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Abstract. We study the kernelizability of a class of NP-hard graph
modification problems based on vertex degree properties. Our main
positive results refer to NP-hard graph completion (that is, edge addition)
cases while we show that there is no hope to achieve analogous results
for the corresponding vertex or edge deletion versions. Our algorithms
are based on a method that transforms graph completion problems into
efficiently solvable number problems and exploits f -factor computations
for translating the results back into the graph setting. Indeed, our core
observation is that we encounter a win-win situation in the sense that
either the number of edge additions is small (and thus faster to find) or the
problem is polynomial-time solvable. This approach helps in answering
an open question by Mathieson and Szeider [JCSS 2012].

1 Introduction

In this work, we propose a general approach for achieving polynomial-size problem
kernels for a class of graph completion problems where the goal graph has to
fulfill certain degree properties. Thus, we explore and enlarge results on provably
effective polynomial-time preprocessing for these NP-hard graph problems. To a
large extent, the initial motivation for our work comes from studying the NP-hard
graph modification problem Degree Constraint Editing(S) for non-empty
subsets S ⊆ {v−, e+, e−} of editing operations (v−: “vertex deletion”, e+: “edge
addition”, e−: “edge deletion”) as introduced by Mathieson and Szeider [22].1

The definition reads as follows.

Degree Constraint Editing(S) (DCE(S))
Input: An undirected graph G = (V,E), two integers k, r > 0, and

a “degree list function” τ : V → 2{0,...,r}.
Question: Is it possible to obtain a graph G′ = (V ′, E′) from G using

at most k editing operations of type(s) as specified by S such
that degG′(v) ∈ τ(v) for all v ∈ V ′?

? Supported by DFG, project DAMM (NI 369/13).
1 Mathieson and Szeider [22] originally introduced a weighted version of the problem,

where the vertices and edges can have positive integer weights incurring a cost for
each editing operation. Here, we focus on the unweighted version.

To appear in Proceedings of the 14th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT’ 14), Copenhagen, Denmark, July 2014.
c© Springer.



In our work, the set S always consists of a single editing operation. Our studies
focus on the two most natural parameters: the number k of editing operations and
the maximum allowed degree r. We will show that, although all three variants are
NP-hard, DCE(e+) is amenable to a generic kernelization method we propose.
This method is based on dynamic programming solving a corresponding number
problem and f -factor computations. For DCE(e−) and DCE(v−), however, we
show that there is little hope to achieve analogous results.

Previous Work. There are basically two fundamental starting points for our work.
First, there is our previous theoretical work on degree anonymization in social
networks [15] motivated and strongly inspired by a preceding heuristic approach
due to Liu and Terzi [19]. Indeed, our previous work for degree anonymization
very recently inspired empirical work with encouraging experimental results [16].
A fundamental contribution of this work now is to systematically reveal what
the problem-specific parts (tailored towards degree anonymization) and what
the “general” parts of that approach are. In this way, we develop this approach
into a general method of significantly wider applicability for a large number of
graph completion problems based on degree properties. The second fundamental
starting point is Mathieson and Szeider’s work [22] on DCE(S). They showed
several parameterized preprocessing (also known as kernelization) results and left
open whether it is possible to reduce DCE(e+) in polynomial time to a problem
kernel of size polynomial in r —we will affirmatively answer this question. Finally,
Golovach [13] achieved a number of kernelization results for closely related graph
editing problems; his methods, however, significantly differ from ours.

From a more general perspective, all these considerations fall into the category
of “graph editing to fulfill degree constraints”, which recently received increased
interest in terms of parameterized complexity analysis [10, 13, 23].

Our Contributions. Answering an open question of Mathieson and Szeider [22],
we present an O(kr2)-vertex kernel for DCE(e+) which we then transfer into
an O(r5)-vertex kernel using a strategy rooted in previous work [15, 19]. A further
main contribution of our work in the spirit of meta kernelization [2] is to clearly
separate problem-specific from problem-independent aspects of this strategy, thus
making it accessible to a wider class of degree sequence completion problems. We
observe that in case that the goal graph shall have “small” maximum degree r,
then the actual graph structure is in a sense negligible and thus allows for a lot of
freedom that can be algorithmically exploited. This paves the way to a win-win
situation of either having guaranteed a small number of edge additions or the
overall problem being solvable in polynomial-time anyway.

Besides our positive kernelization results, we exclude polynomial-size problem
kernels for DCE(e−) and DCE(v−) subject to the assumption that NP 6⊆
coNP/poly, thereby showing that the exponential-size kernel results by Mathieson
and Szeider [22] are essentially tight. In other words, this demonstrates that in
our context edge completion is much more amenable to kernelization than edge
deletion or vertex deletion are. We also prove NP-hardness of DCE(v−) and
DCE(e+) for graphs of maximum degree three, implying that the maximum
degree is not a useful parameter for kernelization purposes. Last but not least, we
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develop a general preprocessing approach for Degree Sequence Completion
problems which yields a search space size that is polynomially bounded in the
parameter. While this per se does not give polynomial kernels, we derive fixed-
parameter tractability with respect to the combined parameter maximum degree
and solution size. The usefulness of our method is illustrated by further example
degree sequence completion problems.

Notation. All graphs in this paper are undirected, loopless, and simple (that is,
without multiple edges). For a graph G = (V,E), we set n := |V | and m := |E|.
The degree of a vertex v ∈ V is denoted by degG(v), the maximum vertex degree
by ∆G, and the minimum vertex degree by δG. For a finite set U , we denote
with

(
U
2

)
the set of all size-two subsets of U . We denote by G := (V,

(
V
2

)
\ E)

the complement graph of G. For a vertex subset V ′ ⊆ V , the subgraph induced
by V ′ is denoted by G[V ′]. For an edge subset E′ ⊆

(
V
2

)
, V (E′) denotes the set

of all endpoints of edges in E′ and G[E′] := (V (E′), E′). For a set E′ of edges
with endpoints in a graph G, we denote by G + E′ := (V,E ∪ E′) the graph
that results by inserting all edges in E′ into G. Similarly, we define for a vertex
set V ′ ⊆ V , the graph G− V ′ := G[V \ V ′]. For each vertex v ∈ V , we denote
by NG(v) the open neighborhood of v in G and by NG[v] := NG(v) ∪ {v} the
closed neighborhood. We omit subscripts if the corresponding graph is clear from
the context. A vertex v ∈ V with deg(v) ∈ τ(v) is called satisfied (otherwise
unsatisfied). We denote by U ⊆ V the set of all unsatisfied vertices, formally
U := {v ∈ V | degG(v) /∈ τ(v)}.

Parameterized Complexity. This is a two-dimensional framework for studying
computational complexity [8, 11, 24]. One dimension of a parameterized problem
is the input size s, and the other one is the parameter (usually a positive integer).
A parameterized problem is called fixed-parameter tractable (fpt) with respect to
a parameter ` if it can be solved in f(`) · sO(1) time, where f is a computable
function only depending on `. This definition also extends to combined parameters.
Here, the parameter usually consists of a tuple of positive integers (`1, `2, . . .)
and a parameterized problem is called fpt with respect to (`1, `2, . . .) if it can be
solved in f(`1, `2, . . .) · sO(1) time.

A core tool in the development of fixed-parameter algorithms is polynomial-
time preprocessing by data reduction [1, 14, 20]. Here, the goal is to transform a
given problem instance I with parameter ` in polynomial time into an equivalent
instance I ′ with parameter `′ ≤ ` such that the size of I ′ is upper-bounded by
some function g only depending on `. If this is the case, we call I ′ a (problem)
kernel of size g(`). If g is a polynomial, then we speak of a polynomial kernel.
Usually, this is achieved by applying polynomial-time executable data reduction
rules. We call a data reduction rule R correct if the new instance I ′ that results
from applying R to I is a yes-instance if and only if I is a yes-instance. The whole
process is called kernelization. It is well known that a parameterized problem is
fixed-parameter tractable if and only if it has a problem kernel.

Due to a lack of space several proofs are deferred to a full version.2

2 Available on arXiv:1404.5432.
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2 Degree Constraint Editing

Mathieson and Szeider [22] showed fixed-parameter tractability of DCE(S) for all
non-empty subsets S ⊆ {v−, e−, e+} with respect to the combined parameter (k, r)
and W[1]-hardness with respect to the single parameter k. The fixed-parameter
tractability is in a sense tight as Cornuéjols [7] proved that DCE(e−) is NP-
hard on planar graphs with maximum degree three and with r = 3 and thus
presumably not fixed-parameter tractable with respect to r. We complement
his result by showing that DCE(v−) is NP-hard on cubic (that is three-regular)
planar graphs, even if r = 0, and that DCE(e+) is NP-hard on graphs with
maximum degree three.

Theorem 1. DCE(v−) is NP-hard on cubic planar graphs, even if r = 0.

Proof (Sketch). We provide a polynomial-time many-one reduction from the
NP-hard Vertex Cover on cubic planar graphs [12]. Let (G = (V,E), h) be
a Vertex Cover instance with the cubic planar graph G. It is not hard to
see that (G, h) is a yes-instance of Vertex Cover if and only if (G, h, 0, τ)
with τ(v) = {0} for all v ∈ V is a yes-instance of DCE(v−). ut

Theorem 2. DCE(e+) is NP-hard on planar graphs with maximum degree three.

In contrast to DCE(e−) and DCE(v−), unless P = NP, DCE(e+) cannot be
NP-hard for constant values of r since we later show fixed-parameter tractability
for DCE(e+) with respect to the parameter r.

Excluding Polynomial Kernels. Mathieson and Szeider [22] gave exponential-size
problem kernels for DCE(v−) and DCE({v−, e−}) with respect to the combined
parameter (k, r). We prove that these results are tight in the sense that, under
standard complexity-theoretic assumptions, neither DCE(e−) nor DCE(v−)
admits a polynomial-size problem kernel when parameterized by (k, r).

Theorem 3. DCE(e−) does not admit a polynomial-size problem kernel with
respect to (k, r) unless NP ⊆ coNP/poly.

Theorem 4. DCE(v−) does not admit a polynomial-size problem kernel with
respect to (k, r) unless NP ⊆ coNP/poly.

Having established these computational lower bounds, we now show that in
contrast to DCE(e−) and DCE(v−), DCE(e+) admits a polynomial kernel.

2.1 A Polynomial Kernel for DCE(e+) with respect to (k, r)

In order to describe the kernelization, we need some further notation: For i ∈
{0, . . . , r}, a vertex v ∈ V is of type i if and only if deg(v) + i ∈ τ(v), that is, v
can be satisfied by adding i edges to it. The set of all vertices of type i is denoted
by Ti. Observe that a vertex can be of multiple types, implying that for i 6= j the
vertex sets Ti and Tj are not necessarily disjoint. Furthermore, notice that the
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Fig. 1. An example for safely removing a vertex from a graph. The sets next to the
vertices denote the degree lists defined by τ . Observe that in both graphs u is of type
zero and of type one, v is of type zero, and w is of type one.

type-0 vertices are exactly the satisfied ones. We remark that there are instances
for DCE(e+) where we might have to add edges between two satisfied vertices
(though this may seem counter-intuitive): Consider, for example, a three-vertex
graph without any edges, the degree list function values are {2}, {0, 2}, {0, 2},
and k = 3. The two vertices with degree list {0, 2} are satisfied. However, the
only solution for this instance is to add all edges.

Now, we can describe our kernelization algorithm: The basic strategy is to
keep the unsatisfied vertices U and “enough” arbitrary vertices of each type
(from the satisfied vertices) and delete all other vertices. The idea behind the
correctness is that the vertices in a solution are somehow “interchangeable”. If
an unsatisfied vertex needs an edge to a satisfied vertex of type i, then it is not
important which satisfied type-i vertex is used. We only have to take care not to
“reuse” the satisfied vertices to avoid the creation of multiple edges.

Next, we specify what we mean by “enough” vertices: The “magic number” is
α := k(∆G + 2). This leads to the definition of α-type sets : An α-type set C ⊆ V
is a vertex subset containing all unsatisfied vertices U and min{α, |Ti \U |} type-i
vertices from Ti \ U for each i ∈ {1, . . . , r}. We will soon show that for any fixed
α-type set C, deleting all vertices in V \ C results in an equivalent instance.
However, deleting a vertex changes the degrees of its neighbors. Thus, we also
have to adjust their degree lists. Formally, for a vertex subset V ′ ⊆ V , we
define τV ′ : (V \V ′)→ 2{0,...,r}, where for each u ∈ V \V ′, we set τV ′(u) := {d ∈
N | d+ |NG(u) ∩ V ′| ∈ τ(u)}. Then, safely removing a vertex set V ′ ⊆ V from
the instance (G, k, r, τ) means to replace the instance with (G− V ′, k, r, τV ′), see
Figure 1 for an example. With these definitions we can provide our reduction
rules leading to a polynomial-size problem kernel.

Reduction Rule 1. Let (G = (V,E), k, r, τ) be an instance of DCE(e+) and
let C ⊆ V be an α-type set in G. Then, safely remove all vertices in V \ C.

Lemma 1. Reduction Rule 1 is correct and can be applied in linear time.

As each α-type set contains at most α satisfied vertices of each vertex type,
it follows that after one application of Reduction Rule 1 the graph contains at
most |C| = |U |+ rα vertices. The number of unsatisfied vertices in an α-type set
can always be bounded by |U | ≤ 2k since we can increase the degrees of at most 2k
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vertices by adding k edges. If there are more unsatisfied vertices, then we return
a trivial no-instance. Thus, we end up with |C| ≤ 2k + rk(∆G + 2). To obtain a
polynomial-size problem kernel with respect to the combined parameter (k, r), we
need to bound ∆G. However, this can easily be achieved: Since we only allow edge
additions, for each vertex v ∈ V , we have deg(v) ≤ max τ(v) ≤ r. Formalized as
a data reduction rule, this reads as follows:

Reduction Rule 2. Let (G = (V,E), k, r, τ) be an instance of DCE(e+). If G
contains more than 2k unsatisfied vertices or if there exists a vertex v ∈ V
with deg(v) > max τ(v), then return a trivial no-instance.

Having applied Reduction Rules 1 and 2 once, it holds that ∆G ≤ r and thus the
graph contains at most 2k + rk(r + 2) vertices. Lemma 1 ensures that we can
apply Reduction Rule 1 in linear time. Note that linear time means O(m+ |τ |)
time, where |τ | ≥ n denotes the encoding size of τ . Clearly, Reduction Rule 2
can be applied in linear time too. This leads to the following.

Theorem 5. DCE(e+) admits a problem kernel containing O(kr2) vertices
computable in O(m+ |τ |) time.

2.2 A Polynomial Kernel for DCE(e+) with respect to r

In this subsection, we show how to extend the polynomial-size problem kernel
provided in Theorem 5 to a polynomial-size problem kernel for the single pa-
rameter r. To this end, among other things, we adapt some ideas of Hartung
et al. [15] to show how to bound k in a polynomial of r. The general strategy,
inspired by a heuristic of Liu and Terzi [19], will be as follows: First, remove
the graph structure and solve the problem on the degree sequence of the input
graph by using dynamic programming. The solution to this number problem will
indicate the demand for each vertex, that is, the number of added edges incident
to that vertex. Then, using a result of Katerinis and Tsikopoulos [17], we prove
that either k ≤ r(r + 1)2 or we can find a set of edges satisfying the specified
demands in polynomial time.

We start by formally defining the corresponding number problem and showing
its polynomial-time solvability.

Number Constraint Editing (NCE)
Input: A function φ : {1, . . . , n} → 2{0,...,r} and positive integers

d1, . . . , dn, k, r.
Question: Are there n positive integers d′1, . . . , d

′
n such that

∑n
i=1(d′i −

di) = k and for all i ∈ {1, . . . , n} it holds that d′i ≥ di
and d′i ∈ φ(i)?

Lemma 2. NCE is solvable in O(n · k · r) time.

Lemma 2 can be proved with a dynamic program that specifies the demand
for each vertex, that is, the number of added edges incident to each vertex. Given

6



these demands, the remaining problem is to decide whether there exists a set of
edges that satisfy these demands and are not contained in the input graph G. This
problem is closely related to the polynomial-time solvable f-Factor problem [21],
a special case of DCE(e−) where |τ(v)| = 1 for all v ∈ V ; it is formally defined
as follows:

f-Factor
Input: A graph G = (V,E) and a function f : V → N0.
Question: Is there an f-factor, that is, a subgraph G′ = (V,E′) of G

such that degG′(v) = f(v) for all v ∈ V ?

Observe that our problem of satisfying the demands of the vertices in G is
essentially the question whether there is an f -factor in the complement graph G
where the function f stores the demand of each vertex. Using a result of Katerinis
and Tsikopoulos [17], we can show the following lemma about the existence of
an f -factor:

Lemma 3. Let G = (V,E) be a graph with n vertices, δG ≥ n−r−1, r ≥ 1, and
let f : V → {1, . . . , r} be a function such that

∑
v∈V f(v) is even. If n ≥ (r+ 1)2,

then G has an f -factor.

We now have all ingredients to show that we can upper-bound k by r(r + 1)2

or solve the given instance of DCE(e+) in polynomial time. The main technical
statement towards this is the following.

Lemma 4. Let I := (G = (V,E), k, r, τ) be an instance of DCE(e+) with k ≥
r(r + 1)2 and V = {v1, . . . , vn}. If there exists a k′ ∈ {r(r + 1)2, . . . , k} such
that (deg(v1), . . . ,deg(vn), 2k′, r, φ) with φ(i) := τ(vi) is a yes-instance of NCE,
then I is a yes-instance of DCE(e+).

Proof. Assume that (deg(v1), . . . ,deg(vn), 2k′, r, φ) is a yes-instance of NCE.
Let d′1, . . . , d

′
n be integers such that d′i ∈ τ(vi),

∑n
i=1 d

′
i−deg(vi) = 2k′, and d′i ≥

di. Hence, we know that the degree constraints can numerically be satisfied, giving
rise to a new target degree d′i for each vertex vi. Let A := {vi ∈ V | d′i > deg(vi)}
denote the set of affected vertices containing all vertices which require addition
of some edges. It remains to show that the degree sequence of the affected
vertices can in fact be realized by adding k′ edges to G[A]. To this end, it is
sufficient to prove the existence of an f -factor in the complement graph G[A]
with f(vi) := d′i − deg(vi) ∈ {1, . . . , r} for all vi ∈ A since such an f -factor
contains exactly the k′ edges we want to add to G. Thus, it remains to check that
all conditions of Lemma 3 are indeed satisfied to conclude the existence of the
sought f -factor. First, note that δ

G[A]
≥ |A| − r − 1 since ∆G[A] ≤ r. Moreover,∑

vi∈A(d′i − deg(vi)) = 2k′ ≤ |A|r, and thus |A| ≥ 2k′/r ≥ 2(r + 1)2. Finally,∑
vi∈A f(vi) = 2k′ is even and thus Lemma 3 applies. ut

As NCE is polynomial-time solvable, Lemma 4 states a win-win situation: either
the solution is bounded in size or can be found in polynomial time. From this
and Theorem 5, we obtain the polynomial-size problem kernel.

Theorem 6. DCE(e+) admits a problem kernel containing O(r5) vertices com-
putable in O(k2 · r · n+m+ |τ |) time.
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3 A General Approach for Degree Sequence Completion

In the previous section, we dealt with the problem DCE(e+), where one only
has to locally satisfy the degree of each vertex. In this section, we show how the
presented ideas for DCE(e+) can also be used to solve more globally defined
problems where the degree sequence of the solution graph G′ has to fulfill a given
property. For example, consider the problem of adding a minimum number of
edges to obtain a regular graph, that is, a graph where all vertices have the same
degree. In this case the degree of a vertex in the solution is a priori not known
but depends on the degrees of the other vertices.

The degree sequence of a graph G with n vertices is an n-tuple containing
the vertex degrees. Then, for some tuple property Π, we consider the following
problem:

Π-Degree Sequence Completion (Π-DSC)
Input: A graph G = (V,E), an integer k ∈ N.

Question: Is there a set of edges E′ ⊆
(
V
2

)
\ E with |E′| ≤ k such that

the degree sequence of G+ E′ fulfills Π?

Note that Π-DSC is not a generalization of DCE(e+) since in DCE(e+) one can
require for two vertices u and v of the same degree that u gets two more incident
edges and v not. This cannot be expressed in Π-DSC. We remark that the results
stated in this section can be extended to hold for a generalized version of Π-DSC
where a “degree list function” τ is given as additional input and the vertices in
the solution graph G′ also have to satisfy τ , thus generalizing DCE(e+). For
simplicity, however, we stick to the easier problem definition as stated above.

3.1 Fixed-Parameter Tractability of Π-DSC

In this subsection, we first generalize the ideas behind Theorem 5 to show fixed-
parameter tractability of Π-DSC with respect to the combined parameter (k,∆G).
Then, we present an adjusted version of Lemma 4 and apply it to show fixed-
parameter tractability for Π-DSC with respect to the parameter ∆G′ . Clearly,
a prerequisite for both these results is that the following problem has to be
fixed-parameter tractable with respect to the parameter ∆T := max{d1, . . . , dn}.

Π-Decision
Input: An integer tuple T = (d1, . . . , dn).
Question: Does T fulfill Π?

For the next result, we need some definitions. For 0 ≤ d ≤ ∆G, let DG(d) :=
{v ∈ V | degG(v) = d} be the block of degree d, that is, the set of all vertices
with degree d in G. A subset V ′ ⊆ V is an α-block set if V ′ contains for every d ∈
{1, . . . ,∆G} exactly min{α, |DG(d)|} vertices. Recall that α = (∆G + 2)k, see
Section 2.1, and notice the similarity of α-block sets and α-type sets. This
similarity is not a coincidence for we use ideas of Reduction Rule 1 and Lemma 1
to obtain the following lemma.

8



Lemma 5. Let I := (G = (V,E), k) be a yes-instance of Π-DSC and let C ⊆ V
be an α-block set. Then, there exists a set of edges E′ ⊆

(
C
2

)
\ E with |E′| ≤ k

such that the degree sequence of G+ E′ fulfills Π.

In the context of DCE(S), we introduced the notion of safely removing a vertex
subset to obtain a problem kernel. On the contrary, in the context of Π-DSC,
it seems impossible to remove vertices in general without further knowledge
about the tuple property Π. Thus, Lemma 5 does not lead to a problem kernel
but only to a reduced search space for a solution, namely any α-block set.
Clearly, an α-block set C can be computed in polynomial time. Then, one can
simply try out all possibilities to add edges with endpoints in C and check
whether in one of the cases the degree sequence of the resulting graph satisfies Π.
As |C| ≤ (∆G + 2)k∆G, there are at most O(2((∆G+2)k∆G)2) possible subsets of
edges to add. Overall, this leads to the following theorem.

Theorem 7. Let Π be some tuple property. If Π-Decision is fixed-parameter
tractable with respect to ∆T , then Π-DSC is fixed-parameter tractable with respect
to (k,∆G).

Bounding the Solution Size k in ∆G′ . We now show how to extend the ideas of
Section 2.2 to the context of Π-DSC in order to bound the solution size k by a
polynomial in ∆G′ . The general procedure still is the one inspired by Liu and
Terzi [19]: Solve the number problem corresponding to Π-DSC on the degree
sequence of the input graph and then try to “realize” the solution. To this end,
we define the corresponding number problem as follows:

Π-Number Sequence Completion (Π-NSC)
Input: Positive integers d1, . . . , dn, k,∆.
Question: Are there n nonnegative integers x1, . . . , xn with

∑n
i=1 xi = k

such that (d1 + x1, . . . , dn + xn) fulfills Π and di + xi ≤ ∆?

With these problem definitions, we can now generalize Lemma 4.

Lemma 6. Let I := (G, k) be an instance of Π-DSC with V = {v1, . . . , vn}
and k ≥ ∆G′(∆G′ + 1)2. If there exists a k′ ∈ {∆G′(∆G′ + 1)2, . . . , k} such that
the corresponding Π-NSC instance I ′ := (deg(v1), . . . ,deg(vn), 2k′, ∆G′) is a
yes-instance, then I is a yes-instance.

Let function g(|I|) denote the running time for solving the Π-NSC instance I.
Clearly, if there is a solution for an instance of Π-DSC, then there also exists a
solution for the corresponding Π-NSC instance. It follows that we can decide
whether there is a large solution for Π-DSC (with at least ∆G′(∆G′ + 1)2 edges)
in k · g(n log(n)) time. Hence, we arrive at the following win-win situation:

Corollary 1. Let I := (G, k) be an instance of Π-DSC. Then, either one can
decide in k · g(n log(n)) time that I is a yes-instance, or I is a yes-instance if
and only if (G,min{k,∆G′(∆G′ + 1)2}) is a yes-instance.
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Using Corollary 1, we can transfer fixed-parameter tractability of Π-NSC with
respect to∆ to fixed-parameter tractability ofΠ-DSC with respect to∆G′ . Notice
that ∆G′ ≤ k+∆G, that is, ∆G′ is a smaller and thus “stronger” parameter [18].
Also, showing Π-NSC to be fixed-parameter tractable with respect to ∆ is a
significantly easier task than proving fixed-parameter tractability for Π-DSC
with respect to ∆G′ directly since the graph structure can be completely ignored.

Theorem 8. If Π-NSC is fixed-parameter tractable with respect to ∆, then
Π-DSC is fixed-parameter tractable with respect to ∆G′ .

If Π-NSC can be solved in polynomial time, then Corollary 1 shows that we can
assume that k ≤ ∆G′(∆G′ + 1)2. Thus, as in the DCE(e+) setting (Theorem 6),
polynomial kernels with respect to (k,∆G) transfer to the parameter ∆G′ , leading
to the following.

Theorem 9. If Π-NSC is polynomial-time solvable and Π-DSC admits a poly-
nomial kernel with respect to (k,∆G), then Π-DSC also admits a polynomial
kernel with respect to ∆G′ .

3.2 Applications

As our general approach is inspired by ideas of Hartung et al. [15], it is not
surprising that it can be applied to “their” Degree Anonymity problem, where
given an undirected graph G = (V,E) and two positive integers k and s, one seeks
an edge set E′ over V of size at most s such that G′ := G+ E′ is k-anonymous,
that is, for each vertex v ∈ V , there are at least k− 1 other vertices in G′ having
the same degree. The property Π of being k-anonymous clearly can be decided
in polynomial time for a given degree sequence, and thus, by Theorem 7, we
immediately get fixed-parameter tractability with respect to (s,∆G). Theorem 9
then basically yields the kernel results obtained by Hartung et al. [15]. There
are more general versions of Degree Anonymity as proposed by Chester
et al. [6]. For example, just a given subset of the vertices has to be anonymized
or the vertices can have labels. As in each of these generalizations one can decide
in polynomial time whether a given graph satisfies the particular anonymity
requirement, Theorem 7 applies also in these scenarios. However, checking in
which of these more general settings the conditions of Theorem 8 or Theorem 9
are fulfilled is future work.

Besides the graph anonymization setting, one could think of further, more
general constraints on the degree sequence. For example, if pi(D) denotes how
often degree i appears in a degree sequence D, then being k-anonymous translates
into pi(DG′) ≥ k for all degrees i occurring in the degree sequence DG′ of the
modified graph G′. Now, it is natural to consider not only a lower bound k ≤
pi(D), but also an upper bound pi(D) ≤ u or maybe even a set of allowed
frequencies pi(D) ∈ Fi ⊆ N. Constraints like this allow to express properties not
of individual degrees but of the whole distribution of the degrees in the resulting
sequence. For example, in order to have some “balancedness” one can require
that each occurring degree occurs exactly ` times for some ` ∈ N [5]. To obtain
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some sort of “robustness” it might be useful to ask for an h-index of `, that is, in
the solution graph there are at least ` vertices with degree at least ` [9].

Another range of problems which fit naturally into our framework involves
completion problems to a graph class that is completely characterized by degree
sequences. For example, a graph is a unigraph if it is determined by its degree
sequence up to isomorphism [4]. Given a degree sequence D = (d1, . . . , dn), one
can decide in linear time whether D defines a unigraph [3]. Thus, by Theorem 8,
we conclude fixed-parameter tractability for the unigraph completion problem
with respect to the parameter ∆G′ .

4 Conclusion

We proposed a method for deriving efficient preprocessing algorithms for degree
sequence completion problems. DCE(e+) served as our main illustrating example.
Roughly speaking, the core of the approach (as basically already used in previous
work [15, 19]) consists of extracting the degree sequence from the input graph,
efficiently solving a simpler number editing problem, and translating the obtained
solution back into a solution for the graph problem using f -factors. While
previous work [15, 19] was specifically tailored towards an application for graph
anonymization, we generalized the approach by filtering out problem-specific parts
and “universal” parts. Thus, whenever one can solve these problem-specific parts
efficiently, we can automatically obtain efficient preprocessing and fixed-parameter
tractability results.

Our approach seems promising for future empirical investigations concerning
its practical usefulness, a very recent experimental work has been performed for
Degree Anonymity [16]. Another line of future research could be to study
polynomial-time approximation algorithms for the considered degree sequence
completion problems. Perhaps parts of our preprocessing approach might find
use here as well. A more specific open question concerning our work would be
how to deal with additional connectivity requirements for the generated graphs.
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