
Aspects of a Multivariate Complexity Analysis for Rectangle Tiling

André Nichterleina, Michael Domb, Rolf Niedermeiera

a Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
b Institut für Informatik, Friedrich-Schiller-Universität Jena, Germany

Abstract

We initiate a parameterized complexity study of the NP-hard problem to tile a positive integer matrix with rectangles,
keeping the number of tiles and their maximum weight small. We show that the problem remains NP-hard even for
binary matrices only using 1× 1 and 2× 2-squares as tiles and provide insight into the influence of naturally occurring
parameters on the problem’s complexity.

Key words: combinatorial algorithms, NP-hardness, computational complexity, fixed-parameter tractability

1. Introduction

Rectangle Tiling is a combinatorial problem on in-
teger matrices:

Rectangle Tiling

Input: An m×n matrix A = (ai,j) with inte-
ger entries, a positive integer w, and
a positive integer p.

Question: Can A be partitioned into at most p
non-overlapping rectangles of weight
at most w? Herein, the weight of a
rectangle (equivalently, submatrix) r
is the sum of all entries in r.

Rectangle Tiling has numerous applications, includ-
ing query optimization in databases, load balancing in
parallel computers, or data compression [1, 5, 8, 11, 14].
Rectangle Tiling is NP-hard [11]. Several polynomial-
time constant-factor approximation algorithms have been
developed for its two corresponding optimization prob-
lems, minimizing either w or p [1, 11, 13, 17]. In this work,
our goal is to initiate a multivariate analysis of the com-
putational complexity of Rectangle Tiling, discussing
the following problem-specific parameters influencing the
problem’s computational complexity:

• the maximum number p of “covering” rectangles,

• the maximum rectangle weight w,

• the (range of) values of the matrix entries (an extreme
case being binary matrices),

• the number m of rows of the input matrix (symmet-
rically, the number n of columns), and

Email addresses: andre.nichterlein@tu-berlin.de (André
Nichterlein), rolf.niedermeier@tu-berlin.de (Rolf Niedermeier)

• the (number of different) rectangle shapes allowed for
tiling.

We extend results of Khanna et al. [11] who showed
that Rectangle Tiling is NP-hard even if w is con-
stant (w = 4), the input matrix A only contains num-
bers from 1 to 4, and one may only use rectangles shapes
from {1 × 2, 2 × 1, 1 × 3, 3 × 1, 1 × 4, 4 × 1}. We
show that Rectangle Tiling remains NP-hard when
the input matrix is binary, w = 1, and the rectan-
gle shapes are only from {1 × 1, 2 × 2}. In particu-
lar, this implies that tiling with squares, in the follow-
ing called Square Tiling, is NP-hard. On the positive
side, we observe that Rectangle Tiling can be solved in
O((mn)p log p) time and, for matrices without zero-entries,
in O((w logw)p · log p + mn) time. In other words, the
first running time implies that Rectangle Tiling lies in
the parameterized complexity class XP with respect to the
parameter p and the second running time implies that it
is fixed-parameter tractable [2, 4, 15] with respect to the
combined parameter (p, w). Finally, we show that Rect-
angle Tiling can be solved in O(m2ppp log p+mn) time,
implying fixed-parameter tractability with respect to the
combined parameter (p,m). In the concluding section we
discuss a number of challenges for future research, includ-
ing the open parameterized complexity with respect to the
single parameter p.

2. NP-Hardness of Tiling Binary Matrices with
Squares

A closer inspection of Khanna et al.’s [11] NP-hardness
proof, using a reduction from the Planar-3-Sat prob-
lem, reveals that Rectangle Tiling is NP-hard even
for matrices restricted to entries chosen from {1, 2, 3, 4},
using only rectangles of the shapes 1 × 2, 2 × 1, 1 ×
3, 3 × 1, 1 × 4, 4 × 1, and allowing maximum rectan-
gle weight w = 4. We extend their result by showing that

Preprint submitted to Elsevier July 28, 2011

gadget

e

ge

pv3

pv4

pv5

pv2

pv1

v5

v1

v4

v3

v2

Figure 1: Reduction from Planar Vertex Cover to Square
Tiling. Every vertex vi is replaced by a path pvi (with 90-degree
bends). Every edge is replaced by an edge gadget (displayed as a
gray box).

Rectangle Tiling remains NP-hard for binary matrices
tiled with 1× 1- or 2× 2-squares and restricting the maxi-
mum weight to 1. To this end, we devise a reduction from
the NP-hard Planar Vertex Cover problem [6].

Theorem 2.1. Square Tiling is NP-hard on binary ma-
trices and w = 1. In addition, it remains NP-hard when
only 1× 1- and 2× 2-squares are allowed.

Proof. The result is shown by a polynomial-time many-one
reduction from the NP-complete problem Planar Ver-
tex Cover [6].

Planar Vertex Cover

Input: A planar graph G = (V,E) and a pos-
itive integer k.

Question: Is there a vertex set V ′ ⊆ V such
that each edge in E has at least one
endpoint in V ′?

To reduce from Planar Vertex Cover, we use the in-
put matrix A of Square Tiling as a “drawing table”,
onto which we embed a set of “vertex paths” and “edge
gadgets” for the given graph. This follows an approach
devised by Khanna et al. [11] for reducing Planar 3Sat
to Rectangle Tiling. More precisely, for a given in-
stance (G = (V,E), k) of Planar Vertex Cover, we
construct an instance (A, 1, p) of Square Tiling as fol-
lows. For every vertex v ∈ V , we create a path pv in A
that consists of matrix entries with certain values (which
we will describe later), and for every edge e ∈ E, we create
an edge gadget ge also consisting of matrix entries with
certain values. If two vertices u, v are connected by an
edge e, then both paths pu and pv lead through the edge
gadget ge— that is, we draw the paths pu and pv in such a
way that they come close together at some position in A,
and here we put the edge gadget ge, see Figure 1. Since G
is planar, we can draw the paths and edge gadgets in such
a way that the paths do not cross each other. Matrix en-
tries in A that do not belong to a path or an edge gadget
are called background entries.

The constructed Square Tiling instance will have the
following properties:

• Every background entry has value 1 and, due to the
construction, has to be covered with a 1× 1-square.

• For every path, there are basically two possibilities to
cover its matrix entries: a cheap one and an expen-
sive one. For the ith path, the cheap variant needs
ci squares of dimension 2 × 2, where ci depends on
the length and number of bends of the path, and
the expensive variant needs ci + 3 squares of dimen-
sion 2× 2. That is, the expensive variant needs three
squares more than the cheap one.

• For every edge gadget, there are also two possibili-
ties to cover its matrix entries. The expensive variant
needs six squares, and the cheap variant needs three
squares. Again, the expensive variant needs three
squares more than the cheap one.

• The entries of an edge gadget ge can only be covered
with the cheap variant if at least one of the paths lead-
ing through ge is covered with the expensive variant.

As a consequence of these properties, the graph G has a
vertex cover of size k if and only if the constructed matrix
has a “square tiling” containing the following number of
squares:

|V |∑
i=1

ci + 3 · k + 3 · |E|+ number of background entries.

To see this, first assume that G has a vertex cover V ′ of
size k. Then cover all paths pv where v ∈ V ′ with the
expensive variant and all paths pv where v /∈ V ′ with the
cheap variant (addends one and two). Since each edge
has at least one endpoint in V ′, every edge gadget can be
covered with the cheap variant (addend three). For the
reverse direction, assume that A can be covered with the
stated number of squares. Observe that we can assume
that all edge gadgets are covered with the cheap variant:
if there is an edge gadget ge where both paths leading
through ge are covered with the cheap variant, then one
can obtain a solution with the same number of squares
by covering one of these paths with the expensive variant
and covering the edge gadget with the cheap variant. As
a consequence, all vertices v ∈ V where pv is covered with
the expensive variant form a vertex cover for G. Moreover,
there can be at most k such vertices. It remains to detail
the construction of the paths and the edge gadgets.

A vertex path consists of submatrices having width or
height two, which form the vertical and horizontal straight
parts between the 90-degree bends. These submatrices
consist of 0-entries and may overlap pairwise in exactly
one 1-entry, such that a 90-degree bend is formed (bends
are constructed as shown in Figure 2). The 1-entries in
the vertex paths ensure that no background entry can be
covered with a 2 × 2-square. Let b be the number of 90-
degree bends in the vertex path pv. If pv is covered with
the cheap variant, then the covering contains exactly b
1×1-squares and all other entries of the path are covered by
2× 2-squares. If pv is covered with the expensive variant,
then the covering contains exactly b + 4 1× 1-squares but

2

1 1 1 1 1 1 1 1
1 1 0 0 0 0 1 1
1 0 1 0 0 1 0 1
1 0 0 1 1 0 0 1
1 0 0 1 1 0 0 1
1 0 0 1 1 1 1 1
1 0 0 1 1 1 1 1
1 0 1 0 0 0 1 1
1 1 0 0 0 0 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
1 1 0 0 0 0 1 1
1 0 1 0 0 1 0 1
1 0 0 1 1 0 0 1
1 0 0 1 1 0 0 1
1 0 0 1 1 1 1 1
1 0 0 1 1 1 1 1
1 0 1 0 0 0 1 1
1 1 0 0 0 0 1 1
1 1 1 1 1 1 1 1

Figure 2: Example for covering a vertex path containing b = 3 bends
without an edge gadget. Left: cheap covering variant containing
three 1 × 1-squares. Right: expensive covering variant containing
seven 1× 1-squares.

1 1 1 1 1 1
1 1 1 0 1 1
0 0 0 0 1 0
0 1 0 0 0 0
1 1 0 1 1 1
0 1 0 0 0 0
0 0 0 0 1 0
1 1 1 0 1 1
1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1 1
1 0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0 0 1
1 1 1 1 0 1 1 1 1 1
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 1
1 1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1

Figure 3: Left: edge gadget (the six light gray entries) and parts of
two vertex paths (the white entries). Right: example for covering an
edge gadget—upper path covered with expensive variant, lower one
with cheap variant

one 2× 2-square less than the cheap variant, see Figure 2
for an example.

An edge gadget for edge e = {u, v} connects the two
vertex paths belonging to the two vertices u and v. The
gadget itself consists of only six entries in the matrix, as
shown on the left side of Figure 3. If both vertex paths
are covered with the cheap variant, then the edge gadget
has to be covered with six 1× 1-squares, otherwise it can
be covered with three squares.

Note that the construction only allows to use 1 × 1
and 2 × 2-squares. Hence, the special case of only allow-
ing to tile with squares of size 1 × 1 and 2 × 2 is also
NP-hard.

There is a significant technical advantage of using a re-
duction from Planar Vertex Cover instead of using
one from Planar 3Sat as Khanna et al. [11] did: The
clause gadget in the reduction of Khanna et al. has to
connect three paths. In contrast, the edge gadget in our
reduction connects only two paths. This helps us to con-
struct the connecting gadget (the edge gadget).

We remark that Khanna et al.’s proof, in contrast to
our proof, also yields NP-hardness in case of allowing over-
laps between rectangles. Hence, since covering with 1× 1-
squares is trivial, it is natural to ask for the computa-
tional complexity of the case when only allowing overlap-
ping 2 × 2-squares for tiling. We conjecture that in this
case the problem remains NP-hard.

3. Exact Algorithms for Rectangle Tiling

In this section, we provide some positive results con-
cerning the (parameterized) complexity of Rectangle
Tiling. As a warm-up, we consider the complexity of
Rectangle Tiling with respect to the parameter p, the
number of covering rectangles used. Unfortunately, we
do not know whether it is fixed-parameter tractable for p
alone (that is, solvable in time f(p) · (mn)O(1) for some
computable function f [2, 4, 15]), hence we will combine p
with other parameters in the following. Before doing so,
let us briefly observe that Rectangle Tiling parame-
terized by p is in the parameterized complexity class XP,
that is, it can be solved in polynomial time for constant
values of p. To this end, we employ a simple exhaustive
search as follows.

First, set the top left corner of the first rectangle to the
top left corner of the input matrix A. Then guess the bot-
tom right corner of the rectangle. Next, set the top left
corner of the second rectangle to the leftmost uncovered
entry in the topmost not completely covered row of A and
guess the bottom right corner. Repeat the placement of
the rectangles p times. There are O(mn) possibilities for
the bottom right corner of each rectangle. Since we have p
rectangles there are at most O((mn)p) candidate positions.
Once a rectangle is placed, one has to check whether its
weight is at most w (1), to check whether it overlaps with
an already placed rectangle (2), and to compute the top
left corner (the “placement point“) of the next rectan-
gle to place (3). With the standard inclusion-exclusion
trick (1) can be done in constant time: First, compute
in a preprocessing step an additional n × m matrix B
that stores in B[i, j] the weight of the rectangle with cor-
ners A[0, 0] and A[i, j]. One can compute B in O(mn) time
via B[i, j] = B[i−1, j]+B[i, j−1]−B[i−1, j−1]+A[i, j].
Having done this once, the weight of a rectangle with cor-
ners A[i, j], A[i + a, j + b] is B[i + a, j + b] − B[i, j + b] −
B[i + a, j] + B[i, j] and, hence, is computable in O(1)
time. Now, we briefly indicate how to achieve (2) and
(3) in O(log p) time: We organize the set of all placement
points in a priority queue, allowing to add a new (or to
extract the next) placement point in O(log p) time. Since
we place new rectangles in the topmost not completely
covered row in the leftmost uncovered entry, the matrix A
is partitioned in one connected “covered” part and one
connected “uncovered” part. We call the line separat-
ing these two parts the progress line. This progress line
is implemented as a doubly linked list of corners. With
this progress line, checking whether the placed rectan-
gle overlaps with another rectangle can be done in O(1)
time: Let ci, ci+1, ci+2 be three consecutive corners in the
progress line. After placing a new rectangle at corner ci,
simply check whether the rectangle overlaps with the seg-
ment (ci+1, ci+2). Note that the set of the placement
points is a subset of the corners in the progress line. By
adding a link from each placement point to the correspond-
ing corner in the progress line, accessing the appropriate

3

part in the progress line when placing a new rectangle can
be done in O(1) time. The whole matrix A is covered
when the progress line is at the bottom of the matrix. Al-
together, we obtain:

Proposition 3.1. Rectangle Tiling can be solved in
O((mn)p log p) time.

Assuming that the input matrix contains no zero-entries,
Rectangle Tiling becomes fixed-parameter tractable
for the combined parameter (p, w):

Proposition 3.2. If the input matrix contains only non-
zero entries, then Rectangle Tiling can be solved
in O((w logw)p · log p + mn) time.

Proof. We describe an algorithm similar to the one behind
Proposition 3.1: Place the rectangles one after the other
on the matrix: For each rectangle, set the top left cor-
ner to the leftmost uncovered entry in the topmost not
completely covered row of the input matrix A. Then,
try all possibilities for the bottom right corner. Since
all entries in A have value at least one, a rectangle can
have height or width at most w. Hence, if the rectangle
has width one, then the height is between one and w, so
there are w possible positions for the bottom right cor-
ner. If the width is two, then there are bw/2c possibil-
ities for the bottom right corner. In general, when the
width is i, then the height is at most bw/ic. Overall there
are w+bw/2c+bw/3c+ ...+1 = w ·(logw+O(1)) possible
positions for the bottom right corner and thus O(w logw)
possibilities to place one rectangle. We can place a
new rectangle (computing the weight, checking overlaps)
in O(log p) time as described above. Since there are p rect-
angles, the overall running time is O((w logw)p log p+mn).
The correctness follows from the fact that all possible
partitions of A into rectangles are checked by the algo-
rithm.

We remark that the algorithm of Proposition 3.2 can be
easily adapted to the special case of tiling with squares,
which then yields the improved running time of O((2w)

p
2 ·

log p + mn).
Finally, in the spirit of parameterizing by distance from

triviality [9, 15, 16], we come to the combined parame-
ter (p,m), where m is the number of rows of the input
matrix. Here, by symmetry, we assume without loss of
generality that m ≤ n, where n is the number of columns.
Note that Jagadish et al. [10] showed that Rectangle
Tiling can be solved in O(n2p) time when there is only
one row. Thus, m “measures” the distance from this “triv-
ial”, that is, polynomial-time solvable special case.

Theorem 3.1. Rectangle Tiling can be solved in time
O(m2ppp log p + mn), where p denotes the number of cov-
ering rectangles and m denotes the number of rows of the
input matrix.

Proof. Before describing an algorithm solving Rectangle
Tiling, we introduce some notation. The left (right, top,

bottom) index of a rectangle is the column index of its
leftmost entry (column index of its rightmost entry, row
index of its topmost entry, row index of its bottommost
entry). For defining the concept of a wall, let Y be a set
of non-overlapping rectangles. A wall of Y in column j
with 1 ≤ j < n is a set S = {ai1,j , ai1+1,j , . . . , ai2,j} of
entries of the input matrix A that is maximal under the
following property: Every entry of A belonging to S is
covered by a rectangle whose right index is j.

With this, we can give the main idea of the algorithm:
Starting from the left side of A, we add new rectangles
step by step. Thus, we again have a progress line (as de-
scribed before Proposition 3.1) “moving” from left to right.
Guessing the bottom and top index of the new rectangle x,
the left index of x touches the progress line. As we will
see in the following, it suffices to consider two cases for x:
either x creates a new wall or it expands an existing wall.
For the first case there will be only one possibility for the
right index of x. Since there are at most p rectangles,
there are at most p walls. Hence, in the second case the
new rectangle expands one out of p existing walls. This
results in p possibilities for the right index of x in the sec-
ond case. After placing the new rectangle the progress line
is updated.

To explain the algorithm in detail, we introduce some
further notation. All rectangles in Y that cover at least one
element of S are called the left-neighboring rectangles of S,
and all rectangles in Y that cover at least one matrix en-
try ai,j /∈ S with ai,j−1 ∈ S are called the right-neighboring
rectangles of S. Hence, if an entry ai,j of A is covered by a
left-neighboring rectangle, then the entry ai,j+1 is covered
by a right-neighboring rectangle (and vice versa). If x is a
left-neighboring (right-neighboring) rectangle of a wall S,
then we call S the right wall (left wall) of x (with respect
to Y).

Our algorithm is based on the following observation.
There exists an optimal solution Y with the following prop-
erty: For each wall S, there is at least one left-neighboring
rectangle r ∈ Y of S such that increasing the right in-
dex of r by one and leaving the left index, the top index,
and the bottom index unchanged results in a rectangle
of weight greater than w. We call r the limiting rectan-
gle of S. Such an optimal solution Y always exists be-
cause starting with an arbitrary optimal solution and re-
peatedly searching for a wall S not having the mentioned
property, increasing the right indices of all left-neighboring
rectangles of S and increasing the left indices of all right-
neighboring rectangles of S results in a solution as desired.

With this observation, we can describe our search tree
algorithm (see Figure 4) finding solutions with the men-
tioned property. The algorithm maintains a “partial solu-
tion” X, which consists of a set of non-overlapping rect-
angles and which is initially set to ∅. In each recursive
step, the algorithm branches into several cases of how to
add a rectangle to the partial solution constructed so far;
in each of these branches, it calls itself on the problem
instance with the resulting partial solution. All partial so-

4

1: function solve(A,w, p,X) {
2: if X covers A and p ≥ 0: return ∅;
3: if p < 0: return null;
4: for all i, j : 1 ≤ i < j ≤ m: {
5: if there is a column index c such that for all rows i, i+

1, . . . , j the rightmost entry covered by X lies in col-
umn c: {

6: let x be the rectangle with left index c+1, top in-
dex i, bottom index j and maximum right index
under the property that x’s weight is at most w;

7: if X ′ := solve(A,w, p − 1, X ∪ {x}) is not null:
return X ′ ∪ {x};

8: X̂ :=
⋃

i∈{1,...,m}{y ∈ X | y is the the rightmost

rectangle covering an entry in row i}
9: for each rectangle y ∈ X̂ with right index

greater than c: {
10: let x be the rectangle with left index c + 1,

top index i, bottom index j and right index
equal to the right index of y;

11: if x has weight at most w and X ′ :=
solve(A,w, p − 1, X ∪ {x}) is not null: re-
turn X ′ ∪ {x};

12: }
13: }
14: }
15: return null;
16: }

Figure 4: Search tree algorithm for Rectangle Tiling. The function
solve() receives as input a matrix A, the maximum weight w, a partial
solution X, and the number p of rectangles that may be added to X
in order to cover the whole matrix A; it returns a partial solution
consisting of at most p rectangles that cover all entries of A that are
not covered by X. For solving Rectangle Tiling, the main program
has to call solve(A,w, p, ∅).

lutions created in this process have the following “mono-
tonicity property”: If an entry ai,j of the input matrix A
is covered by a partial solution X, then all entries ai,j′

with j′ < j (that is, all entries in the same row as and
to the left of ai,j) are also covered by X. The branching
is performed as follows. First, all possibilities are tried
to set the upper and lower boundary of the new rectan-
gle (line 4). Due to the mentioned monotonicity property,
there is only one possibility for the left boundary of the
rectangle, and the algorithm checks whether the resulting
partial solution indeed has this property (line 5). If the an-
swer is yes, then it remains to specify the right boundary of
the rectangle. Since each rectangle has a right wall, there
are only two possibilities for this new rectangle: it creates
a new wall or has the same right wall as one of the other
rectangles. Since there is a solution with each wall having
a limiting rectangle, it suffices to create new walls when
the new rectangle is a limiting rectangle. Hence, the right
boundary of the rectangle can be determined by another
branching: Either the rectangle has maximum size under
the property that its weight is at most w or its right index
is n (lines 6–7) or its right boundary is at the same posi-

tion as the right boundary of one of the other rectangles
in X (lines 8–11).

Now, we analyze the running time. For each rectan-
gle, the algorithm performs a branching into O(m2) cases
for the lower and bottom index (line 4) and a branching
into O(p) cases for the right index (lines 8–11). Hence, one
can try all placements of rectangles in O(m2ppp) time. As
described before Proposition 3.1, checking the weight and
overlaps of the new rectangle can be done in O(log p) time
plus an O(mn) preprocessing step. Overall, the running
time is O(m2ppp log p + mn).

The correctness of the algorithm now directly follows
from the following claim whose correctness we will show
in the remainder of the proof.

Claim. Assume that the function solve() (see Figure 4) is
called on (A, p,w,X) and that the partial solution X has
the following three properties:

• X is a subset of an optimal solution Y with each
wall S of Y having a limiting left-neighboring rect-
angle,

• X has the monotonicity property, and

• for every wall S of Y it holds that if X contains a
right-neighboring rectangle of S, then X contains all
left-neighboring rectangles of S.

Then in at least one of the branches of solve() a rectan-
gle x is computed such that X ∪ {x} also has these three
properties.

Proof of Claim. Let R ⊆ Y \ X be the set of all rectan-
gles x ∈ Y \X where x either has left index 1 or all left-
neighboring rectangles of the left wall of x (with respect
to Y) already belong to X. It follows directly from the
properties of X and the definition of R that R cannot be
empty unless X = Y . Moreover, for every rectangle x ∈ R,
the set X ∪ {x} has obviously the three properties from
the Claim. We show that the branching always returns
a rectangle from R. If R contains a rectangle with right
index n, then this rectangle is found by the branching in
lines 6–7. Otherwise, let S be a wall of Y that is left-most
under the property that at least one of its left-neighboring
rectangles belongs to R. Note that, due to the definition
of S, the limiting rectangle of S must either belong to R
or to X. If the limiting rectangle of S belongs to R, then
this rectangle is found by the branching in lines 6–7. If,
however, the limiting rectangle of S belongs to X, then a
rectangle x ∈ R which is to the left of S is found by the
branching in lines 8–11.

4. Conclusion

The NP-hard Rectangle Tiling could develop into
a prime example for multivariate complexity analysis
[3, 16]—there are numerous natural parameters whose

5

influence on the overall complexity (in a parameterized
sense) are worthwhile investigation. One way to identify
interesting parameterizations is to have a closer look on
NP-hardness proofs and to check whether certain “quan-
tities” need to be unbounded in order to make the proof
(many-one reduction) work [12, 16]. For instance, in the
NP-hardness proofs for Rectangle Tiling unbounded
values of p (the number of covering rectangles) are used.
This leads us to one of our major open questions: Is Rect-
angle Tiling fixed-parameter tractable with respect to
the parameter p? A further natural parameter is the num-
ber of nonzero matrix entries [1]. We remark that deleting
all zero-rows and zero-columns from the matrix, it is not
hard to see that an instance of Rectangle Tiling can
be reduced in polynomial time to an equivalent instance
consisting of a matrix with only O(x2) entries, where x is
the number of nonzero entries. Moreover, the same data
reduction rule also gives an upper bound of O((wp)2) en-
tries for the reduced equivalent instance.

We focused on a small aspect of potential questions con-
cerning the parameterized respectively multivariate com-
plexity of Rectangle Tiling. We left completely un-
studied the case of allowing overlaps between the rectan-
gles [11], the case of alternative “cost functions” [14], more
than two dimensions of the input matrix [1, 18], or restric-
tions on the placement of the rectangles [7, 14]. All these
variants and combinations thereof deserve investigation.
The hope is to identify efficient exact algorithms for rel-
evant special cases. Indeed, many of these variants such
as tiling with overlapping squares seem completely unex-
plored. As a final open question, we ask whether Rectan-
gle Tiling is polynomial-time solvable or NP-hard when
restricted to binary matrices—in case of tiling with squares
we have shown NP-hardness but in the general case or in
the special case of only tiling with 2 × 2-squares this re-
mains open.

Acknowledgment. Part of this work done while all authors
were with FSU Jena. The authors are grateful to an anony-
mous referee for his careful and constructive feedback.

References

[1] Piotr Berman, Bhaskar DasGupta, S. Muthukrishnan, and
Suneeta Ramaswami. Efficient approximation algorithms for
tiling and packing problems with rectangles. Journal of Algo-
rithms, 41(2):443–470, 2001.

[2] Rodney G. Downey and Michael R. Fellows. Parameterized
Complexity. Springer, 1999.

[3] Michael R. Fellows. Towards fully multivariate algorithmics:
Some new results and directions in parameter ecology. In Pro-
ceedings of 20th International Workshop on Combinatorial Al-
gorithms (IWOCA ’09), volume 5874 of LNCS, pages 2–10.
Springer, 2009.

[4] Jörg Flum and Martin Grohe. Parameterized Complexity The-
ory. Springer, 2006.

[5] Dennis Fuchs, Zhen He, and Byung Suk Lee. Compressed his-
tograms with arbitrary bucket layouts for selectivity estimation.
Information Sciences, 177(3):680–702, 2007.

[6] Michael R. Garey and David S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. Free-
man, 1979.

[7] Michelangelo Grigni and Fredrik Manne. On the complexity of
the generalized block distribution. In Proceedings of 3rd Inter-
national Workshop of Parallel Algorithms for Irregularly Struc-
tured Problems (IRREGULAR ’96), volume 1117 of LNCS,
pages 319–326. Springer, 1996.

[8] Dimitrios Gunopulos, George Kollios, Vassilis J. Tsotras, and
Carlotta Domeniconi. Selectivity estimators for multidimen-
sional range queries over real attributes. The VLDB Journal,
14(2):137–154, 2005.

[9] Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural
view on parameterizing problems: Distance from triviality. In
Proceedings of the 1st International Workshop on Parameter-
ized and Exact Computation (IWPEC ’04), volume 3162 of
LNCS, pages 162–173. Springer, 2004.

[10] H. V. Jagadish, Nick Koudas, S. Muthukrishnan, Viswanath
Poosala, Kenneth C. Sevcik, and Torsten Suel. Optimal his-
tograms with quality guarantees. In Proceedings of 24th Inter-
national Conference on Very Large Data Bases (VLDB ’98),
pages 275–286. Morgan Kaufmann, 1998.

[11] Sanjeev Khanna, S. Muthukrishnan, and Mike Paterson. On
approximating rectangle tiling and packing. In Proceedings of
the 9th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA ’98), pages 384–393. ACM/SIAM, 1998.

[12] Christian Komusiewicz, Rolf Niedermeier, and Johannes
Uhlmann. Deconstructing intractability—a multivariate com-
plexity analysis of interval constrained coloring. Journal of Dis-
crete Algorithms, 9(1):137–151, 2011.

[13] Krzysztof Lorys and Katarzyna E. Paluch. New approximation
algorithm for RTILE problem. Theoretical Computer Science,
303(2-3):517–537, 2003.

[14] S. Muthukrishnan, Viswanath Poosala, and Torsten Suel. On
rectangular partitionings in two dimensions: Algorithms, com-
plexity, and applications. In Proceedings of the 6th Interna-
tional Conference on Database Theory (ICDT’99), volume 1540
of LNCS, pages 236–256. Springer, 1999.

[15] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms.
Oxford University Press, 2006.

[16] Rolf Niedermeier. Reflections on multivariate algorithmics and
problem parameterization. In Proceedings of the 27th Interna-
tional Symposium on Theoretical Aspects of Computer Science
(STACS ’10), volume 5 of LIPIcs, pages 17–32. IBFI Dagstuhl,
2010.

[17] Katarzyna E. Paluch. A 2(1/8)-approximation algorithm
for rectangle tiling. In Proceedings of the 31st Interna-
tional Colloquium on Automata, Languages, and Programming
(ICALP ’04), volume 3142 of LNCS, pages 1054–1065. Springer,
2004.

[18] Adam Smith and Subhash Suri. Rectangular tiling in multidi-
mensional arrays. Journal of Algorithms, 37(2):451–467, 2000.

6

	Introduction
	NP-Hardness of Tiling Binary Matrices with Squares
	Exact Algorithms for Rectangle Tiling
	Conclusion

