
Multivariate Algorithmics in

Biological Data Analysis

Vorgelegt von
Diplom-Informatiker (Bioinformatik)

Johannes Gabriel Uhlmann
geboren in Bad Soden am Taunus

Von der Fakultät IV – Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Uwe Nestmann
Gutachter: Prof. Dr. Rolf Niedermeier
Gutachter: Prof. Dr. Peter Damaschke
Gutachter: Prof. Dr. Till Tantau

Tag der wissenschaftlichen Aussprache: 17. Juni 2011

Berlin 2011
D83

ISBN: 978-3-7983-2351-3 (Druckausgabe)
ISBN: 978-3-7983-2352-0 (Online-Version)

Berlin 2011

Druck/Printing: docupoint GmbH Magdeburg
Otto-von-Guericke-Allee 14
D-39179 Barleben

Vertrieb/Publisher: Universitätsverlag der TU Berlin
Universitätsbibliothek
Fasanenstrasse 88 (im VOLKSWAGEN-Haus)
D-10623 Berlin
Tel. +49 (0)30 314 761 31 / Fax: +49 (0) 30 314 761 33
Email: publikationen@ub.tu-berlin
http://www.univerlag.tu-berlin.de

http://www.univerlag.tu-berlin.de

Preface

This thesis covers parts of my research on fixed-parameterized algorithms for NP-hard
problems that arise in the context of biological data analysis.

My research was funded by the Deutsche Forschungsgemeinschaft (DFG) since
October 2007 until February 2011 within the project PABI, NI 369-7. From October
2007 until December 2010, I stayed with the Friedrich-Schiller-Universität Jena and
most results of this thesis were established within this period. Following my supervisor
Rolf Niedermeier, I moved to TU Berlin in January 2011. I wish to express my sincere
thanks to Rolf Niedermeier for giving me the opportunity to work in his group.

Furthermore, I want to thank my (partially former) colleagues Nadja Betzler,
René van Bevern, Robert Bredereck, Michael Dom, Jiong Guo, Sepp Hartung, Falk
Hüffner, Christian Komusiewicz, Hannes Moser, Rolf Niedermeier, André Nichterlein,
and Mathias Weller for fruitful discussions and the positive work atmosphere.

Moreover, I owe sincere thanks to my coauthors Nadja Betzler, Robert Bredereck,
Britta Dorn (Universität Ulm), Michael R. Fellows (Charles Darwin University, Aus-
tralia), Rudolf Fleischer (Fudan University, China), Jiong Guo (Universität des Saar-
landes), Sepp Hartung, Falk Hüffner, Iyad A. Kanj (DePaul University, USA), Chris-
tian Komusiewicz, Rolf Niedermeier, Dominikus Krüger (Universität Ulm), André
Nichterlein, Yihui Wang (Fudan University, China), Mathias Weller , and Xi Wu (Fu-
dan University, China) for the interesting collaborations.

Last but not least, I am indebted to several anonymous referees from various
conferences and journals for comments that have improved the presentation of our
results.

This thesis emerges from collaborations with various research partners. In the fol-
lowing, I describe my specific contributions and point to the publications establishing
the basis for this thesis. In addition, I contributed to the publications [18, 20, 21, 62,
92, 95, 96, 98, 99, 136, 155, 156], which are not part of my thesis.

Part II: Fitting Biological Data with Combinatorial Structures. Chapter 4
is concerned with the investigation of Cluster Editing and Cluster Deletion
for several alternative parameters. The results in Chapter 4 were obtained in close
cooperation with Christian Komusiewicz. I did the main work on the fixed-parameter
algorithms with respect to the cluster vertex deletion number. The results of Chapter 4

iv

were presented at the 37th Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM ’11) [122].

Chapter 5 introduces a generalization of Cluster Editing that allows for overlap
between the clusters. These results were presented at the 15th Annual International
Computing and Combinatorics Conference (COCOON ’09) [70]. The journal version
appeared in Discrete Optimization [71]. Most of the results were obtained in group
discussions while all authors stayed with the Friedrich-Schiller-Universität Jena.1 I
worked out several details and finished the NP-hardness proofs. Moreover, I was
significantly involved in the research that lead to the two kernelization results in Sec-
tion 5.5. In particular, I substantially contributed to the polynomial-size problem
kernel for 2-Vertex-Overlap Deletion.

Chapter 6 focusses on the M -Hierarchical Tree Clustering problem. Sug-
gested by Jiong Guo, the examination of M -Hierarchical Tree Clustering was
initiated in a “Studienarbeit” by Sepp Hartung (also co-supervised by me). Sepp Har-
tung devised an O(3k)-size search tree and an O(k2)-element problem kernel. I came
up with the basic idea that lead to the O(Mk)-element problem kernel. For the con-
ference version [90], which appeared in the Proceedings of the 24th AAAI Conference
on Artificial Intelligence (AAAI’10), Christian Komusiewicz simplified the proof for
the correctness of Reduction Rule 6.2. While preparing this thesis I further simplified
the presentation. In particular, I came up with Lemma 6.1 which makes the proof of
Reduction Rule 6.2 trivial and yields the basis for the O(2.56k) search tree algorithm.
A full version of the conference paper containing these new results has been submitted
to the Journal of Classification [91]. In addition, I want to thank Sepp Hartung who
mainly accomplished the implementation and experimental work.

In Chapter 7, the main results are a cubic-vertex kernel and an improved O(3.68k)-
size search tree for Minimum Flip Consensus Tree. I had the basic idea for Re-
duction Rule 7.4 and the analysis of the kernel-size. The details of the kernelization
were worked out in close cooperation with Christian Komusiewicz. The kernelization
results were presented at the IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’08) [121]. Moreover, I de-
vised the improved O(3.68k)-size search tree for Minimum Flip Consensus Tree
that is not contained in the conference paper. We submitted a full version combining
the conference paper with the search tree algorithm to Algorithmica [123].

Part III: Constrained Search Problems Chapter 8 investigates the parame-
terized complexity of Interval Constrained Coloring with respect to several
parameters. The parameter identification by “deconstructing intractability” were per-
formed in meetings with all authors. My technical main contribution are the dynamic
programming algorithms. The results were presented at the 20th Annual Symposium
on Combinatorial Pattern Matching (CPM ’09) [119]. Chapter 8 follows the journal
paper that appeared in the Journal of Discrete Algorithms as part of the 20th An-
niversary Edition of the Annual Symposium on Combinatorial Pattern Matching [120].
I want to thank Michael R. Fellows for general discussions about the deconstructing
intractability approach and Nadja Betzler for pointing us to the Interval Con-
strained Coloring problem. I am grateful to Ernst Althaus for providing us with
real-world data. Moreover, I am indebted to our student Sven Thiel for his great job

1Michael R. Fellows stayed in Jena as a recipient of a Humboldt Research Award.

v

concerning implementation and experimentation.
Chapter 9 is concerned with the design of improved fixed-parameter algorithms

for Haplotype Inference by Parsimony (HIP) and Constrained Haplotype
Inference by Parsimony (CHIP). I came up with the observation that not all in-
ference graphs must be considered in the algorithms which is decisive for the improved
running time bound. I worked out the details of the algorithms in close cooperation
with Mathias Weller. The results appeared in the Proceedings of the 21st Annual
Symposium on Combinatorial Pattern Matching (CPM ’10) [76]. The paper [76] also
identifies an interesting polynomial-time special case (called Induced Haplotype
Inference by Parsimony) that is not considered in this thesis.

Contents

I Introduction 1

1 Introduction 3
1.1 Algorithmic Approach . 3
1.2 Organization and Results . 5

2 Basic Concepts and Notation 9
2.1 Computational Complexity and NP-Hardness 9
2.2 Parameterized Complexity and Multivariate Algorithmics 10

2.2.1 Multivariate Algorithmics . 11
2.3 Parameter Identification . 12
2.4 Kernelization . 13
2.5 Depth-Bounded Search Trees . 14
2.6 Basic Graph Notation . 15

II Fitting Biological Data with Combinatorial Structures 17

3 Introduction to Part II 19
3.1 The Considered Problems . 19
3.2 Summary of Results . 22
3.3 Edge Modification Problems . 24

3.3.1 Basic Notation for Edge Modification Problems 25
3.4 Universal Data Reduction Rules and Structural Observations 26

4 Cluster Editing and Cluster Deletion 33
4.1 Introduction . 33

4.1.1 Previous Work . 33
4.1.2 Related Problems . 35
4.1.3 Our Results . 36

4.2 Cluster Vertex Deletion Number as Parameter 37
4.2.1 Cluster Editing . 38
4.2.2 Cluster Deletion . 43

4.3 Further Alternative Parameterizations 50

viii Contents

4.4 Conclusion . 51

5 Clustering With Overlaps 53

5.1 Introduction . 53

5.2 Recognition and Forbidden Subgraph Characterization 56

5.3 A Complexity Dichotomy with Respect to the Overlap Number s . . . 58

5.4 Parameterized Complexity . 62

5.5 Two Kernelization Results for Edge Deletion 67

5.5.1 An O(k4)-Vertex Kernel for 1-Edge-Overlap Deletion 67

5.5.2 An O(k3)-Vertex Kernel for 2-Vertex-Overlap Deletion 71

5.6 Conclusion . 78

6 Hierarchical Tree Clustering 81

6.1 Introduction . 81

6.2 Preliminaries . 85

6.3 A Decomposition Property and Two Search Tree Strategies 85

6.4 Two Kernelization Results . 90

6.4.1 An O(k2)-Element Problem Kernel 90

6.4.2 An O(M · k)-Element Problem Kernel 92

6.5 Experimental Results . 100

6.5.1 Implementation Aspects . 100

6.5.2 Experiments with Synthetic Data 101

6.5.3 Experiments with Protein Similarity Data 103

6.5.4 Conclusions and Recommendations 105

6.6 Conclusion . 105

7 Minimum Flip Consensus Tree 107

7.1 Introduction . 107

7.2 Preliminaries . 110

7.3 A Decomposition Property . 112

7.4 Data Reduction Rules . 114

7.5 Analysis of the Problem Kernel Size 120

7.6 An O(3.68k)-Size Search Tree . 123

7.7 Conclusion . 129

III Constrained Search Problems 131

8 Interval Constrained Coloring 133

8.1 Introduction . 133

8.2 Parameterization and the Deconstruction of NP-Hardness 135

8.3 A Simple Normal Form Observation 138

8.4 Single Parameters . 139

8.5 Combined Parameters . 147

8.6 Implementations and Experiments . 151

8.7 Conclusion . 155

Contents ix

9 Parsimony Haplotyping 157
9.1 Introduction . 157
9.2 Improved Fixed-Parameter Algorithms 160

9.2.1 Haplotype Inference by Parsimony 160
9.2.2 Constrained Haplotype Inference by Parsimony 163

9.3 Problem Kernelization for Haplotype Inference by Parsimony 164
9.4 Further Results and Conclusions . 165

IV Conclusion 167

10 Conclusion 169

x Contents

Part I

Introduction

Chapter 1
Introduction

This thesis is concerned with the development of fixed-parameter algorithms for solving
NP-hard combinatorial problems arising in algorithmic bioinformatics. More specifi-
cally, we consider problems that model tasks in data clustering, construction of phylo-
genetic trees, predicting information on the tertiary structure of proteins, and inferring
haplotype information from given genotypes. Some of the problems also find applica-
tions in other areas.

We start with an introduction into the field of parameterized algorithmics including
some recent developments followed by an overview of the problems and results in
Section 1.2.

1.1 Algorithmic Approach

The problems considered in this thesis are NP-hard. It is commonly believed that,
in general, there are no efficient (that is, polynomial-time) algorithms for optimally
solving NP-hard problems. Pioneered by Downey and Fellows [63], parameterized al-
gorithmics has established within the last 20 years as one of the main approaches to
tackle NP-hard problems [77, 137]. Classically, the computational complexity of prob-
lems is measured only with respect to the overall input size n. Parameterized com-
plexity aims at a more fine-grained complexity analysis. It provides a two-dimensional
framework for studying the computational complexity of problems. One dimension
is the input size n and the other one is the parameter k (usually a positive integer),
capturing an additional aspect of the input instances. The basic idea is to restrict
the nonpolynomial part of the running time to the parameter k. A problem is called
fixed-parameter tractable (fpt) if it can be solved in f(k) · poly(n) time, where f is a
computable function only depending on k. In settings where the considered parame-
ter is small, fixed-parameter algorithms may provide efficient solving strategies despite
general NP-hardness.

Although a parameter can basically be everything, so far the majority of fixed-
parameter tractability results is given with respect to only few “standard parame-
terizations”. For example, the cost of the solution is the standard parameter when
considering optimization problems. As an other example, the treewidth (measur-

4 1 Introduction

ing the “tree-likeness” of a graph) is another standard graph parameter, allowing for
fixed-parameter tractability for many relevant graph problems1. Moreover, most fixed-
parameter tractability results are only with respect to a single parameter. However,
for a specific problem there may be several meaningful parameterizations and also the
combination of two or more parameters may be relevant. In particular, fixed-parameter
algorithms for new parameterizations can help to extend the range of instances that
can be solved in practice. This might be the case when the standard parameter is
not really small for several real-world instances, or the problem is intractable when
parameterized by a single parameter. Thus, multivariate algorithmics (cf. [69, 138])
proposes a systematic study of several parameters and the combination of two or more
single parameters. To this end, the identification of meaningful parameters is a crucial
and nontrivial step in multivariate algorithmics. This thesis provides improved fixed-
parameter algorithms for standard parameterizations for some problems and starts a
systematic multivariate algorithmics approach for other problems. Before stating our
concrete results in Section 1.2, we highlight two approaches used in this thesis that
concern multivariate algorithmics and “nonstandard parameterizations”.

First, we consider parameters that typically have smaller values than standard pa-
rameters. Such parameters are denoted as “refined parameters”. It is interesting from
a theoretical as well as from a practical point of view to investigate whether a problem
is still fixed-parameter tractable with respect to a refined parameter. In particular,
for problems whose fixed-parameter tractability has been intensively investigated with
respect to a standard parameter, the investigation of its parameterized complexity
with respect to refined parameters might help to obtain further improved algorithms.
In Section 2.3, we provide more details and point to recent work in this direction.

Second, we propose the approach of “deconstructing intractability” to identify rel-
evant parameterizations. The basic idea is to look at the NP-hardness proofs asking
why the produced instances might be artificial. Parameters capturing these “artifi-
cial aspects” of the produced instances are natural candidates for a parameterized
complexity study. Regarding this natural approach, our main contribution is to “de-
construct intractability” systematically and in combination with a multivariate com-
plexity analysis. In particular, for problems for which there are no obvious standard
parameterizations a systematic deconstructing-intractability approach can be fruitful.
See Chapter 8 for more details and a concrete case study.

Finally, we want to highlight one of the key techniques used in this thesis. Up
to now, several concepts and techniques for establishing fixed-parameter tractability
have been developed. Besides depth-bounded search trees, enumerative strategies, and
dynamic programming based approaches, one main focus of this thesis is on kernel-
ization. Here, the basic idea is to transform the input instance by the application of
one or more polynomial-time data reduction rules into an “equivalent” instance whose
size is bounded by a function of the parameter. If this function is a polynomial, we
say that the problem admits a polynomial-size problem kernel. Kernelization is a
polynomial-time preprocessing algorithm that can be combined with different solving
strategies. It has been recognized as one of the theoretically and practically most
interesting techniques of parameterized algorithmics [68, 97, 29].

1Often, the term “standard parameter” is exclusively used to refer to the cost or quality of a
solution. In this thesis, we also denote classical structural parameters such as the treewidth as
“standard parameters”.

1.2 Organization and Results 5

1.2 Organization and Results

The thesis consists of four parts. The first part provides an introduction into the
employed theoretical concepts and algorithmic methods. Moreover, it introduces basic
notations used throughout this thesis. The new results are presented in Part II and
Part III. The last part concludes the thesis. In the following, we briefly describe the
investigated problems and corresponding contributions.

Part II (Chapters 3 to 7) This part of the thesis investigates problems arising in
the context of clustering of data and the construction of phylogenetic trees. To this
end, we investigate four combinatorially similar problems. Two of them have been
introduced in the context of data clustering. The third problem is relevant for data
clustering as well as for phylogenetics. The fourth problem arises in phylogenetics. In
Chapter 3, we introduce the considered problems, summarize our results, and present
a universal data reduction rule needed for several kernelization results in this part.

Data clustering is one of the most fundamental problems in data analysis. The
task is to group together similar data items into clusters such that the data items in
each cluster are more closely related to each other than to data items of other clusters.
There is a vast amount of models and methods for data clustering. We consider graph-
based data clustering, where the main goal is to partition the vertex set of a graph
into clusters such that there are many edges within each cluster but only few edges
between the clusters. This leads to the first of our problems.

Chapter 4 concentrates on the Cluster Editing problem, one of the most in-
tensively investigated problems in graph-based data clustering. Given an undirected
graph, the task is to modify the edge set of the graph as little as possible to obtain a
disjoint union of cliques. The main contribution in Chapter 4 is to show that Cluster
Editing is fixed-parameter tractable with respect to a refined parameter, namely the
cluster vertex deletion number. This number is typically smaller than the standard
parameter “solution size”. This answers an open question of Dehne [58]. Moreover, we
briefly discuss other alternative parameterizations for Cluster Editing. Chapter 4
is based on [122].

Chapter 5 introduces a new model for graph-based data clustering with overlaps,
generalizing the model used for Cluster Editing. This model allows a certain
amount of overlap of the clusters that can be specified by an overlap number s. We
obtain a computational complexity dichotomy (polynomial-time solvable versus NP-
hard) for the underlying edge modification problems. Moreover, we study the param-
eterized complexity with respect to the number of allowed edge modifications, achiev-
ing fixed-parameter tractability in case of constant overlap values and parameterized
intractability for unbounded overlap values. Moreover, we present polynomial-size
problem kernels for two problems in this context. Chapter 5 follows [71].

Chapter 6 studies the parameterized complexity of the M -Hierarchical Tree
Clustering problem with respect to the standard parameter “cost of the solution”.
Given pairwise dissimilarity data on pairs of elements to be clustered, the task is to
find a hierarchical representation of the input data, that is, to build a rooted tree of
depth M + 1 such that similar objects (with respect to the input data) are close to
each other in the tree. More specifically, in M -Hierarchical Tree Clustering
so-called ultrametric trees are considered, where each leaf has the same distance to
the root.

6 1 Introduction

M -Hierarchical Tree Clustering is also closely related to the (re)construction
of phylogenetic trees. In phylogenetics, the evolutionary relationship between species
is usually depicted by arranging the species in a phylogenetic tree. Phylogenetic trees
are usually inferred based on dissimilarities in the physical or genetic characteristics
for a given set of species, reflecting their evolutionary distances. In an idealized model,
evolutionary data is ultrametric. In this context, M -Hierarchical Tree Cluster-
ing can be seen as the problem to correct the input data as little as possible to obtain
an ultrametric tree. The results for M -Hierarchical Tree Clustering comprise
a search tree and two kernelizations with respect to different parameterizations. More
precisely, we present an O(k2)-element and an O(M · k)-element kernel and a size-
O(2.562k) search tree. Chapter 6 is based on [90].

There are several methods that can be used to construct evolutionary trees. Hence,
it is an important task to combine the information from several trees. The central
problem in Chapter 7 is the Minimum-Flip Consensus Tree problem that arises
in the task to combine several rooted phylogenetic trees in one consensus tree. The
NP-hard combinatorial problem that has to be solved is to destroy all so-called in-
duced M -graphs in a bipartite graph by at most k edge modifications. We improve
previously known fixed-parameter algorithms by presenting an O(3.68k)-size search
tree algorithm. The previously known search tree algorithm has size O(4.42k) [27].
Our main contribution is a cubic-vertex kernel with respect to k. This is the first
nontrivial kernelization result for Minimum-Flip Consensus Tree. Chapter 7 is
based on [121].

Part III (Chapters 8 and 9) Part III investigates two further combinatorial prob-
lems arising in molecular biology. The first problems is useful to obtain information
about the 3-dimensional structure of a protein based on mass spectrometry data. The
second problem is concerned with haplotype inference.

In Chapter 8, we focus on the Interval Constrained Coloring problem. In-
terval Constrained Coloring (ICC) appears in the interpretation of experimental
data in biochemistry dealing with protein fragments. More specifically, ICC models
the task to predict information about the tertiary structure of a protein based on
hydrogen/deuterium exchange rates for its fragments, which can be obtained by mass
spectrometry experiments. For a protein consisting of n amino acids, the input of
ICC consists of a set of m integer intervals in the range 1 to n and each interval is
associated with a multisets of colors. It asks whether there is a “consistent” coloring
for all integer points from {1, . . . , n} that complies with the constraints specified by
the color multisets. In the biochemical application, the different colors correspond to
different hydrogen/deuterium exchange rates and a solution for ICC gives information
about the location of an amino acid residue. Our main contribution is to identify
several natural parameters for Interval Constrained Coloring based on a sys-
tematic “deconstructing intractability” approach. For the obtained parameterizations
we present several fixed-parameter tractability results. We substantiate the usefulness
of this “multivariate algorithmics approach” by presenting experimental results with
real-world data. Chapter 8 follows [120].

In Chapter 9, we investigate the Parsimony Haplotyping problem. Parsimony
Haplotyping is the problem of finding a smallest-size set of haplotypes that can ex-
plain a given set of genotypes. We also consider a “constraint version” of Parsimony

1.2 Organization and Results 7

Haplotyping where the explaining haplotypes must be chosen from a given pool of
plausible haplotypes [72]. Haplotyping is important for the investigation of genetic
mutations and diseases. We propose improved fixed-parameter tractability results
with respect to the parameter “size of the target haplotype set” k by presenting al-
gorithms with exponential running time factor k4k. The previously known algorithms
had running time factors kk

2+k [151] and kO(k2) [72]. Chapter 9 is based on [76].

8 1 Introduction

Chapter 2
Basic Concepts and Notation

In this chapter, we give a short introduction into theoretical concepts and algorithmic
methods used in this work. Moreover, we introduce basic notation employed through-
out this thesis.

2.1 Computational Complexity and NP-Hardness

In complexity theory, usually decision problems are considered. Formally, a decision
problem is encoded by a language L ⊆ Σ∗ over a finite alphabet Σ and the task is
to decide, for a given x ∈ Σ∗, whether x ∈ L.1 The computational complexity of a
problem is measured by the resources needed to solve it. The running time and the
space consumption are the two main measures. In this thesis, we mainly deal with time
complexity. In complexity theory, the goal is to classify problems into classes of similar
complexity. The most prominent complexity classes are P and NP. A problem is in P
if it can be solved in polynomial time by a deterministic Turing machine and in NP if
it can be solved in polynomial time by a nondeterministic Turing machine [81, 142].

It is commonly believed that the “hardest” problems in NP cannot be solved by
deterministic algorithms in polynomial time and, hence, P 6= NP. In order to define
the hardest problems in NP, the concept of polynomial-time many-one reduction was
introduced to show that a problem A is at least as hard as a problemB: A problemB ⊆
Σ∗ reduces to a problem A ⊆ Σ∗ (abbreviated by B ≤p A) if there is a polynomial-
time computable function f : Σ∗ → Σ∗ such that x ∈ B if and only if f(x) ∈ A
for all x ∈ Σ∗. A problem A is called NP-hard if B ≤p A for all problems B ∈ NP.
Moreover, an NP-hard problem A with A ∈ NP is called NP-complete. In other words,
an NP-complete problem is at least as hard as any problem in NP.

The central observation to substantiate the assumption P 6= NP is that if one NP-
hard problem is polynomial-time solvable, then all problems in NP are polynomial-time
solvable. However, since thousands of NP-complete problems have been investigated
without finding polynomial-time algorithms, it is commonly believed that there are
no polynomial-time algorithms for NP-hard problems.

1Indeed, most results in this thesis refer to the decision version of a problem. We stress that the
presented algorithms can easily be adapted to actually construct an optimal solution.

10 2 Basic Concepts and Notation

In summary, for an NP-complete problem, a running time of the form O(2n
c

) for
some constant c > 0 seems to be unavoidable when the running time is measured only
in the input size n.

2.2 Parameterized Complexity and Multivariate Al-
gorithmics

Introduced by Downey and Fellows [63], parameterized complexity has established
itself within the last 20 years as one of the main approaches for coping with the
computational intractability of NP-hard problems. We refer to the textbooks [63, 77,
137] for a comprehensive introduction.

Parameterized complexity is a two-dimensional framework for studying the com-
putational complexity of problems, one dimension is the input size n (as in classical
complexity theory), and the other one is the parameter k. That is, in parameterized
complexity, a problem always comes with a parameter.

Definition 2.1. A parameterized problem is a language L ⊆ Σ∗ × Σ∗, where Σ is a
finite alphabet. The second component is called the parameter of the problem.

All parameters considered in this thesis are nonnegative integers or tuples of non-
negative integers. We refer to a parameter consisting of a tuple of nonnegative integers
as a combined parameter. The central notion in parameterized complexity is that of
fixed-parameter tractability. Here, the basic idea is to restrict the combinatorial ex-
plosion that seems unavoidable for any exact solving strategy for NP-hard problems
to a function that depends only on the parameter.

Definition 2.2. A parameterized problem L is fixed-parameter tractable (fpt) if there
is an algorithm that decides in f(k) · nO(1) time whether (x, k) ∈ L, where f is an
arbitrary computable function depending only on k. The complexity class containing
the fixed-parameter tractable problems is called FPT.

An algorithm with a running time bound as in Definition 2.2 is called fixed-parameter
algorithm, or, synonymously, parameterized algorithm.

Observe that in the definition of fixed-parameter tractability the degree of the
polynomial does not depend on k. Hence, the concept of fixed-parameter tractability
is stronger than the notion of “polynomial-time solvability for constant parameter val-
ues”. Indeed, parameterized complexity theory can be viewed as driven by contrasting
the two function classes f(k) · nO(1) (the “good” functions) and O(ng(k)) (the “bad”
functions) [64]. The problems that can be solved in the running time O(ng(k)) form
the parameterized complexity class XP .

For many parameterized problems fixed-parameter algorithms have been found.
However, for many parameterized problems there is strong evidence that they are not
fixed-parameter tractable. Downey and Fellows [63] developed a formal framework
for showing fixed-parameter intractability by means of parameterized reductions. A
parameterized reduction from a parameterized problem L to another parameterized
problem L′ is a function defined as follows. Given an instance (x, k), it computes
in f(k) · nO(1) time (where f is a computable function) an instance (x′, k′) such that

2.2 Parameterized Complexity and Multivariate Algorithmics 11

• (x, k) is a yes-instance of problem L if and only if (x′, k′) is a yes-instance of
problem L′ and

• k′ only depends on a computable function in k.

The basic complexity class for fixed-parameter intractability is called W[1] and there is
good reason to believe that W[1]-hard problems are not fixed-parameter tractable [63,
77, 137]. In this sense, W[1]-hardness is the parameterized complexity analog of NP-
hardness. The next level of parameterized intractability is covered by the complexity
class W[2] with W[1]⊆W[2].

2.2.1 Multivariate Algorithmics

A multivariate algorithm analysis extends a parameterized algorithm analysis in the
sense that it systematically investigates the influence of several parameters on the
computational complexity of a problem [69, 138]. Up to now, the majority of fixed-
parameter tractability results in the literature have been obtained with respect to only
few single “standard parameters” such as the size or cost of a minimum solution (the
standard parameter when considering optimization problems) or the treewidth of a
graph. Clearly, for a specific problem there may be several meaningful parameteriza-
tions and also the combination of two or more parameters is relevant. For example,
it may happen that the standard parameter is not really small in practice or that a
problem is W[1]-hard when parameterized only by a single parameter. In such cases,
looking at several parameters or the combination of two or more parameters can help
to find efficient algorithms for relevant special cases. Hence, multivariate algorithmics
should be seen as an effort to systematically investigate the influence of several parame-
terizations and, in particular, the combination of two or more single parameterizations
on the computational complexity of a problem.

Many interesting questions arise when extending the investigation from one to
several parameters. Here, we give two concrete examples.

First, consider a problem for which two parameters p1 and p2 have been identified.
It may turn out that the problem is NP-hard even for constant parameter values of p1

or p2. In a multivariate framework, this directly leads to the following questions.

• Is the problem fixed-parameter tractable with respect to the combined parame-
ter (p1, p2)?

• Is the problem fixed-parameter tractable with respect to parameter p1 for con-
stant parameter values of p2 (or vice versa)?

• Is the problem NP-hard for constant parameter values of both parameters?

Second, assume that a problem is fixed-parameter tractable for a combined pa-
rameter (p1, p2). This directly raises the question whether there are fixed-parameter
algorithms with qualitatively different combinatorial explosions in their running times.
For example, algorithms coming with the incomparable combinatorial explosions pp21

and pp12 , respectively, can both be useful for solving specific real-world instances.

12 2 Basic Concepts and Notation

2.3 Parameter Identification

Parameterized algorithmics or, more generally, multivariate algorithmics aims at a fine-
grained complexity analysis of problems by investigating the influence of parameters
on the computational complexity of a problem. Thus, the identification of meaningful
parameters is a fundamental and nontrivial step in multivariate algorithmics [69, 137,
138]. In this section, we discuss some aspects of parameter identification.

When considering optimization problems a standard parameterization refers to the
size or cost of the solution set of the underlying problem. For many problems there
exist sophisticated fixed-parameter algorithms employing this standard parameteri-
zation, providing efficient algorithms for small parameter values. Also most contri-
butions of the thesis are with respect to this standard parameterization. However,
for some important problems (as for example Cluster Editing, see Chapter 4), it
has been observed that, in many real-world instances, the standard parameter is not
really small. This motivates the investigation of parameterizations different from the
solution size in order to extend the range of solvable instances

One approach is to consider “refined” parameters. Here, the basic idea is to con-
sider parameters that are typically smaller than the standard parameter. More specif-
ically, we say that a parameter is a refined parameter if it is bounded from above by
the standard parameter. For example, in Chapter 4, we investigate the parameterized
complexity of Cluster Editing. Cluster Editing is the problem of transforming
a graph by a minimum number of edge modifications into a cluster graph. Herein,
a cluster graph is a disjoint union of cliques. The standard parameter in case of
Cluster Editing is the number of required edge deletions and insertions. A refined
parameter is the “cluster vertex deletion number,” denoting the minimum number of
vertex deletions whose removal leaves a cluster graph: the deletion of one arbitrarily
chosen endpoint of every deleted or inserted edge of a Cluster Editing solution
also leads to a cluster graph. Moreover, it is easy to construct examples in which the
refined parameter is significantly smaller than the solution size.

A second example is the Two-Layer Planarization problem [155]. Here, the
task is to transform a graph into a forest of caterpillar trees2 by a minimum number
of edge deletions. Clearly, this requires to break all cycles in the graph (in order to
obtain a forest). A set of edges whose deletion leaves an acyclic graph is called a
feedback edge set. Thus, in case of Two-Layer Planarization the feedback edge
set number is a refined parameter of the standard parameter “solutions size”. A linear-
size problem kernel for Two-Layer Planarization parameterized by the feedback
edge set number has recently been presented [155].

As a third example consider the Vertex Cover problem: Given an undirected
graph and an integer k ≥ 0, compute a vertex cover of size at most k, that is, a set
of at most k vertices covering all edges. That is, deleting the vertices of a vertex
cover yields a graph that is the union of isolated vertices. This requires to break
all cycles by deleting vertices. Thus, the “feedback vertex set number” (denoting the
minimum number of vertex deletions needed to destroy all cycles of a graph) is a refined
parameter for Vertex Cover. Very recently, Jansen and Bodlaender [113] devised
a cubic-vertex kernel for Vertex Cover parameterized by the feedback vertex set
number. They also used the term “refined parameter”.

2A caterpillar tree is a tree where each internal vertex has at most two internal vertices as neighbors.

2.4 Kernelization 13

Finally, we mention that the notion of refined parameter also makes sense with
respect to parameters other than the standard parameter “solution size”. For example,
the degeneracy of a graph can be seen as a refined parameter compared to the treewidth
of a graph [7]. Moreover, the requirement for a refined parameter to be smaller for
every instance is very strict. Also parameters which are typically smaller than a
standard parameter for a large range of instances are of both theoretical and practical
interest.

A further generic approach for parameter identification, namely “deconstructing
intractability”, is systematically performed in Chapter 8. Here, the basic idea is to
analyze known NP-hardness (or W[t]-hardness) proofs to find meaningful parameters.
For example, if a known NP-hardness proof requires that for some parameter the pa-
rameter values are unbounded, then we directly arrive at the question whether the
problem is fixed-parameter tractable with respect to this parameter. Parameteriza-
tions with such parameters might lead to fixed-parameter tractability results. For
more details and a concrete example concerning the “deconstructing intractability”
approach, we refer to Chapter 8.

2.4 Kernelization

A core tool in the development of fixed-parameter algorithms is kernelization. Roughly
speaking, kernelization is polynomial-time preprocessing by data reduction with prov-
able performance guarantee. Formally, kernelization is defined as follows.

Definition 2.3. Let L ⊆ Σ∗×N be a parameterized problem. A reduction to a problem
kernel or kernelization for L is a polynomial-time executable transformation f : Σ∗ ×
N→ Σ∗×N such that for all (x, k) ∈ Σ∗×N each of the following statements is true:

• (x′, k′) := f((x, k)) is a yes-instance if and only if (x, k) is a yes-instance,

• k′ ≤ k, and

• |x′| ≤ g(k) for a computable function g : N→ N.

The reduced instance (x′, k′) is called a problem kernel. Its size is g(k). If there is a
kernelization for L, then we say that L admits a problem kernel of size g(k). If g(k)
is a polynomial one speaks of a polynomial (size) problem kernel.

In summary, a kernelization yields an equivalent instance whose size can provably
be bounded from above by a function only depending on the parameter. As a conse-
quence, kernelization is useful as polynomial-time preprocessing prior to any solving
strategy be it exact, approximative, or heuristic. Thus, the relevance of kernelization
is not restricted to the field of parameterized algorithmics. Indeed, kernelization is
one of the most active research areas in parameterized algorithmics and is considered
as one of the theoretically and practically most interesting methods of parameterized
algorithmics [68, 97, 110, 29].

It is folklore in parameterized algorithmics that a problem admits a problem ker-
nel if and only if it is fixed-parameter tractable [37]. However, devising small problem
kernels (in particular problem kernels of polynomial size) might be a highly nontrivial
task. This should also be seen in the light of recent breakthrough results on methods to

14 2 Basic Concepts and Notation

prove the “non-existence” of polynomial-size kernels; Bodlaender et al. [30] and Fort-
now and Santhanam [78] developed a framework to show that a problem does not admit
a polynomial-size problem kernel unless an unexpected complexity-theoretic collapse
takes place. Based on this framework, several non-existence results of polynomial-size
problem kernels have been established (see for example [32, 61, 124]).

Finally, we introduce some notation used for the presentation of our problem ker-
nels. A kernelization is usually achieved by the application of several data reduction
rules. A data reduction rule is a polynomial-time executable function that replaces an
instance (x, k) with an instance (x′, k′). A data reduction rule is called correct if the
new instance (x′, k′) after an application of this rule is a yes-instance if and only if the
original instance (x, k) is a yes-instance. An instance is called reduced with respect to
a set of data reduction rules if a further application of any of the reduction rules does
not modify the instance. In this case, we also say that the data reduction rules have
been applied exhaustively.

2.5 Depth-Bounded Search Trees

Depth-bounded search trees are a fundamental and well-established algorithm design
technique in parameterized algorithmics [137, Chapter 8]. A search tree based algo-
rithm works in a recursive manner by creating several subinstances and calling itself
for each of the created subinstances. To obtain fixed-parameter algorithms it is de-
cisive that the parameter value is decreased for each created subinstance and hence
the total size of the “recursion tree” can be bounded from above by a function of the
parameter.

We use the concept of branching rules for the presentation of our search tree al-
gorithms. Given an instance (G, k), a branching rule creates ` ≥ 2 subinstances
(G1, k1), . . . , (G`, k`). A branching rule is correct if (G, k) is a yes-instance if and only
if (Gi, ki) is a yes-instance for some 1 ≤ i ≤ `. Branching rules lead to a search
algorithm by solving each of the created subinstances recursively, terminating the re-
cursion when k ≤ 0 or none of the branching rules applies. For a branching rule
creating ` ≥ 2 subinstances, the branching vector is the `-tuple describing how the pa-
rameter is decreased in each subinstance. That is, for a branching rule creating ` ≥ 2
subinstances (G1, k1), . . . , (G`, k`), the branching vector is (k − k1, . . . , k − k`). A
branching vector describes the recurrence Tk = Tk1 + . . . + Tk` for the asymptotic
size of the search tree. Using standard branching analysis tools, a branching number
can be computed from the branching vector [137, Chapter 8]. The branching number
describes the base of the (exponential) search tree size. For example, if the branching
number of a given branching rule is 3.68, then the above recursion leads to a search
tree size of O(3.68k). If several branching rules are used, then the size of the overall
search tree is determined by the largest branching number over all branching rules.

Combining search tree based algorithms with kernelization algorithms is one of
the most successful approaches for efficient fixed-parameter algorithms. Suppose that
we have a search tree algorithm with running time O(ξk · q(n)) and a kernelization
with running time p(n) yielding a problem kernel of size s(k), where q and p are
polynomials. If a given instance is first reduced by applying the kernelization and
then the search tree algorithm is applied, one obtains an algorithm with “additive fpt
running time” O(p(n)+q(s(k))ξk). Furthermore, search tree algorithms invite to apply

2.6 Basic Graph Notation 15

the kernelization at each search tree node; an approach known as interleaving [139].
Indeed, Niedermeier and Rossmanith [139] have shown that by interleaving search
trees with kernelizations one can improve the worst-case running time of a search tree
algorithm to O(p(n) + ξk) if s is a polynomial.

2.6 Basic Graph Notation

We use the following notation for graphs throughout this thesis. For a comprehensive
introduction into graph theory we refer to [60, 117, 157].

An undirected graph G is a pair (V,E), where V is a finite set of vertices and E is
a finite set of edges. Herein, an edge is defined as unordered pair of vertices.3 For an
undirected graph G, we also use V (G) and E(G) to denote its vertex and edge sets,
respectively. We refer to the cardinality of V (G) as the order of G. Two vertices v ∈ V
and w ∈ V are called adjacent if {v, w} ∈ E. Moreover, an edge e ∈ E is incident to
a vertex v ∈ V if v ∈ e. For a set X of vertices, P2(X) denotes the set of all possible
edges on X.

The open neighborhood NG(v) of a vertex v is the set of vertices that are adjacent
to v, and the closed neighborhood NG[v] := NG(v) ∪ {v}. For a vertex set S ⊆ V ,
let NG(S) :=

⋃
v∈S NG(v) \ S. The closed neighborhood of S is denoted by NG[S] :=

S ∪NG(S). With N2
G(S) := NG(NG(S)) \NG[S] we denote the second neighborhood

of a vertex set S. The degree of a vertex v, denoted by degG(v), is the cardinality
of NG(v). If G is clear from the context, we omit the subscript G.

A subgraph of G = (V,E) is a graph G′ := (V ′, E′) with V ′ ⊆ V and E′ ⊆ E. We
use G[S] to denote the subgraph of G induced by S ⊆ V , that is, G[S] := (S,P2(S) ∩
E}). Moreover, let G− v := G[V \ {v}] for a vertex v ∈ V and G− e := (V,E \ {e})
for an edge e = {u, v}.

For a graph G = (V,E) the complement graph of G is G := (V,E) with E :=
P2(V) \ E. A path is a graph P = (V,E) with vertex set V = {v1, . . . , vn} and edge
set E = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}}; the vertices v1 and vn are the endpoints
of P . The length of a path P is given by |E(P)|. A cycle is the graph consisting of a
path on at least three vertices and the edge between its endpoints. With Pn we denote
the path on n vertices.

Two vertices v and w of a graph G are called connected if G contains a path
with endpoints v and w as a subgraph. A graph is called connected if any two of
its vertices are connected. The connected components of a graph are its maximal
connected subgraphs.

A graph is called cyclic if it contains a cycle as subgraph; otherwise it is called
acyclic. Acyclic graphs are called forests. An acyclic and connected graph is called a
tree. A rooted tree is a tree where one vertex is marked as the root of the tree. The
depth of a vertex v in a rooted tree is the length of the path from v to the root. The
depth of a tree is the maximum depth over all vertices. The ancestors of a vertex v
are the vertices of the path from v to the root. For two vertices u and v, the least
common ancestor is the maximum-depth vertex that is an ancestor of u and v.

An undirected graph G = (V,E) is called bipartite if V can be partitioned into
two sets V1 and V2 such that for every edge {u, v} ∈ E it holds that {u, v} ∩ V1 6= ∅

3In Chapter 9, we allow self-loops, that is, edges of the form {v, v}. If not explicitly stated
otherwise, we only consider simple undirected graphs without self-loops.

16 2 Basic Concepts and Notation

and {u, v} ∩ V2 6= ∅. It is folklore that a graph is bipartite if and only if it does
not contain an odd-length cycle. We sometimes refer to graphs containing an odd-
length cycle as non-bipartite graphs. A biclique is a bipartite graph (V1 ∪ V2, E)
with E := {{v, w} | v ∈ V1, w ∈ V2}. We also use the term biclique to refer to a vertex
set inducing a biclique.

For an undirected graph (V,E) a matching denotes a subset M ⊆ E such that
for all e, e′ ∈ M with e 6= e′ it holds that e ∩ e′ = ∅. A maximum matching is a
matching with maximum cardinality. Moreover, given a weight function ω : E →
N a maximum-weight matching is a matching with maximum total edge weight. A
maximum-weight matching in a bipartite graph with n vertices and m edges can be
computed in O(n(m+ n log n)) time [80].

For an undirected graph (V,E) a set of pairwise adjacent vertices is called a clique
and a set of pairwise nonadjacent vertices is called an independent set. A clique K is
called a maximal clique if K ∪ {v} is not a clique for every v ∈ V \K.

For our investigations in Part II cliques and independent sets where all vertices
have an identical neighborhood are of particular interest.

Definition 2.4. A clique K is a critical clique if all its vertices have an identical closed
neighborhood and K is maximal under this property.

Definition 2.5. An independent set I is a critical independent set if all its vertices
have an identical open neighborhood and K is maximal under this property.

All critical independent sets of a graph can be found in linear time [108]. Given
a graph G = (V,E) and the collection I = {I1, I2, . . . , Iq} of its critical independent
sets, where q ≤ n, the critical independent set graph of G is the undirected graph (I, E)
with {Ii, Ij} ∈ E if and only if ∀u ∈ Ii, v ∈ Ij : {u, v} ∈ E. That is, the vertices of the
critical independent set graph represent the critical independent sets and two vertices
are adjacent if and only if the corresponding critical independent sets together form a
biclique. The critical independent set graph is defined in analogy to the critical clique
graph which plays a decisive role in a kernelization of Cluster Editing [89].

Part II

Fitting Biological Data with
Combinatorial Structures

This part of the thesis investigates four problems arising in the context of
clustering of data or the construction of phylogenetic trees. For example,
a goal is to “fit” genomic data with the combinatorial structure of a phy-
logenetic tree or a cluster graph.

Chapter 3 provides an introduction to this part. Besides introducing the
considered problems it sheds light on the relationship between them and
gives an overview of our results.

Chapter 4 shows that Cluster Editing and Cluster Deletion are
fixed-parameter tractable with respect to the refined parameter “cluster
vertex deletion number.”

Chapter 5 introduces a generalization of Cluster Editing that allows a
certain amount of overlap between the clusters that can be specified by an
overlap number s. We perform a basic complexity study of the correspond-
ing problems, devise a forbidden subgraph characterization for generalized
cluster graphs, and present two polynomial-size problem kernels for two of
the problems.

Chapter 6 focusses on the M -Hierarchical Tree Clustering prob-
lem, where the goal is to fit dissimilarity data on pairs of elements with
an ultrametric tree of depth M + 1. We present an O(k2)-element and
an O(M · k)-element problem kernel as well as an O(2.56k)-size search tree
algorithm, where k denotes the cost of the solution.

Chapter 7 is concerned with the investigation of the parameterized com-
plexity of the Minimum Flip Consensus Tree problem with respect
to the parameter “solution size”. We improve previously known fixed-
parameter algorithms by presenting a refined search tree of size O(3.68k)
and a cubic-vertex kernel.

Chapter 3
Introduction to Part II

This introductory chapter is organized as follows. In Section 3.1, we provide a brief
introduction to the problems considered in this part of the thesis. Here, the focus is
on comparing the different problems and the underlying models and to shed light on
the relationships between the problems. A summary and comparison of the results
presented in this part is given in Section 3.2. Most problems considered in this part
are so-called edge modification problems. The basics concerning edge modification
problems are summarized in Section 3.3. Finally, in Section 3.4 we give a universal
version of several data reduction rules used in several kernelizations presented in this
part.

3.1 The Considered Problems

In the following, we introduce the problems that are considered in this part of the
thesis, compare the different underlying models, and shed light on the relationships
between the problems.

All problems in this part adhere to the following general setting. The input consists
of objects (also called “data items” or “taxa” in phylogenetics1) and some information
about the (dis)similarity or relationship between the objects. This information is
for example provided by a matrix containing the pairwise similarities or by a graph
where the vertices represent the objects and two vertices are considered similar if
they are adjacent (a so-called similarity graph). Moreover, each problem comes with
a model that can be used to represent the relationships between the objects in an
easy to interpret fashion. For example in graph-based data clustering, clusterings are
sometimes represented by disjoint unions of cliques, so-called cluster graphs, implying
a partition of the objects into disjoint subsets. As a second example, in phylogenetics
rooted trees are widely used to represent the evolutionary relationships between the
taxa. Here, the leaves of the tree are one-to-one labeled with the taxa and the distance
between two taxa is proportional to the length of the path between the two taxa in
the tree. That is, a model is given by a special class of combinatorial structures (like

1In phylogenetics, a group of species is called a taxon.

20 3 Introduction to Part II

cluster graphs or trees) and the task is to find the structure of this class that best
represents the relationships given in the input, where the quality is measured by some
problem-specific distance function. Thus, in summary, for all problems the task is to
fit combinatorial structures with given similarity data in the best possible way.

Next, we introduce in more detail the problems considered in this part. For formal
definitions, we refer to the respective chapters. The order of presentation of the
problems is based on the model used to represent the relationships between the objects
in the solution. Roughly speaking, we start with the simplest model, namely that of
a cluster graph (demanding the partition of the objects into disjoint subsets). In this
simple model, we have no overlap between the clusters. Then, we allow some degree
of overlap between the clusters, resulting in more complex cluster models. Finally,
we consider problems where rooted trees (that is, hierarchical structures) are used for
representing the relationships between the objects in the solution, allowing to display
subclusters of the clusters.

The standard task in clustering is to group together a set of objects into several
clusters such that the objects inside a cluster are highly similar to each other, whereas
objects not occurring in a common cluster have low or no similarity. There are nu-
merous approaches to clustering and “there is no clustering algorithm that can be
universally used to solve all problems” [162]. One prominent line of attack is to use
methods based on graph theory [148, 150]. Graph-based data clustering is an impor-
tant tool in exploratory data analysis [148, 150, 162]. The applications range from
bioinformatics [15, 152] over document clustering and agnostic learning [12] to image
processing [161]. The formulation as a graph-theoretic problem relies on the notion
of a similarity graph where vertices represent data items and an edge between two
vertices expresses high similarity between the corresponding data items. Then, the
computational task is to group the vertices into clusters, where a cluster is nothing
but a dense subgraph (typically, a clique) such that there are only few edges between
the clusters. Following Ben-Dor et al. [15], Shamir et al. [150] initiated a study of
graph-based data clustering in terms of edge modification problems. Here, the task
is to modify (delete or insert) as few edges of an input graph as possible to obtain a
cluster graph, that is, a vertex-disjoint union of cliques. The corresponding problem is
referred to as Cluster Editing (see Definition 4.1). Numerous recent publications
build on this concept of cluster graphs [24, 25, 28, 46, 53, 54, 57, 73, 83, 89, 145].
Indeed, the NP-hard Cluster Editing problem is among the best-studied parame-
terized problems. Cluster Editing is considered in Chapter 4. The model in case
of Cluster Editing is that of a partition of the set of objects. That is, the clusters
in a clustering obtained by solving Cluster Editing are disjoint. In this work, we
refer to such clusterings as non-overlapping.

To uncover the overlapping community structure of complex networks in nature
and society [141], the concept of a partition of the set of objects (as one has for cluster
graphs) fails to model that clusters may overlap. Consequently, the concept of cluster
graphs has been criticized explicitly for this lack of overlaps [57]. In Chapter 5, we
introduce a graph-theoretic relaxation of the concept of cluster graphs by allowing,
to a certain extent, overlaps between the clusters (which are cliques). We distinguish
between “vertex-overlaps” and “edge-overlaps” and provide a first thorough study of
the corresponding cluster graph modification problems. The two core concepts we
introduce in Chapter 5 are s-vertex-overlap and s-edge-overlap, where in the first case
we demand that every vertex in the cluster graph is contained in at most s maximal

3.1 The Considered Problems 21

cliques and in the second case we demand that every edge is contained in at most s
maximal cliques (see Definition 5.1). By definition, 1-vertex-overlap means that the
cluster graph is a vertex-disjoint union of cliques (that is, there is no overlap of the
clusters and, thus, the corresponding graph modification problem is Cluster Edit-
ing). Based on these definitions, we study a number of edge modification problems
(addition, deletion, editing) in terms of the two overlap concepts, generalizing and
extending previous work that mainly focussed on non-overlapping clusters.

The problems considered in Chapters 4 and 5 are clustering problems relying on
graph classes as models for representing the clusterings. In (hierarchical) clustering
and phylogeny, often trees are used as an easy to interpret model for representing the
relationship between objects or taxa. For the problems considered in Chapters 6 and 7
of this part, the task is to construct rooted trees from the given (dis)similarity data.

In Chapter 6, we investigate M -Hierarchical Tree Clustering. Roughly
speaking, given dissimilarity data on pairs of objects, the task is to fit a rooted tree
to this data, where the tree gives a hierarchical representation of the data. Hierarchi-
cal representations of data play an important role in biology, the social sciences, and
statistics [5, 55, 106, 125]. The basic idea behind hierarchical clustering is to obtain
a recursive partitioning of the input data in a tree-like fashion such that the leaves
one-to-one represent the single items and all inner points represent clusters of various
granularity degrees. Let X be the input set of elements to be clustered. The dissimilar-
ity of the elements is expressed by a symmetric function D : X×X → {0, . . . ,M +1},
briefly called distance function. Herein, the constant M ∈ N specifies the depth
of the clustering tree to be computed. In Chapter 6, we focus on the case to find
a closest ultrametric tree that fits the given data. An ultrametric tree is a rooted
tree where all leaves are equally distant from the root and the leaves are bijectively
labeled with the elements of X. Let U(i, j) denote half the length of the path be-
tween leaves corresponding to the elements i and j. It is not hard to see that the
distances U : X ×X → {1, 2, . . .} fulfill the strong triangle inequality, namely,

U(i, j) ≤ max{U(i, l), U(j, l)}

for all i, j, l ∈ X. Indeed, it is well-known that a distance function can be represented
by an ultrametric tree if and only if it fulfills the strong triangle inequality [5]. Thus,
distance functions fulfilling the strong triangle inequality are called ultrametrics, and
constitute an equivalent representation of ultrametric trees. The M -Hierarchical
Tree Clustering problem considered in Chapter 6 can be formulated as follows.
Given a set X of elements, a distance function D : X×X → {0, . . . ,M+1}, and k ≥ 0,
is there a distance function D′ : X×X → {0, . . . ,M+1} such that D′ is an ultrametric
and ||D − D′||1 ≤ k? Herein, ||D − D′||1 :=

∑
{i,j}⊆X |D′(i, j) − D(i, j)| (also see

Definition 6.2). In other words, given any distance function D, the goal is to modify D
as little as possible to obtain an ultrametric D′. This problem is closely related to
the reconstruction of phylogenetic trees [67, 5]. Moreover, 1-Hierarchical Tree
Clustering is the same as Cluster Editing. Here, the crucial observation is that
a cluster graph can be represented by an ultrametric tree of depth two, see Figure 3.1.
This will be discussed in more detail in Chapter 6.

The Minimum-Flip Consensus Tree problem, considered in Chapter 7, arises
in an approach to aggregate the information of several trees in a consensus tree [45].
Given rooted phylogenetic trees T1, . . . , T` (all on the same set of taxa), a consensus

22 3 Introduction to Part II

0

2

1

3

4

6

5

0 1 2 3 4 5 6

Figure 3.1: A cluster graph and a corresponding ultrametric tree of depth two.

tree is constructed in three phases. In a first phase, the information of all input
trees is represented in a bipartite graph G = (Vc, Vt), where Vt contains a vertex for
each taxon and Vc contains a vertex for each inner vertex of each tree. If the input
trees do not contain any conflicting information, then G is M -free, meaning that G
does not contain an induced path on five vertices whose degree-one vertices belong
to Vt. M -free graphs “admit a perfect phylogeny”, meaning that one can construct
a rooted phylogenetic tree from an M -free graph G. If, however, the input trees
contain contradicting information, then G contains induced M -graphs. Hence, in a
second “error correction” phase, the task is to destroy all M -graphs by a minimum
number of edge modifications. This is the NP-hard combinatorial problem considered
in Chapter 7. Given a bipartite graph G = (Vc, Vt, E) and an integer k ≥ 0, the task is
to decide whether G can be transformed by up to k edge modifications into an M -free
graph, that is, a graph without an induced M -graph (see Definition 7.1). In a third
phase, the consensus tree is then inferred from the M -free graph obtained by the error
correction phase.

From a graph-theoretic point of view, all problems considered in this part except
for M -Hierarchical Tree Clustering are so-called edge modification problems.
The task in the case of edge modification problems is to modify the edge set of a
given graph as little as possible to obtain a graph fulfilling a desired graph property.
For example, in Cluster Editing (Chapter 4) the desired graph property is to be
a disjoint union of cliques, that is, each vertex is contained in exactly one maximal
clique. To allow (Chapter 5) overlapping clusterings the desired graph property is that
each vertex (respective edge) is contained in at most s maximal cliques (for some fixed
positive integer s). In case of Minimum Flip Consensus Tree the desired graph
property is to be M -free (Chapter 7).

Next, we provide an overview of our results. Then, in Section 3.3, we give a formal
introduction to edge modification problems and graph properties.

3.2 Summary of Results

While the parameterized complexity of some of the considered problems has extensively
been investigated in literature, for others there are hardly any known results. For
example, Cluster Editing (see Chapter 4) is one of the best studied problems in
parameterized algorithmics, whereas we newly introduced the models for graph-based
data clustering with overlaps considered in Chapter 5. This is also reflected in our
contributions to the respective problems.

All problems in this part of the thesis are related to Cluster Editing which is

3.2 Summary of Results 23

studied in Chapter 4. The parameterized complexity of Cluster Editing has in-
tensively been studied [24, 28, 53, 46, 73, 83, 89, 145]. Moreover, experiments with
fixed-parameter algorithms for Cluster Editing have been performed [25, 57]. Sev-
eral algorithmic improvements have led to impressive theoretical results, for exam-
ple, a problem kernel consisting of at most 2k vertices [46] and a search-tree algo-
rithm with running time O(1.76k + n3) [28]. So far the proposed fixed-parameter
algorithms for Cluster Editing almost exclusively examine the parameter solution
size k. However, it has been observed that the parameter k is often not really small
for real-world instances [25]. Still, the fixed-parameter algorithms can solve many
of these instances [25]. This raises the question whether there are “hidden parame-
ters” that are implicitly exploited by these algorithms. In the spirit of multivariate
algorithmics (see Section 2.2.1 and Niedermeier [138]), Chapter 4 aims at identifying
promising new parameterizations for Cluster Editing that help to separate easy
from hard instances. Thus, our main contribution in Chapter 4 is the investigation
of parameterizations of Cluster Editing different from the solution size k. In this
thesis the focus is on the parameter “size of a minimum cluster vertex deletion set
of G”, also called the “cluster vertex deletion number of G”. A cluster vertex deletion
set is a minimum-cardinality set of vertices whose removal results in a cluster graph.
The cluster vertex deletion number is bounded from above by the minimum number
of edge modifications needed to transform a graph into a cluster graph and, thus,
is a typically much smaller parameter than k. Our technical main results in Chap-
ter 4 are that Cluster Editing and its edge deletion version, Cluster Deletion,
are fixed-parameter tractable with respect to the cluster vertex deletion number. In
summary, in Chapter 4 we initiate the study of Cluster Editing with respect to “re-
fined parameters” (where a refined parameter is a parameter bounded from above by
a standard parameter, see Section 2.3). Although the presented algorithms have huge
combinatorial explosions, the hope is that this investigation initiates the development
of new algorithms to extend the range of instances that can be solved in practice.

In Chapter 5, we introduce overlap cluster graph modification problems where,
other than in most previous work, the clusters of the target graph may overlap. More
precisely, the studied graph problems ask for a minimum number of edge modifications
such that the resulting graph has the s-vertex-overlap property or the s-edge-overlap
property, respectively. Our results are as follows. First, we provide a complexity
dichotomy (polynomial-time solvable versus NP-hard) for the underlying edge modi-
fication problems, see Table 5.1. Second, we develop forbidden subgraph characteri-
zations of “cluster graphs with overlaps”. More specifically, we show that, for every
fixed value of s, the class of graphs having the s-vertex-overlap or the s-edge-overlap
property can be characterized by a finite set of forbidden induced subgraphs. Third,
we study the parameterized complexity in terms of the number of allowed edge modi-
fications. In case of constant s-values we achieve fixed-parameter tractability, whereas
in case of unbounded s-values the respective problems are shown to be W[1]-hard.
Finally, we present polynomial-time kernelization algorithms for the two most basic
NP-hard clustering problems with nontrivial overlap. Altogether, in Chapter 5 we
introduce new problems with applications in graph-based data clustering, generalizing
Cluster Editing by allowing overlaps and perform basic complexity studies of the
corresponding problems.

In Chapter 6, we initiate the study of the parameterized complexity of the NP-hard
M -Hierarchical Tree Clustering problem, that is, the problem to find a closest

24 3 Introduction to Part II

ultrametric tree for given dissimilarity data on pairs. This is a central problem in the
area of hierarchical clustering, where so far only polynomial-time approximation algo-
rithms were known. In contrast, we develop efficient kernelization algorithms and a
simple search tree algorithm. More precisely, we develop a search tree of size O(2.562k)
and two problem kernels; an O(k2)-element kernel (that is, the kernel size is indepen-
dent of M) and an O(kM)-element kernel (here, the kernel size depends on M). Recall
that 1-Hierarchical Tree Clustering is exactly the same as Cluster Editing.
The presented kernelization algorithms generalize kernelizations for Cluster Edit-
ing [83, 89]. Moreover, we perform experiments on synthetic and real-world biological
data. On the biological data, we also compare our algorithm with an approximation
algorithm due to Ailon and Charikar [5] and an integer linear program for this problem.

The Minimum Flip Consensus Tree problem considered in Chapter 7 arises
in computational phylogenetics in the context of consensus and super tree construc-
tion. Chen et al. [45] showed that Minimum-Flip Consensus Tree is NP-complete
and presented a fixed-parameter algorithm based on an O(6k)-size search tree. Sub-
sequently, Böcker et al. [27] presented a refined branching leading to a O(4.42k)-size
search tree. We improve these results by an O(3.68k)-size search tree. The improve-
ment is based on the identification of polynomial-time solvable special cases. More-
over, we complement these results by polynomial-time executable data reduction rules
yielding a problem kernel with O(k3) vertices. Altogether, for Minimum Flip Con-
sensus Tree our contribution is the improvement of the parameterized algorithms
with respect to the standard parameter k denoting the number of allowed edge modifi-
cations, leading to the currently fastest fixed-parameter algorithm for Minimum Flip
Consensus Tree with running time O(3.68k + |Vc|2 · |Vt| · |E|).

Finally, in Section 3.4 we present a “universal” data reduction rule that unifies
some data reduction rules used for the kernelizations in Part II. This rule applies for
all edge modification problems where the desired graph properties can be characterized
by forbidden induced subgraphs.

3.3 Edge Modification Problems

In the case of edge modification problems the task is to modify the edge set of a given
graph as little as possible to obtain a graph fulfilling a desired graph property such
as, for example, being a cluster graph. Herein, an edge modification is either the
deletion or the insertion of an edge. Edge modification problems naturally arise in
the interpretation of experimental data sets, when graph models are used to represent
the data. For example, in graph-based data clustering the similarity between the
objects to be clustered is represented by a so-called similarity graph. One of the most
intensively studied problems in parameterized algorithmics, Cluster Editing, asks
whether a given similarity graph can be transformed into a cluster graph by applying
at most k edge modifications in order to reveal the assumed cluster structure hidden
in the input data.

In addition to finding some hidden combinatorial structure, edge modification prob-
lems also play an important role for error correction or conflict resolution, respectively.
For instance, in Minimum Flip Consensus Tree (see Chapter 7) the information
of several input trees is combined in a single bipartite graph and the task is to resolve
all conflicts in this graph such that from the resulting graph a consensus tree can be

3.3 Edge Modification Problems 25

constructed.
The guiding principle in case of edge modification problems is the idea that fewer

edge modifications mean that we introduce fewer “errors” into our final solution, and,
hence, the solution requiring a minimum number of edge modifications is preferred.
This is in accordance with the natural hypothesis that the less one perturbs the in-
put graph the more robust and plausible the achieved solution is. This is known as
maximum parsimony principle (see Böcker et al. [24] for making this point in terms of
Cluster Editing).

There is a long history of research dealing with edge modification problems. A lot
of work has been put into classifying Π-Edge Modification problems with respect
to their classical complexity [34, 135, 163]. Recently, parameterized algorithmics —in
particular kernelizations—for Π-Edge Modification problems have attracted spe-
cial attention. For instance, there is a series of papers studying the kernelizability of
Cluster Editing and some of its variations [40, 46, 71, 73, 83, 89, 93, 96, 145]. Also
see [59, 16, 17, 33, 88, 99, 121, 155, 156] for kernelization results for edge modifica-
tion and related problems. All these works present polynomial-size problem kernels.
However, Kratsch and Wahlström [124] showed that there is a graph H on seven
vertices such that H-free Editing2 does not admit a polynomial-size problem ker-
nel unless an unexpected complexity-theoretic collapse takes place. This contrasts
the case of vertex deletion where for every fixed forbidden subgraph H the problem
to destroy all occurrences of H by deleting at most k vertices admits a polynomial-
size problem kernel (this follows from the fact that for each fixed H with d vertices
H-free vertex deletion can be reduced to d-Hitting Set which admits a kernel of
order kO(d) [1, 2, 140]). Hence, for every forbidden induced subgraph it is a chal-
lenging task to prove the (non)existence of a polynomial-size problem kernel for the
corresponding edge modification problem.

Next, we introduce basic notations regarding edge modification problems. Then,
in Section 3.4, we present data reduction rules unifying several data reduction rules
used for the kernelizations presented in Chapters 5 and 7. Moreover, in Section 3.4,
we establish a structural observation that is central for some of our kernelizations.

3.3.1 Basic Notation for Edge Modification Problems

Formally, a graph property is defined as a nonempty proper subset Π of the set of
graphs. We say that a graph G has property Π (abbreviated by G ∈ Π) if G is
isomorphic to a member of Π. For a desired graph property Π, Π-Editing is defined
as follows.

Definition 3.1 (Π-Editing, Π-Deletion, Π-Addition).
Input: An undirected graph G and a nonnegative integer k.
Question: Can G be modified by up to k edge deletions and insertions into a graph
with property Π?
If only edge deletions or edge insertions are allowed, then the corresponding problems
are called Π-Deletion and Π-Addition, respectively.

All graph properties considered in this work are so-called hereditary graph proper-
ties. A hereditary graph property Π is a graph property closed under vertex deletion.

2For a fixed graph H, H-free Editing is the problem to destroy all induced occurrences of H by
a minimum number of edge modifications.

26 3 Introduction to Part II

Formally, the definition reads as follows.

Definition 3.2. A graph property Π is hereditary if the property Π holds for every
induced subgraph of G whenever it holds for G.

Hereditary graph properties can be characterized by a (possibly infinite) set of
forbidden induced subgraphs [86]. We use the following notation. Let F denote a
set of graphs. We say that a graph G is F-free if G contains no induced subgraph
isomorphic to a member of F . For each hereditary graph property there exists a
possibly infinite set of graphs FΠ such that, for each graph G, G has property Π if
and only if G is FΠ-free. Furthermore, one can assume that all forbidden subgraphs
in FΠ characterizing a hereditary graph property Π are minimal in the sense that, for
each F ∈ FΠ, all proper subgraph of F have property Π. That is, a graph F is a
minimal forbidden induced subgraph for a hereditary graph property Π if F 6∈ Π but
every induced proper subgraph of F has property Π.

For a formal description of the modification of the edge set of a graph, we use the
following notation. For two sets E′ and E′′ let E′∆E′′ := (E′ \E′′)∪ (E′′ \E′) denote
the symmetric difference of E′ and E′′. Recall that for a set X of vertices P2(X)
denotes the set of all possible edges on X (see Section 2.6). Furthermore, for a
graph G = (V,E) and a set S ⊆ P2(V), let G∆S := (V,E∆S) denote the graph
that results from modifying G according to S. With this notation, for a desired graph
property Π, the definition of Π-Editing reads as follows.

Given a graph G = (V,E) and a nonnegative integer k, is there a set S ⊆
P2(V) with |S| ≤ k such that G∆S has property Π ?

This set S is called a solution for Π-Editing for (G, k). The elements of S are called
edge modifications. Furthermore, we refer to the edge modifications in S ∩ E by edge
deletions and to the edge modifications in S \ E as edge insertions or edge additions.
We say that an edge modification e ∈ S involves a vertex v if v ∈ e. Finally, a vertex v
is called affected by S if S contains an edge modification involving v.

In several of our proofs we compare two graphs G1 and G2 (with property Π)
with respect to the number of edge modification required to transform the input
graph G to G1 or G2, respectively. The number of edge modifications to transform
a graph G into a graph G′ is called edit distance. More formally, the edit distance
between two graphs G′ and G′′ on the same vertex set is |E(G′) ∆E(G′′)|. Note that
for S := E(G′) ∆E(G′′) it holds that G′ = G′′∆S and G′′ = G′∆S. Given three
graphs G, G1, and G2, we say that G1 is closer to G than G2 if the edit distance
between G and G1 is strictly smaller than the edit distance between G and G2.

3.4 Universal Data Reduction Rules and Structural
Observations for Edge Modification Problems

The problems considered in Chapters 4, 5, and 7 belong to the class of edge modifica-
tion problems (see Section 3.3). In this section, the goal is to unify some of the data
reduction rules that are used for all kernelizations in Chapters 5 and 7. To this end,
we describe polynomial-time data reduction rules for parameterized edge modifica-
tion problems that apply to hereditary graph properties and which are generalizations

3.4 Universal Data Reduction Rules and Structural Observations 27

of rules that were developed for Cluster Editing and Bicluster Editing [145].
These rules are based on the modular decomposition of a graph and yield problem
kernels with O(k2) vertices for Cluster Editing and Bicluster Editing [145].
More specifically, we present two data reduction rules whose applicability depends
only on the size of the largest critical independent set or largest critical clique of the
forbidden induced subgraphs characterizing the desired graph property. Moreover, we
present a structural observation concerning the solutions of edge modification prob-
lems for graph properties that can be described by forbidden subgraphs whose largest
critical independent sets or critical cliques have size one. This unifies two structural
observations used for the kernelizations in Section 5.5.2 and Section 7.4.

We use the data reduction rules introduced in this section (in combination with
problem-specific data reduction rules) for obtaining polynomial-size problem kernels
for two problems arising in the context graph-based data clustering with overlaps (see
Chapter 5) and for the Minimum-Flip Consensus Tree problem (see Chapter 7),
but we believe that they can be useful for other edge modification problems as well.

The data reduction rules introduced in this section are based on the concepts of
critical independent sets and critical cliques. Recall that a critical independent set
(critical clique) is an independent set (a clique) that is maximal with respect to the
property that all its vertices have an identical open neighborhood (closed neighbor-
hood) (see Definitions 2.5 and 2.4).

The basic idea of the data reduction rules is to show that, for some graph properties,
the vertices of large critical independent sets or critical cliques are not affected by any
optimal edge modification set. Therefore, large critical independent sets and critical
cliques can be shrunken. First, we describe the corresponding graph properties.

Definition 3.3. Let Π be a hereditary graph property and let r denote a positive
integer. We call Π r-critical independent set preserving (r-cisp) whenever for each
forbidden induced subgraph F of Π the largest critical independent set of F has size
at most r. Analogously, we call Π r-critical clique preserving (r-clip) whenever for
each forbidden induced subgraph F of Π the largest critical clique of F has size at
most r.

For example, the only forbidden induced subgraph of cluster graphs is a path on
three vertices (a so-called P3) [150]. Obviously, the largest critical independent set
of a P3 has size two and the largest critical clique of a P3 has size one. Thus, the
property of being a cluster graph is a 2-cisp and 1-clip graph property.

Next, we present the two data reduction rules. Informally speaking, the data
reduction rules remove vertices from a critical independent set (or critical clique) as
long as its size exceeds k + r. Recall that k denotes the number of allowed edge
modifications.

Reduction Rule 3.1. Let Π be an r-cisp graph property and let (G, k) denote an
instance of Π-Editing, Π-Deletion, or Π-Addition. If G contains a critical inde-
pendent set I with |I| > k + r, then delete |I| − (k + r) arbitrary vertices from I.

Reduction Rule 3.2. Let Π be an r-clip graph property and let (G, k) denote an in-
stance of Π-Editing, Π-Deletion, or Π-Addition. If G contains a critical clique K
with |K| > k + r, then delete |K| − (k + r) arbitrary vertices from K.

28 3 Introduction to Part II

In the following, we prove the correctness of Reduction Rules 3.1 and 3.2. To this
end, we first show that r-cisp and r-clip graph properties are closed under a certain
vertex-addition operation.

Lemma 3.1. Let G = (V,E) be a graph fulfilling an r-cisp (r-clip) graph property Π
and let I denote a critical independent set (critical clique) of G with |I| ≥ r. Let G′

be the graph that results by adding to G a new vertex x 6∈ V and making it adjacent to
each vertex in NG(I) (NG[I]). Then, G′ also fulfills Π.

Proof. First, we prove the lemma for r-cisp graph properties. To this end, we show by
contradiction that G′ does not contain a forbidden induced subgraph. Note that I∪{x}
forms a critical independent set in G′.

Assume towards a contradiction that there is a vertex subset X ⊆ V (G′) inducing
a forbidden subgraph in G′. Since G has property Π and Π is hereditary, it follows
that x ∈ X. Moreover, since I ∪ {x} forms a critical independent set in G′ and since
the largest critical independent set in G′[X] contains at most r vertices, I \ X 6= ∅.
Let v ∈ I \ X be arbitrarily chosen. Thus, since x and v have an identical open
neighborhood, (X \ {x}) ∪ {v} induces a forbidden subgraph in G′ not containing x;
a contradiction to the fact that G has property Π.

For r-clip graph properties the proof follows by replacing “critical independent set”
by “critical clique” and “open neighborhood” by “closed neighborhood”.

The crucial observation to show the correctness of Reduction Rules 3.1 and 3.2 is
the fact that critical independent sets and critical cliques of size at least k+ r are not
affected by optimal solutions for Π-Editing, Π-Deletion, or Π-Addition.

Lemma 3.2. Let Π be an r-cisp (r-clip) graph property and let (G, k) denote an in-
stance of Π-Editing, Π-Deletion, or Π-Addition. For every critical independent
set (critical clique) I with at least k + r vertices, every optimal solution of size at
most k for Π-Editing (Π-Deletion, Π-Addition) does not affect any vertex of I.

Proof. First, we prove the lemma for Π-Editing, where Π is a r-cisp graph property.
Assume towards a contradiction that there is an optimal solution S of size at most k
that contains an edge modification involving a vertex from I. Let GS := G∆S denote
the graph that results by applying S to G. Moreover, let Sout := {{x, y} ∈ S | x ∈
I, y ∈ V \ I} denote the set of edge modifications of S involving exactly one vertex
of I. Furthermore, let Iout denote the vertices of I involved in any edge modification
from Sout. Let I ′ := I \ Iout. Clearly, |Iout| ≤ k.

In the following, we use the observation that there is a set A ⊆ I ′ of at least r
vertices such that A forms an independent set in GS and NGS (x) \ I = NG(x) for
all x ∈ A.

To show the existence of such a set A observe the following. First, by definition
of I ′, there are no edge modifications between vertices in I ′ and V \ I which implies
that NG(x) = NGS (x) \ I for all x ∈ I ′. Second, |I ′| ≥ k + r − |Iout| since |I| ≥ k + r.
Third, because each vertex in Iout is involved in an edge modification of Sout, there
are at most k − |Iout| edges in GS [I ′]. Thus, we can cover all edges of GS [I ′] with at
most k− |Iout| vertices (by arbitrarily choosing for each edge in GS [I ′] one endpoint).
Fix one such cover C arbitrarily. The vertices in A := I ′ \C form an independent set
in GS [I ′] and, hence, in GS . Finally, note that |A| ≥ |I ′|−|C| ≥ k+r−|Iout|−|C| ≥ r.
Thus, A fulfills all above requirements.

3.4 Universal Data Reduction Rules and Structural Observations 29

Let I ′′ := I \ A. Since GS has property Π, so does GS − I ′′. Observe that A
forms a critical independent set in GS − I ′′ such that NG(A) = NGS−I′′(A). Thus, by
Lemma 3.1, one obtains a graph G′ with property Π by adding the vertices in I ′′ step
by step to GS−I ′′ making each vertex adjacent to NG(A). Finally, we show that G′ is
closer to G than GS . By assumption, S contains edge modifications involving vertices
from I. Each vertex in I, however, has the same neighborhoods in G′ and G. Thus, G′

is closer to G than Gs: a contradiction to the optimality of S.
This concludes the proof for Π-Editing and r-cisp graph properties. It is straight-

forward to verify that every step of the proof holds for Π-Deletion and Π-Addition
when Π is r-cisp.

For the proof for r-clip graph properties observe the following. A critical clique in a
graph G clearly is a critical independent set in the complement graph G of G, and vice
versa. Moreover, let F denote the set of forbidden induced subgraphs of a r-cisp graph
property Π. Let F := {F | F ∈ F} and let ΠF denote the F-free graphs. Clearly, Π
is r-cisp if and only ΠF is r-clip. Thus, the correctness of Reduction Rule 3.2 follows
by the observation that, for a graph G = (V,E) and S ⊆ P2(V), it clearly holds
that G∆S has property Π if and only if G∆S has property ΠF .

With Lemma 3.2 we can show the correctness of Reduction Rules 3.1 and 3.2.

Lemma 3.3. Reduction Rule 3.1 (Reduction Rule 3.2) is correct for Π-Editing, Π-
Deletion, and Π-Addition for every r-cisp (r-clip) graph property Π. Moreover,
Reduction Rules 3.1 and 3.2 can be exhaustively applied in O(|V |+ |E|) time.

Proof. Let (G, k) denote an input instance for Π-Editing, Π-Deletion, or Π-Ad-
dition for an r-cisp (r-clip) graph property Π. Furthermore, let I denote a critical
independent set (critical clique) of G with |I| > k + r, let I ′ denote a set of k + r
arbitrarily chosen vertices from I, and let G′ := G− (I \ I ′) (that is, G′ is the graph
that results from applying Reduction Rule 3.1 (Reduction Rule 3.2) to I). For the
correctness, we show that (G, k) is a yes-instance of Π-Editing(/Deletion/Addi-
tion) if and only if (G′, k) is a yes-instance of Π-Editing(/Deletion/Addition).
The “⇒”-direction follows directly from the fact that Π is hereditary. For the “⇐”-
direction note the following. By Lemma 3.2, if (G′, k′) is a yes-instance, then there
is a solution for (G′, k) that does not involve any vertex of I ′. Hence, I ′ is a critical
independent set (critical clique) ofG′∆S. Thus, by Lemma 3.1 one obtains a graphG′′

with property Π by first adding the vertices I \I ′ to G′ and then making each x ∈ I \I ′
adjacent to each vertex in NG(x) (NG[x]). Observe that since no vertex in I ′ is
affected, G′′ = G∆S. Thus, S is a solution for G.

The running times of Reduction Rule 3.1 and Reduction Rule 3.2 follow from the
fact that all critical cliques and all critical independent sets of a graph can be computed
in O(|V |+ |E|) time [108, 133, 145].

Reduction Rules 3.2 and 3.1 turned out to be very useful for several kernelizations.
For Cluster Editing and Bicluster Editing, where the desired graph properties
are 1-clip and 1-cisp, respectively, Reduction Rules 3.2 and 3.1 lead to quadratic–vertex
kernels that can be computed in linear time [145]. We use Reduction Rule 3.2 for 1-
Edge Overlap Deletion (here the desired graph property is 2-clip) in Section 5.5.1
and for 2-Vertex Overlap Deletion (here the desired graph property is 1-clip) in
Section 5.5.2. Moreover, Reduction Rule 3.1 is used for the cubic-vertex kernel for

30 3 Introduction to Part II

Minimum Flip Consensus Tree in Chapter 7, where the desired graph property
is 1-cisp. Moreover, Bessy et al. [17] used Reduction Rule 3.2 for a kernelization of
Closest 3-Leaf Power.

Next, we focus on 1-cisp and 1-clip graph properties. Some of the graph properties
introduced in Chapter 5 in the context of graph-based data clustering with overlaps
and the graph property that characterizes the target graphs in the case of Minimum
Flip Consensus Tree (see Chapter 7) are 1-cisp and 1-clip, respectively.

Using Lemma 3.1, we will show that for edge modification problems for 1-cisp or
1-clip graph properties there is an optimal solution treating the vertices of a critical
independent set or critical clique equally. More specifically, we will show that for a 1-
cisp (1-clip) graph property Π there is an optimal solution S for Π-Editing such that
if two nonadjacent (adjacent) vertices have an identical open neighborhood (closed
neighborhood) in the input graph G, then these two vertices have an identical open
neighborhood (closed neighborhood) in the final target graph G∆S. The kerneliza-
tions in Section 5.5.2 and Section 7.4 rely on this observation. The advantage of this
observation is that since an optimal solution applies the same edge modifications to all
vertices in the same critical independent set (critical clique) we can treat these vertices
as one “super vertex”. First, we show the correctness of this structural observation
for the case of 1-cisp graph properties.

Lemma 3.4. Let Π be a 1-cisp graph property and let G = (V,E) denote an undirected
graph. There exists a minimum-cardinality solution for Π-Editing (Π-Deletion,
Π-Addition) such that every critical independent set I of G is part of a critical
independent set in G∆S.

For the proof of Lemma 3.4, we show the following more general statement, used
in Section 7.4 for the correctness proof of a data reduction rule for Minimum Flip
Consensus Tree.

Lemma 3.5. Let Π be a 1-cisp graph property and let G = (V,E) denote an undirected
graph. Moreover, let S denote a solution for Π-Editing (Π-Deletion, Π-Addition)
on G and let X denote the set of vertices affected by S. Then, there exists a solution S∗

such that

• |S∗| ≤ |S|,

• every critical independent set I of G is part of a critical independent set in G∆S∗,
and

• X∗ ⊆ X, where X∗ denotes the set of vertices affected by S∗.

Proof. Assume that there exists a critical independent set I of G that is not contained
in a critical independent set in G∆S. We show that, by a local modification, one can
find a graph G′ = (V,E′) ∈ Π such that

1. the edit distance of G′ to G is at most the edit distance of G∆S to G,

2. I is contained in a critical independent set in G′,

3. for each critical independent set I ′ of G, the number of critical independent sets
of G′ intersecting with I ′ is at most the number of critical independent sets
of G∆S intersecting with I ′, and

3.4 Universal Data Reduction Rules and Structural Observations 31

4. the set of affected vertices inG′ (i.e., the set of vertices affected by E(G) ∆E(G′))
is a subset of X.

By Condition 3, this local modification step can be applied iteratively until every
critical independent set of G is contained in a critical independent set of the resulting
graph. Moreover, by Condition 4 the set of affected vertices in the resulting graph is
a subset of X.

First, we formally specify the modification. Then, we show that the above con-
ditions are fulfilled. Let I1, I2, . . . , I` denote the critical independent sets in G∆S
with Ii ∩ I 6= ∅, 1 ≤ i ≤ `. Observe that ` > 1. For a vertex w ∈ I let Sw de-
note the set of edge modifications from S involving w and vertices in V \ I, that
is, Sw := {{w, x} ∈ S | x ∈ V \ I}. Let v ∈ I such that |Sv| is minimal and assume
without loss of generality that v ∈ I1. Build a graph G′ as follows from G∆S. First,
remove all vertices in I \ {v} from G∆S. Then, add the vertices in I \ {v} step by
step, making each vertex adjacent to the vertices in the current open neighborhood
of v. Let S′ := E(G) ∆E(G′) and note that G′ = G∆S′.

By Lemma 3.1, G′ fulfills Π. To prove Condition 1, we show that |S′| ≤ |S|. Note
that in the construction above we “change” only edges incident to the vertices in I and,
hence, G′[V \ I] is identical to G∆S[V \ I]. Moreover, since every vertex in w ∈ I \ I1
gets the same closed neighborhood as v (more specifically, the vertices in NG∆S(v)\I),
we have to spend at most |Sv| edge modifications for every w ∈ I \ {v} (instead of at
least |Sw|). Since |Sv| ≤ |Sw| by the choice of v, it follows that |S′| ≤ |S|.

Condition 2 follows directly from the fact that by construction all vertices in I
have the same open neighborhood in G′ (namely, NG∆S(v) \ I).

Next, we show that Condition 3 is fulfilled. To this end, note that deleting a
vertex does not increase the number of critical independent sets of a graph. Moreover,
observe that two nonadjacent vertices with an identical neighborhood have an identical
neighborhood after adding a vertex and making it adjacent to the neighbors of an
existing vertex. Hence, for each critical independent set I ′ of G the number of critical
independent sets of G intersecting with I ′ is at most the number of critical independent
sets of G′ intersecting with I ′.

Clearly, by construction a vertex w not affected by S is not affected by S′ implying
Condition 4.

Chapter 7 is concerned with an edge modification problem on bipartite graphs.
For edge modification problems on bipartite graphs, a solution does not contain edge
insertions between the vertices of a critical independent set. Since in none of the
proofs edge insertions between the vertices of a critical independent set are applied, the
presented results for r-cisp graph properties also hold for edge modification problems
on bipartite graphs.

For 1-clip graph properties an analogous result to Lemma 3.4 can be shown by
a straightforward adaption of the proof. Indeed, Bessy et al. [17] used an analogous
result for 1-clip graph properties. They considered graph properties that are closed
under “true twin addition”: A graph property Π is closed under true twin addition if
for any graph G ∈ Π adding a vertex and making it adjacent to each vertex in N [v]
for some vertex v ∈ V (G) yields a graph with property Π. Clearly, by Lemma 3.1 a
1-clip graph property Π is closed under true twin addition. Moreover, we can show
the following.

32 3 Introduction to Part II

Lemma 3.6. A hereditary graph property Π is 1-clip if and only if Π is closed under
true twin addition.

Proof. The “⇒”-direction follows directly by Lemma 3.1.
For the “⇐”-direction we show that if Π is not 1-clip, then Π is not closed under

true twin addition. To this end, consider a graph property Π not being 1-clip and
let F denote a minimal forbidden induced subgraph for Π containing a critical clique K
with |K| > 1. Let x ∈ K be arbitrarily chosen. Since F is a minimal forbidden induced
subgraph, (F −x) ∈ Π. However, F results from F −x by a “true twin addition” (that
is, by adding x to F and making it adjacent to each vertex in NG[v], for an arbitrarily
chosen vertex v ∈ K \ {x}). Hence, Π is not closed under true twin addition.

Bessy et al. [17, Lemma 1.4] have shown that for graph properties that are closed
under true twin addition, two vertices that have an identical closed neighborhood in
the input graph, have an identical closed neighborhood in the final target graph. Thus,
by Lemma 3.6 one arrives at the following.

Lemma 3.7. [17, Lemma 1.4] Let Π be a 1-clip graph property and let G = (V,E)
denote an undirected graph. There exists a minimum-cardinality solution S for Π-
Editing (Π-Deletion, Π-Addition) such that every critical clique K of G is part
of a critical clique in G∆S.

Guo [89, Lemma 2] uses a similar observation for a kernelization of Cluster
Editing. It says that for a specific critical clique K of the input graph G there exists
an optimal solution S ⊆ E such that K is part of a critical clique in G∆S. Thus,
Lemma 3.7 is a stronger claim than Guo’s corresponding result.

In this section, we presented a universal data reduction rule that is used for several
kernelizations in this work. This is a first effort to generalize data reduction rules for
edge modification problem. As also discussed in the concluding section of the thesis
(Chapter 10), the “unification” of other data reduction rules used for edge modification
problems and the design of new data reduction rules that work for whole classes of
edge modification problems are desirable.

Chapter 4
Cluster Editing and Cluster Deletion

4.1 Introduction

The NP-hard Cluster Editing problem is among the best-studied parameterized
problems. It has applications in bioinformatics [15, 152, 158], document clustering,
and agnostic learning [12]. Let a cluster graph be a graph where every connected
component is a clique. Then, the problem is defined as follows.

Definition 4.1. Cluster Editing (CE)
Input: An undirected graph G = (V,E) and an integer k ≥ 0.
Question: Can G be transformed into a cluster graph by applying at most k edge
modifications?

An illustration is given in Figure 4.1. Cluster Deletion (CD) is defined analo-
gously except that only edge deletions are allowed.

In the field of parameterized algorithmics, Cluster Editing has almost exclu-
sively been studied parameterized by the solution size k. In a nutshell, in this chap-
ter we show that Cluster Editing and Cluster Deletion are fixed-parameter
tractable with respect to a refined parameter (see Section 2.3), namely the cluster ver-
tex deletion number, which is typically smaller than the standard parameter k. Fur-
thermore, we briefly discuss other alternative parameterizations for Cluster Edit-
ing. In the remainder of this section, we review previous literature of Cluster
Editing, point to related problems, and motivate the considered parameterization.

4.1.1 Previous Work

Cluster Editing has been introduced independently by several publications. We
start by describing the “historical development” including different applications fol-
lowed by an overview of algorithmic results.

To the best of our knowledge, Cluster Editing (under a different name) was
introduced by Zahn, Jr. in 1964 in a paper entitled “Approximating symmetric re-
lations by equivalence relations” [164]. In other words, Zahn introduced Cluster
Editing as the problem to fit symmetric relations (that is, graphs) with equivalence

34 4 Cluster Editing and Cluster Deletion

2

1

3

4 5

6

7

1

2 3

4 5

6

7

Figure 4.1: An example for Cluster Editing. On the left, the input graph is shown.
Inserting an edge between 1 and 3 and deleting the edge between 4 and 5 results in
the cluster graph shown on the right.

relations (that is, cluster graphs). In this paper, Cluster Editing was motivated
by application scenarios “in which an interconnected structure or organization must
be partitioned (perhaps for cataloging or formal administrative purposes) in a way
which reflects the actual interconnections as well as possible”. Zahn describes a solv-
ing strategy for Cluster Editing on a special graph class [164]. Referring to the
work of Zahn, Křivánek and Morávek [125] were the first to show the NP-hardness of
Cluster Editing. In addition to previous described applications, they investigated
Cluster Editing in the context of hierarchical clustering. We refer to Chapter 6 for
more details concerning the relationship between Cluster Editing and hierarchical
clustering.

In 1999, Ben-Dor et al. [15] “reinvented” Cluster Editing. More specifically,
they developed an algorithm for a problem in clustering gene expression patterns
leading to a heuristic for Cluster Editing. Finally, the name “Cluster Edit-
ing” was introduced by Shamir et al. [150], who started the investigation of Cluster
Editing formalized as an edge modification problem. In this work [150] also Cluster
Deletion was introduced. Furthermore, Cluster Editing is exactly the same as
the Correlation Clustering problem on complete graphs in its original formula-
tion introduced by Bansal et al. [12], which is motivated by document clustering and
agnostic learning. Moreover, very recently Cluster Editing has been employed for
clustering biological data such as protein similarity data [158, 25, 159, 160].

In the following, we provide an overview of the algorithmic results for Cluster
Editing. Note that some general results on edge modification problems have been
provided in Section 3.3. The NP-hardness of Cluster Editing has been shown
several times [125, 47, 150, 12], given in chronological order. The NP-hardness of
Cluster Deletion has been showed by Shamir et al. [150]. Moreover, the problem
that asks for a cluster graph consisting of at most two clusters by a minimum number
of edge modifications is NP-hard [150].

The polynomial-time approximability and the parameterized complexity of Clus-
ter Editing have intensively been investigated. As to approximability, Shamir et
al. [150] showed that there exists some constant ε > 0 for which it is NP-complete to
approximate Cluster Deletion within a factor of 1 + ε. The analogous result was
shown by Charikar et al. [43] for Cluster Editing. On the positive side, Charikar
et al. [43] presented a polynomial-time factor-4 approximation algorithm for Clus-
ter Editing. A randomized factor-2.5 polynomial-time approximation algorithm was
given by Ailon [6]. Finally, van Zuylen and Williamson [166] devised a deterministic
factor-2.5 polynomial-time approximation for Cluster Editing.

Several studies of Cluster Editing investigate the parameterized complexity
with respect to the solution size k. The first nontrivial fixed-parameter tractability

4.1 Introduction 35

results for Cluster Editing and Cluster Deletion are due to Gramm et al. [83].
After a series of improvements [73, 145, 89, 24, 46, 28], the currently fastest fixed-
parameter algorithm for Cluster Editing for this parameter is due to Böcker and
Damaschke and has running timeO(1.76k+|V |3) [28]. Moreover, the currently smallest
problem kernel is due to Chen and Meng and contains at most 2k vertices [46]. Sev-
eral experimental studies on the application of fixed-parameter algorithms have been
performed [57, 25] demonstrating that fixed-parameter algorithms can be successfully
applied to solve Cluster Editing on real-world instances. Damaschke [54] investi-
gated Cluster Editing in the context of enumeration. He showed that a concise
enumeration of all inclusion-minimal solutions of size at most k can be accomplished
in O(2.27k + k2|V |+ |E|) time.

The parameterized complexity of Cluster Deletion with respect to the param-
eter k has first been investigated by Gramm et al. [82]. They presented a search tree
algorithm with running time O(1.53k + |V |3). Based on a characterization of graphs
where each edge is contained in at most two induced P3’s, Damaschke [53] devised a

refined search tree algorithm with running time O(1.47k+ |V |3). Very recently Böcker
and Damaschke [28] presented a further improved search tree algorithm with running

time 1.415k · |V |O(1)
.

4.1.2 Related Problems

The problem to transform a bipartite graph into a graph where every connected com-
ponent forms a biclique (complete bipartite graph) by at most k edge modifications
is called Bicluster Editing. Bicluster Editing can be solved in 3.24k|V |O(1)

time and admits a problem kernel with 6k vertices [93, 145]. Ailon et al. [4] devised a
randomized factor-4 approximation algorithm for Bicluster Editing.

The “vertex deletion version”of Cluster Editing, that is, to transform a graph
into a cluster graph by a minimum number of vertex deletions, is called Cluster
Vertex Deletion. Hüffner et al. [109] presented an O(2kk9 + |V | · |E|)-time iterative
compression algorithm for Cluster Vertex Deletion.

Correlation Clustering has originally been defined as follows [12]. Given a
complete graph with edge-labels “+” and “−”, where a “+”-edge stands for high
similarity and a “−”-edge stands for low similarity of the entities represented by the
respective vertices, Correlation Clustering asks for a partition of the vertices into
clusters such that the number of “−”-edges inside the clusters plus the number of “+”-
edges between the clusters is minimized. In this sense, Correlation Clustering is
the problem to find a partition into clusters minimizing the disagreements. Correla-
tion Clustering is hence equivalent to Cluster Editing on the graph containing
only the “+”-edges, a “−”-edge inside a cluster corresponding to an edge insertion and
a “+”-edge between two clusters corresponding to an edge deletion. Thus, Cluster
Editing is exactly the same as Correlation Clustering on complete graphs.

The version of Correlation Clustering for general (noncomplete) graphs is
also called Fuzzy Cluster Editing [31]. In the Cluster Editing setting this
means that some edges of the input graph are “undecided” in the sense that the
insertion or deletion of an undecided edge does not contribute to the editing cost.
Bodlaender et al. [31] presented a problem kernel with O(k2 + r) vertices for Fuzzy
Cluster Editing, where k is the editing cost and r is the minimum number of
vertices needed to cover all undecided edges. Until recently, it was an open question

36 4 Cluster Editing and Cluster Deletion

whether Fuzzy Cluster Editing or equivalently Correlation Clustering is
fixed-parameter tractable with respect to the editing cost alone. Recently, Marx and
Razgon [132] answered this question to the positive by proving that Multicut is fixed-
parameter tractable with respect to the cut size and using a parameterized reduction
from Correlation Clustering to Multicut.

Further studies deal with the parameterized complexity of different generalizations
of Cluster Editing [54, 71, 95, 96]. Basically, Cluster Editing has been gener-
alized in three ways.

First, Cluster Editing has been generalized by replacing the clique require-
ment in the cluster graph with other models for dense graphs [96, 95]. The fact
that the clique concept has been criticized to be overly restrictive in some applica-
tion scenarios [48, 149] motivated the investigation of combining clique relaxations
and graph-based data clustering. In the case of s-Plex Cluster Editing [96], it is
required that the connected components of the cluster graph form so-called s-plexes
(instead of cliques). An s-plex is a graph where every vertex is adjacent to all but s
vertices [149]. Guo et al. [96] have shown that s-Plex Cluster Editing is fixed-
parameter tractable for the combined parameter (s, k), where k denotes the number of
allowed edge modifications. In particular, data reduction rules and a polynomial-size
kernelization result have been presented. Similarly, Guo et al. [95] considered other
clique relaxations in combination with graph-based data clustering.

Second, Cluster Editing has been generalized by allowing overlapping clusters
in the cluster graph [54, 71]. In Chapter 5 the focus is on cluster models allowing
some degree of overlap between the clusters. There, we will introduce a model for
graph-based data clustering with overlaps and provide an overview on related work.

Third, Heggernes et al. [107] introduced a generalization of cluster graphs, so called
(p, q)-cluster graphs. A graph G is called (p, q)-cluster graph if its vertex set can
be partitioned into subsets with each subset missing at most p edges from being a
clique and having at most q edges going to other subsets. Observe that (0, 0)-cluster
graphs are exactly cluster graphs. Heggernes et al. [107] showed that the recognition
problem for (p, q)-cluster graphs is NP-hard in general and presented polynomial-
time algorithms for recognizing (0, q)-cluster, (p, 1)-cluster, (p, 2)-cluster, and (1, 3)-
cluster graphs. They leave open the parameterized complexity of (p, q, k)-Cluster
Graph Editing, the problem to transform a given graph into a (p, q)-cluster graph
by inserting and deleting at most k edges. Lokshtanov and Marx [129] considered a
further generalization of (p, q)-cluster graphs. From their results it follows that the
recognition of (p, q)-cluster graphs is fixed-parameter tractable parameterized by p or
by q.

4.1.3 Our Results

So far, the proposed fixed-parameter algorithms for Cluster Editing and Cluster
Deletion concentrate on the parameter solution size k. It has been observed that
the parameter k is often not really small for real-world instances [25, 58]. Although
the fixed-parameter algorithms can still solve many of these instances [25], this lead
to the call for “better parameterizations” [58]. In particular, this raises the question
whether there are “hidden parameters” that are implicitly exploited by these algo-
rithms. Hence, this work aims at identifying promising new parameterizations for
Cluster Editing and Cluster Deletion that help to separate easy from hard

4.2 Cluster Vertex Deletion Number as Parameter 37

Clique on s vertices

Clique on s vertices

v

Figure 4.2: A graph consisting of two cliques of order s that are connected by a
vertex v adjacent to all vertices in the two cliques. Clearly, for every s ≥ 1, the cluster
vertex deletion number is one. In contrast, since there are s P3’s intersecting only
in v, at least s edge modifications are necessary to transform this graph into a cluster
graph.

instances. We mainly focus on the parameterization cluster vertex deletion number c
of graph G, that is, the minimum number of vertex deletions required to transform a
graph into a cluster graph. The cluster vertex deletion number is at most the size k
of a minimum-cardinality edge modification set: deleting for each edge modification
one of the two vertices (arbitrarily chosen) clearly results in a cluster graph. More-
over, as illustrated in Figure 4.2, there is an unbounded number of instances such
that the cluster vertex deletion number is constant but k depends on the number of
vertices. Thus, the cluster vertex deletion number is a refined parameter for Cluster
Editing as well as for Cluster Deletion (see Section 2.3). Answering an open
question of Dehne [58], we show that Cluster Editing and Cluster Deletion
are fixed-parameter tractable with respect to the parameter cluster vertex deletion
number of the input graph. Finally, we briefly discuss further alternative parameter-
izations. For example, we discuss that Cluster Editing and Cluster Deletion
remain NP-hard for graphs with maximum vertex degree six.

Preliminaries. For general notation concerning graphs and edge modification prob-
lems see Sections 2.6 and 3.3.1, respectively. We briefly recall the concepts needed
here. A graph where every connected component is a clique is called cluster graph.
The cliques of a cluster graph are referred to as clusters. Clearly, the property of being
a cluster graph is hereditary (see Definition 3.2). The only forbidden induced subgraph
for cluster graphs is a path on three vertices (a so-called P3) [150]. Throughout this
chapter, let c denote the cluster vertex deletion number of a graph G, that is, the
minimum number of vertex deletions to end up with a cluster graph. For two sets A
and B with A ∩B 6= ∅, we use A]B to denote A ∪B.

A clique K is called critical if all vertices have an identical neighborhood and K is
maximal with respect to this property (see Definition 2.4). For two graphs G = (V,E)
and G′ = (V ′, E′) with |V | = |V ′| a graph isomorphism is a bijective function φ : V →
V ′ such that for all v, w ∈ V it holds that {v, w} ∈ E ⇐⇒ {φ(v), φ(w)} ∈ E′.

4.2 Cluster Vertex Deletion Number as Parameter

In this section, we present two fixed-parameter algorithms for Cluster Editing and
Cluster Deletion parameterized by the cluster vertex deletion number c. Both

38 4 Cluster Editing and Cluster Deletion

algorithms make use of an observation for cliques that are large in comparison to
the size of their neighborhood. Basically, such a clique is “largely preserved” by any
optimal solution for CE or CD since it is “cheaper” to cut all edges to its neighbors
than to cut it into several small pieces. More specifically, we show the following.

Lemma 4.1. Let K denote a clique in G of size at least 2 · |NG(K)|. Then, for every
optimal solution S for Cluster Editing or Cluster Deletion the graph G∆S
contains a cluster K ′ with

|K ∩K ′| ≥ |K| − 2|NG(K)|.

Proof. First, we show the lemma for the case of an optimal solution S for Cluster
Editing. To this end, let K ′1, . . . ,K

′
` denote the clusters in G∆S with K ′i ∩ K 6=

∅, 1 ≤ i ≤ `. Furthermore, for all 1 ≤ i ≤ `, define Bi := K ′i ∩ K. Observe

that K =
⋃`
i=1Bi. In the case that |K| ≤ 2|NG(K)| + 1 the lemma trivially holds

since |B1| ≥ 1 and |K| − 2|NG(K)| ≤ 1. Hence, |K| > 2|NG(K)|+ 1 in what follows.
For the correctness of the lemma we argue that there is an i, 1 ≤ i ≤ `, with

|Bi| ≥ |K| − 2|NG(K)|. Assume towards a contradiction that all Bi’s contain less
than |K| − 2|NG(K)| vertices. This implies that—in order to separate the Bi’s from
each other—the solution contains at least

1/2
∑̀
i=1

|Bi|(|K| − |Bi|) > 1/2
∑̀
i=1

(|Bi| · 2|NG(K)|) = |NG(K)| · |K|

edge deletions. Hence, one obtains a cluster graph that is closer to G than G∆S by
deleting in G∆S all edges between K and N(K) (at most |N(K)| · |K|) and undoing
all edge deletions between vertices in K (at least |N(K)| · |K|+ 1); a contradiction to
the fact that S is optimal. It is easy to verify that, since we apply only edge deletions,
all steps of the proof hold for an optimal solution for CD, too.

Next, we present our fixed-parameter algorithm for Cluster Editing.

4.2.1 Cluster Editing

Given an input graph G and a size-c cluster vertex deletion set Y of G, the key
observation used by our algorithm is that clusters in G − Y that are much larger
than Y will not be split by any optimal solution for CE. The basic idea for showing
this observation is as follows. Consider a cluster K in G−Y of size at least 3c+ 1. By
Lemma 4.1 for every solution S for CE the cluster graph G∆S contains a cluster K ′

that intersects with K in at least c+ 1 vertices. We can show that K ′ ⊆ Y ∪K. Thus,
for a vertex v ∈ K \K ′ it would be cheaper to add v to K ′ since this would require
at most c edge insertions to vertices of Y but would allow to undo at least c+ 1 edge
deletions. As a consequence, K ⊆ K ′.

Next, we prove this key observation.

Lemma 4.2. Let Y denote a size-c cluster vertex deletion set and let K denote a
cluster in G − Y of size at least 3c + 1. Then, for every optimal solution S for CE
the graph G∆S contains a cluster K ′ with

K ⊆ K ′ ⊆ K ∪ Y.

4.2 Cluster Vertex Deletion Number as Parameter 39

Proof. Let K1, . . . ,K` (` ≥ 1) denote the clusters in G∆S with Ki∩K 6= ∅. Let Bi :=

K ∩ Ki and observe that K =
⋃`
i=1Bi. Without loss of generality, assume that B1

has maximum cardinality of all Bi’s. Since NG(K) ⊆ Y and |K| ≥ 3|Y | + 1 > 2|Y |,
Lemma 4.1 implies that |B1| ≥ c+ 1. For the correctness of the lemma, we show that
K ⊆ K1 ⊆ K ∪ Y , that is, K ′ = K1.

First, we show that K1 ⊆ B1∪Y , that is, K1 ⊆ K∪Y . Let X := K1 \(B1∪Y) and
assume towards a contradiction that X 6= ∅. Since |B1| ≥ c+ 1, one obtains a cluster
graph that is closer to G than G∆S by modifying G∆S such that X becomes an
isolated clique. This requires at most |X| ·c edge deletions to separate X from K1∩Y ,
however, allows to undo the edge insertions between X and B1 which amount to at
least |X| · (c+ 1); a contradiction.

Next, we prove that ` = 1 and, hence, K ⊆ K1. Assume towards a contradiction
that ` > 1. We argue that one obtains a cluster graph that is closer to G than G∆S
by modifying G∆S such that K1 ∪B2 becomes an isolated clique. More specifically,
consider the cluster graph G′ that results from G∆S by:

• Deleting all edges between B2 and K2 \ B2. Note that in G[K2] there are only
edges between B2 and K2 ∩ Y . Hence, this step requires at most |K2 ∩ Y | · |B2|
additional edge deletions.

• Inserting all edges between B2 and K1 \ B1. Since (K1 \ B1) ⊆ Y this are at
most |B2| · |K1 ∩ Y | edge insertions.

• Undoing the edge deletions between B2 and B1. These amount to |B2| · |B1|
since B1 ∪B2 forms a clique in G.

Since |B1| > c this implies that |B2| · |K2∩Y |+ |B2| · |K1∩Y | ≤ |B2| ·c < |B2| ·(c+1) ≤
|B2| · |B1|. As a consequence, the resulting cluster graph is closer to G than G∆S; a
contradiction to the assumption that S is optimal.

It follows that K ⊆ K1 ⊆ K ∪ Y , yielding the lemma for K ′ = K1.

Description of the Algorithm. By Lemma 4.2, a cluster in G−Y of size at least
3c+ 1 will not be “split” or “merged” with any other clusters of G− Y in an optimal
cluster graph. We refer to clusters of G− Y of size at least 3c+ 1 as large clusters.

Now, the basic idea to establish fixed-parameter tractability is as follows. See
procedure CEbyCVD (Alg. 1) for an outline. Given a cluster vertex deletion set Y , in
a first step, we guess the partition of Y “induced” by the clusters generated by an
optimal solution for CE and apply the respective edge modifications (Lines 6 to 8).
We refer to the sets of such a partition as fixed subclusters in the following. Then, in a
second step, we guess which of these fixed subclusters will end up in a cluster together
with a large cluster (Line 11). From Lemma 4.2, we know that the large clusters
are not split and, since the subclusters in Y are fixed, the large clusters end up in a
final cluster with at most one fixed subcluster and vice versa. We will show that the
“mapping” of the large clusters to the respective fixed subclusters can efficiently be
done by computing a maximum-weight matching. To this end, procedure CEbyCVD em-
ploys the subroutine SolveLarge (see Line 14). In the remaining instance all clusters
from G− Y have size at most 3c. For solving these instances we devise a subroutine,
called SolveSmall. This subroutine uses data reduction to bound the number of small

40 4 Cluster Editing and Cluster Deletion

Function CEbyCVD(G)
Input: A graph G = (V,E).
Output: Size of an optimal solution S for Cluster Editing.

Y = SolveCVD (G);1

Let A1, . . . , Ap denote the clusters in G− Y of size at most 3c;2

Let B1, . . . , Bq denote the clusters in G− Y of size at least 3c+ 1;3

m1 = +∞;4

Let G∗ := G (keep a copy of the original graph);5

forall partitions Q1, . . . , Qt of Y (1 ≤ t ≤ |Y |) do6

Add all edges between vertices in Qi, 1 ≤ i ≤ t;7

Delete all edges between Qi and Qj , 1 ≤ i < j ≤ t;8

Let c1 denote the number of these edge modifications;9

m2 = +∞;10

forall subsets I ⊆ {1, . . . , t} do11

Delete all edges between Qi and Aj , i ∈ I and 1 ≤ j ≤ p;12

Let c2 denote the number of these edge deletions;13

cl =SolveLarge ({Qi | i ∈ I}, B1, . . . , Bp);14

cs =SolveSmall ({Qi | i ∈ {1, . . . , t} \ I}, A1, . . . , Aq);15

m2 = min(m2, c2 + cl + cs);16

end17

m1 = min(m1, c1 +m2);18

Let G := G∗ (undo all changes);19

end20

return m1;21

Algorithm 1: Algorithm for Cluster Editing parameterized by the cluster vertex
deletion number.

clusters in G − Y by a function only depending on c, thus yielding a problem kernel
for this subproblem. Altogether, this implies fixed-parameter tractability of Cluster
Editing parameterized by the cluster vertex deletion number.

In the following, we first consider the two subproblems for large and small clusters
separately. Based on these results, we then establish the correctness and running-time
bound of CEbyCVD.

Large Clusters. To compute an optimal solution for the subproblem that has to be
solved by SolveLarge (Line 14 of Alg. 1), we have to find a solution to the following
problem.

Fixed Clique Cluster Editing:
Input: A graph G = (V,E) with B]Q = V such that G[B] and G[Q] are
cluster graphs. Let B = {B1, . . . , Bq} be the set of clusters in G[B] and
let Q = {Q1, . . . , Qs} be the set of clusters in G[Q].
Task: Find a cluster graph Gc on V with minimum edit distance to G
such that for each cluster K in Gc either

• K = Bi for a Bi ∈ B or,

• K = Qj for a Qj ∈ Q, or

• K = Bi ∪Qj for a Bi ∈ B and a Qj ∈ Q.

4.2 Cluster Vertex Deletion Number as Parameter 41

As shown in the following, Fixed Clique Cluster Editing can be formulated
as a bipartite maximum-weight matching problem and, hence, can be solved in poly-
nomial time. The procedure SolveLarge in Alg. 1 solves instances of Fixed Clique
Cluster Editing based on the following lemma.

Lemma 4.3. Fixed Clique Cluster Editing can be solved in polynomial time.

Proof. First, we describe how to build an auxiliary graph H with an edge weight
function w. Then, we show that a maximum-weight matching for H corresponds to a
solution cluster graph for Fixed Clique Cluster Editing and vice versa.

Let H = (UB, UQ ∪ U ′B, F) denote the bipartite graph that contains two ver-
tices uBi ∈ UB and u′Bi ∈ U ′B for every Bi ∈ B, a vertex uQj ∈ UQ for every Qj ∈ Q,
and with F := {{uBi , u′Bi} | Bi ∈ B} ∪ {{uBi , uQj} | 1 ≤ i ≤ q, 1 ≤ j ≤ s}. More-
over, let κ(Bi, Qj) denote the minimum number of edge insertions needed to trans-
form Bi ∪Qj into a clique (that is, the number of “missing edges” in G[Bi ∪Qj]) plus
|{{u, v} ∈ E | u ∈ Bi, v ∈

⋃
j′ 6=j Qj′}| (that is, the number of edge deletions to separate

each vertex in Bi from every vertex in Qj′ for all j′ 6= j). Moreover, let κ(Bi) denote
the minimum number of edge deletions needed to make Bi an isolated clique. Observe
that these two values can easily be computed by counting the edges between Bi and Qj
for all 1 ≤ i ≤ q and 1 ≤ j ≤ s. Finally, we define a weight function w : F → N≥0 as
follows: w({uBi , u′Bi}) := T − κ(Bi) and w({uBi , uQj}) := T − κ(Bi, Qj), where T − 1
is the maximum over all κ(.). This ensures that all weights are at least 1. Altogether,
one arrives at the following.

Claim. Let m denote the value of a maximum-weight matching in H
with respect to the weight function w and let d denote the minimum
edit distance between the input graph G and a cluster graph Gc fulfill-
ing the constraints in the definition of Fixed Clique Cluster Editing.
Then, d = T · q −m.

The correctness of the claim can be easily seen as follows. Given a maximum-weight
matching for H it is easy to verify that all vertices in UB are matched since every uB ∈
UB has a degree-one neighbor u′B ∈ U ′B and all edge weights are positive. Hence, from
a maximum-weight matching of H one can obtain a cluster graph such that for each
matching edge {uBi , u′Bi}, the vertices from Bi form a cluster and for each matching
edge {uBi , uQj}, the vertices from Bi ∪Qj form a cluster and vice versa. Due to the
definition of the edge weights the claim directly follows.

Small Clusters. Next, we focus on instances of Cluster Editing where all clus-
ters in G − Y have size at most 3c. The procedure SolveSmall (Line 15 in Alg. 1)
solves these instances based on the following lemma.

Lemma 4.4. Let Y denote a cluster vertex deletion set for G of size c. If all clusters

in G− Y have size at most 3c, then CE can be solved in 22O(c2) · |V |O(1) time.

Proof. The basic idea to show fixed-parameter tractability is as follows. We group the
clusters of G− Y into 2O(c2) different “types”. Then, we show that from each cluster
type we need to keep at most c representatives and, hence, the overall input size is
bounded (directly implying fixed-parameter tractability).

42 4 Cluster Editing and Cluster Deletion

We say that two clusters Qi and Qj of G−Y have the same cluster type if the two
graphs G[Y ∪Qi] and G[Y ∪Qj] are identical, that is, if there is a graph-isomorphism φ
between G[Y ∪ Qi] and G[Y ∪ Qj] such that ∀v ∈ Y : φ(v) = v. Next, we show that

the number of types of the clusters in G− Y is bounded by 2O(c2).
To bound the number of cluster types, we first classify the vertices in V \ Y in 2c

types. Two vertices in u,w ∈ V \ Y have the same type if NG(u) ∩ Y = NG(w) ∩ Y .
Then, a cluster K can be described by a vector of length 2c, where the ith entry
contains the number of type-i vertices in K. Since a small cluster contains at most 3c
vertices, a vector contains at most 3c nonzero entries. Clearly, two clusters have the
same cluster type if these corresponding vectors are identical. This implies that there
are at most

3c∑
i=1

(
3c · 2c
i

)
≤ 3c · (3c · 2c)3c

= 2O(c2)

cluster types: for every position of the length-2c vector describing a cluster type,
one has up to 3c choices (resulting in a total of 3c · 2c choices). Thus, there are at

most
(

3c·2c
i

)
cluster types for clusters with i, 1 ≤ i ≤ 3c, vertices.

Finally, we show that for each cluster type we can delete all but c2 clusters. To
this end, consider a closest cluster graph Gc for G. First, note that there are at most c
clusters in Gc that contain vertices from Y . Second, each cluster of Gc intersecting
with Y contains vertices from at most c clusters of G−Y since it is straightforward to
verify that otherwise separating the vertices of one cluster results in a cluster graph
with the same or smaller edit distance to G. As a consequence, vertices of at most c2

clusters of G− Y are contained in clusters of Gc intersecting with Y . Finally, observe
that all other clusters of G−Y are clusters in Gc, too. Hence, if there are c2 + i, 1 ≤ i,
clusters of G − Y of the same type, then at least i of these clusters are clusters in
a closest cluster graph, and, hence, can be deleted (together with the edges between

these clusters and Y). After deleting these clusters there are at most 2O(c2)c2 + c =

2O(c2) vertices in G. Finally, compute the closest cluster graph by testing brute force

all (2O(c2))2O(c2)

= 22O(c2)

partitions of the remaining graph.

Running Time and Correctness. Using the results on the running times of
SolveLarge and SolveSmall, we now can show the fixed-parameter tractability with
respect to c.

Theorem 4.1. Cluster Editing is fixed-parameter tractable with respect to the clus-

ter vertex deletion number c of the input graph. It can be solved in 22O(c2) · |V |O(1)

time.

Proof. We use Alg. 1 to compute the size of an optimal solution for CE for an input
graph G = (V,E). First, we show that Alg. 1 is correct. To this end, let G′ denote a
cluster graph with closest edit distance to G. Since Alg. 1 enumerates all partitions
of Y , the sets Q1, . . . , Qt (Line 6) once one-to-one correspond to the clusters in G′[Y],
implying the edge modifications in Lines 8 and 9.

By Lemma 4.2, all clusters of size at least 3c+ 1 (“large cluster”) in G− Y either
form a cluster in G′ or are contained in a cluster of G′ together with vertices from Y .
Since the algorithm has already guessed the partition of Y , every such large cluster
is contained in a cluster of G′ with the vertices of at most one Qi. By trying all

4.2 Cluster Vertex Deletion Number as Parameter 43

two-partitions of {1, . . . , t} (Line 11), Alg. 1 guesses the Qi’s that are clusters in G′

or that are contained in a cluster together with one large cluster. Note that the
corresponding subproblem exactly corresponds to Fixed Clique Cluster Editing
since in G′ each clique Qi is in a cluster with at most one large cluster Bj and vice
versa. By Lemma 4.3, Fixed Clique Cluster Editing can be solved in polynomial
time. The remaining clusters in G−Y all have size at most 3c. Hence, by Lemma 4.4

the remaining instance can be solved in 22O(c2) · |V |O(1) time.

For the running time note that there are O(cc) partitions of Y . For each such
partition we try all two-partitions. Hence, Alg. 1 enters the body of the inner for-loop
at most O(2c log(c)+c) times. Since by Lemma 4.3 the subroutine SolveLarge can be

applied in polynomial time and since the subroutine SolveSmall runs in 22O(c2) ·|V |O(1)

time (Lemma 4.4), Alg. 1 runs in O(2c log(c)+c) · 22O(c2) · |V |O(1) = 22O(c2) · |V |O(1)

time.

So far, due to the large exponential factor the presented algorithm is of purely

theoretical interest. Recall that the factor 22O(c2)

in the running time is due to the
subproblem that deals with instances where all clusters in G−Y have size at most 3c,
see Lemma 4.4. Improving the running time for this special case of Cluster Editing
would directly lead to a significantly better worst-case running time.

4.2.2 Cluster Deletion

In this section, we devise a fixed-parameter algorithm for Cluster Deletion pa-
rameterized by the cluster vertex deletion number. First, note that it is not obvious
how to adapt Alg. 1. The main problem is that Lemma 4.2 does not hold for Clus-
ter Deletion. Recall that Lemma 4.2 states that in the case of CE large clusters
in G− Y (where Y is a cluster vertex deletion set for G) are not “split”. The proof of
Lemma 4.2, however, requires the insertion of edges, which is not allowed for CD. By
employing some problem-specific properties of CD, we present a new solving strategy
for CD, leading to a better running time than the algorithm for CE. The basic obser-
vation is that none of the clusters of G− Y (where Y is a cluster vertex deletion set)
can be merged with other clusters of G− Y since only edge deletions are allowed.

The remaining part of this section is devoted to the proof of the following theorem.

Theorem 4.2. Cluster Deletion can be solved in O(c2c(c+1)5c·|V |3) time, where c
is the cluster vertex deletion number of the input graph.

We use the following notation. For a graph G = (V,E) and a set S ⊆ E let G\S :=
(V,E\S). Moreover, for a graph G let optCD(G) denote the size of an optimal solution
for CD for G, that is, the minimum cardinality over all sets S ⊆ E such that G \ S is
a cluster graph.

The overall strategy of our algorithm for Cluster Deletion is to reduce Cluster
Deletion to at most cc computations of a maximum-weight matching in a bipartite
auxiliary graph. A crucial step in this approach will be the computation of the edge
weights in this bipartite graph. The edge weights will correspond to the size of optimal
solutions for subinstances.

44 4 Cluster Editing and Cluster Deletion

Y

C1 C3

A1 A2 A3 A4 A5

K1 K2 K3 K4 K5

A6 = K6

B1 B2

K8

C2 = K7

Figure 4.3: A graph over the vertex set Y]C1]C2]C3 with cluster vertex deletion
set Y . C1, C2, and C3 are the clusters of G − Y . The clusters resulting from a
solution of Cluster Deletion are K1, . . . ,K8 (dashed lines). Moreover, the Ai’s
form a partition of Y according to the final clusters, that is, Ai = Ki ∩ Y (1 ≤ i ≤ 6).
Consider the partition B1 and B2 of Y with B1 = A1]A2]A3 and B2 = A4]A5]A6.
For this partition, B1 is matched with C1 and B2 is matched with C3 while C2 remains
unmatched. Note that the algorithm first “guesses” the partition into the Bi’s and
then guesses an optimal partition of every Bi into Aj ’s.

Basic Idea of the Algorithm. Our algorithm employs some properties of the
structure of a solution cluster graph for Cluster Deletion. Let C1, . . . , Cz denote
the clusters of G−Y (where Y denotes a cluster vertex deletion set for G). Since only
edge deletions are allowed, each cluster of a solution cluster graph can contain vertices
from at most one Ci. Moreover, the vertices from Ci might be partitioned into further
subsets and each of these subsets might form a cluster together with some vertices
from Y . We try all possibilities to partition Y into B1, . . . , Bx such that each Bi
“matches” with at most one of the Cj ’s and vice versa. Basically, a set Bi “matches”
a cluster Cj when there is a cluster in the solution graph that contains vertices from
both Bi and Cj . As illustrated in Figure 4.3, a “matched pair” Bi and Cj might
be further divided into several clusters in the cluster graph. Roughly speaking, the
algorithm will build a bipartite graph with one side corresponding to the Bi’s and the
other side corresponding to the Cj ’s and the weight of an edge between Bi and Cj
reflects the size of an optimal solution of the subgraph induced by Bi∪Cj . To compute
these weights, we will introduce a restricted version of Cluster Deletion which has
given a further partition of Bi into subsets At’s (see Figure 4.3) and makes use of the
fact that Cj forms a clique.

Main Loop of the Algorithm. The overall algorithm CDbyCVD is provided in
Alg. 2. Basically, CDbyCVD enumerates all possible partitions of Y (Line 3). The idea
is that the sets of the considered partition will end up in different clusters. Hence, the
edges between vertices of different Bi’s are deleted (Line 4). For each such partition,
the algorithm computes the cost of a maximum matching between the partition of Y
and the clusters in G − Y (Line 12). The corresponding auxiliary graph is built in
Lines 5 to 11. The corresponding cost to match Bi with Cj is computed in Line 10.

4.2 Cluster Vertex Deletion Number as Parameter 45

Function CDbyCVD(G,Y)
Input: An CD-instance (G = (V,E), k) and a cluster vertex deletion set Y

for G.
Output: “true” if (G, k) is yes-instance; otherwise, “false”.

Let C1, . . . , Cz denote the clusters in G− Y ;1

Let T := |E|+ 1;2

forall partitions B1] . . .]Bx = Y with x ≤ min(z, |Y |) do3

Let G′ denote the graph that results from G by deleting all edges between Bi4

and Bj , 1 ≤ i < j ≤ x, and let m1 denote the number of deleted edges;
Let H = (UB , UC , F) with:5

UB := {uBi | 1 ≤ i ≤ x},6

UC := {uCi | 1 ≤ i ≤ z},7

F := {{uBi , uCj} | 1 ≤ i ≤ x, 1 ≤ j ≤ z}.8

forall i, 1 ≤ i ≤ x and j, 1 ≤ j ≤ z9

Compute κ(Bi, Cj) := optCD(G′[Bi ∪ Cj]);10

Let11

w({uBi , uCj}) := T−κ(Bi, Cj)−|{{v, w} ∈ E(G′) | v ∈ Bi, w ∈ V \(Y ∪Cj)}|;
Let W denote the weight of a maximum-weight matching in H with12

edge-weight function w;
if x · T −W ≤ k −m1 then13

return “true”;14

end15

end16

return “false”;17

Algorithm 2: Algorithm for Cluster Deletion parameterized by the cluster
vertex deletion number.

These costs are used to define the edge-weights in the maximum matching instance H
in Line 11.

Before presenting the correctness of procedure CDbyCVD (Alg. 2), we want to stress
that the computation of κ(Bi, Cj) (Line 10) requires to solve Cluster Deletion on
the instance G′[Bi ∪ Cj]. After presenting the correctness of procedure CDbyCVD, we
focus on this aspect of the algorithm.

For the correctness of procedure CDbyCVD (Alg. 2), we show the following.

Lemma 4.5. (G = (V,E), k) is a yes-instance for CD if and only if procedure
CDbyCVD((G, k),Y) (Alg. 2) returns “true”, where Y is a cluster vertex deletion set
for G.

Proof. “⇐:” If the algorithm returns “true”, then there is a partition B1, . . . Bx of Y
and a maximum-weight matching M for H with weight W such that x·T−W+m1 ≤ k
(Line 13). We show how to obtain a cluster graph by at most x · T −W + m1 edge
deletions.

First, observe that each vertex uBi ∈ UB is matched since H is a complete bipartite
graph, x ≤ z (see Line 3), and all edge weights are positive. Hence, |M | = x. Consider
the graph that results from G′ by the following edge deletions. If a vertex uBi ∈ UB
is matched to a vertex uCj ∈ UC , then transform G′[Bi ∪Cj] into a cluster graph and

46 4 Cluster Editing and Cluster Deletion

delete all edges between Bi and V \ (Y ∪ Cj). This requires

κ(Bi, Cj) + |{{v, w} ∈ E(G′) | v ∈ Bi, w ∈ V \ (Y ∪ Cj)}| = T − w({uB , uc})

edge deletions. Since all Ci’s are clusters of G− Y and there are no edges between Bi
and Bj for i 6= j in G′, the constructed graph is a cluster graph. Finally, observe that
we apply

∑
{v,w}∈M (T − w({u, v})) = x · T −W edge deletions in this construction

and m1 edge deletions to separate the Bi’s. Hence, we obtained a cluster graph by
x · T −W +m1 ≤ k edge deletions.
“⇒”: Let S ⊆ E with |S| ≤ k denote an optimal solution for CD and let GS := G \S.
We show that procedure CDbyCVD((G = (V,E), k),Y) returns “true”.

Let x denote the number of clusters Ci of G − Y containing vertices that have
neighbors in Y in GS . That is, x = |{C ∈ {C1, . . . , Cz} | NGS (Ci)∩Y 6= ∅}|. Without
loss of generality, let the corresponding clusters be denoted by C1, . . . , Cx. Then,
for 1 ≤ i < x, let Bi := {v ∈ Y | NGS (v) ∩ Ci 6= ∅}. Moreover, Bx consists of all
remaining vertices of Y . We show that if procedure CDbyCVD encounters this partition
in Line 3, then it returns “true” in Line 14.

First, observe that in GS there are no edges between vertices of different Bi’s.
Thus, the m1 applied edge deletions in Line 4 are contained in S. It remains to show
that there is a matching in H with total weight W ≥ x · T +m1 − k (see Line 14).

Consider the matching M for H where {uBi , uCi} ∈ M for 1 ≤ i ≤ x. To analyze
the total weight W of M , it is easy to verify that S can be partitioned into the
sets S1, . . . , Sx, S

′ where

Si := (S ∩ E(G[Bi ∪ Ci])) ∪ {{v, w} ∈ E(G) | v ∈ Bi, w ∈ V \ (Y ∪ Ci)}

and S′ are them1 edges deleted in Line 4. It directly follows by construction of the edge
weights that w(uBi , uCi) = T −|Si|. Hence, W =

∑x
i=1(T −|Si|) = x ·T −k+m1.

Computing the Edge Weights. For the computation of the edge weights in
Line 11 of procedure CDbyCVD (Alg. 2) one needs to solve Cluster Deletion for
subinstances of the input graph. More specifically, we need to determine optCD(G′[Bi∪
Cj]) (Line 10). This can be done by employing the following property of such a subin-
stance. First, Bi ⊆ Y (where Y is the a cluster vertex deletion set of the input
graph). Moreover, Bi is a cluster vertex deletion set of G′[Bi ∪ Cj] and its removal
leaves a graph consisting of a single cluster, namely Cj . Hence, our goal is to find a
fixed-parameter algorithm for such subinstances with respect to the parameter |Bi|.
Formally, we end up with the following problem.

Input: A graph G = (V,E) with B]C = V such that G[C] forms a clique.
Task: Determine optCD(G).

In Alg. 3, we present a solving strategy (ComputeEdgeCost) for this problem. In a
first step, it tries all partitions of B (Line 2) in order to find the partition A1, . . . , A`
ofB generated by an optimal solution for CD. Clearly, the “correct choice” ofA1, . . . , A`
leads to the edge deletions between vertices of different Ai’s in Line 4. Moreover, a
vertex v ∈ C can end up in a cluster with an Ai only if it is adjacent to all vertices
of Ai. This observation justifies the edge deletions in Line 8. Clearly, if each vertex
in C is adjacent either to all or no vertex in an Ai, then all vertices in Ai have the

4.2 Cluster Vertex Deletion Number as Parameter 47

Function ComputeEdgeCost(G,B,C)
Input: A graph G = (V,E) and a two-partition B and C of V such that G−B

is the complete graph on C.
Output: Size of an optimal solution S for Cluster Deletion for G.

κ =∞;1

forall partitions A1, . . . , At of B (1 ≤ t ≤ |B|) do2

if each Ai is a clique in G then3

Delete all edges between Ai and Aj , 1 ≤ i < j ≤ t from E;4

Let m1 denote the number of these edge modifications;5

forall v ∈ C and i ∈ {1, . . . , t} do6

if Ai \N(v) 6= ∅ then7

Delete all edges between v and Ai from E;8

end9

end10

Let m2 denote the number of edges deleted in Line 8;11

x=SolveClusterSplit (G, A1, . . . , At, C);12

κ = min(κ, x+m1 +m2);13

undo all edge deletions in G;14

end15

end16

return κ;17

Algorithm 3: Algorithm to compute the edge cost κ(B,C) used in Line 10 of Alg. 2.
Herein, procedure “SolveClusterSplit” (Line 12) solves instances of Cluster Split
using Lemma 4.7.

same closed neighborhood. Hence, each Ai is a critical clique in the resulting graph.
Altogether, we arrive at the task to solve the following subproblem with a further
restricted input structure (Line 12 of Alg. 3).

Cluster Split:
Input: A graph G = (V,E) and the vertex sets C and A1, . . . , A` such
that

• C]A1] . . .]A` = V ,

• C is a clique and each Ai is part of a critical clique, and

• G[
⋃`
i=1Ai] is a cluster graph and A1, . . . , A` are the corresponding

clusters.

Task: Determine optCD(G).

Next, we show that Cluster Split can be solved in (`+1)5d·poly(|V |) time where d :=∑`
i=1 |Ai|. The basic idea is as follows. If |C| < 5d, then we systematically try

all partitions of C. Otherwise, based on the following lemma, we can reduce the
instance to at most `+ 1 instances with |C| < 5d. The underlying observation is that
if |C| ≥ 5d, then in the cluster graph generated by an optimal solution for Cluster
Split, either C is a cluster or for some 1 ≤ i ≤ ` there is a large cluster consisting
of N [Ai] and N [Ai] contains all but at most 2d vertices of C.

48 4 Cluster Editing and Cluster Deletion

Lemma 4.6. For an instance of Cluster Split with |C| ≥ 5d (where d =
∑`
i=1 |Ai|),

there is an optimal solution S such that one of the following two statements is true:

• G \ S contains C as a cluster, or

• G \ S contains a cluster K with K = NG[Ai] and |K ∩ C| ≥ |C| − 2d, for
some i, 1 ≤ i ≤ `.

Proof. According to Lemma 3.7 there is an optimal solution for Cluster Dele-
tion such that every critical clique ends up in a cluster of the corresponding cluster
graph. Let S denote a solution such that each Ai is a subset of a cluster of G \ S.

Since NG(C) ⊆ ⋃`i=1Ai and |C| ≥ 5d > 2
∑ |Ai|, Lemma 4.1 implies that there is a

cluster K in G\S with |K ∩C| ≥ |C|−2d. Since |C| ≥ 5d, it holds that |K ∩C| ≥ 3d.
In the following, we show that K fulfills one of the two statements of the lemma.

If K = C, then the first statement is true. Hence, we assume that K 6= C in
what follows. We show that the assumption K 6= C implies that K = N [Ai] for
some i, 1 ≤ i ≤ ` and, hence, the second statement of the lemma follows.

To this end, we first we show that K ∩ (
⋃`
i=1Ai) 6= ∅. Assume toward a con-

tradiction that K ⊆ C. Note that K 6= C implies that K is a proper subset of C.
Let x ∈ C \K be arbitrarily chosen and let X denote the cluster of G\S containing x.
Since |K| = |C ∩K| ≥ 3d one obtains a cluster graph that is closer to G than G\S by
“adding” the vertices form X to K. More specifically, consider the cluster graph that
results from G\S by deleting all edges between X∩C and X\C (at most |X∩C|·d) and
undoing all edge deletions between X∩C and K (at least |X∩C| ·3d); a contradiction
to the fact that S is optimal.

In summary, K contains at least one vertex from
⋃`
i=1Ai and by the choice of S

(according to Lemma 3.7) it holds that Ai ⊆ K for some i, 1 ≤ i ≤ `. Further-
more, K ⊆ NG[Ai] since only edge deletions are allowed.

It remains to show that K = NG[Ai]. To this end, assume towards a contradiction
that there is a vertex x ∈ NG(Ai)\K. Let X denote the cluster of G\S containing x.
Next, we argue that |X\NG[Ai]| < 3d. First, |X|\|C| ≤∑j 6=i |Aj | < d. Second, |C| ≥
3d implies |X ∩ C| ≤ 2d. Finally, we show that one obtains a cluster graph that is
closer to G than G \ S by modifying G \ S such that NG[Ai] becomes a cluster. More
specifically, consider the cluster graph that results from G\S by first deleting all edges
between NG(Ai)∩X and X\NG(Ai) (at most |X∩NG(Ai)|·(3d−1)) and subsequently
undoing the edge deletions between X ∩NG(Ai) and K (at least |X ∩NG(Ai)| · 3d);
a contradiction to the optimality of S.

Lemma 4.6 enables us to reduce instances with |C| ≥ 5d to at most `+ 1 instances
with |C| < 5d.

Lemma 4.7. Cluster Split can be solved in (`+ 1)5d · (|V |+ |E|) time, where d =∑`
i=1 |Ai|.

Proof. We distinguish the cases |C| < 5d and |C| ≥ 5d.
Case: |C| < 5d. Systematically try all (`+1)|C| possibilities to assign every vertex

from C a number from {1, . . . , ` + 1}; a number i ≤ ` stands for the possibility that
the vertex ends up in a cluster with Ai and the number `+ 1 stands for the possibility
that the vertex ends up in a cluster containing only vertices of C. For each choice,
in O(|E| + |V |) time, first, delete all edges between vertices with different numbers

4.2 Cluster Vertex Deletion Number as Parameter 49

and, second, check whether the resulting graph is cluster graph. Finally, report the
minimum number of edge deletions over all possibilities. For the correctness, note that
since C forms a clique, there is at most one cluster in an optimal solution cluster graph
that contains only vertices from C. In summary, an optimal solution for Cluster
Split can be found in O((`+ 1)|C|(|V |+ |E|)) ⊆ O((`+ 1)5d(|V |+ |E|) time.

Case: |C| ≥ 5d. We first branch into the case that C is an isolated clique. Then,
for each i, 1 ≤ i ≤ ` with |NG(Ai)∩C| ≥ |C|−2d we branch into the case that NG[Ai]
forms a cluster. In the first branch, the size of the solution is simply the number of
edges between C and V \ C. In each of the other branches, we remove NG[Ai] and
solve the remaining instance. Since in each branch all but at most 2d vertices of C
are deleted the remaining instance can be solved in (`)2d · (|V |+ |E|) time analogously
to the case that |C| < 5d. Finally, we report the minimum-cardinality solution over
all branches. The correctness follows directly by Lemma 4.6. Hence, in this case,
Cluster Split can be solved in d · (`+ 1)2d · (|V |+ |E|) time.

Altogether, Cluster Split can be solved in O((`+ 1)5d(|V |+ |E|)) time.

Next, we analyze the running time of ComputeEdgeCost (Alg. 3).

Lemma 4.8. Given a graph G = (V,E) with B]C = V such that G[C] is a clique, pro-
cedure ComputeEdgeCost (Alg. 3) determines optCD(G) in O(|B||B|(|B|+ 1)5|B||V |2)
time.

Proof. The correctness of procedure ComputeEdgeCost (Alg. 3) and the running time
of the subroutine SolveClusterSplit can easily be derived from Lemma 4.7. It
remains to analyze the overall running time. Clearly, the edge deletions in Line 4 can
be applied in O(|V |2) time by one iteration over the edge set. To determine the edge
deletions in Line 8 in O(|V |2) time, proceed as follows. First, in one iteration over the
edge set, determine for every vertex v ∈ V \ Y the numbers av[i] := |NG(v) ∩ Ai| for
all 1 ≤ i ≤ t. Then, in a second iteration over the edge set delete each edge {v, w} ∈ E
with v ∈ V \ Y and w ∈ Ai if av[i] 6= |Ai|. Thus, since there are at most |B||B|
partitions of |B|, the running time follows directly by Lemma 4.7.

Putting all together, we arrive at the proof of Theorem 4.2, which states that
Cluster Deletion is fixed-parameter tractable with respect to the cluster vertex
deletion number.

Proof. (Proof of Theorem 4.2) Let (G = (V,E), k) denote a Cluster Deletion
instance. To solve Cluster Deletion for (G, k), first compute a cluster vertex
deletion set Y for G in O(2cc9 + |V | · |E|)-time [109] and, second, apply procedure
CDbyCVD (Alg. 2) with (G, k) and Y . The correctness follows directly from Lemma 4.5
and Lemma 4.8.

It remains to prove the running time bound. To this end, we analyze the run-
ning time of procedure CDbyCVD (Alg. 2). In a first step, procedure CDbyCVD tries
all (at most |Y ||Y |) partitions of |Y |. Clearly, for each partition the running time
is “dominated” by the computations in Lines 9 to 10, where for every i, 1 ≤ i ≤ x
and j, 1 ≤ j ≤ z the value optCD G

′[Bi, Cj] must be computed. Since x ≤ |Y |,
z ≤ |V |, and |Bi|+ |Cj | ≤ |V | according to Lemma 4.8 these computations are doable
in O(|Y | · |V | · |Y ||Y | · (|Y | + 1)5|Y | · |V 2|) time. Thus, the overall running time of
procedure CDbyCVD (Alg. 2) is upper-bounded by O(c2c(c+ 1)5cc · |V 3|), where c = |Y |
is the cluster vertex deletion number of G.

50 4 Cluster Editing and Cluster Deletion

4.3 Further Alternative Parameterizations

In this section, we briefly discuss some further parameterizations for Cluster Edit-
ing. To this end, we “deconstruct” known NP-hardness proofs for Cluster Editing.
See Section 2.3 and Chapter 8 for details on the “deconstructive approach” for param-
eter identification.

To the best of our knowledge all known NP-hardness proofs for Cluster Editing
require an unbounded vertex degree [125, 47, 150, 12]. Thus, in the sense of “de-
constructing intractability”, the maximum vertex degree is an interesting parameter.
However, we can show that Cluster Editing is NP-hard even when restricted to
graphs with maximum degree six. The NP-hardness is established by a reduction from
3-SAT using a similar strategy as Weller et al. [156]. We omit all details.

Theorem 4.3. [122, Theorem 3] Cluster Editing and Cluster Deletion are
NP-complete even when restricted to graphs with maximum vertex degree six.

Analyzing Shamir et al.’s [150] NP-hardness proof for Cluster Editing shows the
following property of the constructed instances. The NP-hardness proof requires that
there are vertices in the constructed instances that are involved in an unbounded num-
ber of edge modifications of any optimal solution. This raises the question whether for
instances admitting optimal solutions where each vertex is involved in a fixed number
of edge modifications a corresponding solution can be found efficiently. However, as a
consequence of the NP-hardness of Cluster Editing for graphs with maximum de-
gree six, we can conclude that Cluster Editing is NP-hard restricted to graphs that
allow solutions such that every vertex is involved in at most six edge modifications:
For every optimal solution, the number of edge modification involving a vertex v is
bounded by the degree of v, since otherwise (if v is involved in more than deg(v) edge
modifications) one obtains a better solution by putting v into a new cluster. Hence,
as an immediate consequence of Theorem 4.3, we arrive at the following.

Corollary 4.1. Cluster Editing and Cluster Deletion are NP-hard even when
restricted to instances for which each vertex is involved in at most six edge modifications
of any optimal solution.

Finally, we mention that although many NP-hardness proofs require an unbounded
number of clusters, Cluster Editing remains NP-hard even when it is required that
the cluster graph contains exactly two clusters [150].

These intractability results motivate a multivariate approach to Cluster Edit-
ing, in particular investigating the complexity of Cluster Editing for combined
parameters. We initiate this research direction for Cluster Editing by showing
that a constrained version of Cluster Editing is fixed-parameter tractable with
respect to the combined parameter “number d of clusters in the target graph” and
“maximum number t of modifications per vertex”. More precisely, the problem under
consideration is a generalization of Cluster Editing and is formalized as follows:

Definition 4.2. (d, t)-Constrained-Cluster Editing ((d, t)-CCE)
Input: An undirected graph G = (V,E), a function τ : V → {0, . . . , t}, and inte-
gers d ≥ 1 and k ≥ 0.
Question: Can G be transformed into a cluster graph G′ by applying at most k edge
modifications such that G′ has at most d clusters and each vertex v ∈ V is incident to
at most τ(v) modified edges?

4.4 Conclusion 51

If only edge deletions are allowed, we refer to the corresponding problem as (d, t)-
Constrained-Cluster Deletion. Clearly, Cluster Editing is exactly (d, t)-
Constrained-Cluster Editing for d = n and t = τ(v) = n for all v ∈ V . Next,
we discuss several aspects of both the problem formulation and the parameterization
by (d, t).

Concerning the problem formulation, in many application scenarios a reasonable
upper bound for the number of clusters d is given in advance. Furthermore, con-
straining the maximum number t of modifications per vertex yields another measure
of closeness of the cluster graph to the input graph. In comparison to Cluster Edit-
ing, (d, t)-Constrained-Cluster Editing allows to further constrain the solution
by adjusting the values of d and t. In certain application scenarios this may help to
obtain more reasonable clusterings.

Concerning the parameterization by (d, t), we consider the combined parame-
ter (d, t) since (d, t)-Constrained-Cluster Editing is NP-hard for t = 6 (which fol-
lows from Theorem 4.3). Moreover, when comparing the parameterizations k and (d, t)
one can observe that for some instances, k is not bounded by a function in d and t.
Consider for example a graph G = (V,E) that consists of two cliques K1 and K2,
each of order |V |/2. Furthermore, let each v ∈ K1 have exactly one neighbor in K2

and vice versa (that is, the edges between K1 and K2 form a perfect matching). An
optimal solution for CE for this graph is to delete all |V |/2 edges between K1 and K2.
Hence, the parameter k is linear in |V | for such an instance, whereas the number d
of clusters is two and each vertex is involved in at most t = 1 edge modifications. In
general, we can always assume t ≤ k. The general relation between d and k is a bit
more tricky. For example, in case G is connected, we can assume d ≤ k + 1 since
we can create at most k + 1 connected components by applying k edge modifications
to G. Furthermore, in case G does not contain isolated cliques, we can assume d ≤ 2k
since to each clique in the final cluster graph at least one edge modification is incident.
In summary, the parameters d and t can be arbitrarily small compared to k and are
bounded from above by a linear function of k when G does not contain isolated cliques.

We could show that (d, t)-Constrained-Cluster Editing is fixed-parameter
tractable with respect to (d, t) by proving a problem kernel consisting of at most 4dt
vertices [122, Theorem 4].

Theorem 4.4. (d, t)-Constrained-Cluster Editing admits a 4dt-vertex problem
kernel which can be found in O(n3) time.

The data reduction rules corresponding to Theorem 4.4 comprise two“high-degree”
rules that identify edge modifications that have to be performed by every solution,
since otherwise there would be vertices to which more than t edge modifications are
incident. Furthermore, two further “clean-up”-rules are needed. We omit any details.
Similar data reduction rules can be found in previous work [83] and Section 6.4.

4.4 Conclusion

In this chapter, we have initiated the investigation of Cluster Editing and Cluster
Deletion with respect to parameters other than solution size k.

First, we have shown that Cluster Editing and Cluster Deletion are fixed-
parameter tractable with respect to the cluster vertex deletion number of the input

52 4 Cluster Editing and Cluster Deletion

graph. So far, due to the large exponential factors these results are only of theoretical
interest.

Second, we have discussed further parameterizations. We have seen that Cluster
Editing is NP-hard even for graphs with maximum vertex degree six and if every
vertex is involved in at most six edge modifications. Motivated by these and further
intractability results, we started a “multivariate approach” for Cluster Editing,
showing that a generalization of Cluster Editing is fixed-parameter tractable with
respect to the combined parameter “number d of clusters in the target graph” and
“maximum number t of modifications per vertex”.

There are numerous tasks for future research. Improving the running times for our
fixed-parameter algorithms for parameter “cluster vertex deletion number” is desirable.
We believe that significant running time improvements are achievable. We left open
the existence of polynomial-size kernelizations for these two problems. Very recently,
Jansen [112] showed that there is little hope for polynomial-size problem kernels for
Cluster Deletion parameterized by the “cluster vertex deletion number”. For
Cluster Editing an analogous result seems plausible but is still open.

The fixed-parameter tractability of (d, t)-Constrained-Cluster Editing (see
Definition 4.2) for the combined parameter (d, t) is based on a 4dt-vertex problem
kernel. It would be interesting to have a search tree algorithm complementing this
kernelization result.

The NP-hardness of Cluster Editing for instances with maximum degree six
directly raises the question whether Cluster Editing is polynomial-time solvable
for instances with maximum degree at most five. For instances of maximum degree
two, the polynomial-time solvability is easy to see. We conjecture that for maximum
degree three Cluster Editing is solvable in polynomial time. Analogously, it is open
whether (d, t)-Constrained-Cluster Editing is NP-hard for t ≤ 5.

Recently, Marx and Razgon [132] established the fixed-parameter tractability of
Correlation Clustering on general graphs. To the best of our knowledge the
(non)existence of polynomial-size problem kernels for Correlation Clustering is
still open.

Recall that a graph G is called (p, q)-cluster graph if its vertex set can be parti-
tioned into subsets with each subset missing at most p edges from being a clique and
having at most q edges going to other subsets [107]. Do (p, q)-cluster graphs have a
characterization by forbidden induced subgraphs of sizes upper-bounded by a function
of p and q? For constant values of p and q such a forbidden subgraph characterization
would lead to simple algorithms for recognizing (p, q)-cluster graphs and would imply
fixed-parameter tractability of (p, q, k)-Cluster Graph Editing parameterized by
the solution size k.

Chapter 5
Clustering With Overlaps

5.1 Introduction

Concerning graph-based data clustering, parameterized complexity investigations fo-
cussed mainly on Cluster Editing. Intensive studies have led to impressive theoret-
ical results and experimental studies demonstrating the practical usefulness of fixed-
parameter algorithms to solve Cluster Editing (see Chapter 4 for an overview).
However, Cluster Editing enforces a sometimes too strict notion of cluster graphs
by disallowing any overlap, and has been explicitly criticized for this lack of over-
laps [57].

In a nutshell, in this chapter we introduce generalizations of Cluster Editing
to allow for overlapping clusterings. Moreover, we investigate both the classical and
parameterized complexity of the introduced problems.

In Cluster Editing the task is to transform a graph into a cluster graph, that
is, a disjoint union of cliques. Numerous recent publications build on this concept
of cluster graphs (see Chapter 4 for more details). In some applications, however,
a data item may belong to several clusters. This is obvious for members of social
networks. Moreover, genes may be involved in several functional groups. To uncover
the overlapping community structure of complex networks in nature and society [141],
however, the concept of cluster graphs fails to model that clusters may overlap, which
may lead to artificial and, hence, meaningless classifications. In this chapter, we in-
troduce a graph-theoretic relaxation of the concept of cluster graphs by allowing, to
a certain extent, overlaps between the clusters (which are cliques). We distinguish
between “vertex overlaps” and “edge overlaps” and provide a thorough study of the
corresponding cluster graph modification problems. In this introductory section, we
formally define generalizations of Cluster Editing allowing for overlapping cluster-
ings. To this end, we consider edge modification problems (see Section 3.3 and, in
particular, Definition 3.1) where the desired graph properties ensure that each vertex
or edge is contained in at most s maximal cliques, respectively. Formally, for a fixed
positive integer s ≥ 1, the desired graph properties are defined as follows.

Definition 5.1 (s-vertex-overlap property and s-edge-overlap property). A graphG =
(V,E) has the s-vertex-overlap property (or s-edge-overlap property) if every vertex

54 5 Clustering With Overlaps

Figure 5.1: The shown example graph contains four maximal cliques, each of size
three. Moreover, each vertex is contained in at most two maximal cliques and each
edge is contained in one maximal clique. Hence, the shown graph has the 2-vertex-
overlap property and the 1-edge-overlap property. The critical clique graph of the
shown graph contains eight edges: the two critical cliques of size two are encircled by
dotted lines and all other vertices form critical cliques of size one.

(or edge) of G is contained in at most s maximal cliques.

Furthermore, we call a graph with s-vertex-overlap property an s-vertex-overlap
cluster graph and analogously, a graph with s-edge-overlap property an s-edge-overlap
cluster graph.

Clearly, a 1-vertex-overlap cluster graph consists of a vertex-disjoint union of
cliques. That is, 1-vertex-overlap cluster graphs are cluster graphs in the original
sense (see Chapter 4) and there is no overlap between the clusters. For larger values
of s, the overlap between the clusters increases. See Figure 5.1 for a graph fulfill-
ing the 2-vertex-overlap property and the 1-edge-overlap property. Furthermore, note
that, since if each vertex is contained in at most s maximal cliques then each edge is
contained in at most s maximal cliques, the class of s-vertex-overlap cluster graphs
is contained in the class of s-edge-overlap cluster graphs. Moreover, observe that a
star (a tree of diameter two) on n vertices has the 1-edge-overlap property, however,
its inner vertex is contained in n− 1 maximal cliques. Thus, bounded vertex overlap
imposes a higher restriction on the cluster graph than bounded edge overlap.

For the s-vertex-overlap property the respective edge modification problems, namely
to transform a graph by at most k edge modifications into an s-vertex-overlap cluster
graph, is called s-Vertex-Overlap Editing.

Definition 5.2. s-Vertex-Overlap Editing (s-VOE)
Input: An undirected graph G = (V,E) and an integer k ≥ 0.
Question: Can G be transformed into an s-vertex-overlap cluster graph by applying
at most k edge modifications?

Analogously, the deletion and addition versions for the s-vertex-overlap property
are called s-Vertex-Overlap Deletion (s-VOD) and s-Vertex-Overlap Ad-
dition (s-VOA), respectively. Moreover, in the case of edge overlap, we refer to
the respective problems as s-Edge-Overlap Editing (s-EOE), s-Edge-Overlap
Deletion (s-EOD), and s-Edge-Overlap Addition (s-EOA). By the discussion
above, 1-Vertex-Overlap Editing is the same as Cluster Editing.

Previous Work. To the best of our knowledge, relaxed versions of Cluster Edit-
ing and the cluster graph concept that allow for overlapping clusterings have been
largely unexplored.1 There are only two approaches studying overlapping cliques in

1See Chapter 4 for an overview of recent work dealing with relaxed versions of cluster graphs,
as for example so-called s-plex cluster graphs [96] and (p, q)-cluster graphs [107]. Note that these

5.1 Introduction 55

the context of Cluster Editing that we are aware of. The motivation of these works
also stems from the observation that in some application scenarios the restriction to
non-overlapping (that is, disjoint) clusters may lead to artificial and, hence, useless
classifications.

One approach was proposed by Barthélemy and Brucker [13] under the name t-
Zahn Clustering, where the aim is to obtain by a minimum number of edge mod-
ifications a graph in which each pair of maximal cliques has at most t− 1 vertices in
common. The base case t = 1 is thus equivalent to Cluster Editing. Moreover,
for t = 2 any two maximal cliques are allowed to overlap in at most one vertex, implying
that each edge is contained in at most one maximal clique. Hence, 2-Zahn Cluster-
ing is the same as 1-Edge-Overlap Editing. Among other things, Barthélemy and
Brucker [13] showed that 2-Zahn Clustering is NP-hard. The model of Barthélemy
and Brucker [13] allows, for constant t ≥ 3, for vertices and edges to be in an un-
bounded number of maximal cliques. In contrast, our model limits the number of
maximal cliques that a vertex or edge is contained in, but already for constant s there
can be maximal cliques that intersect in an unbounded number of vertices.

The second approach was presented by Damaschke [54] who investigated the Twin
Graph Editing problem. Here the goal is to obtain, by a minimum number k of
edge modifications, a critical clique graph with at most t edges, where t is specified
as part of the input. Recall that the critical clique graph is the representation of a
graph obtained by keeping for each set of vertices with identical closed neighborhoods
exactly one vertex as representative, see Section 2.6. Two vertices with identical closed
neighborhoods are also known as real twins and the notion “twin graph” is a synonym
for “critical clique graph”. In Figure 5.1, a graph is shown whose corresponding
critical clique graph has eight edges. Clearly, the twin graph of a cluster graph does
not contain any edges. Hence, Twin Graph Editing with t = 0 is the same as
Cluster Editing. Observe that in the model of Damaschke the overlap between the
clusters is measured by the total number of edges in the critical clique graph. In our
model, the overlap is measured by the number of maximal cliques involving a vertex
or edge. Thus, our model expresses a more local property of the target graph. The
main result of Damaschke [54] concerning Twin Graph Editing is fixed-parameter
tractability with respect to the combined parameter (t, k). Already for s = 2 our
s-vertex-overlap model includes graphs whose twin graphs can have an unbounded
number t of edges. Hence, s is not a function of t, implying that our model is not
subsumed by the model of Damaschke.

Our Results. We provide a thorough study of the computational complexity of
clustering with vertex and edge overlaps, extending previous work on Cluster Edit-
ing and closely related problems. In particular, in terms of the overlap number s,
we provide a complete complexity dichotomy (polynomial-time solvable versus NP-
hard) of the corresponding edge modification problems, most of them turning out to
be NP-hard (for an overview, see Table 5.1 in Section 5.3). For instance, whereas
Cluster Editing restricted to only allowing edge additions (also known as Clus-
ter Addition or 1-Vertex-Overlap Addition) is trivially solvable in polynomial
time, 2-Vertex-Overlap Addition turns out to be NP-hard. We also study the
parameterized complexity of clustering with overlaps. On the negative side, we show

relaxations do not allow for overlaps between the clusters.

56 5 Clustering With Overlaps

W[1]-hardness results with respect to the parameter “number of edge modifications”
in case of unbounded overlap number s. On the positive side, we prove that the
problems become fixed-parameter tractable for the combined parameter (s, k). This
result is based on forbidden subgraph characterizations of the underlying overlap clus-
ter graphs, which may be of independent graph-theoretic interest. In particular, it
turns out that the 1-edge-overlap cluster graphs are exactly the diamond-free graphs2.
Finally, we develop polynomial-time data reduction rules for two special cases. More
precisely, we show an O(k4)-vertex problem kernel for 1-Edge-Overlap Deletion
and an O(k3)-vertex problem kernel for 2-Vertex-Overlap Deletion, where in
both cases k denotes the number of allowed edge deletions. We conclude in Section 5.6
with a number of open problems.

See Section 2.6 for basic notation concerning graphs and Section 3.3.1 for basic
notation concerning edge modification problems.

5.2 Recognition and Forbidden Subgraph Charac-
terization

In this section, we show that, for each fixed s, it can be recognized in polynomial
time whether a given graph has the respective overlap property. Moreover, we will
show that the graph properties, for each fixed s, are characterized by a finite set of
forbidden induced subgraphs. More specifically, we show that the forbidden graphs
are all of order s2 and that there is a polynomial-time algorithm that, given a graph,
either determines that G fulfills the property or identifies an induced subgraph of G
that is forbidden.

For a graph G and a non-negative integer s, we can decide in polynomial time
whether G fulfills the s-vertex-overlap property using a clique enumeration algorithm
with polynomial delay.

Theorem 5.1. For a graph G = (V,E) and a non-negative integer s, there is an
algorithm that, in O(s · n3.376) (or O(s ·m · n2.376)) time, either

• finds a vertex (or an edge) that is contained in more than s maximal cliques, or

• correctly concludes that G has the s-vertex-overlap (or s-edge-overlap) property.

Proof. For each v ∈ V , we enumerate the maximal cliques in G[N [v]]. If we have
found s + 1 maximal cliques in G[N [v]] for some v ∈ V , then we abort the enumer-
ation and report that v is in more than s maximal cliques. Otherwise, each v ∈ V
is contained in at most s maximal cliques, and the graph thus fulfills the s-vertex-
overlap property. Using for example a polynomial-delay enumeration algorithm by
Makino and Uno [131] that relies on matrix multiplication and enumerates cliques
with delay O(n2.376), the overall running time of this algorithm is O(s · n3.376).

For the edge case a similar approach applies; the only difference is that we consider
the common neighborhood of the endpoints of every edge, that is, N [u] ∩N [v] for an
edge {u, v}.

2A diamond is the graph on four vertices that contains all but one of the six possible edges. An
illustration is given in Figure 5.6 on page 69.

5.2 Recognition and Forbidden Subgraph Characterization 57

The next lemma implies the existence of forbidden induced subgraph character-
izations for graphs having the s-vertex-overlap or the s-edge-overlap property (see
Definition 3.2 for the definition of hereditary graph properties).

Lemma 5.1. The s-vertex-overlap property and the s-edge-overlap property are hered-
itary.

Proof. To show that the s-vertex-overlap property is hereditary, it suffices to show the
following.

Claim: If G = (V,E) has the s-vertex-overlap property, then so does G−v
for any v ∈ V .

Assume that G has the s-vertex-overlap property but there exists a vertex v ∈ V
such that G − v does not have the s-vertex-overlap property. Then there exists a
vertex w ∈ NG(v) contained in at least s + 1 distinct maximal cliques of G − v,
say C1, . . . , Cs+1. For every 1 ≤ i ≤ s + 1, there exists a maximal clique Ki of G
with Ci ⊆ Ki. Moreover, since in G there are at most s maximal cliques containing w,
there exist i and j, 1 ≤ i < j ≤ s+ 1, such that Ki = Kj . However, since Ci and Cj
are two distinct maximal cliques of G − v, there exist vertices ui ∈ Ci and uj ∈ Cj
such that {ui, uj} /∈ E, a contradiction to the fact that Ki is a clique containing ui
and uj .

In complete analogy one shows that the s-edge-overlap property is hereditary, re-
placing the vertex w ∈ NG(v) with an edge {u,w} ⊆ NG(v) in the argument above.

Hereditary graph properties can be characterized by a finite or infinite set of forbid-
den induced subgraphs (see Section 3.3.1). Thus, by Lemma 5.1, such a set must exist
for s-vertex-overlap cluster graphs as well as for s-edge-overlap cluster graphs. Here,
we show that the minimal forbidden induced subgraphs contain O(s2) vertices. For
fixed s, the number of minimal forbidden induced subgraphs is thus finite. Further-
more, we describe an algorithm for efficiently finding a forbidden induced subgraph.

Theorem 5.2. For a graph G that violates the s-vertex-overlap (or s-edge-overlap)
property, one can find in O(s · n3.376 + s2 · n) (or O(s · m · n2.376 + s2 · n)) time
an O(s2)-vertex forbidden induced subgraph.

Proof. We first show the vertex case. Let G be a graph violating the s-vertex-overlap
property and let v be a vertex that is contained in more than s maximal cliques. From
Theorem 5.1 it follows that such a vertex can be found in O(s·n3.376) time. Given s+1
maximal cliques K1, . . . ,Ks+1 containing v, we find a forbidden induced subgraph as
follows. To “separate” two maximal cliques Ki and Kj , we need a vertex v1 ∈ Ki \Kj

and a vertex v2 ∈ Kj \Ki with {v1, v2} /∈ E. Clearly, such vertices exist since both Ki

and Kj are maximal. To “separate”every pair of s + 1 maximal cliques we need at
most 2

(
s+1

2

)
vertices. These vertices and v together induce a subgraph of order at

most (s+ 1) · s+ 1 and v is contained in at least s+ 1 maximal cliques in this graph.
For each pair of cliques, we can find the separating vertices in O(n) time, scanning the
vertex-lists of each clique, “marking” the vertices that are contained in both cliques,
and then keeping one unmarked vertex of each list. Altogether, we thus need O(s2 ·n)
time.

For the edge case, we can find in O(s·m·n2.376) time an edge {u, v} that is contained
in at least s+1 maximal cliques. The vertices needed to “separate” the s+1 maximal
cliques K1, . . . ,Ks+1 in G[N [v]∩N [u]] can be found analogously to the vertex case.

58 5 Clustering With Overlaps

Figure 5.2: The forbidden induced subgraphs for the 2-vertex-overlap property. In
every graph, the gray vertex is contained in at least three maximal cliques.

Table 5.1: Classical computational complexity of graph-based data clustering with
overlaps. Herein, “NPh” means that the respective problem is NP-hard and “P”
means that the problem can be solved in polynomial time.

s-vertex-overlap s-edge-overlap

Editing NPh for s ≥ 1 NPh for s ≥ 1
Deletion NPh for s ≥ 1 NPh for s ≥ 1
Addition P for s = 1, NPh for s ≥ 2 P for s = 1, NPh for s ≥ 2

Figure 5.2 illustrates the minimal forbidden induced subgraphs for graphs with the
2-vertex-overlap property. Many important graph classes are contained in the class
of graphs with some s-overlap property. For example, it is easy to see that diamond-
free graphs are equivalent to graphs with the 1-edge-overlap property. A diamond is
the graph that results from a four-vertex clique by deleting one edge. Diamond-free
graphs, that is, graphs containing no diamond as an induced subgraph, are a natural
graph class and have been already studied in earlier work [13, 153].

Proposition 5.1. A graph has the 1-edge-overlap property if and only if it is diamond-
free.

Proof. Clearly, a diamond does not satisfy the 1-edge-overlap property. Thus, every
1-edge-overlap cluster graph is diamond-free. Moreover, if a graph does not have
the 1-edge-overlap property, then there must be an edge contained in at least two
maximal cliques. Hence, there is a pair of non-adjacent vertices that are both adjacent
to the endpoints of this edge. Therefore, the graph contains at least one induced
diamond.

The property of being diamond-free can also be described as follows: every pair of
maximal cliques has at most one vertex in common. Graphs with the 1-edge-overlap
property are thus precisely the graphs with 2-Zahn property as defined by Barthélemy
and Brucker [13].

5.3 A Complexity Dichotomy with Respect to the
Overlap Number s

This section provides a complete picture of the classical computational complexity
of the introduced problems. The results are summarized in Table 5.1. With the
exception of the two basic addition problems for s = 1, all of the problems turn out
to be NP-hard.

5.3 A Complexity Dichotomy with Respect to the Overlap Number s 59

Figure 5.3: Illustration of the reduction from s-Vertex-Overlap Editing to (s+1)-
Vertex-Overlap Editing. Herein, every rectangular vertex represents a clique
on 2k + 2 vertices.

First, we show that if one of the problems is NP-hard for some s ≥ 1, then it
is NP-hard for every s′ ≥ s. The basic idea is that, given a problem instance for
some value s, we can reduce to an instance for s+ 1 by adding for every vertex v for
vertex overlap (respectively for every pair of distinct vertices u and v for edge overlap)
one “large” clique that intersects with the original instance only in v (respectively u
and v).

Lemma 5.2. For s ≥ 1, there is a polynomial-time many-one reduction from s-
Property Operation to (s+1)-Property Operation, where Property ∈ {Ver-
tex-Overlap, Edge-Overlap} and Operation ∈ {Editing, Deletion, Addi-
tion}.

Proof. First, we focus on the case of vertex overlap. We describe the reduction from s-
Vertex-Overlap Editing (s-VOE) to (s+1)-Vertex-Overlap Editing ((s+1)-
VOE). Moreover, we will observe that the same construction yields a reduction for the
deletion and addition variants as well. Second, we will show that the reduction can
be adapted to the case of edge overlap.

The reduction from s-VOE to (s + 1)-VOE works as follows. Given an s-VOE
instance G = (V,E) and an integer k, we construct an (s+1)-VOE instance consisting
of a graph H = (U,F) and an integer k′ := k. For the construction of H, initially, we
set H := G. Then, for every vertex v ∈ V , we add a set Cv of 2k + 2 new vertices
to H and we make {v} ∪ Cv a clique. An illustration of this construction is given in
Figure 5.3.

Next, we show the correctness of the reduction, that is, we show that G has a
solution of size at most k for S-VOE if and only if H has a solution of size at most k
for (s + 1)-VOE. First, consider a solution S of size at most k for s-VOE with input
graph G. In the graph that results from modifying G according to S, every vertex is
contained in at most s maximal cliques. Hence, if we modify H according to S, we
obtain a graph in which every vertex is contained in at most s + 1 maximal cliques.
Second, let S′ denote a solution of size at most k for (s + 1)-VOE for H. Moreover,
let H ′ = H∆S′. Since |S| ≤ k, there are at most 2k vertices that are affected by S.
Hence, in H ′ every vertex v ∈ V is adjacent to a non-empty set Nv ⊆ Cv of non-
affected vertices (since |Cv| = 2k + 2). This implies that for every vertex v ∈ V there
exists one maximal clique C ′v containing v with Nv ⊆ C ′v ⊆ Cv. Consequently, every
vertex v ∈ V can be contained in at most s further maximal cliques, and, hence, v

60 5 Clustering With Overlaps

can be contained in at most s maximal cliques in the induced subgraph H ′[V]. That
is, H ′[V] fulfills the s-vertex-overlap property and S := S′ ∩ P2(V) is a solution for
s-VOE for G (recall that for a set X of vertices P2(X) denotes the set of all possible
edges on X, see Section 2.6).

It is straightforward to verify that the given construction constitutes a reduction
from s-Vertex-Overlap Deletion and s-Vertex-Overlap Addition to (s+1)-
Vertex-Overlap Deletion and (s+1)-Vertex-Overlap Addition, respectively.
Moreover, it is not hard to verify that adding for every pair of distinct vertices u and v
(instead of every vertex) a clique Cu,v with 2k + 2 vertices, which intersects with the
original s-Edge-Overlap Operation instance only in u and v, yields a polynomial-
time many-one reduction for the edge case. The correctness proof works in complete
analogy.

The following NP-hardness results can be obtained directly from combining known
results with Lemma 5.2: Since Cluster Editing and Cluster Deletion (equiv-
alent to 1-Vertex-Overlap Editing and 1-Vertex-Overlap Deletion, respec-
tively) are NP-complete [125, 150], the NP-hardness of s-Vertex-Overlap Editing
and s-Vertex-Overlap Deletion for all s > 1 directly follows. Furthermore, 1-
Edge-Overlap Editing has also been shown to be NP-complete by a reduction from
Cluster Editing [13] that can also be used to show the NP-hardness of 1-Edge-
Overlap Deletion (simply by reducing from Cluster Deletion instead). The
NP-hardness for both the editing and the deletion variant and s > 1 thus also follows
for edge overlap. Overall, we arrive at the following theorem.

Theorem 5.3. s-Vertex-Overlap Editing, s-Vertex-Overlap Deletion, s-
Edge-Overlap Editing, and s-Edge-Overlap Deletion are NP-hard for s ≥ 1.

It thus remains to determine the classical computational complexity of s-Vertex-
Overlap Addition and s-Edge-Overlap Addition. 1-Vertex-Overlap Ad-
dition is trivially polynomial-time solvable: one has to transform every connected
component into a clique by adding the missing edges. The same observation can be
made for 1-Edge-Overlap Addition, since there exists only one possibility to de-
stroy a diamond by adding edges; by Proposition 5.1, diamonds are the only forbidden
subgraph of graphs having the 1-edge-overlap property.

In contrast, for s ≥ 2, both s-Vertex-Overlap Addition and s-Edge-Overlap
Addition become NP-hard, as we will show in the following.

Theorem 5.4. s-Vertex-Overlap Addition is NP-hard for s ≥ 2.

Proof. We present a polynomial-time many-one reduction from the NP-hard Max-
imum Edge Biclique problem [144] to 2-Vertex-Overlap Addition (2-VOA).
Then, for s ≥ 2, the NP-hardness follows directly from Lemma 5.2. The deci-
sion version of Maximum Edge Biclique is defined as follows: Given a bipartite
graph H = (U,W,F) and an integer l ≥ 0, does H contain a biclique with at least l
edges? A biclique is a bipartite graph with all possible edges.

The reduction from Maximum Edge Biclique to 2-VOA works as follows: For
a bipartite graph H = (U,W,F), we construct a graph G = (V,E), where V :=
U ∪W ∪ {r} and E := EF ∪ Er ∪ EU ∪ EW . Herein,

• EF := {{u,w} | u ∈ U,w ∈W} \ F ,

5.3 A Complexity Dichotomy with Respect to the Overlap Number s 61

a) b)r r

Figure 5.4: a) Example for the reduction from Maximum Edge Biclique (left graph)
to 2-Vertex-Overlap Addition (right graph), b) The graph on the left contains a
biclique with four edges (solid edges). Adding the edges not contained in this biclique
(dashed edges) to the graph on the right results in a graph that contains two maximal
cliques. The gray vertices are in both maximal cliques, the white and black vertices
are in one maximal clique.

• Er := {{r, x} | x ∈ U ∪W}, and

• EX := {{x, x′} | x, x′ ∈ X,x′ 6= x} for X ∈ {U,W}.
That is, the graph (U,W,EF) is the bipartite complement of H, in G both U and W
are cliques, and r is adjacent to all vertices in G. See Figure 5.4 a) for an illustration
of this construction.

For the correctness of the reduction, we show the following.

Claim: In the graph H there is a biclique with at least l edges if and only
if there exists a solution S with |S| ≤ |F | − l for 2-Vertex-Overlap
Addition for G.

“⇒”: Assume that H contains a biclique with at least l edges. Let U ′ ⊆ U and W ′ ⊆
W denote the vertices in such a biclique. Furthermore, let F ′ denote the edges not
contained in this biclique. That is, the removal of F ′ from H results in a graph that
consists of the disjoint union of isolated vertices and one complete bipartite graph with
at least l edges. Moreover, |F ′| ≤ |F | − l. Let G′ denote the graph that results from
adding the edges in F ′ to G.

Now, we argue that G′ fulfills the 2-vertex-overlap property, and, hence, S := F ′ is
a solution for 2-VOA for G. To this end, observe that in G′ any two vertices u, u′ ∈ U ′
have the same closed neighborhood. The same is true for any two vertices in W ′, U\U ′,
and W \W ′, respectively. With this observation, it follows that in G′ there are two
maximal cliques, namely the clique U ∪ (W \W ′)∪ {r} and the clique W ∪ (U \U ′)∪
{r}. Hence, every vertex in G′ is contained in at most two maximal cliques. See
Figure 5.4 b) for an example.
“⇐”: Assume that there exists a solution S with |S| ≤ |F | − l for 2-VOA for G.
Moreover, let G′ denote the graph that results from adding the edges in S to G. First,
note that, since S contains only edges not contained in G, all edges in S are between U
and W , and, hence, S ⊆ F . We show that the graph H ′ that results from deleting the
edges in S from H consists of isolated vertices and a complete bipartite graph with
at least l edges. Assume towards a contradiction that H ′ is not of the claimed form.
Then, either H ′ contains a connected component with more than one vertex that is
not a biclique, or H ′ contains at least two connected components with more than one
vertex. We distinguish both cases, and, in each case, derive a contradiction.

62 5 Clustering With Overlaps

First, assume that H ′ contains a connected component with more than one vertex
that is not a biclique. In this case, H ′ contains an induced P4, an induced path on
four vertices. Without loss of generality, we can assume that the first and the third
vertex, say u and u′, are from U and the second and fourth vertex, say w and w′, are
from W . Since G′[U∪W] is the (non-bipartite) complement graph of H ′, in G′ we have
an induced P4 containing the edges {u′, u}, {u,w′}, and {w′, w}. Since r is adjacent
to all vertices, this implies that G′[{u, u′, w, w′, r}] is isomorphic to the second graph
shown in Figure 5.2, a contradiction to the fact that G′ fulfills the 2-vertex-overlap
property.

Second, assume that H ′ contains at least two connected components with more
than one vertex. Let e = {u,w} and e′ = {u′, w′} with u, u′ ∈ U and w,w′ ∈W be two
edges from different connected components of H ′. This implies that G′[{u, u′, w, w′}]
is an induced cycle of length four. Furthermore, since r is adjacent to all ver-
tices, G′[{u, u′, w, w′, r}] is isomorphic to the third graph shown in Figure 5.2, a con-
tradiction to the fact that G′ fulfills the 2-vertex-overlap property.

Finally, we consider s-Edge-Overlap Addition. The reduction given in the
proof of Theorem 5.4 can be easily modified to show the NP-hardness of 2-Edge-
Overlap Addition: Simply replace the introduced vertex r by an edge e and connect
both endpoints of e to all vertices in the given bipartite graph of the Maximum Edge
Biclique instance. The correspondence between the solutions of both instances can
be shown in complete analogy with the vertex overlap case.

Theorem 5.5. s-Edge-Overlap Addition is NP-hard for s ≥ 2.

5.4 Parameterized Complexity

Here, we consider the parameterized complexity of overlap clustering. First, due to
Theorem 5.2, we have a set of forbidden subgraphs for both properties whose size only
depends on s. Cai [36] showed that edge modification problems for properties that
can be described by forbidden subgraphs of fixed size are fixed-parameter tractable
with respect to the parameter “solution size”. Hence, we can conclude that for both
overlap properties all three problems are fixed-parameter tractable with respect to the
combined parameter (s, k).

Theorem 5.6. For Π ∈ {s-Vertex-Overlap, s-Edge-Overlap}, Π-Editing, Π-
Addition, and Π-Deletion are fixed-parameter tractable with respect to the combined
parameter (s, k).

A naive estimation gives a running time bound of s4k ·nO(1) for the corresponding
search tree algorithms that branch into all cases (at most s4) to destroy an induced
forbidden subgraph with O(s2) vertices by deleting or inserting edges and then re-
cursively solve the created subinstances. Better branching strategies are conceivable,
in particular for small constant values for s for which all forbidden subgraphs can be
easily listed.

Next, we consider the parameterization with only k as the parameter. This means
that s can have an unbounded value. For this parameterization, we show that for both
overlap properties the deletion and editing problems are W[1]-hard by developing a
parameterized reduction from the W[1]-complete Set Packing problem [63]. We

5.4 Parameterized Complexity 63

leave open the parameterized complexity of the two addition problems with only k as
parameter.

Theorem 5.7. For Π ∈ {s-Vertex-Overlap, s-Edge-Overlap}, Π-Editing and
Π-Deletion are W[1]-hard with respect to the parameter k.

Proof. We give the proof details only for s-Vertex-Overlap Deletion (s-VOD),
and then discuss how the reduction can be modified to work for s-Vertex-Overlap
Editing and edge overlap. We show the W[1]-hardness of s-VOD by presenting a
parameterized reduction from the W[1]-complete Set Packing problem [63], which
is defined as follows:

Input: A family of sets S = {S1, . . . , Sn} over a universe U = {1, . . . ,m}
and a nonnegative integer k ≤ n.
Question: Is there a set S ′ ⊆ S such that |S ′| ≥ k and ∀Si, Sj ∈ S ′ :
Si ∩ Sj = ∅?

Consider an instance I = (S, k) of Set Packing. Without loss of generality we
can assume that k < m and k < n. We construct an s-VOD instance (G = (V,E), k)
as follows. The vertex set V comprises six subsets VU , VS , VX , VY , VC , and VP :

• VU := {u1, . . . , um} contains one vertex for each element i ∈ U .

• VS := {s1, . . . , sn} contains one vertex for each Si ∈ S.

• VX := {x1, . . . , xk} contains k vertices and VY := {y1, . . . , y2k+1} contains 2k +
1 vertices; together they serve as a “selection” gadget.

• VC contains vertices that are part of some “shielding” cliques. With these cliques,
we can enforce that some edges will never be edited.

• VP contains “padding” cliques that are used to increase the number of maximal
cliques for certain vertices.

First, we describe the construction of the graph G[VU ∪ VS ∪ VX ∪ VY], then we
describe how the additional cliques are added to this graph. For a vertex si ∈ VS
corresponding to set Si and a vertex uj ∈ VU corresponding to an element j ∈ U , we
add the edge {uj , si} if j ∈ Si. Furthermore, we connect each xi ∈ VX by edges to
all vertices in VU ∪ VS . Finally, we make VY a clique and connect each y ∈ VY to all
vertices in VX ∪ VS . This concludes the construction of G[VU ∪ VS ∪ VX ∪ VY]. An
example is shown in Figure 5.5a.

Next, the shielding cliques are added. For each xi ∈ VX we add the vertex
set Cxi := {cxi1 , . . . , c

xi
k+1} to VC . Furthermore, we make Cxi ∪ {xi} ∪ VY a clique.

This construction ensures that deleting the edge {xi, sj} for a vertex xi ∈ VX and sj ∈
VS decreases the number of maximal cliques that contain xi by one: the maximal
clique K = {xi, sj} ∪ VY is destroyed and the clique K ′ = {xi} ∪ VY (which af-
ter deleting {xi, sj} is the maximal subset of K that is a clique) is a subset of the
clique {xi} ∪ VY ∪ Cxi . Furthermore, no additional maximal cliques are created by
the deletion of {xi, sj}.

Then, for each edge {ui, sj}, and for each xl ∈ Vx, we add the vertex set Cui,sj ,xl :=
{cui,sj ,xl1 , . . . , c

ui,sj ,xl
k+1 } to VC and we make {ui, sj , xl} ∪Cui,sj ,xl a clique. This clique

64 5 Clustering With Overlaps

a) b)

s1

u1 u2

x1

VY

s1 x1

VY

u1

Figure 5.5: Parts of the graph constructed in the reduction from Set Packing to s-
Vertex-Overlap Deletion. Rectangles depict cliques of size at least k + 1. a)
A subgraph containing u1, u2 ∈ VU , s1 ∈ VS , x1 ∈ VX , and VY . Edges are drawn
between si ∈ VS and uj ∈ VU if j ∈ Si. Here, 1 ∈ S1 but 2 /∈ S1. b) Shielding cliques
are added for each triangle in G[VU ∪VX ∪VS] and between xi and VY for all xi ∈ VX .

has the following purpose: if we delete an edge {sj , xl}, then we increase the number
of maximal cliques that contain ui. Altogether, the shielding cliques ensure that in
order to decrease the number of maximal cliques for a vertex xi ∈ VX with at most k
edge deletions, one can only delete edges between xi and VS . An example of these
shielding cliques is shown in Figure 5.5b.

Before we describe how the padding cliques are added, we compute the number
of maximal cliques in G[VU ∪ VS ∪ VX ∪ VY ∪ VC] that each vertex v ∈ VU ∪ VX is
contained in. We denote this number for some vertex v by #(v).

• Each vertex ui ∈ VU is contained in #(ui) = |N(ui) ∩ VS | · k ≤ n · k maximal
cliques: For each sj ∈ N(ui)∩VS and each xl ∈ VX the set {ui, sj , xl}∪Cui,sj ,xl
is a maximal clique since VX and VS are independent sets and by the definition
of VC ; no other maximal cliques contain ui.

• Each vertex xi ∈ VX is contained in

#(xi) =
∑
sj∈VS

(|N(sj) ∩ VU |+ 1) + 1 ≤ n · (m+ 1) + 1

maximal cliques: For each sj ∈ VS and for each ul ∈ N(sj) ∩ VU the set
{xi, sj , ul} ∪Cul,sj ,xi is a maximal clique, for each sj ∈ VS the set {xi, sj} ∪ VY
is a maximal clique, and {xi} ∪ VY ∪Cxi is a maximal clique; no other maximal
cliques contain xi.

We add padding cliques of size k + 1 that are “attached” to the vertices in VU
and VX as follows. For each ui ∈ VU , we add n · (m + 1) − 1 − #(ui) size-(k + 1)
vertex sets Cuil to VP , where 1 ≤ l ≤ n · (m + 1) − 1 − #(ui). For each Cuil , we
make {ui} ∪ Cuil a clique. Then, for each xi ∈ VX , we add n · (m + 1) + 1 − #(xi)
size-(k + 1) vertex sets Cxil to VP , where 1 ≤ l ≤ n · (m+ 1) + 1−#(xi). Again, for
each Cxil , we make {xi}∪Cxil a clique. Note that since k < m and k < n, the number
of added cliques is nonnegative.

This concludes the construction of G. Note that in G

• each vertex ui ∈ VU is contained in exactly n · (m+ 1)− 1 maximal cliques (by
the definition of #(ui) and the number of added padding cliques),

5.4 Parameterized Complexity 65

• each vertex xi ∈ VX is contained in exactly n · (m+ 1) + 1 maximal cliques (by
the definition of #(xi) and the number of added padding cliques),

• each vertex yi ∈ VY is contained in exactly n ·k+k < n ·(m+1) maximal cliques
(one maximal clique for each pair of xj ∈ VX and sl ∈ VS , and one maximal
clique for each {xj} ∪ Cxj , xj ∈ VX),

• each vertex si ∈ VS is contained in exactly k · (|N(si) ∩ VU | + 1) < n · (m + 1)
maximal cliques (one maximal clique for each pair of xj ∈ VX and ul ∈ N(si)∩VU
and, furthermore, for each xj ∈ VX the maximal clique {si, xj} ∪ VY), and

• each vertex v ∈ VP ∪ VC is contained in exactly one maximal clique.

Finally, we set s := n·(m+1). Clearly, the construction can be performed in polynomial
time. The main idea of the reduction can be described as follows. For each vertex
in VX we have to reduce the number of maximal cliques it is contained in. This can
only be done by deleting edges between VX and VS . This corresponds to selecting a
set in the Set Packing instance. However, we also force that for each vertex in VU
the number of maximal cliques it is contained in increases at most by one. Hence, at
most one of its neighbors in VS can be “selected”. This corresponds to the disjointness
of the sets of the Set Packing solution.

To show the W[1]-hardness of s-VOD parameterized by k, we prove the following.

Claim: (I, k) is a yes-instance for Set Packing if and only if (G, k) is a
yes-instance for (n · (m+ 1))-VOD.

“⇒”: Let S ′ be a size-k solution of Set Packing, and assume without loss of gen-
erality that S ′ = {S1, . . . , Sk}. We obtain a solution S′ of (n · (m + 1))-VOD by
setting S′ := {{xi, si} | 1 ≤ i ≤ k}. Let G′ := G∆S′. To see that G′ fulfills the
(n · (m + 1))-vertex-overlap property, we only need to consider vertices v ∈ V such
that there is at least one edge that has been removed from G[N [v]], since for the other
vertices the number of maximal cliques containing them has not changed.

First, since S ′ is a solution for Set Packing, for each ui ∈ VU , there is at most
one sj ∈ N [ui] with 1 ≤ j ≤ k. Hence, at most one edge in G[N [ui]] has been removed.
Let {sj , xj} denote such an edge. There is one maximal clique in G that contains ui, sj ,
and xj , namely, {ui, sj , xj} ∪ Cui,sj ,xj . After the deletion of {sj , xj}, we have two
maximal cliques that contain the vertices from Cui,sj ,xj , namely Cui,sj ,xj ∪ {ui, sj}
and Cui,sj ,xj ∪ {ui, xj}. Hence, for each ui ∈ VU the number of maximal cliques has
increased by at most one. Therefore, each ui ∈ VU is in at most n · (m+ 1) maximal
cliques.

Next, we show that for each vertex xi ∈ Vx the number of maximal cliques has
decreased by one. This can be seen as follows. For each xi ∈ VX , we have removed
only the edge {si, xi} in G[N [xi]]. This means that the number of maximal cliques
that contain xi cannot increase. Furthermore, by removing {si, xi} we destroy the
maximal clique {si, xi} ∪ VY , since the clique {xi} ∪ VY is a subset of the existing
shielding clique {xi} ∪ VY ∪ Cxi . The number of maximal cliques that contain xi has
thus decreased by one. Hence, each xi ∈ Vx is now in exactly n·(m+1) maximal cliques.
For each vertex in v ∈ VY the number of maximal cliques that it is contained in has not
increased, since for each {xi, si} that was deleted, the maximal clique {si, xi} ∪ VY is

66 5 Clustering With Overlaps

destroyed, the clique VY ∪{si} becomes a new maximal clique, and the clique VY ∪{xi}
is a subset of the clique VY ∪ {xi} ∪ Cxi .

For each vertex si ∈ VS , the number of maximal cliques that contain si has not
increased, since if an edge in G[N [si]] has been deleted, then it is the edge {si, xi}.
Since this edge is incident to si, its deletion does not increase the number of maximal
cliques that contain si. Hence, each si ∈ VS is still in at most n · (m + 1) maximal
cliques.

Finally, each v ∈ VP ∪ VC is contained in at most two maximal cliques in G′, since
each v ∈ VP ∪ VC is contained in at most one maximal clique in G, and at most one
edge in G[N [v]] has been deleted.

Altogether, each vertex in G′ is contained in at most n · (m + 1) maximal cliques
and S′ is thus a size-k solution for n · (m+ 1)-VOD.

“⇐”: Let S′ be a size-k solution for (G, k) and G′ := G∆S′.

First, we show that for each xi ∈ VX , at least one edge between xi and VS must be
deleted. To see this, consider the following. There are n · (m+ 1) + 1 maximal cliques
that contain xi. Hence, the number of maximal cliques containing xi must be reduced
by at least one. The vertex xi is contained in two types of maximal cliques: those
that contain a shielding or a padding clique and those that contain xi, VY , and one
vertex sj ∈ VS . Note that with k edge deletions, we cannot decrease the number of
maximal cliques that contain both xi and some shielding (or padding) clique. This can
be seen as follows. The shielding and padding cliques are pairwise vertex-disjoint in G
and with k edge deletions, for each shielding or padding clique there remains at least
one vertex that is adjacent to xi in G′. Next, consider the cliques that contain xi, VY ,
and one vertex from VS . In G, there are exactly |VS | cliques of this type. Suppose S′

does not delete any edges between xi and VS . We show that in this case G′ contains
at least |VS | cliques of this type. Consider some sj ∈ VS . Since VY has size 2k + 1,
there is in G′ at least one vertex y ∈ VY that is adjacent to xi and sj . Hence, for
each sj there is at least one maximal clique that contains xi, sj , and y. Since VS is an
independent set, this means that there are at least |VS | maximal cliques of this type
in G′. Hence, the number of cliques that contain xi has not decreased in the case that
we do not delete any edge between xi and VS . Therefore, a size-k solution S′ contains
for each xi ∈ VX an edge from xi to a vertex from VS .

Second, we show that for each si ∈ VS there is at most one edge incident to si that is
deleted by S′, and thus that S′ corresponds to a size-k subset of S. Suppose, otherwise,
that for some si ∈ VS , at least two incident edges, say {si, xi} and {si, xj} have been
deleted. Then, for each ul ∈ VU ∩N(si) the number of maximal cliques that contain ul
has increased by at least two, since, instead of the two maximal cliques {si, xi, ul} ∪
Cul,si,xi and {si, xj , ul} ∪ Cul,si,xj that are destroyed, there are now four maximal
cliques (two for each deleted edge, one that contains si and one that contains xi or xj ,
respectively). Then, however, uj is in more than n · (m + 1) maximal cliques, which
contradicts that S′ is a solution. Hence, we can assume without loss of generality
that S′ := {{si, xi} | 1 ≤ i ≤ k}.

Finally, we show that the set S ′ := {Si | 1 ≤ i ≤ k} is a solution of the Set-
Packing instance (I, k). To this end we show that each u ∈ VU can have at most one
neighbor in {si | 1 ≤ i ≤ k}. Otherwise, the number of maximal cliques that contain u
has increased by at least two, a contradiction to the fact that S′ is a solution. Hence, S ′
is a size-k subset of S such that every u ∈ U is contained in at most one Si ∈ S ′.

5.5 Two Kernelization Results for Edge Deletion 67

Altogether, we have shown the equivalence between the solutions of s-Vertex-
Overlap Deletion and Set Packing. This implies that s-Vertex-Overlap
Deletion is W[1]-hard when parameterized only by k.

For s-Vertex-Overlap Editing, the construction has to be modified as follows.
Instead of adding only one clique VY , we add a clique Cij for each pair of vertices xi
and sj . This ensures that adding edges between distinct sj , sl ∈ VS does not reduce
the number of cliques that each xi is contained in. Note also that edge additions
between distinct ui, uj ∈ VU and between VU and VS do not decrease the number of
cliques that a vertex from xi is contained in because of the large shielding cliques for
each triangle in G[VU ∪ VS ∪ VX]. Hence, the only choice to decrease the number of
cliques that each xi ∈ VX is contained in is again the deletion of an edge between xi
and VS . The correctness proof then works in complete analogy with the deletion case.

For s-Edge-Overlap Deletion and Editing, we replace each vertex of v ∈
VU ∪ VX with two adjacent vertices, and add further “shielding cliques” that ensure
that the edge between these two vertices is not deleted. The correctness proofs work
analogously; we omit the details.

5.5 Two Kernelization Results for Edge Deletion

Nontrivial overlap clustering problems seem to be algorithmically more demanding
than clustering without overlaps. In particular, finding polynomial-size problem ker-
nels turned out to be challenging even for small constant values of s. We present
polynomial-time kernelization algorithms for the two most basic NP-hard clustering
problems with nontrivial overlap. More precisely, we present an O(k4)-vertex problem
kernel for 1-Edge-Overlap Deletion and an O(k3)-vertex kernel for 2-Vertex-
Overlap Deletion.

Both kernelization algorithms make use of the universal data reduction rules pre-
sented in Section 3.4. Recall that a clique K is called critical clique if all its vertices
have an identical closed neighborhood and K is maximal under this property (see
Definition 2.4). In Section 3.4, we presented a data reduction rule that applies for
hereditary graph properties and shrinks large critical cliques. More precisely, for r-
clip graph properties Reduction Rule 3.2 deletes all but k + r vertices of a critical
clique. Recall that a graph property Π is called r-critical clique preserving (r-clip) if
the sizes of the critical cliques of the forbidden induced subgraphs characterizing Π
are bounded from above by r (Definition 3.3).

5.5.1 An O(k4)-Vertex Kernel for 1-Edge-Overlap Deletion

We present a kernelization for 1-edge-overlap Deletion, which, by Proposition 5.1,
is equivalent to the problem of destroying diamonds by at most k edge deletions. We
introduce four data reduction rules for this problem and show that a yes–instance
reduced with respect to these rules has O(k4) vertices. Reduction Rules 5.1, 5.2,
and 5.4 find parts of the graph that need not be modified by optimal solutions, whereas
Reduction Rule 5.3 identifies edges that must be in any solution of size at most k.

Reduction Rule 5.1. If there is a maximal clique K containing only edges which
are not in any other maximal clique, then remove all edges of K.

68 5 Clustering With Overlaps

Lemma 5.3. Reduction Rule 5.1 is correct and can be carried out in O(m2) time.

Proof. Let G denote the input instance and G′ be the graph resulting from applying
Reduction Rule 5.1 to a maximal clique K in G. To show the correctness of Reduction
Rule 5.1, we prove the following.

Claim: (G, k) is a yes-instance if and only if (G′, k) is a yes-instance.

“⇒”: Let S denote an optimal solution for G. Then S contains no edge from K.
To see this, observe that the only possible way to create a diamond containing some
edge from K is to delete edges from K. However, since all edges of K are not in a
diamond in G, an optimal solution will never delete them. This means that K remains
a maximal clique in G∆S and no two vertices of K have common neighbors outside
of K. Thus, removing the edges of K from G∆S does not create any diamond and S
is also a solution for G′.

“⇐”: Observe that after applying Reduction Rule 5.1 to K, no two vertices of K
have common neighbors in G′, since otherwise the edge connecting these two vertices
would be contained in a diamond in G. Therefore, we can add the edges of K to the
graph G′′ := G′∆S, where S is an optimal solution for G′, without destroying the
1-edge-overlap property of G′′.

To check the applicability of Reduction Rule 5.1, we compute for each edge whether
it is in only one maximal clique K. If so, we check further for all edges of K whether K
is the only maximal clique in which these edges are contained. Clearly, this is doable
in O(m2) time.

Reduction Rule 5.2. Remove all isolated vertices.

Reduction Rule 5.2 is clearly correct and can be performed in linear time. After
the exhaustive application of Reduction Rule 5.1, Reduction Rule 5.2 is sufficient to
remove all vertices from G that are not in a diamond, as we show in the following.

Proposition 5.2. Let G be a graph that is reduced with respect to Reduction Rules 5.1
and 5.2. Then every vertex in G is contained in a diamond.

Proof. Assume towards a contradiction that G contains a vertex v that is not contained
in any diamond. Since G is reduced with respect to Reduction Rule 5.2, v has at
least one neighbor. Furthermore, since v is not contained in any diamond, G[N(v)]
is a cluster graph, that is, a disjoint union of cliques. Let K be one of the cliques
of G[N(v)]. Clearly, K ∪ {v} is a maximal clique in G. Furthermore, since v is not
contained in any diamond, there is no vertex u ∈ V \ N [v] that is adjacent to more
than one vertex in K. Hence, none of the edges of G[K ∪ {v}] is contained in any
other maximal clique K ′ 6= K ∪ {v}. This contradicts G being reduced with respect
to Reduction Rule 5.1.

Reduction Rule 5.3. If there is an edge e = {u, v} such that the complement graph
of G[N(u) ∩ N(v)] contains a matching of size greater than k, then remove e, add e
to the solution, and decrease the parameter k by one.

Lemma 5.4. Reduction Rule 5.3 is correct and can be carried out in O(m2
√
n) time.

5.5 Two Kernelization Results for Edge Deletion 69

Figure 5.6: A diamond. The only critical clique of size two is encircled by dotted lines.

Proof. For e = {u, v}, let Ge denote G[N(u)∩N(v)]. Every edge e′ in the complement
graph Ge of Ge implies a diamond in G consisting of the endpoints of e′ and u and v.
Therefore, every matching of Ge corresponds to a set of diamonds in G, whose edge
sets pairwise only have e in common. Hence, to destroy all these diamonds, we either
delete e or delete one edge for every diamond. A matching of size greater than k thus
forces the deletion of e. Since a maximum matching can be computed in O(m

√
n)

time [134], the applicability of Reduction Rule 5.3 can be checked in O(m2
√
n) time

by iterating over all edges of G.

The final data reduction rule shrinks large cliques whose vertices have identical
neighborhoods, so-called critical cliques (see Definition 2.4 for a formal definition of
critical cliques). Recall that 1-Edge-Overlap Deletion is equivalent to the problem
of destroying all induced diamonds by at most k edge deletions (see Proposition 5.1).
As depicted in Figure 5.6, the largest critical clique in a diamond has size two. Hence,
the property of being diamond-free is a 2-critical clique preserving graph property.
Thus, Reduction Rule 3.2 ensures that we can savely remove all but k + 2 arbitrary
vertices of each critical clique. That is, for 1-Edge-Overlap Deletion Reduction
Rule 3.2 reads as follows.

Reduction Rule 5.4. If there is a critical clique K with more than k + 2 vertices,
then remove arbitrary vertices from K until |K| = k + 2.

See Lemma 3.3 for the correctness and running time of Reduction Rule 5.4. Making
combined use of Reduction Rules 5.1-5.4, we obtain a polynomial-size problem kernel
for 1-Edge-Overlap Deletion.

Theorem 5.8. 1-Edge-Overlap Deletion admits a problem kernel with O(k4)
vertices which can be found in O(m3

√
n) time.

Proof. Let G denote an input graph reduced with respect to the above four data
reduction rules, and let S be a solution of size at most k. Partition the vertices of
the graph G′ := G∆S into two subsets, one set X containing the vertices that are
endpoints of edges deleted by S, and Y := V \X. Clearly, |X| ≤ 2k. It thus remains
to show that |Y | = O(k4). Define for each edge e ∈ S the set Ye containing the vertices
in Y that, in G, occur together with e in at least one diamond. By Proposition 5.2, Y =⋃
e∈S Ye. First, we show that every maximal clique K in G′[Y] is contained in Ye for

some e ∈ S. Second, we show that for each e ∈ S at most 4k maximal cliques of G′[Y]
are contained in Ye, which means that there can be at most 4k2 maximal cliques
in G′[Y]. Finally, we show that each of these cliques contains O(k2) vertices, yielding
the claimed overall bound on the number of vertices.

First, we show that for every maximal clique K in G′[Y] there is an edge e ∈ S
with K ⊆ Ye. In G, there is a maximal clique K ′ containing K and, by Reduction

70 5 Clustering With Overlaps

Rule 5.1, K ′ has an edge {u, v} which is in two maximal cliques, and thus there is a
vertex x ∈ K and a vertex w ∈ V \K ′ such that G[{u, v, w, x}] is a diamond. Note that
if |K ∩ {u, v}| = 2, then no edge of G[{u, v, w, x}] is contained in G[X], contradicting
the fact that S is a solution. We distinguish the cases that |K ∩ {u, v}| is either 1
or 0. First, consider the case that |K ∩ {u, v}| = 1. Without loss of generality,
let u ∈ K and v ∈ K \K ′. Note that {v, w} is the only edge of G[{u, v, w, x}] with
both endpoints in X, and hence {v, w} ∈ S. We show that for every x′ ∈ K it
holds that G[{u, v, w, x′}] is a diamond, and, hence, K ⊆ Yv,w. Assume towards a
contradiction that there is a vertex x′ ∈ K such that G[{u, v, w, x′}] is not a diamond.
Observe that G[{u, v, w, x′}] is a clique and, hence, G′[{u, v, w, x′}] is a diamond,
contradicting the fact that S is a solution. Second, consider the case that |K∩{u, v}| =
0, that is, u, v ∈ K ′ \ K. If for every vertex x′ it holds that G[{u, v, w, x′}] is a
diamond, then K ⊆ Y ′e for at least one e′ ∈ {{u, v}, {v, w}, {u,w}}. Otherwise, there
is a vertex x′ ∈ K such that G[{u, v, w, x′}] is a clique. Then, however G[{v, w, x, x′}]
is a diamond and the first case applies since {x′, v} is contained in two maximal cliques
and x′ ∈ K and v ∈ K ′ \K.

Second, we show that, for every edge e = {u, v} ∈ S, at most 4k maximal cliques
ofG′[Y] are subsets of Ye. Clearly, all vertices in Ye must be adjacent to at least one of u
and v. Let Nu,v denote the common neighbors of u and v in Ye. Since G′ is diamond-
free, Nu,v is an independent set and, by Reduction Rule 5.3, |Nu,v| ≤ 2k. Let Nu :=
(N(u)\N(v))∩Ye and Nv := (N(v)\N(u))∩Ye. Since Nu,v is an independent set, no
vertex from Nu ∪Nv can be adjacent to two vertices in Nu,v. Then, we can partition
the vertices in Nu ∪ Nv into at most 4k subsets according to their adjacency to the
vertices from Nu,v = {x1, . . . , xl} with l ≤ 2k, every subset Nu,xi (or Nv,xi) containing
the vertices in N(u) ∩ N(xi) (or N(v) ∩ N(xi)). Each subset Nu,xi is a clique, since
otherwise two non-adjacent vertices from Nu,xi would form a diamond with xi and u.
The same holds for each Nv,xi . Furthermore, there cannot be an edge between Nu,xi
and Nu,xj with i 6= j, since otherwise two adjacent vertices w ∈ Nu,xi and y ∈ Nu,xj
would form a diamond with u and xi. Moreover, there is no maximal clique K of G′[Y]
completely contained in Ye and containing an edge {a, b} such that a ∈ Nu,xi and b ∈
Nv,xj for i, j ∈ {1, . . . , `}. Suppose that such a clique K exists. Note that a and b
must have a common neighbor in G—otherwise, the edge {a, b} is a maximal clique
to which Reduction Rule 5.1 applies, and thus it would have been removed. Hence,
any maximal clique containing a and b also contains at least one further vertex w. In
case K ⊆ Ye, this further vertex is in N(u)∪N(v). Suppose without loss of generality
that w ∈ N(u). Then G′[{u, a, b, w}] is a diamond, contradicting the diamond-freeness
of G′.

In summary, we have at most 4k maximal cliques in G′[Y] which are entirely
contained in Ye. Since there are at most k different Ye’s, and since every maximal
clique in G′[Y] is completely contained in at least one Ye, there can be at most 4k2

maximal cliques in G′[Y].
Finally, we show that every maximal clique K in G′[Y] contains O(k2) vertices.

This can be seen as follows. From the vertices of K, only 4k2 many can be in more
than one maximal clique in G′[Y], since every two cliques in G′[Y] overlap in at most
one vertex. Moreover, as argued above, K ⊆ Ye for some e = {u, v} ∈ S and there is
exactly one vertex in K which is adjacent to both u and v. Let K ′ denote the remaining
vertices of K, that is, each vertex of K ′ has no neighbors in Y \ K and is adjacent
to at most one of u and v. We show that |K ′| ≤ 2k + k + 2. Clearly, we can assume

5.5 Two Kernelization Results for Edge Deletion 71

a b

c

a b

c

Figure 5.7: Counterexample for the correctness of Reduction Rule 5.1 for 1-Edge-
Overlap Editing. The vertices a and b form a diamond with every pair of vertices
from the 4-clique in the middle. Since b and c do not have any common neigh-
bor, {b, c} is a maximal clique and {b, c} is not contained in any other maximal clique.
Hence, for 1-Edge-Overlap Deletion, by Reduction Rule 5.1 one can safely re-
move edge {b, c}. In contrast, for 1-Edge-Overlap Editing, the resulting instance
(on the right) is not equivalent to the original instance (on the left): By adding the
edge {a, b} the new instance becomes diamond-free. However, it is easy to observe that
the original instance can not be transformed into a diamond-free graph by applying
only one edge modification.

that |K ′| > 2, since otherwise the claim is trivially fulfilled. Note that K ′ ⊆ N(u)
or K ′ ⊆ N(v), since otherwise there would be a vertex a ∈ K ′ that is adjacent to u but
not to v and a vertex b ∈ K ′ that is adjacent to v but not to u. Moreover, since |K ′| > 2
there is a vertex x′ ∈ K ′ that is either adjacent to u or v. Assume without loss of
generality that {x′, u} ∈ E. Then, however G′[{a, b, u, x′}] is a diamond. We now
claim that for every vertex w ∈ X \ {u, v}, either K ′ ⊆ N(w) or |N(w) ∩ K ′| ≤ 1.
Assume the claim is not true. Then we have two vertices a, b ∈ K ′ ∩ N(w) and one
vertex c ∈ K ′ \ N(w). This implies that there is a diamond consisting of a, b, c, w
in G′, contradicting that G′ is diamond-free. This claim implies that all except for
at most 2k vertices in K ′ have the same neighborhood in X. This means that they
have the same neighborhood in G and thus they form a critical clique. By Reduction
Rule 5.4, there can be at most k+ 2 of such vertices. Hence, K contains altogether at
most 4k2 + 1 + 2k + k + 2 vertices.

Summarizing, we have at most 4k2 maximal cliques in G′[Y], and each clique
contains at most 4k2 + 3k + 3 vertices. Hence, |Y | = O(k4). Since each of the four
data reduction rules is performed at most O(m) times, the running time follows from
Lemmas 5.3–5.4 and Lemma 3.3.

Finally, we note that all presented data reduction rules for 1-Edge-Overlap
Deletion with exception of Reduction Rule 5.1 are correct for 1-Edge-Overlap
Editing, as well. Indeed, in Figure 5.7 we present a simple counterexample for the
correctness of Reduction Rule 5.1 for 1-Edge-Overlap Editing. However, for the
analysis of the kernel size in the proof of Theorem 5.8 it is decisive that every vertex of
a reduced instance is contained in an induced diamond (see Proposition 5.2) which, in
turn, is a consequence of the assumption that the instance is reduced with Reduction
Rule 5.1.

5.5.2 An O(k3)-Vertex Kernel for 2-Vertex-Overlap Deletion

We present four polynomial-time data reduction rules for 2-Vertex-Overlap Dele-
tion and show that a yes–instance reduced with respect to these rules has O(k3) ver-

72 5 Clustering With Overlaps

tices. In the following, we say that a vertex is satisfied if it is contained in at most
two maximal cliques and a clique is satisfied if all its vertices are satisfied. Moreover,
a maximal clique all whose vertices are satisfied is called a satisfied maximal clique.

Next, we argue that the 2-vertex-overlap property is a 1-critical clique preserv-
ing (1-clip) graph property, and, hence, we can make use of the universal data re-
duction rules and structural observations concerning edge modification problems for
1-clip graph properties presented in Section 3.4. Figure 5.2 (see Section 5.2) shows
the forbidden induced subgraphs for graphs with the 2-vertex-overlap property. It is
straightforward to verify that for each forbidden induced subgraph no two adjacent
vertices have the same neighborhood. This implies that the 1-vertex-overlap property
is a 1-clip graph property (see Definition 3.3).

Thus, by Reduction Rule 3.2 it suffices to keep k+ 1 vertices for critical cliques of
size at least k + 2. More specifically, for 2-Vertex-Overlap Deletion Reduction
Rule 3.2 reads as follows.

Reduction Rule 5.5. If there is a critical clique K with more than k + 1 vertices,
then remove arbitrary vertices from K until |K| = k + 1.

Moreover, since the 2-vertex-overlap property is an 1-critical clique preserving
graph property, Lemma 3.7 applies for 2-Vertex-Overlap Deletion. Recall that
Lemma 3.7 says that there always exists an optimal solution S such that all vertices
having the same closed neighborhood in the input graph G also have the same closed
neighborhood in G∆S and, hence, are contained in the same maximal cliques in G∆S.
Lemma 3.7 is central for the correctness of the following data reduction rules. Recall
Lemma 3.7.

Lemma 5.5. There is an optimal edge modification set S ⊆ E such that every critical
clique K of G is part of a critical clique in G∆S.

The next rule deals with maximal cliques all whose vertices and neighboring vertices
are contained in at most two maximal cliques. The rule removes all edges of such a
clique whose endpoints are contained in different maximal cliques, splitting the clique
into smaller parts.

Reduction Rule 5.6. If there exists a satisfied maximal clique K such that all
vertices in N(K) are satisfied, then remove every edge e for which K is the only
maximal clique containing e.

To prove the correctness of Reduction Rule 5.6, we use the following two lemmas.

Lemma 5.6. Let K and K ′ be two maximal cliques with K ∩K ′ 6= ∅. If all vertices
in K ∩K ′ are satisfied, then

1. there is no edge between K \K ′ and K ′ \K, and

2. K is vertex-disjoint to all other maximal cliques intersecting with K ′.

Proof. First, we prove part 1. Assume towards a contradiction that there exist two
vertices v ∈ K \ K ′ and u ∈ K ′ \ K such that v and u are adjacent. Let x ∈
K ∩K ′. Clearly, {u, v, x} forms a clique. Let X denote an arbitrary maximal clique
containing {u, v, x}. Note that X is neither K (since u 6∈ K) nor K ′ (since v 6∈ K ′).

5.5 Two Kernelization Results for Edge Deletion 73

Hence, x is contained in at least three maximal cliques, a contradiction to the fact
that all vertices in K ∩K ′ are satisfied.

Next, we prove part 2. Assume towards a contradiction that there exists a maximal
clique K ′′ with K ∩ K ′′ 6= ∅ and K ′ ∩ K ′′ 6= ∅. Since the vertices in K ∩ K ′ are
satisfied, K ′′ intersects with K and K ′ only in K \K ′ and K ′ \K, respectively. Hence,
there exists a vertex in K \ K ′ and a vertex in K ′ \ K both contained in K ′′, a
contradiction to part 1 of the lemma.

Lemma 5.7. Let K be a satisfied maximal clique in G. If there exists a vertex v ∈ K
such that N [v] = K, then there exists an optimal solution S such that v is contained
in exactly one maximal clique in G∆S.

Proof. Let S be an optimal solution for G such that every critical clique of G is part
of a critical clique in GS := G∆S. By Lemma 5.5, such a solution must exist. Assume
towards a contradiction that v is contained in two maximal cliques K1 and K2 in GS .
Let W denote the set of vertices in the connected component of GS [K] containing v
and let X ⊆ S denote the edge deletions between vertices of W . Note that X 6= ∅
since K1 ∪K2 ⊆ W . We show that S′ := S \ X is a solution, which contradicts the
optimality of S. More precisely, we show that in GS′ := G∆S′ every vertex is satisfied.

Since in GS′ there is no edge {x, y} with x ∈ W and y ∈ K \W (otherwise, y
would be in a connected component with v in GS) it holds that NGS′ (W) ⊆ V \K.
Moreover, since we only undo edge deletions between vertices of W it suffices to show
that the vertices in NGS′ (W)∪W are satisfied (for all other vertices the graph induced
by their closed neighborhood does not change).

First, consider a vertex u ∈ NGS′ (W). Recall that u ∈ V \K. Let B := K∩NG(u).
Observe that, since K is satisfied, B is a critical clique in G. Hence, by Lemma 5.5, B
is part of a critical clique in GS and u is adjacent to all vertices of B (that is, B =
NGS (u)∩W). Clearly, this implies that B = NGS′ (u)∩W . Thus, the graphs induced
by the closed neighborhoods of u in GS and GS′ are identical. Hence, u is satisfied.

Second, consider a vertex w ∈ W . We argue that w is contained in a maximal
clique completely contained in W . Let B denote the critical clique of G containing w.
Note that B ⊆ K. By Lemma 5.5 it follows that B ⊆ W and that all vertices in B
have an identical closed neighborhood in GS . Since W contains more than one critical
clique in GS (note that v is contained in two maximal cliques in GS), by definition
of W there exists a vertex x ∈ W \ B adjacent to w in GS . Let Q denote a maximal
clique of GS with {x,w} ⊆ Q. We show that Q ⊆W . Assume towards a contradiction
that Q \W 6= ∅ and let z ∈ Q \W . Let B′ := NG(z) ∩K. Since K is satisfied, B′

forms a critical clique in G. Moreover, since w ∈ B′ we have B′ = B, contradicting
the fact that x ∈ W \ B. Hence, there exists a maximal clique Q in GS contained
in W . This means that there exists at most one further maximal clique K ′ in GS
containing w and vertices from V \K. Hence, w is in GS′ contained in at most two
maximal cliques, namely W and K ′ (if it exists).

Lemma 5.8. Reduction Rule 5.6 is correct and can be carried out in O(m · n) time.

Proof. Let G = (V,E) be a graph containing a satisfied maximal clique K such that
all vertices in NG(K) are satisfied. Moreover, let G′ = (V ′, E′) denote the graph that
results from removing all edges contained only in K.

74 5 Clustering With Overlaps

To show the correctness of Reduction Rule 5.6, we use the following. Let B :=
{B1, . . . , B`} denote the critical cliques of G contained in K. Note that, since K
is satisfied, for every Bi there exists at most one further maximal clique Ki in G
with Bi ⊆ Ki. Furthermore, by Lemma 5.6, it follows that the Ki’s are pairwise
vertex-disjoint.

Claim: (G, k) is a yes-instance if and only if (G′, k) is a yes-instance.

“⇒”: Let S be an optimal solution of size at most k for G and let GS := G∆S. We
show that S′ := S \ EK is a solution for G′, where EK denotes the set of all possible
edges between two vertices of K. Let G′S′ := G′∆S′. According to Lemma 5.5, we can
assume that every Bi is completely contained in at most two maximal cliques in GS .
In particular, this means that S does not contain edge deletions between two vertices
of the same Bi. Hence, G′S′ differs from GS in that all edges between different Bi’s
are deleted. Moreover, every vertex x ∈ V \K being adjacent in GS to a vertex of Bi
is adjacent in GS to every vertex in Bi but not to any other vertex in K. Since G′S′
differs from GS in that all edges between different Bi’s are deleted, the graphs induced
by the closed neighborhood of every vertex in x ∈ V \K in GS and G′S′ are identical.
Hence, these vertices are satisfied and it remains to show that all vertices in the Bi’s
are satisfied.

To this end, we argue that every Bi is contained in at most two maximal cliques
in G′S′ . First, consider the case that Bi is contained in two maximal cliques C1

i and C2
i

in GS . If C1
i ⊆ Ki and C2

i ⊆ Ki, then there cannot be any edge between Bi and K \Bi
in GS since otherwise Bi would be contained in three maximal cliques (note that by
Lemma 5.6 there is no edge between Cji \K and K \Cji , j ∈ {1, 2}). Hence, the graphs
induced by the closed neighborhood of a vertex in Bi in GS and G′S′ are identical.
If C1

i ⊆ K and C2
i ⊆ Ki, then C1

i ∩ C2
i = Bi, since a vertex in C2

i \ Bi is adjacent
in GS to all vertices in Bi but not to any other vertex in K. Hence, after deleting the
edges between Bi and K \Bi, the vertices of Bi are contained in exactly one maximal
clique, namely C2

i ⊆ Ki. Second, for the case that Bi is contained in exactly one
maximal clique in GS , the argumentation works in analogy. In summary, G′S′ fulfills
the 2-vertex-overlap property.
“⇐”: Let S denote an optimal solution of size at most k for G′, and let G′S := G′∆S.
We show that S is solution for G as well, that is, we show that in GS := G∆S every
vertex is satisfied. Note that for every Bi every vertex of Bi is contained in exactly
one satisfied maximal clique in G′, namely Ki. Thus, by Lemma 5.7, we can assume
that every Bi is completely contained in exactly one satisfied maximal clique K ′i ⊆ Ki

in G′S . Furthermore, recall that all K ′i’s are pairwise vertex-disjoint and every vertex
in K ′i \ Bi is adjacent in G′S to all vertices in Bi but not to any other vertex in K.
Hence, if we add all missing edges between the vertices of K in G′S (resulting in GS),
then none of the added edges is between two neighbors of vertices in K ′i \K. Hence,
these vertices are satisfied in GS . Moreover, since these are the only vertices in V \K
having in G′S at least two neighbors in K, all vertices in V \ K are satisfied in GS .
Finally, all vertices in K are clearly contained in at most two maximal cliques in GS ,
namely in K and in at most one further clique K ′i ⊆ Ki (note that, in GS , the common
neighborhood for two vertices from different Bi’s is K).

For the running time, note that one can compute the set U of all satisfied vertices
in O(m·n) time as follows. For each v ∈ V , build G[N [v]] and then check in O(|N [v]|2)

5.5 Two Kernelization Results for Edge Deletion 75

time whether G[N [v]] contains at most two maximal cliques. The running time for
computing U hence sums up to

O(
∑
v∈V

deg(v)2) = O(n ·
∑
v∈V

deg(v)) = O(n ·m).

After that, consider the vertices in U one by one. Every vertex u ∈ U is contained
in at most two maximal cliques K1 and K2. These two cliques can be computed
in O(|N [v]|2) time for every u ∈ U . Finally, check in O(m) time whether K1 or K2

fulfills the precondition of Reduction Rule 5.6. Hence, the overall running time for one
application of Reduction Rule 5.6 is bounded by O(n ·m +

∑
u∈U (deg(v)2 + m)) =

O(m · n).

Reduction Rule 5.7. Let G be a graph reduced with respect to Reduction Rule 5.5.
Let K be a maximal clique of G. If there are maximal cliques K1, . . . ,K` fulfilling the
following three conditions:
1.) K ∩Ki 6= ∅, 1 ≤ i ≤ `,
2.) all vertices in Ki, 1 ≤ i ≤ ` are satisfied, and

3.)
∑`
i=1 |Ki ∩K| ≥ 3k + 4,

then remove all edges between K1 ∩K and K \K1.

To prove the correctness of Reduction Rule 5.7, we need the following lemma.

Lemma 5.9. Let G = (V,E) denote a graph reduced with respect to Reduction
Rule 5.5. Let K and K1, . . . ,K` be maximal cliques in G fulfilling Conditions 1 and 2
of Reduction Rule 5.7 and suppose that

∑`
i=1 |Ki ∩K| ≥ 2k + 2. If (G, k) is a yes–

instance, then there exists an optimal solution of size at most k not deleting any edge
between vertices of K.

Proof. Suppose that there exists an optimal solution S of size at most k for G and
let GS := G∆S. Assume towards a contradiction that S contains an edge {v, w}
with v, w ∈ K. In the following, we refer by {u1, . . . , ut} to the vertices in

⋃`
i=1(Ki ∩

K). Since all Ki’s are satisfied (Condition 2), according to Lemma 5.6 the Ki’s
are pairwise vertex-disjoint. Because t ≥ 2k + 2, one of the ui’s is non-affected by S.
Without loss of generality, assume that u1 is one of these non-affected vertices and u1 ∈
K1. Let B1 := K ∩K1. Clearly, B1 is a critical clique in G. By Lemma 5.5, we have
that B1 is (part of) a critical clique in GS , and, hence, all vertices in B1 are non-
affected. This implies that neither v nor w is contained in B1. Let z ∈ K1 \ K.
Since u1 is non-affected by S, this implies {z, u1} ∈ E(GS). Moreover, by Lemma 5.6
(and Condition 2 of Reduction Rule 5.7), it follows that {z, v} and {z, w} are not
contained in E and hence not in E(GS). This implies that u1 is contained in at least
three maximal cliques in GS : the vertices u1, v, w, and z induce a star with center
vertex u1 and three leaves (see first graph in Figure 5.2). This is a contradiction to
the fact that S is a solution.

Lemma 5.10. Reduction Rule 5.7 is correct and can be carried out in O(m · n) time.

Proof. Let G = (V,E), K, and K1, . . . ,K` be as described in Reduction Rule 5.7.
Furthermore, let Bi := Ki ∩K for every 1 ≤ i ≤ `. Again, since all Ki’s are satisfied,
the Bi’s are critical cliques and according to Lemma 5.6 the Ki’s are pairwise vertex-
disjoint. Let G′ = (V,E′) be the graph resulting from one application of Reduction
Rule 5.7. We show the following.

76 5 Clustering With Overlaps

Claim: (G, k) is a yes–instance if and only if (G′, k) is a yes–instance.

“⇒”: Let S denote an optimal solution of size at most k for G and let GS := G∆S.
We show that S is a solution for G′. Let G′S := G′∆S. By Lemma 5.9, S does not
delete any edge within K. Together with Lemma 5.5, this implies that, in GS , B1 is
contained in K and in at most one further maximal clique K ′1 ⊆ K1. Note that G′S
results from GS by deleting all edges between B1 and K \ B1. Since by Lemma 5.6,
there is no edge between K ′1 \ K and K \ K ′1, this does not create any unsatisfied
vertices.
“⇐”: Let S′ denote an optimal solution of size at most k for G′ and let G′S′ := G′∆S′.
We show that in GS′ := G∆S′ all vertices are satisfied. Note that in G′, K1 forms
a clique whose vertices are all satisfied and that the vertices in B1 are contained
in exactly one maximal clique, namely K1. Hence, according to Lemma 5.7, we can
assume that B1 is contained in exactly one maximal clique K ′1 ⊆ K1 in G′S′ . Moreover,
note that for every 1 ≤ i ≤ `, since G is reduced with respect to Reduction Rule 5.5 and
since Bi is a critical clique in G, it holds that |Bi| ≤ k+ 1. In particular, |B1| ≤ k+ 1

and since
∑`
i=1 |Bi| ≥ 3k+4, we have

∑`
i=2 |Bi| ≥ 2k+2 and ` ≥ 3. Hence,

∑`
i=2 |(K\

B1) ∩Ki| ≥ 2k + 2. Moreover, it is not hard to verify that K \ B1 forms a maximal
clique in G′. Thus, by Lemma 5.9, S′ does not delete any edge between two vertices
from K \ B1. Hence, K \ B1 is a maximal clique in G′S′ . Note that GS′ results
from G′S′ by inserting all edges between a vertex in B1 and the vertices in K \ B1.
Clearly, this does not change the number of maximal cliques for a vertex in V \ K,
since, by Lemma 5.6, none of these has neighbors in both B1 and K \B1. Finally, all
vertices in K clearly are satisfied.

For the running time note the following. First, as argued in the proof of Lemma 5.8,
we can compute the set U of all satisfied vertices in O(n · m) time. Hence, in the
following we assume that for each vertex in the graph, we can determine in O(1)
time whether it is satisfied or not. Then, for every vertex u ∈ U we proceed as
follows. Vertex u is contained in at most two maximal cliques K ′ and K ′′. These two
cliques can be computed in O(deg(u)2) time. Next, we check whether K ′ and K ′′ can
play the role of K and K1 in Reduction Rule 5.7. Consider the case that K = K ′

and K1 = K ′′. Clearly, we can check in O(deg(u)) time whether all vertices in K ′′ are
satisfied. It remains to verify that there are at least 3k+4 vertices in the intersections
of satisfied maximal cliques with K ′. We argue that this is possible in O(m) time.
We first label all vertices in K ′ that are contained in exactly two maximal cliques
by ‘+’. All other vertices in K ′ are labeled by ‘−’. Next, we iterate over the edge
set. For an edge {x, y} ∈ E if y 6∈ K ′ and not satisfied and x is labeled ‘+’ then
mark x with ‘−’. After that, if a satisfied vertex v ∈ K ′ is contained in a second
maximal clique containing non-satisfied vertices, then this vertex clearly is labeled ‘−’.
Hence, all vertices labeled by ‘+’ are contained in the intersections of satisfied maximal
cliques with K. Thus, to check whether Reduction Rule 5.7 can be applied we just
need to count the number of ‘+’-vertices in K. In summary, the overall running time
is O(m · n+

∑
u∈U (deg(u)2 +m)) = O(m · n).

Reduction Rule 5.8. Remove connected components fulfilling the 2-vertex-overlap
property.

Theorem 5.9. 2-Vertex-Overlap Deletion admits a problem kernel with O(k3)
vertices.

5.5 Two Kernelization Results for Edge Deletion 77

Proof. Let G = (V,E) be a graph reduced with respect to Reduction Rule 5.5–
Reduction Rule 5.8. We show that if G has a solution of size at most k, then the
number of vertices of G is O(k3).

Assume that G has a solution S of size at most k and let GS := G∆S. Furthermore,
let X denote the vertices affected by S and let Y := V \X. First, note that |X| ≤ 2k.
Hence, it remains to show |Y | = O(k3).

Let K1, . . . ,Kt denote the maximal cliques of GS containing at least one vertex
of X. Note that t ≤ 4k since a vertex x ∈ X is contained in at most two maximal
cliques in GS . Furthermore, define K ′i := Ki ∩ Y , 1 ≤ i ≤ t and let Z := {Z1, . . . , Zq}
denote the set of all other maximal cliques of GS . For every 1 ≤ i < j ≤ t let K ′i,j :=
K ′i ∩ K ′j . Note that every K ′i,j is part of a critical clique in GS , since it belongs to
two maximal cliques. Furthermore, since the vertices in K ′i,j are non-affected, they
are also part of a critical clique in G. As a consequence, we have |K ′i,j | ≤ k+1 since G
is reduced with respect to Reduction Rule 5.5. Let K ′i,cc denote the vertices of K ′i
that are contained only in the maximal clique Ki in GS . By the same argument as
above, |K ′i,cc| ≤ k + 1. Finally, let Ai := K ′i \ (K ′i,cc ∪

⋃
j 6=iK

′
i,j) denote the other

vertices of K ′i. Note that Ai ⊆
⋃q
i=1 Zi.

Next, we show that

a) every vertex in Ai is contained in at most two maximal cliques in G,

b) for 1 ≤ j ≤ q, every vertex in Zj is contained in at most two maximal cliques
in G,

c) for 1 ≤ j ≤ q, every Zj has a nonempty intersection with at least one Ai,
1 ≤ i ≤ t,

d) for 1 ≤ i ≤ t, |Ai| ≤ 3k + 3 , and

e) q ≤ (3k + 4) · 4k and, for 1 ≤ j ≤ q, |Ij | ≤ 4k + 4, with Ij := Zj \ (
⋃t
i=1Ai).

a) Consider an arbitrary vertex y ∈ Ai. Note that y is adjacent in GS only to the
vertices Ki \K ′i of X. Since Ki \K ′i is a clique in GS , no edge between the vertices
in Ki \K ′i is deleted. Hence, no edge between any two neighbors of y is deleted and,
therefore, y is contained in the same number of maximal cliques in G as in GS .

b) A vertex y ∈ Zj is either contained in Ai, 1 ≤ i ≤ t, or all its neighbors are non-
affected. In the first case, y is satisfied according to a). In the second case, y is clearly
contained in at most two maximal cliques in G.

c) Assume that there exists a Zj that does not intersect with any Ai for some i,
1 ≤ i ≤ t. Then, Zj intersects only with other elements from Z. Hence, Zj and
all of Zj ’s neighbors are satisfied and, as a consequence, Reduction Rule 5.6 applies,
contradicting the fact that G is reduced.

d) Assume that there exists an i with |Ai| ≥ 3k + 4. Without loss of generality,
let Z1, . . . , Zp be the sets in Z intersecting with Ai. Hence, Ai ⊆

⋃p
j=1 Zj (recall that

Ai ⊆
⋃q
j=1 Zj) and as a consequence |Ai| =

∑p
j=1 |Zj ∩ Ai| ≥ 3k + 4. Moreover,

according to b), all Zj ’s are satisfied. Thus, Reduction Rule 5.7 applies to a maximal
clique K with Ai ⊆ K in G, contradicting the fact that G is reduced.

e) First, since every Zj has nonempty intersection with some Ai and since any other Zh,
h 6= j, cannot intersect with Ai in the same vertices as Zj , it follows that |Z| ≤

78 5 Clustering With Overlaps

(3k + 3) · 4k. Second, assume that there exists an Ij with |Ij | > 4k + 4. Since G
is reduced with respect to Reduction Rule 5.5, there are at most k + 1 vertices in Ij
that are contained in the single maximal clique Zj (these vertices form a critical clique
in G). All other vertices of Ij are contained in some Zh with h 6= j. Let Z ′1, . . . , Z

′
p

denote the sets in Z having nonempty intersection with Zj . Since |Ij | > 4k + 4, it
holds that

∑p
r=1 |Zj∩Z ′r| > 3k+3, and, as a consequence, Reduction Rule 5.7 applies,

contradicting the fact that G is reduced.

Putting everything together, one obtains

|Y | ≤
t∑
i=1

|K ′i|+
q∑
j=1

|Ij |

≤
t∑
i=1

(|K ′i,cc|+ |Ai|+
t∑

j=1

|K ′i,j |) + |Z| · (4k + 4)

≤ 4k · (k + 1 + (3k + 3) + 4k · (k + 1)) + (3k + 3) · 4k · (4k + 4).

Finally, we discuss some differences of the kernelizations for 1-Edge-Overlap
Deletion and 2-Vertex-Overlap Deletion. Reduction Rule 5.1 of the kernel-
ization for 1-Edge-Overlap Deletion deletes all edges of a maximal clique K if
all edges of K are satisfied. This ensures that all vertices of a reduced instance are
contained in some forbidden induced subgraph. For 2-Vertex-Overlap Deletion
it is not correct to delete satisfied vertices or the vertices/edges of a satisfied maximal
clique (see Figure 5.8). Hence, for 2-Vertex-Overlap Deletion we need that all
vertices in the neighborhood of a satisfied maximal clique K are satisfied for show-
ing that it is correct to remove the edges in K (see Reduction Rule 5.6). Hence, we
cannot ensure that all vertices of a reduced instance are contained in some forbidden
induced subgraph, making the kernelization for 2-Vertex-Overlap Deletion more
involved.

5.6 Conclusion

This chapter provided a first theoretical study of a set of new cluster graph modification
problems motivated by the practical relevance of clustering with overlaps [57, 141].
Naturally, studying a set of problems that is so far barely explored, there remain
many challenges for future work.

First, it is conceivable that the forbidden subgraph characterizations we developed
for cluster graphs with overlaps can be further refined. Observe that we presented an
upper bound for the size of the forbidden induced subgraphs but we could not show
that this upper bound is tight. In addition, a more precise graph-theoretic character-
ization of the forbidden subgraphs is desirable. Improvements in this direction would
immediately imply better search tree algorithms.

Second, extending the list of kernelization results for our problems other than 1-
Edge-Overlap Deletion and 2-Vertex-Overlap Deletion is a natural next
step. In particular, we left open whether 1-Edge-Overlap Editing and 2-Vertex-
Overlap Editing admit polynomial-size problem kernels. Moreover, in the light of

5.6 Conclusion 79

a b

c

d

b

c

d

a

Figure 5.8: Example showing that the deletion of satisfied vertices (or the ver-
tices/edges of satisfied maximal cliques) does not lead to an equivalent instance for
2-Vertex-Overlap Deletion. A rectangular vertex represents a critical clique of
size two. All other vertices represent single vertices. Moreover, a bold edge represent
two edges between the critical clique and the respective single vertex. Note that {a, b}
forms a satisfied maximal clique in the graph drawn on the left. Deleting either a or
the edge {a, b} (as shown on the right) leaves a graph that can be transformed into
a graph with 2-vertex-overlap property by deleting one edge (the dashed edge). In
contrast, at least two edge deletions are necessary to transform the graph on the left
into a graph with 2-vertex-overlap property.

recent nonexistence results concerning polynomial-size problem kernels for specific edge
modification problems [124, 87], one may wonder whether s-Vertex/Edge-Overlap
Editing/Deletion/Addition admit polynomial-size problem kernels when param-
eterized by (s, k), or, what seems more plausible, whether even for constant values
of s it is very unlikely that the corresponding edge modification problems admit
polynomial-size problem kernels. It seems challenging to provide a dichotomy re-
garding the “polynomial-size kernelizability” of the considered problems.

Third, in addition to kernelization algorithms it seems worth to investigate other
algorithm design techniques, such as refined search tree algorithms. In ongoing work,
we already obtained an improved search tree algorithm for 1-Edge-Overlap Dele-
tion [118].

Fourth, corresponding experimental studies (like those undertaken for Cluster
Editing, see [25, 57]) are a natural next step. In particular, speed-up tricks for our
fixed-parameter algorithms and heuristics for finding good approximative solutions are
desirable in this context.

Fifth, the polynomial-time approximability of our problems remains unexplored.
Sixth, the vertex deletion versions of our problems deserve attention. For for

the vertex deletion version without overlap, that is, Cluster Vertex Deletion,
there exist iterative compression algorithms [109]. Moreover, parameterized complex-
ity studies have recently been undertaken for the problem to transform a graph into
an s-plex cluster graph by a minimum number of vertex deletions [22].

Finally, we discuss some extensions of our overlap models.
As argued in Section 5.1 the “t-Zahn property” enforces that two maximal cliques

intersect in at most t− 1 vertices. Our models enforce that a vertex/edge is contained
in at most s maximal cliques. Clearly, it makes sense to consider a combination of both
properties. Analogously, the combination of our models with the model of Damaschke
allows to further constrain the solution. Moreover, note that combinations of the
different overlap models lead to more restricted and, hence, simpler, cluster graph
models. It seems plausible that simpler cluster graph models allow for more efficient
algorithms. However, there is always a trade-off between having a simple model (that

80 5 Clustering With Overlaps

is easier to handle algorithmically) and the ability of the model to find meaningful
clusterings: an overly restrictive cluster graph model leads to artificial and, hence,
meaningless clusterings.

In several clustering scenarios, the given input data can be modeled as a bipartite
graph. For example, in clustering gene expression data, one partition represents the
genes and the other partition represents the investigated conditions [130]. Another
example is document clustering, where one partition represents the documents and the
other partition represents the terms. Bicluster Editing (also known as Bipartite
Correlation Clustering) is the “bipartite sister problem” of Cluster Editing
[145, 93, 4]. Similar to Cluster Editing, Bicluster Editing fails to model that
the (bi)clusters may overlap, although overlapping clusters are interesting in document
clustering and clustering of gene expression data [165, 130, 154]. Hence, extending the
notion of “bicluster graph” (which is defined as a disjoint union of bicliques) to allow
for some degree of overlap between the biclusters is desirable.

Chapter 6
Hierarchical Tree Clustering

6.1 Introduction

Hierarchical representations of data play an important role in biology, the social sci-
ences, and statistics [5, 55, 106, 125]. The basic idea behind hierarchical clustering
is to obtain a recursive partitioning of the input data in a tree-like fashion such that
the leaves one-to-one represent the single data items and all inner points represent
clusters of various granularity degrees. Hierarchical clusterings do not require a prior
specification of the number of clusters and they allow to understand the data at many
levels of fine-grainedness (the root of the tree representing the whole data set).

In a nutshell, we contribute new algorithms and an experimental study for a well-
studied NP-hard problem in this context, called M -Hierarchical Tree Cluster-
ing. In particular, we present two polynomial-size problem kernels for M -Hierar-
chical Tree Clustering.

Problem Statement. Let X = {1, . . . , n} be the input set of elements (represent-
ing data items) to be clustered. The dissimilarity of the elements is expressed by a
symmetric function D : X ×X → {0, . . . ,M + 1} with D(i, j) > 0 if and only if i 6= j,
called distance function. Herein, the integer M ∈ N specifies the depth of the cluster-
ing tree to be computed. Roughly speaking, the task is then to find an “ultrametric
tree” that fits the dissimilarity data in the best possible way. Herein, an ultrametric
tree is a rooted tree whose leaves are bijectively labeled with the elements in X and
in which all leaves are at the same distance to the root. Then, the “tree distance”
of a pair of leaves is the height of their least common ancestor. An ultrametric tree
represents a distance function D, when the pairwise tree distances between all pairs
of leaves are the same as given by D. Clearly, not every distance function can be
represented by an ultrametric tree. For such instances, the goal is to find a “closest”
ultrametric tree. In the following, we describe some properties and provide definitions
to formalize this task.

For an ultrametric tree, the distance U(i, j) between two elements i ∈ X and j ∈ X
is the height of the least common ancestor of the leaves corresponding to i and j.
It is easy to see that U fulfills the strong triangle inequality, that is, it holds that

82 6 Hierarchical Tree Clustering

1 2 3 4 5
0 1 2 2 1 3
1 - 2 2 3 3
2 - - 1 3 3
3 - - - 3 3
4 - - - - 2

2

1 3 4 50 2

Figure 6.1: An ultrametric (distance function) and a corresponding ultrametric tree.
The distances in the distance function are the same as the distances between the leaves
in the tree. For example, the leaves corresponding to “1” and “2” have distance two
as given by the height of their least common ancestor. Note that the nodes of each
level of the tree define a partition of the leaves into clusters: for each node a cluster
contains the leaves in the subtree rooted at this node. For example, the first level
defines the clusters {0, 1, 2, 3} and {4, 5}, and the second level further partitions the
cluster {0, 1, 2, 3} into {0, 1} and {2, 3}.

U(i, j) ≤ max{U(i, l), U(j, l)} for all i, j, l ∈ X. Indeed, a distance function fulfills
the strong triangle inequality if and only if it can be represented by an ultrametric
tree [105, 114, 116].

Definition 6.1. A distance function D : X×X → {0, . . . ,M+1} is called ultrametric
if the strong triangle inequality holds, that is, for all i, j, l ∈ X

D(i, j) ≤ max{D(i, l), D(j, l)}. (6.1)

See Figure 6.1 for an example of an ultrametric and a corresponding ultrametric tree.
In this chapter, we study the problem of finding a closest ultrametric U for a given

dissimilarity function D where the distance between U and D is measured by the `1
norm, that is, we want to minimize

||D − U ||1 :=
∑

{i,j}⊆X

|U(i, j)−D(i, j)|.

The problem under consideration can thus be formulated as follows:

Definition 6.2. M -Hierarchical Tree Clustering (M -HTC)
Input: A set X of elements, a distance function D : X ×X → {0, . . . ,M + 1}, and
an integer k ≥ 0.
Question: Is there an ultrametric U : X ×X → {0, . . . ,M + 1} with ||D−U ||1 ≤ k?

In other words, given any distance function D, the goal in M -HTC is to modify D
as little as possible to obtain an ultrametric U .

Next, we shed light on the relationship between M -HTC and Cluster Editing
and point to related problems in computational phylogenetics. Then, we given an
overview over known results for M -HTC.

Cluster Editing is 1-Hierarchical Tree Clustering. As observed previ-
ously [125, 5], 1-Hierarchical Tree Clustering is the same as Cluster Editing,

6.1 Introduction 83

G

0

2

1

3

4

6

5

D =

1 2 3 4 5 6
0 1 1 1 2 2 2
1 - 2 1 1 2 2
2 - - 1 2 2 2
3 - - - 2 2 2
4 - - - - 1 1
5 - - - - - 1

0

2

1

3

4

6

5

0 1 2 3 4 5 6

Figure 6.2: The first row shows the graph G = (V,E) of a Cluster Editing instance
and the distance function D of an equivalent 1-Hierarchical Tree Clustering
instance. Observe that {i, j} ∈ E if and only if D(i, j) = 1. The second row shows
a cluster graph and a corresponding ultrametric tree. Observe that two edge modi-
fications are required to obtain the cluster graph and that the distance between the
distance function and the ultrametric tree is two, as well.

which asks for a minimum number of edge modifications to obtain a cluster graph (see
Chapter 4). As illustrated in Figure 6.2 (second row), a cluster graph can equivalently
be represented by an ultrametric tree of height two, and vice versa. More precisely,
two distinct vertices x ∈ X and y ∈ X are grouped together into a cluster of the
cluster graph Gc = (X,Ec) if and only if x and y are siblings (that is, have a common
parent) in the ultrametric tree. That is, in the ultrametric U corresponding to this
tree we have U(x, y) = 1 if and only if {x, y} ∈ Ec. Now, the equivalence between
Cluster Editing and 1-Hierarchical Tree Clustering can be seen as follows
(an illustration is given in Figure 6.2).

Given a Cluster Editing instance (G = (V,E), k) one obtains an equivalent
1-Hierarchical Tree Clustering instance (D,X, k) with X = V by setting, for
any two distinct vertices v, w ∈ V , D(v, w) = 1 if {v, w} ∈ E and D(v, w) = 2,
otherwise. Consider a cluster graph Gc on V and a corresponding ultrametric U
(defined as described above). If two vertices x and y that are adjacent in G occur in
different clusters of Gc (that is, the edge {x, y} has been deleted), then D(x, y) = 1
and U(x, y) = 2, and, hence, the contribution of this pair to ||D−U ||1 is one. Similarly,
if two vertices that are nonadjacent in G occur in the same cluster of Gc (that is, the
edge between them is added), then these two vertices contribute one to ||D − U ||1.
Thus, the edit distance between a cluster graph Gc on V and G equals the distance
between the corresponding ultrametric U and the distance function D and vice versa,
giving the equivalence between 1-Hierarchical Tree Clustering and Cluster
Editing.

M-Hierarchical Tree Clustering and Phylogenetic Tree Reconstruction.
In addition to be relevant for clustering, M -HTC is also closely related to the recon-
struction of phylogenetic trees [67, 5]. In phylogenetics, the evolutionary relationship

84 6 Hierarchical Tree Clustering

between species is usually depicted by arranging the species in a phylogenetic tree.
Phylogenetic trees are usually inferred based on dissimilarities in the physical or ge-
netic characteristics, reflecting their evolutionary distances. In an idealized model,
evolutionary data is ultrametric. Indeed, Gusfield pointed out [101, Section 17.2]:
“Ultrametric data are the Holy Grail of phylogenetic reconstruction—when time-since-
divergence data are ultrametric, the belief is that the true evolutionary history can
be reconstructed. But this is mostly an idealized abstraction, and real data are rarely
ultrametric”. In this context, M -Hierarchical Tree Clustering can be seen as
the problem to correct the input data as little as possible to obtain an ultrametric
tree. More formally, M -HTC is as a special case of the numerical taxonomy prob-
lem. Here the task is to find a tree T that spans the set X of elements and fits
the given distance function D on X [3]. In this context, “fitting” means to mini-
mize ||T − D||p :=

∑
{i,j}⊆X |T (i, j) − D(i, j)|p for a specified p ≥ 1, where T (i, j)

denotes the length of the path between i and j. Thus, M -HTC is the restriction of the
numerical taxonomy problem to ultrametric trees1 using the `1 norm. In the area of
phylogeny reconstruction, M -HTC is known as “Fitting Ultrametrics under the
`1 norm”. Fitting Ultrametrics is NP-hard under the `1 norm [125] as well as
under the `2 norm [56]. However, it is linear-time solvable under the `∞ norm [67].

Previous Work. M -HTC is NP-complete [125] and APX-hard [3], excluding any
hope for polynomial-time approximation schemes. Ailon and Charikar [5] presented
an elegant randomized polynomial-time algorithm for M -HTC that achieves an ap-
proximation ratio of M + 2. Subsequently, a deterministic algorithm achieving the
same approximation guarantee was presented [166].

As argued above 1-Hierarchical Tree Clustering is the same as Cluster
Editing. Cluster Editing has applications in document clustering and agnostic
learning [12] as well as clustering of gene expression data [15] or protein similarity
data [24]. Numerous papers deal with Cluster Editing and its polynomial-time ap-
proximability [150, 6, 166] and parameterized complexity [83, 73, 145, 89, 24, 46, 28].
In particular, there have been encouraging experimental studies on solving Cluster
Editing based on fixed-parameter algorithms [57, 146, 24, 25] and integer linear pro-
gramming formulations [25]. See Section 4.1 for an overview.

In our work, we concentrate on the problem where the dissimilarity data are spec-
ified as integers from {0, . . . ,M + 1}. Notably, a result of Harb et al. [104, Lemma 1]
implies that whenever the input data are integers, then there exists a closest ultra-
metric (under the `1-norm) that only takes integer values.

Our Results. We investigate the parameterized complexity of M -HTC with respect
to the following two parameters: first, the distance k between the input distance
function and a closest ultrametric, and, second, the depth M of the ultrametric tree.

The contributions of this chapter are both of theoretical as well as of practical
nature. On the theoretical side, we provide two kernelization results for M -HTC. More
precisely, we develop polynomial-time data reduction rules that provably transform an
original input instance of M -HTC into an equivalent instance consisting of only O(k2)
elements or O(M · k) elements, respectively. Moreover, an O(2.562k)-size search tree
is presented.

1Note that, in case of ultrametric trees, usually half the length of the path is used.

6.2 Preliminaries 85

On the practical side, we contribute implementations and experiments for our new
data reduction rules (combined with the search tree strategy), the approximation
algorithm of Ailon and Charikar [5], and an (I)LP formulation also due to Ailon and
Charikar [5]. Our main finding is that for parameter values k < |X| our data reduction
based algorithms are the method of choice whereas otherwise the other approaches are
mostly superior.

6.2 Preliminaries

In the following, we define some of the notations used in this chapter.

Let D denote a distance function over a set X. Throughout this chapter let n :=
|X|. A closest ultrametric U for D is an ultrametric on X such that ||D − U ||1 is
minimum among all ultrametrics on X. A conflict is a triple {i, j, l} of elements
from X that does not fulfill Condition 6.1 of Definition 6.1, that is, one of the three
distances D(i, j), D(i, l), and D(j, l) is larger than each of the other two. A pair {i, j}
is the max-distance pair of a conflict {i, j, l} if D(i, j) > D(i, l) and D(i, j) > D(j, l).
The pairs {i, l} and {j, l} are called non-max-distance pairs of {i, j, l}. We say that
an element i ∈ X is satisfied if it is not part of any conflict. For Y ⊆ X the restriction
of D to Y is denoted by D[Y] and is called the distance function induced by Y .
Removing an element i ∈ X from (X,D, k) is defined by replacing (X,D, k) with a
new instance (X ′, D′, k) where X ′ := X \ {i} and D′ := D[X \ {i}].

For some of our data reduction rules we use notation from graph theory. In this
chapter, we only consider undirected, simple graphs G = (V,E). See Section 2.6 for
basic graph notation. For a distance function D over a set X, let G⊥(D,X) := (X,E),
where E := {{i, j} | ∃l∈X{i, j, l} is a conflict}, that is, there is an edge between two
elements if and only if they appear together in some conflict.

Regarding kernelizations and depth-bounded search trees, we use the notation
introduced in Section 2.4 and Section 2.5, respectively.

6.3 A Decomposition Property and Two Search Tree
Strategies

This section is organized as follows. First, we describe a simple O(3k ·n3)-time search
tree algorithm for M -HTC that is the basis of our implementation (see Section 6.5.1).
Then, we establish a simple decomposition property that, roughly speaking, implies
that a set of conflicts not intersecting with any other conflicts can be “resolved”
independently from the rest of the instance. Finally, using this decomposition property,
we describe a refined search tree algorithm with running time O(2.562k · n3). Note
that the decomposition property is also important for our kernelization algorithms
presented in Section 6.4.

We describe the simple search tree strategy by a branching rule. Recall that,
given an instance (X,D, k), a branching rule creates ` ≥ 1 subinstances (Xi, Di, ki),
1 ≤ i ≤ `. A branching rule is called correct if (X,D, k) is a yes-instance if and only
if (Xi, Di, ki) is a yes-instance for some i, 1 ≤ i ≤ `. See Section 2.5 for more details.

86 6 Hierarchical Tree Clustering

Branching Rule 1. Let i, j, l denote three distinct elements such that {i, j, l}
is a conflict where {i, j} is the max-distance pair. Proceed as follows.

• Branch into the case to decrease the distance of the max-distance
pair {i, j} by one and set k := k − 1.

• Branch into the case to increase the distance between {i, l} by one
and set k := k − 1.

• Branch into the case to increase the distance between {j, l} by one
and set k := k − 1.

For the correctness of Branching Rule 1 note the following. If the distance between
the max-distance pair is not decreased and none of the other two distances is increased,
then {i, j, l} remains a conflict. Hence, at least one of the above changes must be
applied.

The running time of the above algorithm can be seen as follows: The depth of the
search tree is bounded by k, because the algorithm decreases the parameter in each
branching step. Furthermore, we branch into three cases in every node of the search
tree. Hence, the number of search tree nodes is O(3k). The steps that have to be
performed at each search tree node (for example, finding a conflict to branch on) can
be clearly performed in O(n3) time. Hence, the overall running time of this simple
branching strategy is bounded by O(3k · n3).

Proposition 6.1. M -Hierarchical Tree Clustering can be solved in O(3k · n3)
time.

From the above branching strategy it is obvious that the maximum distance M+1
is not increased in the course of the algorithm. Since the search tree algorithm finds
all closest ultrametrics with distance at most k to D, we can observe the following (see
Harb et al. [104, Lemma 1] for a similar statement).

Observation 6.1. Let D be a distance function over a set X with maximum dis-
tance m. Then, the maximum distance in every closest ultrametric for D is at most m.

Recall that G⊥(D,X) denotes the graph on X that contains an edge {i, j} if and
only if i and j are contained together in a conflict (see Section 6.2). Next, we show that
for each connected component C of G⊥(D,X) the conflicts of D[C] can be resolved
independently from the conflicts of D[X \ C]. As a consequence, if all conflicts are
disjoint, then M -HTC can be solved in polynomial time. This is exploited by our
refined search tree strategy. Moreover, based on this fact, some of the data reduction
rules to be presented in Section 6.4 work by partitioning the input instance into small
subinstances that can be handled independently.

Lemma 6.1. Let D be a distance function over a set X and let C1, . . . , C` denote
the connected components of G⊥(D,X). Let Ds be a closest ultrametric for D[Cs],
1 ≤ s ≤ `. Then, D′ with

D′(i, j) :=

{
Ds(i, j), if there is an s, 1 ≤ s ≤ `, with i, j ∈ Cs,
D(i, j), otherwise,

is a closest ultrametric for D.

6.3 A Decomposition Property and Two Search Tree Strategies 87

Proof. First, observe that ||D′ − D||1 is a lower bound for the distance between D
and any ultrametric since the Cs’s are disjoint and each Ds is a closest ultrametric
for D[Cs].

Second, we show that D′ is an ultrametric. Assume toward a contradiction that
there is a conflict {i, j, l} in D′. Since there are no conflicts within each connected
component, there is a connected component Cs with |Cs∩{i, j, l}| = 1. Without loss of
generality, assume that C1∩{i, j, l} = {l}. Moreover, note that i and j are in the same
connected component since the distances between elements from different connected
components in D and D′ are equal and in D there are no conflicts containing elements
from different components. Hence, without loss of generality, assume that i, j ∈ C2,
C1 6= C2.

We use the following observation on the structure of D and G⊥(D,X). We argue
that there is a positive integer m such that D(l, i′) = m for all i′ ∈ C2. To this end,
consider the following partition of C2. Let Xr := {i′ ∈ C2 | D(l, i′) = r} for 1 ≤ r ≤
M + 1. Assume toward a contradiction that at least two different Xr’s are nonempty.
First, observe that for any 1 ≤ r ≤ M + 1 and for any two elements i′, j′ ∈ Xr,
we have that D(i′, j′) ≤ r since otherwise {i′, j′, l} forms a conflict in D containing
elements from two different connected components of G⊥(D,X). Furthermore, note
that for 1 ≤ r′ < r ≤M+1 and for every i′ ∈ Xr and j′ ∈ Xr′ it holds thatD(i′, j′) = r
since otherwise {i′, j′, l} forms a conflict because D(l, i′) = r > r′ = D(l, j′). Hence,
if one chooses three elements from at least two different Xr’s, then two of the three
distances are equal and are at least the third distance. As a consequence, within C2

there are no conflicts with elements from different Xr’s; a contradiction to the fact
that C2 is connected.

In summary, l has the same distance m to all elements in C2. Moreover, since l does
not form a conflict with any two vertices in C2, it holds that D(i′, j′) ≤ m for all i′, j′ ∈
C2. That is, m is the maximum distance in D[C2]. Thus, according to Observation 6.1
this maximum distance m will not be increased by a closest ultrametric, and, as a
consequence, D′(i, j) ≤ m. In summary, D(l, i) = D′(l, i) = m, D(l, j) = D′(l, j) = m,
and D′(i, j) ≤ m; a contradiction to the assumption that {i, j, l} is a conflict in D′.

Lemma 6.1 implies that for every closest ultrametric U the distance between two
elements from different connected components of G⊥(D,X) is not changed and that,
for every connected component C of G⊥(D,X), U [C] is a closest ultrametric for D[C].

Corollary 6.1. Let D be a distance function over a set X and let C1, . . . , C` denote
the connected components of G⊥(D,X). Moreover, let U denote a closest ultrametric
for D. Then, U [Cr] is a closest ultrametric for D[Cr] and U(i, j) = D(i, j) for all 1 ≤
r < r′ ≤ ` and for all i ∈ Cr and j ∈ Cr′ .

In the following, we provide a refined branching strategy. The basic idea is as
follows. If there are two conflicts that are intersecting in two elements, then we can
give a better branching strategy. Moreover, we will show that otherwise all conflicts are
element-disjoint and, hence, according to Lemma 6.1, can be resolved independently
from each other. We describe our refined search tree algorithm by two branching rules.

The first branching rule branches on conflicts that have the same max-distance
pair.

88 6 Hierarchical Tree Clustering

Branching Rule 2. Let i, j, l, h ∈ X denote four distinct elements such
that {i, j, l} and {i, j, h} form conflicts where {i, j} is the max-distance
pair of both conflicts. Proceed as follows.

• Branch into the case to decrease the distance of {i, j} by one and
set k := k − 1.

• Branch into the four cases to increase the distance of {l, x} and {h, y},
for all combinations of x, y ∈ {i, j} and, in each branch, set k := k−2.

For the correctness of this branching strategy note the following. In the first branch,
the branching rule covers the case that the distance of the max-distance pair is de-
creased (by at least one). Hence, in the following cases, one can assume that the
distance of the max-distance pair is not decreased. As a consequence, at least one of
the distances of {l, i} and {l, j} and at least one of the distances of {h, i} and {h, j}
must be increased. Clearly, the rule covers all four possibilities.

The next branching rule branches on a pair of conflicts sharing two elements that
are not the max-distance pairs of both conflicts.

Branching Rule 3. Let i, j, l, h ∈ X denote four distinct elements such
that {i, j, l} and {i, j, h} form conflicts where {i, j} is neither the max-
distance pair of {i, j, l} nor of {i, j, h}. Proceed as follows.

• Branch into the case to increase the distance of {i, j} by one and
set k := k − 1.

• Branch into the four cases to

– decrease the distance of both max-distance pairs by one and set
k := k − 2, or

– decrease the distance of the max-distance pair of {i, j, l} and in-
crease the distance of the non-max-distance pair of {i, j, h} con-
taining h and set k := k − 2, or

– decrease the distance of the max-distance pair of {i, j, h} and
increase the distance of the non-max-distance pair of {i, j, l} con-
taining l and set k := k − 2, or

– increase the distance of both non-max-distance pairs containing l
or h and set k := k − 2.

Observe that, in the first branch, the rule covers the case that the distance of the pair
contained in both conflicts is increased. Hence, for the other cases one can assume
that the distance of the common pair is not increased. Hence, for each of the two
conflicts either the max-distance pair must be decreased or the non-max-distance pair
different from {i, j} must be increased. Clearly, all four possibilities are covered by
the branching rule.

For a branching rule creating ` ≥ 2 subinstances, a branching vector is an `-tuple
that describes how the parameter is decreased in each subinstance. For example, the
branching vector of Branching Rules 2 and 3 is (1, 2, 2, 2, 2). Moreover, the correspond-
ing branching number describing the base of the exponential search-tree size is 2.562.
See Section 2.5 and Niedermeier [137, Chapter 8] for more details. In the remainder
of this section, we show that if none of the two branching rules can be applied, then

6.3 A Decomposition Property and Two Search Tree Strategies 89

M -HTC can be solved in polynomial time, leading to a search tree algorithm with
running time O(2.562k ·n3). First, we show that if there are two conflicts intersecting
in at least one element, then we can apply either Branching Rule 2 or 3. Conversely,
if none of Branching Rule 2 or 3 applies, then all conflicts are element-disjoint.

Lemma 6.2. If there are two distinct conflicts C and C ′ with C ∩C ′ 6= ∅, then either
Branching Rule 2 or Branching Rule 3 can be applied.

Proof. First, we show that if there are two conflicts C and C ′ with |C ∩C ′| = 1, then
there is a conflict C ′′ with C ′′ ⊆ C∪C ′ such that |C∩C ′′| = 2 or |C ′∩C ′′| = 2. To this
end, let C = {i, j, l} and C ′ = {l, p, q} (that is, |C ∩ C ′| = 1). Furthermore, assume
without loss of generality that {i, l} is not the max-distance pair of C and {l, p} is
not the max-distance pair of C ′. Moreover, let m and m′ denote the distances of the
max-distance pairs of C and C ′, respectively, and assume without loss of generality
that m′ ≥ m. First, note that D(i, l) < m′ and D(l, p) < m′. Thus, if D(i, p) ≥ m′,
then C ′′ := {i, l, p} forms a conflict such that C ′∩C ′′ = {l, p}. Hence, in the following,
we assume that D(i, p) < m′. We distinguish the cases that either {p, q} or {l, q} is
the max-distance pair in C ′.

Case 1: D(p, q) = m′. Since D(p, q) is the max-distance pair in the conflict C ′ =
{l, p, q} it holds that D(l, p) < m′ and D(l, q) < m′. First, if D(i, q) ≥ m′, then
{i, l, q} forms a conflict since D(l, q) < m′ and D(i, l) < m′ (recall that we assume
that D(i, l) is not the max-distance pair in {i, j, l} and, thus, D(i, l) < m ≤ m′).
Clearly, C ′ ∩ {i, l, q} = {l, q}. Second, if D(i, q) < m′, then {i, p, q} forms a conflict,
since D(i, p) < m′ and D(i, q) < m′ but D(p, q) = m′. Note that C ′∩{i, p, q} = {p, q}.

Case 2: D(l, q) = m′. First, if D(i, q) ≥ m′, then C ′′ := {i, p, q} forms a conflict
with C ′ ∩ C ′′ = {p, q} since D(i, p) < m′ and D(p, q) < m′. Second, if D(i, q) < m′,
then C ′′ := {i, l, q} forms a conflict with C ′ ∩ C ′′ = {l, q} since D(i, l) < m ≤ m′

and D(i, q) < m′ but D(l, q) = m′.
In summary, we have shown that if there are two conflicts with nonempty inter-

section, then there are two conflicts intersecting in two elements.
Next, we show that if there are two conflicts intersecting in two elements, then

there are two conflicts {i, j, p} and {i, j, l} such that {i, j} is either the max-distance
pair in both conflicts or not the max-distance pair in both {i, j, p} and {i, j, l} and,
hence, either Branching Rule 2 or Branching Rule 3 applies.

Assume that this is not the case. That is, without loss of generality, {i, j} is
the max-distance pair of {i, j, p} but not the max-distance pair of {i, j, l}. Moreover,
without loss of generality assume that {i, l} is the max-distance pair of {i, j, l}. First,
observe that D(i, j) < D(i, l) since {i, l} is the max-distance pair in {i, j, l}. Moreover,
since D(i, j) is the max-distance pair in {i, j, p} it holds that max{D(i, p), D(j, p)} <
D(i, j) < D(i, l). Hence, if D(p, l) < D(i, l), then {l, p, i} forms a conflict with max-
distance pair {i, l}. Otherwise, if D(p, l) ≥ D(i, l), then {p, j, l} forms a conflict
since D(j, l) < D(i, l) and D(j, p) < D(i, l) but D(p, l) ≥ D(i, l). Moreover, the
max-distance pair of {p, j, l} is {p, l}. Thus, {j, l} is neither the max-distance pair
of {p, j, l} nor the max-distance pair of {i, j, l}.

By Lemma 6.2, if neither Branching Rule 2 nor Branching Rule 3 applies, then
all conflicts are element-disjoint. A conflict that does not intersect with any other
conflict is called isolated. If all conflicts are isolated, then, according to Lemma 6.1,
all conflicts can be solved independently from each other in polynomial time. Note

90 6 Hierarchical Tree Clustering

that for an isolated conflict it is optimal to set the distance between the elements of
the max-distance pair to the maximum of the other two distances.

Observation 6.2. If all conflicts are isolated, then M -HTC can be solved in polyno-
mial time.

Clearly, in O(n3) time one can find two conflicts for which either Branching Rule 2
or Branching Rule 3 applies, or decide that such two conflicts do not exist. Thus,
altogether, we arrive at the following.

Theorem 6.1. M -Hierarchical Tree Clustering can be solved in O(2.562k ·n3)
time.

6.4 Two Kernelization Results

In this section, we present our main theoretical results, two kernelization algorithms for
M -HTC which achieve problem kernels with O(k2) and O(M ·k) elements, respectively.
Both algorithms partition the input instance into small subinstances and handle these
subinstances independently. This partitioning is based on Lemma 6.1.

We present our kernelization algorithms by describing a set of data reduction rules.
A data reduction rule is called correct if the new instance after an application of this
rule is a yes-instance if and only if the original instance is a yes-instance. An instance is
called reduced with respect to a set of data reduction rules if each of the data reduction
rules has been exhaustively applied. See Section 2.4 for more details.

6.4.1 An O(k2)-Element Problem Kernel

Our first and simpler kernelization algorithm uses two data reduction rules which
handle two extremal cases concerning the elements; the first rule corrects the distance
between two elements which together appear in many conflicts, while the second rule
safely removes elements which are not in any conflict. Basically, these two rules are
adaptions of reduction rules that lead to an O(k2)-vertex problem kernel for Cluster
Editing [83]. The main difference is that removing vertices that are not in conflict
is trivial for Cluster Editing but for the more general M -HTC the correctness of
this rule is not that obvious. We show the correctness of the second rule using the
decomposition property from Lemma 6.1.

Let I = (X,D, k) denote an instance of M -HTC. The first data reduction rule is
based on the observation that the distance between two elements i, j ∈ X that either
occur as max-distance pair in more than k conflicts or occur as non-max-distance pair
in more than k conflicts must be adjusted.

Reduction Rule 6.1. If there is a pair {i, j} ⊆ X which is the max-distance pair (or
not the max-distance pair) in at least k + 1 conflicts, then decrease (or increase) the
distance D(i, j) by one and decrease the parameter k by one.

For Reduction Rule 6.1, we assume that k ≥ 0 before its application since otherwise
we can reject the instance immediately.

Lemma 6.3. Reduction Rule 6.1 is correct.

6.4 Two Kernelization Results 91

Proof. Let I be an instance to which Reduction Rule 6.1 is applied and let I ′ be the
resulting instance. We show that I is a yes-instance if and only if I ′ is a yes-instance.

We only show the correctness of the first part of the rule, that is, {i, j} is the max-
distance pair in at least k + 1 conflicts. The second part can be shown analogously.
To this end, we show that every solution conducting at most k changes on D must
decrease D(i, j). Suppose toward a contradiction that this is not the case. Then, in
each of the k + 1 conflicts that contain {i, j} the distance of one of the other two
pairs has to be changed. Since the conflicts that contain {i, j} have no other pair in
common, this means that we have to modify at least k + 1 distances.

As mentioned above, the second rule is based on Lemma 6.1. Consider a satis-
fied element x (that is, x is not part of any conflict). Observe that in the conflict
graph G⊥(D,X) (see Section 6.2) the element x is an isolated vertex. Moreover,
according to Lemma 6.1, one obtains a closest ultrametric by choosing a closest ul-
trametric for every connected component for G⊥(D,X). Thus, since the connected
component {x} induces an ultrametric, x can be safely removed.

Reduction Rule 6.2. Remove all satisfied elements.

Lemma 6.4. Reduction Rule 6.2 is correct.

Proof. Let D be a distance function over a set X, and let x ∈ X be a satisfied element.
Moreover, let (X ′, D′, k) with X ′ := X \ {x} and D′ := D[X ′] denote the instance
that results by removing x from (X,D, k).

Observe that every conflict inD is also a conflict inD′. As a consequence,G⊥(D,X)
and G⊥(D′, X ′) contain the same set of connected components with the exception
of {x} (note that {x} is a connected component in G⊥(D,X) but does not exist
in G⊥(D′, X ′)). Moreover, the two distance functions induced by a connected compo-
nent different from {x} are equal. Thus, since {x} induces an ultrametric, it follows
directly by Lemma 6.1 that (X,D, k) is a yes-instance if and only if (X ′, D′, k) is a
yes-instance.

Finally, we show that a yes-instance reduced with respect to the two data reduction
rules presented in this section contains at most k · (k+ 2) elements. Consequently, for
any reduced instanced with more than k · (k + 2) elements we can output “no” and
only instances with at most k · (k + 2) elements remain.

Theorem 6.2. M -Hierarchical Tree Clustering admits a problem kernel with k·
(k + 2) elements. The running time for the kernelization is O(M · n3).

Proof. Let (X,D, k) be a yes-instance that is reduced with respect to Reduction
Rules 6.1 and 6.2. That is, there exists an ultrametric D′ on X with ||D−D′|| ≤ k. We
show that |X| ≤ k ·(k+2). For the analysis of the kernel size we partition the elements
of X into two subsets A and B, where A := {i ∈ X | ∃j ∈ X : D′(i, j) 6= D(i, j)}
and B := X \ A. Note that |A| ≤ 2k since D′ has distance at most k to D. Hence,
it remains to show that |B| ≤ k2. Let S := {{i, j} ⊆ X | D′(i, j) 6= D(i, j)} denote
the set of pairs whose distances have been modified, and for each {i, j} ∈ S let B{i,j}
denote the elements of B that form a conflict together with i and j. Since the input
instance is reduced with respect to Reduction Rule 6.2, we have B =

⋃
{i,j}∈S B{i,j}.

Observe that {i, j} is either the max-distance pair in all conflicts of B{i,j} or a non-
max-distance pair in all conflicts of B{i,j}. Thus, since the input instance is reduced

92 6 Hierarchical Tree Clustering

with respect to Reduction Rule 6.1, we have |B{i,j}| ≤ k for all {i, j} ∈ S. The size
bound |B| ≤ k2 then immediately follows from |S| ≤ k.

The running time can be achieved as follows. First, we calculate for each pair of
elements the number of conflicts in which it is the max-distance pair and the number
of conflicts in which it is not the max-distance pair in O(n3) time. Then we check
whether Reduction Rule 6.1 can be applied. If this is the case, we update in O(n)
time the number of conflicts for all pairs that contain at least one of the elements
whose distance has been modified. This is repeated as long as k ≥ 0 and a pair to
which Reduction Rule 6.1 can be applied has been found. Since in each application
of Reduction Rule 6.1 parameter k is decreased, it is applied at most O(k) times.
Hence, the overall running time of exhaustively applying Reduction Rule 6.1 is O(n3 +
k · n). Afterwards, we exhaustively apply Reduction Rule 6.2 in O(n3) total time.
Finally, note that every triple of elements that forms a conflict prior to the application
of Reduction Rule 6.2 forms a conflict after its application. Hence, the application
of Reduction Rule 6.2 does not leave an instance to which Reduction Rule 6.1 can be
applied again. Finally, note that we can assume that k < M · n2. Hence, the running
time of the kernelization is O(n3 + k · n) = O(M · n3).

Using the standard technique of interleaving search trees with kernelization (see
Section 2.5), one can improve the worst-case running time of the search tree algorithm
from Section 6.3. As our experiments show (see Section 4), there is also a speed-up in
practice.

Corollary 6.2. M -HTC can be solved in O(2.562k +M · n3) time.

6.4.2 An O(M · k)-Element Problem Kernel

Our second kernelization algorithm extends the basic idea of an O(k)-element problem
kernel for Cluster Editing [89]. However, since the clusterings required by Cluster
Editing have no hierarchical structure, this extension is nontrivial and needs more
technical effort, in particular, the correctness proof of the data reduction rule is far
more involved than in the Cluster Editing case.

We use the following notation. For a distance function D over a set X and an inte-
ger t with 1 ≤ t ≤M , the t-threshold graph GD,X(t) is defined as (X,Et) with {i, j} ∈
Et if and only if D(i, j) ≤ t. If D is an ultrametric, then, for each 1 ≤ t ≤ M , the
corresponding graph GD,X(t) is a cluster graph, that is, a disjoint union of cliques.
These cliques of GD,X(t) are called t-clusters. Moreover, for a distance function D
over a set X define αD := max{D(i, j) | i, j ∈ X}−1. That is, αD+1 is the maximum
distance in D. A clique K is a critical clique if all its vertices have an identical closed
neighborhood and K is maximal under this property (see Definition 2.4).

The kernelization algorithm employs only one data reduction rule. This rule works
on the t-threshold graphs, beginning with t = αD, and is then applied recursively for
smaller values of t. It applies a procedure (Critical-Clique, see Figure 6.3) which deals
with large critical cliques in t-threshold graphs.

Reduction Rule 6.3. Let I = (D,X, k) denote an M -HTC-instance. Call proce-
dure RR3 (Figure 6.3) with parameters X and αD. Herein, let I be the respective
global variable I∗.

6.4 Two Kernelization Results 93

Global variable: An instance I∗ = (X,D∗, k∗) of M -HTC.

Procedure: RR3
Input: A set X ′ ⊆ X and an integer t ≥ 1.

1. Critical-Clique(X ′, t).

2. Let Gt := GD∗[X′],X′(t).

3. for each isolated clique K in Gt do

(a) if D∗[K] is an ultrametric
(b) then remove K from I∗ and Gt.
(c) else RR3 (K, t− 1)

Procedure: Critical-Clique
Input: A set X ′ ⊆ X and an integer t ≥ 1.

1. Construct Gt := GD∗[X′],X′(t).

2. while Gt contains a nonisolated critical clique K with K ⊆ X ′ such that

• |K| ≥ t · |NGt(K)| and

• |K| ≥ |NGt(K)|+ t · |N2
Gt

(K)|
3. do

(a) For all x ∈ NGt [K] and y ∈ X ′ \ (NGt [K]), set D∗(x, y) := t+ 1.

(b) For all x, y ∈ NGt(K) with D∗(x, y) = t+ 1, set D∗(x, y) := t.

(c) Decrease the parameter k∗ correspondingly, that is, by the distance between
the original and the new instance.

(d) Update Gt := GD∗[X′],X′(t).

(e) if k∗ < 0 then return “no”.

4. end while

Figure 6.3: The Critical-Clique procedure deals with large critical cliques in t-
threshold graphs. It is recursively applied by procedure RR3 . Both procedures use
the global variable I∗ = (X,D∗, k∗).

In the following, we first show that the Critical-Clique procedure is correct when
it is applied to X ′ = X and t = αD. Then, based on the correctness for X ′ = X
and t = αD, we will show the correctness of Reduction Rule 6.3.

The following two lemmas are essential for our proof. In the case of Cluster Edit-
ing (and, hence, for 1-HTC) it holds that a critical clique in the input graph is entirely
contained in a clique of the final cluster graph (see [89, Lemma 1] and Lemma 3.7).
In contrast, it is not hard to see that an arbitrary critical clique in GD,X(αD) is not
necessarily subset of an αD-cluster of a closest ultrametric. However, we can show
that a critical clique that contains αD times more vertices than it has neighbors is not
split, that is, it is entirely contained in an αD-cluster of a closest ultrametric.

Lemma 6.5. Let D be a distance function over a set X and let α := αD. Moreover,
let K be a critical clique in Gα := GD,X(α) with |K| ≥ α · |NGα(K)|. Then, there
exists a closest ultrametric U that contains an α-cluster C such that

1. K ⊆ C and

2. C ⊆ NGα [K].

94 6 Hierarchical Tree Clustering

Proof. To prove part 1, we show that for every closest ultrametric U there exists an α-
cluster C of U with K ⊆ C. Assume toward a contradiction that K is not contained in
an α-cluster of U . Then, for an ` ≥ 2, there exist α-clusters C1, . . . , C` with Ci∩K 6= ∅.
Define

• Ki := K ∩ Ci,

• Ai := NGα(K) ∩ Ci, and

• Ri := Ci \ (Ki ∪Ai).

Furthermore, let A :=
⋃`
i=1Ai and note that A ⊆ NGα(K).

First, we show that there exist two integers i, j, with 1 ≤ i, j ≤ `, i 6= j such that
|Ri|+|Kj |+|Aj | > α·|Ai|+|Rj |. Assume toward a contradiction that |Ri|+|Kj |+|Aj | ≤
α · |Ai|+ |Rj | for all 1 ≤ i, j ≤ `. This clearly implies

∑`
i=1(|Ri|+ |Ki+1|+ |Ai+1|) ≤∑`

i=1(α · |Ai| + |Ri+1|) (herein, X`+1 = X1 for X ∈ {K,A,R}). Note that the
above inequality is equivalent to |K| + |A| ≤ α · |A|; a contradiction to the fact
that |K| ≥ α · |NGα(K)|.

Let i and j with 1 ≤ i, j ≤ `, i 6= j, be two integers such that |Ri|+ |Kj |+ |Aj | >
α · |Ai|+ |Rj |. We show that “adding” Ki to the α-cluster Cj yields an ultrametric U ′

with smaller distance to D than U has to D, contradicting the assumption that U is a
closest ultrametric. More specifically, building U ′ by “adding” Ki to Cj means setting

U ′(x, y) := α+ 1 if x ∈ Ki and y ∈ Ai ∪Ri;
U ′(x, y) := α if x ∈ Ki and y ∈ Cj ;
U ′(x, y) := U(x, y), otherwise.

Next, we show that U ′ is an ultrametric. Assume toward a contradiction that U ′

contains a conflict F := {p, q, r}. In the construction of U ′ from U only distances
from elements in Ki to elements in X \Ki are changed. Hence, F contains one or two
elements from Ki. Let R := X \(Ki∪Cj). Observe that U ′(x, y) = α+1 for all x ∈ Ki

and y ∈ R, and U ′(x, y) = α+1 for all x ∈ Ki∪Cj and y ∈ R. Hence, F ∩R = ∅ since,
otherwise, two of the three distances between the elements of F are α+ 1 (and α+ 1
is the maximum distance). Thus, F ⊆ Ki ∪ Cj and F ∩ Cj 6= ∅. Since Ci and Cj are
α-clusters of U and by the construction of U ′ from U , it holds that U ′(x, y) = α for
all x ∈ Ki and y ∈ Cj and U ′(x, y) ≤ α for all x, y ∈ Ki ∪ Cj . This, however, implies
that two of the three distances of U ′ between the elements in F are α and the third
distance is at most α; a contradiction to the assumption that F is a conflict in U ′.

For part 1 of Lemma 6.5, it remains to show that ||U ′−D||1 < ||U −D||1, contra-
dicting the assumption that U is a closest ultrametric. Note that by construction, we
have:

• for all x ∈ Ki and y ∈ Ai it holds that U ′(x, y) = α + 1, D(x, y) ≤ α,
and U(x, y) ≤ α, and

• for all x ∈ Ki and y ∈ Rj it holds that U ′(x, y) = α < α+1 = U(x, y) = D(x, y).

Hence, in comparison with transformingD to U the extra costs of transformingD to U ′

are at most |Ki| · (α · |Ai|+ |Rj |). However, we save at least |Ki| · (|Ri|+ |Aj |+ |Kj |)
since

6.4 Two Kernelization Results 95

• for all x ∈ Ki and y ∈ Ri it holds U(x, y) ≤ α < α+ 1 = U ′(x, y) = D(x, y), and

• for all x ∈ Ki and y ∈ Aj∪Kj it holds D(x, y) ≤ α = U ′(x, y) < α+1 = U(x, y).

Finally, α·|Ai|+|Rj | < |Ri|+|Aj |+|Kj | implies ||U ′−D||1 < ||U−D||1; a contradiction
to the assumption that U is a closest ultrametric.

Next, we prove part 2 of Lemma 6.5. From the above argument, every closest
ultrametric U for D contains an α-cluster C with K ⊆ C. Now, assume that R := C \
NGα [K] is not empty. Let A := NGα(K)∩C. We build a new ultrametric U ′ fulfilling
the conditions of the lemma as follows: in comparison with U , ultrametric U ′ contains
an additional α-cluster R, that is, for all i ∈ K∪A and j ∈ R, set U ′(i, j) := α+1. For
each other pair of elements the distance in U ′ is equal to the distance in U . Thus, U ′

is clearly an ultrametric. Moreover, note that in comparison of transforming D into U
the extra costs for transforming D into U ′ are at most |R| · α · |A|. However, we
save |R| · |K| by setting the distance between an element in R and an element in K
to α+1 (note that D(x, y) = α+1 for all x ∈ R and y ∈ K). Since |K| ≥ α · |NGα(K)|,
it holds that ||U ′ −D||1 ≤ ||U −D||1. This completes the proof of part 2.

The next lemma shows that critical cliques that are large compared to their neigh-
borhood and second neighborhood form, together with their neighborhood, an αD-
cluster of a closest ultrametric. These are precisely the cliques fulfilling the while-
condition in Line 2 of the Critical-Clique procedure (see Figure 6.3).

Lemma 6.6. Let D be a distance function over a set X and let α := αD. Moreover,
let K be a critical clique in Gα := GD,X(α) with

• |K| ≥ α · |NGα(K)| and

• |K| ≥ |NGα(K)|+ α · |N2
Gα

(K)|.

Then, there exists a closest ultrametric U for D such that NGα [K] is an α-cluster
in U .

Proof. Let U ′ denote a closest ultrametric for D. By Lemma 6.5, we can assume
that U ′ has an α-cluster C such that K ⊆ C ⊆ NGα [K]. If C = NGα [K], then we are
done. Hence, in the following we consider the case K ⊆ C ⊂ NGα [K]. We show that,
given U ′, one can build a closest ultrametric U such that NGα [K] is an α-cluster of U .
Let B := NGα [K] \ C. Observe that K ⊆ C implies that B ⊆ NGα(K). We show
that “adding” B to C yields another closest ultrametric. More specifically, given U ′,
build U as follows. Start with U := U ′. Then, change the distances between B
and X \B as follows.

1. “Separate” the elements inB from their respective α-clusters by setting U(i, j) :=
α+ 1 for all i ∈ B and j ∈ X \ (B ∪ C).

2. Transform B into an α-cluster by setting U(i, j) := min(α,U ′(i, j)) for all i ∈ B
and j ∈ B.

3. “Merge” the α-clusters C and B by setting U(i, j) := α for i ∈ B and j ∈ C.

96 6 Hierarchical Tree Clustering

It is not hard to verify that U is an ultrametric after each of the three steps above.
Hence, it remains to show that ||U −D||1 ≤ ||U ′−D||1. Since by definition D(x, y) =
U(x, y) = α + 1 for all x ∈ B and y ∈ X \ (NGα [K] ∪ N2

Gα
(K)), we consider only

the distances between elements in B and NGα [K] ∪ N2
Gα

(K) (cases where for x ∈ B
and y ∈ X \ (NGα [K] ∪N2

Gα
(K)) it holds that U ′(x, y) < D(x, y) = U(x, y) = α + 1

decrease the distance between U and D but do not occur in the worst case). We
analyze the three steps above separately.

First, observe that D(i, j) ≤ α + 1, U ′(i, j) ≤ α + 1, and U(i, j) = α + 1 for
all i ∈ B and j ∈ N2

Gα
(K). Hence, in the first step, the distance of U to D increases

by at most |B| · α · |N2
Gα

(K)| (the worst case occurs when D(i, j) = U ′(i, j) = 1 for
all i ∈ B and j ∈ N2

Gα
(K)).

Second, observe that D(i, j) ≤ α+1, U ′(i, j) ≤ α+1 and U(i, j) = min(α,U ′(i, j))
for all i, j ∈ B. Hence, in the second step, the distance of U to D increases by at
most |B| · |B| (the worst case occurs when U ′(i, j) = D(i, j) = α+ 1 for all i, j ∈ B).

For the third step, let C ′ := C \ K. Note that C ′ ⊆ NGα(K). We separately
analyze the distances between B and C ′ and the distances between B and K. Observe
that D(i, j) ≤ α + 1 = U ′(i, j) and U(i, j) = α for all i ∈ B and j ∈ C ′. Hence, the
distance of U to D increases by at most |B| · |C ′| by changing the distances between B
and C ′. Finally, note that D(i, j) ≤ α = U(i, j) and U ′(i, j) = α + 1 for all i ∈ B
and j ∈ K. Hence, the distance of U to D decreases by at least |B| · |K| by changing
the distances between B and K.

In summary, the total increase of the distance of U toD is at most |B|·(α|N2
Gα

(K)|+
|B| + |C ′|) and the total decrease of the distance of U to D is at least |B| · |K|.
Since B ∪ C ′ ⊆ NGα(K) and |K| ≥ |NGα(K)| + α · |N2

Gα
(K)|, the decrease of the

distance of U to D in the third step compensates the total increase of this distance
caused by all other changes.

Now, we are able to prove the correctness of the Critical-Clique procedure when
called with X and αD. More specifically, let D be a distance function over a set X
and let α := αD. Moreover, let K denote a critical clique of Gα := GD,X(α) fulfilling
the while-condition in the Critical-Clique procedure (line 2 of Critical-Clique in Fig-
ure 6.3). Furthermore, let D′ denote the distance function that results by executing
lines (a) and (b) of Critical-Clique on K and let d := ||D −D′||1. For the correctness
of Critical-Clique we show the following.

Lemma 6.7. (X,D, k) is a yes-instance if and only if (X,D′, k−d) is a yes-instance.

Proof. “⇒”: If (X,D, k) is a yes-instance, then, by Lemma 6.6, there exists an ultra-
metric U of distance at most k to D such that NGα [K] is an α-cluster of U . Hence, it
must hold that U(i, j) = α+1 for all i ∈ NGα [K] and j ∈ X \NGα [K] and U(i, j) ≤ α
for all i, j ∈ NGα [K]. Hence, the changes performed by Critical-Clique are necessary
to obtain U .
“⇐”: Let U denote an ultrametric with ||D′ − U || ≤ k − d. Thus, ||D − D′||1 ≤ d
implies ||D − U ||1 ≤ k by the triangle inequality.

The correctness of Reduction Rule 6.3 is based on the correctness of Critical-
Clique and the observation that all vertices of an isolated clique K in GD,X(αD) are
not contained in any conflict with vertices from X \ K, and, hence, the subinstance
induced by K can be solved independently according to Lemma 6.1. The details follow.

6.4 Two Kernelization Results 97

Lemma 6.8. Reduction Rule 6.3 is correct.

Proof. Let D be a distance function over a set X. The correctness of Reduction
Rule 6.3 follows by induction on the maximum distance αD+1 of the distance function.

For the induction base (that is, αD = 1) observe that for each isolated clique K
in GD,X(1) it holds that D(i, j) = 1 for all i, j ∈ K and D(i, j) = 2 for all i ∈ K
and j ∈ X \K. As a consequence, K induces an ultrametric and each element in K
is satisfied. Hence, the elements in K can be removed (see Reduction Rule 6.2 and
Lemma 6.4). Thus, the recursion terminates, and the correctness of Reduction Rule 6.3
follows directly from the correctness of Critical-Clique (Lemma 6.7).

Assume that Reduction Rule 6.3 is correct for any instance (X ′′, D′′, k′′) with αD′′ =
α − 1. We show that then Reduction Rule 6.3 is correct for an instance (X,D, k)
where αD = α.

First, note that by Lemma 6.7 it is correct to apply the Critical-Clique procedure
for X ′ = X and t = α. Moreover, observe that each vertex of an isolated clique K
of Gα = GD,X(α) such that D[K] is an ultrametric is satisfied: First, there is no
conflict contained in K, and, second, since each element in K has distance α+ 1 to all
elements from X\K, there is no conflict that contains vertices from both K and X\K.
Hence, these vertices can be removed (see Reduction Rule 6.2 and Lemma 6.4). Thus,
it remains to show the correctness of line (c) of RR3 (see Figure 6.3), that is, the
correctness of recursively applying procedure RR3 to the isolated cliques of Gα.

To this end, let K denote an isolated clique of Gα that does not induce an ultramet-
ric. Moreover, let (X ′, D′, k′) denote the instance that results by calling RR3 (K,α−1).
For the correctness of the recursion, we show the following.

Claim. (X,D, k) is a yes-instance if and only if (X ′, D′, k′) is a yes-instance.

Let Y := X \K and K ′ := X ′ \ Y . By calling RR3 (K,α − 1) only elements from K
are removed. Hence, K ′ ⊆ K. Observe that D′[K ′] equals the distance function that
results from calling RR3 (K,α−1) and setting the global distance function D∗ to D[K]
and the global parameter k∗ to k.

Next, we show that D′(i, j) = D(i, j) for all i ∈ X ′ and j ∈ Y , and K ′ ⊆ K is
an isolated clique in GD′,X′(α). By calling RR3 (K,α − 1), only distances between
elements of K are changed. Moreover, the maximum distance in D′[K ′] is at most α
since, first, the maximum distance in D[K] is at most α, second, t + 1 ≤ α in each
recursive call of RR3 , and, third, procedure Critical-Clique changes a distance to at
most t + 1. Hence, D′(i, j) ≤ α for all i, j ∈ K ′ and D′(i, j) = α + 1 for all i ∈ K ′
and j ∈ Y , implying that K ′ is an isolated clique in GD′,X′(α).

Furthermore, note that there is no conflict C = {i, j, l} ⊆ X with K ∩ C 6= ∅
and Y ∩ C 6= ∅: for any i, j, l ∈ X with i ∈ K, j ∈ Y and l ∈ X two of the three
distances D(i, j), D(i, l), and D(j, l) are α + 1 which is the maximum distance in D
and, hence, {i, j, l} does not form a conflict. The same argument implies that there
is no conflict C ′ = {i, j, l} ⊆ X ′ with K ′ ∩ C ′ 6= ∅ and Y ∩ C ′ 6= ∅. Hence there is
no connected component in G⊥(D,X) (G⊥(D′, X ′)) containing vertices from both Y
and K (K ′). Recall that G⊥(D,X) denotes the graph with vertex set X that contains
an edge {i, j} if and only if there is a conflict containing both i and j (see Section 6.2).

For a distance function D′′ over a set X ′′, define opt(X ′′, D′′) := ||D′′ − U ′′||1
for a closest ultrametric U ′′ to D′′. Since there is no conflict C ⊆ X in D such
that K ∩ C 6= ∅ and Y ∩ C 6= ∅, and no conflict C ′ ⊆ X ′ in D′ such that K ′ ∩ C ′ 6= ∅

98 6 Hierarchical Tree Clustering

and Y ∩ C ′ 6= ∅, Lemma 6.1 implies that opt(X,D) = opt(K,D[K]) + opt(Y,D[Y])
and opt(X ′, D′) = opt(K ′, D′[K ′]) + opt(Y,D′[Y]). Let opty := opt(Y,D[Y]). Clearly,
opty = opt(Y,D′[Y]). By the correctness for the case that the maximum distance
of the distance function is α (which is the induction hypothesis), it follows that
(K,D[K], k − opty) is a yes-instance if and only if (K ′, D′[K ′], k′ − opty) is a yes-
instance. As a consequence, opt(X,D) ≤ k if and only if opt(X ′, D′) ≤ k′.

Theorem 6.3. M -Hierarchical Tree Clustering admits a problem kernel with
2k · (M + 2) elements. The running time for the kernelization is O(M · n3).

Proof. Let I = (X,D, k) be an instance reduced with respect to Reduction Rule 6.3.
Assume that I is a yes-instance, that is, there exists an closest ultrametric U on X
with ||U − D||1 ≤ k. We show that |X| ≤ 2k · (αD + 2) ≤ 2k · (M + 2). As in
the proof of Theorem 6.2, we partition the elements of X into two subsets A and B,
where A := {i ∈ X | ∃j ∈ X : U(i, j) 6= D(i, j)} contains the affected elements
and B := X \ A contains the unaffected elements. Clearly, |A| ≤ 2k. Hence, in the
following our goal is to bound the unaffected elements.

Consider an isolated clique K of GαD := GD,X(αD). Since (X,D, k) is reduced
with respect to Reduction Rule 6.3, every αD-cluster of U contains at least one affected
element (otherwise all elements from K are removed, see line 3(b) of procedure RR3
in Figure 6.3).

Consider an isolated clique Q in GαD . Clearly, there is no conflict containing
elements from both Q and X \ Q. Hence, by Lemma 6.1, we can assume that ev-
ery isolated clique in GαD is an αD-cluster of U . Let Q1, . . . , Qq denote the αD-
clusters of U that are isolated cliques in GαD and let C1, . . . , C` denote the other αD-
clusters of U . Furthermore, let kQ := ||U [

⋃
Qi] − D[

⋃
Qi]||1 and kC := ||U [

⋃
Ci] −

D[
⋃
Ci]||1. By Lemma 6.1 we can conclude that the distance between U and D

is kQ + kC . Since the Qi’s are isolated cliques in GαD , the analysis of the sizes of Qi’s
can be done independently from the Ci’s. Moreover, since, further calls of proce-
dure RR3 are made with Qi’s and αD−1 as parameters, it suffices to bound |B∩⋃Ci|
by 2kC(αD + 1) and the same argument will then inductively imply the size bound
of
⋃
Qi, namely, 2kQ(αD + 1). The details follow.

To bound the elements of B, we first prove the following.

|B ∩
⋃
Ci| ≤ 2kC(αD + 1) (6.2)

Let α := αD. For all 1 ≤ i ≤ `, let Ai := Ci ∩ A and Bi := Ci \ Ai. First, note
that every Bi is contained in a critical clique Ki of Gα: for each element x ∈ Bi and
for each element y ∈ Ci it holds that D(x, y) = U(x, y) ≤ α and, hence, x and y are
adjacent in Gα. Moreover, for each element x ∈ Bi and for each element y ∈ X \ Ci,
we have D(i, j) = U(i, j) = α+ 1, and, hence, x and y are nonadjacent.

Since the Critical-Clique procedure has been applied to X and α and Ci is not an
isolated clique in Gα, we have |Ki| ≤ max(α·|NGα(Ki)|, |NGα(Ki)|+α·|N2

Gα
(Ki)|). In

order to bound
∑ |Ki| we partition NGα(Ki) into two sets Yi and Zi. An element x ∈

NGα(Ki) is contained in Zi if there is an element y ∈ X withD(x, y) ≤ α and U(x, y) =
α+1; otherwise it is contained in Yi. By this definition, for every x ∈ Zi there is at least
one y ∈ Zj (j 6= i) such that x and y are adjacent. For i 6= j, let ki,j denote the edges
between Zi and Zj in Gα. Note that each of these edges contributes at least one to
the distance between U and D and that |Zi| ≤

∑
j 6=i ki,j and |N2

Gα
(Ki)| ≤

∑
j 6=i ki,j .

6.4 Two Kernelization Results 99

Second, let ki denote the number of nonadjacent pairs of vertices in NGα(Ki). Observe
that each of these pairs contributes at least one to the distance between U and D and
that |Yi| ≤ ki. Hence, max(α|NGα(Ki)|, |NGα(Ki)| + α|N2

Gα
(Ki)|) can be bounded

from above by

max(α(|Yi|+ |Zi|) , |Yi|+ |Zi|+ α · |N2
Gα(Ki)|)

≤max(α(ki +
∑
i6=j

ki,j) , ki + (α+ 1) ·
∑
i6=j

ki,j)

≤(α+ 1)(ki +
∑
i6=j

ki,j).

Thus,
∑`
i=1 |Ki| ≤ (α + 1)(

∑`
i=1 ki +

∑`
i=1

∑
j 6=i ki,j). Finally, note that

∑`
i=1 ki +∑`

i=1

∑
j 6=i ki,j ≤ 2kC . As a consequence, |B ∩⋃Ci| ≤∑`

i=1 |Ki| ≤ 2kC(α+ 1). This
concludes the proof of (6.2).

With the help of (6.2), we show the kernel size bound by induction on αD + 1, the
maximum distance in D.

For the case αD = 1 (induction base) note that each isolated clique in G1 induces an

ultrametric. Hence, there are no isolated cliques in G1, that is, X =
⋃`
i=1 Ci. By (6.2)

there are at most 2k(αD + 1) unaffected elements and, hence, |X| = |A| + |B| ≤
2k + 2k(αD + 1) = 2k(αD + 2).

Next, consider the case that αD > 1 and assume that the kernel size bound
holds for any instance (D′′, X ′′, k′′) with αD′′ < αD. Note that for each Qi it holds
that αD[Qi] < αD. Moreover, since (D,X, k) is reduced with respect to Reduction
Rule 6.3, procedure RR3 has been applied with parameters X ′ = Qi and t = αD − 1.
Hence, by the induction hypothesis we have that |Qi| ≤ 2 opt(D[Qi], Qi)((αD−1)+2).

Hence,
∑q
i=1 |Qi| ≤ 2kQ(αD + 1). Moreover, according to (6.2), we have

∑`
i=1 |Ci| ≤

2kC(αD + 1). Hence, the total number of elements in X is at most |A| + 2kQ(αD +
1) + 2kC(αD + 1) = |A|+ (αD + 1) · 2(kC + kQ) ≤ 2k + (αD + 1) · 2k ≤ 2k · (M + 2).

For the running time, note that for all 1 ≤ t ≤M , the Gt’s can be built in O(M ·n2)
time. Since NGt(K) and N2

Gt
(K) for a critical clique K are computable in O(n2)

time, the Critical-Clique procedure needs O(n3) time. Then, Reduction Rule 6.3 first
finds all isolated cliques K1, . . . ,K` in Gα. This is doable in O(n2) time. Then, for
every isolated clique Ki, it calls Critical-Clique on it. Hence, the total running time
is T (n,M) = O(n3) +

∑`
i=1 T (|Ki|,M − 1), where T (|Ki|,M − 1) denotes the running

time of procedure RR3 with the parameters Ki and M − 1. Since
∑ |Ki| ≤ n and

the recursion stops at level M , the running time of Reduction Rule 6.3 is O(M · n3).
Therefore, the total running time is O(M · n3).

The k · (k+2)-element problem kernel and the 2k · (M +2)-element problem kernel
complement each other in the sense that the k · (k + 2)-element problem kernel is
independent of M but quadratic in k, whereas the 2k · (M+2)-element problem kernel
is only linear in k but depends on M .

The applicability of Reduction Rule 6.1 needed for the O(k2)-element kernel de-
pends on the parameter value k, that is, Reduction Rule 6.1 is parameter-dependent. In
contrast, for the applicability of Reduction Rule 6.3, the parameter value is irrelevant,
that is, this rule is parameter-independent. Although both rules have a comparable

100 6 Hierarchical Tree Clustering

worst-case running time, the data reduction rules for the O(k2)-element problem ker-
nel are conceptually simpler and easier to implement. In particular, in combination
with the search tree algorithm for which we keep a list of all conflicts there is only
little overhead for applying Reduction Rule 6.1. This partially explains why in our
experiments, presented in the next section, Reduction Rule 6.1 turns out to be more
effective than the other rules.

6.5 Experimental Results

Based on our simple search tree algorithm (see Section 6.3) and data reduction rules
(see Section 6.4), we implemented an exact algorithm for M -HTC. To demonstrate
the competitiveness of this algorithm, we also implemented the randomized (M + 2)-
factor approximation algorithm due to Ailon and Charikar [5]. In our experiments,
denoting the number of elements by n, we repeated their algorithm at least 100 and at
most n2 times and took the closest ultrametric during these repetitions as solution. In
order to compare the time performance of our exact algorithm to another one, we also
implemented the ILP (integer linear program) proposed by Ailon and Charikar [5].
We also used the corresponding relaxed linear program (LP), where all variables are
allowed to be continuous, as a heuristic improvement in our algorithm.

We implemented all algorithms in the Java programming language. The program
is free software and publicly available along with all our instances.2

All experiments were run on an Intel Core i3 550 machine with 3.2 GHz and 4 GB
main memory running under the Ubuntu 10.10 64bit operating system with Java
version 1.6.0 20 (Java runtime options: -Xms256M -Xmx256M). The ILP was solved
on the same machine by the Gurobi solver3 in version 4.0.0 64bit with standard options.

6.5.1 Implementation Aspects

Our implementation is based on the simple 3k search tree algorithm described in
Section 6.3. First, for a given M -HTC instance, the algorithm solves the correspond-
ing LP. Denoting the resulting solution value by kopt

LP , the value dkopt
LP e provides a

lower bound on the optimal solution value of the M -HTC instance. We hence call the
search tree algorithm (see Section 6.3) with increasing k, starting with k = dkopt

LP e and
aborting when an optimal solution has been found. Next, we describe the heuristics
that we have implemented in order to improve its running time.

Modification flags: We use flags to mark distances that may not be decreased (or
increased). There are three reasons for setting such a mark: the distance has been
already increased (or decreased); decreasing (or increasing) it leads to a solution with
distance more than k; decreasing (or increasing) it leads to a conflict that cannot be
repaired without violating previous flags.

Data reduction rules: We implemented all of the presented data reduction rules.
However, in the experiments, our implementation of Reduction Rule 6.3 showed to be
relatively slow and was thus deactivated.

Interleaving: In the search tree we interleave branching with the application of
the data reduction rules, that is, after a suitable number of branching steps the data

2http://fpt.akt.tu-berlin.de/tree-cluster
3http://www.gurobi.com/

http://fpt.akt.tu-berlin.de/tree-cluster
http://www.gurobi.com/

6.5 Experimental Results 101

reduction rules are invoked. In the experiments described below we performed data
reduction in every second step since this value yielded the largest speed-up.

Branch and bound: As mentioned above, the rounded LP solution dkopt
LP e provides

a lower bound on the number of modifications that have to be performed to transform
the underlying distance function into an ultrametric. Clearly, the deeper we get into
the search tree, the more modification flags we have. Hence, the corresponding LP
imposes more and more constraints whereas the parameter decreases, which together
increases the likelihood that we can prune the search tree. This means that, after a
number of branching steps, we solve the corresponding LP program and check whether
the parameter k is at least as large as dkopt

LP e. If not, we can abort branching into further
subcases, because none of them can provide a solution with at most k modifications.

Choice of conflicts for branching: We choose the conflict to branch on in the fol-
lowing order of preference: The first and most preferable type of conflicts are conflicts
where either both non-max-distance pairs cannot be increased or the max-distance
pair cannot be decreased and one non-max-distance pair cannot be increased. In this
case, no actual branching takes place since only one option to destroy the conflict
remains. Second, if no such conflict exists we choose conflicts where the max-distance
pair cannot be decreased or one of the non-max-distance pairs cannot be increased. If
such conflicts are also not present, we choose the smallest conflict with respect to a
predetermined lexicographic order. This often creates a conflict of the first two types.

In the following sections, we refer to the above algorithm as “combination of FPT
and LP” since it uses the LP for pruning the search tree. The algorithm without
branch and bound is referred to as “simple FPT algorithm”.

6.5.2 Experiments with Synthetic Data

We generated random instances to chart the border of tractability with respect to
different values of n and k. All experiments were performed for M = 2. We considered
three different values for n: 50, 75, and 100. For each fixed value of n we generated
four ultrametrics and perturbed each of these ultrametrics, increasing step by step
the number k of perturbations. For each pair of n and k we generated four distance
functions. We thus created 16 instances for each pair of n and k. Next, we describe
in detail how we generated and perturbed the ultrametrics.

Generation of Ultrametrics. We generated the instances by creating a random
ultrametric tree of depth M + 1. We started at the root and randomly drew the
number of its children under uniform distribution from {2, . . . , dlnne}. Then, the
elements were randomly (again under uniform distribution) assigned to the subtrees
rooted at these newly created nodes. For each child we recursively created ultrametric
trees of depth M . The only difference for a node at a lower level is that we randomly
drew the number of its children under uniform distribution from {1, . . . , dlnne}. That
is, in contrast to the root node, we allowed that an inner node has only one child.

Perturbation of Generated Ultrametrics. We randomly chose a pair {i, j} of ele-
ments under uniform distribution and changed the distance value D(i, j). This step
was repeated until k distance values have been changed. For each chosen pair, we
randomly decided whether D(i, j) will be increased or decreased (each with prob-
ability 1/2). We did not increase D(i, j) if it has been previously decreased or
if D(i, j) = M + 1; we did not decrease D(i, j) if it has been previously increased
or if D(i, j) = 1.

102 6 Hierarchical Tree Clustering

 0

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160 180 200

ti
m

e
(s

)

parameter k

n=50 FPT

 0

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160 180 200

ti
m

e
(s

)

parameter k

n=50 FPT
n=50 FPT+LP

 0

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160 180 200

ti
m

e
(s

)

parameter k

n=50 FPT
n=50 FPT+LP

n=50 ILP

 0

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160 180 200

ti
m

e
(s

)

parameter k

 0

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160 180 200

ti
m

e
(s

)

parameter k

n=75 FPT

 0

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160 180 200

ti
m

e
(s

)

parameter k

n=75 FPT
n=75 FPT+LP

 0

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160 180 200

ti
m

e
(s

)

parameter k

n=75 FPT
n=75 FPT+LP

n=75 ILP

 0

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160 180 200

ti
m

e
(s

)

parameter k

 0

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160 180 200

ti
m

e
(s

)

parameter k

n=100 FPT

 0

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160 180 200

ti
m

e
(s

)

parameter k

n=100 FPT
n=100 FPT+LP

 0

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160 180 200

ti
m

e
(s

)

parameter k

n=100 FPT
n=100 FPT+LP

n=100 ILP

 0

 10

 20

 30

 40

 50

 20 40 60 80 100 120 140 160 180 200

ti
m

e
(s

)

parameter k

Figure 6.4: Running times for fixed n and varying k.

Experimental Results. The running times for all three sets of generated instances
are shown in Figure 6.4. We tested three algorithms, the first is the FPT algorithm that
only uses data reduction and branching. The second algorithm works as follows. First,
an LP-solution is computed. If this solution is integral, then we are done. Otherwise,
the solution of the approximation algorithm is computed and will be compared to the
LP-solution. If the lower bound provided by the LP-solution meets the upper bound
solution provided by the approximation algorithm, then the approximative solution
must be optimal and hence we are done in this case. In all other cases, we afterwards
perform the algorithm based on the combination of FPT and LP.

Our observations are as follows. First, as expected from the theoretical running
time analysis for our algorithms, they are very fast when k is small. In particular,
for k < n the simple FPT algorithm that is based on the search tree and data reduction
outperforms the ILP approach, and adding the LP to the FPT algorithm does not
result in a speed-up. This is due to the fact that most instances with k < n could be
solved without branching, just by applying the data reduction rules. Second, for the
simple FPT algorithm, the combinatorial explosion sets in at k ≈ n, and its running
times quickly become infeasible for increasing k. In contrast, the ILP appears to
show parameter-independent running times,4 and for the combination of FPT and LP
algorithm, the combinatorial explosion apparently sets in at k ≈ 2n. Finally, using
exp(a ·(x−b)) as regression function, the corresponding regression analysis shows that
the running time of the FPT algorithm is best described by exponential functions of
the type αk with α ≤ 1.4. This is due to the data reduction: switching it off leads to
running times with α ≈ 2.4. Note that, by Proposition 6.1, in our theoretical analysis

4The running times for the ILP depend heavily on n: already for n = 125 and very low values
of k, the average running time of the ILP was roughly 2 minutes.

6.5 Experimental Results 103

the algorithm has a running time of O(3k · n3).

6.5.3 Experiments with Protein Similarity Data

We performed experiments on protein similarity data which have been previously
used in an experimental evaluation of fixed-parameter algorithms for Cluster Edit-
ing [146]. The data set contains 3964 files with pairwise similarity data of sets of
proteins. The number of proteins n for each file ranges from 3 to 8836. We consider
a subset of these files, where n ≤ 70, covering about 92% of the files.

From each file, we created four discrete distance matrices for M +1 = 3 as follows.
We set the distance of the c% of the pairs with lowest similarity to 3, where c is a
predetermined constant. From the remaining pairs the c% of the pairs with lowest sim-
ilarity were set to two, and all others to one. In our experiments, we set c to 75, 66, 50,
and 33, respectively. This approach is motivated by the following considerations. In a
distance function represented by a balanced ultrametric tree of depth M + 1 at least
half of all distances are M + 1 and with increasing degree of the root of the cluster-
ing tree the number of pairs with distance M + 1 increases. If we assume that the
ultrametric tree is more or less balanced we thus expect a large portion of pairwise
distances to have maximum value making the choices of c = 75 and c = 66 the most
realistic.

Experimental Results. Table 6.1 (on page 104) contains the results of our exper-
iments. We summarize our observations as follows. First, we used the LP-solver
followed by the approximation algorithm. In cases where the LP-solver already has
found an integral solution or dkopt

LP e is equal to the distance value found by the approx-
imation algorithm, we can conclude that the instance has been solved to optimality.
The LP-solver in combination with the approximation algorithm solves a large range
of instances. We refer to the instances that could not be solved by this approach as
“hard instances”.

Second, we investigated how many of the hard instances could be solved within 2,
10, 60, and 300 seconds, respectively, by our search tree based algorithm (interleaved
with data reduction rules and LP-solver). Observe that a significant fraction of the
hard instances of size at most 50 could be solved within 300 seconds. For larger
instances, the performance of the algorithm becomes worse.

Third, we compared our search tree based algorithm with the ILP. The ILP out-
performs our algorithm in most cases. There are, however, some instances where our
approach finds optimal solutions that are not found by the ILP based approach.

Fourth, for the evaluation of the use of the data reduction rules, we switched off
the data reduction rules and repeated the experiments for c = 66. These experiments
show that the performance of the search tree based approach gets significantly worse
without the interleaving with the data reduction rules.

Fifth, for the evaluation of the approximation algorithm, we counted the number
of instances for which it yields optimal solutions. For all considered instance ranges,
some instances could be solved to optimality and the average distance found by the
approximation algorithm is close to the optimal average distance, implying that the
approximation solutions are close to the optimum for a large fraction of the instances.
In addition, note that the approximation algorithm is the fastest of all algorithms.
However, there is a tendency that for larger instances the approximation factor gets
worse.

104 6 Hierarchical Tree Clustering

Table 6.1: Summary of our experiments for the protein similarity data. The instances
are created with M+1 = 3 and c = 75, 66, 50, and 33. The second column contains the
number of instances within the respective range. The column labeled “#” provides
the number of “hard instances”, that is the instances that could not be solved by the
LP-solver followed by the approximation algorithm. The next four columns provide
the number of hard instances that can be solved within 2, 10, 60, and 300 seconds
by our algorithm that is based on the combination of FPT and LP and the columns
labeled kST

avg and kST
max provide the average and maximum distance of the instances

that could be solved by this approach. The columns kApro
avg and kApro

max provide the same
values for the approximation algorithm for all (not only the hard) instances. Moreover,
AP
OPT provides the number of instances that are solved optimal by the approximation
algorithm and AP

TIME denotes its average running time for all instances. In the last two
columns, ILP

OPT provides the number of hard instances that are solved optimally by the
ILP-solver, and ILP

TIME denotes the average running time. The last subtable provides
the results for our FPT-algorithm with branch and bound but without interleaving
the data reduction rules.

c=33
range total # 2s 10s 60s 300s kST

avg kST
max kApro

avg kApro
max

AP
OPT

AP
TIME

ILP
OPT

ILP
TIME

[0, 30] 3114 143 135 139 142 143 65 230 68 248 82 0.1 141 0.3
(30, 50] 359 89 43 60 67 74 309 870 335 1033 10 0.3 89 9.5
(50, 70] 210 57 3 16 21 22 467 673 608 1224 1 0.4 31 12.4

[0, 70] 3683 289 181 215 230 239 177 870 256 1224 93 0.2 261 4.8
c=50
range total # 2s 10s 60s 300s kST

avg kST
max kApro

avg kApro
max

AP
OPT

AP
TIME

ILP
OPT

ILP
TIME

[0, 30] 3114 210 189 196 207 208 44 169 44 1039 115 0.03 208 0.29
(30, 50] 359 134 63 86 98 106 206 639 236 775 13 0.2 133 6.5
(50, 70] 210 83 5 23 29 37 338 506 437 869 2 1.3 60 14.8

[0, 70] 3683 427 257 305 334 351 124 639 186 1039 130 0.22 401 4.5
c=66
range total # 2s 10s 60s 300s kST

avg kST
max kApro

avg kApro
max

AP
OPT

AP
TIME

ILP
OPT

ILP
TIME

[0, 30] 3114 178 132 158 172 172 30 177 35 309 66 0.02 178 0.7
(30, 50] 359 147 4 13 53 106 108 226 130 342 11 0.11 144 3.6
(50, 70] 210 88 0 0 3 14 194 303 270 498 4 0.37 73 15.6

[0, 70] 3683 413 136 171 228 293 66 303 119 498 81 0.07 395 4.5
c=75
range total # 2s 10s 60s 300s kST

avg kST
max kApro

avg kApro
max

AP
OPT

AP
TIME

ILP
OPT

ILP
TIME

[0, 30] 3114 128 123 125 127 127 15 231 18 282 110 0.03 128 1.2
(30, 50] 359 117 77 81 97 107 68 165 76 243 56 0.2 117 2.3
(50, 70] 210 92 29 49 56 70 130 278 151 322 27 0.6 92 9.2

[0, 70] 3683 337 229 255 280 304 60 278 75 322 193 0.2 337 3.8
c=66 without data reduction rules
range total # 2s 10s 60s 300s kST

avg kST
max kApro

avg kApro
max

AP
OPT

AP
TIME

ILP
OPT

ILP
TIME

[0, 30] 3114 178 101 125 147 159 28 177 33 177 68 0.02 178 0.5
(30, 50] 359 147 3 8 37 60 109 226 131 344 12 0.12 137 7.3
(50, 70] 210 88 0 0 2 5 170 276 271 495 5 0.5 69 22.5

[0, 70] 3683 413 104 133 186 224 53 276 118 495 85 0.1 385 6.9

6.6 Conclusion 105

6.5.4 Conclusions and Recommendations

From the experiments with synthetic and protein similarity data, we draw the following
conclusions and recommendations.

Conclusions from the Experiments with Synthetic Data. For k < n, one should
use the simple search tree that is based on the combination of data reduction and the
search tree algorithm. Since the ILP was not particularly fast in solving these types
of instances, one should explore whether our data reduction rules can be incorporated
into the ILP solving strategy to yield a speed-up. Furthermore, for n < k < 2n
most of the instances were solved immediately by solving the relaxed LP, since the LP
solutions were integral. Hence, these instances seem to share a structural feature that
makes them easier. A natural goal would be to develop data reduction rules that are
able to solve all instances with k < 2n. In other words, the aim should be to “move”
the onset of the combinatorial explosion for combinatorial FPT algorithms from k ≈ n
to k ≈ 2n.

Conclusions from the Experiments with Protein Similarity Data. A large fraction
of the protein-similarity instances could be solved by running the LP-solver and the
approximation algorithm. Hence, this approach should be applied before relying on
more expensive approaches such as search trees or ILPs. Moreover, although outper-
formed by the ILP-solver for most instances, our approach solves a large fraction of
the instances. With further improvements, our algorithms should form a serious com-
petitor for state-of-the-art ILP-solvers for solving M -HTC. Finally, the data reduction
rules are crucial for the performance of our search tree based approach. Thus, a main
target for further algorithmic improvements of our approach should be to improve
the data reduction rules, for example by improving the implementation of Reduction
Rule 6.3 (which so far has not been employed in our systematic experiments).

6.6 Conclusion

We have initiated the study of M -Hierarchical Tree Clustering in the context
of parameterized algorithmics and also provided first implementations for solving M -
Hierarchical Tree Clustering. There are numerous topics for future research.

We have presented a first refinement of the simple O(3k)-size search tree, yielding a
fixed-parameter algorithm with running time O(2.562k ·n3). It would be interesting to
explore whether other branching strategies, such as for example the “vertex merging”
strategy that has been proposed for Cluster Editing [24], lead to further improved
search tree algorithms for M -Hierarchical Tree Clustering.

In this chapter, we have presented an O(k2)-element and an O(M ·k)-element prob-
lem kernel with cubic worst-case running times. There are two questions immediately
arising from our kernelization results: First, can the problem kernel size be improved;
for example, is there an O(k)-element problem kernel (that is, a linear-element kernel
whose size does not depend on M)? Second, can the running times of the kerneliza-
tions be improved? Note that Cluster Editing admits an O(k2)-vertex problem
kernel that can be computed in linear time [145].

In this chapter, we investigated M -Hierarchical Tree Clustering with re-
spect to the standard parameter k, denoting the cost of the solution. As follows
from our experiments, k is not really small for several real-world instances. Hence,

106 6 Hierarchical Tree Clustering

the investigation of M -Hierarchical Tree Clustering with respect to “nonstan-
dard parameterizations” is desirable (as we have done for Cluster Editing, see
Chapter 4). For example, a refined parameter (see Section 2.3) for parameter k for
M -Hierarchical Tree Clustering would be the “element deletion distance to
an ultrametric”, that is, the minimum cardinality of an element set X ′ ⊆ X such
that D[X \X ′] is ultrametric.

From an applied point of view, further (heuristic) improvements are both conceiv-
able and necessary to further increase the range of instances that can efficiently be
solved.

Finally, we discuss two extensions of M -Hierarchical Tree Clustering.
First, it seems also worthwhile to study the parameterized complexity of the prob-

lem of “fitting ultrametrics” for other norms such as the `2 norm. The polynomial-time
approximability of these problems is well-studied [5].

Second, overlapping clusters (see Chapter 5) have also been considered in context
of hierarchical tree clustering. Observe that the t-clusters of an ultrametric over a
set X form a partition of X (that is, any two t-clusters are disjoint). That is, at
each level of an ultrametric tree there is no overlap between the clusters. Hence,
models have been suggested that generalize ultrametrics to allow for overlap between
clusters. For example, Jardine and Sibson [115, pages 65-71] suggest to “relax” the
strong triangle inequality (see Definition 6.1) leading to the notion of s-ultrametrics;
a distance function D over a set X is called an s-ultrametric if for all i, j ∈ X and for
all S ⊆ X with |S| = s

D(i, j) ≤ max{D(i′, j′) | i′ ∈ S ∪ {i, j}, j′ ∈ S}.

For s = 1, this is the same as the strong triangle inequality. As observed by Barthélemy
and Brucker [13], an s-ultrametric D with maximum distance two corresponds to a
graph fulfilling the “s-Zahn property”, that is, any two maximal cliques in the 1-
threshold graph of D overlap in at most s − 1 vertices (also see Section 5.1). The
work of Barthélemy and Brucker [13] points to further generalizations of ultramet-
rics and corresponding clustering problems. The parameterized complexity of these
generalizations seems unexplored so far.

Chapter 7
Minimum Flip Consensus Tree

7.1 Introduction

The Minimum Flip Consensus Tree problem arises in computational phylogenetics
in the context of supertree construction. Given a binary matrix, the task is to “flip”
a minimum number of entries of the matrix in order to obtain a binary matrix that
admits what is called a directed perfect phylogeny. These are matrices from which a
rooted phylogenetic tree can be inferred [100, 143].

In this chapter, we employ a graph-theoretic formulation of the problem, which
was introduced by Chen et al. [45]: the binary input matrix A is represented by a
bipartite graph G = (Vc, Vt, E) where an edge between two vertices i ∈ Vc and j ∈ Vt
is drawn if and only if Ai,j = 1 (Ai,j denoting the jth entry in the ith row). The
matrix then admits a directed perfect phylogeny if and only if the graph does not
contain an M -graph as an induced subgraph. An M -graph is a path of five vertices
with the first vertex belonging to Vt. An example of such an M -graph is depicted in
Figure 7.1. The flipping of a matrix entry Ai,j from 0 to 1 corresponds to the insertion
of the edge {i, j}, and the flipping of Ai,j from 1 to 0 corresponds to the deletion of
the edge {i, j}.

The Minimum Flip Consensus Tree problem is then defined as follows.

Definition 7.1. Minimum Flip Consensus Tree (MFCT)
Input: A bipartite graph G = (Vc, Vt, E) and an integer k ≥ 0.
Question: Can G be transformed by applying up to k edge modifications into an
M -free graph, that is, a graph without an induced M -graph?

We refer to a vertex c ∈ Vc as c-vertex, and to a vertex t ∈ Vt as t-vertex.
In a nutshell, other than previous work [27, 45] on fixed-parameter algorithms

for MFCT, which mainly dealt with the development of depth-bounded search trees,
here we mainly deal with polynomial-time data reduction, devising the first nontrivial
kernelization algorithm for Minimum Flip Consensus Tree. Moreover, we present
a further improved search algorithm for Minimum Flip Consensus Tree.

Minimum Flip Consensus Tree arises in an approach by Chen et al. [45] to
aggregate the information of several input trees in a consensus tree. In the context

108 7 Minimum Flip Consensus Tree

c1 c2

t1 t2 t3

Figure 7.1: An M -subgraph with t1, t2, t3 ∈ Vt and c1, c2 ∈ Vc.

of this chapter, a rooted phylogenetic tree (also called directed phylogeny) is a rooted
tree where each leaf corresponds to a taxon. In phylogenetics, a taxon refers to a
group of organisms. Moreover, an inner node of a phylogenetic tree corresponds to a
hypothetical last common ancestor of its descendents. Phylogenetic trees are inferred
based on similarities and differences in their physical or genetic characteristics, either
“by hand” or using computer-based approaches. Depending on the data and the meth-
ods that have been used to generate a phylogenetic tree, a set of given phylogenetic
trees may disagree on the evolutionary relationship of the considered taxa. Since all
methods used to infer phylogenetic trees have their advantages and drawbacks, the
idea is that combining all information of the trees into a consensus tree gives a robust
model of the evolutionary history. In this chapter, we focus on an approach of Chen
et al. [45]. Given rooted phylogenetic trees T1 = (V1, E1), . . . , T` = (V`, E`) (all on
the same set of taxa), a consensus tree is constructed in three phases. See Figure 7.2
for an illustration. In a first phase, the information of all input trees is represented in
a bipartite graph G = (Vc, Vt, E) as follows: The vertex set Vt contains a vertex for
each taxon and the vertex set Vc is the (disjoint) union of the inner nodes of the input
trees. Moreover, for each inner node c of an input tree Ti and each taxon t there is
an edge {c, t} ∈ E if and only if t is a descendent of c in Ti. If the input trees do not
contain any conflicting information, then G is M -free [66, 100] (also see Figure 7.2).
M -free graphs admit a directed perfect phylogeny, meaning that one can construct a
rooted phylogenetic tree from an M -free graph G. If, however, the input trees contain
contradicting information, then G contains induced M -graphs. Hence, in a second
“error correction phase”, the task is to solve Minimum Flip Consensus Tree (see
Definition 7.1) to destroy all induced M -graphs. In a third phase, the consensus tree
is then inferred from the M -free graph.

Known Results and Previous Work. The Minimum Flip Consensus Tree
problem was introduced by Chen et al. [45]. They proved its NP-completeness and
described a factor-2d polynomial-time approximation algorithm for graphs with maxi-
mum degree d. Furthermore, they showed fixed-parameter tractability with respect to
the number k of flips by describing a simple O(6k · |Vt||Vc|) search tree algorithm that
is based on the forbidden induced subgraph characterization with M -graphs. Subse-
quently, Böcker et al. [27] improved the running time to O(4.42k(|Vc|+ |Vt|)+ |Vc| · |Vt|)
by employing a refined branching strategy that leads to a search tree of size O(4.42k).
This theoretically proven running time acceleration was also confirmed by computa-
tional experiments [27].

Minimum Flip Consensus Tree is a special case of the Flip Supertree prob-
lem, where the input matrix is allowed to have “uncertain” entries [45]. Experi-
ments have shown that Flip Supertree compares favorably with other supertree-
construction methods [44]. Very recently, it has been shown that Flip Supertree is
W [1]-hard [26] with respect to the parameter “number of flips of certain entries”. Chi-

7.1 Introduction 109

t1 t2 t3 t4 t5

t5t4t3t2t1

t2 t3 t4 t5t1

c1 c2 c3 c4 c′1c′3c′2

c1 c2 c3 c4 c′1c′3c′2

t5t4t3t2t1 t1 t2 t3 t4 t5

c1

c′1

c′3

c′2

c2 c4

c′3, c3

c1, c
′
1

c2 c4

c3

c′2

2

1

3

T1

T2

Figure 7.2: Illustration of the Minimum Flip Consensus Tree approach for two
input trees. In a first step, the information of both input trees is represented in a
bipartite graph. In this bipartite graph, there is a vertex for each taxon and for each
inner tree node. An edge is drawn between an inner tree node and a taxon if and
only if the taxon is a descendent of the inner tree node. In the given example, the
two input trees contain conflicting information: In T1, leaves t5 and t4 have a common
ancestor (namely c4) that is not an ancestor of t2; however, in T2, leaves t2 and t4
have a common ancestor (namely c′2) that is not an ancestor of t5: clearly both is
not simultaneously possible. This contradicting information leads to M -graphs in G.
One M -graph is highlighted by bold dashed lines. In a second phase, all induced M -
graphs are destroyed by modifying edges. In the given example, it suffices to delete
the edge {c4, t4} to destroy all induced M -graphs. From the M -free bipartite graph,
in a third phase the consensus tree is constructed.

mani, Rahmann, and Böcker [49] proposed an ILP-formulation for Flip Supertree
and showed that optimal solutions can be found for instances with up to 100 taxa. An
introduction into the topic of supertree construction methods is given by [23]. For a
survey on fixed-parameter algorithms in phylogenetics we refer to [84].

From a graph-theoretic point of view, Minimum Flip Consensus Tree belongs
to the class of so-called edge modification problems (see Section 3.3). Recall that
in the case of edge modification problems the task is to modify the edge set of a
given graph as little as possible to obtain a graph fulfilling a desired graph property.
In particular, Minimum Flip Consensus Tree is Π-Editing (see Definition 3.1)
where the desired graph property is to be M -free. Recall that an M -graph is a path
on five vertices (a so-called P5) with the first, middle, and last vertices from Vt. For
an integer ` > 2, Π-Editing for the graph property Π “being P`-free” is called P`-
free Editing. Recall that Cluster Editing is P3-free Editing (see Chapter 4).
The currently smallest problem kernel for Cluster Editing contains at most 2k

110 7 Minimum Flip Consensus Tree

vertices [46]. P4-free Editing in bipartite graphs is known as Bicluster Editing.
Search tree algorithms and polynomial-size problem kernels have been presented for
Bicluster Editing [93, 145]. For general graphs, Guillemot et al. [87] have recently
shown that P4-free Editing (also known as Cograph Editing) admits a cubic
vertex kernel, whereas Pl-free Editing for l ≥ 13 does not admit a polynomial-size
problem kernel unless PH = Σ3.

Damaschke [52] investigated kernelization in the context of enumerating all inclusion-
minimal solutions of size at most k. In this scenario, when designing data reduction
rules one has to guarantee that all inclusion-minimal solutions of size at most k are
preserved. Kernels that fulfill these additional constraints are called full kernels. In
this setting, Damaschke [52] presents a full kernel consisting of O(6k) matrix entries
for the following problem closely related to Minimum Flip Consensus Tree: Given
a binary matrix and a nonnegative integer k, enumerate all inclusion-minimal sets
of at most k flips that transform the matrix into a matrix that admits an unrooted
perfect phylogeny.

Our Contributions. In this chapter, we provide several polynomial-time data re-
duction rules for Minimum Flip Consensus Tree that lead to a problem kernel
containing O(k3) vertices. This is the first nontrivial kernelization result for Mini-
mum Flip Consensus Tree. Note that in the light of the non-kernelizability results
for P`-free Editing for ` > 13 by Guillemot et al. [87] and for H-free Editing for
a specific graph H on seven vertices by Kratsch and Wahlström [124], it is a challeng-
ing task to prove the existence of polynomial-size problem kernels even for forbidden
subgraphs of constant size. In addition, we present a search-tree algorithm with run-
ning time O(3.68k · |Vc|2|Vt|). Combining our kernelization algorithm with our search
tree algorithm we achieve a running time of O(3.68k + |Vc|2 · |Vt| · |E|) instead of the
previous O(4.42k · (|Vc|+ |Vt|) + |Vc| · |Vt|) [27].

This chapter is organized as follows. In Section 7.2, we introduce basic notation
and some definitions used throughout this chapter. In Section 7.3, we present a de-
composition property which yields the basis for one of the data reduction rules and for
the identification of a polynomial-time solvable special case needed for the improved
search tee strategy. In Section 7.4, we present one easy and two more intricate data re-
duction rules for MFCT. Based on these rules, in Section 7.5 we can show that MFCT
admits a problem kernel with O(k3) vertices. Finally, in Section 7.6 we present an
O(3.68k)-size search tree for MFCT.

7.2 Preliminaries

Throughout this chapter, we use the following notation and definitions. See Section 2.6
for basic notation concerning graphs and Section 3.3.1 for basic notation concerning
edge modification problems. In addition, we use the following notation.

For two sets X and Y with X∩Y = ∅, let EX,Y denote the set {{x, y} | x ∈ X∧y ∈
Y }. As an abbreviation for E{x},Y we write Ex,Y . A bipartite graph G = (X,Y,E) is
called a chain graph if the neighborhoods of the vertices in X form a chain [163]. That
is, there is an ordering of the vertices in X, say x1, x2, . . . , x|X|, such that NG(x1) ⊆
NG(x2) ⊆ . . . ⊆ NG(x|X|). It is easy to see that the neighborhoods of Y also form a
chain if G is a chain graph. Moreover, a bipartite graph is a chain graph if and only if

7.2 Preliminaries 111

it is 2K2-free [163] (herein, a 2K2 is the graph that consists of two independent edges).
Since every M -graph contains an induced 2K2, the set of chain graphs is contained
in the class of M -free graphs. One of our data reduction rules is based on identifying
and reducing the size of subgraphs of the input graphs that are chain graphs and
additionally have a special neighborhood structure.

We use the following notation concerning rooted trees. A vertex of a tree is called
node. For a rooted tree T let L(T) denote the leaves of T (that is, the nodes of degree
one). The nodes in V (T) \L(T) are denoted as inner nodes. The root of T is denoted
by r(T). Moreover, for a node v ∈ V (T), the subtree rooted at v is denoted by Tv.
We refer to a child of a node v as leaf child of v if it is a leaf; otherwise, it is called
non-leaf child of v. We speak of the leaves (inner nodes) of a forest to refer to the
union of the leaves (inner nodes) of the trees of the forest.

Induced M-graphs and M-freeness. Recall that a bipartite graph G = (Vc, Vt, E)
is called M -free if it does not contain an induced M -graph. An induced M -graph is
denoted by a 5-tuple (tl, cl, tm, cr, tr), where cl, cr ∈ Vc and tl, tm, tr ∈ Vt. Two
c-vertices cl and cr are said to be in conflict if there exists an induced M -graph
containing both cl and cr. Clearly, for an induced M -graph (tl, cl, tm, cr, tr) we
have tl ∈ NG(cl)\NG(cr), tm ∈ NG(cl)∩NG(cr) and tr ∈ NG(cr)\NG(cl). Thus, two
c-vertices cl, cr ∈ Vc are in conflict if and only if

(NG(cl) \NG(cr) 6= ∅) ∧ (NG(cl) ∩NG(cr) 6= ∅) ∧ (NG(cr) \NG(cl) 6= ∅).

If cl, cr ∈ Vc are in conflict we write cl⊥cr. In summary, for a bipartite graph G =
(Vc, Vt, E), the following statements are equivalent:

• G is M -free,

• no two c-vertices are in conflict, and

• for each pair of c-vertices cl and cr, it holds that N(cl) ∩N(cr) = ∅ or N(cl) ⊆
N(cr) or N(cr) ⊆ N(cl).

M -free graphs and rooted phylogenetic trees are closely related. Given a connected
and M -free graph G = (Vc, Vt, E), one can construct a rooted tree T with node
set Vt ∪Vc and with L(T) = Vt such that ti ∈ Vt is a descendant of cj ∈ Vc if and only
if ti ∈ NG(cj), see [45, 100, 143] for details. An example is given in Figure 7.3.

M-freeness and Critical Independent Set Preserving Graph Properties.
Here, we recapitulate the findings of Section 3.4 relevant to Minimum Flip Con-
sensus Tree. These findings are centered around the notion of critical independent
sets.

Recall that a vertex set I ⊆ V is called a critical independent set if for any two
vertices v, w ∈ I it holds that v and w are nonadjacent, NG(v) = NG(w), and I is
maximal with respect to this property (see Definition 2.5). Moreover, in Section 3.4
we defined so-called critical independent set preserving graph properties. A hereditary
graph property Π is called 1-critical independent set preserving (1-cisp) whenever no
forbidden induced subgraph F of Π contains a critical independent set of size at least
two (that is, all critical independent sets of F have size one, see Definition 3.3). Note

112 7 Minimum Flip Consensus Tree

c1

c2

c3

c4

t1 t2 t3 t4 t5

c4c3c2 c1

t1 t2 t3 t4 t5

Figure 7.3: An M -free graph G and the corresponding tree. In a connected M -
free graph there exists a “universal” c-vertex, that is, a c-vertex adjacent to all t-
vertices. In this example, c1 is a universal vertex. This universal vertex is the root of
the corresponding tree. Thus, one can build a tree by applying the above argument
recursively for the connected components of G− c1.

that M -freeness is a 1-cisp graph property: all vertices in an induced M -graph have
different neighborhoods. Therefore, Reduction Rule 3.1 and Lemma 3.5 apply directly
to Minimum Flip Consensus Tree:

• Reduction Rule 3.1 shrinks large critical independent sets. More specifically, by
Reduction Rule 3.1 it suffices to keep k + 1 “representatives” for each critical
independent set.

• Lemma 3.5 implies that for Minimum Flip Consensus Tree there is an optimal
solution that “treats” the vertices of a critical independent set equally, that is, if
two nonadjacent vertices have an identical neighborhood in the input graph, then
these two vertices have an identical neighborhood in the final target graph. In
other words, critical independent sets are “preserved” by optimal solutions. This
property is decisive for the correctness proof of Reduction Rule 7.4 in Section 7.4.

In our correctness proofs we rely on solutions that preserve critical independent
set. A solution S for an instance (G, k) is called regular if every critical independent
set of G is contained in a critical independent set of G∆S. By Lemma 3.5 we can
assume that there exists a minimum-cardinality solution that is regular. Moreover,
since the modification operations in the proof of Lemma 3.5 can be performed in
polynomial time, we can compute a regular solution from a given (arbitrary) solution
in polynomial time.

7.3 A Decomposition Property

In this section, we show that independent conflicts can be resolved independently.
More specifically, we show that, given a set C of c-vertices such that no vertex in C
is in conflict with any c-vertex outside of C, the conflicts involving the vertices in C
can be resolved independently from the conflicts not involving vertices in C. This fact
is used to prove the correctness of one of our data reduction rules in Section 7.4 and
to identify a polynomial-time solvable special case of MFCT in Section 7.6 that is the
basis for our improved search tree algorithm presented in Section 7.6.

For an input graph G = (Vc, Vt, E), we consider the conflict graph G⊥ = (Vc, F)
with vertex set Vc and edge set F := {{c′, c′′} | c′, c′′ ∈ Vc∧c′⊥c′′}. Roughly speaking,
we show that for each connected component of the conflict graph, the conflicts can

7.3 A Decomposition Property 113

be resolved independently. To show this property, we need the following lemma.
Throughout this section, we identify a connected component by its vertex set.

Lemma 7.1. Let C and C ′ be two connected components of the conflict graph G⊥
with NG(C) ∩NG(C ′) 6= ∅. Then,

• for each x ∈ C it holds that NG(C ′) ⊆ NG(x) or NG(x) ∩NG(C ′) = ∅, or

• for each y ∈ C ′ it holds that NG(C) ⊆ NG(y) or NG(y) ∩NG(C) = ∅.

Proof. Since NG(C) ∩ NG(C ′) 6= ∅, there is a vertex x ∈ C and a vertex y ∈ C ′

with NG(x)∩NG(y) 6= ∅. Furthermore, because x and y are in two different connected
components of G⊥, they are not in conflict, and, thus NG(x) ⊆ NG(y) or NG(y) ⊆
NG(x). Assume without loss of generality that NG(y) ⊆ NG(x).

First, we show NG(C ′) ⊆ NG(x). Assume towards a contradiction that NG(C ′) \
NG(x) 6= ∅. Let A := {y′ ∈ C ′ | NG(y′) ⊆ NG(x)}. Note that y ∈ A and, hence, A 6= ∅.
Furthermore, let B := C ′ \A and observe that B 6= ∅ by the assumption that NG(C ′)\
NG(x) 6= ∅. Since C ′ is a connected component of G⊥, there are vertices y′ ∈ A
and y′′ ∈ B being in conflict with each other. That is,

NG(y′) \NG(y′′) 6= ∅ and NG(y′) ∩NG(y′′) 6= ∅ and NG(y′′) \NG(y′) 6= ∅.

This directly implies that NG(x) ∩NG(y′′) 6= ∅ (since NG(y′) ⊆ NG(x)) and NG(x) \
NG(y′′) 6= ∅ (since NG(y′) ⊆ NG(x)). Furthermore, y′′ ∈ B implies NG(y′′)\NG(x) 6=
∅. As a consequence, x is in conflict with y′′, contradicting the fact that x and y′′ are
contained in distinct connected components of G⊥.

Next, we prove that for each x′ ∈ C it holds that NG(C ′) ⊆ NG(x′) or NG(x′) ∩
NG(C ′) = ∅. To this end, consider the following partition of C;

C⊇,∅ := {x′ ∈ C | NG(x′) ⊇ NG(C ′) or NG(x′) ∩NG(C ′) = ∅},

C⊂ := {x′ ∈ C | NG(x′) ⊂ NG(C ′)},

Cr := C \ (C⊇,∅ ∪ C⊂).

Note that x ∈ C⊇,∅, and, thus, C⊇,∅ 6= ∅. To prove the above claim, we show that C⊂∪
Cr = ∅. Assume towards a contradiction that C⊂ ∪ Cr 6= ∅. We distinguish two cases
based on whether Cr = ∅ or not.

Case 1: Cr = ∅. From assumption C⊂ ∪ Cr 6= ∅ it follows that C⊂ 6= ∅. Further-
more, note that no vertex in C⊂ is in conflict with a vertex in C⊇,∅. Since C⊇,∅ 6= ∅
and C⊂ 6= ∅, this implies that C comprises at least two connected components; a
contradiction.

Case 2: Cr 6= ∅. Let x′ ∈ Cr be arbitrarily chosen. Since NG(x′) \NG(C ′) 6= ∅ by
the definition of Cr and x′ is not in conflict with any vertex in C ′, for every vertex y′ ∈
C ′ we have either NG(y′) ⊆ NG(x′) or NG(y′) ∩ NG(x′) = ∅. Let Y1 := {y′ ∈ C ′ |
NG(y′) ⊆ NG(x′)} and Y2 := {y′ ∈ C ′ | NG(y′)∩NG(x′) = ∅}. Note that C ′ = Y1∪Y2,
Y1 6= ∅ (since NG(x′) ∩ NG(C ′) 6= ∅), and Y2 6= ∅ (since NG(C ′) \ NG(x′) 6= ∅).
Moreover, NG(Y1) ∩ NG(Y2) = ∅ and, hence, no vertex in Y1 is in conflict with a
vertex in Y2. Thus, graph G⊥[C ′] consists of at least two connected components; a
contradiction.

114 7 Minimum Flip Consensus Tree

Recall that for a regular solution S it holds that each critical independent set
of G is contained in a critical independent set of G∆S (see Section 7.2). Next, we
show that one obtains a minimum-cardinality solution by combining regular minimum-
cardinality solutions for the subgraphs induced by the connected components of G⊥
and their neighborhoods.

Proposition 7.1. Let C1, C2, . . . , C` denote the connected components of G⊥ and
define Gi := G[Ci ∪ NG(Ci)]. Let Si denote a regular minimum-cardinality solution

for Gi, 1 ≤ i ≤ `. Then, S :=
⋃`
i=1 Si is a minimum-cardinality solution for G.

Proof. The proof is organized as follows. First, we show that |S| is a lower bound for
an optimal solution, then we show that S is a solution, that is, G∆S is M -free.

First, we show that
∑`
i=1 |Si| is a lower bound for the size of a minimum-cardinality

solution for G (note that |S| = ∑`
i=1 |Si| since all Si’s are pairwise disjoint). To this

end, observe that for every solution S′ clearly S′i := S′ ∩ {{vc, vt} | vc ∈ Ci, vt ∈
NG(Ci)} is a solution for Gi. Moreover, |Si| ≤ |S′i| since Si is a minimum-cardinality
solution for Gi. Since all S′i’s are pairwise disjoint, we thus have |S| ≤ |S′|.

Second, we show that G∆S is M -free. Assume towards a contradiction that
there are two c-vertices c and c′ that are in conflict in G∆S. Moreover, let Ci de-
note the connected component of G⊥ containing c and let Cj denote the connected
component of G⊥ containing c′. Since NG∆S(c) ∩ NG∆S(c′) 6= ∅ and all edge in-
sertions of S incident to c and c′′ are between c and NG(Ci) and c′ and NG(Cj),
respectively, it follows that NG(Ci) ∩ NG(Cj) 6= ∅. Thus, according to Lemma 7.1,
we can assume without loss of generality that for every x ∈ Cj it holds that ei-
ther NG(Ci) ⊆ NG(x) or NG(x)∩NG(Cj) = ∅. As a consequence, NG(Ci) ⊆ NG(Cj).
Let Cj,1 := {x ∈ Cj | NG(Ci) ⊆ NG(x)} and Cj,2 := {x ∈ Cj | NG(Ci) ∩NG(x) = ∅}.
By Lemma 7.1, Cj = Cj,1 ∪ Cj,2. Hence, NG(Ci) is a critical independent set in Gj :
for every vertex t ∈ NG(Ci) it holds that NGj (t) = Cj,1. Let t1, t2, t3 denote three
t-vertices that, together with c and c′, induce an M -graph in G∆S. Without loss
of generality, assume that t1 ∈ NG∆S(c) \ NG∆S(c′), t2 ∈ NG∆S(c) ∩ NG∆S(c′),
and t3 ∈ NG∆S(c′) \ NG∆S(c). Next, we argue that {t1, t2} ⊆ NG(Ci): both t1
and t2 are neighbors of c in G∆S and all edge modifications involving vertices in Ci
are between Ci and NG(Ci). Finally, observe that NG(Ci) is not a critical independent
set in Gj ∆Sj since t1 6∈ NGj ∆Sj (c

′) but t2 ∈ NGj ∆Sj (c
′): this is a contradiction to

the assumption that Sj is regular since NG(Ci) is a critical independent set in Gj .

7.4 Data Reduction Rules

In this section, we present four polynomial-time data reduction rules for Minimum
Flip Consensus Tree that produce an O(k3)-vertex kernel.

As noted in Section 7.2, Reduction Rule 3.1 applies for MFCT. More specifically,
since “being M -free” is a 1-cisp graph property, for MFCT Reduction Rule 3.1 reads
at follows.

Reduction Rule 7.1. Let I ⊆ V be a critical independent set. If |I| > k + 1, then
delete |I| − (k + 1) arbitrary vertices from I.

The first new data reduction rule is obvious.

7.4 Data Reduction Rules 115

Reduction Rule 7.2. Remove M -free connected components from the input graph.

Applying Reduction Rule 7.1 and a rule that removes all isolated bicliques already
yields an O(k2)-vertex kernel for Bicluster Editing [145]. However, for Minimum
Flip Consensus Tree we need two further, more involved data reduction rules. The
main difference here is that for M -free graphs, we have a much more complicated
neighborhood structure than for P4-free bipartite graphs (so-called bicluster graphs),
where each connected component is a complete bipartite graph. That is, in contrast
to bicluster graphs, where each connected component contains at most two critical
independent sets, in case of M -free-graphs each connected component might contain
an unbounded number of critical independent sets.

The next data reduction rule removes c-vertices from G that do not appear in
any M -graph. The correctness of this rule follows from the decomposition property
introduced in Section 7.3: a c-vertex c′ that is not in any conflict forms a connected
component {c′} in the conflict graph G⊥ whose associated MFCT–subinstance G[{c′}∪
NG(c′)] is M -free. Thus, according to Proposition 7.1, the sizes of minimum solutions
for G and G− c′ are equal.

Reduction Rule 7.3. Let G = (Vc, Vt, E) be a bipartite graph. If there exists a
vertex c ∈ Vc that is not in conflict with any other vertex in Vc, then remove c.

Lemma 7.2. Reduction Rule 7.3 is correct and can be exhaustively applied in O(|Vc|2 ·
|Vt|) time.

Proof. As discussed above, the correctness of Reduction Rule 7.3 follows directly from
Proposition 7.1.

For the running time consider the following. To test the adjacency of two vertices in
constant time, an adjacency matrix is built prior to the application of the rule. Then,
for each pair of vertices c1, c2 ∈ Vc, we can determine in O(Vt) time whether they are
in conflict by checking for each vertex t ∈ Vt, whether it is adjacent to c1, c2, or both.
Each c-vertex that is in conflict with some other vertex is marked. Finally, unmarked
vertices are removed from the graph. This can be done in O(|E|) time. The overall
running time is thus O(|Vc|2 · |Vt|). Note that every vertex that is in conflict prior to
the application of the rule is also in conflict after the application of the rule. Thus,
the above procedure results in an instance that is reduced with respect to Reduction
Rule 7.3.

The structurally “deepest” reduction rule shrinks induced subgraphs of the input
graph that resemble “local” chain graphs. We call such a subgraph P -structure:

Definition 7.2. Let G = (Vc, Vt, E) be a bipartite graph. A pair (CP , TP) of vertex
sets CP ⊆ Vc and TP ⊆ Vt forms a P -structure if the following three properties are
fulfilled:

1. G[CP ∪ TP] is a chain graph,

2. for all c′, c′′ ∈ CP it holds that N(c′) \ TP = N(c′′) \ TP , and

3. for all t′, t′′ ∈ TP it holds that N(t′) \ CP = N(t′′) \ CP .

116 7 Minimum Flip Consensus Tree

...

...

c2 c3 cpc1

tk+2 t`−(k+1)t1
...

t`
...

tk+1 t`−k

...

...

c2 c3 cpc1

tk+1 t`−kt1 t`
... ...

Figure 7.4: Illustration of the application of Reduction Rule 7.4. The edges within the
P -structure are colored black and the edges between a vertex of the P -structure and
a vertex outside the P -structure are colored grey. Reduction Rule 7.4 removes all but
the first and last k + 1 t-vertices of the P -structure.

For a P -structure (CP , TP) of a bipartite graph G the neighborhoods in G of the
vertices in CP (and TP) also form a chain (since “outside” of the P -structure they
have the same neighbors). Moreover, note that G[CP ∪ TP] is M -free.

Our last reduction rule shrinks large P -structures. See Figure 7.4 for an example.

Reduction Rule 7.4. Let (G = (Vc, Vt, E), k) denote an MFCT-instance and let
(CP , TP) be a P -structure in G, where TP = {t1, t2, . . . , t`} with NG(t1) ⊆ NG(t2) ⊆
. . . ⊆ NG(t`). If ` > 2(k + 1), then remove TR := {tk+2, tk+3, . . . , t`−(k+1)} from G.

Next, we prove the correctness of Reduction Rule 7.4. After this, we show that it
can be applied in polynomial time.

Lemma 7.3. Reduction Rule 7.4 is correct.

Proof. Let G = (Vc, Vt, E), CP , TP , and TR specified as in Reduction Rule 7.4.
Let CP = {c1, c2, . . . , cq}. Since (CP , TP) forms a P -structure, we can assume that
NG(t1) ⊆ NG(t2) ⊆ . . . ⊆ NG(t`) and NG(c1) ⊇ NG(c2) ⊇ . . . ⊇ NG(cq). Further-
more, let G′ := G− TR denote the reduced graph.

For the correctness of Reduction Rule 7.4, we prove the following.

Claim: (G, k) is a yes-instance ⇐⇒ (G′, k) is a yes-instance.

“⇒”: This direction follows directly from the fact that M -freeness is a hereditary
graph property.
“⇐”: Given a solution S′ of size at most k for G′, we show that one can construct
a solution of size at most k for G. First, note that since |S′| ≤ k there exists an i
with 1 ≤ i ≤ k + 1 such that ti is not involved in any edge modification in S′,
that is, NG′(ti) = NG′∆S′(ti). Analogously, there is a j with ` − k ≤ j ≤ ` such
that tj is not involved in any edge modification in S′, that is, NG′(tj) = NG′∆S′(tj).

7.4 Data Reduction Rules 117

Note that NG′(ti) ⊆ NG′(tj) and, hence, NG′∆S′(ti) ⊆ NG′∆S′(tj). Furthermore,
let T := {ti+1, ti+2, . . . , tj−1} and T ′ := T \ TR. Consider the edge modification
set S′′ := S′ \ ET ′,Vc . In other words, S′′ contains all edge modifications from S′

except those involving a vertex from T ′. Clearly, S′′ is a solution of size at most k
for G−T = G′−T ′. We show that from S′′ one can build a solution of size at most k
for G. To this end, we distinguish the cases that NG(ti) = NG(tj) and NG(ti) ⊂
NG(tj).

Case 1: NG(ti) = NG(tj). This condition implies that NG(t′) = NG(ti) = NG(tj)
for every t′ ∈ T ′ ∪ TR since NG(ti) ⊆ NG(t′) ⊆ NG(tj) and NG(ti) = NG(tj). That is,
in G∆S′′, every vertex t′ ∈ T ′∪TR has the same neighborhood as ti and tj (since ti, tj ,
and t′ are not involved in any edge modification in S′′) and, as a consequence of
Lemma 3.1, G∆S′′ is M -free (observe that G∆S′′ results from (G′ − T ′) ∆S′′ by
adding the vertices in T step-by-step, making each vertex adjacent to every vertex
in NG(ti)). Hence, S′′ is a solution of size at most k for G.

Case 2: NG(ti) ⊂ NG(tj). We need some observations on the structure of G′−T ′
and (G′ − T ′) ∆S′′.

First, we show that NG(tj)\NG(ti) is part of a critical independent set in G′−T ′.
By NG(ti)\CP = NG(tj)\CP (Condition 3 of Definition 7.2), it follows that NG(tj)\
NG(ti) ⊆ CP . Hence, all vertices from NG(tj) \ NG(ti) have the same neighbors in
Vt \ TP in G′ − T ′ according to Condition 2 of Definition 7.2. Moreover, every vertex
in NG(tj) \ NG(ti) is nonadjacent to all vertices in {t1, . . . , ti} since NG(t1) ⊆ . . . ⊆
NG(ti) ⊂ NG(tj) and is adjacent to all vertices in {tj , . . . , t`} since NG(ti) ⊂ NG(tj) ⊆
. . . ⊆ NG(t`). Thus, all vertices in NG(tj) \ NG(ti) have an identical neighborhood
in G′ − T ′.

Thus, by Lemma 3.5, there is a solution S of size at most k for G′ − T ′ = G − T
such that NG(tj) \NG(ti) is contained in a critical independent set in (G−T)∆S and
neither ti nor tj are involved in any edge modification from S.

Next, we argue that GS := G∆S is M -free. Assume towards a contradiction that
GS contains an M -graph. We show that then GS contains an M -graph (tl, cl, tm, cr, tr)
such that

exactly one of tl and tr is contained in T and tm 6∈ T .

From the existence of such an M -graph we then derive a contradiction to the fact
that (G−T) ∆S is M -free. To prove the existence of an M -graph as described above,
consider an arbitrarily chosen M -graph (t∗l , c

∗
l , t
∗
m, c

∗
r , t
∗
r). First, we show that not

both of t∗l and t∗r are contained in T . Observe that t∗l has a neighbor not contained
in NGS (t∗r) (namely c∗l), and, vice versa, t∗r has a neighbor not contained in NGS (t∗l)
(namely c∗r). Since, however, the neighborhoods of the vertices in T form a chain in GS
for any two vertices tx, ty ∈ T either NGS (tx) ⊆ NGS (ty) or NGS (ty) ⊆ NGS (tx). Thus
not both of t∗l and t∗r can be contained in T .

Next, assume that t∗m ∈ T . We show that then c∗l , c
∗
r , t
∗
l , t
∗
r and tj (instead of t∗m)

induce an M -graph. Since t∗m ∈ T it holds that NGS (t∗m) ⊆ NGS (tj), implying t∗r 6= tj
and t∗l 6= tj . Thus, since tj is adjacent to c∗l and c∗r in GS (this follows from NGS (t∗m) ⊆
NGS (tj)), the vertices c∗l , c

∗
r , t
∗
l , t
∗
r , and tj (instead of t∗m) induce an M -graph in GS .

In summary, there is an M -graph (tl, cl, tm, cr, tr) in GS such that not both tl
and tr are contained in T and tm 6∈ T . Since (G − T) ∆S is M -free, every M -graph
in GS contains at least one vertex from T . Thus, either tl ∈ T or tr ∈ T . Without
loss of generality assume that tl ∈ T .

118 7 Minimum Flip Consensus Tree

Finally, note that cr 6∈ NGS (ti) because cr 6∈ NGS (tl) ⊇ NGS (ti). Moreover, note
that cl ∈ NGS (tj) since NGS (tl) ⊆ NGS (tj). We distinguish the two cases cl ∈ NG(ti)
and cl ∈ NG(tj) \NG(ti) and in each case derive a contradiction.

Case 2.1: cl ∈ NG(ti). Then, {ti, cl, tm, cr, tr} induces an M -graph not containing
a vertex from T because cl ∈ NGS (ti) (since cl ∈ NG(ti) by the case condition)
but {ti, cr} 6∈ E(GS) (since cr 6∈ NGS (ti)). This contradicts the assumption that (G−
T)∆S is M -free.

Case 2.2: cl ∈ NG(tj) \ NG(ti). Recall that by the discussion above tr, tm 6∈ T
and cr 6∈ NG(ti). Furthermore, we can assume that cr is not contained in NG(tj) \
NG(ti); otherwise, since NG(tj)\NG(ti) forms a critical independent set in (G−T)∆S
and tr, tm 6∈ T , it would follow that cl and tr are adjacent (however, tr ∈ NGS (cr) \
NGS (cl)). Hence, cr 6∈ NG(tj) and, since cr is adjacent to both tm and tr, it follows
that tm 6= tj and tr 6= tj . Thus, since cl ∈ N(tl) ⊆ N(tj) (by the case condition)
but cr 6∈ NG(tj), the vertex set {tj , cl, tm, cr, tr} induces an M -graph in GS not
containing any vertex from T . This contradicts the M -freeness of (G− T)∆S.

Finally, we show that Reduction Rule 7.4 can be applied in polynomial time. To
this end, we first prove that a P -structure with a maximal number of t-vertices can
be found in polynomial time.

Lemma 7.4. A P -structure (CP , TP) such that |TP | is maximal can be found in O(|Vc|2·
|E|) time.

Proof. Assume that G contains a P -structure (CP , TP) where CP = {c1, c2, . . . , cp}
and N(c1) ⊇ N(c2) ⊇ . . . ⊇ N(cp). We show that given the two vertices c1, cp ∈
CP we can find in O(|E|) time a P -structure (C, T) with C = CP such that |T | is
maximal. Hence, by trying all pairs c′, c′′ ∈ Vc, we can find a P -structure (CP , TP) for
which |TP | is maximal in O(|Vc|2 · |E|) time. We distinguish the cases N(c1) = N(cP)
and N(c1) ⊃ N(cp).

Case 1: N(c1) = N(cp). Any two vertices in CP have an identical neighborhood.
Hence, we can assume that CP = I, where I denotes the critical independent set
containing c1 and cp. Furthermore, since CP is a critical independent set, Definition 7.2
implies that TP is a critical independent set, too. Moreover, it is not hard to verify
that I together with any critical independent set in N(c1) forms a P -structure. Note
that the set of all critical independent sets of a graph can be computed in O(|Vt|+ |Vc|)
time [133]. Hence, one can find a P -structure (I, TP) such that |TP | is maximal
in O(|E|) time.

Case 2: N(c1) ⊃ N(cp). We use the following notation. For two c-vertices c′, c′′

with N(c′′) ⊆ N(c′) let

S(c′, c′′) := {x ∈ Vc | N(c′′) ⊆ N(x) ⊆ N(c′)},
T ′(c′, c′′) := N(c′) \N(c′′),

Cout(c
′, c′′) := N(T ′(c′, c′′)) \ S(c′, c′′),

T ′′(c′, c′′) := {t ∈ N(c′′) | N(t) = (S(c′, c′′) ∪ Cout(c
′, c′′))}.

Let (CP , TP) denote a P -structure of G where CP = {c1, c2, . . . , cp} with N(c1) ⊇
N(c2) ⊇ . . . ⊇ N(cp) and N(c1) ⊃ N(cp). We show that in this case (CP , TP) is
uniquely determined by c1 and cp. More precisely, we show the following.

7.4 Data Reduction Rules 119

Claim: If (CP , TP) is a P -structure, then CP = S(c1, cp) and TP =
T ′(c1, cp) ∪ T ′′(c1, cp).

First, we show that CP = S(c1, cp). From the definition of a P -structure it follows
directly that CP ⊆ S(c1, cp). Hence, it remains to show that S(c1, cp) ⊆ CP . Assume
towards a contradiction that there exists a vertex x ∈ S(c1, cp) \ Cp. Note that,
since N(c1)\TP = N(cp)\TP (Condition 2 of Definition 7.2), it holds that T ′(c1, cp) ⊆
TP . Furthermore, observe that we can assume that x has not the same neighborhood
as c1 or cp; since (CP , TP) is maximal, every vertex with the same neighborhood as c1
or c2 belongs to CP . Thus, N(c1) ⊃ N(x) ⊃ N(cp), and, consequently, there is a
vertex t′ ∈ N(x) \ N(cp) and a vertex t′′ ∈ N(c1) \ N(x). Clearly, t′, t′′ ∈ T ′(c1, cp)
and, thus, t′, t′′ ∈ TP . Since by assumption x 6∈ CP , it holds that x ∈ N(t′) \ CP but
x 6∈ N(t′′) \ CP ; a contradiction to Condition 3 of Definition 7.2.

Second, we show that TP = T ′(c1, cp) ∪ T ′′(c1, cp). As argued above, T ′(c1, cp) ⊆
TP and, thus, it remains to show that TP \ T ′(c1, cp) = T ′′(c1, cp). Observe that
Cout(c1, cp) = N(t) \ CP for each vertex t ∈ TP since T ′(c1, cp) ⊆ TP , CP = S(c1, cp),
and due to Condition 3 of Definition 7.2. Hence, TP \T ′(c1, cp) ⊆ T ′′(c1, cp), since each
vertex in TP \T ′(c1, cp) is adjacent to all vertices in Cout(c

′, c′′)∪S(c′, c′′). Finally, note
that (CP , T

′(c1, cp) ∪ T ′′(c1, cp)) is a P -structure. Thus, TP = T ′(c1, cp) ∪ T ′′(c1, cp)
by the maximality of (CP , TP). This concludes the proof of the above claim.

By the above claim, a P -structure (CP , TP) where CP = {c1, c2, . . . , cp} with
N(c1) ⊇ N(c2) ⊇ . . . ⊇ N(cp) and N(c1) ⊃ N(cp) is uniquely determined by c1
and cp. Thus, it remains to show that computing the sets C := S(c′, c′′) and T :=
T ′(c′, c′′) ∪ T ′′(c′, c′′) and testing whether the found subgraph is a P -structure are
doable in O(|E|) time.

To compute the set S(c′, c′′) proceed as follows. First, compute the sets N(c′)
and N(c′′) and check whether N(c′′) ⊆ N(c′). If so, in one iteration over E compute for
every c-vertex x the values a(x) := |N(c′)∩N(x)|, b(x) := |N(c′′)∩N(x)|, and c(x) :=
|N(x) \N(c′)|. Clearly, a(x) ≤ |N(c′)|, b(x) = |N(c′′)|, and c(x) = 0 if and only if x ∈
S(c′, c′′). Using similar ideas, it is straightforward to verify that the sets T ′(c′, c′′)
and T ′′(c′, c′′) can be computed in O(|E|) time.

Finally, we show that, given a tuple (CP , TP), it can be decided in O(|E|) time
whether it forms a P -structure. To this end, proceed as follows. First, compute the
sets T ′ := N(CP) \ TP and C ′ := N(TP) \CP . Note that then in one iteration over E
it is possible to check whether N(c) \ TP = T ′ for each c ∈ CP . Analogously, check
whether N(t) \CP = C ′ for each t ∈ CP . If this test is passed without conflicts, then
it remains to verify that the neighborhoods of the vertices in CP form a chain. To
this end, sort the vertices in CP in decreasing order of their degrees using bucket sort
(in linear time). Let CP = {c1, . . . , cp} where deg(c1) ≥ . . . ≥ deg(cp). Clearly, by
first marking the neighbors of ci and then iterating over ci−1’s neighbors, it is possible
to test whether N(ci) ⊆ N(ci−1) in time O(deg(ci−1)). Hence, checking whether the
neighborhoods of the vertices in CP form a chain is doable in O(

∑
deg(ci)) = O(|E|)

time.

Lemma 7.5. In O(|Vc|2|E|) time, Reduction Rule 7.4 can be applied once or it can
be decided that the instance is reduced with respect to Reduction Rule 7.4.

Proof. By Lemma 7.4, a P -structure (CP , TP) such that |TP | is maximal can be com-
puted in O(|Vc|2 ·|E|) time. Note that only the size of |TP | is important for the decision

120 7 Minimum Flip Consensus Tree

c0 c2 c3 c4 c5 c6 c7 c8 c9c1

t0 t1 t2 t3 t4 {t0, t1}

{c3, c4}

{c8, c9}
{c6, c7}

{t2} {t3} {t4}

{c5}
{c0, c1, c2}

Figure 7.5: An M -free graph G and the corresponding tree Tcis(G).

whether Reduction Rule 7.4 applies. Thus, if |TP | ≤ 2(k + 1), then the instance is
reduced with respect to Reduction Rule 7.4. Otherwise, Reduction Rule 7.4 can be
applied in O(|E|) time. Thus, the overall running time is bounded by O(|Vc|2|E|).

7.5 Analysis of the Problem Kernel Size

In this section, we bound the maximum number of vertices in an instance that is
reduced with respect to Rules 7.1–7.4.

For the analysis of the problem kernel size, we make use of the representation of
M -free graphs as rooted trees. Recall that, given a connected and M -free graph G =
(Vc, Vt, E), one can construct a rooted tree T with node set Vt∪Vc and with L(T) = Vt
such that ti ∈ Vt is a descendant of cj ∈ Vc if and only if ti ∈ NG(cj), see [45, 100, 143]
for details.

Note that the critical independent set graph of an M -free graph is M -free. Hence,
we can find a tree with the property that every leaf one-to-one corresponds to a critical
independent set of the t-vertices and every inner vertex one-to-one corresponds to a
critical independent set of the c-vertices. For a connected and M -free graph G, we
denote this tree by Tcis(G). Figure 7.5 shows an M -free graph G together with Tcis(G).

The following easy observation is helpful in the analysis of the kernel size.

Observation 7.1. For an M -free graph G the following holds.

1. Every inner node of Tcis(G) has at most one leaf child, and

2. every inner node of Tcis(G) with at most one non-leaf child has exactly one leaf
child.

Now, we arrive at our main result.

Theorem 7.1. Minimum Flip Consensus Tree admits an O(k3)-vertex problem
kernel. The kernelization runs in O(|Vc|2 · |Vt| · |E|) time.

Proof. Consider an instance (G = (Vc, Vt, E), k) that is reduced with respect to
Rules 7.1–7.4. We show that if (G, k) is a yes-instance, then the number of vertices
in Vc ∪ Vt is O(k3).

Assume that (G, k) is a yes-instance and let S denote an optimal solution of size at
most k for G. Moreover, let GS := G∆S. Recall that the vertices that are involved in
any edge modification of S are called affected. All other vertices are called nonaffected.

7.5 Analysis of the Problem Kernel Size 121

Let Xc denote the set of affected c-vertices and let Yc denote the set of nonaffected
c-vertices. Analogously, define Xt and Yt as the set of affected and nonaffected t-
vertices, respectively. Since every edge modification involves a c-vertex and a t-vertex,
we have |Xc| ≤ k and |Xt| ≤ k. Hence, it remains to bound |Yc ∪ Yt|.

Let GS,1, GS,2, . . . , GS,p denote the connected components of GS . For each i,
1 ≤ i ≤ p, let Ti := Tcis(GS,i) denote the rooted tree corresponding to the critical
independent set graph of GS,i. Moreover, let T denote the forest comprising all Ti’s.
Recall that the leaves of T one-to-one correspond to the critical independent sets of Vt
in GS and that the inner nodes of T one-to-one correspond to the critical independent
sets of Vc in GS . For a node z ∈ V (T), let C(z) denote the set of vertices contained
in the critical independent set corresponding to z. Moreover, for Z ⊆ V (T), de-
fine C(Z) :=

⋃
z∈Z C(z). Finally, let T ′ := T −L(T) denote the subforest of T induced

by the critical independent sets corresponding to the c-vertices.
For the analysis of the kernel size, we partition the set of inner nodes into three

sets A, B, and Q. The set A contains all inner nodes z of T for which at least
one of the following two statements holds: C(z) ∩ Xc 6= ∅ or z has a leaf child w
with C(w) ∩Xt 6= ∅. Note that |A| ≤ 2k since there are at most 2k affected vertices.
Moreover, let B be the set of the inner nodes that are not contained in A and that
have at least two non-leaf children. Further, Q contains all inner nodes not contained
in A ∪ B. For a set of inner nodes Z, let LZ denote the set of leaves incident to a
vertex in Z.

First, we bound the number of the vertices contained in the critical independent
sets corresponding to the nodes in A ∪ B and LA ∪ LB . To this end, we show the
following.

1. For every inner node x ∈ B ∪Q , there exists at least one node y ∈ V (Tx) with
y ∈ A.

2. The cardinality of B is at most 2k.

3. The number of vertices contained in the critical independent sets corresponding
to the nodes in A ∪B ∪ LA ∪ LB is bounded by O(k2).

1.) Assume towards a contradiction that there is an inner node x ∈ B ∪ Q such
that V (Tx)∩A = ∅. That is, no vertex in C(V (Tx)) is affected. Consider a vertex c′ ∈
C(x). We show that c′ is not contained in any conflict in G, contradicting the fact
that G is reduced with respect to Reduction Rule 7.3. First, for every c-vertex y in
C(V (Tx)) it holds thatNG(y) ⊆ NG(c′) sinceNGS (y) ⊆ NGS (c′) and S does not affect c
or y. Second, for every c-vertex y in C(V (T)\V (Tx)) it holds thatNGS (c′)∩NGS (y) = ∅
or NGS (c′) ⊆ NGS (y). As a consequence, since neither c′ nor any t-vertex in NGS (c′)
is affected, it follows that NG(c′)∩NG(y) = ∅ or NG(c′) ⊆ NG(y). This means that c′

is not contained in any conflict in G.
2.) Recall that the forest T ′ results from deleting all leaves of T . Since each node

of B has at least two non-leaf children in T , it has at least two children in T ′. From 1.)
it follows directly that the leaves of T ′ are contained in A and, hence, their number is
bounded by 2k. Since the number of inner nodes with at least two children is bounded
by the number of leaves, we arrive at the bound |B| ≤ 2k.

3.) First, note that |A ∪B| ≤ 4k since A and B each have cardinality at most 2k.
Moreover, |LA ∪ LB | ≤ 4k since every inner node has at most one leaf child (see

122 7 Minimum Flip Consensus Tree

Observation 7.1). For every node y ∈ A∪B∪LA∪LB , define C′(y) := C(y)\ (Xc∪Xt)
and observe that C′(y) forms a critical independent set in G since no vertex in C′(y)
is affected. Thus, since G is reduced with respect to Reduction Rule 7.1, it follows
that |C′(y)| ≤ k + 1. Putting all together, we obtain

|C(A ∪B ∪ LA ∪ LB)| ≤ |Xc|+ |Xt|+
∑

y∈A∪B∪LA∪LB

|C′(y)| ≤ 2k + 4k(k + 1).

So far, we have bounded the number of vertices in Xc∪Xt and C(A∪B∪LA∪LB)
by O(k2). It remains to bound the number of vertices contained in C(Q ∪ LQ).

Observe that each inner node contained in Q (and hence not contained in A ∪B)
has exactly one non-leaf child since L(T ′) ⊆ A (see 2.) above). That is, in the
the forest T ′ = T − L(T) these vertices have degree two. Moreover, by Obser-
vation 7.1, each node contained in Q has exactly one leaf child. Recall that all
leaves of T ′ are contained in A and hence |L(T ′)| ≤ 2k. Consider a path P =
({x, y1}, {y1, y2}, . . . , {yl−1, yl}, {yl, z}) in T ′ with yi ∈ Q for all 1 ≤ i ≤ l and x, z ∈
A ∪ B. Such a path is called a degree-two-path in the following since by the above
discussion degT ′(yi) = 2 for all 1 ≤ j ≤ l. Further, for every yi, let wi denote the
leaf child of yi in T . Note that in the forest T ′, there are at most 8k degree-two-paths
since L(T ′) ⊆ A and |A ∪ B| ≤ 4k. In the following, we bound the length of each
degree-two-path by 2(k + 1). Hence, for each such path we have

l∑
i=1

(|C(yi)|+ |C(wi)|) ≤ l · (2(k + 1)) ≤ (2(k + 2)) · 2(k + 1)

vertices in G. Adding up over the at most 8k degree-two-paths, this amounts to 8k ·
2(k + 1)(2(k + 2)) ≤ 32k(k + 1)(k + 2) vertices, yielding the bound of O(k3) vertices
in total.

Next, we bound the length of each degree-two-path. To this end, consider such
a degree-two-path P = ({x, y1}, {y1, y2}, . . . , {yl−1, yl}, {yl, z}) in T ′, that is, x, z ∈
A ∪B and yi ∈ Q for all 1 ≤ i ≤ l. Without loss of generality, we assume that yl is a
descendent of y1. For each yi let wi denote the one and only leaf child adjacent to yi.
See Figure 7.6 for an example. Let CP :=

⋃l
i=1 C(yi) and TP :=

⋃l
i=1 C(wi). We show

that (CP , TP) forms a P -structure in G. First, note that CP ⊆ Vc and TP ⊆ Vt. Recall
that by definition all vertices in CP ∪TP are unaffected. Next, observe that G[CP ∪TP]
forms a chain graph. This can be seen as follows. In GS a vertex in C(y1) is clearly
adjacent to all vertices in TP , a vertex in C(y2) is adjacent to all vertices in TP \
C(w1), a vertex in C(y3) is adjacent to all vertices in TP \ C({w1, w2}), and so on.
Hence, GS [CP ∪ TP] is a chain graph and, since no vertex in CP is involved in an
edge modification, we have that G[CP ∪TP] forms a chain graph, too (see Figure 7.6).
Next, we show that CP and TP fulfill the second and third property of a P -structure.
First, every vertex in CP is adjacent in GS to all vertices contained in the critical
independent sets corresponding to the leaves in Tz and, hence, for all c, c′ ∈ CP , we
have NGS (c) \ TP = NGS (c′) \ TP . Since no vertex in CP is affected, this implies
that NG(c) \ TP = NG(c′) \ TP for all c, c′ ∈ CP . Second, every vertex t ∈ TP is
adjacent in GS (and hence in G) to all c-vertices contained in a critical independent
set on the path from the root r to z. Hence, for any two vertices t, t′ ∈ TP it holds
that NG(t) \ TP = NG(t′) \ TP . In summary, (CP , TP) forms a P -structure.

7.6 An O(3.68k)-Size Search Tree 123

{t1, t2}
{t3, t4}

{t5}

x

{c1, c2}
{c3}

{c4, c5}

P

y1

y2

y3

r

z

Tz
t1 t2 t3 t4 t5

c1 c2 c3 c4 c5

Figure 7.6: A degree-two-path P and the corresponding chain graph. Herein, C(y1) =
{c1, c2}, C(y2) = {c3}, and C(y3) = {c4, c5}.

Finally, we show that l ≤ 2(k+1). Assume towards a contradiction that l > 2(k+1).
This implies that |TP | > 2(k + 1), too, since every yi has exactly one leaf child that
corresponds to a critical independent set of Vt. Hence, |TP | > 2(k + 1) and thus all
conditions to apply Reduction Rule 7.4 are fulfilled: a contradiction to the fact that G
is reduced.

To prove the running time bound, we assume that the data reduction rules are ap-
plied as follows. First, we show that an instance reduced with respect to the Rules 7.3
and 7.4 can be computed in O(|Vc|2 · |Vt| · |E|) time. To this end, proceed as follows.
Apply Reduction Rule 7.3 exhaustively. Then, check whether Reduction Rule 7.4 can
be applied. If not, the instance is reduced with respect to both rules. Otherwise, ap-
ply Reduction Rule 7.3 exhaustively again and subsequently check whether Reduction
Rule 7.4 can be applied, and so on. Note that Reduction Rule 7.4 is applied O(|Vt|)
times since each time (except for the last time) at least one t-vertex is removed. Hence,
by Lemmas 7.2 and 7.5, one obtains a graph that is reduced with respect to Rules 7.3
and 7.4 in O(|Vt| · (|Vc|2|Vt|+ |Vc|2|E|)) = O(|Vc|2|Vt||E|) time.

Finally, observe that applying Reduction Rule 7.2 and subsequently Reduction
Rule 7.1 to a graph reduced with respect to Rules 7.3 and 7.4 leaves a graph reduced
with respect to Rules 7.3 and 7.4. Thus, the running time is dominated by the ap-
plication of Rules 7.3 and 7.4. Hence, the kernelization runs in O(|Vc|2 · |Vt| · |E|)
time.

7.6 An O(3.68k)-Size Search Tree

In this section, we present an O(3.68k)-size search tree algorithm for Minimum Flip
Consensus Tree, achieving a running time of O(3.68k+ |Vc|2 · |Vt| · |E|) instead of the
previous O(4.42k · (|Vc|+ |Vt|) + |Vc| · |Vt|) [27]. Basically, we use the same branching
strategy as Böcker et al. [27]. Our main achievement is that exploiting Proposition 7.1
allows us to stop the branching process at an earlier stage.

For the presentation of our results, we use the following notation. Following Böcker

124 7 Minimum Flip Consensus Tree

ci cj

x1 y1 z1 z`... x1 z1

ci cj ci cj

x1 x2 y1 z1 z2

a) b) c)

y1 y2 z1

Figure 7.7: The three cases for which new branching rules are designed.

et al. [27], for two c-vertices ci, cj ∈ Vc we define X(ci, cj) := N(ci)\N(cj), Y (ci, cj) :=
N(ci) ∩N(cj), and Z(ci, cj) := N(cj) \N(ci). Note that ci⊥cj if and only if all three
sets are nonempty. See Section 2.5 for the definition of branching rules and basic
notation concerning depth-bounded search trees.

Böcker et al. [27] introduced a branching rule that, for two conflicting c-vertices ci
and cj , branches into all possibilities to make one of the sets X(ci, cj), Y (ci, cj),
and Z(ci, cj) empty. To this end, they branch into 2|X(ci,cj)| + 2|Y (ci,cj)| + 2|Z(ci,cj)|

cases. In each of the first 2|X(ci,cj)| branches, parameter k is decreased by |X(ci, cj)|, in
the each of the subsequent 2|Y (ci,cj)| branches parameter k is decreased by |Y (ci, cj)|,
and in each of the last 2|Z(ci,cj)| cases parameter k is decreased by |Z(ci, cj)|. We
refer to [27] for any details and the correctness of this branching strategy. For exam-
ple, if |X(ci, cj)| = 3, |Y (ci, cj)| = 2 and |Z(ci, cj)| = 1, then the branching vector
is (3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 1, 1) leading to a branching number of 3.68. Indeed, us-
ing standard branching analysis tools it is easy to verify that the branching number is
at most 3.68 if the size of one of these sets is at least 3 and the size of two of these sets
is at least 2. Moreover, if |X(ci, cj)| = |Y (ci, cj)| = |Z(ci, cj)| = 2, then the branching
vector is (2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2) giving a branching number of 3.47. Further, one
can verify that the branching number is at most 3.47 if all of these sets have size at
least two.

The basic idea behind the improved search tree algorithm is as follows. We will
show that if for all conflicting c-vertices ci and cj it holds that |X(ci, cj)| = |Z(ci, cj)| =
1, then MFCT can be solved in polynomial time. Moreover, for all other cases we
present branching rules with corresponding branching numbers better than 3.68. To
this end, we use the branching strategy introduced by Böcker et al. as long as it
yields a branching number better than 3.68. For the remaining cases we devise refined
branching strategies, based on a simple structural observation.

We use the following branching rules.

1. If there are two conflicting c-vertices ci, cj such at least one of the three sets
X(ci, cj), Y (ci, cj), and Z(ci, cj) has cardinality three and at least two of the
three sets X(ci, cj), Y (ci, cj), and Z(ci, cj) have cardinality at least two, or if all
three sets X(ci, cj), Y (ci, cj), and Z(ci, cj) have cardinality at least two, then
apply the branching strategy by Böcker et al. [27].

2. If there are two conflicting c-vertices ci, cj with |X(ci, cj)| = |Y (ci, cj)| = 1
and |Z(ci, cj)| > 1 (that is, ci has degree two), then proceed as follows. See
Figure 7.7 a) for notation. First, branch into the case to delete the edge {x1, ci}.
Second, branch into the case to add the edge {x1, cj}. Third, branch into
the case to delete the edge {y1, cj}. Fourth, branch into the case to delete
all edges {{zp, ci} | 1 ≤ p ≤ `}.

7.6 An O(3.68k)-Size Search Tree 125

3. If there are two conflicting c-vertices ci, cj with |X(ci, cj)| = 1 and |Y (ci, cj)| =
|Z(ci, cj)| = 2, then proceed as follows. See Figure 7.7 b) for notation. First,
branch into the case to delete edge {x1, ci}. Second, branch into the case to
add {x1, cj}. Third, branch into the three cases to delete each time the two
edges Sr,s := {{y1, cr}, {y2, cs}} for r ∈ {i, j} and s ∈ {i, j} with r = j or s = j.
Fourth, branch into the three cases to modify each time the two edges Sr,s :=
{{z1, cr}, {z2, cs}} for r ∈ {i, j} and s ∈ {i, j} with r = j or s = j.

4. If there are two conflicting c-vertices ci, cj with X|(ci, cj)| = 2, |Y (ci, cj)| = 1,
and |Z(ci, cj)| = 2, then proceed as follows. See Figure 7.7 c) for notation.
First, branch into the case to delete {y1, ci}. Second, branch into the case
to delete {y1, cj}. Third, branch into the two cases to modify each time the
two edges Sr,s := {{x1, cs}, {x2, cr}} for r ∈ {i, j} and s ∈ {i, j} with r 6= s.
Fourth, branch into the two cases to modify each time the two edges Sr,s :=
{{z1, cs}, {z2, cr}} for r ∈ {i, j} and s ∈ {i, j} with r 6= s.

In all branching rules, the parameter is decreased by the number of modified edges in
each branch.

The correctness of all new branching rules is based on the following simple obser-
vation. A degree-one c-vertex is not part of any induced M -graph since the c-vertices
of an M -graph have degree two. Hence, if a c-vertex c is involved in deg(c) − 1 edge
modifications, then we can assume that all these edge modifications are edge dele-
tions. Otherwise, one can “undo” the edge modifications incident to c and instead
delete deg(c)− 1 arbitrary edges incident to c. Observe that this destroys all induced
M -graphs containing c but does not create new induced M -graphs since the neigh-
borhoods of the other c-vertices are not modified. Formally, for the correctness of the
branching rules we employ the following observation.

Lemma 7.6. Let (G, k) denote an MFCT-instance. Moreover, let c ∈ Vc such that c is
in conflict with some other c-vertex. Let t ∈ NG(c). If there is a solution S containing
at least degG(c)−1 edge modifications involving c, then there is a solution S′, |S′| ≤ |S|
with {c, t} ∈ S′.

Proof. Let GS := G∆S and assume that {c, t} 6∈ S. Note that degG(c) > 1 since c
is contained in an induced M -graph. Let Sc ⊆ S denote the edge modifications
involving c. By the assumption of the lemma, we have that |Sc| ≥ degG(c)− 1.

Let Ec denote a set of degG(c) − 1 edges incident to c in G containing {c, t}.
Let S′ := (S \Sc)∪Ec. That is, instead of the edge modifications of S involving c, S′

contains all but one edge incident to c in G. Clearly |S′| ≤ |S|. Finally, we argue
that G∆S′ is M -free. To this end, observe that NGS (c′) = NG∆S′(c

′) for each c-
vertex c′ ∈ Vc \ {c}. Hence, any two c-vertices c′, c′′ ∈ Vc \ {c} are not in conflict.
Moreover, c is not in conflict with any other c-vertex c′ ∈ Vc\{c} since degG∆S′(c) = 1.
Thus, G∆S′ is M -free.

Lemma 7.7. The above branching rules are correct. The branching number of all
branching rules is bounded from above by 3.68.

Proof. For the correctness of Branching Rule 1 see Böcker et al. [27]. The correctness
of the other three branching rules is based on Lemma 7.6. If |X(ci, cj)| = |Y (ci, cj)| =
|Z(ci, cj)| = 2, then the branching number is bounded by 3.47 and if one of these sets

126 7 Minimum Flip Consensus Tree

has cardinality three, one has cardinality two, and one has cardinality one, then the
branching number is bounded by 3.68. Hence, the branching number of Branching
Rule 1 is bounded by 3.68.

Correctness of Branching Rule 2. By Lemma 7.6, if there is a solution that contains
an edge modification involving ci, then we can assume that {ci, x1} is deleted. The
correctness follows by the fact that the branching rule branches into all cases to make
one of the sets X(ci, cj), Y (ci, cj), and Z(ci, cj) empty, omitting the cases that ci is
involved into an edge modification other than the deletion of {ci, x1}. The branching
vector of Branching Rule 2 is (1, 1, 1, x) with x > 1. Hence, the branching number is
bounded by 3.31.

Correctness of Branching Rule 3. By Lemma 7.6, if there is a solution containing
{{y1, ci}, {y2, ci}} or {{z1, ci}, {z2, ci}}, then there exists a solution containing {x1, ci}.
The case that {x1, ci} is contained in the solution is considered by the rule. Hence,
the correctness of the rule follows from the fact that the branching rule branches into
all cases to make one of the sets X(ci, cj), Y (ci, cj), and Z(ci, cj) empty, omitting
the cases that ci is involved into two edge modification (not containing {ci, x1}). The
branching vector of Branching Rule 3 is (1, 1, 2, 2, 2, 2, 2, 2), giving a branching number
of 3.65.

Correctness of Branching Rule 4. By Lemma 7.6, if there is a solution that contains
{{x1, ci}, {x2, ci}}, {{z1, ci}, {z2, ci}}, {{x1, cj}, {x2, cj}}, or {{z1, cj}, {z2, cj}}, then
there is a solution containing either {y1, ci} or {y1, cj}. Hence, these four cases must
not be considered by Branching Rule 4. The branching vector of Branching Rule 4
is (1, 1, 2, 2, 2, 2), leading to a branching number of 3.24.

Next, we show that, by exploiting Proposition 7.1, an instance to which none of
these branching rules applies can be solved in polynomial time. In what follows, a
graph is called conflict regular if it fulfills the property that for any two conflicting
c-vertices ci and cj it holds that |X(ci, cj)| = 1 and |Z(ci, cj)| = 1. It is easy to observe
that if none of the four branching rules applies, then the graph is conflict regular. We
show that for conflict regular graphs MFCT can be solved in polynomial time. This
extends and generalizes an approach by Böcker et al. [27, Section 5.2] for instance
where all c-vertices have degree three and two common neighbors.

An easy observation is that in a conflict regular graph any two conflicting vertices
have the same degree. The next lemmas describe the structure of conflict regular
graphs in more detail.

Lemma 7.8. Let G = (Vc, Vt, E) denote a conflict regular graph. Let c1 and c2 denote
two conflicting c-vertices of degree at least three. Let c′ ∈ Vc with N(c′) 6= N(c1). If c′

is in conflict with c2, then c′ is in conflict with c1.

Proof. Consider a vertex c′ with c′⊥c2. Assume towards a contradiction that c′ is
not in conflict with c1. Since G is conflict regular, all three vertices have the same
degree and N(c′) ∩ Y (c1, c2) 6= ∅. Thus, since c′ is not in conflict with c1, it holds
that N(c′) ⊆ N(c1) or N(c1) ⊆ N(c′). Since N(c′) 6= N(c1), this is a contradiction to
the fact that all three vertices have the same degree.

Lemma 7.9. Let G = (Vc, Vt, E) denote a conflict regular graph and let C denote a
connected component of G⊥ with |C| ≥ 2 and degG(c) ≥ 3 for all c ∈ C. Then, one
of the following statements holds.

7.6 An O(3.68k)-Size Search Tree 127

1. There is a set Y ⊆ NG(C) such that for any two vertices c, c′ ∈ C with NG(c) 6=
NG(c′) it holds that Y = Y (c, c′).

2. For all c ∈ C, it holds that |NG(C) \NG(c)| = 1.

Proof. Let X1, . . . , X` denote the critical independent sets of G formed by the vertices
in C. Note that Lemma 7.8 implies that any two vertices from different Xi’s are in
conflict. Moreover, observe that if ` = 2, then the first statement of the lemma holds.
Hence, in the following, we focus on the case ` > 2.

Let c1 ∈ X1, c2 ∈ X2. Moreover, let C ′ := {c ∈ C \ (X1 ∪ X2) | Y (c, c1) =
Y (c, c2) = Y (c1, c2)}.

First, consider the case that C ′ 6= ∅. Assume without loss of generality that C ′ =⋃s
i=3Xi for some s ≥ 3. We show that s = ` and, hence, the first statement of the

lemma holds for Y = Y (c1, c2). To this end, let c3 ∈ X3 and observe that |NG(ci) \
(NG(cj) ∪ NG(ck))| = 1 for any three distinct i, j, k ∈ {1, 2, 3}. Hence, |N(c1) ∪
N(c2) ∪ N(c3)| ≥ d + 2, where d is the degree of the vertices in C (recall that all
vertices in C have the same degree). Assume towards a contradiction that s < ` and
let c` ∈ X`. Inductively applying Lemma 7.8, it follows that c` is in conflict with
each of c1, c2, and c3. Note that since c` 6∈ C ′ and G is conflict regular it holds
that |Y (c1, c2) \ N(c`)| = 1 and, except for this vertex, c` is adjacent to all vertices
in N(c1) ∪N(c2) ∪N(c3); a contradiction to the fact that that degG(c`) = d.

Second, consider the case that C ′ = ∅. That is, for every vertex c′ ∈ ⋃`i=3Xi it
holds that Y (c1, c2) \NG(c′) 6= ∅. By Lemma 7.8, c′ is in conflict with both c1 and c2
and, hence, deg(c1) = deg(c2) = deg(c′). Moreover, since G is conflict regular, c′ is
adjacent to all but one vertex in NG(c1) and NG(c2). Altogether, since c′ is nonad-
jacent to a common neighbor of c1 and c2 this implies that N(c′) ⊆ N(c1) ∪ N(c2).
Hence, NG(C) ⊆ NG(c1) ∪NG(c2) and, since all vertices in C have the same degree,
the second statement of the lemma holds.

Theorem 7.2. Minimum Flip Consensus Tree can be solved in O(|Vc|2 · |Vt|) time
for conflict regular graphs.

Proof. Let (G = (Vt, Vc, E), k) denote an MFCT-instance where G is a conflict regular
graph. Moreover, let G⊥ denote the conflict graph of G. By Proposition 7.1, we
can resolve the conflicts for every connected component of G⊥ independently. Let C
denote a connected component of G⊥. Clearly, all vertices of C have the same degree
in G. If all vertices have degree two, then one can resolve all conflicts between vertices
in C by the computation of a maximum-weight matching [27].

Hence, in the following we focus on the case that degG(c) = d ≥ 3 for all c ∈ C.
We use the following notation. Let G′ := G[C ∪ NG(C)] and let X1, . . . , X` denote
the critical independent sets of G′ formed by the vertices in C. Assume without loss
of generality that |X1| ≤ . . . ≤ |X`|. We distinguish the cases that either the first or
the second statement of Lemma 7.9 is true. In both cases we show how to construct
a regular minimum-cardinality solution for G′.

Case 1: The first statement of Lemma 7.9 holds. That is, there is a set Y
of t-vertices such that for any two vertices c, c′ ∈ C with NG(c) 6= NG(c′), we
have Y (c, c′) = Y . Note that |Y | = d − 1 > 1 and |N(c) \ Y | = 1 for all c ∈ C.
The structure of G′ is depicted in Figure 7.8.

128 7 Minimum Flip Consensus Tree

Y

. . .

t1 t2 t3 t`

C

X1 X2 X3 X`

Figure 7.8: Structure of G′ := G[C ∪ N(C)] if the second statement of Lemma 7.9
holds. The rectangular vertices represent critical independent sets of G′, the circular
vertices represent single vertices, and an edge represents all edges between the (sets)
of vertices. Clearly, it is optimal to delete the edges between Xi and ti for all but one
Xi for which |Xi| is maximal to destroy all M -graphs in G′.

In order to resolve the conflicts between the vertices in C delete the edges S′ :=⋃`−1
i=1 EXi,N(Xi)\Y . Note that |S′| =

∑`−1
i=1 |Xi| since |N(Xi) \ Y | = 1. Moreover,

since NG′∆S′(Xi) = Y for all 1 ≤ i ≤ ` − 1 and Y ⊂ NG′∆S′(X`), all M -graphs
in G′ := G[C ∪ N(C)] are destroyed by S′. Finally, we argue that S′ is a regular
minimum-cardinality solution for G′. By construction, for each Xi any two vertices
of Xi have an identical neighborhood in G′∆S′. In this sense, S′ applies the “same”
edge modifications to all vertices in Xi and, hence, is regular. Moreover, since two
vertices from different Xi’s are in conflict, we have to modify the neighborhood struc-
ture of all but one Xi. Hence, for any affected Xi, one has to spend at least |Xi| edge
modifications (recall that each Xi is a critical independent set and, hence, there is
an optimal solution that applies the “same” edge modifications to all vertices in Xi,
see Lemma 3.5). Thus,

∑`−1
i=1 |Xi| = |S′| is a lower bound for the solution size since

|X`| ≥ |Xi| for all 1 ≤ i ≤ `− 1.
Case 2: The second statement of Lemma 7.9 holds. That is, |N(C) \ N(c)| = 1

for all c ∈ C. To resolve the conflicts between the vertices in C, add the edges S′ :=⋃`−1
i=1 EXi,N(C)\N(Xi). Note that |S′| =

∑`−1
i=1 |Xi| since |N(C) \ N(Xi)| = 1. Since

NG′∆S′(Xi) = NG(C) for all 1 ≤ i ≤ ` − 1 and NG′∆S′(X`) ⊂ NG(C), all conflicts
within C are resolved. Analogously to Case 1, one can show that S′ is a regular
minimum solution for G′: Since two vertices from different Xi’s are in conflict, we
have to modify the neighborhood structure of all but one Xi (requiring at least |Xi|
edge modifications). Thus,

∑`−1
i=1 |Xi| is a lower bound for the solution size.

For the running time note the following. The conflict graph G⊥ can be built
in O(|Vc|2 · |Vt|) time. Moreover, when building G⊥ one can simultaneously check
whether the input graph is conflict regular.

Clearly, G⊥ has |Vc| vertices and at most |Vc|2 edges. Hence, the connected com-
ponents of G⊥ can be found in O(|Vc|2) time. Let C1, . . . , C` denote the connected
components of G⊥. Clearly, for each Ci all changes can be performed in O(|Ci| · |Vt|)
time. Hence, the total running time is bounded by O(|Vc|2 · |Vt|).

Combining Lemma 7.7 and Theorem 7.2 we arrive at the main result of this section.

Theorem 7.3. Minimum Flip Consensus Tree can be solved in O(3.68k · |Vc|2|Vt|)
time.

Proof. To solve MFCT, apply the above branching rules as long as possible. Note
that, in O(|Vc|2 · |Vt|) time, one can first check whether one of the branching rules

7.7 Conclusion 129

applies and second apply a respective branching rule (if possible). Moreover, if none
of the branching rules applies, then the instance is conflict regular and, hence, can be
solved in O(|Vc|2 · |Vt|) time according to Theorem 7.2. Hence, for each search-tree
node, all changes can be applied in O(|Vc|2 · |E|) time. According to Lemma 7.7 this
leads to a search-tree algorithm with running time O(3.68k · |Vc|2|Vt|).

Applying the technique of interleaving (see Section 2.5) to our kernelization and
the search tree algorithm, we obtain an “additive FPT” algorithm for Minimum Flip
Consensus Tree.

Corollary 7.1. Minimum Flip Consensus Tree can be solved in O(3.68k + |Vc|2 ·
|Vt| · |E|) time.

7.7 Conclusion

In this chapter, we have presented polynomial-time data reduction rules to obtain
an O(k3)-vertex kernel for Minimum Flip Consensus Tree. Moreover, we have
presented a refined search tree algorithm that runs in O(3.68k · |Vc|2|Vt|) time.

Still, there are numerous tasks for future research. First of all, a natural next step
is the implementation of our algorithms to see whether our theoretical improvements
lead to faster running times in practice. Improving the polynomial running time of our
data reduction rules is desirable. Obviously, obtaining data reduction rules that lead
to a quadratic-vertex or linear-vertex kernel remains as an open question. Moreover,
studying edge-weighted problem variants would be theoretically interesting.

Furthermore, can our data reduction rules be adapted to yield a full kernel (see [52])
for Minimum Flip Consensus Tree? Recall that in the case of full kernels the goal
is to “preserve” all inclusion-minimal solutions of size at most k. The correctness
proofs of some of our data reduction rules rely on the notion of regular solutions (that
is, solutions preserving critical independent sets). However, it is not hard to see that
an inclusion-minimal solution is not necessarily regular.

In the matrix representation (mentioned in the introduction) Minimum Flip Con-
sensus Tree is the problem to destroy all “induced” occurrences of the 3×2-submatrix
with rows 01, 10, and 11 by a minimum number of bit flips. The problem to destroy
all “induced” occurrences of the 4×2-submatrix with rows 00, 01, 10, and 11 has been
considered by Damaschke [52] in the context of enumeration all inclusion-minimal so-
lutions of size at most k. Matrices that do not contain this 4 × 2-submatrix admit a
undirected prefect phylogeny. This problem is a special case of the Perfect Phy-
logeny by Recoloring problem for binary character states [84, Definition 4.5]. Can
our data reduction rules be generalized to yield a polynomial-size problem kernel for
this problem?

Recall that Minimum Flip Consensus Tree is the problem to destroy—by a
minimum number of edge modifications—all induced paths on five vertices (so-called
P5’s) with the first vertex from Vt. For general graphs, Guillemot et al. [87] have
recently shown that the problem to destroy all P4’s, called P4-free Editing (also
known as Cograph Editing), admits a cubic-vertex kernel whereas P13-free Edit-
ing does not admit a polynomial-size problem kernel unless PH = Σ3. To the best of
our knowledge it is open whether P5-free Editing in general graphs and P6-free
Editing in bipartite graphs admit polynomial-size problem kernels.

130 7 Minimum Flip Consensus Tree

Recall that in the case of Minimum Flip Consensus Tree all input trees (all
on the same taxa) are represented in a bipartite graph. In the case of supertree
construction usually not all trees are on the same set of taxa, leading to “undecided
edges” in the bipartite graph [45]. Then the problem Flip Supertree asks for an
M -free graph with minimum edit distance to the bipartite graph, where inserting
or deleting an “undecided edge” does not contribute to the edit distance. Recently,
Böcker et al. [26] have shown that Flip Supertree is W [1]-hard with respect to
the number of editing operations [26]. This stands in sharp contrast to Cluster
Editing with “undecided edges” (also called Fuzzy Cluster Editing) which has
recently been shown to be fixed-parameter tractable based on its close relationship to
Multicut [132]. The W [1]-hardness of Flip Supertree motivates to invesitgate the
influence of other (additional) parameters on its parameterized complexity.

For Minimum Flip Consensus Tree and Flip Supertree there are a lot of
natural parameters for which the parameterized complexity seems unexplored so far.
For example, it would be interesting to explore whether ideas from Bodlaender et
al. [31] for Fuzzy Cluster Editing can be transferred to Flip Supertree, showing
fixed-parameter tractability with respect to the combined parameter (k, r), where k
denotes the “number of editing operations” and r denotes the “number of vertices
needed to cover all undecided edges”. The hope is that r is much smaller than the total
number of undecided edges. Another practically relevant question is for example how
the number of input trees influences the computational complexity of Minimum Flip
Consensus Tree and Flip Supertree. This parameter seems so far unexplored.
For Flip Supertree it would be interesting whether there is a reasonable notion of
“overlap between the input trees” leading to fixed-parameter tractability. Moreover,
does “high similarity” between the input trees helps to cope with the computational
hardness of Minimum Flip Consensus Tree and Flip Supertree? Note that there
are many distances that can be used to compare two trees (see for example [147, 11]).
Betzler et al. [19] have recently shown that, for several consensus problems, if the
the input structures are similar in average, then this can algorithmically be exploited.
Clearly, there are other natural parameters such as the number of taxa or characters
that deserve attention. Finally, the investigation of combinations of the mentioned
parameters seems promising. In summary, considering the large amount of unexplored
parameters, it certainly is a fruitful research direction to start a systematic multivariate
complexity analysis (cf. [138] and Section 2.2.1) for Minimum Flip Consensus Tree
and Flip Supertree.

Part III

Constrained Search Problems

This part is concerned with two constrained search problems that arise in
molecular biology. In contrast to the previous part, the considered prob-
lems are not directly related and hence, instead of providing an introductory
chapter of this part, the problems will be introduced in the two respective
chapters. In the following, we briefly summarize the results.

Chapter 8. The NP-hard Interval Constrained Coloring (ICC)
problem appears in the interpretation of experimental data in biochemistry
dealing with protein fragments. We systematically perform the approach
of “deconstructing intractability” to identify meaningful parameters. To
this end, we thoroughly analyze a known NP-hardness proof for ICC and
identify numerous parameters that naturally occur in ICC. Accordingly,
we present several fixed-parameter tractability results exploiting various
parameterizations. We substantiate the usefulness of this “multivariate al-
gorithmics approach” by presenting experimental results with real-world
data. Chapter 8 is based on [120].

Chapter 9. The task of the NP-hard Haplotype Inference by Par-
simony (HIP) problem is to find a minimum-cardinality set of haplotypes
that explain a given set of genotypes. We also consider a constrained
version of parsimony haplotyping, where the explaining haplotype strings
must be chosen from a given pool of plausible haplotype strings. The main
motivation for parsimony haplotyping is that it is easier and cheaper to
obtain the genotype information of an organism, though the haplotype in-
formation is of greater use. We propose improved and partially simplified
fixed-parameter tractability results with respect to the parameter “size of
the target haplotype set” k by presenting a k4k poly(n,m)-time algorithm.
The algorithm also applies to the constrained case. The previous algo-
rithms had exponential running time factors kk

2+k for HIP and kO(k2) for
the constrained case. Chapter 9 is based on [76].

Chapter 8
Interval Constrained Coloring

8.1 Introduction

Althaus et al. [8, 9] identified Interval Constrained Coloring as an important
combinatorial problem in the context of automated mass spectrometry and the de-
termination of the 3-dimensional structure of proteins. It builds the key to replace a
manual interpretation of exchange data for peptic fragments with computer-assisted
methods, see Althaus et al. [8] for more on the biochemical background and fur-
ther motivation. The NP-complete decision problem Interval Constrained Col-
oring (ICC) deals with matching color multisets with integer intervals and can
be formalized as follows.1 To this end, for two positive integers i, j with i ≤ j,
let [i, j] := {k ∈ N | i ≤ k ≤ j}. In addition, for i ≥ 1 let [i] denote the interval [1, i].

Definition 8.1. Interval Constrained Coloring (ICC)
Input: An integer n ≥ 1, a multiset of m integer intervals F = {F1, . . . , Fm}, all
within [n], and a multiset of m multisets of colors C = {C1, . . . , Cm} over k different
colors.
Question: Is there a coloring c : [n]→ [k] such that for each interval Fi ∈ F it holds
that Ci = c(Fi)?

Herein, c(Fi) denotes the multiset of colors assigned by c to the integer points in
the interval Fi. Throughout this chapter, we assume that the input intervals cover [n],
since otherwise the input instance can be decomposed into independent subinstances.
Moreover, we say that a coloring c : [n]→ [k] satisfies an input interval Fi if Ci = c(Fi).
Finally, a coloring satisfying all input intervals is called proper.

From a biochemical point of view, the intervals correspond to (typically overlap-
ping) fragments of a protein with n residues, and the k colors correspond to k different
exchange rates that need to be assigned consistently to the n residues [8, 9]. The
color multisets correspond to experimentally found bulk information that needs to be
matched with the residues and can be interpreted as constraints that describe a set
of valid colorings of the interval [n]. Note that, from an applied point of view, if not

1Compared with Althaus et al. [8, 9] we choose a somewhat different but equivalent formalization
here; this problem definition turns out to be more suitable for our subsequent studies.

134 8 Interval Constrained Coloring

all constraints (that is, intervals that completely match with a given color multiset)
can be fulfilled, then it is also important to investigate the corresponding optimization
problems where one wants to maximize the number of fulfilled constraints [9] or to
minimize a specific error function [8]. However, we mainly focus on analyzing the com-
plexity of the decision problem. In the case of yes-instances, most of our algorithms
can be easily adapted to provide a corresponding coloring.

Known Results. The algorithmic study of ICC has been initiated by Althaus et
al. [8, 9]. ICC has been shown to be NP-complete by a reduction from the Exact
Cover problem [9]. In a more applied paper [8], besides first introducing and for-
malizing the problem, an algorithm based on integer linear programming and branch-
and-bound was presented that enumerates all valid (fulfilling all constraints) color
mappings c. Moreover, it was shown that in the case of k = 2 colors a direct combina-
torial algorithm leads to polynomial-time solvability. The computational complexity
of the case k = 3 was left open by Althaus et al. [8]. Byrka et al. [35] filled this
gap by showing the NP-completeness of ICC for k = 3. The corresponding reduction
is from 3-Satisfiability. Moreover, concerning optimization, in a similar way they
also showed that the “gap version” of this restricted case is NP-hard, also implying its
APX-hardness. Successful experiments with real-world instances with n < 60, m ≤ 50,
k = 3 and randomly generated instances with n ≤ 1000, m = n/2, and k = 3 have been
performed [8]. In a more theoretical paper [9], besides the NP-completeness proof, the
preceding work [8] has been continued by providing results concerning polynomial-time
approximability. In particular, there is an algorithm producing a coloring where all
requirements are matched within an additive error of one if the LP-relaxation of the
presented integer program for ICC has a feasible solution. This algorithm is based on
a sophisticated polyhedral approach combined with recent randomized rounding tech-
niques. Furthermore, Althaus et al. [9] introduced a weighted version of ICC, called
Max Coloring, where each interval is associated with a nonnegative weight and the
goal is to find a coloring that maximizes the total weight of the satisfied intervals. For
Max Coloring they showed that, if one is allowed to relax the coloring requirements
by a factor of (1 + ε), then a coloring “satisfying” the optimal number of intervals

can be found in nO(k
2

ε logn logm) time. Moreover, Canzar et al. [38] provided a new
method (using linear programming and backtracking) for enumerating all exact and
further approximate solutions with polynomial delay between two successive outputs
and using polynomial space. They confirmed the practical use of their approach by
experiments. Finally, for a constant number of colors, Canzar et al. [39] presented
a factor-O(

√
|Opt|) polynomial-time approximation algorithm for Max Coloring,

where Opt denotes a minimum-cardinality maximum-weight solution. Moreover, they
showed that this optimization version is APX-hard even for two colors.

Our Contributions. In this chapter, we propose a fresh view on ICC and the de-
velopment of exact algorithms for NP-hard combinatorial problems in general. The
fundamental starting point here is to deconstruct proofs of NP-hardness in order to
obtain new insights into the combinatorial structure of problems. The point is to ana-
lyze how different parameters occurring in a problem contribute to its computational
complexity. This is where parameterized algorithmics comes into play. Indeed, as it
turns out, ICC gives a prime example for the continuing evolution of parameterized

8.2 Parameterization and the Deconstruction of NP-Hardness 135

algorithmics into multivariate algorithmics (see Section 2.2.1). For ICC, there is a
big number of useful parameterizations, all naturally deduced from deconstructing the
NP-hardness proof due to Althaus et al. [8]. In this line, for instance, we can show a
fixed-parameter tractability result with respect to the parameter “maximum interval
length”. Whereas, unless P = NP, the problem is not fixed-parameter tractable with
respect to the color parameter k alone [35], it is with respect to the combined param-
eter (n, k); that is, there is an algorithm with time complexity (k − 1)n · poly(n,m).
These algorithms are of practical interest when the corresponding parameter values are
sufficiently small. For instance, note that all experiments of Althaus et al. [8] were per-
formed having k = 3 and n ≤ 60 for real-world instances. Indeed, in the already NP-
complete case of k = 3 we can further improve the running time to 1.89n · poly(n,m).
In this spirit, in Section 8.4 we investigate a number of “single parameterizations”,
and in Section 8.5 we consider “combined parameterizations”. Moreover, whereas ICC
is NP-complete for “cutwidth” three [9], we present a combinatorial polynomial-time
algorithm for cutwidth two.2 Tables 8.1 and 8.2 in Sections 8.4 and 8.5 survey the
current state of the art and our new results concerning (combinatorial) algorithms
that can efficiently solve ICC in case of favorable parameter constellations. Finally,
in Section 8.6, we report positive experimental results based on implementations of
some of our new algorithms. We conclude with a discussion and some open questions
in Section 8.7.

8.2 Parameterization and the Deconstruction of NP-
Hardness

In parameterized algorithmics or multivariate algorithmics the identification of mean-
ingful parameters is a fundamental and nontrivial task (also see Section 2.3). A stan-
dard question of people unfamiliar with parameterized algorithmics is how to define
respectively find “the” parameter for an NP-hard problem. There are the following
(partly overlapping) “standard answers” to this question:

1. The standard parameterization classically refers to the size of the solution set of
the underlying problem (whenever applicable).

2. A parameter describes a structural property of the input; for instance, the
treewidth of a graph or the number of input strings.

3. A parameter may restrict the “dimensionality” of the input; for instance, in the
case of problems from computational geometry.

4. Finding useful parameters to some extent is an “art” based on analyzing what
typical real-world instances look like.

Perhaps the most natural and constructive answer, however, is to look at the
corresponding proof(s) of NP-hardness and what “parameter assumptions” they (do
not) make use of. Indeed, this is what we refer to by deconstructing NP-hardness
proofs for parameter identification. In this chapter, we deconstruct Althaus et al.’s [9]

2The cutwidth denotes the size of a maximum-cardinality set of pairwise overlapping intervals.

136 8 Interval Constrained Coloring

NP-hardness proof for ICC and gain a rich scenario of combinatorially and practically
interesting parameterizations.

Let us now take a closer look at the NP-hardness of ICC. We first have to briefly
review the many-one reduction from Exact Cover due to Althaus et al. [9]: The
input of Exact Cover is a set S of subsets of a ground set U := {1, 2, . . . , u} and
a positive integer t, and the question is whether there are t subsets from S such
that every element from U is contained in exactly one such subset. Althaus et al.’s
polynomial-time many-one reduction (using an approach by Chang et al. [42]) from
Exact Cover to ICC works as follows.

1. The number of colors k is set to s := |S|.

2. The interval range n is set to u · s.

3. For each element from U , there are three corresponding integer intervals. Indeed,
one can speak of three types of intervals, and all intervals of one type can be
placed consecutively into one interval [n] without overlap.

(a) Type 1: Intervals of the form [(i− 1)s+ 1, is] for all 1 ≤ i ≤ u.

(b) Type 2: Intervals of the form [is− t+ 1, (i+ 1)s− t] for all 1 ≤ i ≤ u− 1.

(c) Type 3: Intervals of the form [is − t − fi + 1, is − t + 1] for all 1 ≤ i ≤ u,
where fi denotes the number of occurrences of u in the sets of S.

4. Every type-1 and every type-2 interval is assigned the color set {1, . . . , k}. A
type-3 interval corresponding to i ∈ U is assigned the color set consisting of the
colors associated with the subsets in S that contain i.

We remark that this proof of NP-hardness actually works with just using sets
instead of multisets in the constructed ICC instance. After having described the
construction employed in the NP-hardness proof, the deconstruction begins by making
several observations about its properties:

1. The interval range n and the number m of intervals both are unbounded.

2. The number of colors k is s, hence unbounded, but all color multisets indeed are
sets. That is, no interval shall be assigned the same color twice.

3. The maximum interval length is s, hence unbounded.

4. The maximum overlap between intervals is max{t, s− t}, hence unbounded.

5. Recall that there are three types of intervals and that any two intervals of the
same type are disjoint. Hence for each i ∈ [n] there are at most three intervals
containing i. Thus, the cutwidth3 of the constructed instance is bounded by
three.

From the last observation we can conclude that there is no hope for fixed-parameter
tractability with respect to the parameter “cutwidth” unless P=NP. Referring to the
second observation, the same holds true for the parameter k (number of colors) because
Byrka et al. [35] showed NP-hardness even for the case k = 3. On the positive side,

3Formally, the cutwidth is defined as max1≤i≤n |{F ∈ F : i ∈ F}|.

8.2 Parameterization and the Deconstruction of NP-Hardness 137

we will show that ICC is polynomial-time solvable for cutwidth two. However, from
the other three observations we directly obtain the following questions concerning a
parameterized complexity analysis of ICC.

1. Is ICC fixed-parameter tractable with respect to the parameters n (interval
range) or m (number of intervals)?

2. Is ICC fixed-parameter tractable with respect to the parameter “maximum in-
terval length”?

3. Is ICC fixed-parameter tractable with respect to the parameter “maximum over-
lap between intervals”?

The central point underlying the above derived algorithmic questions is that when-
ever a quantity (that is, parameter) in an NP-hardness proof is unbounded (non-
constant), then it is natural to investigate what happens if this quantity is constant
or considered to be small compared to the overall input size. Clearly, one way to
answer is to provide a different proof of NP-hardness where this quantity is bounded.
Indeed, this now has happened with respect to the parameter k in the sense that in
the NP-hardness proof due to Althaus et al. [9] k is unbounded whereas in the new
NP-hardness proof due to Byrka et al. [35] we have k = 3. Otherwise, the main tool
in answering such questions is parameterized algorithmics. Indeed, the story goes
even further by also combining different parameterizations. More specifically, it is, for
instance, natural to ask whether ICC is fixed-parameter tractable when parameter-
ized by both cutwidth and the number k of colors (the answer is open), or whether
it is fixed-parameter tractable when parameterized by both n and k (the answer is
“yes”) and what the combinatorial explosion f(n, k) then looks like. In this way, one
ends up with an extremely diverse and fruitful ground to develop practically relevant
combinatorial algorithms.

In the remainder of this chapter, besides the already defined parameters n (range),
m (number of intervals), and k (number of colors), we will consider the following
parameters and combinations thereof:

• maximum interval length l;

• cutwidth cw := max1≤i≤n |{F ∈ F : i ∈ F}|;
• maximum pairwise overlap between intervals o := max1≤i<j≤m |Fi ∩ Fj |;
• maximum number of different colors ∆ in the color multisets.

Note that the NP-hardness result of Byrka et al. [35] for k = 3 also implies the
NP-hardness for ∆ = 3 but ∆ = 2 is yet unclassified. In addition, one of the integer
linear programs devised by Althaus et al. [8] has O(m · k) variables. Using Lenstra’s
famous result [128] on the running time of integer linear programs with a fixed number
of variables then implies that ICC is fixed-parameter tractable with respect to the
(combined) parameter (m, k). However, even after several improvements (for example
by Frank and Tardos [79]), the combinatorial explosions in Lenstra’s theorem remains
huge. This fixed-parameter tractability result is thus of purely theoretical interest
and more efficient combinatorial algorithms are desirable (see [85, 74, 75] for similar
classification results using integer linear programs).

In what follows, we present several fixed-parameter tractability results with respect
to the above parameters (Section 8.4) and some combinations of them (Section 8.5).

138 8 Interval Constrained Coloring

8.3 A Simple Normal Form Observation

Here, we observe that there is a “normal form” that one may assume without loss of
generality for all ICC input instances. More specifically, based on simple and efficient
preprocessing rules, one can perform a data reduction that yields this normal form.

Proposition 8.1. (Normal form for ICC)
In O(lmn) time, one can transform every ICC instance into an equivalent one such
that

1. at every position i ∈ [n], there is at most one interval starting at i and at most
one interval ending at i, and

2. if the maximum interval length is l, then every position i ∈ [n] is contained in
at most l intervals.

Proof. To achieve the claimed normal form, exhaustively perform the following two
preprocessing rules.

1. If there are two intervals Fi = [si, ti] and Fj = [sj , tj] with si = sj , ti = tj ,
and Ci 6= Cj , then return “No”. Otherwise, remove Fi and Ci.

2. If there are two intervals Fi = [si, ti] and Fj = [sj , tj] with si = sj and ti < tj ,
then set Fj := [ti + 1, tj] and Cj := Cj \ Ci.4 If |Cj | 6= |Fj |, then return “No”.
The case si < sj and ti = tj is handled analogously.

Obviously, the two rules directly imply normal form property 1, which again imme-
diately implies normal form property 2. For the correctness of the first rule, observe
that no coloring can simultaneously satisfy Fi and Fj . For the correctness of the sec-
ond rule note that a proper coloring for the original instance is a proper coloring of
the instance that results by one application of the rule, and vice versa. Hence, if the
new instance obviously is a no-instance (i.e. |Cj | 6= |Fj |), then it is correct to reject
the instance.

Next, we give an analysis of the running time. We use the following strategy. Keep
an array A that holds for every position i ∈ [n] a list with the intervals starting at i
(and another list with the intervals ending at i). This array is initialized before the
application of the rules in O(nm) time. To decide whether a rule can be applied,
iterate over the array to find a position at which two intervals start (or end). For
two intervals Fi and Fj , the necessary changes can be performed in O(n) time (if one
implements the color multisets by an array of size k ≤ n). Also note that we can
update array A within this time bound. Hence, one application of a rule and the
update of array A take O(n) time. Finally, note that for every interval the first rule
can be applied at most once, and the second rule at most l times. Hence, the rules
can be exhaustively applied in O(nm) +O(lmn) = O(lmn) time.

Clearly, Proposition 8.1, property 1, implies that after preprocessing the “reduced
equivalent instance” contains at most n intervals and n multicolor sets, which can be
interpreted as kernelization with respect to the parameter n.

4The setminus operation here has to be adapted to multisets, that is, for example, {a, a, b}\{a, b} =
{a}.

8.4 Single Parameters 139

Table 8.1: Complexity of ICC for one-dimensional parameterizations. Herein, “P”
means that the problem is polynomial-time solvable, “NPc” means that the problem
is NP-complete, and “?” means that the complexity is unknown. For fixed-parameter
algorithms, we only give the function of the exponential term, omitting polynomial
factors. The results for k = 2 and cw = 3 are due to Althaus et al. [9, 8], the results
for k ≥ 3 and ∆ ≥ 3 are due to Byrka et al. [35], the rest is new.

Parameter k ∆ l cw m n o

Complexity
k = 2: P
k ≥ 3: NPc

∆ = 2: ?
∆ ≥ 3: NPc

l!
cw = 2: P
cw = 3: NPc

? n!
o = 1: P
o ≥ 2: ?

8.4 Single Parameters

In Section 8.2, we identified various parameters as meaningful “combinatorial handles”
to better assess the computational complexity of ICC. Whereas ICC is NP-complete
for cutwidth cw = 3 [9], we will show that it is polynomial-time solvable for cw = 2.
Obviously, the maximum length l fulfills l ≤ n, so the fixed-parameter tractability with
respect to l (as we will prove subsequently) implies the fixed-parameter tractability
with respect to n. Table 8.1 surveys known and new results with respect to single
parameters.

Parameter Maximum Interval Length l. Our first algorithm exploits the pa-
rameter “maximum interval length l”. The rough idea is that the coloring at position i
does not affect any intervals that overlap with position i+ l. This leads to a dynamic
programming algorithm that keeps track of all possible colorings of the “last” interval
(which has at most l positions).

Theorem 8.1. ICC can be solved in O(l! · l log l ·mn) time.

Proof. We present a dynamic programming algorithm. To this end, we use the follow-
ing notation. Let K = {1, . . . , k} denote the set of all colors. For an interval [s, t], a
coloring c is represented by a tuple (c1, . . . , ct−s+1) ∈ Kt−s+1, meaning that c(s) = c1,
c(s+ 1) = c2, and so on. We say that a coloring c′ satisfies an input interval Fi ∈ F
if c′(Fi) = Ci. For an input interval Fi ∈ F , the set Ki of all satisfying colorings is
given by

Ki := {c′ ∈ K|Fi| | c′ satisfies Fi}.
Note that there are at most |Ci|! satisfying colorings of an input interval Fi (the worst
case arises when every color occurs at most once in the multiset Ci since then every
permutation of the colors in Ci represents a satisfying coloring). Finally, let A denote
the set of intervals completely contained in some other intervals, that is,

A := {F ∈ F | ∃F ′∈F : F ⊆ F ′},

and B := F \A. We assume that the intervals in B are ordered in increasing order of
their start points (and, hence, also in increasing order of their endpoints). Let B =
{B1, . . . , Bm′} and Bj = [sj , tj] for all 1 ≤ j ≤ m′. Note that m′ ≤ n and that the

140 8 Interval Constrained Coloring

intervals in B cover [n], that is,
⋃m′
j=1Bj = [n] (as discussed in Section 8.1 we assume

that the input intervals cover [n]).
Now, we are ready to describe the algorithm. The algorithm traverses the Bj ’s

in increasing order of j, 1 ≤ j ≤ m′. For every Bj , the algorithm maintains a
table Tj with an entry for every satisfying coloring c of Bj . Informally speaking, this
entry indicates whether there exists a coloring of the interval [1, tj] that agrees with c
in [sj , tj] and satisfies all intervals seen so far. More specifically, the goal of the dynamic
programming procedure is to fill these tables to match the following definition. For
every coloring c′ = (c′1, . . . , c

′
|Bj |) ∈ Kj , we have Tj(c

′) = true if and only if there

exists a coloring c′′ = (c′′1 , . . . , c
′′
tj) ∈ Ktj of the interval [tj] with (c′′sj , . . . , c

′′
tj) = c′

such that c′′ satisfies each interval F ∈ F with F ⊆ [tj]. Obviously, if the algorithm
correctly computes the tables according to this definition, then Tm′ contains a true
entry if and only if the input is a yes-instance.

Table T1 is computed as follows. For every c′ ∈ K1, set T1(c′) := true if and only
if c′ satisfies every interval [s, t] ∈ A with [s, t] ⊆ [s1, t1].

For j ≥ 2, table Tj is computed based on Tj−1, as described in the following.
We say that a coloring c′ = (c′1, . . . , c

′
|Bj |) ∈ Kj for Bj is consistent with a color-

ing c′′ = (c′′1 , . . . , c
′′
|Bj−1|) ∈ Kj−1 for Bj−1 if c′ and c′′ agree in Bj−1 ∩ Bj , that is,

(c′′sj−sj−1+1, . . . , c
′′
|Bj−1|) = (c′1, . . . , ctj−1−sj+1). We write c′|c′′ to denote that c′ is con-

sistent with c′′. To compute the entries of Tj , proceed as follows. For j from 2 to m′

and for every c′ = (c′1, . . . , c
′
|Bj |) ∈ Kj , set

Tj(c
′) = true ⇐⇒ c′ satisfies all F ∈ A with F ⊆ Bj and

∃c′′ ∈ Kj−1, c
′|c′′ : Tj−1(c′′) = true.

(8.1)

Finally, the algorithm returns “Yes” if T ′m contains a true entry and “No”, other-
wise.

For the correctness of the algorithm, we show by induction that for every j, 1 ≤ j ≤
m′, table Tj meets above definition, that is, table entry Tj(c

′) is true if and only there
exists a coloring of [tj] with “suffix” c′ satisfying all intervals F ∈ F with F ⊆ [tj].
Clearly, T1 is computed in accordance with this definition, yielding the induction base.

For the induction step, we show that Recursion (8.1) computes Tj according to
the above definition assuming that Tj−1 has been correctly computed (induction hy-
pothesis). That is, we show that there is a coloring of [tj] with suffix c′ satisfying
all intervals F ∈ F with F ⊆ [tj] if and only if c′ satisfies all F ∈ A with F ⊆ Bj
and there is a c′′ ∈ Kj−1 with c′|c′′ such that Tj−1(c′′) = true. The “⇒”-direction
is obvious. For the “⇐”-direction, observe the following. The algorithm combines a
coloring of [tj−1] satisfying all F ∈ F with F ⊆ [tj−1] with a coloring c′ of [sj , tj] that
is consistent with c′′ and satisfies all F ∈ F with F ⊆ [sj , tj]. This yields a coloring
for [tj] that satisfying all F ∈ F with F ⊆ [tj]; all F ∈ F with F ⊆ [tj−1] are clearly
also satisfied by this coloring. Moreover, all other F ∈ F with F ⊆ [tj] are satisfied
since for every input interval [s, t] ∈ F with tj−1 < t ≤ tj it holds that [s, t] ⊆ [sj , tj].

As to the running time, there are at most |Bj |! satisfying colorings of Bj ; at most
one for every permutation of the associated color multiset. Hence, one has to consider
at most l! colorings for every Bj . For every j = 1, . . . ,m′ − 1, the algorithm proceeds
as follows.

When building table Tj , the algorithm computes an auxiliary table Qj contain-
ing one entry for all c′ ∈ Kj with the same length-(tj − sj+1 + 1) suffix, indicating

8.4 Single Parameters 141

whether Tj contains a true entry for one of these colorings. Table Qj can for ex-
ample be realized by a dictionary for which the addition and the lookup of a key
requires O(log(s)) comparisons, where s is the size of the dictionary. Then, to check
whether ∃c′′ ∈ Kj−1, c

′|c′′ : Tj−1(c′′) = true for a c′ = (c′1, . . . , c
′
|Bj |) ∈ Kj , the algo-

rithm can check whether Qj−1(c′1, . . . , c
′
tj−sj−1+1) = true in O(l log l) time (note that

the size of Qj does not exceed l!). Hence, for every position 1 ≤ j ≤ m′, it needs
at most O(l! · (l log l + lm)) time, where the factor lm is due to checking whether c′

satisfies all F ∈ F with F ⊆ [sj , tj]. In summary, since m′ ≤ n the total running time
is O(l! · l log lmn).

Parameter Cutwidth cw. Here, we show that ICC is solvable in O(n2) time for
cutwidth cw = 2. This contrasts the case cw = 3 shown to be NP-complete [9]. Our
algorithm is based on four data reduction rules that are executable in polynomial
time. The application of these rules either leads to a much simplified instance that
can be colored without violating any interval constraints or shows that the instance is
a no-instance.

In the following, we say that a reduction rule is correct if the instance after applying
this rule has a proper coloring if and only if the original instance has a proper coloring.
Some of the subsequent data reduction rules are based on identifying positions for
which we can decide which color they will have in a proper coloring. In this context,
we use the following notation. If we can decide that a position i is colored by color cx
in a proper coloring, we write c(i) = cx, meaning that we simplify the instance as
follows; for all Fj = [s, t] with s ≤ i ≤ t, we set Cj := Cj \ {cx} and t := t − 1. For
all Fj = [s, t] with i < s, we set s := s − 1 and t := t − 1. “Empty” intervals Fj
with Cj = ∅ are removed from the input. Finally, we call an instance reduced with
respect to one or more data reduction rules if none of these rules applies.

We use the following notation. For a color multiset C and a color cx let occ(cx, C)
denote the multiplicity of cx in C. For two color multisetsA andB the intersection ofA
and B, denoted by A∩B, is the multiset that contains each color c with occ(c, A) > 0
and occ(c,B) > 0 exactly min(occ(c, A), occ(c,B)) times. For example, {a, b, b, b, c} ∩
{a, a, b, b} = {a, b, b}. We start with a basically straightforward data reduction rule.

Reduction Rule 8.1. For any two intervals Fi and Fj and their corresponding color
multisets Ci and Cj ,

• if |Fi ∩ Fj | = |Ci ∩ Cj |, then set c(Fi ∩ Fj) = Ci ∩ Cj ;

• if |Fi ∩ Fj | > |Ci ∩ Cj |, then return “No”.

Reduction Rule 8.1 is obviously correct: if two intervals “share” more positions
than color elements, then there is no coloring that satisfies both intervals, and if the
number of shared positions is equal to the number of shared color elements, then one
has to color the overlapping intervals exactly with the corresponding colors. Moreover,
since the cutwidth is two there is no further interval containing a position in Fi ∩ Fj .
Hence, we can color the positions of Fi∩Fj in arbitrary order with the colors in Ci∩Cj .

After exhaustive application of Reduction Rule 8.1 we can assume that no interval
is completely contained in any other interval.

In the following, assume that the intervals are ordered with respect to their start-
points, that is, for Fi = [si, ti] and Fj = [sj , tj] with i < j we have si < sj . Consider a

142 8 Interval Constrained Coloring

position i, 1 ≤ i < n. If there is no input interval [sj , tj] with sj ≤ i and tj > i, then we
can color [i] independently from [i+ 1, n]. Together with Reduction Rule 8.1 and the
fact that cw = 2, we can thus assume that all intervals except for F1 and Fm overlap
with exactly two other intervals. Hence, we can partition each interval Fj , 1 < j < m,
into at most three subintervals: the first subinterval overlaps with Fj−1, the second
(possibly empty) subinterval does not overlap with any other interval, and the third
subinterval overlaps with Fj+1. The following notation describes this structural prop-
erty. For an interval Fj , 1 < j < m, define

F 1
j := Fj ∩ Fj−1, F 3

j := Fj ∩ Fj+1, and F 2
j := Fj \ (F 1

j ∪ F 3
j).

For a coloring c′ of [n] and j, 1 < j < m, let C1
j := c′(F 1

j). Define C2
j and C3

j

accordingly. For F1, define F 3
1 := F 1

2 and F 2
1 := F1 \ F 3

1 ; for Fm, define F 1
m :=

Fm∩Fm−1 and F 2
m := Fm\F 1

m; C3
1 , C2

1 , C1
m, and C2

m are defined analogously. Whether
a coloring violates an interval Fj only depends on the sets C1

j , C2
j , and C3

j . Hence,

when we know that a color cx must belong to some Clj , 1 ≤ l ≤ 3, then we can color an

arbitrary i ∈ F lj with cx. Recall that for a color multiset C and a color cx, occ(cx, C)
denotes the multiplicity of cx in C.

The next rule reduces intervals Fj that have no “private” middle interval F 2
j but

more elements of some color cx than the previous interval.

Reduction Rule 8.2. For any interval Fj , if F 2
j = ∅ and there is a color cx such that

occ(cx, Cj−1) < occ(cx, Cj), then for some arbitrary i ∈ F 3
j set c(i) = cx.

The rule is correct because in a proper coloring at most occ(cx, Cj−1) many posi-
tions in F 1

j (which is the intersection of Fj and Fj−1) can be colored with cx. Hence,

in order to satisfy constraint Cj , all other occurrences of cx must be at positions in F 3
j .

Again, since the cutwidth is two, we can choose an arbitrary position of F 3
j . After the

exhaustive application of Reduction Rule 8.2, for every interval Fj with F 2
j = ∅, we

have Cj−1 ⊇ Cj . Next, we reduce triples of intervals Fj−1, Fj , Fj+1 that have identical
color multisets in case F 2

j = ∅.

Reduction Rule 8.3. For intervals Fj−1, Fj , and Fj+1 such that Cj−1 = Cj = Cj+1

and F 2
j = ∅, remove Fj−1 and Fj from the input and for all intervals Fj+l =: [s, t]

with l ≥ 1 set Fj+l = [s′, t′], where s′ := s− |Fj | and t′ := t− |Fj |.

Lemma 8.1. Reduction Rule 8.3 is correct.

Proof. Let I be an instance to which Reduction Rule 8.3 is applied, and let I ′ be the
resulting instance. We show that I is a yes-instance if and only if I ′ is a yes-instance.
Let I be a yes-instance, let c′ be a proper coloring of I, and for each input interval Fl ∈
F let C1

l , C2
l , C3

l be the color multisets according to c′. Since Cj−1 = Cj = Cj+1,
we have C1

j−1 ⊆ C1
j+1 and C3

j+1 ⊆ C3
j−1. In I ′, Fj+1 overlaps with Fj−2 and Fj+2.

Coloring F 1
j+1 with the colors of C1

j−1 and F 2
j+1 with the colors of Cj \ (C1

j−1 ∪C3
j+1)

yields a proper coloring for I ′ since Cj+1 is not violated and for the other intervals
the coloring has not changed. Hence, if I is a yes-instance, then I ′ is a yes-instance.
The other direction can be shown analogously.

The following is our final data reduction rule.

8.4 Single Parameters 143

Reduction Rule 8.4. Let I be an instance that is reduced with respect to Reduction
Rules 8.1, 8.2, and 8.3, and let Fj be the first interval of I such that there is a color cx
with occ(cx, Cj) > occ(cx, Cj+1). Then,

• if j = 1, then set c(i) = cx for some arbitrary i ∈ F 2
1 ;

• if j > 1 and cx /∈ Cj−1, then set c(i) = cx for some arbitrary i ∈ F 2
j in case F 2

j 6= ∅
and otherwise return “No”;

• if j > 1 and cx ∈ Cj−1, then set c(i) = cx for some arbitrary i ∈ F 1
j .

Lemma 8.2. Reduction Rule 8.4 is correct.

Proof. Let I be an instance that is reduced with respect to Reduction Rules 8.1, 8.2,
and 8.3 to which Reduction Rule 8.4 is applied, and let I ′ be the resulting instance.
We show that I is a yes-instance if and only if I ′ is a yes-instance. We only show that
if I is a yes-instance, then I ′ is a yes-instance, since the other direction trivially holds.

If j = 1, this is easy to see: since cx occurs more often in F1 than in F2, one of the
positions in F1 \ F2 must be colored with cx.

If j > 1 and cx /∈ Cj−1, then it is clear that one of the positions in F 2
j must be

colored with cx. We either perform this forced coloring or return “No” if this is not
possible.

Finally, if j > 1 and cx ∈ Cj−1, the situation is more complicated. Let c′ be a
proper coloring of I. If there is a position i ∈ F 1

j such that c′(i) = cx, then the claim
obviously holds. Otherwise, we show that we can transform c′ into an alternative
coloring c′′ that is proper and there is an i ∈ F 1

j such that c′′(i) = cx. Whether

coloring c′′ is proper can be determined from the multisets C1
l , C2

l , and C3
l , 1 ≤ l ≤ m,

defined by the coloring function c′′. Hence, we describe the transformation applied to c′

with respect to these multisets. Note that we do not modify the sets Cyl , y ∈ {1, 2, 3},
for any l > j.

We face the following situation: cx /∈ C1
j , but since c′ is a coloring that does not vi-

olate any interval constraints and by the precondition of Reduction Rule 8.4, cx ∈ C2
j .

By the choice of j in Reduction Rule 8.4, we have C1 ⊆ C2 ⊆ . . . ⊆ Cj . We show that
we can always find a series of “exchange operations” such that the resulting coloring
is proper and cx ∈ C1

j . We perform a case distinction.

Case 1: F 2
j−1 6= ∅. There are three subcases of this case.

Case 1.1: cx ∈ C2
j−1. In this case, we exchange cx with some arbitrary cl ∈ C1

j .

Furthermore, we remove cx from C2
j and add cl to C2

j . The exchange is shown in Fig-

ure 8.1a; the resulting coloring is clearly proper and cx ∈ C1
j .

Case 1.2: cx ∈ C1
j−1 and F 2

j−2 6= ∅. Clearly, Cj−2 must be involved in the ex-

change. We choose an arbitrary element cl ∈ C2
j−2. Since Cj−2 ⊆ Cj−1, we also

have cl ∈ Cj−1 \ C1
j−1. We distinguish two further subcases.

Case 1.2.1: cl ∈ C3
j−1. We perform a direct exchange of cl and cx between C2

j−2

and C1
j−1 and also between C1

j and C2
j . The exchange is shown in Figure 8.1b; the

resulting coloring is clearly proper and cx ∈ C1
j .

Case 1.2.2: cl ∈ C2
j−1. We remove cl from C2

j−2 and add cx to C2
j−2. Furthermore,

we perform a circular exchange between C1
j−1, C2

j−1, and C3
j−1: move cx from C1

j−1

to C3
j−1, move an arbitrary element cf from C3

j−1 to C2
j−1, and move cl from C2

j−1

144 8 Interval Constrained Coloring

Fj−1

cxcx cl

cl

Fj

Fj−1

Fj−2

a)

b)
cxcl cl cx FjFj−2

cxcx

c)

cl cl cf

cx cf

Fj−1

FjFj−2

Figure 8.1: Exchange operations used in the proof of Lemma 8.2. Intervals are shown
as lines. The segments of an interval Fj where no other interval starts or ends cor-
respond to the color multisets C1

j , C3
j , and (if present) C2

j . A vertical double arrow
means removing the element shown at the bottom from the corresponding multiset
and adding the element shown at the top of the arrow to the multiset; a double ar-
row between two multisets means exchanging the elements between the corresponding
multisets; a simple arrow means moving an element from one multiset to another in
the indicated direction.

to C1
j−1. Finally, we remove cx from C2

j and add cf to C2
j . The exchange is shown

in Figure 8.1c; the resulting coloring is clearly proper and cx ∈ C1
j .

Case 1.3: cx ∈ C1
j−1 and F 2

j−2 = ∅. As stated above, we have Cj−3 ⊆ Cj−2. Further-

more, since F 2
j−2 = ∅ and Reduction Rule 8.2 does not apply, we have Cj−3 = Cj−2.

Hence, F 2
j−3 6= ∅ since otherwise Fj−3 would have been removed by Reduction Rule 8.3.

Case 1.3.1: cx ∈ C2
j−3. We pick an arbitrary element cl ∈ C3

j−3 and exchange it

with cx ∈ C2
j−3. If cl ∈ C3

j−1, then we perform a direct exchange of cx and cl be-

tween C1
j−1 and C3

j−1. If cl ∈ C2
j−1, we perform a circular exchange between C1

j−1,

C2
j−1, and C3

j−1 using some arbitrary cf ∈ C3
j−1. Furthermore, we remove cx from C2

j

and insert cl into C2
j . Figure 8.2a shows the more complicated case where cl ∈ C2

j−1.

Case 1.3.2: cx ∈ C1
j−3. Clearly, any change must also involve Fj−4. Furthermore,

we can have a long “chain” of alternating intervals Fj−2i and Fj−2i−1, 1 ≤ i < j/2,
such that F 2

j−2i = ∅ and F 2
j−2i−1 6= ∅. Since the instance is reduced with respect to

Reduction Rules 8.2 and 8.3 we have Cj−2i−1 = Cj−2i ⊆ Cj−2i+1. Let Fh be the first
(with lowest index) interval of the chain, that is, F 2

h 6= ∅, F 2
h+1 = ∅, and either Fh = F1

or F 2
h−1 6= ∅. There is either some rightmost (with highest index) interval Fg such

that cx ∈ C2
g , or for all intervals Fi of the chain we have cx /∈ C2

i . We show that in
the first case, for all intervals Fg+2i, g + 2i ≤ j − 3, we have cx ∈ C1

g+2i, and in the

8.4 Single Parameters 145

cx cl cf

Fj−1

FjFj−2

a)

Fj−1

cx
Fjcx cfcl

c)

cxcl

cx

Fh

Fh Fj−1

cxcx
Fjcx cfcl

Fg

b)

clcx cx

cf

cl cl cx

cf

cl cl cx

cf

Figure 8.2: Exchange operations used in Case 1.3 of the proof of Lemma 8.2. Intervals
are shown as lines. Two intervals [s, t] and [s′, t′] are drawn adjacent if t = s′−1 or vice
versa. The segments of an interval Fj where no other interval starts or ends correspond
to the color multisets C1

j , C3
j , and (if present) C2

j . A vertical double arrow means
removing the element shown at the bottom from the corresponding multiset and adding
the element shown at the top of the arrow to the multiset; a double arrow between
two multisets means exchanging the elements between the corresponding multisets; a
simple arrow means moving an element from one multiset to another in the indicated
direction.

second case for all Fh+2i, h + 2i ≤ j − 3, we have cx ∈ C1
h+2i. This can be seen as

follows. We have cx ∈ C1
j−3 and thus cx ∈ Cj−5 \C1

j−4, since Cj−4 = Cj−5. We either

have cx ∈ C2
j−5 (implying Fg = Fj−5) or cx ∈ C1

j−5 (in which case we can apply the

same arguments showing that either Fg = Fj−7 or cx ∈ C1
j−7 and so on). We now

sketch the exchange operations that we perform.

First, consider the case that there is some Fg with cx ∈ C2
g . We perform an

exchange similar to the one shown in Figure 8.2a. That is, we exchange cx ∈ C2
g

and some cl ∈ C3
g . Then we remove cx from C1

g+2, and add it to C3
g+2. We also

need to add cl to C1
g+2, which is possible since cl ∈ Cg+2 \ C1

g+2. Depending on
whether cl ∈ C2

g+2 or cl ∈ C3
g+2, we perform a circular or a direct exchange. These

exchange operations are carried on (for Fg+2i for increasing i ≥ 1) until we have
reached Fj , that is, we move cx from C1

g+2i to C3
g+2i and some cy (depending on the

previous exchange) from Cg+2i\C1
g+2i to C1

g+2i. An example of this exchange is shown
in Figure 8.2b. Note that this also includes the case where Fh = F1.

Second, we consider the case where for all intervals Fi of the chain we have cx /∈ C2
i .

We start the exchange operation at the first (with lowest index) interval Fh of the chain,

146 8 Interval Constrained Coloring

that is, the first interval Fh of the chain such that F 2
h 6= ∅ and F 2

h−1 6= ∅. Note that,
since we have already considered the case F1 = Fh, such an interval must exist. Then
we perform the exchange operations as sketched in Figure 8.2c. That is, we remove
an arbitrary element cl from C2

h−1 and add cx to C2
h−1. Then we perform either a

circular or a direct exchange of cl and cx in Fh, which is possible since cl ∈ Ch \ C1
h.

We continue with these circular or direct exchanges for Fh+2i for increasing i ≥ 1 until
we have reached Fj−1. Finally, we remove cx from Cj−2 and add cf to Cj−2.

Case 2: F 2
j−1 = ∅. As shown in Case 1.3, we can assume that F 2

j−2 6= ∅
since otherwise Reduction Rule 8.3 would apply. Hence, there is some cl ∈ C2

j−2.

Since Cj−2 = Cj−1 and C2
j−1 = ∅, we also have cl ∈ C3

j−1. Hence, this case is similar
to Case 1.2.1 and we can perform an exchange as shown in Figure 8.1b.

In all cases, we construct an alternative coloring c′′ that is proper and there is an
i ∈ F 1

j , such that c′′(i) = cx. This means that we can assume that if I is a yes-instance,

then there is some i ∈ F 1
j such that c′(i) = cx. In summary, this shows that I is a

yes-instance if and only if I ′ is a yes-instance.

With these four reduction rules at hand, we can describe a simple quadratic-time
algorithm (for constant number k of colors) for ICC with cutwidth two.

Theorem 8.2. ICC can be solved in O(kn2) time when the input has cutwidth two.

Proof. The algorithm starts with exhaustively applying Reduction Rules 8.1 to 8.4.
Note that before applying Reduction Rule 8.4 we always have to check whether Reduc-
tion Rule 8.1, Reduction Rule 8.2 , or Reduction Rule 8.3 can be applied, because it is
only correct to apply Reduction Rule 8.4 when the instance is reduced with respect to
the other rules. The rules either return “No” or we obtain an instance that is reduced
with respect to all reduction rules. In such an instance we have C1 ⊆ C2 ⊆ . . . ⊆ Cm.
Otherwise, Reduction Rule 8.4 would apply, because there would be some Fi ∈ F and
a color cx such that occ(cx, Ci) > occ(cx, Ci+1). This instance can be easily colored
as follows. For the first interval F1, we choose an arbitrary coloring that does not
violate C1. Since C1 ⊆ C2, this coloring also does not violate C2. Then we remove the
colored parts from the input, adjust the color multisets and intervals accordingly, and
choose an arbitrary coloring that does not violate C2. Clearly, this does not violate C3,
since C2 ⊆ C3. After this, we again reduce the colored parts and continue with color-
ing F3. This is repeated until all positions are colored and produces a coloring that
does not violate any interval constraints. This proves the correctness of the algorithm.

For the running time of the algorithm consider the following. First, since the input
has cutwidth two, the number m of intervals is O(n). For each reduction rule, checking
whether it can be applied and the application itself can be performed in O(kn) time.
Furthermore, the application of any of the reduction rules removes at least one position
from the interval [n]. Overall, the rules can thus be applied at most n times. Together
with the O(n) steps that are clearly sufficient for coloring any instance that is reduced
with respect to the reduction rules, this leads to a total running time of O(kn2).

Using the previous algorithm, we also obtain polynomial-time solvability in case the
maximum overlap o between intervals is at most one. This follows from the observation
that after achieving the normal form of the instance (see Proposition 8.1), each instance
with overlap at most one also has cutwidth at most two, which can be seen as follows.
Suppose an instance that has the normal form has overlap one and cutwidth at least

8.5 Combined Parameters 147

Table 8.2: Complexity of ICC for combined parameters. We only give the function of
the exponential term, omitting polynomial factors. Herein, (k, ∗) and (k, ∗, ∗) refer to
combined parameters that feature k and one or two additional parameters, (l, ∗) refers
to combined parameters that feature l and one additional parameter. The result for
parameter (k,m) is due to Althaus et al. [8], the rest is new.

Parameter Running times

(k, ∗) kl, (k − 1)n, f(k,m) (ILP)
(k, ∗, ∗) lcw·(k−1), ncw·(k−1)

(l, ∗) ∆l, (cw + 1)l

three. Then there must be a position i such that at least three intervals F , F ′, and F ′′

overlap at i. By Proposition 8.1, at most one of these three intervals, say F , starts
at i. This, however, means that F ′ and F ′′ have overlap at least two.

Corollary 8.1. ICC can be solved in O(n2) time when the input has overlap one.

8.5 Combined Parameters

In the following, as already indicated in Section 8.2, we turn to the study of some
relevant pairs of single parameters which form a “combined parameter”. Table 8.2
summarizes our current knowledge about combined parameterizations of ICC—there
are many questions left open.

First, we present a dynamic programming strategy for solving ICC in O(kl · (k +
l)mn) time. This algorithm uses similar ideas as the algorithm presented in the proof
Theorem 8.1. Note that, for a small number k of colors this algorithm is more efficient
than the algorithm presented in the proof of Theorem 8.1.

Theorem 8.3. ICC can be solved in O(kl · (k + l)mn) time.

Proof. We present a dynamic programming algorithm. The basic idea of the algorithm
is to maintain for every length-l subinterval of [n] a table with an entry for every
possible coloring of that interval indicating whether this coloring can be extended to a
proper coloring of [n]. These tables are built by a “left to right” dynamic programming
procedure. The details follow.

For every 1 ≤ i ≤ n−l+1, the algorithm maintains a table Ti with an entry for every
possible coloring of the interval Ii := [i, i+ l − 1]. Note that there are kl possibilities
to color a size-l interval with k colors. In the following, let K := {1, 2, . . . , k} be the
set of all colors. A coloring of a length-l interval [i, i + l − 1] is represented by a
vector c′ = (c′1, . . . , c

′
l) ∈ Kl, meaning that c′(i) = c′1, c′(i+ 1) = c′2, and so on. Recall

that a coloring c′ satisfies (the constraint of) an input interval Fj ∈ F if Cj = c′(Fj).
Finally, for 1 ≤ i ≤ n we say that a coloring of [i] is proper, if it satisfies all input
intervals contained in [i].

The goal of the dynamic programming procedure is to fill the tables Ti in ac-
cordance with the following definition. For every 1 ≤ i ≤ n − l + 1 and for ev-
ery coloring c′ ∈ Kl, we have Ti(c

′) = true if and only if there exists a color-
ing c′′ = (c′′1 , . . . , c

′′
i+l−1) ∈ Ki+l−1 of the interval [i+ l − 1] with (c′′i , . . . , c

′′
i+l−1) = c′

148 8 Interval Constrained Coloring

satisfying each interval F ∈ F with F ⊆ [i+ l − 1]. That is, Ti(c
′) = true if and only

if there exists a proper coloring c′′ of the interval [i+ l− 1] that is an extension of c′.
For i = 1 and for every c′ ∈ Kl, this is achieved by setting T1(c′) := true if and

only if c′ satisfies every interval F ∈ F with F ⊆ [l].
For i > 1, table Ti is computed based on Ti−1 as follows. For i = 2 to n − l + 1

and for every c′ = (c′1, . . . , c
′
l) ∈ Kl, set

Ti(c
′) = true ⇐⇒ c′ satisfies every [s, t] ∈ F with [s, t] ⊆ [i, i+ l − 1] and

∃z ∈ K : Ti−1((z, c′1, c
′
2, . . . , c

′
l−1)) = true.

(8.2)

Finally, output “Yes” if there exists a coloring c′ ∈ Kl with Tn−l+1(c′) = true, and
“No”, otherwise. This completes the description of the algorithm.

The correctness of the algorithm follows by induction on i. More specifically, we
show that Ti meets the above definition for every 1 ≤ i ≤ n− l+ 1. That is, we show
that Ti(c

′) = true if and only if there is a proper coloring of the interval [i + l − 1]
with “suffix” c′. Obviously, this holds for i = 1.

For the induction step we show the correctness of Recursion (8.2). That is, we
show that there is a proper coloring of [i+ l− 1] with suffix c′ (that is, Ti(c

′) = true)
if and only if c′ satisfies all input intervals contained in [i, i + l − 1] and there is
a proper coloring of [i + l − 2] with suffix (z, c′1, c

′
2, . . . , c

′
l−1) for some z ∈ K (that

is, Ti−1((z, c′1, c
′
2, . . . , c

′
l−1)) = true).

The “⇒”-direction is straightforward. For the “⇐”-direction, note the following.
The existence of a z ∈ K with Ti−1((z, c′1, c

′
2, . . . , c

′
l−1)) = true means that there is a

coloring c′′ = (c′′1 , . . . , c
′′
i−2, z, c

′
1, . . . , c

′
l−1) of [i+ l − 2] satisfying all F ∈ F , F ⊆ [i+

l−2]. Thus, the coloring c∗ = (c′′1 , . . . , c
′′
i−2, z, c

′
1, . . . , c

′
l−1, c

′
l) clearly satisfies all input

intervals [s, t] ∈ F with t ≤ i+ l−2. Moreover, c∗ satisfies all input intervals [s, t] ∈ F
with t = i + l − 1 since every input interval that ends at position i + l − 1 must be
completely contained in [i, i+ l − 1].

As to the running time, for every i ∈ [n] and for every c′ ∈ Kl the computation
of Ti(c

′) according to Recursion (8.2) can be performed in O(m(k+ l)) time. This can
be seen as follows. For every input interval completely contained in [i, i+ l− 1], check
whether it is satisfied by c′, which is doable in O(k+ l) time (if we realize the multisets
by size-k arrays). In addition, to check whether ∃z ∈ K : Ti−1((z, c1, c2, . . . , cl−1)) =
true, try all k colors for z; hence, the running time for the above recursion is O(m(k+
l)). This leads to a total running time of O(kl · (k + l)mn) since for every position i,
1 ≤ i ≤ n− l + 1, we have to try all kl possible colorings of a length-l interval.

Next, we present an alternative solution strategy also based on dynamic program-
ming. The running time of this algorithm can be bounded by (cw + 1)l · poly(n,m)
or lcw·(k−1) · poly(n,m). To explain the basic idea of the algorithm, consider the fol-
lowing. Assume that we are given a coloring c′ satisfying all intervals. Consider a
position i. With respect to i coloring c′ partitions a color multiset C of an interval F
intersecting with i into two multisets: one containing the colors that c′ uses for the
positions j ∈ F with j ≤ i and the other containing all other colors of the color multi-
set. The basic idea of the dynamic programming algorithm is to traverse the instance
from “left to right” and to try for every position i all partitions of the color multisets
of the intervals intersecting with i. Roughly speaking, for every such partition, the
algorithm remembers whether this partition is consistent with a coloring satisfying all

8.5 Combined Parameters 149

input interval seen so far. In the proof of the next theorem, we will show that, for a
position i and a partition of the color multisets intersecting with i, this decision can
be made based on the stored information for position i− 1.

Theorem 8.4. ICC can be solved in O((cw + 1)l · l · (k · cw)2 · log cw · n) time and
O(lcw·(k−1) · (k · cw)3 log l · n) time, respectively.

Proof. We present a dynamic programming algorithm that yields both claimed run-
ning times. We use the following notation. For every position i, 1 ≤ i ≤ n, let Fi =
{Fi1 , . . . , Fini} denote the input intervals containing i. Further, let Ci = {Ci1 , . . . , Cini}
denote the color multisets associated with the intervals in Fi, where Cij is the color
multiset associated with Fij , 1 ≤ j ≤ ni. Note that ni ≤ cw. Let Fij = [sij , tij]
for all 1 ≤ j ≤ ni. By K = {1, . . . , k} we refer to the set of all colors. In addition,
a tuple (M1, . . . ,Mq) of multisets is called a chain if there exists a permutation π
of {1, . . . , q} such that Mπ(1) ⊆ Mπ(2) ⊆ . . . ⊆ Mπ(q). Finally, for 1 ≤ i ≤ n we say
that a coloring of [i] is proper if it satisfies all input intervals contained in [i].

For every position i, the algorithm maintains a table Ti with an entry for every
possible tuple of color multisets (A1, . . . , Ani) with Aj ⊆ Cij and |Aj | = i − sij + 1
for all 1 ≤ j ≤ ni. Informally speaking, this entry indicates whether there exists
a coloring of the interval [i] that uses for every j, 1 ≤ j ≤ ni, the colors in Aj
for the subinterval [sij , i] and satisfies all intervals that end before position i. More
specifically, the goal of the dynamic programming procedure is to compute these tables
in accordance with the following definition: Ti(A1, . . . , Ani) = true if and only if there
exists a proper coloring c′ : [i] → K such that c′([sij , i]) = Aj for all 1 ≤ j ≤ ni and,
for every Fl ∈ F with Fl ⊆ [i], it holds that c′(Fl) = Cl. Such a coloring is called
proper with respect to (A1, . . . , Ani). Note that an instance is a yes-instance if and
only if Tn contains an entry set to true.

For position i = 1, initiate the table Ti as follows. According to Proposition 8.1,
at each position in [n] there starts at most one input interval and ends at most one
input interval. Hence, there is exactly one interval in F1. Let F1 = {F} and let C be
the color multiset associated with F . Set T1({c′}) = true for every c′ ∈ C.

For a position i > 1 compute the table Ti based on Ti−1 as described next. By
Proposition 8.1, for every position i, 2 ≤ i ≤ n, there is at most one interval in Fi−1\Fi
and at most one in Fi \ Fi−1. Thus, assume that Fi−1 = {F ′, F1, . . . , Fq} and Fi =
{F1, . . . , Fq, F

′′}, that is, Fi−1 ∩Fi = {F1, . . . , Fq} (if Fi−1 \ Fi = ∅ or Fi \ Fi−1 = ∅,
then skip F ′ or F ′′ and the respective color (sub)multisets in the following formulas).
Let Fj = [sj , tj] for all 1 ≤ j ≤ q.

For every tuple (A1, . . . , Aq, A
′′) that forms a chain and fulfills Aj ⊆ Cj with

|Aj | = i− sj + 1 for 1 ≤ j ≤ q and A′′ ⊆ C ′′ with |A′′| = 1, set

Ti(A1, . . . , Aq,A
′′) = true ⇐⇒

∃x ∈ (

q⋂
j=1

Aj) ∩A′′ : Ti−1(C ′, A1 \ {x}, . . . , Aq \ {x}) = true.
(8.3)

Using Recursion (8.3), the algorithm computes the tables Ti for increasing values
of i (starting with i = 2). Finally, it outputs “Yes” if Tn contains a true entry and
“No”, otherwise. This completes the description of the algorithm.

For the correctness we show by induction on i that Ti is computed in accordance
with the above definition. Clearly, this is the case for i = 1.

150 8 Interval Constrained Coloring

For the correctness of the case i > 1, first note that we only consider tuples
(A1, . . . , Aq, A

′′) that form chains. This is correct since for a coloring c′ : [i] → K
the tuple (c′([s1, i]), . . . , c

′([sj , i]), c
′([i, i])) forms a chain. For the induction step we

show the correctness of Recursion (8.3). That is, we show that there exists a proper
coloring c of [i] with respect to (A1, . . . , Aq, A

′′) (that is, Ti(A1, . . . , Aq, A
′′) = true) if

and only there is a proper coloring c′ of [i−1] with respect to (C ′, A1\{x}, . . . , Aq\{x})
for some x ∈ (

⋂q
j=1Aj) ∩A′′.

For the “⇒-direction” note that, if there is a proper coloring c of [i] with respect
to (A1, A2, . . . , Aq, A

′′), then c restricted to [i−1] clearly is a proper coloring of [i−1]
with respect to (C ′, A1 \ {c′(i)}, . . . , Aq \ {c′(i)}).

For the “⇐-direction”, note that if there is an x ∈ (
⋂q
j=1Aj) ∩A′′ and a proper

coloring c′ of [i− 1] with respect to (C ′, A1 \ {x}, . . . , Aq \ {x}), then the extension c
of c′ with c(j) := c′(j) for 1 ≤ j < i and c(i) := x is a proper coloring of [i] with
respect to (A1, . . . , Aq, A

′′).
Next, we show that the running time of the algorithm can be bounded by O((cw +

1)l · l · (k · cw)2 · log cw · n). To this end, note that for every position there are at
most (cw + 1)l tuples of color multisets (A1, . . . , Ani) with Aj ⊆ Cij and |Aj | =
i − sij + 1, 1 ≤ j ≤ ni, that form a chain. This can be seen as follows. Let Fz
denote the interval in Fi with the smallest starting point. Note that a tuple of color
multisets (A1, . . . , Ani) that forms a chain corresponds to a partition of Cz into (ni+1)
subsets. Since ni ≤ cw and for every color in Cz there are at most (cw + 1) choices,
there are at most (cw + 1)l such partitions. Next, we show that in O(l · (k · cw)2 ·
log cw) time one can determine whether there exists an x ∈ (

⋂q
j=1Aj) ∩A′′ such that

Ti−1(C ′, A1 \ {x}, . . . , Aq \ {x}) = true. To this end, we implement the dynamic
programming tables Ti by dictionaries for which the addition and the lookup of a key
requires O(log(s)) comparisons, where s is the size of the dictionary. Such a dictionary
can, for example, be realized by a balanced binary search tree. Then, for computing
an entry of Ti using Recursion (8.3), one first determines the colors in (

⋂q
j=1Aj) ∩A′′,

which is doable in O(k·cw) time if the multisets are realized by size-k arrays. Then, the
lookup in Tj−1 needs at most O(l · log (cw)) comparisons. To compare two tuples one
can iterate over the two tuples in parallel until finding a first pair of multisets that are
different and return the result of the comparison between these multisets. Analogously,
two multisets can be compared by comparing the occurrence numbers of the colors. In
total, one comparison of two tuples of color multisets takes O(cw · k) time. Hence, for
a given tuple of color multisets the computations can be done in O(l · (k · cw)2 · log cw)
time. This leads to a total running time of O((cw + 1)l · l · (k · cw)2 · log cw · n).

Finally, to prove the second running time claimed in Theorem 8.4, we perform an
alternative analysis of the running time of the above algorithm. To this end, we need
the following observation. For a multiset M that contains k different colors and for an
integer q ≥ 1, there are at most (q + 1)k−1 size-q submultisets of M ; first, note that
for every color there are q+1 choices for the number of occurrences of this color in the
subset (between 0 and q times). Second, note that choosing the occurrence numbers of
the first k−1 colors in a size-q subset (there are at most (q+1)k−1 choices) determines
the occurrence number of the kth color. With this observation, it is not hard to verify
that for each position one has to consider at most (l(k−1))cw = lcw·(k−1) tuples of
multisets. Thus, the dynamic programming tables are of this size and with the same
analysis as above the total running time can be bounded by O(lcw·(k−1) · (k ·cw)3 log l ·
n).

8.6 Implementations and Experiments 151

Trivially, one can solve ICC in kn · poly(n,m) time by trying all k colors for all
n positions. Subsequently, we show that we can improve on this running time bound
by exploiting the fact that for two colors the problem is polynomial-time solvable [8]
(whereas it is NP-complete for three colors [35]). The idea is to “guess” only k−2 colors
and the positions that have one of the two remaining colors. For these positions, we
then use the polynomial-time algorithm for ICC with two colors, giving the following
result.

Proposition 8.2. ICC can be solved in O((k − 1)n · g(n,m)) time, where g(n,m) is
the time needed to solve ICC for k = 2.

Proof. For each position 1 ≤ i ≤ n, we branch into k − 1 cases. The first case
corresponds to i being assigned color 1 or 2. The other k − 2 cases each correspond
to i being assigned one of the other k − 2 colors. When there is no more position
that we can branch on, we first check whether any of the interval constraints has been
violated so far. That is, we check whether there is an interval F with associated color
multiset C and a color x ∈ {3, . . . , k} such that the occurrence number of x in C is
different from the number of positions in F that are colored by x. If this is the case,
then this branch does not lead to a proper coloring. Otherwise, the positions with fixed
colors, that is, the positions that have been assigned a color from 3 to k, are removed
from [n] and the intervals with their color constraints are updated accordingly (that
is, we ignore the colors 3, . . . , k in the color constraints). For the remaining positions,
we can only assign colors 1 or 2. This problem can be solved in polynomial time [8].

Overall, we branch into (k−1)n possibilities and for each of them the problem can
be solved in polynomial time.

For the practically relevant [8] NP-complete [35] case where k = 3, we can achieve
a further speed-up by the following simple observation: At least one of the colors
appears at most on n/3 positions.

Proposition 8.3. For k = 3, ICC can be solved in O(1.89n · g(n,m)) time, where
g(n,m) is the time needed to solve ICC for k = 2.

Proof. For each of the three colors, we solve the problem of finding a coloring in which
this particular color is assigned to at most n/3 positions. We try all possibilities of
selecting the positions, and since at most n/3 positions have to be selected, the number
of these possibilities is

∑
0≤i≤n/3

(
n
i

)
. Using Stirling’s approximation of factorials, we

obtain an upper bound of O(1.89n) for this number. For each of these possibilities,
we then solve ICC for the remaining two colors in polynomial time [8].

Beigel and Eppstein [14] gave a thorough study of exact exponential-time al-
gorithms for the NP-complete 3-Coloring problem. It is tempting to investigate
whether some of their tricks can be applied to ICC with three colors; in particular,
a simple randomized strategy presented by Beigel and Eppstein might be promising.
This is left as a challenge for future work.

8.6 Implementations and Experiments

We performed computational experiments on peptide fragment data that were also
used by Althaus et al. [8] to find out whether our theoretical algorithms are valuable

152 8 Interval Constrained Coloring

in practice. We considered only the non-trivial instances with more than one frag-
ment. Our aim was mainly to answer the following three questions: First, what do
the parameters derived from the NP-hardness reduction look like in real-world data?
Second, how do the presented algorithms behave on real-world data? Third, what
can we conclude from these experiments; for example, can we find new promising
parameterizations either from the data itself or from the behavior of our algorithms?

All experiments were run on an AMD Athlon 64 3700+ machine with 2.2 GHz, 1 M
L2 cache, and 3 GB main memory running under the Debian GNU/Linux 4.0 operating
system with Java version 1.5.0 14; the Java VM was invoked with 2 GB heap size.5

Aspects of the Data and Choice of Algorithms. First, we examined the data
with respect to the parameters we identified from the NP-hardness proof in Section 8.2.
The most obvious observation is that k = 3 in all instances; the other parameter values
are shown in Table 8.3. Unfortunately, the difference between range n and maximum
interval length l is not that big in many instances. This is usually due to one or two
intervals that are very long in comparison to the other intervals. Furthermore, the
cutwidth cw is usually much larger than k and only in trivial instances less than 3.
Hence, we have not implemented our algorithm for cw = 2 since it seems unattractive
for the available real-world data. We decided to implement the dynamic programming
algorithm with running time kl · poly(n,m) (called Algorithm 1 in the following)
presented in the proof of Theorem 8.3 because it was conceptually the easiest and
because, with k = 3, its running time of 3l · poly(n,m) is much better than the
running times of l! · poly(n,m) and (cw + 1)l · poly(n,m) of the algorithms from
Theorems 8.1 and 8.4. Moreover, it is easy to extend this algorithm to solve the
error minimization variant of ICC introduced by Althaus et al. [8]. Note, however,
that the algorithm from Theorem 8.4 has an alternative running time bound which,
for k = 3, is l2cw · poly(n,m). Since in the data often cw � l it seems worthwhile to
consider this algorithm, even though, compared to the algorithm from Theorem 8.3,
it uses three parameters (l, k, and cw) instead of two (k and l). We thus implemented
two algorithms that can be seen as variants of the algorithm from Theorem 8.4. The
main idea of these two algorithms can be described as follows. We use dynamic
programming. Both algorithms process in “left” to “right” order. The positions
for which values are stored in the dynamic programming table are the start- and
endpoints of the input intervals. For such a position i we store a description of each
proper coloring of range [i]. Next, we describe this description in more detail. A
segment of [n] is a subinterval [s, t] ⊆ [n] such that each position of [s, t] is contained
in exactly the same set of input intervals and [s, t] is maximal with respect to this
property. A description of a coloring for [i] contains for each segment [s, t] of [i]
and for each color c the number of positions of [s, t] that are colored with c. When
creating the table entries for position i, the algorithms try all possible combinations of
extending a proper coloring stored for [j], j < i, with colorings of the segment [j+1, i],
where j is the last position of the preceding segment. Basically, the algorithm as
described so far (Algorithm 2) is an enumeration of all proper colorings. We have also
implemented an adaption of this algorithm that, as long as there are two colorings
that differ in general, but not in the segments that overlap with the last l positions,

5The Java program is free software and available from http://theinf1.informatik.uni-jena.

de/icc

http://theinf1.informatik.uni-jena.de/icc
http://theinf1.informatik.uni-jena.de/icc

8.6 Implementations and Experiments 153

Table 8.3: Parameters and running times for peptide fragment data from Canzar et
al. [38]. Algorithm 1 is the kl · poly(n,m) algorithm, Algorithm 2 stores all equiv-
alent colorings, Algorithm 3 stores only those colorings that differ in the segments
overlapping with the last l positions. The shown parameters are range n, number of
intervals m, maximum interval length l, and cutwidth cw; running times are given in
milliseconds. In the column for Algorithm 1 an entry “—” means that the the respec-
tive instance could not be solved because the space consumption exceeded 2GB. In
the columns for Algorithms 2 and 3 an entry “—” means that the respective instance
could not be solved within a time limit of one hour.

Instance n m l cw Algorithm 1 Algorithm 2 Algorithm 3

Cabin 78 34 74 21 — — —
CytoCA 27 6 16 5 11,511,587 1,225 1,642
CytoCB 26 6 26 4 — 1,690 1,649
CytoCC 15 5 14 4 88,684 427 528
FKBP-both-A 49 24 25 19 — 13,499 17,163
FKBP-both-B 11 4 7 4 403 50 46
FKBP-both-C 25 26 25 23 — — —
FKBP-both-D 4 2 3 2 3 33 31
FKBP-ilp-A 35 12 21 8 — 11,074 14,074
FKBP-ilp-B 16 5 9 3 1,838 237 219
FKBP-ilp-C 36 14 23 8 — 966,583 26,758
FKBP-mem-A 35 12 21 8 — 5,494 7,127
FKBP-mem-B 16 5 9 3 1,857 133 122
FKBP-mem-C 36 14 23 8 — 3,241,131 53,662
FKBP-xiii-A 22 16 21 16 — 1,453 2,224
FKBP-xiii-B 10 4 10 4 235 106 97
FKBP-xiii-C 11 4 7 4 440 48 45
FKBP-xiii-D 25 22 25 19 — 8,334 15,626
HorseHeart-A 17 10 17 7 1,047,098 2,831 4,197
HorseHeart-B 12 4 12 4 879 58 55
HorseHeart-C 22 8 11 7 32,750 880 1,669
HorseHeart-D 37 17 23 10 — — 6,443
HorseHeart-F 21 6 19 6 — 760 760

154 8 Interval Constrained Coloring

removes one of these colorings from the dynamic programming table (Algorithm 3).
This latter algorithm can be shown to have a running time of l(k−1)cw · poly(n,m), as
it stores at most as many combinations as the algorithm from Theorem 8.4. Finally,
we implemented both algorithms to not only store proper colorings, but also colorings
whose total sum of errors is below an error threshold ε, where the sum of errors
is defined as by Althaus et al. [8]. This way an optimal solution can be found by
incrementally increasing the error threshold (starting with ε = 0 and increasing ε by
one in each step) until one coloring that has an error below the considered threshold
is found.

Evaluation. Algorithm 1 can compute the minimum error for all given instances
with l ≤ 17 (11 of 23 instances in total). However, one can observe an explosion in the
running time for growing values of l. This is expected since for every length-l subinter-
val this algorithm enumerates all 3l colorings. Note that for instances with l > 17, the
space consumption of our implementation is too large and the algorithm terminates
immediately.

In terms of running time, for most instances there is no big difference between
Algorithms 2 and 3 and both algorithms outperform Algorithm 1. Algorithms 2 and 3
also have a moderate space consumption for all instances. Moreover, Algorithms 2
and 3 can solve all but two instances within one hour. For many instances, however,
the performance is much better. For example, 14 out of 23 instances could be solved
in less than four seconds. Interestingly, the fact that Algorithm 3 stores only feasible
colorings if they differ in the last l positions and that Algorithm 2 stores all feasible
colorings does not result in better running times of Algorithm 2 for most instances.
Recall that Algorithms 2 and 3 check for an increasing error value ε whether the input
instance admits a coloring with error ε. The case ε = 0 corresponds to the decision
version as introduced in Section 8.1. For the case that ε = 0 Algorithms 2 and 3 can
solve all instances in less than one second (not shown here).

So far our algorithms are not competitive with the state-of-the-art algorithms for
ICC such as the ILP based approach by Althaus et al. [8] that solves every instance
in less than 10 seconds or a polynomial-delay algorithm by Canzar et al. [38] that
solves every instance in less than 57 seconds. In particular, Algorithm 1 is rather slow
and has a high space consumption. Algorithms 2 and 3 perform much better but are
still slower than the polynomial-delay algorithm due to Canzar et al. [38]. However,
there is one instance (FKBP-mem-A) where Algorithm 2 (running time 5.5 sec) is
competitive with the polynomial-delay algorithm by Canzar et al. [38] (running time
7.81 sec) and one instance (FKBP-mem-C) where Algorithm 3 (running time 53.66
sec) is competitive with the polynomial-delay algorithm [38] (running time 56.31 sec).

In summary, for favorable parameter constellations our algorithms solve ICC within
seconds. However, for some instances (such as FKBP-both-C) none of the considered
parameters are sufficiently small. Accordingly, none of the implemented algorithms
solve this instance within acceptable running time.

Conclusions from the Experiments. The experiments show that the approach
by deconstructing an NP-hardness proof can lead to algorithms that are capable of
solving real-world instances. However, it is also obvious that the theoretical algorithms
if implemented straightforwardly, such as Algorithm 1, may be inefficient. It also

8.7 Conclusion 155

becomes clear that the parameters should not only be derived from deconstructing
intractability but also from examining the structure of the data. For example, cw is
often much smaller than l which might be a reason for the relatively good performance
of Algorithms 2 and 3 in comparison with Algorithm 1. Also note that often l ≈ n, but
the number of long intervals is usually very small. Hence, it is intriguing to consider
the parameter “number of long intervals” in combination with other parameters.

8.7 Conclusion

Through deconstructing intractability and using methods of parameterized algorith-
mics, we started a multivariate complexity analysis of Interval Constrained Col-
oring. Refer to Tables 8.1 and 8.2 in Sections 8.4 and 8.5 for an overview and several
challenges for future research. Next, we highlight some possible future research direc-
tions.

First, we emphasize our specific interest in the parameter m (number of intervals),
which takes relatively small values for several of the considered real-world instances
(see Table 8.3). The parameterized complexity with respect to parameter m is left
open. Recall that for the combined parameter (k,m) fixed-parameter tractability
follows by Lenstra’s famous result [128] on the running time of integer linear programs
with a fixed number of variables (which is of purely theoretical interest). Hence,
direct combinatorial fixed-parameter algorithms for the combined parameter (k,m)
are desirable.

Also the combined parameter “cutwidth cw and number of colors k” deserves
further investigations since the cutwidth and the number of colors are small for most of
the considered real-world instances. Recall that ICC is NP-hard for constant cutwidth
or a constant number of colors and polynomial-time solvable if both values are constant
(the degree of the polynomial depending on cw and k). However, we left open whether
ICC is fixed-parameter tractable for the combined parameter.

Beyond that, there remain many further tasks. For instance, also combinations
of three or more parameters may be relevant. Moreover, already for combinations of
two parameters there are several qualitatively different fixed-parameter tractability
results one can strive for and which typically are independent from each other. For
instance, for a combined parameter (p1, p2) the incomparable combinatorial explo-
sions pp21 and pp12 can both be useful for solving specific real-world instances.

Although polynomial-time executable data reduction rules played a significant role
in this chapter, we achieved no nontrivial problem kernelization results for fixed-
parameter tractable problem variants.

In our theoretical algorithms, we focussed attention on the decision version and
corresponding exact solutions; the investigations should be extended to the optimiza-
tion variants. So far, two optimization criteria have been proposed. First, Althaus et
al. [8] suggested an error minimization version. We use the respective error function in
our experiments as well. Second, Althaus et al. [9] and Canzar et al. [39] investigated
a weighted version, where the goal is to find a coloring maximizing the total weight of
satisfied intervals.

Finally, our experimental work indicates the practical potential of a multivariate
approach to the design of combinatorial algorithms for NP-hard problems such as
Interval Constrained Coloring. However, from our experimental studies it has

156 8 Interval Constrained Coloring

also become clear that a “deconstructing intractability study” should always come
along with a data-driven algorithm design process. For example, we have identified
the maximum interval length l as a theoretically interesting parameter. However, for
most of the considered real-world instances we have l ≈ n. A more precise analysis
of the data shows that this is caused by only few “large” intervals, giving raise to
the following questions. What is a reasonable concept of “large intervals”? Can
we find improved fixed-parameter algorithms when we consider “the number of large
intervals” as an (additional) parameter? Finally, can we speed up our algorithms to
become practically competitive by exploiting the fact that there are relatively few
large intervals?

Chapter 9
Parsimony Haplotyping

9.1 Introduction

Over the last few years, haplotype inference has become a central problem in algo-
rithmic bioinformatics [103, 41]. Besides applications in the investigation of diseases
and genetic mutations, haplotype inference plays an important role in the inference of
population histories, drug design, and pharmacogenetics. A brief introduction follows.

The DNA sequences of the individuals of a population are almost identical except
for the nucleotides at so-called single nucleotide polymorphism (SNP) sites. Moreover,
at each SNP site there almost always appear only two (of the four possible) nucleotides
that, hence, are usually encoded by the two states “0” and “1”. Diploid organisms such
as mammals have two not necessarily identical copies of the DNA sequence, each called
a haplotype. In particular, the haplotypes can differ at the SNP sites. The genotype of
an organism is the combination of the two haplotypes, and can be encoded by a string
consisting of “0”, “1”, and “2” entries, where a “0” (“1”) means that both haplotypes
have state “0” (“1”) at the respective SNP site and “2” means that the haplotypes
differ at the respective SNP site. A site is called homozygous if the two haplotypes
agree in this site; otherwise it is called heterozygous. Commonly used sequencing
methods produce such an encoding of the genotype using “2” for heterozygous sites.
Observe that, however, in this encoding for a heterozygous site the information which
of the two haplotypes has state “0” and which has “1” is lost. Now, given the genotypes
of the individuals of a population, the task in haplotype inference is to “reconstruct”
the haplotypes. The central motivation for haplotype inference is that it is easier and
cheaper to obtain the genotype information of an organism, though the haplotype
information is of greater use [103]. See for example the surveys by Catanzaro and
Labbé [41] and Gusfield and Orzack [103] for the biochemical background.

In summary, a genotype can be seen as a length-m string over the alphabet {0, 1, 2},
while a haplotype can be seen as a length-m string over the alphabet {0, 1} and, in
haplotype inference, the goal is to extract the haplotype information from the given
the genotype information of a population. One of the major approaches to haplotype
inference is parsimony haplotyping : Given a set of genotypes, the task is to find a
minimum-cardinality set of haplotypes that explains the input set of genotypes. The

158 9 Parsimony Haplotyping

task to select as few haplotypes as possible (parsimony criterion) is motivated by the
observation that in natural populations the number of haplotypes is much smaller
than the number of genotypes and, hence, there is a good chance that a minimum-
cardinality set of haplotypes corresponds to the “true” biological haplotypes [41].

Next, we provide basic definitions that are necessary to formally introduce the
problems considered in this chapter.

Problem Statement. A set H of haplotypes explains, or resolves, a set G of geno-
types if for every g ∈ G there is either an h ∈ H with g = h (trivial case), or there are
two haplotypes h1 and h2 in H such that, for all i ∈ {1, . . . ,m},

• if g has letter 0 or 1 at position i, then both h1 and h2 have this letter at
position i, and

• if g has letter 2 at position i, then one of h1 and h2 has letter 0 at position i
while the other one has letter 1.

For example, H = {00100, 01110, 10110} resolves G = {02120, 20120, 22110}; the first
genotype 02120 is resolved by the two haplotypes 00100 and 01110, and so on. For a
given set H of haplotypes, let res (H) denote the set of genotypes resolved by H. We
consider the following haplotype inference problem parameterized by the size of the
haplotype set H to be computed.

Definition 9.1. Haplotype Inference by Parsimony (HIP)
Input: A set G of length-m genotypes and an integer k ≥ 0.
Question: Is there a setH of length-m haplotypes such that |H| ≤ k andG ⊆ res (H)?

HIP is NP-hard, and numerous algorithmic approaches based on heuristics and
integer linear programming methods are applied in practice [41]. There is also a grow-
ing list of combinatorial approaches (with provable performance guarantees) including
the identification of polynomial-time solvable special cases, approximation algorithms,
and fixed-parameter algorithms [65, 72, 126, 127, 151, 111].

Fellows et al. [72] introduced a constrained version of HIP, where a pool of plausible
haplotypes H̃ is given together with the set of genotypes, and the goal is to find a
set H ⊆ H̃ that resolves the genotypes:

Definition 9.2. Constrained Haplotype Inference by Parsimony (CHIP)
Input: A set G of length-m genotypes, a set H̃ of length-m haplotypes, and an
integer k ≥ 0.
Question: Is there a set H ⊆ H̃ of length-m haplotypes such that |H| ≤ k and G ⊆
res (H)?

In this chapter, we improve the running times of the existing fixed-parameter algo-
rithms for HIP and CHIP and devise a simple kernelization for HIP. Before describing
our new results, we summarize previous results that are relevant for this work.

Previous Work. Lancia and Rizzi [127] showed that parsimony haplotyping can be
solved in polynomial time if every genotype string contains at most two letters 2, while
the problem becomes NP-hard if genotypes may contain three letters 2 [126]. Sharan
et al. [151] proved that parsimony haplotyping is APX-hard even in very restricted

9.1 Introduction 159

cases. They identified instances with a specific structure that allow for polynomial-
time exact solutions or constant-factor approximations. Moreover, they showed that
the problem is fixed-parameter tractable with respect to the parameter k =“number
of haplotypes in the solution set”. The corresponding exact algorithm has running
time O(kk

2+k ·m). These results were further extended by van Iersel et al. [111] to
cases where the genotype matrix (the rows are the genotypes and the columns are them
positions in the genotype strings) has restrictions on the number of 2’s in the rows
and/or columns. They identified various special cases of haplotyping with polynomial-
time exact or approximation algorithms with approximation factors depending on the
numbers of 2’s per column and/or row, leaving open the complexity of the case with at
most two 2’s per column (and an unbounded number of 2’s per row). Further results
in this direction have been provided by Cicalese and Milanic̆ [50].

Finally, parsimony haplotyping has been extended to incorporate prior knowl-
edge on which haplotypes are available. First, Fellows et al. [72] introduced the
constrained parsimony haplotyping problem where the set of haplotypes may not be
chosen arbitrarily from {0, 1}m but only from a pool H̃ of plausible haplotypes. Us-
ing an intricate dynamic programming algorithm, they extended the fixed-parameter
tractability result of Sharan et al. [151] to the constrained case, proving a running

time of kO(k2) · poly(m, |H̃|).
Second, Elberfeld and Tantau [65] further refined the model by allowing to specify

a pool of plausible haplotypes for each given genotype separately. They showed that
this problem is W[2]-complete with respect to the parameter k (denoting the number
of distinct haplotypes in the solution) but fixed-parameter tractable when parameter-
ized by k and l, where l denotes the number of duplicated genotypes with “pairwise
incomparable pool constraints”.

Our Results. We improve the fixed-parameter tractability results of Sharan et
al. [151] and Fellows et al. [72] by proposing fixed-parameter algorithms for the con-
strained and unconstrained versions of parsimony haplotyping that run in O(k4k · k3 ·
m · |H̃|2) and in O(k4k · k3 · m) time, respectively. This is a significant exponen-

tial speed-up over previous algorithms, with exponential running time factors kk
2+k

and kO(k2). Moreover, we develop a polynomial-time data reduction rule that yields
a problem kernel of size at most 2kk2 for HIP.

Preliminaries. Throughout this chapter, we consider genotypes as strings of lengthm
over the alphabet {0, 1, 2}, while haplotypes are considered as strings of length m over
the alphabet {0, 1}. If s is a string, then s[i] denotes the letter of s at position i. This
applies to both haplotypes and genotypes.

Two haplotypes h1 and h2 resolve a genotype g, denoted by res (h1, h2) = g, if,
for all positions i, either h1[i] = h2[i] = g[i], or g[i] = 2 and h1[i] 6= h2[i]. For a
given set H of haplotypes, let res (H) := {res (h1, h2) | h1, h2 ∈ H} denote the set
of genotypes resolved by H. We say a set H of haplotypes resolves a given set G of
genotypes if G ⊆ res (H). Note that with k haplotypes one can resolve at most

(
k
2

)
+k

genotypes. Hence, throughout this chapter, we assume that |G| is bounded from above
by
(
k
2

)
+ k ≤ k2.

For the presentation of our results, we use notation from graph theory (see Sec-
tion 2.6). In this chapter, we consider undirected graphs that may contain self-loops

160 9 Parsimony Haplotyping

1010

11001011

1001

12201012

1021 1202

1022

Figure 9.1: A solution graph resolving the genotypes 1012, 1021, 1022, 1202, and 1220,
by the haplotypes 1001, 1010, 1011, and 1100.

(that is, edges of the form {v, v}). Furthermore, a graph G′ = (V,E′) is called a
spanning subgraph of a graph G = (V,E) if E′ ⊆ E and, for every connected compo-
nent (V ′′, E′′) of G, G′[V ′′] is connected.

9.2 Improved Fixed-Parameter Algorithms for Hap-
lotype Inference by Parsimony

In this section, we present algorithms to solve the parsimony haplotyping problem
for the unconstrained (HIP) and the constrained versions (CHIP) in O(k4k · k3 ·m)
and O(k4k · k3 · m · |H̃|2) time, respectively. This improves and partially simplifies
previous fixed-parameter tractability results [72, 151]. In addition, we provide a simple
kernelization for the unconstrained version.

We start with some preliminary considerations. Given a set H of haplotypes resolv-
ing a given set G of genotypes, the relation between the haplotypes and the genotypes
can be depicted by an undirected graph, in which the edges are labeled by the geno-
types and every vertex v is labeled by a haplotype hv. If an edge {u, v} is labeled by
genotype g, we require that g = res (hu, hv). Such a graph is called a solution graph
for G. See Figure 9.1 for an illustration.

A graph with edge labels of length-m strings over the alphabet {0, 1, 2} (corre-
sponding to genotypes) is called an inference graph. For an inference graph a ver-
tex labeling by haplotypes is consistent if for each edge e = {v, w} it holds that
ge = res (hu, hv), where ge is the genotype associated with e and hu and hv are the
haplotypes associated with u and v. Note that a consistent vertex labeling does not
necessarily exist. Solution graphs as well as the inference graphs may contain self-
loops (to model that a genotype that does not contain a letter 2 can be resolved by a
single haplotype).

We first present our results for HIP. Then, we show that our algorithm can be
adapted for CHIP.

9.2.1 Haplotype Inference by Parsimony

The basic idea of the previous fixed-parameter algorithm for HIP is to enumerate
all O(kk

2

) inference graphs for the given set of genotypes, without explicitly using the
notion of inference graphs. Here, we show that it is sufficient to enumerate only the
at most O(k4k) inference graphs for all size-k subsets of the given genotypes.

As we will see, one of these inference graphs corresponds to a spanning subgraph
of a solution graph (if one exists) and contains a sufficient amount of information to

9.2 Improved Fixed-Parameter Algorithms 161

construct the solution graph for all genotypes. This can be shown with the help of the
three following lemmas1.

Lemma 9.1. Let G be a set of genotypes and let Γ = (V,E) be a connected inference
graph for G. For each position i, 1 ≤ i ≤ m, if there is a genotype g ∈ G with g[i] 6= 2,
then one can, in O(|V | + |E|) time, uniquely infer the letters of all haplotypes at
position i or report that no consistent vertex labeling exists.

Proof. Let g be a genotype with g[i] 6= 2 and let eg = {u, v} denote the edge associated
with g. For every consistent vertex labeling it is required that res (hu, hv) = g, implying
that hu[i] = hv[i] = g[i]. Thus, let hu[i] := g[i] and hv[i] := g[i]. Now, consider an
arbitrary edge eg′ = {x, y} ∈ E (associated with g′ ∈ G) for which hx[i] is already
known. Then, one can infer hy[i] as follows. If g′[i] = 2, then set hy[i] := 1 − hx[i];
otherwise, set hy[i] := hx[i], and if g′[i] 6= hx[i], then report that there is no consistent
vertex labeling. Hence, in a depth-first traversal starting at u (note that hu[i] is
known) one can determine the letter at position i of all haplotypes in O(|V | + |E|)
time. Observe that there is no freedom of choice in any step. Hence, the letters of the
haplotypes at position i are uniquely determined.

Next, we show that for non-bipartite inference graphs (that is, the inference graph
contains an odd-length cycle) the haplotypes are uniquely determined.

Lemma 9.2. Let Γ = (V,E) be a connected inference graph for a set G of genotypes.
If Γ contains an odd-length cycle, then there exists at most one consistent vertex la-
beling. Furthermore, one can compute in O(m · (|V | + |E|)) time a consistent vertex
labeling or report that no consistent vertex labeling exists.

Proof. We show that if there exists a consistent vertex labeling, then for every po-
sition i there exists at least one genotype on every odd cycle with a letter different
from 2 at position i. Then, the claim follows directly from Lemma 9.1. Assume to-
wards a contradiction that there exists an odd-length cycle such that all genotypes on
this cycle have letter 2 for some position i, 1 ≤ i ≤ m. However, hx[i] 6= hy[i] for every
edge {x, y} on this cycle, which is impossible for an odd-length cycle.

For bipartite inference graphs there may exist several consistent vertex labels. The
crucial observation that we use in our algorithms is as follows. Consider a vertex u
from the first and a vertex v from the second partition of a bipartite graph. For every
consistent vertex labeling the same genotype is resolved by the haplotypes correspond-
ing to u and v.

Lemma 9.3. Let Γ = (Va, Vb, E) be a connected bipartite inference graph for a set G
of length-m genotypes. Then, the following holds.

1. One can compute in O(m · (|Va| + |Vb| + |E|)) time a consistent vertex labeling
or report that no consistent vertex labeling exists.

2. For every u ∈ Va and w ∈ Vb consider two arbitrary consistent vertex label-
ings. Assume that the first one assigns hu to u and hv to v and the second one
assigns h′u to u and h′v to v. Then, it holds that res (hu, hv) = res (h′u, h

′
v).

1Damaschke [51] uses similar graph-theoretic observations in the context of incremental haplotype
inference.

162 9 Parsimony Haplotyping

Input: A set of genotypes G ⊆ {0, 1, 2}m and an integer k ≥ 0.
Output: Either a set of haplotypes H with |H| ≤ k and G ⊆ res (H), or “no” if

there is no such H.

forall size-k subsets G′ ⊆ G do1

forall inference graphs Γ for G′ on k vertices and k edges do2

forall non-bipartite connected components of Γ do3

if possible, compute a consistent vertex labeling of the component4

(Lemma 9.2),
otherwise try the next inference graph (goto line 2);5

end6

forall bipartite connected components of Γ do7

if possible, compute a consistent vertex labeling of the component8

(Lemma 9.3),
otherwise try the next inference graph (goto line 2);9

end10

Let H denote the inferred haplotypes (vertex labels);11

if G ⊆ res (H) then return H;12

end13

end14

return “no”;15

Algorithm 4: An algorithm solving HIP in O(k4k · k3 ·m) time.

Proof. By Lemma 9.1, one can uniquely infer for all vertex labels the letter at position i
if there exists a genotype g ∈ G with g[i] 6= 2. Thus, consider a position i at which all
genotypes in G have letter 2. Then, hx[i] 6= hy[i] for every edge {x, y} ∈ E. Hence, all
haplotypes associated with the vertices in Va must have the same letter at position i,
which must be different from the letter at position i of all haplotypes associated with
the vertices in Vb. Thus, there are two ways to set position i of the haplotypes in Γ in
order to obtain a consistent vertex labeling of Γ. Either all haplotypes associated with
vertices in Va are 0 and in Vb are 1 at position i, or vice versa. This shows part (1) of
the lemma. Part (2) follows because all other positions of the haplotypes are uniquely
determined.

Based on the previous lemmas, we can now show the first main result of this section.

Theorem 9.1. Haplotype Inference by Parsimony can be solved in O(k4k·k3·m)
time.

Proof. We describe the algorithm for HIP, see Alg. 4. We first select a size-k subset
of genotypes (line 1 of Alg. 4) and then enumerate all inference graphs on k vertices
containing exactly k edges labeled by the k chosen genotypes (line 2 of Alg. 4). Assume
that there exists a solution graph for G. Out of all inference graphs on k vertices and
k edges, consider one with the following properties:

• it contains a spanning subgraph of every connected component of the solution
graph, and

• the spanning subgraph of any non-bipartite connected component contains an
odd cycle.

9.2 Improved Fixed-Parameter Algorithms 163

Obviously, this inference graph exists and is considered by Alg. 4 (lines 1 and 2). For
every non-bipartite connected component of this inference graph the algorithm infers
the vertex labels based on Lemma 9.2 (see line 5 of Alg. 4). By Lemma 9.2, the vertex
labels for all non-bipartite connected components of the inference graph (containing
an odd-length cycle) are uniquely determined. Hence, these haplotypes are exactly
the haplotypes in the respective non-bipartite connected component of the solution
graph.

Moreover, for every bipartite component, the algorithm can compute a consistent
vertex labeling based on Lemma 9.3 (see line 9 of Alg. 4). In such a bipartite compo-
nent, by Lemma 9.3, for any two vertices u ∈ Va and v ∈ Vb, the genotypes resolved by
the corresponding haplotypes are identical for every consistent vertex labeling. Thus,
if considering a spanning subgraph of a solution graph, then the haplotypes resolve all
genotypes contained in the respective bipartite component of the solution graph.

In summary, if the given instance is a yes-instance, then our algorithm will find a
set of at most k haplotypes resolving the given genotypes.

It remains to analyze its running time. First, there are O(
(|G|
k

)
) size-k subsets G′

of G. Second, there are O(k2k) inference graphs on k vertices containing exactly k
edges labeled by the genotypes in G′: for every genotype g ∈ G′ we have k2 choices for
the endpoints of the edge labeled by g since self-loops may occur. For each of those
inference graphs, applying Lemma 9.2 and Lemma 9.3 to its connected components
takes O(k · m) time and the test whether G ⊆ res (H) is doable in O(k3m) time.

Thus, the overall running time of Alg. 4 is bounded by O(
(|G|
k

)
· k2k ·m · k3). Finally,

since |G| ≤ k2, HIP can be solved in O(k4k · k3 ·m) time.

9.2.2 Constrained Haplotype Inference by Parsimony

Now, we argue that Alg. 4 can be adapted to solve the constrained version CHIP.

Theorem 9.2. Constrained Haplotype Inference by Parsimony can be solved
in O(k4k · k3 ·m · |H̃|2) time.

Proof. First, we explain the modified algorithm. As for the unconstrained version, it
enumerates all size-k subsets G′ ⊆ G and all inference graphs for G′.

For the non-bipartite components the only difference is to check whether the in-
ferred haplotypes (which by Lemma 9.2 are uniquely determined) are contained in the
given haplotype pool H̃ (otherwise, try the next inference graph).

The only substantial difference is how to process the bipartite components of the
inference graph. Let (Va, Vb, F) be a connected bipartite component of the current
inference graph. Instead of choosing an arbitrary consistent vertex labeling as done in
Alg. 4, proceed as follows. Choose an arbitrary vertex v ∈ Va ∪Vb and check for every
haplotype h ∈ H̃ whether there exists a consistent vertex labeling for this component
where v is labeled by h. It is easy to verify that fixing the vertex label for v implies
the existence of at most one consistent vertex labeling of (Va, Vb, F). If existing, this
labeling can be computed by a depth-first traversal starting at v. If for a haplotype h
there exists a consistent vertex labeling of (Va, Vb, F) such that all labels are contained
in H̃, then proceed with the next bipartite component. Otherwise, one can conclude
that for the current inference graph there is no consistent vertex labeling using only
the given haplotypes from H̃, and, hence, one can proceed with the next inference
graph.

164 9 Parsimony Haplotyping

As to the correctness, assume that there is a solution graph and that the considered
inference graph is a spanning subgraph of it that contains for every (non)bipartite
connected component of the solution graph a (non)bipartite spanning subgraph. Note
that the haplotypes inferred for the bipartite components of the inference graphs are
not necessarily the haplotypes of the respective bipartite connected component of the
solution graph. However, by Lemma 9.3, these haplotypes resolve all genotypes of the
respective bipartite connected component of the solution graph.

For the running time note the following. For a non-bipartite connected compo-
nent (V,E) finding a consistent vertex labeling (see Lemma 9.2) and testing whether
the found haplotypes are contained in H̃ is doable in O(|H̃||E|m) time. Moreover,
for a bipartite component (Va, Vb, F) and a vertex v ∈ Va ∪ Vb checking whether for
a h ∈ H̃ there is a consistent vertex labeling with hv = h with all labels from H̃ is
clearly doable in O(|H̃|2|F |m) time. Hence, with the same arguments as in the proof
of Theorem 9.1 the overall running time can be bounded by O(k4k · k3 ·m · |H̃|2).

9.3 Problem Kernelization for Haplotype Inference
by Parsimony

In this section, we show that HIP admits an exponential-size problem kernel. To this
end, we assume the input G to be in the matrix representation that is mentioned in
the introduction; that is, each row represents a genotype while each column represents
a position. Since it is obvious that we can upper-bound the number n of genotypes
in the input by k2, it remains to bound the number m of columns (positions) in the
input. To this end, we employ one simple data reduction rule that deletes one of two
identical columns.

Reduction Rule 9.1. Let (G, k) be an instance of HIP. If two columns of G are
equal, then delete one of them.

The correctness of Reduction Rule 9.1 follows by the observation that, given at
most k haplotypes resolving the genotypes in the reduced instance, we can easily find
a solution for the original instance by copying the respective haplotype positions.

Lemma 9.4. Reduction Rule 9.1 is correct and can be exhaustively applied in O(n ·
m · logm) time.

Proof. Let columns i and j of G be equal. Let G′ be the genotype matrix resulting
from the deletion of column j according to Reduction Rule 9.1. If one can resolve all
genotypes in G with k haplotypes, then one can also resolve all genotypes in G′ by
deleting position j of each of the k haplotypes. If there are k haplotypes resolving G′,
then one can also construct k haplotypes resolving G by inserting a copy of position i
at position j in each haplotype. To implement the rule, we need to sort the m column
strings (each of length n), which takes O(n ·m · logm) time.

Next, we bound the number of columns in a reduced instance. This allows us to
bound the size of the whole instance by a function in k.

Lemma 9.5. Let (G, k) be a yes-instance of HIP that is reduced with respect to
Reduction Rule 9.1. Then, G has at most 2k columns.

9.4 Further Results and Conclusions 165

Proof. Let H denote a matrix of k haplotypes resolving G. It is obvious that if two
columns i and j of H are equal, then columns i and j of G are equal. Now, since G
does not contain a pair of equal columns, neither does H. Since there are only 2k

different strings in {0, 1}k, it is clear that H cannot contain more than 2k columns
and, thus, neither can G.

Since the number n of genotypes can be upper-bounded by k2 and the number m
of columns can be upper-bounded by 2k (Lemma 9.5), one directly obtains Proposi-
tion 9.1.

Proposition 9.1. Haplotype Inference by Parsimony admits a problem kernel
of size at most 2k · k2 that can be constructed in O(n ·m · logm) time.

Combining Proposition 9.1 and Theorem 9.1, we achieve the following.

Corollary 9.1. Haplotype Inference by Parsimony can be solved in O(k4kk3 ·
2k + n ·m · logm) time.

Finally, we remark that Reduction Rule 9.1 is incorrect for the constrained version:
Copying a position in a haplotype may lead to a haplotype that is not contained in
the given pool H̃. Hence, in case of CHIP, we are not allowed to delete one of two
identical columns of the genotype matrix. Moreover, a challenging task for devising a
(nontrivial) problem kernel for CHIP is to upper-bound the number of haplotypes in
the pool.

9.4 Further Results and Conclusions

In the previous sections, we contributed improved fixed-parameter algorithms for Hap-
lotype Inference by Parsimony and Constrained Haplotype Inference by
Parsimony. In this section, we briefly discuss further results from our paper [76] and
highlight some questions for future research.

A further substantial result in our paper [76] is the identification of a polynomial-
time solvable special case for HIP and CHIP. More precisely, we consider the case that
the given set of genotypes is complete, that is, contains all possible genotypes that can
be explained by the set of haplotypes. We call this special case induced parsimony
haplotyping. More formally, we consider the following problem version.

Induced (Constrained) Haplotype Inference by Parsimony ((C)IHIP):
Input: A set G of length-m genotypes each containing at least one letter
2 (and a set H̃ of length-m haplotypes).
Question: Is there a set H (⊆ H̃) of length-m haplotypes such that G =
res (H) \H?

We could show that IHIP and CIHIP can be solved in O(k · m · |G|) and O(k · m ·
(|G|+ |H̃|)) time, respectively [76]. Note that many previous polynomial-time solvable
cases [50, 127, 151, 111] require a bound on the number of 2’s in the genotype matrix.
In contrast, complementing these cases, IHIP does not require such a bound on the
number of 2’s.

Our results also lead to several new questions for future research.

166 9 Parsimony Haplotyping

• Polynomial-time special cases are particularly interesting to pursue a “distance
from triviality” approach [94]. The idea here is to identify and exploit param-
eters that measure the distance of general instances of HIP or CHIP to the
“trivial” (that is, polynomial-time solvable) induced cases. For example, it is
an interesting open question whether HIP and CHIP are efficiently solvable for
“almost induced” cases and how the distance to the induced case influences the
computational complexity of (C)HIP. More specifically, one concrete question in
this direction is whether the following problem version of HIP is fixed-parameter
tractable, when parameterized by a “distance parameter” p: given a set G of
length-m genotypes and an integer p ≥ 0, is there a set H of length-m haplotypes
such that G ⊆ res (H) and | res (H) \G| ≤ p?

• It remains an interesting open problem to find fixed-parameter algorithms for
HIP and CHIP with an exponential factor of the form ck for some constant c.

• Our kernelization for HIP yields a problem kernel of exponential size. It would
be interesting to know whether a polynomial-size problem kernel exists. This
may also be seen in the light of recent breakthrough results on methods to prove
the non-existence of polynomial-size kernels [30, 78]. Finally, as mentioned in
Section 9.3, the presented data reduction rule cannot be used for CHIP. Devising
a nontrivial problem kernel for CHIP is left open.

Besides the parsimony approach, a second main approach to haplotype inference
is Perfect Phylogeny Haplotyping (PPH). Here the goal is to find a set of ex-
plaining haplotypes that defines a perfect phylogeny (perfect phylogeny assumption).
Roughly speaking, a set of haplotypes admits a prefect phylogeny if there exists a tree
(where the nodes are bijectively labeled with the haplotypes) explaining the evolu-
tionary relationship of the haplotypes. Technically, this implies that the haplotype
matrix (the rows corresponding to the haplotypes) does not contain a 4×2-submatrix
with rows 00, 01, 10, and 11 (in arbitrary order). In contrast to HIP, PPH is solvable
in polynomial-time [102]. Moreover, the maximum parsimony and the perfect phy-
logeny assumptions have been combined, leading to an NP-hard problem again [10].

Recently, Elberfeld and Tantau [65] presented 22k2 ·poly(n,m)-time algorithms for the
unconstrained and constrained haplotype inference problem with combined assump-
tions. These algorithms are based on enumerating all inference graphs (called “empty
sharing plans”) for the given genotypes. It is an interesting question whether our
approach can be adapted to speed up these algorithm.

Part IV

Conclusion

Chapter 10
Conclusion

The thesis presented several new fixed-parameter algorithms for combinatorial hard
problems with applications in the field of computational biology. We refer to Sec-
tion 1.2 for an overview of the considered problems and the obtained results.

Here, we highlight some results and aspects that are of general interest for future
research. We refer to the concluding sections of Chapters 4 to 9 for several problem-
specific comments, open problems, and future research challenges.

Nonstandard Parameterizations, Multivariate Algorithmics, and
Data-Driven Parameterization

One aspect of the thesis was to suggest that parameterized complexity studies with
respect to a standard parameter should be complemented by a systematic study of the
influence of several further parameters and their combination on the computational
complexity of a problem. This was driven by the inquisitiveness to better understand
the computational complexity of a problem and was further motivated by the obser-
vation that the standard parameter is often not really small for considered real-world
instances. There is no reason why parameterized complexity studies should be re-
stricted to only few single parameters. In particular, for practically relevant problems
a systematic study of several parameters and their combination seems unavoidable if
the goal is to significantly increase the range of instances that can be solved in practice.

In this line, we proposed to consider refined parameters and suggested the approach
of deconstructing intractability for the identification of meaningful parameters (see
Section 2.3). Chapter 4 presents fixed-parameter algorithms for Cluster Editing
and Cluster Deletion with respect to a refined parameter, namely the “cluster
vertex deletion number” and also discussed further nonstandard parameterizations.
In Chapter 8, we performed a systematic “deconstruction of intractability” approach
for the identification of meaningful parameters and initiated a multivariate complexity
analysis of Interval Constrained Coloring. We substantiated the usefulness of
the deconstructing intractability approach by presenting encouraging results for real-
world data for Interval Constrained Coloring.

Many problems with applications in algorithmic bioinformatics still await a sys-

170 10 Conclusion

tematic multivariate complexity analysis. For example, in Section 7.7 we argued that
in case of Minimum Flip Consensus Tree and the closely related Flip Supertree
problem a systematic multivariate complexity analysis is desirable and should be ex-
plored in future studies.

Having identified theoretically interesting parameters a logical next step is to
closely inspect the real-world data in order to see whether these parameters are small
in practice. If this is not the case, then it might be interesting to analyze whether
the instances are close to instances with small parameter values. For Interval Con-
strained Coloring, in Chapter 8, we identified the “maximum interval length” as
an interesting parameter that allows for fixed-parameter tractability. However, this
parameter turned out to be relatively large for many real-world instances. The data
showed further that this is caused by only few “large” intervals and, hence, it seems
natural to investigate whether this aspect can be exploited algorithmically. Such con-
siderations suggest that a multivariate complexity analysis is particularly interesting
in combination with a “data-driven” algorithm design. In the spirit of algorithm
engineering, the idea is to start by analyzing real-world data in order to identify pa-
rameters with small values and then to perform a multivariate complexity analysis for
the identified parameters. We are not aware of a systematic work in this direction.

Note that there are several other interesting approaches for parameter identifica-
tion. For an overview, we refer to the survey by Niedermeier [138].

Polynomial-Time Data Reduction and Kernelization

Kernelization has developed into one of the most active research areas within param-
eterized algorithmics and is also the main technique used in this thesis. We refer to
Section 2.4 for an short introduction to the concept of kernelization. Altogether, the
thesis contributes to this field by the following results. The main results in Chapter 6
and Chapter 7 are polynomial-size problem kernels. Two further polynomial-size prob-
lem kernels are presented in Section 5.5 and a simple exponential-size kernel is given
in Section 9.3. In addition, polynomial-time data reduction played an important role
for showing that Interval Constrained Coloring is polynomial-time solvable for
instances with cutwidth two (Section 8.4). In the following, we discuss some future
research challenges in the field of kernelization.

Kernelization for Edge Modification Problems. The investigation of the ex-
istence of polynomial-size problem kernels for edge modification and closely related
problems has recently attracted special attention (see Section 3.3). This includes
many polynomial-size kernelization results for Π-Editing, where Π denotes a heredi-
tary graph property. One may ask whether Π-Editing always allows for polynomial-
size problem kernels if Π can be characterized by finite forbidden subgraphs. However,
Kratsch and Wahlström [124] showed that there is a graph H on seven vertices for
which there is little hope that H-free Editing admits a polynomial-size problem
kernel. This contrasts the case of vertex deletion where for every fixed forbidden sub-
graph H, H-free Vertex Deletion admits a polynomial-size problem kernel. In
this context, the question arises for which graph properties Π the Π-Editing problem
admits a polynomial-size problem kernel.

To obtain general kernelization results it seems desirable to design data reduction
rules for classes of properties. In this line, we presented a universal data reduction

171

rule for a whole class of edge modification problems. We employed this rule (in combi-
nation with other, problem-specific data reduction rules) to obtain kernelizations for
several edge modification problems (Section 3.4). The applicability of this rule only
depends on the maximum cardinality of a critical clique or critical independent set in
a forbidden subgraph describing the desired graph property. It is desirable to “unify”
other commonly used data rules reduction for edge modification problems. and to de-
sign new data reduction rules that are applicable to a large class of edge modification
problems. We discuss one concrete question in this context.

As pointed out by Guo [88], several polynomial-size problem kernels for edge mod-
ification problems make use of a data reduction rule that removes vertices that are
not contained in any forbidden induced subgraph. Indeed, Reduction Rule 6.2 and
Reduction Rule 7.3 for M -Hierarchical Tree Clustering and Minimum Flip
Consensus Tree, respectively, are of this type. This raises the question for which
graph properties such a data reduction rule is correct. Notably, we could show that
such a rule is incorrect even for some 1-critical clique preserving graph properties: In
Section 5.5.2, we presented an example for 2-Vertex-Overlap Deletion showing
that deleting a “satisfied vertex”, that is, a vertex not contained in any forbidden
induced subgraph, does not lead to an equivalent instance. We note, however, that
we employed other data reduction rules (Reduction Rule 5.1 and Reduction Rule 5.6),
which can be seen as a generalization of a rule that removes “satisfied vertices”. Here,
the idea was to also consider the neighborhood structure of a satisfied vertex. A
data reduction rule that unifies all these mentioned rules seems necessary to obtain
“generalized” kernelization results for edge modification problems.

Average-Case Analysis. From our experiments in Chapter 6 for M -Hierarchi-
cal Tree Clustering, we have concluded that our fixed-parameterized algorithms
based on a simple search tree interleaved with data reduction is the method of choice
for parameter values k < |X| (recall that X denotes the set of elements to be clustered
and k is the cost of the solution). We could explain this behavior by the fact that
most instances with k < |X| could be solved without branching, just by applying the
data reduction rules. For this behavior, it was decisive that k < |X| whereas the
absolute value of k seems not important. Note that it is clear from the analysis of the
kernel size that the data reduction rules must take effect if k << |X|. However, often
the instances are (completely) solved by applying the kernelization even if k is only
slightly smaller than |X|.

A theoretical study of this behavior could further substantiate the usefulness of
kernelization. To this end, the following questions seem worth to be investigated
(under reasonable input distributions).

• What is the expected kernel size for instances of M -Hierarchical Tree Clus-
tering with k < |X|?

• What is the expected percentage of instances of M -Hierarchical Tree Clus-
tering with k < |X| that can be solved to optimality just by applying the data
reduction rules?

• What is the expected running time of the search tree algorithm interleaved with
the data reduction for instances with |X| < k?

172 10 Conclusion

Clearly, such considerations are interesting not only for M -Hierarchical Tree
Clustering but seem to be of general relevance.

Kernelizations for Parameters that Measure the Tree-Likeness of a Graph.
Here, we discuss some aspects of kernelizations for parameters measuring the “tree-
likeness” of a graph. The treewidth of a graph is the most prominent example of a
parameter measuring the tree-likeness of a graph. Fixed treewidth allows for fixed-
parameter algorithms for many relevant graph problems. However, there are problems
that are fixed-parameter intractable even when parameterized by the treewidth. Also,
there is evidence that most graph problems do not admit polynomial-size problem
kernels when parameterized by the treewidth [30]. Altogether, this motivates the study
of parameters that impose a stronger restriction on the input graph than treewidth,
for example the “vertex cover number” of a graph [18, 74, 75, 136]. Other parameters
considered in this context are the “feedback vertex/edge set number” [18, 113, 136,
155]. Note that the treewidth is upper-bounded by the “feedback vertex set number”
which, in turn, is upper-bounded by the “vertex cover number”. It turned out that
some problems admit polynomial-size problem kernels with respect to the “feedback
vertex set number” [113] whereas other problems do not admit polynomial-size problem
kernels even when parameterized by the “vertex cover number” [18, 61, 136]. For a
specific problem it is hence interesting to investigate for which “tree-like” parameters
it admits polynomial-size problem kernels.

Kernelizations for Nonstandard Parameters. A so far hardly explored research
direction in the field of kernelization is the investigation of polynomial-size problem
kernels for nonstandard parameterizations. This comprises the study of refined param-
eters as well as of combined parameters. In particular, we are only aware of two recent
works [113, 155] that explicitly deal with polynomial-size problem kernels for refined
parameters (see Section 2.3). We discuss two open questions arising from this work. In
Chapter 4, we investigated the parameterized complexity of Cluster Editing and
Cluster Deletion with respect to the refined parameter “cluster vertex deletion
number”c. We left open the existence of polynomial-size kernelizations for these two
problems. Very recently, Jansen [112] showed that there is little hope for polynomial-
size problem kernels for Cluster Deletion parameterized by the “cluster vertex
deletion number”. For Cluster Editing an analogous result seems plausible but is
still open. In case that a refined parameter does not lead to a polynomial-size problem
kernel, it still might be useful to obtain a polynomial-size problem kernel with respect
to a combined parameter in the spirit of a multivariate algorithmics analysis. For
example, in case of Cluster Editing or Cluster Deletion we have identified the
maximum number t of edge modifications involving a vertex as an interesting parame-
ter (see Section 4.3). However Cluster Editing or Cluster Deletion have turned
out to be NP-hard even for constant values of t. Altogether, this motivates the inves-
tigation whether (d, t)-Constrained-Cluster Editing and (d, t)-Constrained-
Cluster Deletion (Definition 4.2) admit polynomial-size problem kernels for the
combined parameter (c, t).

Bibliography

[1] F. N. Abu-Khzam. A kernelization algorithm for d-hitting set. Journal of Com-
puter and System Sciences, 76(7):524–531, 2009. Cited on p. 25.

[2] F. N. Abu-Khzam and H. Fernau. Kernels: Annotated, proper and induced.
In Proceedings of the 2nd International Workshop on Parameterized and Exact
Computation (IWPEC ’06), volume 4169 of LNCS, pages 264–275. Springer,
2006. Cited on p. 25.

[3] R. Agarwala, V. Bafna, M. Farach, B. Narayanan, M. Paterson, and M. Tho-
rup. On the approximability of numerical taxonomy (fitting distances by tree
matrices). SIAM Journal on Computing, 28(3):1073–1085, 1999. Cited on p. 84.

[4] N. Ailon, N. Avigdor-Elgrabli, and E. Liberty. An improved algorithm for bi-
partite correlation clustering. CoRR, abs/1012.3011, 2010. Cited on pp. 35
and 80.

[5] N. Ailon and M. Charikar. Fitting tree metrics: Hierarchical clustering and
phylogeny. In Proceedings of the 46th Annual IEEE Symposium on Foundations
of Computer Science (FOCS ’05), pages 73–82. IEEE Computer Society, 2005.
Cited on pp. 21, 24, 81, 82, 83, 84, 85, 100, and 106.

[6] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information:
Ranking and clustering. Journal of the ACM, 55(5), 2008. Cited on pp. 34
and 84.

[7] N. Alon and S. Gutner. Linear time algorithms for finding a dominating set of
fixed size in degenerated graphs. Algorithmica, 54(4):544–556, 2009. Cited on
p. 13.

[8] E. Althaus, S. Canzar, C. Ehrler, M. R. Emmett, A. Karrenbauer, A. G. Mar-
shall, A. Meyer-Bäse, J. D. Tipton, and H. Zhang. Computing H/D-exchange
rates of single residues from data of proteolytic fragments. BMC Bioinformatics,
11(424), 2010. Cited on pp. 133, 134, 135, 137, 139, 147, 151, 152, 154, and 155.

[9] E. Althaus, S. Canzar, K. Elbassioni, A. Karrenbauer, and J. Mestre. Approxi-
mation algorithms for the interval constrained coloring problem. Algorithmica.
Available online. Cited on pp. 133, 134, 135, 136, 137, 139, 141, and 155.

174 Bibliography

[10] V. Bafna, D. Gusfield, S. Hannenhalli, and S. Yooseph. A note on efficient
computation of haplotypes via perfect phylogeny. Journal of Computational
Biology, 11(5):858–866, 2004. Cited on p. 166.

[11] M. S. Bansal, J. Dong, and D. Fernández-Baca. Comparing and aggregating
partially resolved trees. In Proceedings of the 8th Latin American Symposium
on Theoretical Informatics (LATIN ’08), volume 4957 of LNCS, pages 72–83.
Springer, 2008. Cited on p. 130.

[12] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning,
56(1–3):89–113, 2004. Cited on pp. 20, 33, 34, 35, 50, and 84.

[13] J.-P. Barthélemy and F. Brucker. NP-hard approximation problems in overlap-
ping clustering. Journal of Classification, 18(2):159–183, 2001. Cited on pp. 55,
58, 60, and 106.

[14] R. Beigel and D. Eppstein. 3-coloring in time O(1.3289n). Journal of Algorithms,
54(2):168–204, 2005. Cited on p. 151.

[15] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns.
Journal of Computational Biology, 6(3/4):281–292, 1999. Cited on pp. 20, 33,
34, and 84.

[16] S. Bessy, F. V. Fomin, S. Gaspers, C. Paul, A. Perez, S. Saurabh, and
S. Thomassé. Kernels for feedback arc set in tournaments. Journal of Com-
puter and System Sciences, 2011. Available online. Cited on p. 25.

[17] S. Bessy, C. Paul, and A. Perez. Polynomial kernels for 3-leaf power graph
modification problems. Discrete Applied Mathematics, 158(16):1732–1744, 2010.
Cited on pp. 25, 30, 31, and 32.

[18] N. Betzler, R. Bredereck, R. Niedermeier, and J. Uhlmann. On making a distin-
guished vertex minimum degree by vertex deletion. In Proceedings of the 37th
Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM ’11), volume 6543 of LNCS, pages 123–134. Springer, 2011. Cited on
pp. iii and 172.

[19] N. Betzler, J. Guo, C. Komusiewicz, and R. Niedermeier. Average parameter-
ization and partial kernelization for computing medians. Journal of Computer
and System Sciences, 77(4):774–789, 2011. Cited on p. 130.

[20] N. Betzler, R. Niedermeier, and J. Uhlmann. Tree decompositions of graphs:
Saving memory in dynamic programming. Discrete Optimization, 3(3):220–229,
2006. Cited on p. iii.

[21] N. Betzler and J. Uhlmann. Parameterized complexity of candidate control
in elections and related digraph problems. Theoretical Computer Science,
410(52):5425–5442, 2009. Cited on p. iii.

[22] R. van Bevern, H. Moser, and R. Niedermeier. Approximation and tidying—a
problem kernel for s-plex cluster vertex deletion. Algorithmica, 2011. Available
online. Cited on p. 79.

Bibliography 175

[23] O. Bininda-Emonds, editor. Phylogenetic Supertrees: Combining Information to
Reveal the Tree of Life. Kluwer Academic, 2004. Cited on p. 109.

[24] S. Böcker, S. Briesemeister, Q. B. A. Bui, and A. Truß. Going weighted:
Parameterized algorithms for cluster editing. Theoretical Computer Science,
410(52):5467–5480, 2009. Cited on pp. 20, 23, 25, 35, 84, and 105.

[25] S. Böcker, S. Briesemeister, and G. W. Klau. Exact algorithms for cluster editing:
Evaluation and experiments. Algorithmica, 60(2):316–334, 2011. Cited on pp. 20,
23, 34, 35, 36, 79, and 84.

[26] S. Böcker, Q. B. A. Bui, F. Nicolas, and A. Truss. Tree compatibility is easy,
flip supertree is not. Unpublished manuscript. Cited on pp. 108 and 130.

[27] S. Böcker, Q. B. A. Bui, and A. Truss. Improved fixed-parameter algorithms
for minimum-flip consensus trees. ACM Transactions on Algorithms, 2009. Ac-
cepted for publication. Cited on pp. 6, 24, 107, 108, 110, 123, 124, 125, 126,
and 127.

[28] S. Böcker and P. Damaschke. Even faster parameterized cluster deletion and
cluster editing. Information Processing Letters, 111(14):717–721, 2011. Cited on
pp. 20, 23, 35, and 84.

[29] H. L. Bodlaender. Kernelization: New upper and lower bound techniques.
In Proceedings of the 4th International Workshop on Parameterized and Ex-
act Computation (IWPEC ’09), volume 5917 of LNCS, pages 17–37. Springer,
2009. Cited on pp. 4 and 13.

[30] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On prob-
lems without polynomial kernels. Journal of Computer and System Sciences,
75(8):423–434, 2009. Cited on pp. 14, 166, and 172.

[31] H. L. Bodlaender, M. R. Fellows, P. Heggernes, F. Mancini, C. Papadopoulos,
and F. A. Rosamond. Clustering with partial information. Theoretical Computer
Science, 411(7-9):1202–1211, 2010. Cited on pp. 35 and 130.

[32] H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel bounds for disjoint cycles
and disjoint paths. In Proceedings of the 17th Annual European Symposium on
Algorithms (ESA ’09), volume 5757 of LNCS, pages 635–646. Springer, 2009.
Cited on p. 14.

[33] D. Brügmann, C. Komusiewicz, and H. Moser. On generating triangle-free
graphs. Electronic Notes in Discrete Mathematics, 32:51–58, 2009. Cited on
p. 25.

[34] P. Burzyn, F. Bonomo, and G. Durán. NP-completeness results for edge modifi-
cation problems. Discrete Applied Mathematics, 154(13):1824–1844, 2006. Cited
on p. 25.

[35] J. Byrka, A. Karrenbauer, and L. Sanità. The interval constrained 3-coloring
problem. In Proceedings of the 9th Latin American Theoretical Informatics Sym-
posium (LATIN’10), volume 6034 of LNCS, pages 591–602. Springer, 2010. Cited
on pp. 134, 135, 136, 137, 139, and 151.

176 Bibliography

[36] L. Cai. Fixed-parameter tractability of graph modification problems for heredi-
tary properties. Information Processing Letters, 58(4):171–176, 1996. Cited on
p. 62.

[37] L. Cai, J. Chen, R. G. Downey, and M. R. Fellows. Advice classes of parameter-
ized tractability. Annals of Pure and Applied Logic, 84(1):119–138, 1997. Cited
on p. 13.

[38] S. Canzar, K. Elbassioni, and J. Mestre. A polynomial delay algorithm for
enumerating approximate solutions to the interval constrained coloring problem.
In Proceedings of the 12th Workshop on Algorithm Engineering and Experiments
(ALENEX’10), pages 23–33. SIAM, 2010. Cited on pp. 134, 153, and 154.

[39] S. Canzar, K. M. Elbassioni, A. Elmasry, and R. Raman. On the approximability
of the maximum interval constrained coloring problem. In Proceedings of the 21st
International Symposium on Algorithms and Computation (ISAAC ’10), volume
6507 of LNCS, pages 168–179. Springer, 2010. Cited on pp. 134 and 155.

[40] Y. Cao and J. Chen. Cluster editing: Kernelization based on edge cuts. In
Proceedings of the 5th International Symposium on Parameterized and Exact
Computation (IPEC ’10), volume 6478 of LNCS, pages 60–71. Springer, 2010.
Cited on p. 25.

[41] D. Catanzaro and M. Labbé. The pure parsimony haplotyping problem:
Overview and computational advances. International Transactions in Opera-
tional Research, 16(5):561–584, 2009. Cited on pp. 157 and 158.

[42] J. Chang, T. Erlebach, R. Gailis, and S. Khuller. Broadcast scheduling: Algo-
rithms and complexity. In Proceedings of the 19th ACM-SIAM Symposium on
Discrete Algorithms (SODA ’08), pages 473–482. ACM-SIAM, 2008. Cited on
p. 136.

[43] M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative infor-
mation. Journal of Computer and System Sciences, 71(3):360–383, 2005. Cited
on p. 34.

[44] D. Chen, O. Eulenstein, D. Fernández-Baca, and J. G. Burleigh. Improved
heuristics for minimum-flip supertree construction. Evolutionary Bioinformatics,
2:347–356, 2006. Cited on p. 108.

[45] D. Chen, O. Eulenstein, D. Fernández-Baca, and M. Sanderson. Minimum-flip
supertrees: Complexity and algorithms. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics, 3(2):165–173, 2006. Preliminary version
presented at COCOON ’02. Cited on pp. 21, 24, 107, 108, 111, 120, and 130.

[46] J. Chen and J. Meng. A 2k kernel for the cluster editing problem. Journal of
Computer and System Sciences, 2011. Available online. Cited on pp. 20, 23, 25,
35, 84, and 110.

[47] Z.-Z. Chen, T. Jiang, and G. Lin. Computing phylogenetic roots with bounded
degrees and errors. SIAM Journal on Computing, 32(4):864–879, 2003. Cited
on pp. 34 and 50.

Bibliography 177

[48] E. J. Chesler, L. Lu, S. Shou, Y. Qu, J. Gu, J. Wang, H. C. Hsu, J. D. Mountz,
N. E. Baldwin, M. A. Langston, D. W. Threadgill, K. F. Manly, and R. W.
Williams. Complex trait analysis of gene expression uncovers polygenic and
pleiotropic networks that modulate nervous system function. Nature Genetics,
37(3):233–242, 2005. Cited on p. 36.

[49] M. Chimani, S. Rahmann, and S. Böcker. Exact ILP solutions for phylogenetic
minimum flip problems. In Proceedings of the 1st ACM International Conference
On Bioinformatics and Computational Biology (ACM-BCB ’10), pages 147–153.
ACM, 2010. Cited on p. 109.

[50] F. Cicalese and M. Milanic̆. On parsimony haplotyping. Technical Report 2008-
04, Universität Bielefeld, 2008. Cited on pp. 159 and 165.

[51] P. Damaschke. Incremental haplotype inference, phylogeny and almost bipartite
graphs. In 2nd RECOMB Satellite Workshop on Computational Methods for
SNPs and Haplotypes, pages 1–11, 2004. See http://www.cse.chalmers.se/

~ptr/haploincrj.pdf for an extended version. Cited on p. 161.

[52] P. Damaschke. Parameterized enumeration, transversals, and imperfect phy-
logeny reconstruction. Theoretical Computer Science, 351(3):337–350, 2006.
Cited on pp. 110 and 129.

[53] P. Damaschke. Bounded-degree techniques accelerate some parameterized graph
algorithms. In Proceedings of the 4th International Workshop on Parameterized
and Exact Computation (IWPEC ’09), volume 5917 of LNCS, pages 98–109.
Springer, 2009. Cited on pp. 20, 23, and 35.

[54] P. Damaschke. Fixed-parameter enumerability of cluster editing and related
problems. Theory of Computing Systems, 46(2):261–283, 2010. Cited on pp. 20,
35, 36, and 55.

[55] S. Dasgupta and P. M. Long. Performance guarantees for hierarchical clustering.
Journal of Computer and System Sciences, 70(4):555–569, 2005. Cited on pp. 21
and 81.

[56] W. H. E. Day. Computational complexity of inferring phylogenies from dissim-
ilarity matrices. Bulletin of Mathematical Biology, 49(4):461–467, 1987. Cited
on p. 84.

[57] F. Dehne, M. A. Langston, X. Luo, S. Pitre, P. Shaw, and Y. Zhang. The clus-
ter editing problem: Implementations and experiments. In Proceedings of the
2nd International Workshop on Parameterized and Exact Computation (IW-
PEC ’06), volume 4169 of LNCS, pages 13–24. Springer, 2006. Cited on pp. 20,
23, 35, 53, 78, 79, and 84.

[58] E. D. Demaine, M. Hajiaghayi, and D. Marx. Open problems – parameter-
ized complexity and approximation algorithms. In Parameterized Complexity
and Approximation Algorithms, volume 09511 of Dagstuhl Seminar Proceedings.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010. Cited on pp. 5, 36,
and 37.

http://www.cse.chalmers.se/~ptr/haploincrj.pdf
http://www.cse.chalmers.se/~ptr/haploincrj.pdf

178 Bibliography

[59] J. Dı́az and D. M. Thilikos. Fast fpt-algorithms for cleaning grids. In Proceedings
of the 23rd International Symposium on Theoretical Aspects of Computer Science
(STACS ’06), LNCS, pages 361–371, 2006. Cited on p. 25.

[60] R. Diestel. Graph Theory. Springer, 3rd edition, 2005. Cited on p. 15.

[61] M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through colors and
IDs. In Proceedings of the 36th International Colloquium on Automata, Lan-
guages, and Programming (ICALP ’09), volume 5555 of LNCS, pages 378–389.
Springer, 2009. Cited on pp. 14 and 172.

[62] B. Dorn, F. Hüffner, D. Krüger, R. Niedermeier, and J. Uhlmann. Exploiting
bounded signal flow for graph orientation based on cause-effect pairs. In Pro-
ceedings of the 1st International ICST Conference on Theory and Practice of
Algorithms in (Computer) Systems (TAPAS ’11), volume 6595 of LNCS, pages
104–115. Springer, 2011. Long version to appear in Algorithms for Molecular
Biology. Cited on p. iii.

[63] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.
Cited on pp. 3, 10, 11, 62, and 63.

[64] R. G. Downey, M. R. Fellows, and M. A. Langston. The computer journal
special issue on parameterized complexity: Foreword by the guest editors. The
Computer Journal, 51(1):1–6, 2008. Cited on p. 10.

[65] M. Elberfeld and T. Tantau. Phylogeny- and parsimony-based haplotype infer-
ence with constraints. In Proceedings of the 21st Annual Symposium on Com-
binatorial Pattern Matching (CPM ’10), volume 6129 of LNCS, pages 177–189.
Springer, 2010. Cited on pp. 158, 159, and 166.

[66] G. F. Estabrook and F. R. McMorris. When is one estimate of evolutionary
relationships a refinement of another? Journal of Mathematical Biology, 10:367–
373, 1980. Cited on p. 108.

[67] M. Farach, S. Kannan, and T. Warnow. A robust model for finding optimal
evolutionary trees. Algorithmica, 13:155–179, 1995. Cited on pp. 21, 83, and 84.

[68] M. R. Fellows. The lost continent of polynomial time: Preprocessing and ker-
nelization. In Proceedings of the 2nd International Workshop on Parameterized
and Exact Computation (IWPEC ’06), volume 4169 of LNCS, pages 276–277.
Springer, 2006. Cited on pp. 4 and 13.

[69] M. R. Fellows. Towards fully multivariate algorithmics: Some new results and
directions in parameter ecology. In Proceedings of the 20th International Work-
shop on Combinatorial Algorithms (IWOCA’09), volume 5874 of LNCS, pages
2–10. Springer, 2009. Cited on pp. 4, 11, and 12.

[70] M. R. Fellows, J. Guo, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. Graph-
based data clustering with overlaps. In Proceedings of the 15th Annual Interna-
tional Computing and Combinatorics Conference (COCOON ’09), volume 5609
of LNCS, pages 516–526. Springer, 2009. Cited on p. iv.

Bibliography 179

[71] M. R. Fellows, J. Guo, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. Graph-
based data clustering with overlaps. Discrete Optimization, 8(1):2–17, 2011.
Cited on pp. iv, 5, 25, and 36.

[72] M. R. Fellows, T. Hartman, D. Hermelin, G. M. Landau, F. Rosamond, and
L. Rozenberg. Haplotype inference constrained by plausible haplotype data.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2010.
Available online. Cited on pp. 7, 158, 159, and 160.

[73] M. R. Fellows, M. A. Langston, F. A. Rosamond, and P. Shaw. Efficient parame-
terized preprocessing for Cluster Editing. In Proceedings of the 16th International
Symposium on Fundamentals of Computation Theory (FCT ’07), volume 4639
of LNCS, pages 312–321. Springer, 2007. Cited on pp. 20, 23, 25, 35, and 84.

[74] M. R. Fellows, D. Lokshtanov, N. Misra, F. A. Rosamond, and S. Saurabh.
Graph layout problems parameterized by vertex cover. In Proceedings of the
19th International Symposium on Algorithms and Computation (ISAAC ’08),
volume 5369 of LNCS, pages 294–305. Springer, 2008. Cited on pp. 137 and 172.

[75] J. Fiala, P. A. Golovach, and J. Kratochv́ıl. Parameterized complexity of col-
oring problems: Treewidth versus vertex cover. Theoretical Computer Science,
412(23):2513–2523, 2011. Cited on pp. 137 and 172.

[76] R. Fleischer, J. Guo, R. Niedermeier, J. Uhlmann, Y. Wang, M. Weller, and
X. Wu. Extended islands of tractability for parsimony haplotyping. In Pro-
ceedings of the 21st Annual Symposium on Combinatorial Pattern Matching
(CPM ’10), volume 6129, pages 214–226. Springer, 2010. Cited on pp. v, 7,
131, and 165.

[77] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006. Cited
on pp. 3, 10, and 11.

[78] L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct
PCPs for NP. Journal of Computer and System Sciences, 77(1):91–106, 2011.
Cited on pp. 14 and 166.

[79] A. Frank and É. Tardos. An application of simultaneous diophantine approxi-
mation in combinatorial optimization. Combinatorica, 7(1):49–65, 1987. Cited
on p. 137.

[80] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.
Cited on p. 16.

[81] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979. Cited on p. 9.

[82] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Automated generation
of search tree algorithms for hard graph modification problems. Algorithmica,
39(4):321–347, 2004. Cited on p. 35.

180 Bibliography

[83] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data clus-
tering: Exact algorithms for clique generation. Theory of Computing Systems,
38(4):373–392, 2005. Cited on pp. 20, 23, 24, 25, 35, 51, 84, and 90.

[84] J. Gramm, A. Nickelsen, and T. Tantau. Fixed-parameter algorithms in phylo-
genetics. The Computer Journal, 51(1):79–101, 2008. Cited on pp. 109 and 129.

[85] J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algorithms for
Closest String and related problems. Algorithmica, 37(1):25–42, 2003. Cited on
p. 137.

[86] D. L. Greenwell, R. L. Hemminger, and J. B. Klerlein. Forbidden subgraphs. In
Proceedings of the 4th Southeastern Conference on Combinatorics, Graph Theory
and Computing, pages 389–394. Utilitas Mathematica, 1973. Cited on p. 26.

[87] S. Guillemot, C. Paul, and A. Perez. On the (non-)existence of polynomial
kernels for Pl-free edge modification problems. In Proceedings of the 5th In-
ternational Symposium on Parameterized and Exact Computation (IPEC ’10),
volume 6478 of LNCS, pages 147–157. Springer, 2010. Cited on pp. 79, 110,
and 129.

[88] J. Guo. Problem kernels for NP-complete edge deletion problems: split and re-
lated graphs. In Proceedings of the 18th International Symposium on Algorithms
and Computation (ISAAC ’07), volume 4835 of LNCS, pages 915–926. Springer,
2007. Cited on pp. 25 and 171.

[89] J. Guo. A more effective linear kernelization for Cluster Editing. Theoretical
Computer Science, 410(8-10):718–726, 2009. Cited on pp. 16, 20, 23, 24, 25, 32,
35, 84, 92, and 93.

[90] J. Guo, S. Hartung, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. Exact
algorithms and experiments for hierarchical tree clustering. In Proceedings of
the 24th AAAI Conference on Artificial Intelligence (AAAI’10), pages 457–462,
2010. Cited on pp. iv and 6.

[91] J. Guo, S. Hartung, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. Data
reduction, exact algorithms, and experiments for hierarchical tree clustering.
Manuscript. Submitted to the Journal of Classification, 2011. Cited on p. iv.

[92] J. Guo, F. Hüffner, E. Kenar, R. Niedermeier, and J. Uhlmann. Complexity and
exact algorithms for vertex multicut in interval and bounded treewidth graphs.
European Journal of Operational Research, 186(2):542–553, 2008. Cited on p. iii.

[93] J. Guo, F. Hüffner, C. Komusiewicz, and Y. Zhang. Improved algorithms for
bicluster editing. In Proceedings of the 5th Annual Conference on Theory and
Applications of Models of Computation (TAMC ’08), volume 4978 of LNCS.
Springer, 2008. Cited on pp. 25, 35, 80, and 110.

[94] J. Guo, F. Hüffner, and R. Niedermeier. A structural view on parameterizing
problems: Distance from triviality. In Proceedings of the International Workshop
on Parameterized and Exact Computation (IWPEC ’04), volume 3162 of LNCS,
pages 162–173. Springer, 2004. Cited on p. 166.

Bibliography 181

[95] J. Guo, I. A. Kanj, C. Komusiewicz, and J. Uhlmann. Editing graphs into
disjoint unions of dense clusters. Algorithmica, 2011. Available online. Cited on
pp. iii and 36.

[96] J. Guo, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. A more relaxed
model for graph-based data clustering: s-plex cluster editing. SIAM Journal on
Discrete Mathematics, 24(4):1662–1683, 2010. Cited on pp. iii, 25, 36, and 54.

[97] J. Guo and R. Niedermeier. Invitation to data reduction and problem kerneliza-
tion. ACM SIGACT News, 38(1):31–45, 2007. Cited on pp. 4 and 13.

[98] J. Guo, R. Niedermeier, and J. Uhlmann. Two fixed-parameter algorithms for
vertex covering by paths on trees. Information Processing Letters, 106(2):81–86,
2008. Cited on p. iii.

[99] J. Guo and J. Uhlmann. Kernelization and complexity results for connectivity
augmentation problems. Networks, 56(2):131–142, 2010. Cited on pp. iii and 25.

[100] D. Gusfield. Efficient algorithms for inferring evolutionary trees. Networks,
21:19–28, 1991. Cited on pp. 107, 108, 111, and 120.

[101] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997. Cited on p. 84.

[102] D. Gusfield. Haplotyping as perfect phylogeny: conceptual framework and ef-
ficient solutions. In Proceedings of the 6th Annual International Conference on
Computational Molecular Biology (RECOMB ’02), pages 166–175, 2002. Cited
on p. 166.

[103] D. Gusfield and S. H. Orzack. Haplotype inference. CRC Handbook on Bioin-
formatics, chapter 1, pages 1–25. CRC Press, 2005. Cited on p. 157.

[104] B. Harb, S. Kannan, and A. McGregor. Approximating the best-fit tree under
Lp norms. In Proceedings of the 8th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX ’05), volume
3624 of LNCS, pages 123–133. Springer, 2005. Cited on pp. 84 and 86.

[105] J. Hartigan. Representation of similarity matrices by trees. Journal of the
American Statistical Assoication, 62(320):1140–1158, 1967. Cited on p. 82.

[106] J. Hartigan. Statistical theory in clustering. Journal of Classification, 2(1):63–
76, 1985. Cited on pp. 21 and 81.

[107] P. Heggernes, D. Lokshtanov, J. Nederlof, C. Paul, and J. A. Telle. General-
ized graph clustering: recognizing (p, q)-cluster graphs. In Proceedings of the
36th International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG ’10), volume 6410 of LNCS, pages 171–183. Springer, 2010. Cited on
pp. 36, 52, and 54.

[108] W. Hsu and T. Ma. Substitution decomposition on chordal graphs and ap-
plications. In Proceedings of the 2nd International Symposium on Algorithms
(ISA’91), volume 557 of LNCS, pages 52–60. Springer, 1991. Cited on pp. 16
and 29.

182 Bibliography

[109] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier. Fixed-parameter
algorithms for cluster vertex deletion. Theory of Computing Systems, 47(1):196–
217, 2010. Cited on pp. 35, 49, and 79.

[110] F. Hüffner, R. Niedermeier, and S. Wernicke. Techniques for practical fixed-
parameter algorithms. The Computer Journal, 51(1):7–25, 2008. Cited on p. 13.

[111] L. van Iersel, J. Keijsper, S. Kelk, and L. Stougie. Shorelines of islands of
tractability: Algorithms for parsimony and minimum perfect phylogeny hap-
lotyping problems. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 5(2):301–312, 2008. Cited on pp. 158, 159, and 165.

[112] B. Jansen, Febuary 2011. Personal Communication. Cited on pp. 52 and 172.

[113] B. M. P. Jansen and H. L. Bodlaender. Vertex cover kernelization revisited: Up-
per and lower bounds for a refined parameter. In Proceedings of the 28th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS ’11),
Leibniz International Proceedings in Informatics (LIPIcs). IBFI Dagstuhl, Ger-
many, 2011. To appear. Cited on pp. 12 and 172.

[114] C. J. Jardine, N. Jardine, and R. Sibson. The structure and construction of
taxonomic hierarchies. Mathematical Biosciences, 1(2):173–179, 1967. Cited on
p. 82.

[115] N. Jardine and R. Sibson. Mathematical Taxonomy. Wiley, 1971. Cited on
p. 106.

[116] S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254,
1967. Cited on p. 82.

[117] D. Jungnickel. Graphs, Networks and Algorithms. Springer, 3rd edition, 2008.
Cited on p. 15.

[118] T. Köhler. Studienarbeit, 2011. University of Jena. Cited on p. 79.

[119] C. Komusiewicz, R. Niedermeier, and J. Uhlmann. Deconstructing
intractability—a case study for interval constrained coloring. In Proceedings
of the 20th Annual Symposium on Combinatorial Pattern Matching (CPM ’09),
volume 5577 of LNCS, pages 207–220. Springer, 2009. Cited on p. iv.

[120] C. Komusiewicz, R. Niedermeier, and J. Uhlmann. Deconstructing
intractability—a multivariate complexity analysis of interval constrained col-
oring. Journal of Discrete Algorithms, 9(1):137–151, 2011. Cited on pp. iv, 6,
and 131.

[121] C. Komusiewicz and J. Uhlmann. A cubic-vertex kernel for flip consensus tree.
In IARCS Annual Conference on Foundations of Software Technology and The-
oretical Computer Science (FSTTCS 2008), volume 2 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 280–291. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2008. Cited on pp. iv, 6, and 25.

Bibliography 183

[122] C. Komusiewicz and J. Uhlmann. Alternative parameterizations for cluster edit-
ing. In Proceedings of the 37th Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM ’11), volume 6543 of LNCS, pages
344–355. Springer, 2011. Cited on pp. iv, 5, 50, and 51.

[123] C. Komusiewicz and J. Uhlmann. A cubic-vertex kernel for flip consensus tree.
Manuscript. Submitted to Algorithmica, 2011. Cited on p. iv.

[124] S. Kratsch and M. Wahlström. Two edge modification problems without polyno-
mial kernels. In Proceedings of the 4th International Workshop on Parameterized
and Exact Computation (IWPEC ’09), volume 5917 of LNCS, pages 264–275.
Springer, 2009. Cited on pp. 14, 25, 79, 110, and 170.

[125] M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree clustering.
Acta Informatica, 23(3):311–323, 1986. Cited on pp. 21, 34, 50, 60, 81, 82,
and 84.

[126] G. Lancia, M. C. Pinotti, and R. Rizzi. Haplotyping populations by pure parsi-
mony: Complexity of exact and approximation algorithms. INFORMS Journal
on Computing, 16(4):348–359, 2004. Cited on p. 158.

[127] G. Lancia and R. Rizzi. A polynomial case of the parsimony haplotyping prob-
lem. Operations Research Letters, 34:289–295, 2006. Cited on pp. 158 and 165.

[128] H. W. Lenstra. Integer programming with a fixed number of variables. Mathe-
matics of Operations Research, 8:538–548, 1983. Cited on pp. 137 and 155.

[129] D. Lokshtanov and D. Marx. Clustering with local restrictions. In Proceedings of
the 38th International Colloquium on Automata, Languages, and Programming
(ICALP ’11), volume 6755 of LNCS, pages 785–797. Springer, 2011. Cited on
p. 36.

[130] S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data
analysis: a survey. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 1(1):24–45, 2004. Cited on p. 80.

[131] K. Makino and T. Uno. New algorithms for enumerating all maximal
cliques. In Proceedings of the 9th Scandinavian Workshop on Algorithm Theory
(SWAT ’04), volume 3111 of LNCS, pages 260–272. Springer, 2004. Cited on
p. 56.

[132] D. Marx and I. Razgon. Fixed-parameter tractability of multicut parameterized
by the size of the cutset. In Proceedings of the 43rd Annual ACM Symposium
on Theory of Computing (STOC ’11). ACM Press. To appear. Cited on pp. 36,
52, and 130.

[133] R. M. McConnell and J. Spinrad. Linear-time modular decomposition and ef-
ficient transitive orientation of comparability graphs. In Proceedings of the 5th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’94), pages 536–
545. ACM/SIAM, 1994. Cited on pp. 29 and 118.

184 Bibliography

[134] S. Micali and V. V. Vazirani. An O(
√

(|V |)|E|) algorithm for finding maximum
matching in general graphs. In Proceedings of the 21st Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’80), pages 17–27. IEEE, 1980.
Cited on p. 69.

[135] A. Natanzon, R. Shamir, and R. Sharan. Complexity classification of some edge
modification problems. Discrete Applied Mathematics, 113:109–128, 2001. Cited
on p. 25.

[136] A. Nichterlein, R. Niedermeier, J. Uhlmann, and M. Weller. On tractable cases
of target set selection. In Proceedings of the 21st International Symposium on
Algorithms and Computation (ISAAC ’10), volume 6507 of LNCS, pages 378–
389. Springer, 2010. Cited on pp. iii and 172.

[137] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006. Cited on pp. 3, 10, 11, 12, 14, and 88.

[138] R. Niedermeier. Reflections on multivariate algorithmics and problem parame-
terization. In Proceedings of the 27th International Symposium on Theoretical
Aspects of Computer Science (STACS ’10), volume 5 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 17–32. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2010. Cited on pp. 4, 11, 12, 23, 130, and 170.

[139] R. Niedermeier and P. Rossmanith. A general method to speed up fixed-
parameter-tractable algorithms. Information Processing Letters, 73:125–129,
2000. Cited on p. 15.

[140] R. Niedermeier and P. Rossmanith. An efficient fixed-parameter algorithm for
3-Hitting Set. Journal of Discrete Algorithms, 1(1):89–102, 2003. Cited on p. 25.

[141] G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. Nature,
435(7043):814–818, 2005. Cited on pp. 20, 53, and 78.

[142] C. M. Papadimitriou. Computational Complexity. Addison-Wesley, 1994. Cited
on p. 9.

[143] I. Pe’er, T. Pupko, R. Shamir, and R. Sharan. Incomplete directed perfect
phylogeny. SIAM Journal on Computing, 33(3):590–607, 2004. Cited on pp. 107,
111, and 120.

[144] R. Peeters. The maximum edge biclique problem is NP-complete. Discrete
Applied Mathematics, 131(3):651–654, 2003. Cited on p. 60.

[145] F. Protti, M. D. da Silva, and J. L. Szwarcfiter. Applying modular decomposi-
tion to parameterized cluster editing problems. Theory of Computing Systems,
44(1):91–104, 2009. Cited on pp. 20, 23, 25, 27, 29, 35, 80, 84, 105, 110, and 115.

[146] S. Rahmann, T. Wittkop, J. Baumbach, M. Martin, A. Truß, and S. Böcker.
Exact and heuristic algorithms for weighted cluster editing. In Proceedings of
the 6th Annual Conference on Computational Systems Bioinformatics (CSB’07),
pages 391–401. Imperial College Press, 2007. Cited on pp. 84 and 103.

Bibliography 185

[147] D. F. Robinson and L. R. Foulds. Comparison of phylogenetic trees. Mathemat-
ical Biosciences, 53(1–2):131–147, 1981. Cited on p. 130.

[148] S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.
Cited on p. 20.

[149] S. B. Seidman and B. L. Foster. A graph-theoretic generalization of the clique
concept. Journal of Mathematical Sociology, 6:139–154, 1978. Cited on p. 36.

[150] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Dis-
crete Applied Mathematics, 144(1–2):173–182, 2004. Cited on pp. 20, 27, 34, 37,
50, 60, and 84.

[151] R. Sharan, B. V. Halldórsson, and S. Istrail. Islands of tractability for par-
simony haplotyping. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 3(3):303–311, 2006. Cited on pp. 7, 158, 159, 160, and 165.

[152] R. Sharan, A. Maron-Katz, and R. Shamir. CLICK and EXPANDER: a system
for clustering and visualizing gene expression data. Bioinformatics, 19(14):1787–
1799, 2003. Cited on pp. 20 and 33.

[153] M. Talmaciu and E. Nechita. Recognition algorithm for diamond-free graphs.
Informatica, 18(3):457–462, 2007. Cited on p. 58.

[154] A. Tanay, R. Sharan, and R. Shamir. Biclustering algorithms: A survey. In
S. Aluru, editor, Handbook of Computational Molecular Biology, pages 26.1–
26.17. Chapman Hall/CRC Press, 2006. Cited on p. 80.

[155] J. Uhlmann and M. Weller. Two-layer planarization parameterized by feedback
edge set. In Proceedings of the 7th Annual Conference on Theory and Appli-
cations of Models of Computation (TAMC ’10), volume 6108 of LNCS, pages
431–442. Springer, 2010. Cited on pp. iii, 12, 25, and 172.

[156] M. Weller, C. Komusiewicz, R. Niedermeier, and J. Uhlmann. On making di-
rected graphs transitive. In Proceedings of the 11th International Symposium
on Algorithms and Data Structures (WADS ’09), volume 5664 of LNCS, pages
542–553. Springer, 2009. Long version to appear in the Journal of Computer
and System Sciences. Cited on pp. iii, 25, and 50.

[157] D. B. West. Introduction to Graph Theory. Prentice Hall, 2nd edition, 2001.
Cited on p. 15.

[158] T. Wittkop, J. Baumbach, F. P. Lobo, and S. Rahmann. Large scale clustering
of protein sequences with FORCE – a layout based heuristic for weighted cluster
editing. BMC Bioinformatics, 8(1):396, 2007. Cited on pp. 33 and 34.

[159] T. Wittkop, D. Emig, S. Lange, S. Rahmann, M. Albrecht, J. H. Morris,
S. Böcker, J. Stoye, and J. Baumbach. Partitioning biological data with transi-
tivity clustering. Nature Methods, 7(6):419–420, 2010. Cited on p. 34.

[160] T. Wittkop, D. Emig, A. Truss, M. Albrecht, S. Böcker, and J. Baumbach.
Comprehensive cluster analysis with transitivity clustering. Nature Protocols,
6:285–295, 2011. Cited on p. 34.

186 Bibliography

[161] Z. Wu and R. Leahy. An optimal graph theoretic approach to data clustering:
theory and its application to image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(11):1101–1113, 1993. Cited on p. 20.

[162] R. Xu and D. Wunsch II. Survey of clustering algorithms. IEEE Transactions
on Neural Networks, 16(3):645–678, 2005. Cited on p. 20.

[163] M. Yannakakis. Edge-deletion problems. SIAM Journal on Computing,
10(2):297–309, 1981. Cited on pp. 25, 110, and 111.

[164] C. T. Zahn, Jr. Approximating symmetric relations by equivalence relations.
Journal of the Society for Industrial and Applied Mathematics, 12(4):840–847,
1964. Cited on pp. 33 and 34.

[165] H. Zha, X. He, C. H. Q. Ding, M. Gu, and H. D. Simon. Bipartite graph
partitioning and data clustering. In Proceedings of the 2001 ACM CIKM Inter-
national Conference on Information and Knowledge Management (CIKM’01),
pages 25–32. ACM, 2001. Cited on p. 80.

[166] A. van Zuylen and D. P. Williamson. Deterministic pivoting algorithms for con-
strained ranking and clustering problems. Mathematics of Operations Research,
34:594–620, 2009. Cited on pp. 34 and 84.

	I Introduction
	Introduction
	Algorithmic Approach
	Organization and Results

	Basic Concepts and Notation
	Computational Complexity and NP-Hardness
	Parameterized Complexity and Multivariate Algorithmics
	Multivariate Algorithmics

	Parameter Identification
	Kernelization
	Depth-Bounded Search Trees
	Basic Graph Notation

	II Fitting Biological Data with Combinatorial Structures
	Introduction to Part II
	The Considered Problems
	Summary of Results
	Edge Modification Problems
	Basic Notation for Edge Modification Problems

	Universal Data Reduction Rules and Structural Observations

	Cluster Editing and Cluster Deletion
	Introduction
	Previous Work
	Related Problems
	Our Results

	Cluster Vertex Deletion Number as Parameter
	Cluster Editing
	Cluster Deletion

	Further Alternative Parameterizations
	Conclusion

	Clustering With Overlaps
	Introduction
	Recognition and Forbidden Subgraph Characterization
	A Complexity Dichotomy with Respect to the Overlap Number s
	Parameterized Complexity
	Two Kernelization Results for Edge Deletion
	An O(k4)-Vertex Kernel for 1-Edge-Overlap Deletion
	An O(k3)-Vertex Kernel for 2-Vertex-Overlap Deletion

	Conclusion

	Hierarchical Tree Clustering
	Introduction
	Preliminaries
	A Decomposition Property and Two Search Tree Strategies
	Two Kernelization Results
	An O(k2)-Element Problem Kernel
	An O(Mk)-Element Problem Kernel

	Experimental Results
	Implementation Aspects
	Experiments with Synthetic Data
	Experiments with Protein Similarity Data
	Conclusions and Recommendations

	Conclusion

	Minimum Flip Consensus Tree
	Introduction
	Preliminaries
	A Decomposition Property
	Data Reduction Rules
	Analysis of the Problem Kernel Size
	An O(3.68k)-Size Search Tree
	Conclusion

	III Constrained Search Problems
	Interval Constrained Coloring
	Introduction
	Parameterization and the Deconstruction of NP-Hardness
	A Simple Normal Form Observation
	Single Parameters
	Combined Parameters
	Implementations and Experiments
	Conclusion

	Parsimony Haplotyping
	Introduction
	Improved Fixed-Parameter Algorithms
	Haplotype Inference by Parsimony
	Constrained Haplotype Inference by Parsimony

	Problem Kernelization for Haplotype Inference by Parsimony
	Further Results and Conclusions

	IV Conclusion
	Conclusion

