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Abstract. Voter control problems model situations in which an external
agent tries to affect the result of an election by adding or deleting the
fewest number of voters. The goal of the agent is to make a specific
candidate either win (constructive control) or lose (destructive control)
the election. We study the constructive and destructive voter control
problems when adding and deleting voters have a combinatorial flavor : If
we add (resp. delete) a voter v, we also add (resp. delete) a bundle κ(v)
of voters that are associated with v. While the bundle κ(v) may have
more than one voter, a voter may also be associated with more than one
voter. We analyze the computational complexity of the four voter control
problems for the Plurality rule.
We obtain that, in general, making a candidate lose is computationally
easier than making her win. In particular, if the bundling relation is
symmetric (i.e. ∀w : w ∈ κ(v)⇔ v ∈ κ(w)), and if each voter has at most
two voters associated with him, then destructive control is polynomial-
time solvable while the constructive variant remains NP-hard. Even if the
bundles are disjoint (i.e. ∀w : w ∈ κ(v)⇔ κ(v) = κ(w)), the constructive
problem variants remain intractable. Finally, the minimization variant
of constructive control by adding voters does not admit an efficient
approximation algorithm, unless P = NP.

1 Introduction

Since the seminal paper by Bartholdi III et al. [3] on controlling an election by
adding or deleting the fewest number of voters or candidates with the goal of
making a specific candidate to win (constructive control), a lot of research has
been devoted to the study of control for different voting rules [4, 13, 15, 20, 22, 23],
on different control modes [16, 17], or even on other controlling goals (e.g. aiming
at several candidates’ victory or a specific candidate’s defeat) [19, 25]. Recently,
Bulteau et al. [8] introduced combinatorial structures to constructive control by
adding voters: When a voter is added, a bundle of other voters is added as well.
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A combinatorial structure of the voter set allows us to model situations where an
external agent hires speakers to convince whole groups of people to participate
in (or abstain from) an election. In such a scenario, convincing a whole group of
voters comes at the fixed cost of paying a speaker. Bulteau et al. [8] model this
by defining a bundle of associated voters for each voter which will be convinced
to vote “for free” when this voter is added or deleted. Moreover, the bundles of
different voters could overlap. For instance, convincing two bundles of two voters
each to participate in the election could result in adding a total of four, three or
even just two voters.

We extend the work of Bulteau et al. [8] and investigate the cases where the
agent wants to make a specific candidate win or lose by adding (resp. deleting)
the fewest number of bundles. We study one of the simplest voting rules, the
Plurality rule, where each voter gives one point to his favorite candidate, and the
candidate with most points becomes a winner. Accordingly, an election consists
of a set C of candidates and a set V of voters who each have a favorite candidate.
Since real world elections typically contain only a small number of candidates,
and a bundle of voters may correspond to a family with just a few members, we
are especially interested in situations where the election has only few candidates
and the bundle of each voter is small. Our goal is to ensure that a specific
candidate p becomes a winner (or a loser) of a given election, by convincing
as few voters from an unregistered voter set W as possible (or as few voters
from V as possible), together with the voters in their bundles, to participate
(or not to participate) in the election. We study the combinatorial voter control
problems from both the classical and the parameterized complexity point of
view. We confirm Bulteau et al.’s conjecture [8] that for the Plurality rule, the
three problem variants: combinatorial constructive control by deleting voters
and combinatorial destructive control by adding (resp. deleting) voters, behave
similarly in complexity to the results of combinatorial constructive control by
adding voters: They are NP-hard and intractable even for very restricted cases.
We can also identify several special cases, where the complexity of the four
problems behave differently. For instance, we find that constructive control tends
to be computationally harder than destructive control. We summarize our results
in Table 1.

Related Work. Bartholdi III et al. [3] introduced the complexity study of
election control problems and showed that for the Plurality rule, the non-
combinatorial variant of the voter control problems can be solved in linear
time by a using simple greedy strategy. We refer the readers to the work by
Faliszewski and Rothe [14], Rothe and Schend [26] for general expositions on
election control problems.

In the original election control setting, a unit modification of the election
concerns usually a single voter or candidate. The idea of adding combinatorial
structure to election voter control was initiated by Bulteau et al. [8]: Instead
of adding a voter at each time, one adds a “bundle” of voters to the election,
and the bundles added to the election could intersect with each other. They
showed that combinatorial constructive control by adding the fewest number of



bundles becomes notorious hard, even for the Plurality rule and for only two
candidates. Chen [9] mentioned that even if each bundle has only two voters
and the underlying bundling graph is acyclic, the problem still remains NP-hard.
Bulteau et al. [8] and Chen [9] conjectured that

“the combinatorial addition of voters for destructive control, and combi-
natorial deletion of voters for either constructive or destructive control
behave similarly to combinatorial addition of voters for constructive con-
trol.”

The combinatorial structure notion for voter control has also been extended
to candidate control [10] and electoral shift bribery [7].

Paper Outline. In Section 2, we introduce the notation used throughout the
paper. In Section 3 we formally define the four problem variants, summarize our
contributions, present results in which the four problem variants (constructive
or destructive, adding voters or deleting voters) behave similarly, and provide
reductions between the problem variants. Sections 4 to 6 present our main results
on three special cases

(1) when the bundles and the number of candidates are small,
(2) when the bundles are disjoint, and
(3) when the solution size could be unlimited.

We conclude in Section 7 with several future research directions. Due to space
restrictions, some proofs are deferred to our technical report [21].

2 Preliminaries

The notation we use in this paper is based on Bulteau et al. [8]. We assume
familiarity with standard notions regarding algorithms and complexity theory.
For each z ∈ N we denote by [z] the set {1, . . . , z}.

Elections. An election E = (C, V ) consists of a set C of m candidates and a set
V of voters. Each voter v ∈ V has a favorite candidate c and we call voter v a
c-voter. Note that since we focus on the Plurality rule, we simplify the notion of
the preferences of voters in an election to the favorite candidate of each voter.
For each candidate c ∈ C and each subset V ′ ⊆ V of voters, the (Plurality)
score sc(V ′) of candidate c with respect to the voter set V ′ is defined as the
number of voters from V ′ that have her as favorite candidate. We say that a
candidate c is a winner of election (C, V ) if c has the highest score sc(V ). For the
sake of convenience, for each C ′ ⊆ C, a C ′-voter denotes a voter whose favorite
candidate belongs to C ′.

Combinatorial Bundling Functions. Given a voter set X, a combinatorial
bundling function κ : X → 2X (abbreviated as bundling function) is a function
that assigns a set of voters to each voter; we require that x ∈ κ(x). For the sake
of convenience, for each subset X ′ ⊆ X, we define κ(X ′) =

⋃
x∈X′ κ(x). For a



voter x ∈ X, κ(x) is named x’s bundle; x is called the leader of the bundle. We
let b denote the maximum bundle size of a given κ. Formally, b = maxx∈X |κ(x)|.
One can think of the bundling function as subsets of voters that can be added at
a unit cost (e.g. κ(x) is a group of voters influenced by x).

Bundling graphs. The bundling graph of an election is a model of how the
voters’ bundles interact with each other. Let κ : X → 2X be a bundling function.
The bundling graph Gκ = (V (Gκ), E(Gκ)) of κ is a simple, directed graph, where
for each voter x ∈ X there is a vertex x ∈ V (Gκ) with the same name, and for
each two distinct voters y, z ∈ X with z ∈ κ(y), there is an arc (y, z) ∈ E(Gκ).

We consider three special cases of bundling functions/graphs which we think
are natural in real world. We say that a bundling function κ is symmetric if
for each two distinct voters x, y ∈ X, it holds that y ∈ κ(x) if and only if
x ∈ κ(y). The bundling graph for a symmetric bundling function always has two
directed arcs connecting each two vertices. Thus, we can assume the graph to be
undirected.

We say that κ is disjoint if for each two distinct voters x, y ∈ X, it holds that
either κ(x) = κ(y) or κ(x)∩κ(y) = ∅. It is an easy exercise to verify that disjoint
bundling functions are symmetric and the corresponding undirected bundling
graphs consist only of disjoint complete subgraphs.

We say that κ is anonymous if for each two distinct voters x and y with the
same favorite candidate, it holds that κ(x) = κ(y), and that for all other voters z
we have x ∈ κ(z) if and only if y ∈ κ(z).

Example 1. For an illustration, consider the following election E := (C = {a, b, c},
V = {v1, v2, . . . , v5}) in which the favorite candidate of voters v1, v2, v3 is a, the
favorite candidate of v4 is b, and the favorite candidate of v5 is c. The bundling
graph corresponding to the bundling function of this election could be either the
left or the right figure as depicted below. Note that the label above or below the
circle (which represents the vertex) denotes the name of the voter and the label
inside the circle indicates his favorite candidate. For instance, in the left figure
below, the leftmost circle corresponds to voter v1 and his favorite candidate is a.
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The bundling function corresponding to the left bundling graph is symmetric,
but neither disjoint nor anonymous. The bundling function corresponding to the
right bundling graph is symmetric, disjoint, and anonymous.

Parameterized Complexity. An instance (I, r) of a parameterized problem
consists of the actual instance I and of an integer r referred to as the parameter [12,
18, 24]. A parameterized problem is called fixed-parameter tractable (in FPT) if



there is an algorithm that solves each instance (I, r) in f(r) · |I|O(1) time, where
f is a computable function depending only on the parameter r.

There is also a hierarchy of hardness classes for parameterized problems,
of which the most important ones are W[1] and W[2]. One can show that a
parameterized problem L is (presumably) not in FPT by devising a parameterized
reduction from a W[1]-hard or a W[2]-hard problem to L. A parameterized
reduction from a parameterized problem L to another parameterized problem L′

is a function that acts as follows: For two computable functions f and g, given an
instance (I, r) of problem L, it computes in f(r) · |I|O(1) time an instance (I ′, r′)
of problem L′ so that r′ ≤ g(r) and that (I, r) ∈ L if and only if (I ′, r′) ∈ L′. For
a survey of research on parameterized complexity in computational social choice,
we refer to Betzler et al. [5] and Bredereck et al. [6].

3 Central Problem

We consider the problem of combinatorial voter control in four variants. The
variants differ in whether they are constructive or destructive, meaning that the
goal is to make one selected candidate win or lose the election. This goal can be
achieved by either adding voters to or deleting voters from the given election.
Due to space constraints, we only provide the definition of constructive control.
Destructive control is defined analogously.

Combinatorial Constructive Control by Adding
(resp. Deleting) Voters [C-Cons-Add (resp. C-Cons-Del)]
Input: An election E = (C, V ), a setW of unregistered voters with V ∩W = ∅,

a bundling function κ : W → 2W (resp. κ : V → 2V ), a preferred winner
p ∈ C, and an integer k ∈ N.

Quest.: Is there a size-at-most k subset W ′ ⊆W (resp. V ′ ⊆ V ) of voters such
that p wins the election (C, V ∪ κ(W ′)) (resp. (C, V \ κ(V ′)))?

It is straight-forward to see that all four problem variants are contained in NP
since we can check in polynomial time whether a given subset W ′ (or V ′) is a
desired solution of size at most k.

Throughout this work, when speaking of the “adding” or “deleting” variants,
we mean those variants in which voters are added or, respectively, deleted. In
similar fashion, we speak of the constructive and destructive (abbr. by “Cons”
and by “Des”, respectively) problem variants. Further, we refer to the set W ′
of voters as the solution for the “adding” variants (the set V ′ of voters for the
“deleting” variants, respectively) and denote k as the solution size.

Our Contributions. We study both the classical and the parameterized com-
plexity of the four voter control variants. We are particularly interested in the
real-world setting where the given election has a small number of candidates
and where only a few voters are associated to a voter. On the one hand, we
were able to confirm the conjecture given by Bulteau et al. [8] and Chen [9]
that when parameterized by the solution size, C-Cons-Del, C-Des-Add, and
C-Des-Del are all intractable even for just two candidates or for bundle sizes of



Table 1. Computational complexity of the four combinatorial voter control variants
with the Plurality rule. The parameters are “the solution size k”, “the number m of
candidates” and “the maximum bundle size b”. We refer to |I| as the instance size.
The rows distinguish between different maximum bundle sizes b and the number m
of candidates. All parameterized intractability results are for the parameter “solution
size k”. ILP-FPT means FPT based on a formulation as an integer linear program and
the result is for the parameter “number m of candidates”.

C-Cons-Add C-Cons-Del C-Des-Add C-Des-Del References

κ symmetric
b = 2 O(|I|) P O(m · |I|) O(m · |I|) Obs 2, Thm 3

Thm 5
b = 3
m = 2 O(|I|5) O(|I|5) O(|I|5) O(|I|5) Thm 2,

Cor 1+2
m unbounded NP-h NP-h O(m · |I|5) O(m · |I|5) Obs 1, Prop 2,

Cor 2
b unbounded
m = 2 W[2]-h W[2]-h W[2]-h W[2]-h [8], Thm 1
m unbounded
and κ disjoint W[1]-h W[2]-h O(m · |I|) O(m · |I|) Thm 4+5

κ anonymous ILP-FPT ILP-FPT ILP-FPT ILP-FPT Thm 1

κ arbitrary
b = 3, m = 2 W[1]-h W[1]-h W[1]-h W[1]-h Thm 1

at most three, and that when parameterized by the number of candidates, they
are fixed-parameter tractable for anonymous bundling functions. On the other
hand, we identify interesting special cases where the four problems differ in their
computational complexity. We conclude that in general, destructive control tends
to be easier than constructive control: For symmetric bundles with at most three
voters, C-Cons-Add is known to be NP-hard, while both destructive problem
variants are polynomial-time solvable. For disjoint bundles, constructive control is
parameterized intractable (for the parameter “solution size k”), while destructive
control is polynomial-time solvable. Unlike for C-Cons-Del, a polynomial-time
approximation algorithm for C-Cons-Add does not exist, unless P = NP. Our
results are gathered in Table 1.

The following theorem summarizes the conjecture given by Bulteau et al. [8]
and Chen [9]. The corresponding proof can be found in our technical report [21].

Theorem 1. All four combinatorial voter control problem variants are
(i) W[2]-hard with respect to the solution size k, even for only two candidates

and for symmetric bundling functions κ
(ii) W[1]-hard with respect to the solution size k, even for only two candidates

and for bundle sizes of at most three.
(iii) fixed-parameter tractable with respect to the number m of candidates if the

bundling function κ is anonymous.



Relations between the four problem variants. We provide some reductions
between the problem variants. They are used in several sections of this paper.
The key idea for the reduction from destructive control to constructive control
is to guess the candidate that will defeat the distinguished candidate and ask
whether one can make this candidate win the election. The key idea for the
reduction from the “deleting” to the “adding” problem variants is to build the
“complement” of the registered voter set.

Proposition 1. For each X ∈ {Add, Del}, C-Des-X with m candidates is
Turing reducible to C-Cons-X with two candidates. For each Y ∈ {Cons,
Des}, C-Y -Del with two candidates is many-one reducible to C-Y -Add with
two candidates. All these reductions preserve the property of symmetry of the
bundling functions.

4 Controlling Voters with Symmetric and Small Bundles

In this section, we study combinatorial voter control when the voter bundles
are symmetric and small. This could be the case when a voter’s bundle models
his close friends (including himself), close relatives, or office mates. Typically,
this kind of relations is symmetric, and the number of friends, relatives, or office
mates is small. We show that for symmetric bundles and for bundles size at
most three, both destructive problem variants become polynomial-time solvable,
while both constructive variants remain NP-hard. However, if there are only two
candidates, then we can use dynamic programming to also solve the constructive
control variants in polynomial time. If we restrict the bundle size to be at most
two, then all four problem variants can be solved in polynomial time via simple
greedy algorithms.

As already observed in Section 2, we only need to consider the undirected
version of the bundling graph for symmetric bundles. Moreover, if the bundle
size is at most two, then the resulting bundling graph consists of only cycles
and trees. However, Bulteau et al. [8] already observed that C-Cons-Add is
NP-hard even if the resulting bundling graph solely consists of cycles, and Chen
[9] observed that C-Cons-Add remains NP-hard even if the resulting bundling
graph consists of only directed trees of depth at most three.

Observation 1. C-Cons-Add is NP-hard even for symmetric bundling func-
tions with maximum bundle size b = 3.

It turns out that the reduction used by Bulteau et al. [8] to show the adding
voters case (Observation 1) can be adapted to show NP-hardness for the deleting
voters case.

Proposition 2. C-Cons-Del is NP-hard even for symmetric bundling functions
with maximum bundle size b = 3.

If, in addition to the bundles being symmetric and of size at most three, we
have only two candidates, then we can solve C-Cons-Add in polynomial time.



First of all, due to these constraints, we can assume that the bundling graph Gκ
is undirected and consists of only cycles and paths. Then, it is easy to verify
that we can consider each cycle and each path separately. Finally, we devise a
dynamic program for the case when the bundling graph is a path or a cycle,
maximizing the score difference between our preferred candidate p and the other
candidate. The crucial idea behind the dynamic program is that the bundles of a
minimum-size solution induce a subgraph where each connected component is
small.

Lemma 1. Let (E = (C, V ),W, κ, p, k) be a C-Cons-Add instance such that
C = {p, g}, and κ is symmetric with Gκ being a path. Then, finding a size-at-
most-k subset W ′ ⊆W of voters such that the score difference between p and g
in κ(W ′) is maximum can be solved in O(|W |5) time, where |W | is the size of
the unregistered voter set W .

Proof. Since Gκ is a path, each bundle has at most three voters. We denote the
path in Gκ by (w1, w2, . . . , w|W |) and introduce some definitions for this proof.
The set W (s, t) := {wi ∈W | s ≤ i ≤ t} contains all voters on a sequence from
ws to wt. For every subset W ′ ⊆W we define gap(W ′) := sp(κ(W

′))− sg(κ(W ′))
as the score difference between p and g. One can observe that if W ′ is a solution
for (E = (C, V ),W, κ, p, k) then gap(W ′) ≥ sg(V ) − sp(V ); note that we only
have two candidates. An (s, t)-proper-subset W ′ is a subset of W (s, t) such that
κ(W ′) ⊆W (s, t). A maximum (s, t)-proper-subset W ′ additionally requires that
each (s, t)-proper-subset W ′′ ⊆W with |W ′′| = |W ′| has gap(W ′′) ≤ gap(W ′).

We provide a dynamic program in which a table entry T [r, s, t] contains a
maximum (s, t)-proper-subset W ′ of size r. We first initialize the table entries
for the case where t− s+ 1 ≤ 9 and r ≤ 9 in linear time.

For t− s+ 1 > 9, we compute the table entry T [r, s, t] by considering every
possible partition of W (s, t) into two disjoint parts.

T [r, s, t] := T [r − i, s, s+ j] ∪ T [i, s+ j + 1, t],

where i, j = argmax
0≤i≤r

0≤j≤t−s−2

gap(T [r − i, s, s+ j]) + gap(T [i, s+ j + 1, t]).

Note that a maximum (1, |W |)-proper-subset W ′ of size r− 1 could have a higher
gap than a maximum (1, |W |)-proper-subset W ′′ of size r.

To show the correctness of our program, we define the maximization and
minimization function on a set of votersW ′, which return the largest and smallest
index of all voters on the path induced by W ′, respectively:

max(W ′) := argmax
i∈|W ′|

{wi ∈ (W ′)} and min(W ′) := argmin
i∈|W ′|

{wi ∈ (W ′)}.

First, we use the following claim to show that each maximum (s, t)-proper-subset
W ′ can be partitioned into two (s, t)-proper-subsets W1,W2 such that the two
sets κ(W1) and κ(W2) are disjoint. The correctness proof of the following claim
can be found in our technical report [21].



Claim 1. Let W ′ be a maximum (s, t)-proper-subset such that (maxκ(W ′) −
minκ(W ′) + 1) > 9. Then, there is a j with s < j < t such that there is an
(s, j)-proper-subset W1 and a (j+1, t)-proper-subset W2 with |W1|+ |W2| ≤ |W ′|
and κ(W1 ∪W2) = κ(W ′).

Now, we show that the two subsets W1 and W2 from Claim 1 are indeed
optimal : There is a j such that W1 is a maximum (s, j)-proper-subset and W2 is
a maximum (j + 1, t)-proper-subset.

Assume towards a contradiction that W2 is a (j + 1, t)-proper-subset but
not a maximum (j + 1, t)-proper-subset. Therefore, there exists a maximum
(j+1, t)-proper-subset W ′2 where |W2| = |W ′2|. This implies that gap(W1∪W ′2) >
gap(W1 ∪W2). This is a contradiction to W ′ = W1 ∪W2 being a maximum
(s, t)-proper-subset. The case in which W1 is not a maximum (s, j)-proper-subset
is analogous.

Altogether, we have shown that we can compute T [k, s, t] in constant time if
t− s+ 1 ≤ 9, and that otherwise there exist an i and a j such that T [k, s, t] =
T [k − i, s, t− j] ∪ T [i, t− j + 1, t]. The dynamic program considers all possible
i and j. The table entry T [i, 1, |W |] contains a subset W ′ ⊆ W of size i with
maximum gap such that κ(W ′) ⊆W (1, |W |), which is identical to κ(W ′) ⊆W .

This completes the correctness proof of our dynamic program. The table
has O(k · |W |2) entries. To compute one entry the dynamic program accesses
O(k · |W |) other table entries. Note that the value gap(T [i, s, t]) can be computed
and stored after the entry T [i, s, t] is computed. This takes at most O(|W |) steps.
Thus, the dynamic program runs in O(|W |5) time. ut

The dynamic program can be adapted to solve the same problem on cycles:

Lemma 2. Let (E = (C, V ),W, κ, p, k) be a C-Cons-Add instance such that
C = {p, g}, and κ is symmetric with Gκ being a cycle. Then, finding a size-at-
most-k subset W ′ ⊆W of voters such that the score difference between p and g
in κ(W ′) is maximum can be solved in O(|W |5) time, where |W | is the size of
the unregistered voter set W .

Altogether, we obtain the following.

Theorem 2. C-Cons-Add with a symmetric bundling function, maximum bun-
dle size of three, and for two candidates can be solved in O(|W |5) time, where
|W | is the size of the unregistered voter set.

Proof. Let (E = (C, V ),W, κ, p, k) be a C-Cons-Add instance, where the max-
imum bundle size b is three, κ is symmetric, and C = {p, g}. This means that
all connected components C1, . . . , C` of Gκ are path or cycles. Furthermore, all
bundles only contain voters from one connected component. We define a dynamic
program in which each table entry A[i, s, t] contains a solution W ′ ⊆W of size i,
where κ(W ′) ⊆ V (Cs) ∪ · · · ∪ V (Ct) and 1 ≤ s ≤ t ≤ `:

(i) If s = t = j, then A[i, s, t] = T [i, 1, |V (Cj)|], where T is the dynamic
program of Cj , depending on whether Cj is a path or cycle.



(ii) Otherwise, we build the table as follows:
A[d, s, t] = A[d− i, s, s+ j] ∪A[i, s+ j + 1, t], where

i, j = argmax
0≤i≤d

1≤j≤t−s−1

gap(A[d− i, s, s+ j]) + gap(A[i, s+ j + 1, t]).

Each of the table entries A[i, j, j] can be computed in O(i2 · |V (Cj)|3) time (see
Lemmas 1 and 2) and each of the table entries A[i, s, t] for s < t can be computed
in O(k · `) time. Since we have k · `2 entries, the total running time is∑`

i=1O(k2 · |V (Cj)|3) = O(k2)
∑`
i=1O(|V (Ci)|) = O(k2 · |W |3). ut

From the polynomial-time solvability result of Theorem 2 and by Proposition 1,
we obtain the following:

Corollary 1. C-Cons-Del with a symmetric bundling function, maximum bun-
dle size of three, and two candidates can be solved in O(|V |5) time, where |V |
denotes the number of the voters.

Corollary 2. C-Des-Add and C-Des-Del with a symmetric bundling function
and maximum bundle size three can be solved in time O(m · |W |5) and O(m · |V |5),
respectively, where m is the number of candidates, and |W | and |V | are the
numbers of unregistered and registered voters, respectively.

5 Controlling Voters with Disjoint Bundles

We have seen in Section 4 that the interaction between the bundles influences
the computational complexity of our combinatorial voter control problems. For
instance, adding a voter v to the election may lead to adding another voter v′
with v ∈ κ(v). This is crucial for the reductions used to prove Theorem 1 and
Observation 1. Thus, it would be interesting to know whether the problem
becomes tractable if it is not necessary to add two bundles that share some
voter(s). More specifically, we are interested in the case where the bundles are
disjoint, meaning that we do not need to consider every single voter, but only
the bundles as a whole, as it does not matter which voters of a bundle we select.

First, we consider disjoint bundles of size at most two. This is the case for
voters who have a partner. If a voter is convinced to participate in or leaves the
election, then the partner is convinced to do the same. Note that this is equivalent
to having symmetric bundles of size at most two. Bulteau et al. [8, Theorem 6]
constructed a linear-time algorithm for C-Cons-Add if the maximum bundle
size is two and κ is a full-d bundling function (which implies symmetry). We can
verify that their algorithm actually works for disjoint bundles of size at most two.
Thus, we obtain the following.

Observation 2. C-Cons-Add with a symmetric bundling function and with
bundles of size at most two can be solved in O(|I|) time, where |I| is the input
size.



If we want to delete instead of add voter bundles, the problem reduces to
finding a special variant of the f-Factor problem, which is a generalization of
the well-known matching problem and can still be solved in polynomial time [1, 2].

Theorem 3. C-Cons-Del with a symmetric bundling function and with bundles
of size at most two can be solved in polynomial time.

If we drop the restriction on the bundle sizes but still require the bundles to be
disjoint, then C-Cons-Add and C-Cons-Del become parameterized intractable
with respect to the solution size.

Theorem 4. Parameterized by the solution size k, C-Cons-Add and C-Cons-
Del are W[1]-hard and W[2]-hard respectively, even for disjoint bundles.

Proof (with only the construction for the W[1]-hardness proof of C-Cons-Add).
We provide a parameterized reduction from the W[1]-complete problem Inde-
pendent Set (parameterized by the “solution size”) which, given an undirected
graph G = (V (G), E(G)) and a natural number h ∈ N, asks whether G admits
a size-h independent set U ⊆ V (G), that is, all vertices in U are pairwise non-
adjacent. Let (G, h) be an Independent Set instance with E(G) = {e1, . . . ,
em−1} and V (G) = {u1, . . . , un}. Without loss of generality, we assume that G
is connected and h ≥ 3. We construct an election E = (C, V ) with candidate
set C := {p} ∪ {gj | ej ∈ E(G)}. For each edge ej ∈ E, we construct h − 1
registered voters that all have gj as their favorite candidate. In total, V consists
of (h− 1) · (m− 1) voters.

The unregistered voter set W is constructed as follows: For each vertex ui ∈
V (G), add a p-voter pi, and for each edge ej incident with ui, add a gj-voter a

(i)
j .

The voters constructed for each vertex ui are bundled by the bundling function κ.
More formally, for each ui ∈ V (G) and each ej ∈ E(G) with ui ∈ ej , it holds
that

κ(pi) = κ(a
(i)
j ) := {pi} ∪ {a(i)j′ | ui ∈ ej′ for some ej′ ∈ E(G)}.

To finalize the construction, we set k := h. The construction is both a polynomial-
time and a parameterized reduction, and all bundles are disjoint. To show the
correctness, we note that p can only win if only if her score can be increased
to at least h without giving any other candidate more than one more point.
The solution corresponds to exactly to a subset of h vertices that are pairwise
non-adjacent. The detailed correctness proof and the remaining proof for the
W[2]-hardness result can be found in the our technical report [21]. ut

For destructive control, it is sufficient to guess a potential defeater d out of
m−1 possible candidates that will have a higher score than p in the final election
and use a greedy strategy similar to the one used for Observation 2 to obtain the
following result.

Theorem 5. C-Des-Add and C-Des-Del with a symmetric bundling function
and disjoint bundles can be solved in O(m · |I|) time, where |I| is the input size
and m the number of candidates.



6 Controlling Voters with Unlimited Budget

To analyze election control, it is interesting to know whether a solution exist at
all, without bounding its size. Indeed, Bartholdi III et al. [3] already considered
the case of unlimited solution size for the constructive candidate control problem.
They showed that the problem is already NP-hard, even if the solution size is
not bounded. (The non-combinatorial destructive control by adding unlimited
amount of candidates is shown to be also NP-hard by Hemaspaandra et al.
[19].) In contrast, the non-combinatorial voter control variants are linear-time
solvable via simple greedy algorithms [3]. This leads to the question whether
the combinatorial structure increases the complexity. To this end, we relax the
four problem variants so that the solution can be of arbitrary size and call these
problems C-Cons-Add-Unlim, C-Des-Add-Unlim, C-Cons-Del-Unlim and
C-Des-Del-Unlim.

First of all, we observe that C-Cons-Del-Unlim becomes trivial if no unique
winner is required.

Lemma 3. Every C-Cons-Del-Unlim instance is a yes-instance.

If we consider a voting rule R that only returns unique winners, then C-Des-
Del-Unlim also becomes tractable since we only need to delete all voters.

For the constructive adding voters case, we obtain NP-hardness. The idea for
the reduction derives from the W[1]-hardness proof of C-Cons-Add shown by
Bulteau et al. [8].

Lemma 4. C-Cons-Add-Unlim is NP-hard.

Lemma 4 immediately implies the following inapproximability result for the
optimization variant of C-Cons-Add (denoted as Min-C-Cons-Add), aiming
at minimizing the solution size.

Theorem 6. There is no polynomial-time approximation algorithm for Min-C-
Cons-Add, unless P = NP.

7 Conclusion

We extend the study of combinatorial voter control problems introduced by
Bulteau et al. [8] and obtain that the destructive control variants tend to be
computationally easier than their constructive cousins.

Our research leads to several open questions and further research opportunities.
First, we have shown hardness results for the adding candidate case: if the
bundling function consists of disjoint cliques, then parameterized by the solution
size, C-Cons-Add is W[1]-hard and C-Des-Add is W[2]-hard. If one could also
determine the complexity upper bound, that is, under the given restrictions,
if C-Cons-Add would be contained in W[1], then this would yield another
difference in complexity between the destructive and the constructive variants.



This also leads to the question whether the problem variants in their general
setting are not only W[2]-hard, but W[2]-complete.

Second, we have only shown that Min-C-Cons-Add is inapproximable and
Min-C-Des-Del is trivially polynomial-time solvable. For the other two problem
variants, we do not know whether they can be approximated efficiently or not.

Another open question is whether there are FPT-results for any natural
combined parameters. As a starting point, we conjecture that all problem variants
can be formulated as a monadic second-order logic formula with length of at
most f(k, b,m) (where k is the solution size, b is the maximum bundle size,
m is the number of candidates, and f is a computable function). Courcelle
and Engelfriet [11] showed that every graph problem expressible as a monadic
second-order logic formula ρ can be solved in g(|ρ|, ω) · |I| time, where ω is the
treewidth of the input graph and |I| is the input size. Our conjecture would
provide us with a fixed-parameter tractability result with respect to the solution
size, the maximum bundle size, the number of candidates, and the treewidth of
our bundling graph Gκ.

We have studied the Plurality rule exclusively. Thus it is still open which
of our results also hold for other voting rules, especially for the Condorcet rule.
Since with two candidates, the Condorcet rule is equivalent to the strict majority
rule, we can easily adapt some of our results to work for the Condorcet rule as
well. Other results (i.e., the Turing reductions) cannot be easily adapted to work
for the Condorcet rule.
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