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Abstract Target Set Selection, which is a prominent NP-hard problem
occurring in social network analysis and distributed computing, is notoriously
hard both in terms of achieving useful polynomial-time approximation as
well as fixed-parameter algorithms. Given an undirected graph, the task is to
select a minimum number of vertices into a “target set” such that all other
vertices will become active in the course of a dynamic process (which may
go through several activation rounds). A vertex, equipped with a threshold
value t, becomes active once at least t of its neighbors are active; initially,
only the target set vertices are active. We contribute further insights into the
existence of islands of tractability for Target Set Selection by spotting
new parameterizations characterizing some sparse graphs as well as some
“cliquish” graphs and developing corresponding fixed-parameter tractability and
(parameterized) hardness results. In particular, we demonstrate that upper-
bounding the thresholds by a constant may significantly alleviate the search
for efficiently solvable, but still meaningful special cases of Target Set
Selection.
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André Nichterlein, Rolf Niedermeier, Mathias Weller
Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
E-mail: {andre.nichterlein, rolf.niedermeier, mathias.weller}@tu-berlin.de



2

1 Introduction

The NP-hard Target Set Selection (TSS) problem is defined as follows:
Given an undirected graph G = (V,E) where each vertex v ∈ V is assigned
a positive integer threshold value thr(v), the task is to find a minimum-
cardinality target set S ⊆ V . A vertex set S ⊆ V is called a target set of G
if it “activates” all vertices in G in a dynamic process where a vertex v gets
activated once at least thr(v) many of its neighbors are activated. Initially, only
the vertices in S are active. TSS generalizes well-known graph problems such
as Dominating Set with thresholds [21], Vector Dominating Set [32], k-
Tuple Dominating Set [25] (all these variants allow for only one “activation
round”), Vertex Cover [10] (where the threshold value equals the vertex
degree), Irreversible k-Conversion Set [15], r-Neighbor Bootstrap
Percolation [4] (where the threshold of each vertex is k or r, respectively),
and so-called dynamic monopolies [31] (where the threshold of a vertex v with
degree deg(v) is ddeg(v)/2e—in the following this condition is referred to as
majority thresholds). Besides being a problem of considerable graph-theoretic
interest, TSS is also motivated by applications in areas such as social network
analysis [10, 24] and distributed computing [31]. Indeed, since different research
communities use different names to describe the problem, some work has been
done independently from each other.

Since previous work has shown that TSS is computationally very hard
(both in terms of approximation complexity and in terms of parameterized
complexity) [6, 10, 29], it is a natural approach to search for practically
relevant, but computationally tractable special cases. We contribute to this line
of research by starting from the following: While TSS is linear-time solvable
both on trees [10] and on cliques [29, 33], it turns hard if the treewidth is
unbounded [6] (more specifically, it is W[1]-hard with respect to the parameter
treewidth of the graph) and it is NP-hard on graphs with diameter two [29]
(cliques are exactly the diameter-one graphs). This motivates the search for
further parameterizations that govern the computational complexity of TSS [6,
29]. In this work, we focus on parameterizations measuring the distance from
being a tree or forest and parameterizations measuring the distance from being
a clique or cluster graph. Since Target Set Selection is polynomial-time
solvable on forests and cliques, these parameterizations follow the “distance
from triviality” approach [20]. A paragraph in Section 2 is dedicated to further
discussing the relevance of the chosen parameters.

We are interested in the role of the allowed thresholds and one of our main
conclusions is that bounding the thresholds by a constant may be decisive in
order to gain (fixed-parameter) tractability. This is of interest since in several
applications, such as influence spreading in social networks, it is conceivable
that constant thresholds suffice to model the underlying application scenarios.
For instance, independent of my total number of friends it may suffice that at
least five of my friends (that is, neighbor vertices) in a social network buy a
certain product to convince me about the product’s usefulness.
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Previous Work. As mentioned before, TSS has recently received considerable
interest and, together with its variants, it appears under different names and
in different application contexts, making it somewhat hard to give a complete
overview on the corresponding results. Thus, we focus on previous results that
directly relate to our work and refrain from discussing the history of work on
TSS—a more thorough review of previous work can be found in [29].

Chen [10] showed hardness of approximating TSS within a ratio of 2log
1−ε(n)

for any fixed ε > 0 even for majority thresholds and thresholds at most two. For
unanimity thresholds (that is, thr(v) = deg(v) for every vertex v), TSS turns out
to be equivalent to the Minimum Vertex Cover problem [10] and therefore
is APX-complete and fixed-parameter tractable with respect to the solution
size. Very recently, Bazgan et al. [5] showed that a maximization variant of TSS
(MaxTSS: select k vertices such that as many vertices as possible get activated
in the end) has no parameterized approximation algorithm with respect to the
parameter “target set size k”; more precisely, MaxTSS with general thresholds
cannot be approximated within a factor n1−ε in time f(k) · nO(1) for any
function f unless FPT = W[2]. Ben-Zwi et al. [6] found that TSS is W[1]-hard
with respect to the parameter “treewidth” of the underlying graph. Indeed,
they also showed that TSS is polynomial-time solvable on constant-treewidth
graphs. However, the degree of the polynomial depends on the treewidth.
Recently, further parameterized complexity studies for the structural graph
parameters “diameter”, “cluster editing number”, “vertex cover number”, and
“feedback edge set number” have been undertaken [29]. Moreover, polynomial-
time algorithms for TSS restricted to special graph classes including chordal
graphs and block-cactus graphs have been developed [8, 11, 33].

Finally, there are numerous combinatorial studies concerning the sizes of
optimal target sets (upper and lower bounds) mostly with respect to special
graph classes [1, 2, 3, 9, 11, 15, 34].

The role of the threshold values and threshold functions has been studied in
the past. For instance, Dreyer and Roberts [15] showed NP-hardness for TSS
when all vertices have the same threshold t, t ≥ 3. Later, Chen [10] extended
this result to t = 2. Centeno et al. [8] and Chiang et al. [11] exploited threshold
values being upper-bounded by two to develop polynomial-time algorithms
for TSS on chordal graphs. Most interesting in our context, however, is the
result of Ben-Zwi et al. [6] who showed that TSS is W[1]-hard with respect to
the treewidth of the underlying graph in case of unbounded threshold values
whereas they showed it to be fixed-parameter tractable for the same parameter
once the threshold values are bounded by any constant.

Our Contributions. Starting from the efficient solvability of TSS on trees and
cliques [10, 29, 33], we investigate to what extent efficient algorithms can
be obtained for more general graph classes. On the one hand, we consider
parameters measuring tree-likeness or sparseness, thereby extending previ-
ous work [6, 29]. On the other hand, we spot several parameters measuring
distance to “cliquish” graphs. In both lines, we put particular emphasis on
how restricted threshold functions, in particular the majority and constant
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Fig. 1 Overview of the relations between structural graph parameters and our results for
Target Set Selection. An arc directed from a parameter α to a parameter β means that,
for all graphs, β can be upper-bounded in a linear function in α. Herein, “distance” refers to
the vertex deletion distance into the specified graph class. The three rectangles below each
parameter indicate the known results for TSS with (from left to right:) constant, majority,
and general threshold function. The white text on black background at the parameter “clique
cover number” means NP-hard for constant values of this parameter, violet (dark gray in
black and white version) background means W[1]-hard, green (light gray) background means
FPT, and white background indicates an open question. Results marked with “Th. x” are
obtained in this paper in Theorem x.

function, influence computational complexity. Notably, all our positive results
for constant thresholds generalize to the case that the maximum threshold tmax

is given as an additional parameter. To keep matters simple and in accordance
with previous work, however, we focus on constant thresholds. Our findings,
which are pictorially presented (including the relations between parameters) in
Figure 1, read as follows.

We start with the “sparse setting” (Section 3). For majority thresholds,
we show that W[1]-hardness results for parameters such as “feedback vertex
set number” and “pathwidth” for general threshold functions (which are due
to Ben-Zwi et al. [6]) extend to the case of majority thresholds (Theorem 1).
Conversely, the very same parameterizations lead to fixed-parameter tractability
results in case of constant threshold values [6]. Further, we briefly indicate that
TSS is fixed-parameter tractable for the parameter “bandwidth”1 even in case
of arbitrary threshold functions (Theorem 2).

Our main results are related to the “cliquish setting” (Section 4), centered
around the fixed-parameter tractability of TSS with respect to the parameter
“cluster vertex deletion number” (the minimum number of vertices to delete from
a graph to transform it into a union of disjoint cliques [22]): TSS is W[1]-hard
for general thresholds (Theorem 3) but becomes fixed-parameter tractable for
constant thresholds (Theorem 6), leaving the case of majority thresholds open

1 A graph with bandwidth k has a linear arrangement of its vertices v1, . . . , vn such that
the length |i− j| of each edge {vi, vj} is at most k.
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for future work. For the larger, also referred to as “weaker” [26], parameter
“distance to clique” (the minimum number of vertices whose deletion leaves
a clique), however, TSS is fixed-parameter tractable for both constant and
majority thresholds (Theorem 5) whereas this is open for general thresholds.
Finally, for the parameter “clique cover number” (the minimum number of
cliques needed to cover all vertices of a graph) we show NP-hardness even for
parameter value two (Theorem 4), rendering fixed-parameter tractability very
unlikely. The parameterized complexity for majority and constant thresholds
is open.

Again, refer to Figure 1 for an overview on our results in context of previous
work and the respective parameter relations in the spirit of “stronger” and
“weaker” parameterizations [26].

2 Preliminaries and Parameter Identification

Graph Notation. We use standard graph-theoretic notation. For graphs G =
(V,E), we use n := |V | and m := |E|. We omit the index of the neighbor-
hood NG(v) or degree degG(v) of a vertex v if G is clear from the context. To
formally define Target Set Selection, consider a graph G = (V,E) and
a function thr : V → N ∪ {0}. For a vertex set S ⊆ V , we define the set of
vertices that are activated by S in the ith round as AiG,thr(S) with

A0
G,thr(S) := S and

Ai+1
G,thr(S) := AiG,thr(S) ∪ {v ∈ V | |N(v) ∩ AiG,thr(S)| ≥ thr(v)}.

We call r(S) := max{i | Ai−1G,thr 6= AiG,thr} the number of activation rounds and

say that S is a target set for (G, thr) if Ar(S)G,thr(S) = V . We can now formally
define the central problem of this work:

Target Set Selection
Input: An undirected graph G = (V,E), a threshold function

thr : V → N ∪ {0} and an integer k ≥ 0.
Question: Is there a target set S ⊆ V for G with |S| ≤ k?

We denote the maximum threshold of an instance (G, thr) by tmax(G, thr) :=
max{thr(v) | v ∈ V (G)}. Again, we omit (G, thr) if it is clear from the context.

A cograph is a graph that does not contain an induced P4, that is, a
path on four vertices. A graph G = (V,E) is called interval graph if there
exists a set of real intervals {Iv | v ∈ V } such that Iv ∩ Iu 6= ∅ if and only
if {u, v} ∈ E [12]. A tree decomposition of a graph G = (V,E) is a pair (X,T ),
where X = {X1, . . . , Xn} is a family of subsets of V , and T is a tree whose
nodes are the subsets Xi, satisfying the following properties [12]:

1. The union of all sets Xi equals V . That is, each graph vertex is associated
with at least one tree node.

2. For every edge {v, w} in the graph, there is a subset Xi that contains both v
and w.
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3. If Xi and Xj both contain a vertex v, then all nodes of the tree in the
(unique) path between Xi and Xj contain v as well.

A path decomposition is defined analogously with the only difference that T
is required to be a path instead of a tree. The width of a tree (path) decom-
position is one less than the size of its largest set Xi ∈ X. The treewidth tw
(pathwidth pw) of a graph G is the minimum width among all possible tree
(path) decompositions of G.

Parameterized Complexity. This is a two-dimensional framework for studying
computational complexity [14, 18, 30]. One dimension of a parameterized
problem is the input size s, and the other one is the parameter (usually a
positive integer). A parameterized problem is called fixed-parameter tractable
(fpt) with respect to a parameter ` if it can be solved in f(`) · sO(1) time,
where f is a computable function only depending on `. This definition also
extends to combined parameters. Here, the parameter usually consists of a
tuple of positive integers (`1, `2, . . .) and a parameterized problem is called fpt
with respect to (`1, `2, . . .) if it can be solved in f(`1, `2, . . .) · sO(1) time.

A core tool in the development of fixed-parameter algorithms is polynomial-
time preprocessing by data reduction [7, 19]. Here, the goal is to transform a
given problem instance I with parameter ` in polynomial time into an equivalent
instance I ′ with parameter `′ ≤ ` such that the size of I ′ is upper-bounded by
some function g only depending on `. If this is the case, we call I ′ a (problem)
kernel of size g(`). Usually, this is achieved by applying polynomial-time
executable data reduction rules. We call a data reduction rule R correct if the
new instance I ′ that results from applying R to I is a yes-instance if and only
if I is a yes-instance. An instance is called reduced with respect to some data
reduction rule if further application of this rule has no effect on the instance.
The whole process is called kernelization. It is well-known that a parameterized
problem is fixed-parameter tractable if and only if it has a problem kernel.

Using parameterized reductions, Downey and Fellows [14] developed a
framework to show that problems are unlikely to be fpt. A parameterized
reduction from a parameterized problem P to another parameterized problem P ′

is a function that, given an instance (x, `), computes in f(`) · sO(1) time an
instance (x′, `′) (with `′ only depending on `) such that (x, `) is a yes-instance
of P if and only if (x′, k′) is a yes-instance of P ′. The basic complexity class
for fixed-parameter intractability is called W[1] and there is good complexity-
theoretic reason to believe that W[1]-hard problems are not fpt [14, 18, 30].
Moreover, there is a whole hierarchy of classes W[t], t ≥ 1, where, intuitively,
problems become harder with growing t. In this sense, W[1]-hardness is the
parameterized complexity analog of NP-hardness.

Parameter Identification. Fixed-parameter algorithms work best if the param-
eter they are designed for is small in practice. TSS having many applications
on social networks [16], it is natural to extract small parameters from typical
properties of social networks. A widely accepted property of social networks
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is the so-called “small-world phenomenon”, roughly stating that the diameter
of social networks is usually small. Unfortunately, the diameter of the input
graph turns out not to be a suitable parameter since even diameter-two graphs
lead to intractability results [29].

The parameters considered in this work are derived from the observation
that there are actually multiple types of social networks. When the network
models friendships for example, we expect the network to be made up of
multiple cliques (or otherwise dense substructures) that overlap. This motivates
considering the number of cliques needed to cover all vertices [23] (the “clique
cover number”) or the number of vertices to remove to obtain a clique (the
“distance to clique”). As the latter parameter is somewhat restrictive, we also
consider the number of vertices to delete in order to obtain a collection of
disjoint cliques (the “cluster vertex deletion number”). Recently, the cluster
vertex deletion number was also used to parameterize problems related to
coloring and hamiltonicity [13]. Other less restrictive parameters related to the
denseness of a network such as “distance to cograph” and “distance to interval”
are also considered.

In some applications, we deal with very sparse social networks, for instance
networks modeling sexual contacts [16, Chap. 2, Fig. 2.7]. In these cases,
parameters related to the sparseness of the input graph are interesting. Hence,
we consider the number of vertices to remove to obtain an edgeless graph
(“vertex cover number”), the number of edges or vertices to remove to obtain
a forest (“feedback edge set number” and “feedback vertex set number”) as
well as some graph width parameters (treewidth, pathwidth, bandwidth).

Note that all these parameters except the diameter and the “feedback edge
set number” are NP-hard to compute. However, for the two parameters for
which we present positive results—namely “distance to clique” (that is the
size of minimum vertex cover in the complement graph) and “cluster vertex
deletion number”—there exist constant-factor polynomial time approximation
algorithms. Furthermore, there exist simple search tree algorithms for com-
puting these parameters showing that they are fixed-parameter tractable with
respect to their solution size [30].

Data Reduction. We use the following two data reduction rules throughout our
work.

If the threshold of a vertex exceeds its degree, then it cannot be activated
by its neighbors and, hence, the vertex is part of any target set. Moreover, we
consider threshold-0 vertices as already active.

Reduction Rule 1 ([29, Reduction Rule 1]) Let G = (V,E) and v ∈ V .
If thr(v) > deg(v), then delete v, decrease the threshold of all its neighbors
by one and decrease k by one. If thr(v) = 0, then delete v and decrease the
thresholds of all its neighbors by one.

In an instance that is reduced with respect to Reduction Rule 1, every degree-
one vertex has threshold one. Thus, considering an arbitrary degree-one vertex,
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we do not select it into the target set as choosing its neighbor is at least as
good. This is formalized in the next data reduction rule.

Reduction Rule 2 ([29, Reduction Rule 5]) Let (G, thr, k) be an instance
of TSS reduced with respect to Reduction Rule 1 and let v ∈ V (G) with thr(v) =
deg(v) = 1. Then, delete v from G.

3 Parameters Related to Sparse Structures

In this section, we consider parameters that measure the sparseness of the
input graph. Since trees are the most sparse connected graphs and TSS is
polynomial-time solvable on trees [10], parameters measuring the distance to
trees are most interesting. Canonical candidates for this are the treewidth, the
pathwidth, and the feedback vertex set number of the input graph. Notably, if
the maximum threshold tmax is bounded by a constant, then a fixed-parameter
algorithm of Ben-Zwi et al. [6] for the parameter “treewidth tw” can solve

TSS in t
O(tw)
max · nO(1) time, implying fixed-parameter tractability for the three

parameters mentioned above. Furthermore, Ben-Zwi et al. [6] proved W[1]-
hardness for TSS with respect to the parameter “treewidth” when the thresholds
are unbounded. We extend this result by showing W[1]-hardness for treewidth
when the thresholds respect the majority condition. The proof even shows
hardness for the combined parameter “feedback vertex set, pathwidth, distance
to cographs, and distance to interval graphs”. Finally, we show that TSS is
fixed-parameter tractable when parameterized by the bandwidth. This result
even holds for general thresholds.

3.1 Basic Reduction

In the following, we recall the reduction of Ben-Zwi et al. [6], since it forms a
basis for other W[1]-hardness reductions in this work. The reduction, which we
will refer to as basic reduction, is from the W[1]-hard Multicolored Clique
problem [17], which is defined as follows.

Multicolored Clique (MCC)
Input: An undirected graph G = (V,E), an integer k ≥ 0, and

a coloring col : V → {1, . . . , k}.
Question: Does G contain a multicolored clique of size k, that

is, a vertex subset V ′ ⊆ V with |V ′| = k such that
for all u, v ∈ V ′ it holds that {u, v} ∈ E and col(u) 6=
col(v)?

Let (G, col, k) be an MCC instance. An equivalent instance (G′, thr, k′) is
constructed as follows. For each color c ∈ {1, . . . , k}, create a vertex-selection
gadget Xc consisting of a star whose leaves one-to-one correspond to ver-
tices with color c in G. For each pair of distinct colors c1, c2 ∈ {1, . . . , k},
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let E{c1,c2} ⊆ E be the set of all edges that connect vertices of color c1 with
vertices of color c2 and create the following edge-selection gadget X{c1,c2}.
The edge-selection gadget X{c1,c2} consists of a star whose leaves one-to-one
correspond to edges in E{c1,c2}. The center vertex of any star is called guard.

The second type of gadgets is a validation gadget. They use the arbitrary
bijection low : V → {1, . . . , n} and the bijection high : V → {n, . . . , 2n − 1}
defined as high(v) := 2n− low(v) for each v ∈ V . For each {c1, c2} with c1, c2 ∈
{1, . . . , k}, add two validation gadgets Vc1,c2 and Vc2,c1 each consisting of two
vertices. Now, for each {u, v} ∈ E{c1,c2} such that col(v) = c1, connect the first
validation gadget Vc1,c2 as follows:

Let v′ be the vertex in Xc1 corresponding to v. First, add low(v) vertices and
connect them to v′ and to the first vertex of Vc1,c2 . Next, add high(v) vertices
and connect them to v′ and to the second vertex of Vc1,c2 . Analogously, denoting
with e{u,v} the vertex in X{c1,c2} corresponding to {u, v}, add high(v) vertices
and connect them to e{u,v} and to the first vertex of Vc1,c2 . Then, add low(v)
vertices and connect them to e{u,v} and to the second vertex of Vc1,c2 . The
second validation gadget Vc2,c1 is analogously connected to the vertex of Xc2

that corresponds to u and to e{u,v} in X{c1,c2}.

We call all the vertices adjacent to vertices of a validation gadget connection
vertices. The thresholds are set as follows: Guard vertices and connection
vertices have threshold one, the two vertices in each validation gadget have
threshold 2n, and the remaining vertices in the selection gadgets have a
threshold equal to their degree. Finally, k′ = k +

(
k
2

)
. This completes the

reduction.

As to the correctness: If the instance (G, col, k) is a yes-instance of MCC
then the vertices chosen to be in the target set of G′ refer to the multicolored
clique in G: For each vertex in the clique, the corresponding vertex in the
vertex-selection gadget is in the target set. Furthermore, for each edge in the
clique the corresponding vertex in the edge-selection gadget is in the target set.
This target set activates the whole graph. In the reverse direction the validation
gadgets play a central role: Each validation gadget connects a vertex-selection
gadget with and edge-selection gadget. The vertices in the validation gadget
only become activated if a vertex in the vertex-selection gadget and a vertex
in the edge-selection gadget are in the target set such that the corresponding
vertex and edge in G are incident. Basically this ensures that one has to choose
vertices in G′ into the target set that refer to a multicolored clique in G. We
refer the reader to Ben-Zwi et al. [6] for more details.

While it is not explicitly stated by Ben-Zwi et al. [6], the presented basic
reduction shows W[1]-hardness for general thresholds with respect to the
combined parameter feedback vertex set, distance to cograph, distance to
interval graph, and pathwidth. To see this, first observe that once we have
deleted all guard vertices and validation gadgets (that is,

(
k
2

)
+k vertices) in G′,

we get a new graph G′′ which consists of stars and isolated vertices. Thus, G′′

contains no cycles and is both a cograph and an interval graph implying W[1]-
hardness with respect to the combined parameter feedback vertex set, distance



10

to cograph, and distance to interval graph. Finally, the graph G′ has pathwidth
O(k2) which implies W[1]-hardness with respect to the pathwidth: Indeed, one
can add the O(k2) deleted vertices to every node of a path decomposition of
G′′ of width 1 (such path decomposition exists since G′′ is a collection of stars
and isolated vertices and, thus, has pathwidth 1).

3.2 Extending the Basic Reduction to Majority Thresholds

In the following, we show that the basic reduction can be extended to the
majority case.

Theorem 1 Target Set Selection with majority threshold is W[1]-hard
even with respect to the combined parameter feedback vertex set, distance to
cograph, distance to interval graph, and pathwidth.

Proof We modify the basic reduction to get the new, equivalent instance
(G′′, thr′, k′′) as follows. For each vertex v in a validation gadget, add degG′(v)−
4n vertices adjacent to v. Moreover, for each guard vertex v add degG′(v)−
2 neighbors. Let X be the set of vertices added so far. Insert a new vertex u
adjacent to all vertices in X and add |X|+2(k′+2) vertices to the neighborhood
of u. To complete the modification of the graph, for every vertex v in a selection
gadget, attach degG′(v) neighbors. Finally, set thr′(v) := ddegG′′(v)/2e for
all v ∈ V (G′′) and k′′ := k′ + 1. We claim that (G′′, thr′, k′′) is equivalent
to (G′, thr, k′).

“⇒”: Suppose that there is a solution S′ for (G′′, thr′, k′′). First, observe
that u ∈ S′ since otherwise u would not become active. Indeed, even if all the
vertices in G′′ plus k′′ degree-one neighbors of u are activated, the vertex u will
not be activated since its threshold is |X|+k′′+1. Since u is in all solutions, we
may consider the equivalent instance where u is removed together with all its
neighbors (they all have threshold one and thus get activated by u). Moreover,
for each removed vertex v, we have to decrease the threshold of the vertices
in N(v) by one. This operation leaves a graph with many degree-one vertices of
threshold one. Applying Reduction Rule 2, we arrive at the instance (G′, thr, k′).
By correctness of Reduction Rule 2, the equivalence follows.

“⇐”: Conversely, let S be a solution for (G′, thr, k′). Since activating u
and exhaustively applying Reduction Rule 2 results in (G′, thr, k′), it is clear
that S ∪ {u} is a target set for (G′′, thr′) of size k′ + 1.

To complete the proof of the theorem, it is enough to observe that if we
remove the vertex u, all guard vertices, and the validation gadgets (that is,(
k
2

)
+ k + 1 vertices), then we get stars and isolated vertices. Therefore, using

the same arguments as before, the result follows. ut

3.3 Bandwidth

Another measure for sparseness is the bandwidth of the input. Here, our result
is of more positive nature: we observe that Target Set Selection is fixed-
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parameter tractable with respect to the bandwidth, even for general threshold
functions, by using an algorithm of Ben-Zwi et al. [6].

Theorem 2 Target Set Selection is fixed-parameter tractable with respect
to the parameter “bandwidth”.

Proof Let (G = (V,E), thr, k) be an instance of TSS. First, exhaustively apply
Reduction Rule 1 to get a new equivalent instance (G′ = (V ′, E′), thr′, k′).
Observe that thr′(v) ≤ degG′(v) for all v ∈ V ′. Let bw denote the bandwidth
of G′. By the definition of bandwidth it follows that degG′(v) ≤ 2 · bw and,
thus, thr′(v) ≤ 2 · bw for all v ∈ V ′. Moreover, Ben-Zwi et al. [6] gave a
(tmax)O(tw) ·n-time algorithm for solving TSS, where tw is the treewidth of the
input graph and tmax is the maximum threshold value. Since tw ≤ 2 · bw, this
algorithm applied to G runs in (2 bw)O(bw) · n time. ut

4 Parameters Related to Dense Structures

In contrast to Section 3, we now consider TSS with respect to parameters
related to the denseness of the input graph. Since cliques are the most dense
graphs and TSS is polynomial-time solvable on cliques [29, 33], parameters
measuring the distance to cliques are most interesting. In particular, we consider
the vertex deletion distance to a clique and to a collection of disjoint cliques
(also called “cluster vertex deletion number” or “cvd number” for short), and
the clique cover number.

Starting with the case of unrestricted thresholds in Subsection 4.1, we
show that TSS parameterized by the size of a minimum cluster vertex deletion
(cvd) set is W[1]-hard. Furthermore, we show NP-hardness when restricting
TSS to instances with clique cover number two. Then, in Subsection 4.2,
we study restricted threshold functions. For constant or majority thresholds,
TSS parameterized by the distance to a clique is fixed-parameter tractable.
Furthermore, we show an exponential-size problem kernel for TSS with respect
to the combined parameter maximum threshold value and cvd number, implying
fixed-parameter tractability with respect to the cvd number on inputs with
thresholds bounded by a constant.

4.1 Unrestricted Thresholds

In the following, we consider the general TSS setting without constraints on
the thresholds of the input. The next two theorems state that these variants are
(presumably) parameterized intractable with respect to the employed denseness
measures.

Theorem 3 Target Set Selection is W[1]-hard with respect to the param-
eter “cvd number”.



12

Vertex-
Selection
gadget

1

.

..

u

4

5

6

7

8

1

2

3

Validation
gadget

8

8

1
...

w

7

8

1

2

3

4

5

6

8

8

Edge-
Selection
gadget

1

.

..

eu,w

14

15

16

9

10

11

12

13

3

4

5

6

7

8

1

2

Fig. 2 Graph obtained after carrying out the modifications in the proof of Theorem 3 (with
n = 4). The vertices inside an ellipse form a clique. The numbers in the vertices denote the
thresholds. If no number is inside a vertex, the threshold is equal to the degree.

Proof We modify the basic reduction (see Subsection 3.1) as follows. Make all
connection vertices that have a common vertex in a (vertex- or edge-) selection
gadget to a clique. The thresholds of the connection vertices are modified as
follows: In each maximal clique of the connection vertices, an arbitrary ordering
of the vertices is fixed. Then the first vertex has threshold one, the second has
threshold two, and the ith vertex has threshold i. See Figure 2 for a scheme of
the reduction.

Note that each connection vertex is contained in exactly one maximal
clique. Also the following holds: Let C be such a maximal clique, V 1 (resp. V 1

and V 2) denote the validation gadget adjacent to C, and v the vertex adjacent
to C in the vertex-selection gadget (resp. the edge-selection gadget). Then all
connection vertices in C are activated if and only if either v is activated or all
the vertices in V 1 (resp. V 1 and V 2) are activated.
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We now prove that (G, col, k) is a yes-instance of Multicolored Clique
if and only if (G′, thr,

(
k
2

)
+ k) is a yes-instance of TSS.

“⇒”: Suppose that (G, col, k) has a multicolored clique C ⊆ V of size k.
Then the set S := {v ∈ C} ∪ {eu,v | u, v ∈ C} is a target set for (G′, thr, k′).
Indeed, in the first step of the propagation process all guard vertices are
activated since they are all adjacent to a vertex in S. After 4n steps, all the
connection vertices adjacent to a vertex in S get activated. During the next step,
all 4

(
k
2

)
vertices in validation pairs will be activated since C is a multicolored

clique of size k. From now on, it is not hard to see that the entire graph will
be activated.

“⇐”: Conversely, assume that (G′, thr, k′) has a target set S ⊆ V ′ of size k.
First, we may assume that S does not contain any guard vertex since they
all have threshold one. Moreover, one has to pick up in the target set at
least one vertex in each selection gadget to activate the guard vertex of the
latter. Indeed, recall that every neighbor of a guard vertex has a threshold
equal to its degree and the guard vertex is not in the target set. Thus, every
target set contains at least one vertex in each selection gadget. Furthermore,
since k′ =

(
k
2

)
+ k we conclude that there is exactly one vertex from each

selection gadget in a minimal target set. Suppose now that we select two
vertices u ∈ Xc1 and v ∈ Xc2 together with an edge-vertex eu′,v′ ∈ X{c1,c2}
for some c1, c2 ∈ {1, . . . , k} such that eu′,v′ is not incident to both u and v.
Without loss of generality, we may assume that u 6= u′. Then at least one vertex
in the validation gadgets Vc1,c2 and Vc2,c1 will not be activated. To see this,
recall that for all w ∈ V ′ it holds that high(w)+ low(w) = 2n and, since u 6= u′,
we have either low(u) + high(u′) < 2n or high(u) + low(u′) < 2n. This implies,
as previously discussed, that some connection vertices will not be activated, a
contradiction. ut

Theorem 4 Target Set Selection is NP-hard and W[2]-hard with respect
to the parameter “target set size” k, even on graphs with clique cover number
two.

Proof We present a parameterized reduction from Hitting Set, which is
W[2]-complete [14] with respect to the parameter “solution size k”.

Hitting Set (HS)
Input: A collection F of subsets of a finite set U and an

integer k ≥ 0.
Question: Is there a subset U ′ ⊆ U with U ′ ≤ k such that U ′

contains at least one element from each subset in F?

Given an HS-instance (F , U, k) consisting of a set family F = {F1, . . . , Fm}
over a universe U = {u1, . . . , un} and an integer k ≥ 0, we construct a TSS-
instance (G, thr, k) consisting of a graph G = (V,E), a threshold function thr :
V → N ∪ {0}, and k as follows.

We start with the construction of the graph G. The set VU of vertices
contains a vertex for every element u ∈ U , that is, VU := {vu | u ∈ U}.
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Fig. 3 A schematic picture of the constructed graph. Each of the two vertex sets V1 (upper
box) and V2 (lower box) forms a clique. The number below a vertex denotes its threshold.
The only way to activate all vertices with a target set of size k is to choose k vertices in VU
such that these k vertices activate all vertices in WF .

Analogously, the set WF contains a vertex for every subset, that is, WF := {wF |
F ∈ F}. The vertices in VU are called element vertices and the vertices in WF
are called subset vertices. There is an edge between an element vertex vu and a
subset vertex wF if and only if u ∈ F . Next, add a new vertex x 6∈ (VU ∪WF )
to G and connect x to all vertices in WF . Then, make V1 := VU ∪ {x} a
clique. Add |F| − 1 sets of vertices V B1 , . . . , V B|F|−1 to the graph, each set

containing α := |U |+ 2 vertices and let V B :=
⋃|F|−1
i=1 V Bi . Finally, make V2 :=

WF ∪ V B1 ∪ . . . ∪ V B|F|−1 a clique.
The thresholds are set as follows. For every subset vertex wFi ∈ WF , set

the threshold thr(wFi) := (i − 1)α + i, for every element vertex vu ∈ VU ,
set thr(vu) := |{F ∈ F | u ∈ F}| + k + 1, and for each vertex v ∈ V Bi ,
1 ≤ i ≤ |F| − 1, set thr(v) := (i− 1)α+ i. Finally, complete the construction
by setting thr(x) := |WF |+ k

Since V1 and V2 are cliques, the constructed graph G is a diameter-two
graph whose vertices can be covered by two cliques, see Figure 3.

For the correctness it remains to show that (F , U, k) is a yes-instance of
HS if and only if (G, thr, k) is a yes-instance of TSS.

“⇒”: If (F , U, k) is a yes-instance, then there exists a size-k hitting set U ′

for F . We show that S := {vu | u ∈ U ′} is a size-k target set for G. Since U ′

is a hitting set, every vertex in WF has at least one neighbor in S. Thus, all
vertices in V1 become active in 2|WF | − 1 rounds: In the first round wF1

is
activated since thr(wF1

) = 1. Then in the second round, all vertices in V B1
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are activated since all these vertices also have threshold one and wF1 is active.
For 2 ≤ i ≤ |WF |, in the (2i− 1)th round the vertex wFi is activated and in the
next round all vertices in V Bi : The neighbors of wFi that are active in round 2i−2
are the following: all vertices in V B1 ∪ . . . ∪ V Bi−1, the vertices wF1

, . . . , wFi−1
,

and at least one vertex in S. Since the threshold thr(wFi) is (i− 1)α+ i, the
vertex wFi is activated. Then, there are (i− 1)α+ i active vertices in V2 and,
hence, all vertices in V Bi are activated in the 2ith round. After all vertices in V2
are active, x is activated. Finally, in the last round all vertices in VU \ S are
activated since for every vertex in VU \ S all neighbors in WF and x have been
activated.

“⇐”: If (G, thr, k) is a yes-instance of TSS, then there is a target set S of
size at most k. We first show that S ⊆ VU .

Assume towards a contradiction that there is a vertex in S \ VU .
Then, |S ∩ VU | ≤ k − 1. Let ` denote the first round in which a vertex
in VU \ S is activated, that is, ` := min{j | AjG,thr(S) ∩ (VU \ S) 6= ∅}.
Moreover, let vu ∈ A`G,thr(S) ∩ (VU \ S). Note that, by definition of `, it holds

that |A`−1G,thr(S) ∩ (V1)| ≤ k. Hence:

|NG(vu) ∩ A`−1G,thr(S)| =|NG(vu) ∩ A`−1G,thr(S) ∩WF |

+ |NG(vu) ∩ A`−1G,thr(S) ∩ (V1)|
≤|{F ∈ F | u ∈ F}|+ k

<|{F ∈ F | u ∈ F}|+ k + 1 = thr(vu),

a contradiction. Therefore, S ⊆ VU .
Finally, we show that U ′ := {u | vu ∈ S} is a hitting set for F . To this end,

we show that every subset vertex wFi has a neighbor in S and, hence, is hit
by U ′. Assume towards a contradiction that there exists a vertex wFi ∈ WF
with NG(wFi) ∩ S = ∅. Let Xi := (

⋃
i≤j≤|F|−1 V

B
j ) ∪ (

⋃
i≤j≤|F|{wFi}).

Let ` denote the first round in which a vertex in Xi is activated, that
is, ` := min{j | AjG,thr(S) ∩Xi 6= ∅}.
Hence:
|A`−1G,thr(S) ∩WF | = |A`−1G,thr(S) ∩ (WF \Xi)| ≤ i− 1 and

|A`−1G,thr(S) ∩ V B | = |A`−1G,thr(S) ∩ (V B \Xi)| ≤ |
⋃

1≤j<i V
B
j | = (i− 1)α.

Let v ∈ Xi ∩ V B , then we have:

|A`−1G,thr(S) ∩NG(v)| = |A`−1G,thr(S) ∩ V B |+ |A`−1G,thr(S) ∩WF |
≤ (i− 1)α+ i− 1

< (i− 1)α+ i ≤ thr(v)

and, thus, A`G,thr(S) ∩ Xi ∩ V B = ∅. Now consider v ∈ Xi ∩ (WF \ {wFi}).
Observe that |A`−1G,thr ∩ V1| = |S| = k. Thus, we have:

|A`−1G,thr(S) ∩NG(v)| ≤ |A`−1G,thr(S) ∩ V B |+ |A`−1G,thr(S) ∩WF |+ |A`−1G,thr(S) ∩ V1|
≤ (i− 1)α+ i− 1 + k

< iα+ i+ 1 ≤ thr(v)
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and, thus, A`G,thr(S) ∩Xi ∩ (WF \ {wFi}) = ∅. Finally, consider v = wFi :

|A`−1G,thr(S) ∩NG(v)| ≤ |A`−1G,thr(S) ∩ V B |+ |A`−1G,thr(S) ∩WF |
≤ (i− 1)α+ i− 1

< (i− 1)α+ i = thr(v)

and, thus, wFi /∈ A`G,thr(S). Altogether we have A`G,thr(S) ∩Xi ∩ V B = ∅,
A`G,thr(S) ∩ Xi ∩ (WF \ {wFi}) = ∅, and wFi /∈ A`G,thr(S) and,

hence, A`G,thr(S) ∩Xi = ∅, a contradiction. ut

4.2 Restricted Thresholds

In the spirit of researching the influence of bounded thresholds on TSS, we con-
sider the parameters “distance to clique” and “cluster vertex deletion number”
(cvd number). Recall that we showed W[1]-hardness for the parameter “cvd
number” for unbounded thresholds in the previous paragraph. By presenting
an exponential-size problem kernel, we show that the problem becomes fixed-
parameter tractable with respect to this parameter if the maximum threshold
is a constant.

First, we show that TSS with majority thresholds or constant thresholds is
fixed-parameter tractable with respect to the parameter “distance ` to clique”.
Indeed, we can even show fixed-parameter tractability for less restrictive
threshold functions. To this end, let P(V ) be the power set of V .

Theorem 5 Target Set Selection on graphs with vertex set V is fixed-
parameter tractable with respect to the parameter “distance ` to clique” if the
threshold function thr fulfills the restriction

thr(v) > g(`)⇒ thr(v) = f(N(v))

for all vertices v ∈ V and arbitrary functions f : P(V )→ N and g : N→ N.

Proof We prove the theorem by giving a fixed-parameter algorithm computing
a minimum-size target set for (G, thr). To this end, we introduce some notation.
Let X ⊂ V , |X| = `, denote a set of vertices such that G[V \X] is a clique.
We define a non-standard “twins” equivalence relation ≡ by

u ≡ v ⇐⇒ (N [u] = N [v]) ∧ (thr(u) = thr(v)) ∧ (u ∈ X ⇐⇒ v ∈ X).

Since the thresholds and neighborhoods of all vertices in an equivalence class Z
are equal, we can denote this threshold and this neighborhood by thr(Z)
and N [Z], respectively. Let Z1, Z2, . . . , Zs be a list of all nonempty equivalence
classes of ≡. Since G[V \ X] is a clique, we know that for all u, v ∈ V \ X
it holds that N [u] = N [v] if and only if NG[X][u] = NG[X][v]. Due to the
condition thr(v) > g(`) ⇒ thr(v) = f(N(v)), for each subset X ′ ⊆ X, there
are at most g(`) + 1 equivalence classes disjoint from X whose neighborhood
in X is exactly X ′. Hence, s ≤ 2`(g(`) + 1) + `.
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Let S be a minimum-size target set for (G, thr). With S, we can define ri
as the number of the first activation round in which all vertices of Zi are active.
More formally, ri := min{j | Zi ⊆ AjG,thr(S)}. Let r := max{ri | 1 ≤ i ≤ s}.

In the following, we upper-bound r by s. We do this by showing that for
each 1 ≤ j ≤ r, there is an 1 ≤ i ≤ s such that ri = j. Assume this was false,
that is, there is some activation round j such that none of the equivalence
classes gets activated in round j. Since j ≤ r, there is some vertex v that gets
activated in round j. Let Zi denote the equivalence class of v. Since j ≥ 1, we
know that |N(v) ∩ Aj−1G,thr(S)| ≥ thr(v). Since for each vertex u ∈ Zi, thr(u) =

thr(v) and N(u) = N(v), we conclude that Zi ⊆ AjG,thr(S), contradicting the
assumption that ri 6= j.

Now we describe our algorithm. In the first phase, we guess the correct
values of ri for all 1 ≤ i ≤ s. There are at most rs ≤ ss possibilities to do so.

In the second phase of the algorithm, we use an ILP formulation to solve
the problem. Each variable xi in the ILP represents the number of vertices
in the equivalence class i that are in the target set S. We use constraints
to model the activation process: For each equivalence class Zi, the number
of active neighbors in round ri have to exceed thr(Zi). Two types of active
neighbors are considered. First, the vertices in N [Zi] ∩ S. Second, the vertices
in all equivalence classes Zj ⊆ N [Zi] that are active in round i, that is, rj < ri.
More formally,

Minimize:

s∑
i=1

xi

subject to: ∀1 ≤ i ≤ s : thr(Zi) ≤
∑

Zj⊆N[Zi]

rj≥ri

xj +
∑

Zj⊆N[Zi]

rj<ri

|Zj |,

∀1 ≤ i ≤ s : xi ∈ {0, 1}.

By the discussion above, a solution to this ILP corresponds to a minimum-size
target set for (G, thr). Since the ILP formulation has s variables, a result by
Lenstra [27] implies that solving it is fixed-parameter tractable with respect
to s. Since at most ss such ILPs have to be solved and s ≤ 2`(g(`) + 1) + `,
fixed-parameter tractability with respect to ` follows. ut

Clearly, Theorem 5 is a pure complexity classification result. Since the majority
thresholds and constant thresholds both satisfy the restrictions required in
Theorem 5, the next corollary immediately follows.

Corollary 1 Target Set Selection with majority thresholds or constant
thresholds is fixed-parameter tractable with respect to the parameter “distance
to clique”.

Next, we show fixed-parameter tractability for TSS with constant thresholds
with respect to the parameter “cvd number”. In the following, we assume
that an optimal cvd set X of the input graph is given. If this is not the case,
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then one might instead use a simple factor-3 approximation.2 Either way, we
abbreviate ` := |X|.

In this section we use the notion of “critical cliques”. Here, a clique K in a
graph is critical if all its vertices have the same closed neighborhood and K is
maximal with respect to this property.

First, we present a data reduction rule allowing us to bound the number
of vertices with the same open or closed neighborhood by the maximum
threshold tmax.

Reduction Rule 3 Let I := (G = (V,E), thr, k) be an instance of TSS that
is reduced with respect to Reduction Rule 1 and let v1, v2, . . . , vtmax+1 ∈ V be
vertices such that either

N(v1) = N(v2) = . . . = N(vtmax+1) or N [v1] = N [v2] = . . . = N [vtmax+1].

Furthermore, let v1 be the vertex with the highest threshold, that is, for all 1 ≤
i ≤ tmax + 1 it holds that thr(v1) ≥ thr(vi). Then delete v1.

Lemma 1 Reduction Rule 3 is correct and can be exhaustively applied in
O(n+m) time.

Proof For the running time, note that computing the critical cliques of a graph
can be done in linear time [28]. Thus, we first compute the critical cliques of
the graph in linear time. Then we iterate over the critical cliques and if one
of them has size tmax + r, r > 0, then we delete the r vertices of this critical
clique having the largest thresholds. This can clearly be done in linear time.
Notice that a maximal set of vertices with the same open neighborhood form
a critical clique in the complement graph. Hence, in a second step, we repeat
the procedure with the complement graph. Then the graph is reduced with
respect to Reduction Rule 3. Furthermore observe that Reduction Rule 1 is
not applicable after Reduction Rule 3 was applied.

To show the correctness, we prove that the instance (G′ = (V ′, E′), thr, k)
that is produced by Reduction Rule 3 is a yes-instance if and only if the input
instance I is a yes-instance.

“⇒:” Since (G′, thr, k) is a yes-instance, there exists a target set S ⊆ V ′,
|S| ≤ k, that activates all vertices inG′. Hence, S activates all vertices of V \{v1}
in G. Since (G, thr, k) is reduced with respect to Reduction Rule 1, the vertex v1
is activated by its neighbors. Thus, S is also a target set for (G, thr, k).

“⇐:” Since (G, thr, k) is a yes-instance, there exists a target set S ⊆ V , |S| ≤
k, activating all vertices in G. Let W = {v1, v2, . . . , vtmax+1} be the vertices
considered in the reduction rule. First observe that we can assume W \ S 6= ∅,
(that is, not all vertices of W are in the target set) since otherwise S′ = S \{v1}
is also a target set: In the first activation round all vertices in N(v1) become
active and, since (G, thr, k) is reduced with respect to Reduction Rule 1, it
follows that v1 is active after the second round. Thus, S′ is also a target set.

2 An undirected graph is a cluster graph if and only if it contains no induced P3, that is,
an induced path of three vertices. Using this characterization, the factor 3-approximation
simply deletes all vertices occurring in an induced P3.
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Now consider the case that v1 /∈ S. Since for all vi ∈W it holds that thr(v1) ≥
thr(vi) and v1 is activated by its neighbors, it is clear that all vertices in W \{v1}
are active once v1 is active. Since |W | > tmax this implies that all vertices
in NG(v1) become active in G′ and, thus, S is a target set for G′.

Finally, consider the case that v1 ∈ S. Let w ∈ W \ S be the vertex with
the highest threshold, that is, for all vi ∈W \ S it holds that thr(w) ≥ thr(vi).
Observe that S′ = (S \ {v1}) ∪ {w} is a target set for G′: Since S activates all
vertices in W it is clear that S′ activates all vertices in W \ {v1}. This implies
that all vertices in N(v1) are activated by S′ in G′ since |W \ {v1}| = tmax and
all vertices in W have the same neighborhood. Thus, S′ activates all vertices
in G′. ut

In the following we assume that the input graph G is reduced with respect to
Reduction Rule 1 and Reduction Rule 3. Thus, G[V \X] consists of disjoint
cliques. Each of these cliques contains at most tmax vertices for each of the
2` neighborhoods in X. Hence, in order to show a problem kernel it remains
to bound the number of cliques in G[V \X]. To this end, we introduce the
following notation:

Definition 1 Let I := (G = (V,E), thr, k) be an instance of TSS, let X ⊆ V
be a cvd set, and let S ⊆ V . Let C1, C2 ⊆ V be two clusters in G[V \ X].
We call C1 and C2 equivalent with respect to X, denoted by C1 ≡X C2, if
there exists a bijection f : C1 → C2 such that for every v ∈ C1 it holds
that thr(v) = thr(f(v)) and N(v)∩X = N(f(v))∩X. Furthermore, we call C1

and C2 equivalent with respect to X and S, denoted by C1 ≡SX C2, if the
bijection f additionally fulfills v ∈ S ⇐⇒ f(v) ∈ S for all v ∈ C1.

Note that ≡X is an equivalence relation on the clusters in G[V \ X] with

at most (tmax + 1)2
`tmax equivalence classes. To see this, observe that each

equivalence class is uniquely determined by 2` (possibly empty) sequences
of thresholds. One for each subset of X. Since G is reduced with respect to
Reduction Rule 3, each such sequence contains between 0 and tmax thresholds.
Since each threshold is at most tmax, the number of equivalence classes is at
most (

tmax∑
i=0

timax

)2`

≤
(
(tmax + 1)tmax

)2`
= (tmax + 1)

2`tmax .

In the following, our goal is to bound the number of cliques in each equivalence
class in a function depending only on tmax and `. Note that once we achieve
this goal, we have a problem kernel with respect to the parameter “cvd number”
in case of constant thresholds. The next lemma is a first step towards this goal.

Lemma 2 Let I := (G = (V,E), thr, k) be an instance of TSS, let X ⊆ V be
a cvd set for G, and let S ⊆ V , |S| ≤ k, be a target set for G. Furthermore
let C1, C2, . . . , Ctmax+1 ⊆ V be clusters in G[V \X] that are pairwise equivalent
with respect to X and S. Then, S \ C1 is a target set for G[V \ C1].
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Proof Let S′ = S\C1 and G′ = G[V \C1]. We prove the lemma by contradiction:
Assume that S′ is not a target set for G′. Let Y ⊆ V \C1 be the set of vertices
that are activated in G in some round i but are not activated in G′ in the
round i. Formally, Y := {v ∈ V \C1 | ∃i ≥ 1 : v ∈ AiG,thr(S)∧v /∈ AiG′,thr(S′)}.
Since S′ is not a target set for G′, the set Y is not empty. In particular, Y
contains all vertices in G′ that are not activated by S′. Let v ∈ Y be the
vertex that is activated first in G, that is, for all u ∈ Y it holds for 1 ≤ i that
u ∈ AiG,thr(S)⇒ v ∈ AiG,thr(S).

Since v ∈ Y and Y ⊆ V \ C1, it holds that v /∈ S. Let i ≥ 1 be the
round in which v becomes active in G, that is, v ∈ AiG,thr(S) \ Ai−1G,thr(S).

Thus, |NG(v) ∩ Ai−1G,thr(S)| ≥ thr(v). Since v is in G′ not activated by S′, it

follows that |NG′(v) ∩ Ai−1G′,thr(S
′)| < thr(v). From the selection of v it follows

that Y ∩ Ai−1G,thr(S) = ∅. Thus, Ai−1G,thr(S) \ Ai−1G′,thr(S
′) ⊆ C1. Since NG(v) \

NG′(v) ⊆ C1, it follows that NG(v) ∩ Ai−1G,thr(S) ∩ C1 6= ∅ and v ∈ X. Let u ∈
NG(v)∩Ai−1G,thr(S)∩C1. Note that C1 and Cj , 1 < j ≤ tmax + 1, are equivalent
with respect to X and S and, hence, there is a bijection fj as described in
Definition 1. Thus, it is easy to see that u ∈ Ai−1G,thr(S) ⇒ fj(u) ∈ Ai−1G,thr(S).
Moreover, since u ∈ NG(v) it follows that fj(u) ∈ NG(v) and, thus, fj(u) ∈
NG′(v). Hence, fj(u) ∈ NG′(v) ∩ Ai−1G′,thr(S

′) for all 2 ≤ j ≤ tmax + 1 and thus

|NG′(v) ∩ Ai−1G′,thr(S
′)| ≥ tmax. Hence, thr(v) > |NG′(v) ∩ Ai−1G′,thr(S

′)| ≥ tmax,
a contradiction. ut

Since we do not know the target set S for G, two problems have to be solved
in order to convert this lemma into a data reduction rule: The first problem
is to find out by how much we have to decrease k, or, equivalently, how to
compute |S ∩ C1| in polynomial time? The second problem is that we do not
know the target set S. As we show in the following, the key in overcoming
these two problems is to increase the number of equivalent clusters Cj in the
precondition of Lemma 2.

To this end, we first compute a lower bound and an upper bound on the size
of the target set for G. Let GX be the graph that results from activating all
vertices in X and applying Reduction Rule 1 exhaustively. Let CX1 , C

X
2 , . . . , C

X
ζ

denote the maximal cliques of GX . Clearly, for each clique CX of GX there
is a cluster C in G[V \ X] such that CX ⊆ C. Let SX ⊆ V be an optimal
solution for GX . Note that SX can be computed in linear time [29, 33]. By
construction of GX it is clear that |SX | is a lower bound for the size of any
target set for G. Furthermore, SX ∪X is a target set for G. Hence, if k < |SX |,
then we can immediately answer no, and if k ≥ |SX |+ |X| = |SX |+ `, then
we can answer yes. Thus, we assume in the following that |SX | ≤ k < |SX |+ `.
Besides these general bounds on the target set size we can also derive bounds
for the number of vertices in a target set for each cluster C in G[V \X]: If
there is a (uniquely determined) clique CX in GX such that CX ⊆ C, then
set min(C) := |SX ∩CX |. In case there is no such clique in GX set min(C) := 0.
Finally, set max(C) := min{tmax,min(C) + `}. Clearly, min(C) and max(C)
are lower resp. upper bounds on the number of vertices of C that are in an
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optimal target set for G. Note that if two clusters C1 and C2 in G[V \ X]
are equivalent with respect to X, then min(C1) = min(C2). Furthermore,
having `+ 1 clusters C1, . . . , C`+1 in G[V \X] that are equivalent with respect
to X, we can conclude that for any optimal target set S there is a cluster Ci,
1 ≤ i ≤ `+ 1, having exactly min(C1) vertices in the target set, since otherwise
the solution SX ∪X for G contains fewer vertices than S. Likewise, if there
are `+ r clusters C1, . . . , C`+r that are equivalent with respect to X, then it
is clear that for any optimal target set S at least r of these clusters contain
exactly min(C1) vertices of S. Hence, increasing the number of equivalent
clusters to at least `+ tmax + 1 solves the first problem.

We overcome the second problem by relaxing the condition “equivalent with
respect to X and S” for the clusters C1, . . . , Ctmax

⊆ V to “equivalent with
respect to X” and increase the number of equivalent clusters: We can assume
that, out of each cluster C, at most max(C) ≤ tmax vertices are in a target

set. Thus, there are at most t2
`

max possibilities for choosing tmax vertices from
a cluster to be in a target set: Choose at most tmax vertices with the highest
threshold from each of the at most 2` critical cliques of the cluster. Having a
set of vertices with the same closed neighborhood and the task is to choose s
of them to be in a target set, it is best to choose the s vertices with the highest
thresholds [29, Observation 7]. Thus, when increasing the number of clusters

that have to be equivalent with respect to X to ` + t2
`

max(tmax + 1) we can
conclude with the pigeonhole principle that there are clusters Ci1 , . . . , Citmax+1

that are equivalent with respect to X and S for any target set S and each
cluster Cij contains min(Cij ) vertices of S. Hence, applying Lemma 2 to this
set we arrive at the following reduction rule.

Reduction Rule 4 Let I := (G = (V,E), thr, k) be an instance of TSS that
is reduced with respect to Reduction Rule 1 and let X ⊆ V be a cvd set of
size `. Let C1, C2, . . . , Cα ⊂ V be disjoint clusters in G[V \ X] such that

α = ` + t2
`

max(tmax + 1) and for each pair Ci, Cj, 1 ≤ i, j ≤ α, it holds
that Ci ≡X Cj. Then delete C1 and reduce k by min(C1).

The correctness of the data reduction rule follows from Lemma 2 and the
above discussion. As to the running time, note that Reduction Rule 4 can be
exhaustively applied in O(|X| · n2) time: Since we require that the cvd set X
is given, we can compute the clusters in G[V \ X] in linear time. Then, we
sort the vertices in these clusters by neighborhood and threshold. This can be
done in O(n log(n)) time. After this sorting the check whether two clusters are
equivalent with respect to X can be done in O(|X| ·n) time: Simply iterate over
the sorted vertices and check whether the current vertices in both clusters have
the same threshold and the same neighborhood (of size at most |X|). Overall,
iterating over all clusters in G[V \X], determining the equivalent clusters, and
deleting the respective clusters can be done in O(|X| · n2) time.

With these data reduction rules we now arrive at the following theorem.
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Theorem 6 Target Set Selection admits a problem kernel with t
O(2`tmax)
max `

vertices, where ` is the cluster vertex deletion number and tmax is the maximum
threshold. The problem kernel can be found in O(` · n2) time.

Proof Let I := (G = (V,E), thr, k) be an instance of TSS that is reduced with
respect to Reduction Rules 1, 3, and 4. Furthermore let X ⊆ V be a cvd set
and let ` = |X|.

Since I is reduced with respect to Reduction Rule 3, the clusters in G[V \X]

have size at most 2`tmax. Hence, there are at most (tmax + 1)2
`tmax clusters

in G[V \X] that are all pairwise not equivalent with respect to X. Furthermore,
since I is reduced with respect to Reduction Rule 4, each equivalence class

of ≡X contains at most `+ t2
`

max(tmax +1) clusters. Thus, the number of clusters

in G[V \X] is bounded by (`+ t2
`

max(tmax + 1))(tmax + 1)2
`tmax , each of these

clusters contains at most 2`tmax vertices. Overall this gives t
O(2`tmax)
max ` vertices

in G[V \X] and, thus, G contains at most t
O(2`tmax)
max ` vertices. Reduction Rules

1 and 3 can both be applied exhaustively in O(n + m) time and Reduction
Rule 4 can be applied exhaustively in O(` · n2). Overall, the kernelization runs
in O(` · n2) time. ut

Clearly, the problem kernel of Theorem 6 implies that TSS is fixed-parameter
tractable with respect to the combined parameter (tmax, `). This yields the
following result for TSS with constant thresholds.

Corollary 2 Target Set Selection with constant thresholds is fixed-parameter
tractable with respect to the parameter “cvd number”.

5 Conclusion

We showed that constant threshold values, as naturally occur in several real-
world applications of Target Set Selection (TSS), can help to find efficient
algorithms that exactly solve TSS. This extends previous work of Ben-Zwi
et al. [6] where this observation was made for the parameter “treewidth”.
A question left open in our work is whether or not TSS is fixed-parameter
tractable with respect to the parameter “cluster vertex deletion number” for
majority thresholds (we showed it to be W[1]-hard for general thresholds and
fixed-parameter tractable for constant thresholds). A second open question
arising from our work is whether or not TSS is fixed-parameter tractable with
respect to the parameter “distance to clique” for general thresholds (it is
fixed-parameter tractable for majority and constant thresholds). Indeed, these
two cases are part of the more general open question whether, in terms of
computational complexity, TSS is basically as hard for majority thresholds
as it is for general thresholds but significantly easier for constant thresholds—
the results we achieved in this paper may be interpreted as directing to a
corresponding conjecture. Recall that majority thresholds are of particular
interest in distributed computing [31].
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Considering the practical relevance of TSS, it would be interesting to
incorporate further natural parameters into the search for islands of tractabil-
ity; among these we clearly have “graph diameter” (note, however, that this
parameter needs to be combined with others since TSS is already hard on
diameter-two graphs [29]) and “number of activation rounds” (the case of only
one activation round—that is, the non-dynamic setting—leads to variants of
domination [21, 25, 32]; again, in order to lead to tractability results, this pa-
rameter needs to be combined with others [29]). Finally, due to applications in
social networks, the identification of tractable special cases in scale-free graphs,
that is, graphs with power law degree distributions, would be of particular
interest.
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