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Abstract. We study the NP-hard Shortest Path Most Vital Edges
problem arising in the context of analyzing network robustness. For an
undirected graph with positive integer edge lengths and two designated
vertices s and t, the goal is to delete as few edges as possible in order to
increase the length of the (new) shortest st-path as much as possible. This
scenario has been mostly studied from the viewpoint of approximation
algorithms and heuristics, while we particularly introduce a parameterized
and multivariate point of view. We derive refined tractability as well as
hardness results, and identify numerous directions for future research.
Among other things, we show that increasing the shortest path length by
at least one is much easier than to increase it by at least two.

1 Introduction

Shortest Paths, that is, given two distinguished vertices s and t in a graph
with edge lengths with the task to find a shortest st-path, is arguably one of the
most basic graph problems. We study the undirected case with positive integer
edge lengths in the context of “most vital edges” or (equivalently) “interdiction”
or “edge blocker” problems. That is, we are interested in the scenario where the
goal is to delete (few) edges such that in the resulting graph the shortest st-path
gets (much) longer. This is motivated by obvious applications in investigating
robustness and critical infrastructure in the context of network design. Our results
provide new insights with respect to classical, parameterized, and approximation
complexity of this fundamental edge deletion problem which is known to be
NP-hard in general [2, 17].

The central decision problem we study is defined as follows.

Shortest Path Most Vital Edges (SP-MVE)
Input: An undirected graph G = (V,E) with positive edge lengths

τ : E → N, two vertices s, t ∈ V , and integers k, ` ∈ N.
Question: Is there an edge subset S ⊆ E, |S| ≤ k, such that the length of a

shortest st-path in G− S is at least `?

? Work started during a visit (March 2014) of the second and third author at Université
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We set b := ` − distG(s, t) to be the number by how much the length of every
shortest st-path needs to be increased. If all edges have length one, then we
say that the graph has unit-length edges. Naturally, SP-MVE comes along with
two optimization versions: either delete as few edges as possible in order to
achieve a length increase of at least b (called Min-Cost SP-MVE) or getting
maximum length increase under the constraint that k edges can be deleted (called
Max-Length SP-MVE). For an instance of SP-MVE or Max-Length SP-
MVE we assume that k is smaller than the size of any st-cut in the input graph.
Otherwise, removing all edges of a minimum-size st-cut (which is polynomial-time
computable) would lead to a solution disconnecting s and t.

Related work. Due to the immediate practical relevance, there are numerous
studies on “most vital edges (and vertices)” and related problems. We focus on
shortest paths here, while there are also studies for problems such as Minimum
Spanning Tree [3, 4, 11, 15, 20] or Maximum Flow [15, 25, 27], to mention
only two. With respect to shortest path computation, the following is known.
First, we mention in passing that a (more general) result of Fulkerson and
Harding [12] implies that allowing the subdivision of edges instead of edge
deletions as modification operation makes the problem polynomial-time solvable.
Notably, it also has been studied to find one most vital edge of a shortest path;
this can be solved in almost linear time [22].

Bar-Noy et al. [2] showed that SP-MVE is NP-complete and also corrected
some errors concerning algorithmic results from earlier work [21]. Khachiyan
et al. [17] derived polynomial-time constant-factor inapproximability results for
both optimization versions. For the case of directed graphs, Israeli and Wood [16]
provided heuristic solutions based on mixed-integer programming together with
experimental results. Pan and Schild [25] studied the restriction of the directed
case to planar graphs and again obtained NP-hardness results.

Finally, we note that, while most algorithmic studies focussed on polynomial-
time solvable special cases or polynomial-time approximability, there seem to be
almost no studies concerning multivariate complexity aspects [9, 24] of “most
vital edges” (“edge interdiction”) problems. We are only aware of the work of
Guo and Shrestha [15] who performed a parameterized complexity analysis for
minimum spanning tree, maximum matching, and maximum flow problems. They
focus on standard parameterization by solution size, that is, the budget for the
number of edge deletions, and derive several fixed-parameter tractability as well
as parameterized hardness results.

Our results. We perform an extensive study of multivariate complexity aspects of
SP-MVE. More specifically, we perform a refined complexity analysis in terms of
how certain problem-specific parameters influence the computational complexity
of SP-MVE and its optimization variants. The parameters we study include as-
pects of graph structure as well as special restrictions on the problem parameters
itself. Moreover, we also report a few findings on (parameterized) approximability.
Let us feature two main conclusions from our work: First, harming the network
significantly (that is, b ≥ 2) is NP-hard while harming it only a little bit (that is,
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Fig. 1. The parameterized complexity of SP-MVE with unit-length edges with respect
to different structural parameters. Herein, “distance to X” is the number of vertices
that have to be deleted in order to transform the input graph into a graph from the
graph class X. For two parameters that are connected by a line, the upper parameter is
weaker (that is, larger) than the parameter below [18]. Refer to Sorge and Weller [26]

for the formal definitions of the parameters. Results marked by a 8 are obtained in
this work. XP means polynomial running time for constant parameter value.

b = 1) is doable in polynomial time. Second, while the parameterized complexity
with respect to the standard parameter number k of edge deletions remains open,
the cluster vertex deletion number, advocated by Doucha and Kratochv́ıl [7] as
a parameterization between vertex cover number and clique-width, currently is
our most interesting parameter that yields fixed-parameter tractability. Figure 1
surveys our current knowledge of the parameterized complexity of SP-MVE
with respect to a number of well-known structural graph parameters, identifying
numerous open questions. Moreover, towards the goal of spotting further fixed-
parameter tractable special cases it also implicitly suggests to look for reasonable
parameter combinations. To this end, a data-driven analysis of real-world pa-
rameter values would be valuable. In addition, Table 1 overviews our exact and
approximate complexity results for SP-MVE.

Organization of the paper. After introducing some preliminaries in Section 2, we
prove in Section 3 some NP-hardness results and in Section 4 some polynomial-
time solvable special cases. In Section 5 we provide fixed-parameter and approxi-
mation algorithms for SP-MVE. Conclusions and open questions are provided in
Section 6. Due to the lack of space, several details are omitted.

2 Preliminaries

For an undirected graph G = (V,E) we set |V | := n and |E| := m. A path P of
length r − 1 in G is a sequence of vertices P = v1-v2-. . .-vr with {vi, vi+1} ∈ E



Table 1. Overview on the computational complexity classification of SP-MVE on
n-vertex graphs. XP means polynomial running time for constant parameter value.
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for all i ∈ {1, . . . , r − 1}; the vertices v1 and vn are the endpoints of the path.
For 1 ≤ i < j ≤ r, we set viPvj to be the subpath of P starting in vi and
ending in vj , formally viPvj := vi-vi+1-. . .-vj . For i = 1 or j = r we omit
the corresponding endpoint, that is, we set Pvj := v1Pvj and viP := v1Pvj .
For u, v ∈ V , an uv-path P is a path with endpoints u and v. The distance
between u and v in G, denoted by distG(u, v), is the length of a shortest uv-path.
The diameter of G is the length of the longest shortest path in G.

For each vertex v ∈ V we denote by NG(v) the set of neighbors of v and
NG[v] = NG(v)∪{v} denotes v’s the closed neighborhood. Two vertices u, v ∈ V
are called true twins if NG[u] = NG[v] and false twins if NG(u) = NG(v); they
are called twins if they are either true or false twins. We denote by G− S the
graph obtained from G by removing the edge subset S ⊆ E. For s, t ∈ V , an
edge subset S is called st-cut if G − S contains no st-path. For V ′ ⊆ V we
denote by G[V ′] the subgraph induced by V ′. For E′ ⊆ V we denote by G[E′]
the subgraph consisting of all endpoints of edges in E′ and the edges in E′.

An edge set F ⊆ E is a feedback edge set of G if G− F is a tree or a forest.
The feedback edge set number of G is the size of a minimum feedback edge set.
Graph G is a cluster graph if G consists of disjoint cliques. A vertex set X ⊆ V
is called cluster vertex deletion set if G[V \X] is a cluster graph. The cluster
vertex deletion number is the size of a minimum cluster vertex deletion set.

Parameterized complexity. A parameterized problem is called fixed-parameter
tractable (fpt) if there is an algorithm that decides any instance (I, k), consisting
of the “classical” instance I and a parameter k ∈ N0, in f(k) · |I|O(1) time, for
some computable function f solely depending on k.

A core tool in the development of fixed-parameter algorithms is polynomial-
time preprocessing by data reduction, called kernelization [14, 19]. Here, the
goal is to transform a given problem instance (I, k) in polynomial time into an
equivalent instance (I ′, k′) whose size is upper-bounded by a function of k. That
is, (I, k) is a yes-instance if and only if (I ′, k′), k′ ≤ g(k), and |I ′| ≤ g(k) for
some function g. Thus, such a transformation is a polynomial-time self-reduction
with the constraint that the reduced instance is “small” (measured by g(k)). If
such a transformation exists, then I ′ is called kernel of size g(k). We refer to the
monographs [8, 10, 23] for more details on parameterized complexity.



Approximation. Given an NP optimization problem and an instance I of this prob-
lem, we use |I| to denote the size of I, opt(I) to denote the optimum value of I,
and val(I, S) to denote the value of a feasible solution S of instance I. The perfor-

mance ratio of S (or approximation factor) is r(I, S) = max
{

val(I,S)
opt(I) ,

opt(I)
val(I,S)

}
.

For a function ρ, an algorithm A is an ρ(|I|)-approximation, if for every instance I
of the problem, it returns a solution S such that r(I, S) ≤ ρ(|I|). If the problem
comes with a parameter k and the algorithm A runs in f(k) · |I|O(1) time, then A
is called parameterized ρ(|I|)-approximation.

3 NP-hard cases

Adapting a reduction idea due to Khachiyan et al. [17] for the vertex deletion
variant of SP-MVE, we prove that SP-MVE is NP-hard even for constant values
of b, `, and graph diameter.

Theorem 1. SP-MVE is NP-hard, even for unit-length edges, b = 2, ` = 9, and
diameter 8.

Proof. As Khachiyan et al. [17], we reduce from Vertex Cover on three-partite
graphs which remains NP-hard [13, GT1]. While the fundamental approach
remains the same, the technical details when moving their vertex deletion scenario
to our edge deletion scenario change to quite some extent. We refrain from a
step-by-step comparison. Given a Vertex Cover instance (G, h) with G =
(V1 ∪ V2 ∪ V3, E) being a tripartite graph on n vertices, we construct an SP-MVE
instance I ′ as follows. First, we set k := h and ` := 9. The graph G′ = (V ′, E′)
contains vertices V ′ = V1 ∪ V2 ∪ V3 ∪ V ′2 ∪ {s, t}, where s and t are two new
vertices, and for each v ∈ V2 we add a copy v′ ∈ V ′2 .

Before describing the edge set E′, we introduce edge-gadgets. Here, by adding
a length α edge-gadget, α ≥ 2, from the vertex u to vertex v, we mean to add
n vertex-disjoint paths of length α− 2 and to make u adjacent to the first vertex
of each path and v adjacent to the last vertex of each path. If α = 2, then each
path is just a single vertex which is at the same time the first and last vertex.
The idea behind this is that we will never delete edges in an edge-gadget.

We add the following edges and edge-gadgets to G′ (see Figure 2 for a
schematic representation of the constructed graph). For each vertex v ∈ V2
we add the edge {v, v′} of length one. We add edges of length one between s
and every vertex v ∈ V1 and between t and every vertex v ∈ V3. We also add
the following edge-gadgets: For each edge {u, v} ∈ (V1 × V2) ∩ E we add the
edge-gadget eu,v of length two, for each edge {u, v} ∈ (V2 × V3) ∩ E we add the
edge-gadget eu′,v of length two, and for each edge {u, v} ∈ (V1 × V3) ∩E we add
the edge-gadget eu,v of length five. Furthermore, we add edge-gadgets of length
four between s and every vertex v ∈ V2 and between t and every vertex v′ ∈ V ′2 .
Observe that we have distG′(s, t) = 7 and thus b = `− distG(s, t) = 2.

We now show that G has a vertex cover of size at most h if and only if
deleting k = h edges in G′ results in s and t having distance at least ` = 9.
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Fig. 2. A schematic representation of the graph G′ constructed from the tripartite
graph G = (V1 ∪V2 ∪V3, E). The vertices are grouped to the used sets. Each edge in G′

is represented by a length-one edge in the picture. A bold edge indicates an edge-gadget
and the corresponding number denotes its length.

“⇒:” Let V ′′ ⊆ V be a vertex cover of size at most h in G. It is not hard to
verify that for the set E′′ = {{s, v} : v ∈ V1∩V ′′}∪{{v, v′} : v ∈ V2∩V ′′}∪{{v, t} :
v ∈ V3 ∩ V ′′} it holds that distG′−E′′(s, t) = 9 and |E′′| = |V ′′| ≤ h.

“⇐:” Let E′′ ⊆ E′ be a set of edges such that distG′−E′′(s, t) ≥ 9 and |E′′| ≤ h.
If E′′ contains edges from an edge-gadget eu,v, then it must contain at least
n edges from this gadget in order to have a chance to increase the solution
value. Therefore, since h < n, we can assume that E′′ does not contain any edge
contained in an edge-gadget. Thus E′′ ⊆ ({s} × V1) ∪ (V2 × V ′2) ∪ (V3 × {t}). We
construct a vertex cover V ′′ for G as follows: For each edge {s, v} ∈ E′′ it follows
that v ∈ V1 and we add v to V ′′. Similarly, for each edge {v, t} ∈ E′′ it follows
that v ∈ V3 and we add v to V ′′. Finally, for each edge {v, v′} ∈ E′′ ∩ (V2 × V ′2),
we add v to V ′′.

Suppose towards a contradiction, that V ′′ is not a vertex cover in G, that is,
there exists an edge {u, v} ∈ E with u, v /∈ V ′′. If v ∈ V1 and u ∈ V2, then the
st-path s-v-u-u′-t of length 8 < ` is contained in G− E′′. If v ∈ V1 and u ∈ V3,
then the st-path s-v-u-t of length 7 < ` is contained in G−E′′. Finally, if v ∈ V2
and u ∈ V3, then the st-path s-v-v′-u-t of length 8 < ` is contained in G− E′′.
Each of the three cases contradicts the assumption that distG′−E′′(s, t) ≥ 9. ut

When allowing length zero on edges, Khachiyan et al. [17] stated that it is
NP-hard to approximate Max-Length SP-MVE within a factor smaller than
two. We consider in this paper only positive edge lengths and, by adapting the
construction given in the above proof by considering edge-gadgets of lengths
polynomial in n (with high degree), we obtain the following.

Theorem 2. Max-Length SP-MVE is not 4/3− 1/poly(n)-approximable in
polynomial time, even for unit-length edges, unless P = NP.

see Proof 1 (appendix)
Concerning special graph classes, we can show that the problem remains NP-



hard on restricted bipartite graphs. To this end, a graph G has degeneracy d if
every subgraph of G contains a vertex of degree at most d. By subdividing every
edge, we obtain the following.

Theorem 3. SP-MVE is NP-hard, even for bipartite graphs with degeneracy
two, unit-length edges, b = 4, ` = 18, and diameter 8.

Proof. We provide a self-reduction from SP-MVE with unit-length edges with b =
2, ` = 9, and diameter 8. Let I = (G = (V,E), k, `, s, t) be the given SP-MVE
instance. We construct the instance I ′ = (G′, k, 2`, s, t) where G′ is obtained
from G by subdividing all edges, that is, each edge is replaced by a path of length
two. The correctness of the reduction is easy to see as any minimal solution
contains at most one edge of each induced path. Clearly, I ′ can be constructed
in polynomial time. Furthermore, G′ is bipartite and has degeneracy two. ut

4 Polynomial-time algorithms

In this section, we discuss two polynomial-time algorithms for special cases of
SP-MVE. First, we consider bounded-degree graphs. Here, the basic observation
is that the maximum degree ∆ of the graph upper-bounds the solution size: a
budget of ∆ would allow to disconnect s from t by deleting all edges incident
to s. Hence, the simple brute-force algorithm trying all possibilities to delete at
most ∆− 1 edges yields a polynomial-time algorithm in graphs with constant
maximum degree.

Proposition 1. SP-MVE can be solved in O(m∆−1(m+ n log n)).

see Proof 2 (appendix)
The question whether one can replace m∆−1 by f(∆)·mO(1) for some function f ,

that is, whether SP-MVE is fixed-parameter tractable with respect to ∆, remains
open.

The second, more interesting special case we consider is when we only want
to increase the distance between s and t by one. In this case, we can exploit the
connection between SP-MVE and minimum st-cuts. Observe that a minimum
st-cut in the undirected graph can be larger than the edge set we are looking
for, see left-hand side of Figure 3 for an example. Instead, the idea is to direct
the edges from s to t (see right-hand side of Figure 3) and then search an st-cut;
this only works if b = 1, as also witnessed by the NP-hardness for the case b = 2
(Theorem 1).

Theorem 4. SP-MVE can be solved in O(nm) time when b = 1.

Proof. Let I = (G = (V,E), k, `, s, t, τ) be an instance of SP-MVE with ` =
distG(s, t) + 1, that is, b = 1. The task is to delete at least one edge in each
shortest st-path. To achieve this goal, our algorithm works in three main steps:

1. Using an adaption of Dijkstra’s algorithm, compute the subgraph G′ =
(V ′, E′) of the original graph containing all shortest path edges.
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Fig. 3. The left-hand side shows a graph consisting of five st-paths of length three
each. Removing the two bold edges increases the length of a shortest st-path to five. A
minimum st-cut has size three, showing the difference between our vital edges scenario
and minimum edge cuts. The right-hand side shows a digraph obtained from the graph
on the left-hand side by directing all edges towards t. In this graph, the minimum st-cut
has also size two. The proof of Theorem 4 shows that for b = 1 we can reduce SP-MVE
to finding a minimum st-cut in a directed graph with unit arc-weights.

2. Direct all edges in these subgraphs from s to t (so that the tail of the each
edge is closer to s than to t), obtaining a directed graph D = (V ′, A).

3. Compute a minimum st-cut in D and decide accordingly (if it contains more
than k arcs, then there is no solution, otherwise the cut arcs form a solution).

We first discuss the correctness and then show that the algorithm runs indeed
in O(nm) time. To this end, we introduce the following notation. For an arc
subset A′ ⊆ A we denote by E(A′) the underlying undirected edges of A′; thus
E(A′) ⊆ E′ ⊆ E. For the correctness, we first show that for every st-cut A′ ⊆ A
in D it holds that every shortest st-path in G contains an edge in E(A′): Suppose
towards a contradiction that there is a shortest st-path P not containing an edge
in E(A′). Recall that we require the edge lengths to be positive. Hence, for every
edge {u, v} on the path P it holds that distG(s, u) 6= distG(s, v) since P is a
shortest path. Assume without loss of generality that distG(s, u) < distG(s, v).
By construction of D, this implies that (u, v) ∈ A. Thus, P is also an st-path
in D containing no arc from A′; a contradiction to the assumption that A′ is an
st-cut.

Conversely, let S ⊆ E′ be an edge set containing at least one edge of every
shortest st-path in G. Then, the arc set A′ ⊆ A with E(A′) = S is an st-cut
in D: Suppose towards a contradiction that A′ is not an st-cut in D. Thus, there
exists an st-path P in D −A′. Hence, P is also an st-path in G′ − S. We next
show that P is indeed a shortest st-path in G′. Suppose towards a contradiction
that there exists a vertex v ∈ V ′ that is the first vertex on P such that Pv (the
path P until vertex v) is not a shortest sv-path. Clearly, s 6= v. Let u ∈ V ′ be
the predecessor of v on P , that is, Pv = Pu-v (allowing s = u). By construction
of G′, each edge in E′ is contained in at least one shortest st-path. Hence, also
the edge {u, v} is contained in some shortest st-path P ′. This implies that P ′v
is a shortest sv-path in G′. Since Pu is a shortest su-path, it follows that Pu
and P ′u have same length. This implies that also Pv = Pu-v and P ′v = P ′u-v
have same length. Hence, Pv is a shortest sv-path in G′; a contradiction. Thus,
P is a shortest st-path in G′. Since P is also contained in G′−S, this contradicts
the assumption that S contains an edge of each shortest st-path in G.



Summarizing, we showed that a set A′ ⊆ A is an st-cut in D if and only
if E(A′) contains an edge of each shortest st-path in G. Hence, any minimum-
size st-cut computed in Step 3 induces a minimum-size edge set S in G such
that distG−S(s, t) > distG(s, t). This completes the correctness proof.

For the running time we show that Steps 1 and 2 can be performed inO(n log n+
m) time: First, run in O(n log n+m) time two times Dijkstra’s algorithm to com-
pute for each vertex its distance to s and to t. Then, an edge {u, v} is contained
in a shortest st-path if either distG(s, u) + τ({u, v}) + distG(v, t) = distG(s, t)
(Case 1) or distG(s, v) + τ({u, v}) + distG(u, t) = distG(s, t) (Case 2). Further-
more, in Case 1, the edge will be directed from u to v and in Case 2 from v
to u. This can be done in O(m) time by iterating over all edges. Using the
Ford-Fulkerson-algorithm to compute the minimum cut, Step 3 can be performed
in D in O(nm) time. Overall, this gives a running time of O(nm). ut

5 Algorithms for NP-hard cases

In this section, we present fixed-parameter and approximation algorithms. As a
warm-up, we show that SP-MVE is fixed-parameter tractable when combining
the parameters number k of removed edges and minimum st-path length ` to be
achieved.

Proposition 2. SP-MVE can be solved in O((`− 1)k · (n log n+m)) time.

Proof. We employ a simple depth-bounded search tree. The basic idea is to search
for a shortest st-path and to “destroy” it by deleting one of the edges (trying all
possibilities). This is repeated until every shortest st-path has length at least `.
For each such shortest path, we branch into at most `− 1 possibilities to delete
one of its edges, and the depth of the corresponding search tree is at most k
(our “deletion budget”) since otherwise we cannot find a solution with at most k
edge deletions. The correctness is obvious. Hence, we arrive at a search tree of
size at most (` − 1)k where in each step we need to compute a shortest path.
Using Dijkstra’s algorithm, this can be done in O(n log n+m) time. The overall
running time is thus O((`− 1)k · (n log n+m)). ut
Using the search tree described in the proof of Proposition 2 to destroy all paths
of length at most 2O(

√
logn) yields the following.

Corollary 1. Max-Length SP-MVE with unit-length edges is parameterized
n/2O(

√
logn)-approximable with respect to the parameter k.

see Proof 3 (appendix)
By deleting every edge on too short st-paths, we obtain an `-approximation.

Proposition 3. Min-Cost SP-MVE is polynomial-time `-approximable.

see Proof 4 (appendix)
Combining the previous approximation algorithm with a tradeoff between

running time and approximation factor [5, Lemma 2], we obtain the following.

Corollary 2. For every increasing function r Min-Cost SP-MVE is parame-
terized r(n)-approximable with respect to the parameter `.



Parameter feedback edge set number. We next provide a linear-size problem kernel
for SP-MVE parameterized by the feedback edge set number. Recall that an edge
set F ⊆ E is called feedback edge set for a graph G = (V,E) if G−F is a tree or a
forest. The feedback edge set number of G is the size of a minimum feedback edge
set. Computing a spanning tree, one can determine a minimum feedback edge set
in linear time. Hence, we assume in the following that we are given a feedback
edge set F with |F | = f for our input instance (G = (V,E), k, `, s, t, τ). We start
with two simple data reduction rules dealing with degree-one and degree-two
vertices.

Rule 1 Let (G = (V,E), k, `, s, t, τ) be an SP-MVE instance and let v ∈ V \{s, t}
be a vertex of degree one. Then, delete v.

The correctness of Rule 1 is obvious as no shortest path uses a degree-one vertex.
We can deal with degree-two vertices as follows.

Rule 2 Let (G = (V,E), k, `, s, t, τ) be an SP-MVE instance and let v ∈ V \{s, t}
be a vertex of degree two with NG(v) = {u,w} and {u,w} /∈ E. Then add the
edge {u,w} with the length τ({u,w}) := τ({u, v}) + τ({v, w}) and delete v.

The correctness of Rule 2 follows from the fact that on an induced path at
most one edge will be deleted and it does not matter which one will get deleted.
Applying both rules exhaustively can clearly be done in polynomial time and
leads to the following problem kernel.

Theorem 5. SP-MVE admits a problem kernel with 5f + 2 vertices and 6f + 2
edges.

see Proof 5 (appendix)

Corollary 3. SP-MVE is fixed-parameter tractable with respect to the parameter
feedback edge set number.

Parameter cluster vertex deletion number. We now prove that SP-MVE restricted
to unit-length edges is fixed-parameter tractable with respect to the parameter
cluster vertex deletion number x. Recall that a graph G is a cluster graph if it is
a union of disjoint cliques. A vertex set X ⊆ V is called cluster vertex deletion
set if G[V \X] is a cluster graph. The cluster vertex deletion number is the size
of a minimum cluster vertex deletion set.

We assume in the following that for the input instance (G = (V,E), k, `, s, t)
we are given a cluster vertex deletion set X of size |X| = x. If X is not already
given, then we can compute X in O(1.92x · (n+m)) time [6]. Our algorithm is
based on the observation that twins can be handled equally in a solution. This
follows from a more general statement provided in the following lemma. It shows
that for any set T ⊆ V \ {s, t} of vertices that have the same neighborhood
in V \T , we can assume that we do not delete edges in G[T ] and that the vertices
in T behave the same, that is, one deletes either all edges or no edge between a
vertex v ∈ V \ T and the vertices in T .



Lemma 1. Let G = (V,E) be an undirected graph with unit-length edges, let
s, t ∈ V be two vertices, and let T = {v1, . . . , vt} ⊆ V \ {s, t} be a set of vertices
such that NG(v1) \ T = NG(v2) \ T = . . . = NG(vt) \ T . Then, for every edge
subset S ⊆ E, there exists an edge subset S′ ⊆ E such that distG−S′(s, t) ≥
distG−S(s, t), |S′| ≤ |S|, and NG[S′](v1) = NG[S′](v2) = . . . = NG[S′](vt).

see Proof 6 (appendix)

Theorem 6. SP-MVE with unit-length edges is linear-time fixed-parameter
tractable with respect to the parameter cluster vertex deletion number.

Proof. Let (G = (V,E), k, `, s, t) be the input instance of SP-MVE and let X ⊆ V
be a cluster vertex deletion set of size |X| = x. Hence, G−X is a cluster graph
and the vertex sets C1, . . . , Cr form the cliques (clusters) for some r ∈ N. We
set C := {C1, . . . , Cr}. Assume that there is an SP-MVE solution S ⊆ E of size
at most k; otherwise the algorithm will output no as it finds no solution. We
describe an algorithm that finds S.

Our algorithm is based on the following observation. Let P be an arbitrary
shortest st-path that goes through a clique C ∈ C in G− S. Then, P contains at
most 2x vertices from C: By Lemma 1, we can assume that the twins in G are
still twins in G− S. Since P is a shortest path, P does not contain two vertices
that are twins. As the vertices in C form a clique, they only differ in how they
are connected to vertices in X. Thus, C contains at most 2x “different” vertices,
that is, vertices with pairwise different neighborhoods.

Now, consider two non-adjacent vertices u, v ∈ X. From the above considera-
tions it follows that in G− S an uv-path avoiding the vertices in X has length
between one and 2x + 1 as it can pass through at most one clique. Our algorithm
tries for each vertex pair from X all possibilities for the distance it has in G− S
and then tries to realize the current possibility. After the current possibility is
realized, the cliques in C are obsolete and thus the instance size can be bounded
in a function of x. More precisely, our algorithm works as follows:

1. Branch into all possibilities to delete edges contained in G[X]. Decrease the
budget k accordingly.

2. Branch into all possibilities to add for each pair u, v of non-adjacent vertices
in X an edge with a length of {2, 3, . . . , 2x, 2x + 1,∞} indicating the length
of a shortest path between u and v that does not contain any vertex in X.

3. Delete for each clique containing neither s nor t the minimum number of
edges to ensure that a shortest path between each pair of vertices in X is
completely contained in G[X]. Decrease the budget k accordingly.

4. Remove all cliques except the ones that contain s or t. Do not change the
budget k.

5. Solve the problem on the remaining graph with the remaining budget (that
was not spent in Steps 1 and 3).

Note that Step 2 is performed for each possibility in Step 1. Hence, in Steps 1
and 2 at most 2x

2 · (2x + 1)x
2

possibilities are considered and for each of these
possibilities Step 3 is invoked.



In Step 3, the algorithm tries to realize the prediction made in Step 2. To this
end, let C ∈ C be a clique containing neither s nor t. The algorithm branches
into all possibilities to delete edges in G[C] or edges with one endpoint in C and
the other endpoint in X. Since G[C] contains at most 2x different vertices, it

follows from Lemma 1 that at most 2(2
x)2+2x·x = 2(4

x)+2x·x possibilities need to
be considered to delete edges. For each possibility, the algorithm checks in xO(1)

time whether all shortest paths between a pair of vertices of X go through C.
If yes, then the algorithm discards the currently considered branch; if no, then
the current branch is called valid. From all valid branches for C, the algorithm
picks the one that deletes the minimum amount of edges and proceeds with the
next clique. Observe that since X is a vertex separator for all cliques in C, the
algorithm can solve Step 3 for each clique independently of the outcome in the

other cliques. Hence, the overall running time for Step 3 is 22
O(x) · n as |C| ≤ n.

As discussed above, the cliques in C containing neither s nor t are now obsolete
as there is always a shortest path avoiding these cliques. Hence, the algorithm
removes these cliques (Step 4). This can be done in linear time. The remaining
instance consists of the vertices in X and the at most two cliques containing s
and t. As the algorithm deleted the edges within G[X] in Step 1, it remains
to consider deleting edges within the two cliques or between the two cliques
and the vertices in X. Again, by Lemma 1, the algorithm only needs to branch
into 22·(4

x+x·2x) possibilities to delete edges and check for each branch whether s
and t have distance at least ` and the overall budget k is not exceeded. If one
branch succeeds, then the algorithm found a solution and returns it. If no branch
succeeds, then there exists no solution of size k since the algorithm performed an

exhaustive search. Overall, the running time is 22
O(x) · (n+m). ut

6 Conclusion

Shortest Path Most Vital Edges (SP-MVE) is a natural edge deletion
problem that clearly deserves further study from a parameterized complexity
perspective. While we showed that SP-MVE remains NP-hard for even constant
values of the parameters b and ` relating to the length increase, we left open
whether SP-MVE is fixed-parameter tractable with respect to the “standard
parameter” k (number of edge deletions). Even fixed-parameter tractability
with respect to the combined parameter (b, k) remains open. Figure 1 in the
introductory section depicts a wide range of structural graph parameters for which
the parameterized complexity status of SP-MVE is unknown. Also concerning
the approximation point of view not much is known. There is a huge gap between
the known lower and upper bounds of the approximation factor achievable in
polynomial time. Further, from a practical point of view it would make sense to
extend our studies by restricting the input to planar graphs [25]. Finally, also in
terms of parameterized approximability SP-MVE offers a number of interesting
challenges, altogether making it an excellent candidate problem for a full-fledged
multivariate complexity analysis.
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Fig. 4. A schematic representation of the graph G′ constructed from the tripartite
graph G = (V1 ∪V2 ∪V3, E). The vertices are grouped to the used sets. Each edge in G′

is represented by a length-one edge in the picture. A bold edge indicates an edge-gadget
and the corresponding number denotes its length.

A Proofs

A.1 Proof 1 (Theorem 2)

Proof. We construct a gap-reduction [1] from Vertex Cover on three-partite
graphs to Max-Length SP-MVE.

In this proof we use a gap-reduction from a decision problem to a maximization
problem. A decision problem Π is called gap-reducible to a maximization problem
Π ′ with gap ρ > 1 if for any instance I of Π we can construct an instance I ′ of
Q in polynomial time while satisfying the following properties.

– If I is a yes-instance, then opt(I ′) ≥ c(|I|).
– If I is a no-instance, then opt(I ′) < c(|I|)

ρ(|I|) .

The idea behind a gap-reduction is that if Π is NP-hard then Π ′ is not approx-
imable within a factor ρ provided that P 6= NP.

Starting with an instance (G = (V,E), h) of Vertex Cover on three-partite
graphs we construct an instance I ′ = (G′ = (V ′, E′), k, s, t) of Max-Length SP-
MVE as in the proof of Theorem 1. We only change some lengths as follows (see
also Figure 4): For each edge {u, v} ∈ (V1 × V2) ∩E we add the edge-gadget eu,v
of length x, for each edge {u, v} ∈ (V2 × V3) ∩E we add the edge-gadget eu′,v of
length x, and for each edge {u, v} ∈ (V1×V3)∩E we add the edge-gadget eu,v of
length 3x. We add edge-gadgets of length 2x between s and every vertex v ∈ V2
and between t and every vertex v′ ∈ V ′2 . The value x could be any polynomial
function in |V | = n. Observe that we have distG′(s, t) = 3x+ 2.

We now show that ifG has a vertex cover of size at most h then opt(I ′) = 4x+1,
otherwise opt(I ′) ≤ 3x+ 2.

Let V ′′ ⊆ V be a vertex cover of size at most h in G. It is not hard to verify
that for the set E′′ = {{s, v} : v ∈ V1 ∩ V ′′} ∪ {{v, v′} : v ∈ V2 ∩ V ′′} ∪ {{v, t} :
v ∈ V3 ∩ V ′′} it holds that distG′−E′′(s, t) = 4x+ 1 and |E′′| = |V ′′| ≤ h.



Suppose now that G has no vertex cover of size h. Let E′′ ⊆ E′ be a set of h
edges. We can assume as in the proof of Theorem 1 that E′′ does not contain
any edge from an edge-gadget. Thus E′′ ⊆ ({s} × V1) ∪ (V2 × V ′2) ∪ (V3 × {t}).
We construct a vertex set V ′′ for G as follows: For each edge {s, v} ∈ E′′, we
add v to V ′′ and for each edge {v, t} ∈ E′′, we add v to V ′′. Finally, for each
edge {v, v′} ∈ E′′ ∩ (V2 × V ′2), we add v to V ′′.

Since V ′′ is not a vertex cover in G, there exists an edge {u, v} ∈ E with u, v /∈
V ′′. If v ∈ V1 and u ∈ V2, then the st-path s-v-u-u′-t of length 3x+2 is contained
in G − E′′. If v ∈ V1 and u ∈ V3, then the st-path s-v-u-t of length 3x + 2 is
contained in G−E′′. Finally, if v ∈ V2 and u ∈ V3, then the st-path s-v-v′-u-t of
length 3x+ 2 is contained in G− E′′.

Since Vertex Cover is NP-hard on three-partite graphs [13, GT1], Max-
Length SP-MVE is not 4x+1

3x+2 = 4/3− 1/poly(n)-approximable in polynomial
time. ut

A.2 Proof 2 (Proposition 1)

Proof. Recall that we assume k to be smaller than the size of a minimum st-cut
and, thus, k < ∆ as otherwise we could simply delete all edges incident to s. The
straightforward algorithm branching in all mk cases to delete at most k edges
and checking with Dijkstra’s algorithm whether the distance between s and t is
high enough runs in O(mk(m+ n log n)) = O(m∆−1(m+ n log n)) time. ut

A.3 Proof 3 (Corollary 1)

Proof. We employ the search tree algorithm behind Proposition 2; it has sizeO((`−
1)k). The idea now is to either compute an optimal solution in fpt-time or to
derive the stated approximation in polynomial time.

Our parameterized approximation algorithm works as follows. Trying ` =
1, 2, . . . , f(n) we employ the search tree to detect whether there is an optimal
solution of length smaller than f(n). Namely, if the search tree for some `-value
says no, then we know that we found an optimal solution with the previous search
tree and output this. Otherwise, we reach ` = f(n) and thus, since the optimal
value is at most n− 1, this means that we have a factor-n/f(n)-approximation.

Clearly, the overall running time of this whole procedure is a polynomial times
f(n)k. It remains to determine for which (maximum) function f(n) this still yields
an fpt running time for parameter k. First, if k > log(f(n)), then f(n)k can be
upper-bounded by a function only in k and we are done. Second, if k ≤ log(f(n)),

then for f(n) ≤ 2O(
√
logn) we have that f(n)k ≤ f(n)log(f(n)) = 2(log(f(n))

2

. The

latter term is polynomial iff f(n) = 2O(
√
logn). ut



A.4 Proof 4 (Proposition 3)

Proof. Let I = (G = (V,E), `, s, t, τ) be an instance of Min-Cost SP-MVE. We
repeat the following algorithm until the shortest st-path has length at least `. Set
G′ := G and let P be a shortest st-path in G′. If τ(P ) < ` then set G′ := G′−E(P )
and proceed. Denote by i the number of iterations the algorithm realizes. Let E′′

be the set of all edges of the i shortest paths removed from G. The size of E′′ is
|E′′| ≤ i` since at each step at most ` edges are deleted. Moreover, opt(I) ≥ i
since an optimal solution contains at least one edge of each of these i paths. The
algorithm clearly runs in polynomial time. ut

A.5 Proof 5 (Theorem 5)

Proof. Let (G = (V,E), k, `, s, t, τ) be the input instance of SP-MVE. First, we
exhaustively apply Rules 1 and 2. Clearly, this can be done in polynomial time.
It remains to bound the size of the reduced graph G′. To this end, first observe
that G′ contains at most f degree-two vertices as every degree-two vertex that
is not deleted by Rule 2 has two adjacent neighbors and thus induces together
with its neighbors a cycle. Thus, G′ contains at most f vertices of degree two. It
remains to bound the number of vertices with degree at least three. To this end,
let r denote the number of leaves in the tree G′ − F . Thus, G′ − F contains at
most r − 2 vertices of degree at least three. Due to Rule 1, G′ contains at most
two degree-one vertices (s and t) and, hence, r ≤ 2f + 2. Furthermore, there are
at most 2f degree-three vertices in G′ that are incident to an edge in F . Hence,
G′ contains at most 4f + 2 vertices of degree at least three. In total, G′ contains
at most 5f + 2 vertices and, thus, 6f + 2 edges. ut

A.6 Proof 6 (Lemma 1)

Proof. Starting from the edge subset S ⊆ E, we construct S′ having the desired
properties. To this end, we abbreviate ` := distG−S(s, t). Let T ∈ V \ {s, t} be
a set of vertices such that N(u) \ T = N(v) \ T for each pair u, v ∈ T . Assume
that the vertices in T do not have the same neighborhood in G[S]; otherwise
we simply set S′ := S. Let u ∈ T be a vertex that has in the graph (V, S) the
smallest degree of all vertices in T , that is, the vertex in T that is incident to
the least number of edges in S. Now, construct S′ as follows. First, initialize S′

as a copy of S. Second, remove all edges of S′ that have both endpoints in T .
Third, for each v ∈ T \ {u} remove all edges incident to v from S and add for
each edge {u,w} ∈ S the edge {v, w}. Summarizing, S′ is composed as follows:

S′ := (S \ {{v, w} | v ∈ T \ {u} ∧ w ∈ V })∪
{{v, w} | v ∈ T \ {u} ∧ w ∈ V \ T ∧ {u,w} ∈ S}.

By construction of S′ we have |S′| ≤ |S|. Furthermore, we have NG[S′](v) =
NG[S](u) \ T for all v ∈ T and thus NG[S′](v) = NG[S′](v

′) for each pair v, v′ ∈ T .



It remains to show that in G− S′ the distance between s and t is at least `. To
this end, assume by contradiction that G− S′ contains an st-path P of length
less than `. Since, by construction of S′, each edge in S \ S′ has at least one
endpoint in T , it follows that P contains at least one vertex of T . Let v and v′

be the first respectively last vertex of T on P (possibly v = v′) and let w,w′ be
the vertices before v respectively after v′ on P , that is,

P = s- . . . -w-v- . . . -v′-w′- . . . -t.

Since w,w′ /∈ T , NG(v) \ T = NG(v′) \ T , and NG[S′](v) = NG[S′](v
′), it follows

that Pw-v-w′P is also an st-path with length less than ` in G− S′. Similarly, it
follows that P ′ := Pw-u-w′P is also an st-path with length less than ` in G− S′
(where u is the vertex used in the construction of S′). Since NG[S′](u) = NG[S](u)\
T it follows that {u,w}, {u,w′} /∈ S, implying that P ′ is an st-path of length less
than ` in G− S; a contradiction to the assumption that distG−S(s, t) = `. ut
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