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Zusammenfassung

In vielen sozialen und technischen Systemen ist die optimale Verteilung von Ressourcen
eine wichtige Aufgabe. Dabei hängt die Optimierung in vielen Fällen von den Beziehun-
gen zwischen den Agenten der Systeme ab. In der vorliegenden Arbeit wird das Konzept
graph-envy, d.i. Neid entlang eines sozialen Netzes, so erweitert, dass Agenten nun ent-
lang dieses Netzes Ressourcen teilen können, um so die Verteilung der Ressourcen zu
verbessern.

Für dieses Modell werden Algorithmen beschrieben, mit deren Hilfe die utilitarian
social welfare und egalitarian social welfare von Verteilungen optimiert werden können.
Es wird formal das NP-harte Problem der Reduzierung der Anzahl neidischer Knoten
durch das paarweise Teilen von Ressourcen dargelegt und die Komplexität bezüglich
mehrerer Parameter untersucht.

Weiterhin wird ein Greedy-Algorithmus dargestellt, mit dessen Hilfe das Problem in
Linearzeit auf Pfaden gelöst werden kann. Ein ebenfalls berschriebener Algorithmus
basierend auf dynamischer Programmierung schließlich löst das Problem auf Bäumen in
polynomieller Zeit.

Abstract

Finding optimal resource allocations is an important task in many social and technical
systems. The notion of optimality often depends on underlying connections between
agents. We extend the idea of graph-envy, that is, envy along a social network, by
allowing agents to share in pairs along a social network to improve an allocation.

Using this model, we present algorithms for optimizing utilitarian and egalitarian
social welfare of allocations. We introduce the NP-hard problem of reducing the number
of envious nodes through pairwise sharing of resources and examine the hardness with
respect to several parameters.

Furthermore, we present a greedy algorithm solving this problem in linear time on
paths and a dynamic programming algorithm solving the problem in polynomial time
on trees.
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1 Introduction

The classic problem of resource allocation and its extensive studies have generated nu-
merous formal models and techniques. From the straightforward question of how to
distribute given resources fairly to involved agents to more complex models that con-
sider complex relations between resources and/or agents various scenarious have been
examined. In this thesis we extend the work of Bredereck et al. [BKN18] by allowing
agents to engage in the pairwise sharing of resources. The choice of pairwise sharing
will be properly motivated in the next section and is providing a rich theoretical setting,
which we explore in the following chapters.

In the remainder of this chapter, we provide background and motivation for our model
followed by the formal preliminaries. We finish the chapter with a pointer to related
work.

The remaining parts of this thesis is divided into five chapters. In Chapter 2 we
provide insights on how social welfare is affected by the introduction of pairwise sharing.
Chapter 3 contains hardness results for the minimization of envy. We then provide
algorithms for the special graph classes of paths and trees in Chapter 4 and Chapter 5
respectively. Finally, we provide a discussion of the results and an outlook on future
work in Chapter 6.

1.1 Motivation

Allocating resources to agents is one of the important central tasks in many social and
technical systems. Consequently, it has been the subject of extensive studies and has
been examined in the context of various applications. One such application is housing
allocation, that is, the assignment of tenants to houses, as it occurs for example in
the case of on-campus housing for college students. Various models have been used
to study this type of allocation problem, focusing on various aspects. Hylland and
Zeckhauser proposed strategies for assigning candidates to positions so that the result is
pareto-optimal [HZ79]. Shapley and Scarf examined how trading preallocated indivisible
resources, such as houses, may result in an optimal allocation.

Abdulkadiroğlu and Sönmez remark that the special case of allocation of on-campus
housing is even more involved [AS99]. They note that agents are not only new students in
need of accommodation but also senior students trying to improve their current housing
situation by trading according to some personal evaluation. Using a model accounting
for both types of agents, they devise algorithms to compute pareto optimal allocations
in this setting.

It is necessary to emphasize how important optimizing on-campus housing allocations
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1 Introduction

is. As noted by Astin, students living in college residence halls are not only more satisfied
with their undergraduate experience but are also more likely to aspire to a graduate
degree [Ast84]. Additionally, these students are also more socially engaged. On the other
hand, dissatisfaction with the living situation, and especially with a roommate, often
results in more stress for the student, as was found by Dusselier et al. [Dus+05]. This
suggests it might be beneficial to take social structures into account when optimizing
on-campus housing allocations.

We also want to refer to the work of Festinger, who provides convincing evidences
that in social groups, such as students on a college campus, people tend to evaluate
their own satisfaction with for example the distribution of resources by comparison with
their peers [Fes54]. This suggests that students satisfaction can often be related to the
allocation of on-campus housing.

In addition, we also want to emphasize the special role of two-person dormitories (as
they are common in the united states) in the context of housing allocation. The classic
formulation of the problem considers houses to be indivisible, unshareable resources.
This is clearly not the case for such dormitaries, that are always shared between two
students. Building on the insights of Abdulkadiroğlu and Sönmez, we also want to
distiniguish between senior students already living in a dormitory and freshman students
in need of a housing solution [AS99]. When optimizing the allocation of dormitories to
students, it may often be necessary to account for seniors already living in a dormitory
room and others that can then share a room with these seniors. This situation may then
even be seen as the optimization of an existing allocation through sharing.

We propose now in this thesis a novel approach to optimizing allocations of indivisible
items by sharing over a social network. Agents in this model can engage in pairwise
sharing of resources (such as two-person dormitories) to optimize the overall allocation.
Our model is closely following and extending the work of Bredereck et al. [BKN18].
They use the concept of graph-envy — envy along a social network — and analyze
the complexity of finding envy-free allocations. In this work we examine if and how
introducing pairwise sharing along the social network can improve an existing allocation
with respect to three different metrics.

The first two metrics — called utilitarian social welfare) and egalitarian social welfare
— evaluate the total utility of all agents and the minimum utility of all agents. Intu-
itively, optimizing the first is akin to optimizing the average utility even at the cost of
big inequalities in the distribution. Optimizing the second is effectively improving the
situation of the agents with the least utility.

The third and, as we show, most challenging metric is counting the number of envious
nodes. For most of this thesis we concentrate on reducing this number by allowing agents
to share through a social network.

1.2 Related Work

Allocating resources efficiently and, in some metric, fairly is a longstanding problem.
Hugo Steinhaus proposed a first formal model and algorithm for the fair allocation of
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divisible resources in 1948 [Ste48]. He introduced the metaphor of a cake for divisible
resources. The accordingly named cake-cutting problem was and still is actively re-
searched in for example computer science and political science. Recent surveys provide
an overview of that research [Pro13; Pro15].

In contrast to divisible resources, allocating indivisible resources to agents has also
been the subject of extensive research and different models have been developed. Surveys
on this kind of allocation problem can provide an overview [Bou+16][Mar17].

The issue of improving initial allocations has been examined before. Shapley and
Scarf applied the idea of applying centrally organized trading of resources to optimize an
allocation [SS74]. Damamme et al. proposed a decentralized version relying on pairwise
swaps to optimize allocations [Dam+15]. The work of Gourvès et al. extends on this
idea by allowing swaps only between nodes connected by a social network [GLW17]. The
difference between their work and ours is that items are shared and not swapped in our
model. Sequences of swaps allow items to move over several nodes, whereas shared items
will remain with their original owner.

1.3 Preliminaries

In this section, we present the formal framework used throughout the thesis. Most of
the definitions presented here are either common mathematical concepts, such as graphs,
or taken from previous work on the topic, most notably allocations and the concept of
graph-envy.

1.3.1 Graphs & Allocations

We start with the definitions of the networks connecting agents in our setup. We model
these networks as directed graphs. A graph consists of nodes connected via edges.
Depending on the type of connecetions between nodes a graph can be either undirected
or directed.

Definition 1.1. A graph G = (V,E) consists of a set V and a set E ⊆ {{i, j} | i, j ∈
V, i 6= j}. We call the elements of V nodes and the elements of E edges of G.

Definition 1.2. A directed graph G = (V,E) consists of a set V and a set

E ⊆ V × V \ {(i, i) | i ∈ V }.

We call the elements of V nodes and the elements of E arcs of G. For an edge (i, j) ∈ E
the nodes i and j are called the endpoints of e. For an The graph G′ = (V,E ′), where
E ′ = {{i, j} | (i, j) ∈ E}, is called the underlying undirected graph of G.

It is often helpful to visualize a graph, instead of providing the sets V and E explicitly.
We use circles containing labels to represent nodes. We use arrows between these circles
to represent arcs. Figure 1.1 depicts a graph consisting of the nodes

V = {v1, v2, v3, v4}

11
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v1

v2

v3

v4

Figure 1.1: A simple example of a directed graph consisting of four nodes and four arcs.

and the arcs
E = {(v1, v2), (v1, v4), (v2, v4), (v3, v4)}.

Definition 1.3. Let G = (V,E) be a directed graph and i ∈ V a node. We then define
the following sets.

• Nin(i) is the set of neighbors of i connected to i via an incoming edge, that is,

Nin(i) := {j ∈ V | (j, i) ∈ E}.

• Nout(i) is the set of neighbors of i connected to it via an outgoing edge, that is,

Nout(i) := {j ∈ V | (i, j) ∈ E}.

• N(i) is the set of neighbors of i, that is,

N(i) := Nin(i) ∪Nout(i).

We say i, j ∈ V are adjacent if j ∈ N(i).

In the example in Figure 1.1, we have Nin(v2) = {v1} and Nout(v2) = {v4}.
Next we provide a definition for allocation of resources to agents. While we do not

enforce any structure on the set of agents yet (other than it being finite), we will later
mostly consider allocations on the nodes of a given graph.

Definition 1.4. Let A,R be finite sets. An allocation of resources R to agents A is a
function π : A→ 2R with

• for all r ∈ R there is a i ∈ A with r ∈ π(i) and

• for all i, j ∈ A it holds that π(i) ∩ π(j) = ∅.

For a ∈ A we call π(a) the bag of a (under π).

The first condition ensures there are no unassigned resources, the second condition
ensures no resource is assgined to more than one node.

12
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πN(v1) = {r1}
πN(v2) = {r2, r3}
πN(v3) = ∅
πN(v4) = {r4}

πE((v1, v2)) = {r1, r3}
πE((v1, v4)) = ∅
πE((v2, v4)) = {r2}
πE((v3, v4)) = {r4}

Figure 1.2: An example sharing allocation for the graph in Figure 1.1.

1.3.2 Sharing Allocation

We now continue to define the new concept of sharing allocations of resources to the
nodes and edges of a graph. Similar to an allocation, it assigns each node a set of
resources. It also assigns some resources to arcs. Intuitively, we consider these resources
shared by the two nodes of the arc.

Definition 1.5. Let G = (V,E) be a directed graph and R a finite set of resources. A
sharing allocation π = (πN, πE) of R on G consists of two functions πN : V → 2R and
πE : E → 2R with

1. πN being an allocation of resources R to agents V and

2. πE((i, j)) ⊆ πN(i) ∪ πN(j) for all (i, j) ∈ E.

We write

π(i) := πN(i) ∪
⋃

j∈Nin(i)

(πE((j, i)) ∩ πN(j)) ∪
⋃

j∈Nout(i)

(πE((i, j)) ∩ πN(j))

for i ∈ V .

Note that in any sharing allocation the nodes of the underlying graph are the agents
for the allocation. We therefore use the terms interchangeably, when appropriate.

We provide in Figure 1.3 an example of a sharing allocation for the graph in Figure 1.1
to illustrate the previous definitions. As a first step we provide the allocation πN of the
resources R = {r1, r2, r3, r4} to the nodes of the graph. All resources are assigned to a
single node, so πN is a valid allocation. To construct the sharing allocation π = (πN, πE)
we define πE.
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To check whether π is a sharing allocation, we need to make sure, that any resource
assigned to an edge (vi, vj) ∈ E by πE is assigned to either vi or vj by πN. This is clearly
the case for the definitions in Figure 1.3.

To understand, how π is describing the sharing of resources examine the nodes v1 and
v2. We can see that πE((v1, v2)) = {r1, r3} and thus now, that the two nodes are sharing
the resources r1 and r3. We can be even more specific. Since r3 ∈ πN(v2), we can say
that v2 is sharing r3 with v1 and, conversely, v1 is sharing r1 with v2. The concept of
original ownership (i.e. the notion of which node is sharing a resource) is important to
determine if a sharing benefits a given node compared to the underlying allocation.

The following observation states that any allocation can be treated as a sharing allo-
cation. This allows us to not differentiate between allocations and sharing allocations
in later parts of the thesis.

Observation 1.6. Any allocation π can be viewed as a sharing allocation µ = (µN, µE)
via

µN(i) := π(i) for i ∈ V and µE(e) := ∅ for e ∈ E.

It will often be necessary throughout this document to talk about neighbors that a
given node shares resources with. We therefore introduce some additional notation.

Definition 1.7. Let G = (V,E) be a directed graph, R a finite set of resources and
π = (πN, πE) a sharing allocation of R on G. We then define the following sets of nodes.

Sin(π, i) := {j ∈ Nin(i) | πE((j, i)) 6= ∅}
Sout(π, i) := {j ∈ Nout(i) | πE((i, j)) 6= ∅}

1.3.3 Simple 2-sharing Allocations

Sharing allocations as defined above are a rather expressive extension to the concept of
allocations. In this thesis we mostly focus on a more restricted version that allows a
node to share with no more than one other node and to only share a single resource.
In later chapters we show that even such a restrictive form of sharing allows for rather
interesting results.

We also argue that this restriction makes sense on a conceptual level. There are many
types of resources that can be shared between exactly two parties. Consider for example
two-person offices assigned as a reward or dorm rooms given to a portion of the freshman
students. If seen as shareable resources, these examples can be expressed through simple
2-sharing allocations defined as follows.

Definition 1.8. Let G = (V,E) be a directed graph, R a finite set of resources and
π = (πN, πE) a sharing allocation of R on G. We call π a simple 2-sharing allocation of
R on G if

1. |πE(e)| ≤ 1 for all e ∈ E and

2. |Sin(π, i) ∪ Sout(π, i)| ≤ 1 for all i ∈ V .

14
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We call πE((i, j)) a sharing (between i and j) if the set πE((i, j)) is non-empty and
introduce the following notation for these sharings. We write

• i r→π j if (i, j) ∈ E/(j, i) ∈ E, r ∈ π(i) and πE((i, j)) = {r}/πE((j, i)),

• i→π j if there is a r ∈ R with i
r→π j,

• i 6→π if there is no j ∈ V with i→π j,

• 6→π j if there is no i ∈ V with i→π j, and

• i 6↔π if 6→π i and i 6→π.

The first condition states that only one resource may be shared between any two nodes
connected by an edge. The second condition restricts nodes to sharing with at most one
neighbor.

We can see that the example sharing allocation π that we have introduced in Fig-
ure 1.3 is not a simple 2-sharing allocation since both conditions from Definition 1.8 are
violated: v1 and v2 share two resources and v4 is sharing with both v2 and v4. We give
a proper example for a simple 2-sharing allocation after introducing utilities in the next
subsection.

Simple 2-sharing allocations introduce an additional connection between a node and at
most one of its neighbors. In that regard they introduce a matching on the underlying
undirected graph. A matching on an undirected graph is a subset of edges that are
pairwise disjoint. The connection between simple 2-sharing allocations and matchings
is formalized in the following observation.

Observation 1.9. The second condition in Definition 1.8 implies that exactly one of
the following cases holds for a node i ∈ V .

• j →π i for exactly one j ∈ V ,

• i→π j for exactly one j ∈ V , or

• i 6↔π.

Intuitively, Observation 1.9 states that a node is either sharing a resource, is being
shared with or is not participating in any sharing. This means that any two sharings
cannot have a node in common. Any simple 2-sharing allocation can therefore be seen
as a matching consisting of all edges e ∈ E for which πE(e) 6= ∅.

As stated in Observation 1.6 every allocation can be seen as a sharing allocation and
even as a simple 2-sharing allocation. In later sections we often use allocations as a
starting point to construct specific simple 2-sharing allocations. The following definition
introduces the notion of extending a simple 2-sharing allocation.

Definition 1.10. Let G = (V,E) be a directed graph, R a finite set of resources.
Let π = (πN, πE) and π′ = (πN, π

′
E) be simple 2-sharing allocations on G. For some

(i, j) ∈ E and r ∈ π(i), we say π′ extends π with i
r→ j if

15



1 Introduction

• π′(k) = π(k) for all k ∈ V \ {j} and

• πE((i, j)) = ∅ and π′E((i, j)) = {r}.

Definition 1.10 ensures that the result of an extension is a simple 2-sharing allocation.
This means that we cannot extend with i

r→ j if either i or j are involved in another
sharing or if r 6∈ π(i). As a result, we know that after extending π with i

r→ j to get π′

the resource r is now also part of j’s bag:

π′(j) = π(j) ∪ {r}.

Definition 1.8 describes our extended version of allocations as consisting of two re-
source assignments: one on nodes and another one on edges. The bag of resources of a
single node then depends on not only the initially assigned resources but also the ones
shared along the incident edges. Conversely, the bag of a node not shared with (i.e.
there is no other node sharing with that particular node) will be the same as under the
initial allocation. This property is formally stated in the following observation.

Observation 1.11. Let G = (V,E) a directed graph and π = (πN, πE) be a simple
2-sharing allocation on G. If for i ∈ V we have 6→π i then π(i) = πN(i).

Proof. Let i ∈ V be a node that is not shared with, that is, 6→π i. We then have
Sin(π, i) = ∅ and thus πE((k, i)) = ∅ for all k ∈ Nin(i). From Definition 1.5 we get

π(i) = πN(i) ∪
⋃
k∈Nin

(πE((k, i)) ∩ π(k))︸ ︷︷ ︸
=∅

∪
⋃

k∈Nout

(πE((i, k)) ∩ π(k))︸ ︷︷ ︸
=∅

= πN(i).

1.3.4 Utility

The definitions and observations up to this point fully define the underlying structure
we want to examine in this work: resources being assigned to nodes and nodes sharing
these resources with neighbors. Using this framework, we can describe simple 2-sharing
allocations on different graph structures. As we strive to ultimately evaluate those
allocations, we still need to provide a measure of quality. To this end, we introduce the
concept of utility.

Definition 1.12. Let R be a finite set of resources. A function u : R → N is called a
utility function. For a set R′ ⊆ R we write u(R′) to denote the sum

∑
r∈R′ u(r).

We extend the visualization of graphs to also illustrate simple 2-sharing allocations
and utility functions. Figure 1.3 contains two examples of utility functions and (simple 2-
sharing) allocations on the example graph presented above. We give the utility functions
u1,u2,u3 and u4 of the nodes v1,v2,v3 and v4 respectively in a table next to the graph. An
additional column indicates the node(s) that a resource is assigned to by the allocation.
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1.3 Preliminaries

u1 u2 u3 u4 π−1

r1 1 0 0 0 v1
r2 1 1 1 2 v1
r3 1 1 1 2 v3
r4 1 1 1 1 v4

v1

v2

v3

v4

(a) Utility functions and allocation π of resources r1,r2 and r3.

u1 u2 u3 u4 π−1

r1 1 0 0 0 v1, v2
r2 1 1 1 2 v1
r3 1 1 1 2 v3
r4 1 1 1 1 v4, v3

v1

v2

v3

v4

r1

(b) A simple 2-sharing allocation extending π from the first example.

Figure 1.3: Visualization example for utilities and simple 2-sharing allocations.

Next to the table, we show the graph to be considered. As before, we use black arrows
to indicate the directed edges. Additional blue arrows indicate sharings. They are
annotated with the shared resource if there are multiple options. In the examples shown
in the figure we provide an allocation in the first part and an extension containing
sharings between v1 and v2 and between v4 and v3. Note that the sharings are also
reflected in the table.

We often assume identical utility functions for all nodes of a graph. In this case we use
a more compact visualization. Instead of providing the resource allocation in a separate
table we annotate nodes with the utilities of the assigned resources. This representation
emphasizes that we do not care about the names or labels of resources but are rather
interested in the utility they provide.

In the following example, we again present the graph given in Figure 1.1 with an initial
allocation. Under that allocation, the bag of v1 contains two unit value resources. The
bags of v2 and v3 each contain a resource of utility 2 and 4 respectively. We annotate
the node v4 with (0) to illustrate there are no resources assigned to it (and therefore no
initial utility).

v1

(1, 1)

v2 (2)

v3

(4)
v4

(0)

We also use blue arrows in this visualization to represent sharings. Additional utility
through shared resources is added to the node annotations and written in blue. Note that
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as we do not care about the name of the resources we do not annotate the blue arrows.
The following example shows the above allocation extended with sharings between v1
and v2 and between v3 and v4.

v1

(1, 1)

v2 (2, 1)

v3

(4)
v4

(4)

The goal of this thesis is to improve initial allocations via sharing. This requires some
metric of the quality of simple 2-sharing allocations. The following definition describe
two types of metrics — generally called social welfare — that consider the allocation in
its entirety. We do not judge the results of individual nodes but rather of the whole set
of nodes.

Definition 1.13. Let G = (V,E) be a directed graph, R a set of resources, π = (πN, πE)
a simple 2-sharing allocation of resources in R on G and {ui}i∈V a family of utility
functions. The utilitarian social welfare ut({ui}i∈V , π) of π is defined as

ut({ui}i∈V , π) := ut(π) :=
∑
i∈V

(ui(π(i))).

The egalitarian social welfare eg({ui}i∈V , π) of π is defined as

eg({ui}i∈V , π) := eg(π) := min
i∈V

(ui(π(i))).

Utilitarian and egalitarian social welfare have been extensively studied in the context
of resource allocation. We refer to Chevaleyre et al. for an overview of the usual
definition and related results [Che+06]. Our definitions — while similar in shape to
those in previous works — take into account the resources shared over edges.

The second type of quality measure is related to a more local property of nodes: envy.
In essence a node is envious if any of its (incoming) neighbors are assigned more valuable
resources. This particular notion of envy is based on the works of Bredereck et al. Abebe
et al. and Chevaleyre et al. among others [AKP17; BKN18; CEM17].

Definition 1.14. Let G = (V,E) be a directed graph, R a finite set of resources and
{ui}i∈V a family of utility functions. Let π = (πN, πE) be a simple 2-sharing allocation.
A node i ∈ V is called envious (in π) if there is a j ∈ Nout(i) with ui(π(i)) < ui(π(j)).
We define the set of envious nodes in π as

Env(π) := {i ∈ V | ∃j ∈ Nout(i) : ui(π(i)) < ui(π(j))}.
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1.3 Preliminaries

The concept of envy can now be used to determine the quality of a given simple 2-
sharing allocation. In this work, we explore the possibility to influence the total number
of envious nodes in a given allocation by introducing sharing. In particular, we aim to
minimize the total number |Env(π)| of envious nodes.

We extend the visualization presented so far to show envious nodes marked in red.
This would result in the following depiction of envious nodes in the previous example
(as both v1 and v2 are envious of v4).

v1

(1, 1)

v2 (2, 1)

v3

(4)
v4

(4)
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2 Social Welfare

As discussed in Chapter 1, we want to determine if and how pairwise sharing can be used
to improve existing allocations. We already introduced the formal framework to extend
allocations. However, we still need to formalize when extensions actually constitute an
improvement. Starting with this chapter, we therefore look at several metrics that are
commonly used to compare quality (or fairness) of allocations.

In the following sections, we look into social welfare concepts. In particular, we study
the possibility of using sharing to improve allocations with respect to the utilitarian
social welfare, that is, the accumulated utility of all agents, and the egalitarian social
welfare, that is, the minimum utility of any agent. Both metrics have been commonly
used to evaluate the quality of resource allocations and are therefore obvious candidates
for our attempt to introduce sharing to existing distributions.

Throughout this chapter, we consider a fixed directed graph G = (V,E) and a family
of utility functions {ui}i∈V for a fixed set of resources R.

2.1 Utilitarian Social Welfare

Definition 1.12 shows how we assign numerical utility values to resources. Definition 1.4
describes how allocations assign sets of resources to nodes. When put together, these
two definitions give us a clear understanding of how to determine a (numerical) utility
value for any single node. While there is definitely more than one way to combine these
into a utility value for the whole allocation, a rather straightforward one is to simply
compute the sum of the individual node-utilities.

This metric for judging the quality of allocations, which is called the utilitarian social
welfare and defined in Definition 1.13, is in fact well-established and has been studied in
various contexts before (see Chevaleyre et al. for an overview [Che+06]). In this section
we present some insights we then use to devise a simple algorithm to compute a simple
2-sharing allocation from an initial allocation that maximizes utilitarian social welfare.

2.1.1 On Optimality of the Simple 2-Sharing Allocations

We have already discussed in the previous chapter that we aim to extend existing allo-
cations through the introduction of pairwise sharing. This task is strictly different from
finding an optimal simple 2-sharing allocation (with respect to utilitarian social welfare).
In fact, the best solution that can be computed from a given initial allocation might be
significantly worse than other allocations.
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2 Social Welfare

u1 u2 u3 u4 π−1

r1 2 1 2 4 v2
r2 4 2 1 2 v3

v1 v2

(1)

v3

(1)

v4

Figure 2.1: Non-optimal resource allocation for utilitarian (and egalitarian) social wel-
fare.

Consider the example given in Figure 2.1 for illustration. It shows a graph consisting
of 4 nodes, with each node having a custom utility function to evaluate the two available
resources. The initial allocation assigns these resources to v2 and v3.

In this example the initial allocation assigns the resources r1 and r2 to v2 and v3
respectively. For these nodes however, the utility of the assigned resources is rather
low. Even sharing these resources with one of their neighbors will generally improve the
total utility by a small amount. In fact, it is easy to see that just by sharing we cannot
improve the total utility by more than

u1(r1) + u2(r1) + u3(r2) + u4(r2) = 2 + 1 + 1 + 2 = 6.

In contrast, we can envision a different initial allocation π that assigns r2 to v1 and
r1 to v4. This allocation would already have a much higher total utility:

u1(r2) + u4(r1) = 4 + 4 = 8.

Sharing the resources could improve this value even further, making this solution better
than every sharing extending the given initial allocation.

2.1.2 Optimizing Utilitarian Social Welfare via Pairwise Sharing

We now show how to optimize utilitarian social welfare by extending an initial allocation
via pairwise sharing. This is rather easy to do by reducing the problem to finding an
optimal matching.

The key insight is that when extending a given simple 2-sharing allocation π =
(πN, πE) with a sharing v

r→ w to construct a new simple 2-sharing allocation π′ =
(πN, π

′
E), the change in utility is independent of π:

ut(π′)− ut(π) =
∑
v′∈V

π′(v′)−
∑
v′∈V

π(v′)

=
∑
v′∈V

π′(v′)− π(v′)

= π′(w)− π(w)

= uw(r)

This means that the order in which we consider sharings does not matter. When
starting from an initial allocation π0, we then can compute the utilitarian social welfare
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2.1 Utilitarian Social Welfare

of any simple 2-sharing allocation π = (π0, πE) extending π0 as

ut(π) = ut(π0) +
∑

(v,w)∈E
r∈πE((v,w))∩π(v)

uw(r) +
∑

(w,v)∈E
r∈πE((w,v))∩π(v)

uw(r).

Optimizing utilitarian social welfare is thus equivalent to optimizing the sum∑
(v,w)∈E

r∈πE((v,w))∩π(v)

uw(r) +
∑

(w,v)∈E
r∈πE((w,v))∩π(v)

uw(r).

This shows that given an edge (v, w) ∈ E in an optimal simple 2-sharing allocation π
either no resource is shared between v and w or the optimal resource to share is the r
maximizing

max

(
max
r∈πN(v)

uw(r), max
r∈πN(w)

uv(r)

)
.

Note that we now know the contribution of each edge that is shared over to the
utilitarian social welfare of an optimal simple 2-sharing allocation. Finding the optimal
simple 2-sharing allocation is thus equivalent to finding the optimal set of edges to share
over. Observation 1.9 illustrates that this in turn is identical to finding a maximum
weight matching. This gives us the main result of this section in the following theorem.

Theorem 2.1. Finding a simple 2-sharing allocation extending a given allocation that
maximizes the utilitarian social welfare can be done in

O (|R||E|+ |V | (|E|+ |V | · log(|V |)))

steps.

Proof. As suggested we can reuse results for maximum weight matching (MWM). MWM
is a problem from graph theory and has been extensively studied in the past. Ed-
monds published an algorithm, able to solve the unweighted version of the match-
ing problem in O(|V |2|E|) time, in 1965 [Edm65]. A slightly modified version that
can solve the weighted version in the same asymptotic running time, has for example
been implemented by Kolmogorov [Kol09]. Gabow improved this even further and pro-
vided an algorithm that solves the weighted matching problem on general graphs in
O(|V |(|E|+ |V | log(|V |)) [Gab18].

To facilitate the algorithm, we need to compute the edge weights. From the expla-
nation above we know the weight for an edge (v, w) ∈ E can be computed (in O(|R|)
time) as

max

(
max
r∈πN(v)

uw(r), max
r∈πN(w)

uv(r)

)
.
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2 Social Welfare

2.2 Egalitarian Social Welfare

In the previous section we have described how summing the utility nodes assign to their
respective bags can can be used to construct a metric for allocations. There are some
obvious drawbacks to that approach, such as the fact that assigning all resources to a
single node could still yield an optimal solution. It is thus interesting and useful to look
into other metrics as well.

Another metric that combines the utilities of individual nodes is called egalitarian
social welfare. Similar to the utilitarian social welfare, it has also been studied extensively
(again we refer to Chevaleyre et al. for an overview [Che+06]). Instead of the sum, it
uses the minimum node utility as the utility of an allocation. See Definition 1.13 for the
definition of the egalitatian welfare eg(π) of a simple 2-sharing allocation π.

In this section we devise an polynomial time algorithm, computing a simple 2-sharing
allocation that extends a given initial allocation optimally with respect to the egalitarian
social welfare.

2.2.1 On Optimality of the Simple 2-Sharing Allocation

We again note that the task of extending an initial allocation via pairwise sharing to
optimize the egalitarian social welfare is strictly different from finding an optimal simple
2-sharing allocation. And, as for utilitarian social welfare, the solution to our problem
is often worse than the solution to the general optimization problem.

The setup presented in Figure 2.1 can also be used as an illustrating example for the
egalitarian social welfare. With the two resources originally assigned to v2 and v3 only
one of them can receive the other resource via sharing to increase its utility. Also, only
by sharing with v1 and v4 respectively, v1 and v4 could get a non-zero utility. Thus, we
can never increase the minimum utility above

min(u(v1), u(v2), u(v3), u(v4)) = min(2, 1, 1, 2) = 1.

Observe that having initially r2 assigned to v1 and r1 assigned to v4 we could extend
the allocation with v1

r2→ v2 and v4
r1→ v3. This would increase the minimum utility to

min(u(v1), u(v2), u(v3), u(v4)) = min(4, 2, 2, 4) = 2.

2.2.2 An Algorithm for Optimal Egalitarian Social Welfare

In this subsection we present an algorithm computing the optimal egalitarian social
welfare one can achieve by extending a given allocation.

Note that while we still need to find the appropriate edges to share over, it is not
obvious how we could translate this to finding a matching, like we did for utilitarian
social welfare. Consider the following example.
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2.2 Egalitarian Social Welfare

v1

(2)

v2

(1)

v3

(1)

v4

(4)

v5

(0)

v6

(3)

Of the 5 nodes v5 has initially the lowest utility. To optimize the egalitarian social
welfare we would need to increase its utility. Both v4 and v6 could share their respective
resource with v5. It might be tempting to always go for the resource with the greater
utility. In this example, however, this would not be optimal. By having v4 share its
resource with v5, only v2 could share with v3. The resulting minimum utility would be

min(u(π(v1)), u(π(v2)), u(π(v3)), u(π(v4)), u(π(v5)), u(π(v6))) = min(2, 1, 2, 4, 4, 3) = 1.

If instead v6 shared with v5, then v4 would now be free to share with v3 and v1 could
then share with v2. The minimum utility of any node then is

min(u(π(v1)), u(π(v2)), u(π(v3)), u(π(v4)), u(π(v5)), u(π(v6))) = min(2, 3, 5, 4, 3, 3) = 2.

This example illustrates that we cannot easily adapt the approach from the previous
section to work for egalitarian social welfare. We instead present in Figure 2.2 an
algorithm to compute the best possible value when extending a given allocation. We split
the functionality in two functions: CanImproveMinUtility and MaxMinUtility.
Intuitively, the former one can be used to check if it is possible to introduce sharings
that improve the utility of all nodes above a given threshold. The latter function then
uses binary search to determine the greatest threshold, for which the former still returns
true.

To determine if we can improve the utility of all nodes above a given threshold d in
an initial allocation π, CanImproveMinUtility(π,d) first determines the nodes that
need to be updated. In line 5 it sets L to be the set of all nodes with utility below the
threshold. It then proceeds to construct a set of edges M that one can share over to
improve the utility of the nodes in L. The loop in line 7 iterates over all edges connecting
nodes in L with those not in L. In line 8 the algorithm checks whether the current edge
e can be used to increase the utility of the endpoint in L above the threshold. If this is
true, the edge is then added to M . After all edges have been processed the algorithm
proceeds in line 12 to check if the graph (V,M), that is, the graph containing only the
collected edges, contains a matching covering all nodes in L. It returns true if this is the
case and false otherwise.

With this algorithm we get the following theorem as our main result in this section.

Theorem 2.2. Let π be an allocation and b := maxi∈V ui(π(i)). Then MaxMinUtility(π)
computes the maximum egalitarian welfare of simple 2-sharing allocations extending π

in O
(

log(b) · (|R|+
√
|V |) · |E|

)
time.

Proof. Let π be an allocation of resources R to nodes V .

25



2 Social Welfare

1: function CanImproveMinUtility(π, d)
2: if mini∈V ui(π(i)) ≥ d then
3: return True
4: end if
5: L← {i ∈ V | ui(π(i)) < d}
6: M ← ∅ . (V,M) is always a bipartite graph
7: for all i ∈ L, j ∈ V \ L, e ∈ E ∩ {(i, j), (j, i)} do
8: if maxr∈π(j) ui(r) + ui(π(i)) ≥ d then
9: M ←M ∪ {e}

10: end if
11: end for
12: if there is a matching in (V,M) covering L then
13: return True
14: else
15: return False
16: end if
17: end function

18: function MaxMinUtility(π)
19: m← 0
20: M ← maxi∈V ui(π(i))
21: while m < M do
22: if CanImproveMinUtility(π,

⌈
M−m

2

⌉
) then

23: m←
⌈
M−m

2

⌉
24: else
25: M ←

⌈
M−m

2

⌉
− 1

26: end if
27: end while
28: return M
29: end function

Figure 2.2: Listing of the MaxMinUtility algorithm to compute the optimum egali-
tarian welfare.
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2.2 Egalitarian Social Welfare

Correctness Let d ∈ N. In a call of CanImproveMinUtility(π,d) L contains all
nodes with utility lower than d (line 5). The loop then iterates over all edges connecting
a node in L with one not in L (line 6) and updates M . We then know the following two
properties of M , once the loop has finished (line 11).

• M only contains edges connecting a node in L with a node not in L. This is
ensured by the condition in line 7. From this we get that (V,M) is bipartite with
partitions L and V \ L.

• Each edge (i, j) ∈ M supports the sharing of a resource with high enough utility
to increase the utility of the node in L to at least d.

Let now M ′ ⊆M be a matching in (V,M). We construct π′ by extending π with i
r→ j

for each i ∈ L, j ∈ V \ L with (i, j) ∈ M ′ or (j, i) ∈ M ′ where r = arg maxr∈π(i) u(i).
The second property then ensures u(π′(j)) ≥ d. If the matching covers all nodes in L,
then this implies eg(π′) ≥ d and we can construct a simple 2-sharing allocation from the
selected edges. Note that Observation 1.9 implies such a matching always exists if there
is a corresponding simple 2-sharing allocation.

Finally, the binary search in MaxMinUtility ensures we return the greatest d, such
that there is a simple 2-sharing allocation extending π for which the egalitarian welfare
is at least d.

Running Time The loop in line 7 runs at most O(|E|) times. Within each iteration all
resources of a particular node are checked, so the loop runs in O(|R||E|) time. Micali and
Vazirani demonstrated how a maximum matching in a bipartite graph can be found in
O(
√
|V ||E|) time [MV80]. Put together this implies a running time of O(|V |+ |R||E|+√

|V ||E|) for CanImproveMinUtility.
Finally, the binary search in MaxMinUtility requires dlog(maxi∈V ui(π(i))e steps.
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3 Hardness of Minimizing Envy
Through Pairwise Sharing

In the previous chapter we have looked at two important and well-understood metrics for
allocations built around the concept of social welfare. These metrics have been designed
to derive a global utility value of an allocation from the utilities for every agent. As this
effectively reduces the information at hand to just a single number, it is not hard to see,
why this might not be an appropriate representation for every application.

In some resource allocation scenarios, such as reward assignment for employees or
on-campus housing allocation for students, there are social structures to consider. We
already argued in the introduction that student stress-levels seem to be related to their
housing situation and the relation to their roommate (as for example shown by Dusselier
et al. [Dus+05]). And as for example Festinger argues it is the case for most social groups,
students and employees evaluate their own situation in part by comparison with others
[Fes54]. It thus seems fitting to account for this fact when optimizing allocations.

The concept of envy has been introduced and studied in the context of allocations
to model the comparison of agents with others. We again refer to Chevaleyre et al.
for an overview [Che+06]. The idea is to mark agents as envious if they observe that
they have been assigned a bag of lower utility than the ones assigned to other agents.
Acknowledging that there are scenarios where agents only compare their own situation
to a subset of other agents, such as the colleagues in their own team, Bredereck et al.
Abebe et al., Chevaleyre et al. and others extended the concept of envy to adhere to
an underlying social network [AKP17; BKN18; CEM17]. Definition 1.14 presents this
notion of graph-envy, simply called envy throughout this thesis for simplicity.

In this chapter we investigate the complexity of minimizing envy when introducing
sharing in allocations. One of the main results of this thesis is a hardness property for
the resulting problem.

3.1 Graph Envy

While the classic problem of resource allocation is only concerned with agents their
preference over resources, often some underlying structure can be observed in real-world
applications. In technical systems not all agents might be able to interact. And in social
settings there are often social networks influencing the actual impact of any distribution
of resources.

This aspect of interaction can often be captured by graphs. This is the foundation of
works by Bredereck, Kaczmarczyk and Niedermeier [BKN18]. They used the concept
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3 Hardness of Minimizing Envy Through Pairwise Sharing

of graph envy. A graph relating the agents restricts what other agents they might be
envious of. Building upon this general setup, we now ask if and how the number of
envious nodes can be reduced in an allocation, when they are extended by allowing
nodes to share in pairs.

3.1.1 Spreading Envy

As described in Definition 1.5 our particular version of allocations prevents nodes from
sharing with more than one neighbor and, hence, induces a matching on the considered
graph (see Observation 1.9). Thus, it stands to reason that the process of finding a good
simple 2-sharing allocation is similar to finding a good matching. We show below that
this is not the case when optimizing envy and that this particular task is indeed harder
than finding a matching.

In the context of graph-envy an agent or node is envious if it can observe one of
its neighbors having more utility accumulated with the assigned resources than he has
himself, according to his own evaluation. The nodes he can observe is here given by
a directed graph. We might now rightfully expect envious nodes to be contempt with
their situation if their total utility could be improved by sharing resources with one of
their neighbors. Consider for example the following small graph and allocation.

v1

(1)

v2

(0)

v3

(1)

Under this initial allocation v2, with no resources assigned to it, is envious of v3, which
has a 1-value resource allocated to it. However, by making v1 share its 1-value resource
with v2, there is no longer any need to be envious.

v1

(1)

v2

(1)

v3

(1)

By sharing the single resource of v1 with v2 we could construct an envy-free allocation
and arguably improve the situation for some nodes without worsening it for others. This
simple example already illustrates why it is interesting to look at opportunities to fix
envy in a given allocation and graph by sharing resources. It is, however, also deceiving
in its simplicity. Consider the following slightly modified version of the above example.

v1

(0)

v2

(0)

v3

(1)

v4

(0)
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3.1 Graph Envy

Here v2 is starting off envious of v3 as well. While v1 now has no resource to share, it
is still possible to fix the envy by making v3 share with v2.

v1

(0)

v2

(1)

v3

(1)

v4

(0)

Doing this does indeed ensure that v2 is no longer envious. However, as this is achieved
by increasing v2’s utility, now both v1 and v4 are envious of v2. Even worse, as v2 is
their only neighbor and since we do not allow a node to be involved in more than one
sharing, this leaves both v1 and v3 envious.

The previous example shows an important property of envy, when we extend existing
allocations via sharing: it can be spread through the graph. This is a rather striking
difference compared to the optimization of social welfare, because locally optimizing the
number of envious nodes can actually worsen the global situation. When we want to
reduce the number of envious nodes in a given allocation by sharing, we need to be
aware of the possibility of introducing envy in previously unenvious nodes. We might of
course hope that these new envious nodes can then be made unenvious in a second step.
However, it is not hard to construct an example that demonstrates how the spreading
can propagate even further than just to the direct neighbors of a sharing node. Consider
the following extended example with nine nodes.

v1

(1)

v2

(0)

v3

(0)

v4(1)

v5

(0)

v6(1)

v7

(0)

v8(1)

v9

(0)

Here v2, being envious of v1, is the only envious node. Again, we can easily fix the
envy by making v1 share with v2. However, as with the previous example this now
makes v3, the other neighbor of v2, envious. In contrast to the previous example, it is
now possible to fix v3 by having v4 share with it. This sharing in turn makes v5 envious.
Continuing this chain reaction, we might end up with the following sharing.

v1

(1)

v2

(1)

v3

(1)

v4(1)

v5

(1)

v6(1)

v7

(1)

v8(1)

v9

(0)
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3 Hardness of Minimizing Envy Through Pairwise Sharing

Even though, we introduced all these sharings we ultimately were not able to reduce
the number of envious nodes in the allocation.

It is important to realize that is not possible to determine whether the sequence of
sharings ultimately leaves envious nodes by just looking at a constant number of nodes.
The example above could be easily expanded to either leave no or any number of envious
nodes in the final configuration.

Our main goal is to devise fast algorithms to compute sharings that decrease the
number of envious nodes. While we cannot (yet) rule out the possibility of fast algorithms
existing, the last example illustrates that the dynamics introduced by sharings moving
envy in the graph complicates the endeavor quite a bit.

3.1.2 NP-hardness

As demonstrated in the previous section the task of extending an allocation via sharing
has interesting dynamics regarding the number of envious nodes. In particular the
examples show that envy can be moved or spread. Thus, when aiming to construct an
optimal simple 2-sharing allocation, it is not obvious for single arcs if it is beneficial to
share along them or not.

We are now interested in what bounds exists on the hardness of the problem. Formally,
we introduce the following decision problem.

Graph Envy With Pairwise Sharing
Input: A Directed graph G, a finite set of resources R, an allocation π of R on

G, k ∈ N.
Question: Is there a simple 2-sharing allocation π′ = (π, π′E) extending π with

|Env(π′)| ≤ k?

This problem and its corresponding optimization problem are motivated by our sharing
setup and the examples presented so far. However, as we discuss in detail in section
Section 3.2 we can focus on even more restricted versions of the problem for interesting
results.

The following theorem — the main result of this section — formally states that there
is indeed no algorithm that efficiently finds simple 2-sharing allocations with minimum
envy (unless P = NP ).

Theorem 3.1. Graph Envy With Pairwise Sharing is NP-hard, even when we
fix k.

Proof. We provide a reduction from the well-known NP-hard problem 3-Sat. For an
introduction to the problem and a proof of its hardness we refer to Kleinberg and Tardos
[KT06, pp. 459].

3-Sat
Input: A boolean formula φ in 3-CNF form.
Question: Is there a truth-assignment such that φ is true?
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3.1 Graph Envy

Let φ be a boolean formula in 3-CNF and k ∈ N. Let V be a set of k arbitrarily
selected variables in φ and R a set containing the remaining ones. If needed, we fill up
V with dummy variables if there are less than k in φ. We then construct an instance of
Graph Envy With Pairwise Sharing as follows.

• For every variable X ∈ V we introduce three separate nodes VX , X and ¬X.
We connect the latter two to the first one and assign resources as shown in the
following graph.

VX

(2)

X

(0)

¬X

(0)

This leaves both X and ¬X initially envious of VX .

• For every variable X ∈ R we introduce 4 separate nodes DX , VX , X and ¬X. We
connect them and assign resources as shown in the following graph.

DX

(2)

VX

(3)

X

(0)

¬X

(0)

As with the previous configuration, X and ¬X are initially envious of VX .

• For every clause C = (L1 ∨ L2 ∨ L3) in φ, where the Li are literals, i.e. either X
or ¬X for a variable X, we introduce 7 new nodes C and Ci, 1 ≤ i ≤ 6. We
denote with Li the corresponding node introduced through one of the previous
constructions (i.e. either X or ¬X for the appropriate variable X). We then
connect the new nodes with the literal nodes and assign each of the new nodes
resources as shown in the following graph.
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L1 L2 L3

C1

(1, 1)

C2

(1, 1)

C3

(1, 1)

C4

(1, 2)

C5

(1, 2)

C6

(1, 2)

C(1)

Only C is initially envious (of C4, C5 and C6).

Following this construction, we end up with a graph G consisting of 3·|V|+4·|R|+7·|φ|
nodes (where |φ| is the number of clauses in φ) and 2 · |V| + 4 · |R| + 9 · |φ| edges and
an initial allocation π of |V| + 2 · |R| + 13 · |φ| resources on G. We argue that there is
a simple 2-sharing allocation extending π with less than or equal to k envious nodes if
and only if there is a truth assignment satisfying π.

“⇒”: For this direction assume there is a simple 2-sharing allocation π′ = (π, π′E)
extending π, with less than or equal to k envious nodes. By construction all 2 · (V +R)
literal nodes are envious in the initial allocation. For the nodes of the variables X ∈ V ,
observe that only sharing with VX could fix them, as the 1-value resources of the C1, C2

and C3 nodes are not sufficient to remove the envy. On the other hand, since only one
of the two literal nodes X and ¬X can share with VX the other must remain envious,
leaving exactly k = |V| envious nodes. From that observation we can conclude that all
but those k nodes are not envious in π′, and in particular we have Env(π′) ⊆ V .

Consider now for a clause C of φ the connected nodes C4, C5 and C6.

C4

(1, 2)

C5

(1, 2)

C6

(1, 2)

C(1)

As C is not envious in π′, we know one of them is sharing a 2-value resource with it.
W.l.o.g. assume the sharing node is C4 and consider the path to the literal node L1.
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L1 C1

(1, 1)

C4

(1, 2)

C

(1, 2)

The node C1 is also not envious in π′. Now, if L1 were sharing with VX , increasing
the utility of L1 to 3, this would leave C1 envious, unless C4 would be sharing with it.
But since C4 is already sharing with C, we know L1 is not sharing with VX .

This shows that for C not to be envious, it must be connected in the underlying
undirected graph to a literal node for a variable X that is not sharing with VX . We now
construct a truth assignment for the variables in φ by setting a variable X to true iff
the node X is not sharing with VX . From the reasoning presented above, we then know
that every clause contains a literal that is true under that assignment.

“⇐”: For the reverse direction assume there is a truth assignment for the variables
in φ such that the formula φ is true. The strategy that follows from the reasoning in
the previous part, is to extend the base allocation π by having VX share with X if the
variable X is true under the assignment and with ¬X otherwise. For variables X ∈ R
we further extend the allocation to have DX share with the connected literal node that
does not share with VX , resolving that nodes envy. Once again this leaves only one
envious literal node for each of the k variables in V .

We now need to show that we can extend the allocation even further to fix the envy
of the Ci nodes connected to a literal node and that this still leaves a Ci node that is
free to share with C.

For the first part, observe that a node Ci, 1 ≤ i ≤ 3, is envious of the connected literal
node L if and only if L would be sharing with the connected VX node, leaving L at a
total utility value of 3. To fix the affected Ci node, we extend the allocation to have
Ci+3 share its 2-value resource with it.

For the second part, observe that for each clause C of φ there is at least one literal
that is true under the truth assignment. By construction, this means the corresponding
literal node is not sharing with the connected VX and the connected Ci thus not envious,
even without Ci+3 lending its 2-value resource. This leaves Ci+3 free to share with C.
Extending the allocation accordingly for all clauses yields a simple 2-sharing allocation
with exactly k envious nodes.
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3 Hardness of Minimizing Envy Through Pairwise Sharing

3.2 Parameterized Hardness

The hardness result given in Theorem 3.1 implies that there cannot be an efficient (i.e.
polynomial time) algorithm to minimize the number of envious nodes in an allocation
by introducing pairwise sharing (unless P = NP ). The proof shows that this can be
seen as direct consequence of the peculiar property of envy to potentially spread when
sharings are introduced. As demonstrated by the examples in Section 3.1.1 this can
make it hard to envision, how an optimal solution might look like.

We are of course still interested in efficient algorithms computing sharing allocations.
While the result from the previous chapter suggests this is likely not possible in the
general setup, one might hope that the hardness only manifests for certain instances. In
this section we therefore study the hardness of restricted versions of the Graph Envy
With Pairwise Sharing problem.

As a first step we can examine the hardness proof for Graph Envy With Pairwise
Sharing. In the proof a graph and allocation are constructed from an instance of the
3-Sat problem. This yields already some insights into what is needed for the problem
to be hard. In particular, we can see that the constructed graph contains no directed
cycles and is indeed a Directed Acyclic Graph (DAG). Additionally, no node has a bag
of size greater than two in the initial resource allocation. We therefore get the following
corollary.

Corollary 3.2. Graph Envy With Pairwise Sharing is NP-hard even when

• k is fixed and

• G is a DAG and

• the maximum bag-size is at most 2, i.e. maxi∈V |π(i)| ≤ 2.

The observations presented in the corollary are not the only way to restrict the prob-
lem. To formally state the results in this chapter we will use theoretical machinery from
the study of parameterized complexity. In particular show that for two selected choices
of a parameter the problem is not fixed parameter tractable, i.e. it cannot be solved in
f(k)no(1) time, where k is the parameter and n is the size of the instance.

In the following two subsections we examine two parameterized versions of the Graph
Envy With Pairwise Sharing problem. We show that the respective versions are
not fixed parameter tractable, i.e. they cannot be solved in f(k)no(1) time, where k is
the parameter and n the size of instance. For a formal introduction to parameterized
complexity we refer to the book of Downey and Fellows [DF99].

3.2.1 Number of Sharings

As discussed the hardness of Graph Envy With Pairwise Sharing seems to be
related to the possibility of envy being “moved” when sharings are introduced to an

36



3.2 Parameterized Hardness

allocation. We demonstrated in the examples in Section 3.1.1 that each sharing intro-
duced to fix a node might make one or more of its neighbors envious. Depending on the
graph we might end up with more envious nodes.

One could assume this implies the hardness depends on the number of sharings we
perform and if properly restricted could therefore allow us to devise a fast algorithm.
More formally, one could hope that Graph Envy With Pairwise Sharing parame-
terized by the number of sharings that might be added to the initial allocation is fixed
parameter tractable. The following theorem states that this is not the case.

Theorem 3.3. Graph Envy With Pairwise Sharing parameterized by the maxi-
mum number of sharings in the simple 2-sharing allocations is W[1]-hard.

Proof. We prove the result by reducing from Independent Set, a well-studied W[1]-
hard problem. Let G = (V,E) be a (undirected) graph and l > 0. We construct an
instance of Graph Envy With Pairwise Sharing.

1. Fix an enumeration of the node in G: V = {v1, . . . , vn}.

2. Construct a directed graph G′ = (V ′, E ′), where

• V ′ = V ∪ {p1, . . . , pn}
• E ′ = {(vi, vj) | {vi, vj} ∈ E, i < j} ∪ {(vi, pi) | 1 ≤ i ≤ n}

3. Introduce a set of resources R = {r1, . . . , rn, s1, . . . , sn}

4. Construct an allocation π : V → 2R of resources R to agents V ′:

• π(vi) := {ri}
• π(pi) := {si}

5. Construct a utility function u : R→ N:

• u(ri) := i

• u(si) := n+ 1

With this construction we have u(π(vi)) = i and u(π(si)) = n+ 1. We now know vi is
envious of pi and any node vj, j > i, it is connected with. The envy towards pi cannot
be fixed by sharing with any of the vj.

We set k := n− l and argue that (G, l) is a yes-instance of Independent Set if and
only if (G′, u, π, k) is a yes-instance of Graph Envy With Pairwise Sharing.

Assume (G, l) is a yes instance of Independent Set. W.l.o.g. let then {v1, . . . , vl}
be an independent set. We construct a simple 2-sharing allocation π′ by extending π
with

pi
si→ vi for all 1 ≤ i ≤ k.

We then have u(π′(vi)) = i + n + 1 for 1 ≤ i ≤ k. Now let 1 ≤ i < j ≤ k with
(vi, vj) ∈ E ′. Since {v1, . . . , vl} is an independent set, we know that j > l and therefore

u(π′(vi)) = i+ n+ 1 > j = u(π′(vj)).
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3 Hardness of Minimizing Envy Through Pairwise Sharing

We then know that exactly the envy of the nodes in {v1, . . . , vl} has been fixed in π′,
leaving only n− l = k envious nodes.

Now for the reverse direction assume (G′, u, π, k) is a yes-instance of Graph Envy
With Pairwise Sharing. Let then π′ be a simple 2-sharing allocation extending π
with |Env(π′)| ≤ k. We set

I := V \ Env(π′).

Observe that then |I| ≥ n − k = l. Now let 1 ≤ i < j ≤ n with vi, vj ∈ I. We know
vi, vj 6∈ Env(π′). As Argued above, this is only possible if pi and pj are sharing with
them. Assume now that {vi, vj} ∈ E. Then (vi, vj) ∈ E ′ by construction and since

u(π′(vi)) = n+ i+ 1 < n+ j + 1 = u(π′(vj))

this would mean vi ∈ Env(π′). This is a contradiction, and we therefore know that no
such edge can exist and I is an independent set of size at least l in G.

3.2.2 Number of Envious Nodes in Initial Allocation

Theorem 3.3 indicates that not just the number of necessary sharings to produce an
optimal solution determines how hard it is to solve an instance of the Graph Envy
With Pairwise Sharing problem. When trying to isolate other means to determine
restricted versions of the problem that can be efficiently solved, we therefore want to
consider more explicit restrictions to the input.

When examining the proofs for both Theorem 3.1 and Theorem 3.3 we can see that
in both a graph and initial allocation is constructed. This is of interest, in that this
already dictates what nodes are initially envious. In particular there is does not seem to
be an upper bound on the number of envious nodes, with half of the nodes introduced
in the proof of Theorem 3.3 being initially envious.

One might hope that having only a bounded number of envious nodes — or even just
one — might simplify the problem enough to allow the efficient computation of solutions.
However, the following theorem states that this is not the case.

Theorem 3.4. Graph Envy With Pairwise Sharing with k = 0 is NP-hard on
initial allocations with only one envious node.

Proof. We present a similar reduction from 3-Sat like the one for the main hardness
result in 3.1. Let φ be a 3-KNF formula. We construct an instance of Graph Envy
With Pairwise Sharing through the following gadgets.

• We add two nodes I and J to the graph and connect them and assign resources
as follows.

J

(2)

I

(0)

38



3.2 Parameterized Hardness

This leaves I envious of J under the initial allocation.

• For each variable X in φ we add nodes X, ¬X, DX and VX to the graph. We then
connect them to each other and to E and assign resources with utilities as follows.

I

DX

(2)

VX

(3)

X(1) ¬X(1)

We call the nodes X and ¬X the literal nodes (for the variable X). Observe that
none of the new nodes is initially envious and that only either X or ¬X can share
with VX or DX .

• For each clause C = (L1 ∨ L2 ∨ L3) in φ we add nodes C,C1, . . . , C6, VC1 , . . . , VC6

to the graph. We then connect them to each other and to the literal nodes L1, L2

and L3 and assign resources as follows.

L1 L2 L3

C1

(2)

C2

(2)

C3

(2)

C1

(1)

C2

(1)

C3

(1)

C4

(2)

C5

(2)

C6

(2)

C1

(1)

C2

(1)

C3

(1)

C(2)
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3 Hardness of Minimizing Envy Through Pairwise Sharing

Again, none of the nodes is initially envious.

Reduction Correctness We now argue that φ is a yes-instance of 3-Sat if and only if
the constructed instance is a yes-instance of Graph Envy With Pairwise Sharing
with k = 0 with I being the only envious node in the initial allocation.

“⇒”: For the “⇒” direction assume φ is a yes-instance of 3-Sat. We choose a truth
assignment that satisfies the formula and start constructing a simple 2-sharing allocation
by first having J share with I and then for all variables X have VX share with X exactly
if X is true under the assignment and with ¬X otherwise. The remaining literal node
for X should share the resource of DX . This ensures that all literal nodes are now no
longer envious of I.

Now for a clause C = (L1∨L2∨L3) of φ we can see that C1, C2 and C3 are envious of
the respective connected literal nodes if and only if that node shares with NX (where X
is the variable corresponding to that literal node). Now if C1 is envious this is fixed, by
making VC1 share its resource with C1. This in turn leaves C4 envious, unless similarly
fixed by making VC4 share with it. The same construction is done for all pairs of C2, C5

and C3, C6 nodes. If at least one of the nodes C4, C5 or C6 is sharing this leaves C
envious of that node. From the construction so far, we know that C4 (and similarly
C5 and C6) is only shared with if the connected literal node is itself connected to the
corresponding NX node. However, since we started from a satisfying truth assignment,
we know that at least one of the literal nodes L1, L2 or L3 must be connected to VX .
This leaves the corresponding node C4, C5 or C6 then free to share with C fixing its
envy. Then no node is left envious, and we have therefore constructed a simple 2-sharing
allocation with no envious nodes.

“⇐” For the reverse direction assume there is a simple 2-sharing allocation π, extend-
ing the initial allocation, with |Env(π)| = 0. We know that I is envious unless J is
sharing with it, which in turn forces X and ¬X to share with VX or NX (as sharing
with C1, C2 or C3 would make that node envious). We construct a truth assignment by
setting a variable X to true if and only if the literal node X is sharing with VX .

Now assume there is a clause C = (L1∨L2∨L3) that is not satisfied by the assignment.
As we have argued above, this means that all three literal nodes must be connected to
the corresponding DX nodes. However, for π not to leave any envious nodes this means
VC1 , . . . , VC6 must be sharing with C1, . . . , C6 respectively. This means the utilities of
resources available to C4, C5 and C6 sums up to 4 and C is therefore envious with
no one to share with. This contradicts the choice of π as an envy free allocation,
meaning there cannot be such a clause. φ must then be satisfied by the constructed
truth assignment.
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In the previous chapter we showed that Graph Envy With Pairwise Sharing is
unlikely to be efficiently solvable. The formal result is stated in Theorem 3.1. When
analyzing the hardness result we noted that the reduction we used in the proof is build
around a rather specific graph structure. In particular, it relies on cycles in the underly-
ing undirected representation of the graph. As a next step in analyzing the hardness of
the problem, in this and the following chapter we therefore consider only graphs without
cycles.

In particular in this chapter we will restrict the graphs to paths in their underlying
representation. We show that there is an — arguably complex — greedy linear-time
algorithm. Given an initial allocation this algorithm computes an optimal simple 2-
sharing allocation.

Formally, throughout the chapter we denote as G a fixed directed graph

G = ({v1, . . . , vn}, E)

with
(vi, vi+1) ∈ E ⊕ (vi+1, vi) ∈ E for all 1 ≤ i < n.

The ⊕ operator is meant to represent exclusive choice. We know that exactly one of the
edges is part of the graph.

Note that the underlying undirected graph is indeed a path going from node v1 to
node vn in the given order of nodes. The results in this section can trivially be extended
to account for graphs consisting of many paths. In addition, we also consider a single
utility function u throughout this chapter. This is merely for readability and all results
apply for different utility functions {ui}i∈V as well.

4.1 Greedy Sharing Decisions

A key observation motivating this and the next chapter is that in the proofs for both
Theorem 3.1 and for Theorem 3.3 we construct graphs that potentially contain undi-
rected cycles. When looking for instances of the Graph Envy With Pairwise Shar-
ing problem we can solve efficiently, it seems therefore appropriate to consider simpler
graph classes that do not contain cycles. In this chapter we focus on some of the simplest
non-trivial undirected graphs: paths.

Compared to arbitrary graphs we can immediately see, why paths might be simpler
to handle. When introducing a sharing vi → vj, we can introduce at most two more
envious nodes. By increasing the utility of vj only vj−1 and vj+1 can become envious.
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And since one of them must be the one sharing with vj (i.e. i = j − 1 or i = j + 1) we
can only hope to fix the other one by introducing another sharing. This simplifies the
reasoning about optimal decisions quite a bit.

This reasoning and the fact that the envy of a node vi can be fully determined by
looking at the bags of the nodes vi, vi−1 and vi+1 suggest that it is possible to locally —
i.e. by only looking at nodes in a constant distance of vi — decide if we need to include
a sharing involving that node. Employing such a local decision logic then allows the
description of a linear-time algorithm that simply considers the nodes in the enumeration
order to construct an optimal simple 2-sharing allocation.

Before we present such an algorithm, we want to describe the general ideas and pitfalls
of the local decision logic.

Simple Sharing As a first example consider the following graph consisting of three
nodes and some initially assigned resources.

v1

(1)

v2

(0)

v3

(1)

If we want to determine an optimal sharing decision for the envious v2 it might be
tempting to just fix it. In fact, assuming at least one of the outer nodes v1 or v3 is
free to share, simply adding such sharing to the allocation could fix the envy and thus
decrease the number of envious nodes.

An important observation is that any node can only be used to remove envy for one
of its neighbors (by sharing one of its resources). In the presented situation, there is
therefore no drawback from fixing the envy of v2, even if this blocks one neighbor from
fixing another node, as the total number of envious nodes could then have only been
reduced by one in all cases.

There are, however, still some points to consider, when choosing which of the neighbors
to share with. Consider the following extension of the example.

v1

(1)

v2

(0)

v3

(1)

v4

(0)

Here, both v2 and v4 are envious. The latter can only be fixed by sharing with v3. This
means that even though both, v1 and v3, could share their respective resource with v2
to fix its envy, an optimal solution would always have to use v1.

With no further knowledge about the allocation this example shows that we would
have to consider at least all nodes with distance 2 for any local sharing decision. However,
as our algorithm will consider the nodes in order, we can always assume optimal decisions
have already been implemented for one of the neighbors. In the example, if the algorithm
visits the nodes from left to right, we would thus always prefer the left neighbor and
only use the other one if that is not possible.
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Potential Sharing While the first set of examples gives us a clear indication of when
to share if a node is envious, we have yet to come up with rules for sharing with nodes
that might not yet be envious.

Consider the following graph as a simple example.

v1

(1)

v2

(0)

v3

(0)

v4

(1)

Initially only v3 is envious. While this can be fixed by having v4 share with it, v2 would
then be envious in the resulting allocation.

It might be possible to resolve this if v2 is handled after v3 one. As we strive, however,
for an algorithmic approach visiting the nodes in a fixed order, this might pose a problem.
Note that the given example could already be solved by such an algorithm if it introduced
some form of preemptive sharing. Even though v2 is not envious at the time it is handled
by the algorithm, the sharing v1 → v2 could be implemented. This would basically
prepare v2 for any increase in utility of v3 at a later step. However, it is not hard to
construct examples of similar structure in which such a preemptive sharing would yield
a non-optimal solution.

v1

(1)

v2

(1)

v3

(0)

v4

(1)

v5

(0)

Here, v2 is not envious. If we followed the suggested approach of preemptively sharing
the resource of v1 with v2, the envious v3 could only be fixed by having v4 share with it.
In turn, v5 would remain envious. We can compare this to the optimal solution, where
the second shares with the third and the fourth shares with the last node, leaving no
envious nodes.

To handle this situation in a more general fashion, a greedy algorithm cannot just
include a sharing preemptively. Instead, whenever required by a newly added sharing, it
might have to reevaluate an already visited node. It can then introduce another sharing
for that node if needed. Both sharings — the one fixing the current node and the one
fixing in turn its predecessor — will be added to the current allocation. Note that it is
not necessary to look even further back, as it would not be possible to fix envy of the
node before the predecessor (since it is the one now sharing its resource). Instead, the
predecessor can only increase its utility if this is not creating new envious nodes.

Philanthropic Nodes There is another situation that forces our algorithm to look
beyond the neighbors of the current node. Consider the following example.
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v1(0)

v2

(2)

v3

(1)

v4

(1)

v5

(0)

v6

(1)

v7(0)

We again want to include sharings in the enumeration order of the involved nodes. v1
is envious and v2 would need to share to fix it. As v3 is envious of the now occupied
v2 we could consider sharing with v4, making it envious in the process. However, this
would mean that now v6 can only share with either v5 or v7 leaving the other envious.
This results in two envious nodes. In contrast, if v4 does not share with v3 it is free
to share with v5. Now v6 can be used to fix v7 leaving only one envious node in total.
This example suggests that when trying to fix v3 using the next node v4 and making it
envious might not be optimal.

Consider now a slightly modified version of the previous example.

v1(0)

v2

(2)

v3

(1)

v4

(1)

v5

(0)

v6

(2)

Here, the situation is similar for nodes v1, v2 and v3. This time, we can again consider
having v4 share to fix v3. Again, this will only leave v6 to fix v5 leaving now exactly v4
envious. We call v4 a philanthropic node, as it is made envious in the final solution to
have both neighbors fixed. If we do not have v4 share, however, the situation for v5 does
not change, as only v6 can provide resources with utility value large enough to fix v5. So
even if v5 is fixed, this now leaves v3 and v4 envious, making this solution worse than in
the first case.

These exampels show that we cannot decide if we should fix an envious node by
making the sharing neighbor envious if we only look at the immediate neighbors. The
algorithm presented in the next section instead defers the decision. If it encounters a
node that could only be fixed via such a sharing, it will not add this sharing. Instead, if
it finds a node that could have its envy fixed by making its predecessor envious, it will
check if this predecessor can actually fix its predecessor. If so, both sharings are used in
the allocation, leaving the predecessor of the originally considered node envious of both
its neighbors and making it a philanthropic node.
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4.2 The MinPathEnvy Algorithm

Due to the simple structure of paths, it stands to reason that it should be possible to
use only the local neighborhood of a node (i.e. only nodes within a constant distance) to
decide if and how we can optimally extend a given sharing using that node. As shown in
the previous section, such decisions require some careful considerations of several edge
cases.

In this section we present a greedy algorithm that given an initial allocation of the
resources on the path computes an optimal (i.e. minimal with respect to the number of
envious nodes) simple 2-sharing allocation. We then proceed to explain the arguably
rather complex technical case distinctions used in the implementation. In the next
section we then proceed to prove the correctness and running time of the algorithm.

In Figure 4.1 we present the implementation of four helper functions and the scaffold-
ing of the MinPathEnvy algorithm. The first helper function HasRes, spanning lines
1 through 7, can be used to check if the utility of a given node can be increased to be
in a given interval by sharing with another node. CanIncrease(π,vi,vj,[[[a,,,b]]]) returns
true if and only if a resource of the bag of vi has big enough utility that, if added to
the bag of vj, increases that utility to be at least a and not bigger than b. We explicitly
allow intervals [[[a,,,∞))) without upper limit. The next two helper functions MinRes and
MaxRes, spanning lines 8 through 15, can be used to select the resource matching
the conditions checked by HasRes of minimum or maximum utility respectively. These
functions are only meant to be called after it was checked, whether such a resource exists
(e.g. by calling HasRes).

The fourth helper function Envious, spanning lines 16 through 22, can be used to
check if a node is envious in the given allocation. Envious(π,n) returns true if and
only if n is envious in π.

Finally, MinPathEnvy, spanning the remaining lines, is the implementation of our
algorithm. It consists of one main loop starting in line 25, designed to iterate over all
nodes in enumeration order. We omitted the implementation of the loop, as we present
different cases for handling a node — along with the code implementing them — in the
following subsections.

4.2.1 Case 0: The initial node

This case applies for the first node v1 and only if there is an arc to the second node v2,
i.e. (v1, v2) ∈ E.

v1 v2

The code for this case is given in Figure 4.2. In line 26 we check that it is indeed the
first iteration and that v1 is envious. Note that v1 ∈ Env(π) implies (v1, v2) ∈ E, as
there is no other node v1 could be envious of. In line 27 it is then checked, whether v2
contains a resource that can be used to fix the envy of v1. If that is the case the minimum
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1: function HasRes(π, s, t, I)
2: if ∃r ∈ π(s) : u(π(t)) + u(r) ∈ I then
3: return true
4: else
5: return false
6: end if
7: end function

8: function MinRes(π, s, t, I)
9: R← {r ∈ π(s) | u(π(t)) + u(r) ∈ I}

10: return arg minr∈R u(r)
11: end function

12: function MaxRes(π, s, t, I)
13: R← {r ∈ π(s) | u(π(t)) + u(r) ∈ I}
14: return arg maxr∈R u(r)
15: end function

16: function Envious(π, n)
17: if n ∈ Env(π) then
18: return true
19: else
20: return false
21: end if
22: end function

23: function MinPathEnvy(π0)
24: π ← π0
25: for all i← 1, . . . , n do

Code for the different cases in this section

97: end for
98: return π
99: end function

Figure 4.1: Listing for the MinPathEnvy algorithm scaffolding
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26: if i = 1 and v1 ∈ Env(π) then
27: if HasRes(π, v2, v1, [[[u(π(v2)),,,∞)))) then
28: r ←MinRes(π, v2, v1, [[[u(π(v2)),,,∞))))
29: π ← π extended with v2

r→ v1
30: end if
31: end if

Figure 4.2: Code for the first node (case 0)

utility resource is selected to be shared with v1 (lines 28 and 29). It is not necessery but
merely an implementation detail to select the resource with minimum utility. In fact,
any resource usable to fix the envy of v1 could be used.

4.2.2 Case 1: A Blind Node

This case applies if the current node vi does not have any outgoing edges, i.e. if neither
(vi, vi−1) ∈ E nor (vi, vi+1) ∈ E.

vi−1 vi vi+1

Without any outgoing edges for vi, we know that it cannot be envious, regardless
of the original allocation πN and any additional utility assigned to either vi−1 or vi+1

by the algorithm. Strictly speaking, this case does not need to be considered in the
implementation.

4.2.3 Case 2: An Observant Node

This case applies if the current node vi does only have outgoing edges, i.e. if both
(vi, vi+1) ∈ E and (vi, vi−1) ∈ E.

vi−1 vi vi+1

We present the implementation for observant nodes in Figure 4.3. Again the code
first checks in line 32, whether the edge configuration makes vi an observant node and
whether it is envious. It then proceeds in line 33 to initialize the variable M to contain
the maximum utility of the neighbors vi−1 and vi+1. To fix the envy of vi we need to
increase its utility to at least M .

We can examine two possible actions to fix the envy of vi: sharing with vi−1 and
sharing with vi+1. Ideally, we want to prefer sharing with vi−1, since the algorithm
already visited that node.
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32: if (vi, vi−1) ∈ E and (vi, vi+1) ∈ E and Envious(π, vi) then
33: M ← max{u(π(vi−1)), u(π(vi+1))}
34: if vi−1 6↔π and HasRes(π, vi−1, vi, [[[M,,,∞)))) then
35: r ←MaxRes(π, vi−1, vi, [[[M,,,∞))))
36: π ← π extended with vi−1

r→ vi
37: else if HasRes(π, vi+1, vi, [[[M,,,∞)))) then
38: r ←MinRes(π, vi+1, vi, [[[M,,,∞))))
39: π ← π extended with vi+1

r→ vi
40: end if
41: end if

Figure 4.3: Code for observant nodes (case 2)

The algorithm therefore first checks in line 34 whether vi−1 is free to share (i.e. it is
not already sharing) and if its bag contains a resource suitable for fixing the envy of
vi. Here the HasResfunction is used to check whether vi−1 has a resource that would
increase the utility of vi above M . Due to the edge configuration sharing any resource
with vi cannot make one of its neighbors envious. The algorithm is therefore free to pick
any such resource to share with vi. When deciding on which resource to use, we need to
consider that the algorithm might try to increase the utility of vi+1 at a later step. By
choosing the maximum utility resource in line 35, the algorithm may later have more
freedom to improve the situation for vi+1 without reintroducing envy in vi.

If it is not possible to fix the envy by using a resource from vi−1, the code next checks
in line 37, whether vi+1 can be used as a sharing partner. As before sharing any of its
resources with vi cannot introduce a new envious node and the algorithm arbitrarily
picks the minimum utility resource and adds the sharing to π (in lines 38 and 39).

If none of the neighbors of vi can provide a suitable resource to fix the envy of vi, we
proceed to the next iteration.

4.2.4 Case 3: A Backward Looking Node

This case applies if the arcs incident to vi point in reverse direction of the enumeration
order of the nodes, i.e. (vi+1, vi) ∈ E) and (vi, vi−1) ∈ E.

vi−1 vi vi+1

The code for this case is given in Figure 4.4 and first checks that vi is indeed a
backward looking node in line 42.

With vi envious of vi−1 and vi+1 potentially being envious of vi the situation is more
complex than for the previous case. To fix the envy of vi we need to increase its utility.
This in turn could introduce envy for vi+1. Ideally, we would want to decrease the
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number of envious nodes. However, even exchanging the envy of vi for the envy of vi+1

could be beneficial, as can be seen in the following example.

v1

(1)

v2

(0)

v3

(0)

v4

(1)

Here, both v1 and v4 each have been allocated a resource with utility value 1, leaving
v2 envious of v1. The envy can be fixed by having v1 share its resource with v2. This in
turn would now make v3 envious of v2. However, the resource assigned to v4 can now be
shared with v3 to leave no envious nodes. Thus, by temporarily moving the envy from
v2 to v3 an optimal solution could be constructed.

v1

(1)

v2

(1)

v3

(0)

v4

(1)

v1

(1)

v2

(1)

v3

(1)

v4

(1)

If sharing with its predecessor vi−1 can fix the envy of vi, there is never a drawback
from doing this even at the expense of making vi+1 envious. In this scenario the latter
is still free to share and the number of envious nodes does not increase.

Despite this insight, we have to prefer sharings that do not introduce new envious
nodes and as before the algorithm should prefer sharing with vi−1, as it has already
been visited. In the code this is handled in two different branches. In the first case,
handled in line 43, it is checked, whether vi+1 is already envious. In this case sharing
any resource of vi−1 with vi does not introduce envy. In case such a resource can be
used to fix the envy of vi the algorithm selects the minimum utility resource in line 44
as this may increase the chance of the envy of vi+1 being fixed in a later step. The other
case assumes vi+1 is not already envious. This is checked in line 46 along with whether
a resource of vi−1 can be used to fix the envy of vi without making vi+1 envious.

If none of the resources of vi−1 matches the criteria the algorithm proceeds to look at
the resources of vi+1. Again, there are two branches to account for the fact that vi+1

may already be envious. The checks are given in lines 49 and 52 and the corresponding
branches mirror the ones introduced for vi−1.

The last branch in line 55 is finally handling the case discussed above. It checks if a
resource of vi−1 can be used to fix the envy of vi. Note that it differs from the first two
branches in that we now know such a sharing makes vi+1 envious. Again, it is important
for the algorithm so select the minimum utility resource to increase the chance of fixing
the envy of vi+1 in a later iteration.

4.2.5 Case 4: A Forward Looking Node

This case applies if the arcs incident to the current node vi are pointing in the direction
of the enumeration order, i.e. (vi−1, vi) ∈ E and (vi, vi+1) ∈ E. As we will see, this case
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42: if (vi, vi−1) ∈ E and (vi+1, vi) ∈ E and Envious(π, vi) then
43: if vi−1 6↔π and Envious(π, vi+1) and HasRes(π, vi−1, vi, [[[u(π(vi−1)),,,∞)))) then
44: r ←MinRes(π, vi−1, vi, [[[u(π(vi−1)),,,∞))))
45: π ← π extended with vi−1

r→ vi
46: else if vi−1 6↔π and HasRes(π, vi−1, vi, [[[u(π(vi−1)),,,u(π(vi+1))]]]) then
47: r ←MinRes(π, vi−1, vi, [[[u(π(vi−1)),,,u(π(vi+1))]]])
48: π ← π extended with vi−1

r→ vi
49: else if Envious(π, vi+1) and HasRes(π, vi+1, vi, [[[u(π(vi−1)),,,∞)))) then
50: r ←MinRes(π, vi+1, vi, [[[u(π(vi−1)),,,∞))))
51: π ← π extended with vi−1

r→ vi
52: else if HasRes(π, vi+1, vi, [[[u(π(vi−1)),,,u(π(vi+1))]]]) then
53: r ←MinRes(π, vi+1, vi, [[[u(π(vi−1)),,,u(π(vi+1))]]])
54: π ← π extended with vi−1

r→ vi
55: else if vi−1 6↔π and HasRes(π, vi−1, vi, [[[u(π(vi−1)),,,∞)))) then
56: r ←MinRes(π, vi−1, vi, [[[u(π(vi−1)),,,∞))))
57: π ← π extended with vi−1

r→ vi
58: end if
59: end if

Figure 4.4: Code for backward looking nodes (case 3)

is the most involved, as the decision to share can create envy in nodes, the algorithm
has already visited before.

vi−1 vi vi+1

As with the other cases we need to be careful not to introduce new envious nodes that
leave us in a worse position than before. The situation differs from the previous case,
in that now vi−1, a node that has already been visited by the algorithm, would be the
one becoming envious. As it might be possible to remedy this situation (by having vi−2
share with vi−1), the algorithm effectively has to consider some of the already handled
nodes.

To illustrate this situation, we present the following example.

v1

(1)

v2

(0)

v3

(0)

v4

(1)

The agorithm can skip v1 and v2 as both are not envious. To fix the envy of v3 it
would have to have v4 share its resource with v3, making v2 envious in the process.
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Without the algorithm now revisiting v2 one envious node would remain, even though
the addition of v1 sharing its resource with v2 would yield an envy-free allocation.

Note that preemptively establishing the sharing vi−2 →π vi−1 during the iteration for
vi−1 is not possible, as this blocks vi−1 from sharing with its successor without reducing
the number of envious nodes.

The situation above is not the only case, where the algorithm needs to revisit pre-
vious nodes. The following example illustrates another situation, where this becomes
necessary.

v1

(0)

v2

(2)

v3

(1)

v4

(1)

v5

(0)

v6

(3)

To fix v1 the algorithm would have v2 share with it. This leaves v4 sharing with v3
as the only option to fix the former. However, as discussed in the previous case, this
extension should not be performed. Instead the algorithm would continue and skip v4
to then handle the envious v5. Only v6 sharing its resource with v5 fixes the envy, but
introduces in turn envy of v4. It is now not possible to fix v4. However, looking back
even one more step, v4 sharing its resource with v3 fixes that nodes envy.

This shows a curious property of this particular setup. When iteratively constructing
an optimal solution, it might be necessary to purposefully create envy in nodes that are
not envious under the original allocation.

Both these cases leave a rather involved and technical case distinction in the pseu-
docode. The code for this configuration, given in Figure 4.5 first checks, whether vi is
envious and a forward looking node in line 60, the potential p is computed. It is the
value by which the utility of vi−1 can be increased by sharing with vi−2 without making
vi−2 envious.

Next, similar to the code in the previous case, the algorithm checks if resources from
vi−1 (lines 70 and 73) or from vi+1 (line 76) can be used to fix the envy of vi without
introducing envy in vi−1. In line 79 the algorithm checks if vi+1 has a resource that
can be used to fix the envy of vi without increasing the utility of vi above that of vi−1
increased by the potential computed before. If this is true the sharing between vi+1 and
vi and if needed the sharing between vi−2 and vi−1 realizing the potential have to be
implemented.

The final branch starting in line 86 is concerned with the case that we can make vi−1
a philantropic node. If possible, it implements the sharings between vi+1 and vi and
between vi−1 and vi−2 to fix the envy of both vi and vi−2 at the expense of leaving vi−1
envious in the final allocation.
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60: if (vi−1, vi) ∈ E and (vi, vi+1) ∈ E and vi ∈ Env(π) then
61: p← 0
62: if vi−1 6↔π and vi−2 6↔π then
63: if ((vi−1, vi−2) ∈ E or Envious(π, vi−2))
64: and HasRes(π, vi−2, vi−1, [[[0,,,∞)))) then
65: p← u(MaxRes(π, vi−2, vi−1, [[[0,,,∞)))))
66: else if HasRes(π, vi−2, vi−1, [[[0,,,u(π(vi−2))]]]) then
67: p← u(MaxRes(π, vi−2, vi−1, [[[0,,,u(π(vi−2))]]]))
68: end if
69: end if
70: if vi−1 6↔π and Envious(π, vi−1) and HasRes(π, vi−1, vi, [[[u(π(vi+1)),,,∞)))) then
71: r ←MaxRes(π, vi−1, vi, [[[u(π(vi+1)),,,∞))))
72: π ← π extended with vi−1

r→ vi
73: else if vi−1 6↔π and HasRes(π, vi−1, vi, [[[u(π(vi+1)),,,u(π(vi−1))]]]) then
74: r ←MaxRes(π, vi−1, vi, [[[u(π(vi+1)),,,u(π(vi−1))]]])
75: π ← π extended with vi−1

r→ vi
76: else if Envious(π, vi−1) and HasRes(π, vi+1, vi, [[[u(π(vi+1)),,,∞)))) then
77: r ←MinRes(π, vi+1, vi, [[[u(π(vi+1)),,,∞))))
78: π ← π extended with vi+1

r→ vi
79: else if HasRes(π, vi+1, vi, [[[u(π(vi+1)),,,u(π(vi−1)) + p]]]) then
80: r ←MinRes(π, vi+1, vi, [[[u(π(vi+1)),,,u(π(vi−1)) + p]]])
81: π ← π extended with vi+1

r→ vi
82: if p 6= 0 then
83: r′ ←MinRes(π, vi−2, vi−1, [[[u(π(vi−1)) + p,,,u(π(vi−1)) + p]]])

84: π ← π extended with vi−2
r′→ vi−1

85: end if
86: else if HasRes(π, vi+1, vi, [[[u(π(vi+1)),,,∞))))
87: and (vi−1, vi−2) ∈ E and (vi−2, vi−3) ∈ E
88: and vi−1 6↔π and vi−2 6↔π then
89: r ←MinRes(π, vi+1, vi, [[[u(π(vi+1)),,,∞))))
90: if HasRes(π, vi−1, vi−2, [[[u(π(vi−3)),,,∞)))) then
91: r′ ←MinRes(π, vi−1, vi−2, [[[u(π(vi−3)),,,∞))))
92: π ← π extended with vi+1

r→ vi

93: π ← π extended with vi−1
r′→ vi−2

94: end if
95: end if
96: end if

Figure 4.5: Code for forward looking nodes (case 4)
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4.3 Correctness and Running Time of the MinPathEnvy
Algorithm

In the previous section we described the MinPathEnvy algorithm and motivated the
arguably complex case distinctions necessary to optimally update an allocation. It is
by no means obvious the presented formulation of the algorithm is indeed constructing
optimal simple 2-sharing allocations from the initial allocations in all cases. In this
section we present running time and a formal proof of correctness of the algorithm.

At its core the MinPathEnvy algorithm presented in the previous section iterates
once over the nodes and performs locally optimal extension to the allocation. Not only
can this be done efficiently in linear time (i.e. linear in the number of nodes), but also
suggests it might lend itself well to a proof of correctness via induction. If one is able
to show the correctness of the decision for the first node, and can then argue for the
correctness and optimality of each extension step, this would yield a complete correctness
proof.

However, this strategy is significantly complicated by the fact that there is often not
a single unique optimal solution. Instead, there may be several as can be seen from the
following small example.

v1

(0)

v2

(1)

v3

(0)

v4

(1)

v5

(0)

Initially, v1, v3 and v5 are envious. Since only two nodes, v2 and v4, can be used to
fix the envy, at least one node has to remain envious. With this in mind we can see,
however, there are three optimal solutions.

v1

(1)

v2

(1)

v3

(1)

v4

(1)

v5

(0)

v1

(1)

v2

(1)

v3

(0)

v4

(1)

v5

(1)

v1

(0)

v2

(1)

v3

(1)

v4

(1)

v5

(1)

In all three solutions one node is left envious, so all three are optimal with respect
to the number of envious nodes. Upon visiting v1 we cannot easily know whether the
decision to have v2 share with it is optimal. While there are clearly wrong choices the
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examples indicate that it might not always be easily possible to argue for any single
decision to be optimal.

Instead of just using an inductive line of reasoning we therefore employ a different
strategy. Instead of directly arguing for the optimality of the solution, we show that any
simple 2-sharing allocation may be updated to adhere to the algorithms local decisions,
without increasing the number of envious nodes. We can then use this insight to show
that the output of the algorithm cannot produce a higher number of envious nodes than
any optimal simple 2-sharing allocation, making it indeed optimal.

Before we present the proof we present for formal main result of this chapter in the
following theorem.

Theorem 4.1. The MinPathEnvy algorithm computes a simple 2-sharing allocation
that is optimal with respect to the number of envious nodes in O(|V |+ |R|) time.

Before we prove Theorem 4.1 we want to formalize the idea of updating a simple
2-sharing allocation to adhere to the algorithms decision. We do this in two parts. The
following lemma states that we can update any allocation that matches the output of
the algorithm on all nodes up to an index i− 1 (i.e. a prefix) to also match on the node
vi. This gives us a characterization of the “greedyness” of the algorithm: if it is possible
to fix vi given the current prefix without introducing unnecessary envious nodes, the
algorithm does exactly that.

Lemma 4.2. Let π = (πN, πE) be the output of the MinPathEnvy algorithm and
µ = (πN, µE) another simple 2-sharing allocation. If there is an i ∈ {1, . . . , n} with

Env(π) ∩ {v1, . . . , vi−1} = Env(µ) ∩ {v1, . . . , vi−1} and vi ∈ Env(µ) \ Env(π)

then there is a simple 2-sharing allocation ν = (πN, νE) with

1. ν(vj) = π(vj) for all j ≤ i and

2. vi 6∈ Env(ν) and

3. |Env(ν)| ≤ |Env(µ)|.

Proof. Let i ∈ {1, . . . , n} with

Env(π) ∩ {v1, . . . , vi−1} = Env(µ) ∩ {v1, . . . , vi−1} and vi ∈ Env(µ) \ Env(π).

This implies
|Env(π) ∩ {v1, . . . , vi}| = |Env(µ) ∩ {v1, . . . , vi}| − 1.

We construct a new simple 2-sharing allocation ν with the desired properties in two
steps. We start by defining the simple 2-sharing allocation ν0 = (πN, ν0E) via the
following equations for all j < n and ej := E ∩ {(vj+1, vj), (vj, vj+1)}.

ν0E(ej) = πE(ej), for all j < i

ν0E(ej) = ∅, for j ∈ {i, i+ 1}
ν0E(ej) = µE(ej), for all j ≥ i+ 1
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This construction ensures ν0 is a valid simple 2-sharing allocation (i.e. no node shares
with more than one neighbor and only shares resources it has assigned in πN). Addi-
tionally, the following properties hold.

• ν0(vj) = π(vj) for all j < i

• |Env(ν0) ∩ {v1, . . . , vi−1}| = |Env(π) ∩ {v1, . . . , vi−1}| = |Env(µ) ∩ {v1, . . . , vi−1}|

• |Env(ν0) ∩ {vi+2, . . . , vn}| = |Env(µ) ∩ {vi+2, . . . , vn}|

We construct ν by extending ν0 along the edges ei and ei+1 according to the following
cases.

1. If vi+1 6→π vi and vi+1
r→µ vi+2 we extend ν0 with vi+1

r→ vi+2. This ensures

vi+2 ∈ Env(ν)⇔ vi+2 ∈ Env(µ).

Since additionally we now have u(ν(vi)) = u(π(vi)) and u(ν(vi+1)) = u(π(vi+1))
and therefore vi 6∈ Env(ν) this yields

|Env(ν)| ≤ |Env(ν) ∩ {v1, . . . , vi}|︸ ︷︷ ︸
=|Env(π)∩{v1,...,vi}|=|Env(µ)∩{v1,...,vi}|−1

+ |Env(ν) ∩ {vi+1}|︸ ︷︷ ︸
≤|Env(µ)∩{vi+1}|+1

+ |Env(ν) ∩ {vi+2, . . . , vn}|︸ ︷︷ ︸
=|Env(µ)∩{vi+2,...,vn}|

≤ |Env(µ)|

2. If vi+1
r→π vi and vi+1 6→µ vi+2 extend ν0 with vi+1

r→ vi. This ensures ν(vi) =
π(vi) and vi 6∈ Env(ν). Since now u(ν(vi+1)) = u(πN(vi+1)) ≤ u(µ(vi+1)) and by
assumption u(ν(vi+2)) = u(µ(vi+2)) we know

vi+2 ∈ Env(ν)⇒ vi+2 ∈ Env(µ)

and get for the number of envious nodes

|Env(ν)| = |Env(ν) ∩ {v1, . . . , vi}|︸ ︷︷ ︸
=|Env(π)∩{v1,...,vi}|=|Env(µ)∩{v1,...,vi}|−1

+ |Env(ν) ∩ {vi+1}|︸ ︷︷ ︸
≤|Env(µ)∩{vi+1}|+1

+ |Env(ν) ∩ {vi+2}|︸ ︷︷ ︸
≤|Env(µ)∩{vi+2}|

+ |Env(ν) ∩ {vi+3, . . . , vn}|︸ ︷︷ ︸
=|Env(µ)∩{vi+3,...,vn}|

≤ |Env(µ)|

3. If vi+1
r→π vi and vi+1 →µ vi+2 extend ν0 with vi+1

r→ vi. This ensures ν(vi) = π(vi)
and as in the first case vi 6∈ Env(ν). To analyze the number of envious nodes in ν
we need to distinguish two cases.
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a) vi+1
r→π vi was established in the ith iteration of the algorithm. All the

relevant cases do not let vi+1 become envious due to this sharing (this is only
possible in nd the checks in lines 49 through 54 prevent it). We can therefore
conclude that if vi+1 is envious in ν, then it is also envious in πN. And since
u(µ(vi+1)) = u(πN(vi+1)) it must also be envious in µ, i.e.

vi+1 ∈ Env(ν)⇒ vi+1 ∈ Env(µ).

We then get

|Env(ν)| ≤ |Env(ν) ∩ {v1, . . . , vi}|︸ ︷︷ ︸
=|Env(π)∩{v1,...,vi}|=|Env(µ)∩{v1,...,vi}|−1

+ |Env(ν) ∩ {vi+1}|︸ ︷︷ ︸
≤|Env(µ)∩{vi+1}|

+ |Env(ν) ∩ {vi+2}|︸ ︷︷ ︸
≤|Env(µ)∩{vi+2}|+1

+ |Env(ν) ∩ {vi+3, . . . , vn}|︸ ︷︷ ︸
≤|Env(µ)∩{vi+3,...,vn}|

≤ |Env(µ)|

b) vi+1
r→π vi was instead established in the (i+ 2)th iteration of the algorithm

as part of In this case vi+1 is a philantropic node, made envious to fix the envy
of vi and vi+2 in πN. Note that the algorithm only introduces phiolantropic
nodes in Case 4: A Forward Looking Node if it is not possible to fix the
current node without making its predecessor envious, i.e. if none of cases
checked in lines 70, 73, 76 or 79 applies. From this fact and vi+1 →µ vi+2 we
get that either vi+2 is left envious or vi+1 is made envious in µ. Either way
we get

|Env(µ0) ∩ {vi+1, . . . , vn}| ≤ |Env(µ) ∩ {vi+1, . . . , vn}|+ 1.

This then yields

|Env(ν)| ≤ |Env(ν) ∩ {v1, . . . , vi}|︸ ︷︷ ︸
=|Env(π)∩{v1,...,vi}|=|Env(µ)∩{v1,...,vi}|−1

+ |Env(ν) ∩ {vi+1, . . . , vn}|︸ ︷︷ ︸
≤|Env(µ)∩{vi+1,...,vn}|+1

≤ |Env(µ)|

In all cases we have ensured vi 6∈ Env(ν) and ν(vi) = π(vi). ν therefore is a simple
2-sharing allocation with the desired properties.

Lemma 4.2 allows us to update some allocations that only agree with the decisions of
the algorithm up to an index i to then agree up to the index i+ 1. Note that this only
works for allocations with envy at a position where there is no envy according to the
algorithm. We can interpret this in terms of the greedyness: fixing the envy of nodes
with a lower index even by risking envy for nodes at higher index does not prevent
optimality.
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Before we can use this fact to prove the correctness of the main theorem we need to
complement the idea of extending prefixes that agree with the algorithm. In the next
lemma we show that locally replacing decisions that result in the same envy as those
taken by the algorithm does not produce more envious nodes. This illustrates another
aspect of the algorithms “greedyness”: using the minimum or maximum utility resources
in the appropriate cases ensures there are as many optimal options as possible for the
following step.

To prove the lemma we need the following observation that can be derived from the
main branching decisions in the algorithm. It formalizes the intuition that sharing should
remove envy and should not reintroduce envy in already visited nodes.

Observation 4.3. Let π = (πN, πE) be the output of the algorithm. Then no node that
is shared with is envious. Formally, we have

vi ∈ Env(π)⇒ vi−1 6→π vi ∧ vi+1 6→π vi.

We also need the following observation that can be derived from a case-by-case analysis
of the algorithm. It states that only necessary sharings, i.e. sharings preventing or
removing envy, are added by the algorithm.

Observation 4.4. Let π = (πN, πE) be the output of the algorithm and let i ≤ n, such
that there is a j ∈ {i−1, i+1} with j

r→π i. Then one or both of the following conditions
are true.

1. We have (vi, vi−1) ∈ E and u(π(vi))− u(r) < u(π(vi−1)).

2. We have (vi, vi+1) ∈ E and u(π(vi))− u(r) < u(π(vi+1)).

With these observations we can now present and prove the second utility lemma,
needed to prove Theorem 4.1.

Lemma 4.5. Let π = (πN, πE) be the output of the algorithm and let µ = (πN, πE) be
another simple 2-sharing allocation extending the same initial allocation. If there is a
i ∈ {1, . . . , n} such that

µ(vj) = π(vj) for all j < i and vi ∈ Env(µ)⇔ vi ∈ Env(π),

then there is a simple 2-sharing allocation ν = (πN, νE) with

ν(vj) = π(vj) for all j ≤ i and |Env(ν)| ≤ |Env(µ)|.

Proof. Let i ∈ {1, . . . , n} such that

µ(vj) = π(vj) for all j < i and vi ∈ Env(µ)⇔ vi ∈ Env(π).

Similar to the proof of Lemma 4.2 we first construct an intermediate simple 2-sharing
allocation ν0 = (πN, ν0E). We define ν0 via the following equalities for ν0E for all j < n
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and ej ∈ E ∩ {(vj, vj+1), (vj+1, vj)}.

ν0E(ej) = πE(ej), for j < i

ν0E(ej) = ∅, for j ∈ {i, i+ 1}
ν0E(ej) = µE(ej), for j > i+ 1

From this construction we get ν0(vj) = π(vj) for all j < i. Additionally we have

|Env(ν0) ∩ {vi+1, . . . , vn}|
= |Env(ν0) ∩ {vi+1}|+ |Env(ν0) ∩ {vi+2}|+ |Env(ν0) ∩ {vi+3, . . . , vn}|︸ ︷︷ ︸

=|Env(µ)∩{vi+3,...,vn}|

= |Env(ν0) ∩ {vi+1}|+ |Env(ν0) ∩ {vi+2}|+ |Env(µ) ∩ {vi+2, . . . , vn}|

To obtain ν with the desired properties we therefore need to extend ν0 in such a way
that we have ν(vi) = π(vi) and

vi+1 ∈ Env(ν)⇒ vi+1 ∈ Env(µ) and vi+2 ∈ Env(ν)⇒ vi+2 ∈ Env(µ).

We now construct ν from ν0 according to the following cases.

• If vi ∈ Env(π) ∩ Env(µ) then we know from Observation 4.3 that 6→π vi. Now
since µ(vi−1) = π(vi−1) we know that if vi

r→π vi−1 then also vi →r µvi−1. By
construction this sharing is also in ν0 and we construct ν by extending ν0 with any
existing sharing between vi+1 and vi+2 in µ. As a result we now have ν(vj) = µ(vj)
for all j ∈ {i− 1, i, i+ 1, i+ 2} and thus even ν = µ.

If instead vi →µ vi+1 we add this sharing to ν0 to construct ν. In this case and
from π(vi−1) = µ(vi−1 we also know vi 6→π vi−1 and therefore ν(vi−1) = π(vi−1).
In all other cases we set ν := ν0.

In all cases we get from these additions ν(vi−1) = π(vi−1), ν(vi) = π(vi) and
vi+1 ∈ Env(ν) ⇒ vi+1 ∈ Env(µ) (since u(ν(vi)) ≤ u(µ(vi)). This gives us the
desired properties.

• If vi 6∈ Env(π)∪Env(µ) and 6→π vi we can argue analogously to the previous case.

• If vi 6∈ Env(π) ∪ Env(µ) and vi−1 →π vi then this sharing is in ν0 as well and we
construct ν by extending ν0 with any sharing between vi+1 and vi+2 in µ. This
already gives us ν(vi−1) = π(vi−1 and ν(vi) = π(vi).

Now assume vi+1 ∈ Env(ν)\Env(µ). Since ν(vi+2) = µ(vi+2), this implies that vi+1

is envious of vi in ν. In particular we have (vi+1, vi) ∈ E. The sharing vi−1 →π vi
could then only have been added through Case 3: A Backward Looking Node.
Since none of the conditions of the branches in lines 46, 49 or 52 have been true
for vi, we know that it was not possible to fix the envy of vi without making vi+1

envious. However, since vi 6∈ Env(µ) a sharing to fix the envy of vi must also
have been implemented in µ (increasing the utility of vi to at least u(π(vi)) due
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to the code using the minimum utility resource in lines 44 and 56). And from
vi+1 6∈ Env(µ) we get that vi+2 →µ vi+1. By construction, however, we then also
have vi+2 →ν vi+1. Since ν(vi+2) = µ(vi+2) and u(ν(vi)) = u(π(vi)) ≤ u(µ(vi)),
this contradicts vi+1 ∈ Env(ν). We therefore know

vi+1 ∈ Env(ν)⇒ vi+1 ∈ Env(µ).

• If vi 6∈ Env(π)∪Env(µ) and vi+1 →π vi then we add that sharing to ν0 to construct
ν. This again gives us ν(vi−1) = π(vi−1) and ν(vi) = π(vi).

Now assume vi+1 ∈ Env(ν) \ Env(µ). We can then distinguish two cases.

– Assume vi+1 is envious of vi in ν. Then this is also the case in π, and the
sharing vi+1 →π vi could only have been added in Case 4: A Forward Looking
Node. This gives us (vi+1, vi) ∈ E and therefore (vi, vi−1) ∈ E (otherwise vi
could not be envious) and vi+1 is a philanthropic node in π. As during the
ith iteration none of the branches in Case 3: A Backward Looking Node
could be used to fix the envy of vi, we can conclude from vi 6∈ Env(µ) and
µ(vi−1) = π(vi−1) that a similar sharing vi+1 →µ vi exists. This sharing
must also result in vi+1 being envious of vi, contradicting the assumption
vi+1 6∈ Env(µ).

– Assume vi+1 is not envious of vi in ν but instead of vi+2. As this is not the
case in µ and since we know ν(vi+2) = µ(vi+2) this means the utility of vi+1

must be greater in µ than in ν. Formally, we therefore have both

ν(vi−1) = π(vi−1) = µ(vi−1) and u(π(vi+1)) = u(ν(vi+1)) < u(µ(vi+1)).

From Observation 4.4 we then get that vi ∈ Env(µ) contradicting the original
assumption. We can now conclude

vi+1 ∈ Env(ν)⇒ vi+1 ∈ Env(µ).

In all cases we could derive ν(vi−1) = π(vi−1, ν(vi) = π(vi) and

vi+1 ∈ Env(ν)⇒ vi+1 ∈ Env(µ).

Observe that additionally in all cases if i < n − 2, we get ν(vi+2) ⊆ µ(vi+2) and from
construction we have ν(vi+3) = µ(vi+3). This gives us

vi+2 ∈ Env(ν)⇒ vi+2 ∈ Env(µ).

The simple 2-sharing allocation ν therefore has all the desired properties.

Lemma 4.5 is constructed to work with Lemma 4.2. We can use the latter to extend
prefixes v1, . . . , vi that end with an envious node where none should be according to
the algorithm and the former to extend prefixes that do yield the same envy with the
exect output of the algorithm. In both cases the changes do not increase the number
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of envious nodes. By iteratively applying both lemmas we can therefore argue that the
node at the lowest index at which an optimal simple 2-sharing allocation disagrees with
the output of the MinPathEnvy algorithm must be envious in the latter.

We use this idea now to proof Theorem 4.1.

Proof of Theorem 4.1. For the running time observe that during the ith iteration of the
loop only nodes in

{vi−3, vi−2, vi−1, vi, vi+1}
and only the resource of these nodes are referenced. This means any single node and any
single resource is referenced at most 5 times throughout a run of the algorithm. This
means the total running time of MinPathEnvy is O(|V |+ |R|).

For the correctness let µ = (πN, µE) be a simple 2-sharing allocation that is optimal
w.r.t. the number of envious nodes.

If Env(π) = Env(µ) there is nothing to show. So assume Env(π) 6= Env(µ). Let
i ∈ {1, . . . , n} be the smallest index such that vi ∈ Env(π) 6⇔ vi ∈ Env(µ). From
iterating Lemma 4.2 end Lemma 4.5 we get that we can w.l.o.g. assume µ(vj) = π(vj)
for all j < i and vi ∈ Env(π) \ Env(µ).

There are now two possibilities:

• Assume vi is envious of vi+1 in π. If this was the case during the ith iteration of the
algorithm, then neither resources from vi−1 nor vi+1 could be used to fix it without
introducing envy in vi−1. But such a sharing must be part of µ, i.e. vi−1 is envious
of vi in µ. This means i− 1 is the smallest index with vi ∈ Env(π) 6⇔ vi ∈ Env(µ).
By using the same arguments from above, we may therefore assume w.l.o.g. that
vi was not envious during the ith iteration.

For vi to be still envious in the final output, it must then have been made a
philanthropic node by uring the (i + 1)th iteration. From the code we then get
vi →r πvi−1 and vi is also envious of vi−1 in π. But since µ(vi−1) = π(vi−1) we then
get vi

r→µ vi−1 and consequently that vi is envious of vi−1 in µ. This ontradicts
vi 6∈ Env(µ).

• Assume vi is envious of vi−1 in π. Due to µ(vi−1) = π(vi−1) we know vi 6↔π vi−1.
And since the utility of vi−1 could not have changed during later iterations, vi must
have been envious during the ith iteration of the algorithm. Then no resources of
vi−1 could be used to fix it. Additionally, any sharing of a resource of vi+1 that
could fix vi would have made vi+1 envious. Such a sharing, however, must be part
of µ, i.e. vi+1 →µ vi and vi+1 is envious of vi in µ. We can now distinguish two
cases.

– If vi+1 is not envious of vi+2 in µ, then removing the sharing vi+1 →µ vi does
not increase the number of envious nodes.

– If vi+1 is also envious of vi+2 in µ – this implies vi+3 →µ vi+2, as vi+1 was not
initially emvious – and vi+2 is envious, then removing the sharings vi+1 →µ vi
and vi+3 →µ vi+2 leaves vi and potentially vi+2 envious. It does, however, not
increase the number of envious nodes.
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– If vi+1 is also envious of vi+2 in µ and vi+2 is not envious, then this makes
vi+1 a philanthropic node. If the sharing vi+3 →µ vi+2 fixes the envy of vi+2

then the same configuration would have been discovered by the algorithm as
part of lines 86-95). If the sharing does not fix the envy of vi+2 then removing
it and the sharing vi+1 →µ vi again does not increase the number of envious
nodes.

In all cases it is possible to construct an optimal simple 2-sharing allocation µ′

with µ′(vj) = π(vj) for all j < i and vi ∈ Env(µ′).

In both cases we are either able to derive a contradiction or argue for the existance
of an optimal simple 2-sharing allocation not matching that case. Either way, we may
conclude that there is a simple 2-sharing allocation for which there can be no such index
i and we then know |Env(π)| = |Env(µ)|. This means π is also optimal with respect to
the number of envious nodes.

This concludes our correctness proof of MinPathEnvy. Through Theorem 4.1 we
have now established that Graph Envy With Pairwise Sharing can be solved
efficiently on paths (or collection of paths). This is contrasting the hardness results from
the previous chapter and motivates the examination of more complex — and arguably
more practically relevent — graphs. In the next chapter we therefore look at the class
of trees.
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From Theorem 3.1 we know that Graph Envy With Pairwise Sharing cannot be
solved efficiently for all instances. And even though there is an inherent connection
between simple 2-sharing allocations and matchings on graphs — we have used this
to devise fast algorithms for optimizing the social welfare in Chapter 2 — there are
reasons to assume the problem of minimizing the number of envious nodes remains
hard even under many restrictions. In the previous chapter, however, we presented an
algorithm that is capable of optimally extending an allocation on paths in linear time.
Consequently, it is now of interest to determine the hardness of the problem on less
restricted graph classes.

While the result stated in Theorem 4.1 is interesting, as it shows that the hardness
of Graph Envy With Pairwise Sharing is connected to the graph structure, it
might also be too limiting for many real-world applications. One of the motivating ex-
amples for graph-envy and also simple 2-sharing allocations are management hierarchies
in companies. For many cases models with underlying undirected paths will not suffice
to describe such structures.

In this chapter we therefore want to look at another simple class of undirected graphs:
trees. In a tree all nodes are connected with each other through paths without there
being any cycles. We want trees to be rooted, i.e. there is a node marked as the root.
We first present some arguments complicating the construction of a greedy algorithm,
like the one we devised for paths. We then proceed to describe an algorithm based on
dynamic programming, which computes the optimal extension to a given allocation on
graphs with underlying trees in polynomial time.

Throughout this chapter let G = (V,E) be a directed graph, whose underlying undi-
rected graph is a tree rooted in root ∈ V . We write

• p(i) ∈ V for the parent of i ∈ V \ {root},

• C(i) ⊆ V for the children of i ∈ V ,

• Cin(i) := {j ∈ C(i) | (j, i) ∈ E} for the children of i ∈ V connected to i via an
incoming arc (j, i) ∈ E and

• Cout(i) := {j ∈ C(i) | (i, j) ∈ E} for the children of i ∈ V connected to i via an
outgoing arc (i, j) ∈ E.

We call i ∈ V a leaf node if C(i) = ∅.
For simplicity, we will refer to a single utility function u throughout this chapter. This

is merely syntactical convenience and all results in this chapter apply for different utility
functions {ui}i∈V .
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5.1 The Problem With Greedy Sharing Decisions

Starting from the algorithm for paths described in the previous chapter, one might hope
to find a similar reformulation for trees. And in many cases the necessary case distinc-
tions seem to generalize the ideas underlying the MinPathTree algorithm. Consider
the following depiction of an inner node v of a tree and the connection to its parent
pv := p(v) and the two children c1 and c2.

pv(1)

v(0)

c1

(1)

c2

(2)

Initially v is envious of c1. Depending on the current simple 2-sharing allocation, any
of the nodes connected to v could share with it to fix the envy. This would result in one
of the following three configurations.

pv(1)

v(1)

c1

(1)

c2

(2)

pv(1)

v(1)

c1

(1)

c2

(2)

pv(1)

v(2)

c1

(1)

c2

(2)

In all versions v is no longer envious. However, when sharing the resource of c2, as seen
in the last configuration, pv is now envious of v. This example shows that, as with paths
in the previous section, in trees one would need to consider several distinct cases when
deciding on which resource to share with a node. In fact, there are some similarities
between the setup shown in the example and the considerations for backward looking
nodes presented in Section 4.2.4. As we did in that section, we can here as well argue
that it may always be correct to “move” the envy from v to pv if necessary. In a later
step the algorithm may than fix the envy of pv by having p(pv) or one of the children of
pv share with it.
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Despite the similarities for some sharing decisions in trees and paths, there is one
difference complicating greedy decisions. In Section 4.1 we describe potential sharing,
i.e. the need to consider sharings involving two already visited nodes. While necessary
to construct an optimal simple 2-sharing allocation, this step only requires to look at a
constant number of nodes. Even when implementing the sharing, no other nodes already
visited by the algorithm are affected. For trees this is no longer the case. Consider the
following example that is mostly identical to the one we used in 3.1.1 to demonstrate
how envy can “spread” through a graph.

v1(0)

v2(1) v3(0)

v4(1) v5(0)

v6(1) v7(0)

Initially the only envious node in this example is v1. This can be remedied by sharing
the resource of v2 with it. This in turn would make v3 envious. Notice that now the
situation for v3 is identical to how it was for v1 before any sharings. Repeating the same
logic, we could have v4 share with v3 and then v6 with v5. In this case we would leave v7
(and potentially more children) envious, indicating that the first sharing between v2 and
v1 should not have been added. Without v7, however, following the steps above would
yield a simple 2-sharing allocation without any envious nodes.

This example suggests that it is not easily possible to decide if a sharing is part of an
optimal solution by just looking at a constant number of nodes.

5.2 A Dynamic Programming Algorithm

The example in the previous section illustrates on the one hand, how the problem of
optimizing an allocation with respect to the number of envious nodes is more complex
on trees than it is on paths. And while we cannot rule out the possibility of there being
a greedy algorithm for trees, such an algorithm would need to be even more complex to
reason about, as it would need to account for situations like in the example above.

On the other hand the example also gives us a starting point for a different approach.
Consider a setting where, when considering a sharing that would create envy, we already
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knew if this envy could be removed by introducing other sharings. Clearly, this would
solve the problem demonstrated in the previous section. Such an information would
have to be computed as a separate result from the sharing and made available to the
algorithm. Following this idea ultimately leads us to dynamic programming, one of the
algorithmic standard techniques on trees.

In this section we present a dynamic programming algorithm, capable of determining
the number of envious nodes in an optimal simple 2-sharing allocation extending a given
allocation in polynomial time. For the remainder of this chapter, we assume there is a
fixed initial allocation π0 on G.

Our algorithm is constructed around the table T , used to store the information,
whether it is possible to construct a simple 2-sharing allocation with less than n en-
vious nodes.

T [i, r, n, e] ∈ {>,⊥}, where

i ∈ V ,

r ∈ R̄ := R ∪ {non},
n ∈ N, and

e ∈ {envy, noenvy}.

Intuitively, we want T [i, r, n, e] to be > if there is a simple 2-sharing allocation π
extending π0 with at most n envious nodes. In π the node i should only be envious of
one of its children if e = envy and should share the resource r (or not share if r = non).
The r argument is necessary for two reasons. Firstly, it indicates whether i is sharing
in π or whether can be used in a new sharing. Secondly, the parameter also allows to
compute the final utility of i in π, which can then be used to determine if other nodes are
envious of i. We also store the information, whether i is envious of one of its children in
the parameter e for a similar reason. To compute the number of envious nodes, we need
to understand if by making i envious of its parent, the algorithm is actually introducing
envy for i.

Formally, we need to ensure that T [i, r, n, e] = > if and only if there is a simple
2-sharing allocation π extending π0 such that

• r = non or p(i)
r→π′ i or there is a child j ∈ C(i) with either i

r→π′ j or j
r→π′ i,

• |Env(π′) ∩ T (i)| ≤ n′, where

– T (i) is the subtree rooted in i and

– n′ = n if i is not envious of its parent in π or e = envy, and n′ = n − 1
otherwise, and

• e = envy or for all j ∈ Cout(i) we have u(π(i)) ≥ u(π(j)).

Given these conditions for the entries of T we can then compute the minimal number
of envious node in a simple 2-sharing allocation extending π0 as

min
{
n ∈ N

∣∣∃r ∈ R̄ : (T [root, r, n, envy] = >) ∨ (T [root, r, n, noenvy] = >)
}
.
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In the following subsections we now proceed to describe, how the individual entries
of T can be computed. The process will be split. We first define some base cases, for
which the computation does not rely on other entries. After that we show how the
remaining entries can be computed recursively, i.e. by relying on other entries that have
been computed at an earlier step.

5.2.1 Computing the Outer Table

For many combinations of the parameters of T we can compute the value without relying
on other entries. For example, there are some cases that cannot yield a valid simple 2-
sharing allocation. Most notably, while we allow r to be any resource for simplicity, only
those usable in a sharing with the active node i are considered in computations. This is
formalized in the first condition presented for entries containing > presented above. We
therefore set T [i, r, n, e] = ⊥ for i ∈ V , r ∈ R ∪ {non}, n ∈ N and e ∈ {envy, noenvy} if

r 6∈ {non} ∪ π(i) ∪ π(p(i)) ∪
⋃

j∈C(i)

π(j).

The other type of entries that can be easily computed without relying on other entries
are those for leaf nodes. For each leaf node i ∈ V , r ∈ π(p(i)) ∪ {non}, n ∈ N and
e ∈ {envy, noenvy} we simply set

T [i, r, n, e] = >.

This is due to the fact that we only consider envy towards the children of the selected
node when comparing with n. Since i is a leaf node, every simple 2-sharing allocation
satisfies the constraints.

To determine the value of T for non-leaf nodes, we need to use the information com-
puted for the children of these nodes. This restricts the order in which we can handle
the nodes. One possibility is to handle the nodes layer-wise. A layer consists of all
nodes of equal distance from the root. By handling those with a greater distance before
those with a lower distance, we ensure that table entries for all children of a node have
been computed before we look the node itself.

With this idea in mind, we can now focus on computing the entries of T for any
non-leaf node i ∈ V . Recall that we want any entry T [i, r, n, e] to be > if there is a
simple 2-sharing allocation with at most n envious nodes in the sub-tree rooted in i.
While we need to consider the potential envy of i itself, the rest of the at least n − 1
envious nodes can be distributed over all the sub-trees rooted in any of the children of i.
To compute the entries for i it will therefore be necessary to consider all possibilities to
spread the envious nodes over the m := |C(i)| sub-trees. This problem is the well-known
n-multicombination problem, and we therefore know that there are at least

(
m+n−2

n

)
such

combinations. As this number is not polynomially bounded in the size of the instance,
simply iterating over and checking the combinations would not result in an efficient
algorithm.
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To work around this when computing the entry T [i, r, n, e], we use another table A,
containing the information if we can split the envious nodes over the sub-trees rooted in
any of the children of i. Let c1, . . . , cm ∈ C(i) be an arbitrary but fixed enumeration of
i’s children. Then the table A is given as

A[j, s, n′, e] ∈ {>,⊥}, where

j ∈ {1, . . . ,m},
s ∈ {share, noshare},
n′ ∈ {1, . . . , n}, and

e′ ∈ {envy, noenvy}.

We explain in the next section, how A can be computed efficiently. For now, we just
assume there are the following already computed entries.

• A[m, share, n, noenvy]: This entry is > if and only if there is a simple 2-sharing al-
location π′ such that there are n envious nodes in all the sub-trees T (c1), . . . , T (c2).
Additionally, i is not envious of one of the children in π′ and the sharing indicated
by the parameter r (of T ) is included in π′.

• A[m, share, n−1, envy]: This entry is > if and only if there is a simple 2-sharing al-
location π′ such that there are n−1 envious nodes in all the sub-trees T (c1), . . . , T (c2).
Additionally, i is envious of at least one of its children in π′ and the sharing indi-
cated by the parameter r (of T ) is included in π′.

Given these entries, the entry in T can then be computed. We set T [i, r, n, e] = > if

(e = noenvy∧A[m, share, n, noenvy] = >)

∨(e = envy∧A[m, share, n− 1, envy] = >)

and T [i, r, n, e] = ⊥ otherwise.

5.2.2 Computing The Inner Table

As discussed above it is not efficient to iterate over all the at least
(
m+n−2

n

)
ways to split

the envious nodes over the m := |C(i)| sub-trees rooted in the children of a node i. To
work around this we want to use an inner dynamic programming algorithm computing
the result of different allocations of the envious nodes to the sub-trees. Note that this
algorithm needs to be executed for each entry in T .

Let i ∈ V a non-leaf node, r ∈ R̄, n ∈ N and e ∈ {envy, noenvy} such that T [i, r, n, e]
is not set to ⊥ as part of the initialization. Let c1, . . . , cm ∈ C(i) be an arbitrary but
fixed enumeration of the children of i. We then build the table A described through
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A[j, s, n′, e] ∈ {>,⊥}, where

j ∈ {0, . . . ,m},
s ∈ {share, noshare},
n′ ∈ {1, . . . , n}, and

e′ ∈ {envy, noenvy}.

We want A[j, s, n′, e] = > if and only if there is a simple 2-sharing allocation, such
that the total number of envious nodes in the sub-trees rooted in the children c1, . . . , cj
is at most n′ and if s = share and r ∈ π(i) there is a k ≤ j such that i is sharing r with
ck. The parameter e′ indicates, whether i becomes envious under that allocation.

Again, there are some cases for which we can determine the entry of A without relying
on other entries. In particular for j = 0 the value of A does not depend on any actual
allocation (as there are not children taken into account). We can distinguish the following
four cases.

• A[0, noshare, n′, noenvy] = >

• A[0, noshare, n′, envy] = ⊥

• A[0, share, n′, noenvy] = ⊥

• A[0, share, n′, envy] = ⊥

These entries are meant to work with the logic for the recursive computation presented
in the remaining subsection. Intuitively, the last three cases cannot yield >, since they
do not guarantee either sharing with i (as would be required with s = noshare) or the
envy of i (as would be required with e = envy).

After performing the initialization, we can then proceed to compute the remaining
entries. Each entry j > 1 only depends on entries for j−1, so it is sufficient to compute A
in the order of increasing j values. Let now j > 1 and n′ ∈ {1, . . . , n}. Several properties
of the graph and the allocation π influence the values in A. Table 5.1 contains conditions
that need to hold for specific configurations of the parameters. We set A[j, s, n′, e′] = >
if the corresponding condition in the table is true and A[j, s, n′, e′] = ⊥ otherwise.

To simplify the visual presentation of the conditions we use some shorthand notation
in the table.

• We use as a generic placeholder and write T [i, r, n, ] = > when we do not care
about the envy state of i. Formally, the expression should be read as if it expands
to

(T [i, r, n, envy] = > ∨ T [i, r, n, noenvy] = >)

• We use the indicator function χ to only consider the utility of resources shared
in a particular direction. In the table we write χc(j, r′) := χπ(cj)c(r

′) to denote a
coefficient that is 1 if r′ is not in π(cj) and 0 otherwise.
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While Table 5.1 itself is rather technical, the general structure of the conditions always
consists of three elements. In addition to the simplifications shown above, we also use
colors to mark the different elements.

We highlight in blue the recursive check whether the siblings support the configura-
tion. The conditions always refer to entries for j − 1 siblings. Additionally, we allow up
to n−n′ envious nodes in the sub-trees of the siblings, since n′ envious nodes should be
the limit for envious nodes in the sub-tree for cj. For s = share and/or e′ = envy we
need to check if the implied condition (is sharing a resource from i and/or is making i
envious) is fulfilled by the children. If not, we need to ensure that cj is fulfilling it.

• For s = noshare and e′ = envy we need to check if the children up to cj−1 already
ensure the envy of i or if this needs to be achieved by cj:

( A[j − 1, noshare, n− n′, envy] = > ) ∨ ( A[j − 1, noshare, n− n′, noenvy] = > )

• For s = share and e′ = noenvy we similarly need to check if the children up to cj−1
are already using the shared resource of i or if we need to use it to share with cj:

( A[j − 1, share, n− n′, noenvy] = > ) ∨ ( A[j − 1, share, n− n′, noenvy] = > )

• For s = share and e′ = envy we need to combine the cases of the previous config-
urations. This results in 4 different cases to be considered:

( A[j − 1, share, n− n′, envy] = > )

∨( A[j − 1, noshare, n− n′, envy] = > )

∨( A[j − 1, share, n− n′, noenvy] = > )

∨( A[j − 1, noshare, n− n′, noenvy] = > )

We highlight in green the recursive check whether the sub-tree rooted in cj supports
the configuration with n′ envious nodes. The conditions are generally similar but change
slightly depending on the used resource and whether cj is envious of i. This is due to
the fact that in T we do not consider envy towards the parent of the selected node. In
particular the condition is presented in one of the following forms.

• In case i is already sharing (either with its parent or another child) we need to con-
sider all possible sharings between cj and its children. This includes the possibility
to not share (i.e. r′ = non).

∃r′ ∈ R̄ \ π(i) : T [cj, r
′, n′, ] = >

In this notation we do not care about the envy of cj. If there is an arc from cj to
i we also need to consider that cj is now envious of i.

∃r′ ∈ R̄ \ π(i) : ( T [cj, r
′, n′ − 1, noenvy] = > ) ∨ ( T [cj, r

′, n′, envy] = > )
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5.3 Result

In the first case there is a simple 2-sharing allocation that leaves cj not envious.
With cj now becoming envious of i we need to add it to the count of envious nodes.
This means we cannot allow more than n′ − 1 envious nodes in the sub-tree. If cj
is already envious of one or more of its children, there is no need to decrement the
allowed number of envious nodes.

• If cj is sharing a resource with i, we need to check for suitable allocations that do
not have cj involved in any sharing in the sub-tree.

T [cj, non, n′, ] = >

This case also requires a similar distinction of the envy of cj as in the first case,
i.e. if cj is envious of i we need to lower the amount of allowed envious nodes for
the lookup.

• Finally, if s = share we need to consider the case of cj being the node i is sharing
with.

T [cj, r, n
′, ] = >

In case of an arc from cj to i the distinction regarding the envy of cj is similar
to the first case, i.e. if cj is envious of i we need to lower the amount of allowed
envious nodes for the lookup.

We highlight in red the check whether either i or cj would become envious under the
considered sharing. We need to take into account the utility value of the bags of both
nodes under the initial allocation π and the added utility of the resources shared. The
actual condition can take several forms depending on the considered sharings.

In the most general case, both i and cj might be on the receiving side of a sharing. In
particular if r is a resource initially assigned to one of the other children we aim to find
a resource for cj.

∃r′ ∈ R̄ \ π(i) : u(π(i)) + u(r) ≤ u(π(cj)) + χc(j, r′) · u(r′)

Depending on the case, either u(r) or u(r′) might disappear from the condition and the
relation operator is different. We use the indicator function χc(j, r′) to make sure we
only add the utility of resources that are not initially assigned to it (i.e. that it receives
from one of its children and not giving away). Note that in the case of r′ = non we just
define the term χc(j, r′) · u(r′) to be 0.

5.3 Result

The dynamic programming algorithm presented in the previous sections, though rather
technical, does not involve any complex computations. Instead, tables T and A can be
computed efficiently. This leads us to the following theorem as the main result of this
chapter.
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5 Optimal Pairwise Sharing on Trees

s = noshare, e′ = noenvy

r ∈ π(i), (i, cj) ∈ E A[j − 1, noshare, n− n′, noenvy] = > ∧ ∃r′ ∈ R̄ \ π(i) : T [cj, r
′, n′, ] = > ∧ u(π(i)) ≥ u(π(cj)) + χc(j, r′) · u(r′)

r ∈ π(i), (cj, i) ∈ E
A[j − 1, noshare, n− n′, noenvy] = > ∧ ∃r′ ∈ R̄ \ π(i) : ( u(π(i)) ≤ u(π(cj)) + χc(j, r′) · u(r′) ∧ T [cj, r

′, n′, ] = > )

∨ ( u(π(i)) > u(π(cj)) + χc(j, r′) · u(r′) ∧ ( T [cj, r
′, n′ − 1, noenvy] = > ∨ T [cj, r

′, n′, envy] = > ))

r ∈ π(cj), (i, cj) ∈ E A[j − 1, noshare, n− n′, noenvy] = > ∧ T [cj, non, n′, ] = > ∧ u(π(i)) + u(r) ≥ u(π(cj))

r ∈ π(cj), (cj, i) ∈ E
A[j − 1, noshare, n− n′, noenvy] = > ∧ ( ( u(π(i)) + u(r) ≤ u(π(cj)) ∧ T [cj, non, n′, ] = > )

∨ ( u(π(i)) + u(r) > u(π(cj)) ∧ ( T [cj, non, n′ − 1, noenvy] = > ∨ T [cj, non, n′, envy] = > )))

r ∈ π(ck), (i, cj) ∈ E A[j − 1, noshare, n− n′, noenvy] = > ∧ ∃r′ ∈ R̄ \ π(i) : T [cj, r
′, n′, ] = > ∧ u(π(i)) + u(r) ≥ u(π(cj)) + χc(j, r′) · u(r′)

r ∈ π(ck), (cj, i) ∈ E
A[j − 1, noshare, n− n′, noenvy] = > ∧ ∃r′ ∈ R̄ \ π(i) : ( u(π(i)) + u(r) ≤ u(π(cj)) + χc(j, r′) · u(r′) ∧ T [cj, r

′, n′, ] = > )

∨ ( u(π(i)) + u(r) > u(π(cj)) + χc(j, r′) · u(r′) ∧ ( T [cj, r
′, n′ − 1, noenvy] = > ∨ T [cj, r

′, n′, envy] = > ))

r = non, (i, cj) ∈ E A[j − 1, noshare, n− n′, noenvy] = > ∧ ∃r′ ∈ R̄ \ π(i) : T [cj, r
′, n′, ] = > ∧ u(π(i)) ≥ u(π(cj)) + χc(j, r′) · u(r′)

r = non, (cj, i) ∈ E
A[j − 1, noshare, n− n′, noenvy] = > ∧ ∃r′ ∈ R̄ \ π(i) : ( u(π(i)) ≤ u(π(cj)) + χc(j, r′) · u(r′) ∧ T [cj, r

′, n′, ] = > )

∨ ( u(π(i)) > u(π(cj)) + χc(j, r′) · u(r′) ∧ ( T [cj, r
′, n′ − 1, noenvy] = > ∨ T [cj, r

′, n′, envy] = > ))

s = noshare, e′ = envy

r ∈ π(i), (i, cj) ∈ E
( A[j − 1, noshare, n− n′, envy] = > ∧∃r′ ∈ R̄ \ π(i) : T [cj, r

′, n′, ] = > )

∨ ( A[j − 1, noshare, n− n′, noenvy] = > ∧∃r′ ∈ R̄ \ π(i) : T [cj, r
′, n′, ] = > ∧ u(π(i)) ≤ u(π(cj)) + χc(j, r′) · u(r′) )

r ∈ π(i), (cj, i) ∈ E
A[j − 1, noshare, n− n′, envy] = > ∧ ∃r′ ∈ R̄ \ π(i) : ( u(π(i)) ≤ u(π(cj)) + χc(j, r′) · u(r′) ∧ T [cj, r

′, n′, ] = > )

∨ ( u(π(i)) > u(π(cj)) + χc(j, r′) · u(r′) ∧ ( T [cj, r
′, n′ − 1, noenvy] = > ∨ T [cj, r

′, n′, envy] = > ))

r ∈ π(cj), (i, cj) ∈ E
( A[j − 1, noshare, n− n′, envy] = > ∧ T [cj, non, n′, ] = > )

∨ ( A[j − 1, noshare, n− n′, noenvy] = > ∧ T [cj, non, n′, ] = > ∧ u(π(i)) + u(r) < u(π(cj)) )

r ∈ π(cj), (cj, i) ∈ E
A[j − 1, noshare, n− n′, envy] = > ∧ ( ( u(π(i)) + u(r) ≤ u(π(cj)) ∧ T [cj, non, n′, ] = > )

∨ ( u(π(i)) + u(r) > u(π(cj)) ∧ ( T [cj, non, n′ − 1, noenvy] = > ∨ T [cj, non, n′, envy] = > )))

r ∈ π(ck), (i, cj) ∈ E
( A[j − 1, noshare, n− n′, envy] = > ∧∃r′ ∈ R̄ \ π(i) : T [cj, r

′, n′, ] = > )

∨ ( A[j − 1, noshare, n− n′, noenvy] = > ∧∃r′ ∈ R̄ \ π(i) : T [cj, r
′, n′, ] = > ∧ u(π(i)) + u(r) < u(π(cj)) + χc(j, r′) · u(r′) )

r ∈ π(ck), (cj, i) ∈ E
A[j − 1, noshare, n− n′, envy] = > ∧ ∃r′ ∈ R̄ \ π(i) : ( u(π(i)) + u(r) ≤ u(π(cj)) + χc(j, r′) · u(r′) ∧ T [cj, r

′, n′, ] = > )

∨ ( u(π(i)) + u(r) > u(π(cj)) + χc(j, r′) · u(r′) ∧ ( T [cj, r
′, n′ − 1, noenvy] = > ∨ T [cj, r

′, n′, envy] = > ))

r = non, (i, cj) ∈ E
( A[j − 1, noshare, n− n′, envy] = > ∧∃r′ ∈′ barR \ π(i) : T [cj, r

′, n′, ] = > )

∨ ( A[j − 1, noshare, n− n′, noenvy] = > ∧∃r′ ∈ R̄ \ π(i) : T [cj, r
′, n′, ] = > ∧ u(π(i)) ≥ u(π(cj)) + χc(j, r′) · ·u(r′) )

r = non, (cj, i) ∈ E
A[j − 1, noshare, n− n′, envy] = > ∧ ∃r′ ∈ R̄ \ π(i) : ( u(π(i)) ≤ u(π(cj)) + χc(j, r′) · u(r′) ∧ T [cj, r

′, n′, ] = > )

∨ ( u(π(i)) > u(π(cj)) + χc(j, r′) · u(r′) ∧ ( T [cj, r
′, n′ − 1, noenvy] = > ∨ T [cj, r

′, n′, envy] = > ))

s = share, e′ = noenvy

r ∈ π(i), (i, cj) ∈ E
( A[j − 1, share, n− n′, noenvy] = > ∧ ∃r′ ∈ R̄ \ π(i) : T [cj, r

′, n′, ] = > ∧ u(π(i)) ≥ u(π(cj)) + χc(j, r′) · u(r′) )

∨ ( A[j − 1, noshare, n− n′, noenvy] = > ∧ T [cj, r, n
′, ] = > ∧ u(π(i)) ≥ u(π(cj)) + u(r) )

r ∈ π(i), (cj, i) ∈ E

( A[j − 1, share, n− n′, noenvy] = > ∧ ∃r′ ∈ R̄ \ π(i) : ( u(π(i)) ≤ u(π(cj)) + χc(j, r′) · u(r′) ∧ T [cj, r
′, n′, ] = > )

∨ ( u(π(i)) > u(π(cj)) + χc(j, r′) · u(r′) ∧ ( T [cj, r
′, n′ − 1, noenvy] = > ∨ T [cj, r

′, n′, envy] = > )))

∨ ( A[j − 1, noshare, n− n′, noenvy] = > ∧ ( u(π(i)) ≤ u(π(cj)) + u(r) ∧ T [cj, r, n
′, ] = > )

∨ ( u(π(i)) > u(π(cj)) + u(r) ∧ ( T [cj, r, n
′ − 1, noenvy] = > ∨ T [cj, r, n

′, envy] = > )))

r ∈ π(cj), (i, cj) ∈ E

same as for s = noshare, e′ = noenvy

r ∈ π(cj), (cj, i) ∈ E
r ∈ π(ck), (i, cj) ∈ E
r ∈ π(ck), (cj, i) ∈ E
r = non, (i, cj) ∈ E
r = non, (cj, i) ∈ E

s = share, e′ = envy

r ∈ π(i), (i, cj) ∈ E

( A[j − 1, share, n− n′, envy] = > ∧∃r′ ∈ R̄ \ π(i) : T [cj, r
′, n′, ] = > )

∨ ( A[j − 1, noshare, n− n′, envy] = > ∧ T [cj, r, n
′, ] = > )

∨ ( A[j − 1, share, n− n′, noenvy] = > ∧∃r′ ∈ R̄ \ π(i) : T [cj, r
′, n′, ] = > ∧ u(π(i)) ≥ u(π(cj)) + χc(j, r′) · u(r′) )

∨ ( A[j − 1, noshare, n− n′, noenvy] = > ∧ T [cj, r, n
′, ] = > ∧ u(π(i)) < u(π(cj)) + u(r) )

r ∈ π(i), (cj, i) ∈ E

( A[j − 1, share, n− n′, envy] = > ∧ ∃r′ ∈ R̄ \ π(i) : ( u(π(i)) ≤ u(π(cj)) + χc(j, r′) · u(r′) ∧ T [cj, r
′, n′, ] = > )

∨ ( u(π(i)) > u(π(cj)) + χc(j, r′) · u(r′) ∧ ( T [cj, r
′, n′ − 1, noenvy] = > ∨ T [cj, r

′, n′, envy] = > )))

∨ ( A[j − 1, noshare, n− n′, envy] = > ∧ ( ( u(π(i)) ≤ u(π(cj)) + u(r) ∧ T [cj, r, n
′, ] = > )

∨ ( u(π(i)) > u(π(cj)) + u(r) ∧ ( T [cj, r, n
′ − 1, noenvy] = > ∨ T [cj, r, n

′, envy] = > ))))

r ∈ π(cj), (i, cj) ∈ E

same as for s = noshare, e′ = envy

r ∈ π(cj), (cj, i) ∈ E
r ∈ π(ck), (i, cj) ∈ E
r ∈ π(ck), (cj, i) ∈ E
r = non, (i, cj) ∈ E
r = non, (cj, i) ∈ E

Table 5.1: The cases relevant for computing the table A.
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5.3 Result

Theorem 5.1. Graph Envy With Pairwise Sharing can be solved on trees in
O(|V |4 · |R|2) time.

Proof. We argue that the algorithm presented in the previous sections can be used to
solve Graph Envy With Pairwise Sharing.

For the running time of the algorithm, observe that there cannot be more than |V |
envious nodes and we therefore only access entries for n ≤ |V |. This means table T
contains O(|V |2 · |R|) relevant entries. For table A, we can see that since |C(i)| < |V | for
all nodes i there are O(|V |2) entries. Now, while computing an entry for T from A (only
the entries A[|C(i)|, share, n, noenvy] and A[|C(i)|, noshare, n−1, envy] are checked) can
be done in constant time, the maximum number of operations needed to compute one
of the conditions presented in Table 5.1 is O(|R|). Putting this all together, we can
conclude that T can be build up in O(|V |4 · |R|2) time. This is then also the time needed
for the whole algorithm, as extracting the optimal result can be done in O(|V | · |R|).

Correctness of the algorithm follows from construction of the tables T and A. From
the interpretation of the table T we can see that finding the smallest n for which we can
find a > entry for the root is already giving us the minimum number of envious nodes
we can get when extending the initial allocations to a simple 2-sharing allocation. The
validity of the interpretation of T stems from the validity of the interpretation of A.

Correctness of the interpretation for entries in A similarly stems from construction.
Due to Table 5.1 we consider all possible cases to extend simple 2-sharing allocations
optimal on sub-trees rooted in children of the selected node i. The entries in Table 5.1
describe the optimal scenario for extending the allocation under the induction hypothesis
that both the interpretation of A and the interpretation of T are correct for already
computed entries.

Theorem 5.1 shows that Graph Envy With Pairwise Sharing can be solved
efficiently on graphs with trees as their underlying undirected graph. The running time
presented, however, makes this a mostly theoretical result. For practical applications
the presented algorithm will often be too slow. This is contrasting the results for paths,
where Theorem 4.1 suggests our algorithm may be fast enough for real-world instances.

However, the presented upper-bound for the complexity of solving Graph Envy
With Pairwise Sharing is likely not optimal and future versions of the algorithm or
even novel approaches may very well show far better results.
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6 Conclusion

Many applications of resource allocation algorithms — such as housing allocations or
the fair distribution of rewards to employees — are inherently linked to social structures.
Students in two-person dorm rooms are certainly affected by the choice of their roommate
(see the work of Dusselier et al. [Dus+05]). Consequently, the use of social networks
to determine the optimum — and especially fairness — of allocation problems suggests
itself as a field of future research.

In this chapter, we summarize and discuss the contributions to this field presented in
this thesis. We then provide an outlook on future work related to our results.

6.1 Discussion & Future Work

Building upon the concept of graph-envy, as given by Bredereck et al. Abebe et al.
Chevaleyre et al. and others, we present an approach to improving a given resource
allocation through pairwise sharing [AKP17; BKN18; CEM17]. While arguably simple,
our model is motivated by real-world applications of the resource allocation theory and
already yields some interesting hardness results. It may be interesting to derive similar
results for other sharing models (e.g. sharing between more than two agents, sharing
more than one resource, . . . ) and compare them to our findings.

Our model is closely related to matchings on the underlying graph. We use this
insight to devise efficient algorithms to optimize two different versions of social welfare:
utilitarian social welfare and egalitarian social welfare. The possibility to efficiently
optimize these values is not surprising, considering that much of the hardness discussed
in later parts of the thesis seems to be closely connected to the graphs being directed.
Arc directions, however, do not play any role in the social welfare computations we
consider.

Looking at a more involved metric, we examine the minimization of envy along the
social network. We introduce the NP-hard Graph Envy With Pairwise Sharing
problem and present some parameterized hardness results. Interestingly enough, some
“obvious” restrictions do not affect the hardness. It seems that it is not trivial to find
parameters to be used for the restriction of hardness. The main problem, namely envy
being “spread”, is a rather intuitive effect of sharing and is likely to complicate the
problem for other models of sharing as well.

Aiming at further characterizing the hardness of Graph Envy With Pairwise
Sharing, we present the MinPathEnvy algorithm capable of solving the problem on
paths in linear time and prove its correctness. The algorithm contains several rather
technical case distinctions but the underlying concept is straightforward. The result is
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6 Conclusion

interesting as it demonstrates the existence of graph classes on which the problem can
be solved efficiently.

Building on this idea, we present a dynamic programming algorithm that solves the
Graph Envy With Pairwise Sharing problem on trees in polynomial time. The
details are again rather technical and there are undoubtedly many improvements one
could think of, especially regarding running time. The results are still promising and
suggest there might be more graph classes the problem can be solved on efficiently.
Potential candidates may be graphs of bounded tree-width. It might also be interesting
to investigate the influence of other graph-related parameters on the hardness of Graph
Envy With Pairwise Sharing, such as the number of feedback edges.
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