	Preliminaries
	Basic Graph Theory
	Graph Parameters
	Temporal Graphs
	Classical and Parameterized Complexity Theory

	NP-Hardness of Network Untangling on Restricted Graph Classes
	NP-Hardness on Trees
	Star Graphs
	Caterpillar Trees with Constant Maximum Degree

	NP-Hardness on Bipartite Graphs with Constant Number of Layers and Maximum Degree

	Searching for Efficiently Computable Cases Using Parameterized Methods
	FPT when Parameterized by Treewidth and Number of Layers
	MinTimeline Algorithm
	MinTimeline+ Algorithm

	W[2]-Hardness w.r.t. k+ on Temporal Graphs with dlf = 1
	FPT when Parameterized by Tree Partition Width, k and
	MinTimeline Algorithm
	MinTimeline+ Algorithm

	Further Research regarding the Edge-Treewidth Parameter

	Notes on the Uniform Versions of Network Untangling
	NP-Hardness on Bipartite Graphs with Constant Number of Layers
	Star NP-Hardness
	Caterpillar Tree NP-Hardness
	W[2]-Hardness w.r.t. k+ on Temporal Graphs with dlf =1

	Conclusion and Outlook
	Summary
	Future Research Opportunities

	References

