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Abstract

We study the computational complexity of k-anonymizing a given
graph by as few graph contractions as possible. A graph is said to be
k-anonymous if for every vertex in it, there are at least k−1 other vertices
with exactly the same degree. The general degree anonymization problem
is motivated by applications in privacy-preserving data publishing, and
was studied to some extent for various graph operations (most notable
operations being edge addition, vertex addition, and vertex deletion). We
complement this line of research with studying several variants of graph
contraction, which are operations of interest, for example, in the contexts
of social networks and clustering algorithms. We show that the problem
of degree anonymization by graph contractions is NP-hard even for some
very restricted inputs, and identify some fixed-parameter tractable cases.

1 Introduction

Motivated by concerns of data privacy in social networks, Clarkson et al. [9]
introduced the general degree anonymization problem, defined as follows: given
an input graph G and an allowed operation O, transform G into a k-anonymous
graph by performing as few O operations as possible; a graph is said to be k-
anonymous if for every vertex degree d in it, there are at least k vertices with the
same degree d. This problem has been studied both theoretically and practically,
for several graph modification operations such as edge addition [9, 17, 20], edge
addition and edge deletion [7], vertex addition [8, 4], and vertex deletion [3].
From the perspective of degree anonymization, this paper can be seen as com-
plementing this line of research by considering graph contractions, as a natural
graph modification operation. Specifically, studying the (parameterized) com-
plexity of this degree anonymization problem.
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This paper also complements research done on the following problem: given
an input graph G and a family F of graphs, find a set of edges E′ of minimum
size, such that after contracting the edges in E′, G would be in the family F .
Asano and Hirata [1] defined a set of conditions on F , which is sufficient for
NP-hardness of this problem. Others studied specific graph classes (as F), such
as planar graphs [15], bipartite graphs [18], paths [18], trees [16], and d-regular
graphs Belmonte et al. [2]. This last work is of particular interest, as the concept
of k-anonymity is a generalization of the notion of regularity (in particular, a
graph is n-anonymous if and only if it is regular).

Studying graph contractions in the context of degree anonymization is inter-
esting for several reasons. First, some variants of contractions can preserve orig-
inal properties of the input graph (for example, connectivity). Second, vertex
contraction (where also non-adjacent vertices can be contracted), is the inverse
operation of vertex cleaving (as defined by Oxley [22, Chapter 3]), which was
studied in the context of degree anonymization by Bredereck et al. [4]. We note
also the relation of graph contractions to communities in social networks and to
clustering (see, for example, Delling et al. [10]).

2 Preliminaries

We assume familiarity with standard notions regarding algorithms, computa-
tional complexity theory, and graph theory. For a non-negative integer z, we
write [z] to mean {1, . . . , z}.

2.1 Parameterized Complexity

An instance (I, k) of a parameterized problem consists of the “classical” problem
instance I and an integer k being the parameter [12, 13, 21]. A parameterized
problem is called fixed-parameter tractable (in FPT) if there is an algorithm
solving it in f(k) · |I|O(1) time, for an arbitrary computable function f only
depending on parameter k. In difference to that, algorithms running in |I|f(k)

time prove membership in the class XP (clearly, FPT ⊆ XP). One can show
that a parameterized problem L is (presumably) not fixed-parameter tractable
by devising a parameterized reduction from a W[1]-hard or a W[2]-hard problem
to L. A parameterized reduction from a parameterized problem L to another
parameterized problem L′ is a function that, given an instance (I, k), computes
in f(k) · |I|O(1) time an instance (I ′, k′) such that k′ ≤ g(k) and (I, k) ∈ L ⇔
(I ′, k′) ∈ L′. A parameterized problem which is NP-hard even for instances for
which the parameter is a constant is said to be Para-NP-hard.

2.2 Graph Theory and Contractions

Given a graph G = (V,E), which may have self-loops and parallel edges, we
denote the degree of a vertex v ∈ V by deg(v), and Bd = {v ∈ V : deg(v) = d}
is the set of vertices of degree d. As usual, we define the degree of a vertex v
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with x neighbors and y self-loops to be x+2y (in particular, we count a self-loop
twice). We define a path-star of degree d and length l to be a graph consisting
of one center vertex, connected to d paths of length l (indeed, this is a spider
graph with equal-length legs). A caterpillar-tree is a tree for which removing
the leaves and their incident edges leaves a path graph.

Given an undirected graph G = (V,E) and two adjacent vertices, u and v,
contracting the vertices u and v (usually referred to as contracting the edge
e = {u, v}), means removing u and v from V and replacing them by one new
vertex (denoted by u⊕ v), which is adjacent to exactly those vertices that were
adjacent to u, v, or both. From this definition, it follows that edge contractions
are symmetric and associative. The resulting graph is denoted by G/e, and given
a set of edges E1 ⊆ E, we denote by G/E1 the graph obtained from G after
contracting the edges of E1. A graph G = (V,E) is said to be k-contractible to a
graph G′ = (V ′, E′) if there is a set of edges E1 ⊆ E of size at most k, such that
G/E1 = G′. It follows that G = (V,E) is k-contractible to G′ = (V ′, E′) if and
only if there exists a witness structure V = V1∪V2∪ . . .∪V|V ′|, each Vi is called
a witness set, such that for each 1 ≤ i ≤ |V ′| the subgraph of G induced by each
Vi is connected and for each pair of witness sets, Vi and Vj (1 ≤ i 6= j ≤ |V ′|),
we have that {Vi, Vj} ∈ E′ ⇐⇒ ∃vi ∈ Vi, vj ∈ Vj : {vi, vj} ∈ E (indeed, the
vertices in each part Vi are contracted to form a single vertex). We denote by
deg(Vi) the resulting degree of the vertex corresponding to the contraction of
the witness set and we call graph G′ the witness graph.

We also define the closely related operation of vertex contraction, which is
defined similarly to edge contraction, with the only difference that it is allowed
to contract non-adjacent vertices as well. It is clear that a graph contraction
operation can sometimes introduce self-loops and parallel edges. We define three
variants of edge and vertex contraction, differing by how these self-loops and
parallel edges are treated:

• Simple Contraction: Both self-loops and parallel edges are removed.

• Hybrid Contraction: Only self-loops are removed.

• Non-Simple Contraction: Nothing is removed.

For the Hybrid and Non-Simple variants, we allow the input graph to be non-
simple. See Figure 1 for some examples.

2.3 Main Problem

Given an undirected input graph G, we are interested in k-anonymizing it by
performing at most c edge contractions, where a graph is said to be k-anonymous
if every vertex degree in it occurs at least k times (equivalently, if ∀i ∈ [n] :
|Bi| = 0 ∨ |Bi| ≥ k).
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Figure 1: Example of 2-anonymizing an input graph. The input graph is de-
picted in (a), an optimal 2-anonymized graph with respect to edge addition is
depicted in (b), an optimal 2-anonymized graph with respect to simple edge
contraction or hybrid edge contraction is depicted in (c) (by contracting v1

and v2), and an optimal 2-anonymized graph with respect to non-simple vertex
contraction is depicted in (d) (by contracting v2 and v5). Notice that there is
no solution with respect to non-simple edge contraction, and the solution with
respect to to edge addition is less efficient than the edge contractions solutions.

Degree Anonymization by Graph Contractions (DAGC)
Input: An undirected graph G = (V,E), a budget c ∈ N, and an
anonymization level k ∈ N.
Question: Can G be made k-anonymous by performing at most c
contractions?

When the contraction operation is a simple (hybrid, non-simple) edge contrac-
tion operation, we denote the corresponding degree anonymization problem as
SEC-A (respectively: HEC-A, NEC-A). Similarly, when the contraction op-
eration is a simple (hybrid, non-simple) vertex contraction operation, we de-
note the corresponding degree anonymization problem as SVC-A (respectively:
HVC-A, NVC-A).

We notice that sometimes it is not possible to anonymize a graph by sim-
ple/hybrid/non-simple edge/vertex contractions. As an example, consider n-
anonymizing a complete graph with one missing edge: as the input graph is
not n-anonymized, at least one edge needs to be contracted, but then the num-
ber of remaining vertices will be strictly less than n, rendering the graph not
n-anonymous. This phenomenon stands in contrast to anonymization by edge
addition, as completing any graph by adding all missing edges to it makes it
n-anonymized. Interestingly, sometimes a graph can be made anonymous more
efficiently by using edge contraction rather then edge addition (a very simple
example is shown in Figure 1).
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2.4 Overview

We study the parameterized complexity of degree anonymization by graph con-
tractions, considering the solution size c, the anonymity level k, and the maxi-
mum degree ∆, as the most natural parameters. Table 1 gives an overview of
our results.

We consider mainly SEC-A and HEC-A as these are the most common
variants (see, for example, Diestel [11, Chapter 1.7] and Wolle and Bodlaender
[24]). We mention that some of the results easily transfer to some other variants,
while other results require additional research to transfer to other variants, and
we leave this study for future research. We discuss these open questions further
in Section 6. Our main results can be summarized as follows.

solution size c anonymization level k maximum degree ∆

c
W-ha (Th. 3) W-ha (Th. 3)

FPT (Th. 5)
XP (Obs. 1) XP (Obs. 1)

k Para-NP-ha (Th. 3) FPTb (Cor. 1)

∆ Para-NP-ha (Th. 4)

aOnly for SEC-A and HEC-A.
bOnly for NVC-A.

Table 1: Parameterized complexity landscape of Degree Anonymization by
Graph Contractions. Rows and columns correspond to parameters, such
that each cell corresponds to the combination of the corresponding parameters.

• Contrary to degree anonymization by some other graph operations (for
example, by edge addition), here, even the underlying number problem
(NVC-A) is NP-hard. Moreover, most variants considered here (SEC-A,
HEC-A, and NVC-A) are NP-hard even on trees (in fact, even on cater-
pillar trees)

• Parameterizing by the solution size c, the maximum degree ∆, or the
anonymity level k alone, does not help for tractability. However, combin-
ing ∆ with c does help for tractability

• While we could show that combining the maximum degree ∆ with the
anonymity level k helps for tractability for some variants of the problem,
we could show some evident against this claim for other variants.
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3 NP-hardness

We begin by considering NVC-A, the main reason for considering this variant
being the observation that for NVC-A, the structure of the graph does not
matter, but only the degrees. This holds because any two vertices can be con-
tracted, and the resulting graph after performing a contraction only depends
on the original degrees of the contracted vertices. It follows that NVC-A is
equivalent to the following number problem:

An equivalent formulation of NVC-A
Input: A set V = {d1, . . . , dn} of n integers (∀i : 0 ≤ di ≤ ∆) and
two integers k, c ∈ N.
Question: Is there a partition V =

⋃
i∈[z] Vi (where Vi ∩ Vj = ∅ for

i 6= j) such that the set S = {
∑

v∈Vi
v : i ∈ [z]} is k-anonymized

and
∑

i∈[z](|Vi| − 1) ≤ c?

Informally, this number problem is in the heart of the anonymization problem,
and for this reason we call it the underlying number problem. Interestingly,
contrary to the situation for edge addition and other operations, this underlying
number problem is intractable (notice that, in order to be formally correct, we
shall define the input to this number problem to be in unary; this is fine, as we
next prove a reduction from a strongly NP-hard problem).

Theorem 1. NVC-A is NP-hard even on caterpillar trees.

Proof. We provide a reduction from the following strongly NP-hard problem [14]:

Strictly Three Partition
Input: A set of numbers S = {a1, . . . , a3m} such that

∑
ai∈S ai =

mB and ∀i : B/4 < ai < B/2.
Question: Are there m disjoint sets S1, . . . , Sm such that |Si| = 3
and ∀j :

∑
ai∈Sj

ai = B ?

Given an instance for Strictly Three Partition, we create an instance for
NVC-A. Intuitively, the idea is to create a set of 3m vertices, such that each
number ai would have a corresponding vertex whose degree is proportional to
ai. Then, we will add a distinguished vertex with degree proportional to B,
and we will make sure that the only way of anonymizing the block containing
this distinguished vertex is by contracting m triplets of vertices corresponding
to a triplet of numbers whose sum is m, that is, to a three partitioning. Details
follow.

We scale the input numbers, specifically defining a′i = ai · mB and B′ =
B ·mB. For each number a′i, we create a node va′

i
and connect it to another a′i

paths of length c consisting of new vertices, such that deg(va′
i
) = a′i holds for

each i. We add a path-star of degree B′ and length c. We set k := m + 1 and
c := 2m (indeed, G is a forest; it can be easily transformed into a caterpillar
tree by placing all va′

i
’s on a path together with the path-star, and adjusting

the number of additional new vertices connected to each va′
i

accordingly).
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Given a partitioning of S into triplets, it is possible to anonymize the graph
by contracting, the three vertices va′

i
which correspond to each triplet, into a

single vertex. Notice that we need two contractions to contract each triplet, and
that the resulting graph is k-anonymized, as it has m new vertices of degree B′.

For the other direction, notice that due to the strictness constraint (that is,
∀i : B/4 < ai < B/2), it follows that any witness set of size other than three
will have degree which is far away from B′. Combining this observation with the
fact that we multiplied each ai by mB, it holds that if there is no partitioning
of S to triplets, then in any partitioning, the degree of at least one triplet is far
away from B′ by at least mB, therefore the block containing the distinguished
path-star cannot be anonymized in this way, Moreover, contracting the path-
star itself does not help, as it can decrease its degree by at most c, which is not
enough for it to fall on any other block. Therefore, any solution must introduce
at least m new vertices of degree B′, each corresponding to a triplet, therefore
a solution must correspond into a partitioning of S into triplets.

Informally, at least part of the hardness of SEC-A and HEC-A is due to the
hardness of NVC-A, as it is somehow “in the core” of these problems as well.
For SEC-A and HEC-A, we can show NP-hardness, even on a very restricted
class of graphs.

Theorem 2. SEC-A and HEC-A are both NP-hard even on caterpillar trees.

Proof. We provide a reduction from the following strongly NP-hard problem [14]:

Numerical Matching with Target Sums
Input: Three sets of integers A = {a1, . . . , an}, B = {b1, . . . , bn},
and C = {c1, . . . , cn}.
Question: Can the elements of A and B be paired such that ci is
the sum of the ith pair?

The variant where all 3n input integers are distinct is known to be also NP-hard
in the strong-sense [19]. Without loss of generality, we also assume that all input
integers are greater than 3. Given an instance for Numerical Matching with
Target Sums, we create an instance for SEC-A and HEC-A. Intuitively, the
idea is to create a set of k − 1 vertices for each ci and a pair of vertices for
each pair of ai and bj , such that the only possibility of anonymizing the vertices
corresponding to the ci’s is to contract the correct pairs of ai’s and bj ’s together.
Details follows.

We set k := n− 1 and c := n. We construct some c-gadgets: for each ci, we
create k − 1 path-stars of degree ci − 2 and length c + 1. We construct some
ab-gadgets: for each pair of i ∈ [n] and j ∈ [n] we create two path-stars, one
of degree ai and length c + 1, and another of degree bj and length c + 1, and
connect them by an edge (indeed, the construction as such is a forest, but we
can transform it into a tree by connecting arbitrarily each pair of disconnected
components by a path of length c + 1). See Figure 2 for a visualization.

Correctness: Given a correct pairing of A and B, we can anonymize the input
graph by contracting the corresponding ab-gadgets. For the other direction,
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a1 a1 a1 a2 a2 a2 a3 a3 a3

b1 b2 b3 b1 b2 b3 b1 b2 b3

c1 c2 c3

Figure 2: Example for the reduction used in the proof of Theorem 2. Specifically,
the reduction is shown for the following instance for Numerical Matching
with Target Sums: A = {3, 5, 6}, B = {7, 8, 4}, and C = {10, 11, 12}. All
drawn edges, except for the edges from some ai to some bj , should be understood
as paths of length 3.

notice that all of the c-gadgets must be anonymized in a solution, and because
contracting c-gadgets together is not possible, they can be anonymized only
by contracting some ab-gadgets. Notice also that it is not possible to contract
two ab-gadgets sharing the same ai or the same bj , because this will introduce a
new non-anonymized block, namely, the block of degree ai. Therefore, a solution
must correspond to a correct pairing.

4 Non-structural parameters

In our quest for tractability, we go on to consider some non-structural parame-
ters, beginning with the solution size c. It is easy to see that for constant c, we
can simply use brute-force.

Observation 1. DAGC is XP with respect to c.

However, there is no hope for fixed-parameter tractability with respect to
the solution size c, and even combining the solution size c with the anonymity
level k does not help for tractability.

Theorem 3. Both SEC-A and HEC-A are NP-hard and W-hard with respect
to c, even if k = 2.

Proof. For SEC-A, we provide a reduction from the following W[2]-hard prob-
lem, parameterized by the solution size [12]:

Set Cover
Input: Sets S1, . . . , Sm containing elements from x1, . . . , xn and
h ∈ N.
Question: Is there a set of at most h sets that covers all elements?

Given an instance for Set Cover, we create an instance for SEC-A. For each
xi we create a new vertex x′i. For each Sj , we create two new vertices, S′j and
S′′j , and we connect them by an edge. Each S′j and S′′j , corresponding to a set
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Sj , are connected to all x′i’s corresponding to all elements xi ∈ Sj . We add
several paths of length h to each x′i such that the degree of each x′i will be
f(i) = ic + 2. Similarly, we add several paths of length h to each S′j and S′′j ,
such that the degree of each S′j and S′′j will be f(n + 1). For every i ∈ [n] and
z ∈ [h], we add a path-star of degree f(i)−z and length c. We add k path-stars
of degree f(i+1) and length c in order to anonymize the vertices corresponding
to the sets. We define k := 2 and c := h.

Given a set cover, by contracting together each pair of S′j and S′′j correspond-
ing to a set in the cover. the degrees of each x′i will decrease by one, therefore
the graph would be anonymized. For the other direction, notice that each xi

needs to be anonymized, and we can only decrease their degree (and not in-
crease). Therefore, following a simple exchange argument, this must correspond
to a set cover.

For HEC-A, we provide a reduction from the following W[1]-hard problem,
parameterized by the solution size h [12] (an h-coloring is a function color :
V → [h], assigning to each vertex v a color color(v) ∈ [h]):

Multi-Colored Clique
Input: An undirected graph G = (V,E) and an h-coloring of its
vertices.
Question: Is there a clique of size h including vertices of all h
colors?

We notice that Cai [5] showed that Multi-Colored Clique remains hard
even on regular graphs. We assume also, without loss of generality, that there
are no monochromatic edges. Given an instance for Multi-Colored Clique,
we create an instance for HEC-A. We define the following function, f(i) = 2i,
whose domain is the set of colors (that is, i ∈ [h]).

For every vertex v, we add f(color(v))− deg(v) paths of length c such that
the degree of each vertex colored in color i ∈ [h] is f(i). We construct k+1 copies
of this modified graph. We add k − 1 path-stars of degree

∑
i∈[h] f(i) − 2

(
h
2

)
and length c. We set k := 2 and c := h− 1.

Given a multi-colored clique of size h, we contract the vertices of the clique
into one vertex. The degree of the new vertex is equal to the degree of the
path-stars, and the graph is anonymized, due to the k + 1 copies.

For the other direction, notice that contracting the path-star does not change
its degree. Moreover, as there are no monochromatic edges, we can only contract
edges of different colors. Due to the way we defined f(i), the only possible way of
reaching the degree of the path-star (that is,

∑
i∈[h] f(i)−2

(
h
2

)
), is by contracting

a multi-colored clique, because all colors are needed for the first part (that is,∑
i∈[h] f(i)), and all edges between the colors are needed for the second part

(that is, 2
(
h
2

)
).
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ev

v′1 v′′1 v′2 v′′2

Figure 3: Gadget used for the reduction in the proof of Theorem 4 (for SEC-A).
Specifically, the construction for two vertices, v1 and v2, connected by an edge
e = {u, v}, is shown (indeed, as the input graph for the reduction is cubic, the
vertices vv′

1
,vv′′

1
,vv′

2
,vv′′

2
all have degree five, and not three, as is depicted here).

The main crux is the fact that contracting vv′
1

and v′′v1 together reduces the
degree of ev.

5 Structural parameters

We go on to consider the maximum degree ∆, as a natural structural parameter.
It turns out that this parameter alone does not help for tractability.

Theorem 4. Both SEC-A and HEC-A are para-NP-hard with respect to ∆.

Proof. For SEC-A, we provide a reduction from the following NP-hard prob-
lem [14] (where a graph is said to be cubic if it is 3-regular):

Vertex Cover on Cubic Graphs
Input: An simple undirected cubic graph G = (V,E) and h ∈ N.
Question: Is there a set of at most h vertices that covers all edges?

Given an instance for Vertex Cover on Cubic Graphs, we create an in-
stance for SEC-A. For every edge e ∈ E, we create a new vertex ve. For every
vertex v ∈ V , we create a pair of new vertices v′v and v′′v , and connect each such
pair by an edge. For every edge e = {u, v}, we connect ve to the four vertices v′u,
v′′u, v′v, and v′′v . We also connect each v′v and v′′v to a path of length c each. We
add k path-stars of degrees 1, 2, 3, and 5, all with length c. We set k := |E|+ 1
and c := h. See Figure 3 for a visualization.

The idea is that, given a vertex v, contracting the two vertices v′v and v′′v
corresponding to it, together, would decrease the degrees of the vertices ve corre-
sponding to all incident edges e of v, therefore, a vertex cover would correspond
to decreasing the degrees of all the vertices corresponding to edges by at least
one, thus anonymizing the block of degree four. More formally, given a vertex
cover, we contract each pair of v′v and v′′v that corresponds to a vertex v in the
vertex cover. As a result, the degree of each vertex ve is decreased from 4 to
either 3 or 2, and the graph is k-anonymized.

For the other direction, notice that the block of degree four needs to be
anonymized. However, there is no way of increasing the degree of the vertices

10



in this block since any contraction would decrease their degree, therefore, their
degree must decrease, in any solution. For an edge e = {u, v}, the only possi-
bility of decreasing the degree of ve is by contracting either the pair v′u and v′′u
or the pair v′v and v′′v . By a simple exchange argument, this must correspond to
a vertex cover.

For HEC-A, we reduce from the following problem, which was shown by van
Rooij et al. [23] to be NP-hard even on 4-regular graphs:

Partition into Triangles
Input: An undirected graph G = (V,E)
Question: Can V be partitioned into sets S1, . . . , S|V |/3 of size 3
each such that each Si forms a triangle in G?

Given an 4-regular input graph G for Partition into Triangles on 4-regular
graphs, we create an input graph G′ for HEC-A. We initialize G′ by G, and
add a path of length c to each vertex, consisting of new vertices, such that the
G′ is a 5-regular graph. We create a path-star of degree 9 and length c. We
set k := n/3 + 1 and c := 2n/3 (we assume, without loss of generality, that n
mod 3 = 0).

Given a partition of G into triangles, we contract the vertices of each triangle
together. The degree of each such witness set is nine, therefore the graph is k-
anonymized. For the other direction, notice that the path-star of degree nine
needs to be anonymized, its degree cannot decrease or increase, and the only way
of having other vertices of degree nine is by contracting some triangles. Finally,
as we need n/3 of these triangles, this must correspond to a partitioning of G
into triangles.

Contrary to the above hardness results, combining the maximum degree
with the solution size does help for tractability, for all variants of Degree
Anonymization by Graph Contractions.

Theorem 5. DAGC is FPT with respect to (∆, c).

Proof. Consider a yes-instance for DAGC. Then, there exists a set E′ of at most
c edges such that contracting them results in a k-anonymous graph. Consider
a set V ′ of vertices, containing all endpoints of the edges in E′, including all
their neighbors. As each edge has two endpoints and each vertex has at most ∆
neighbors, it follows that |V ′| ≤ 2c(∆ + 1). Consider the set V ′′ containing all
vertices whose degree will be changed due to contracting the edges of E′. As it
holds that V ′′ ⊆ V ′, it is enough to find the subgraph induced by V ′.

To this end, we consider all possible graphs H containing at most 2c(∆ + 1)
vertices. For each such graph H, we consider all possible sets C of at most
c edges to be contracted. For each such pair of a graph H and a set C, we
compute the degree changes in H incurred by contracting the edges in C. If
these degree changes make the graph k-anonymous, then we try to find this
graph H as a subgraph in G. This step can be performed using, for example,
the result by Cai et al. [6].
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We consider now the combined parameter ∆ and k. First, for NVC-A,
we can bound c in these parameters and thus the FPT-algorithm with respect
to (∆, k), indeed, also proves fixed-parameter tractability with respect to (∆, c).

Lemma 1. For any yes-instance (V, k, c) of NVC-A it holds that (V, k, c′) with
c′ = k · (∆ ·∆!)∆ is also a yes-instance.

Proof. Let (V, k, c) be a yes-instance of NVC-A and denote by copt ≤ c the
smallest number such that (V, k, copt) is still a yes-instance. Moreover, let the
partition P = {V1, . . . , Vi} of V be a solution which corresponds to copt (that
is, P is the witness structure corresponding to a solution of (V, k, copt)). In the
following we define two operations on P , with the property that applying each
of them, when it is applicable, results in another solution with less than copt

contractions. Since we show that at least one of them is applicable in case
of copt > k · (∆ ·∆!)∆, this proves Lemma 1.

To formally describe our operations, we associate with each witness set Vi

a witness vector #»vi ∈ N∆ with #»vi[j] being equal to the number of vertices of
degree j in the witness set Vi. The degree of a witness set is defined to be the
sum of the degrees of the vertices in the witness set (that is, the degree of the
vertex corresponding to contracting all of the vertices in the witness set).

Operation 1: This operation is applicable to P if there are at least k witness
sets in P of equal degree and such that in each of them, say Vi, there is at
least one j with #»vi[j] ≥ ∆!. If there exist such a collection of witness sets, then
consider such a collection P which is maximal with respect to containment, and
do the following. For each witness set Vi in this collection, let j be an integer
with #»vi[j] ≥ ∆!. remove (∆!/j)-many vertices of degree j from Vi (notice that
∆!/j is always an integer), and form a new witness set containing these vertices.

We introduced at least k new witness sets all being of degree exactly ∆!
and we decreased the degree of each of the initial witness sets in by the same
number ∆!. Since there are at least k of such witness sets, it follows that
performing this operation results in a partition of V that is still a solution
for (V, k, copt), but requires less edge contractions than P .

Operation 2: This operation is applicable to P if there is a collection of at
least k witness sets in P , such that the witness sets in the collection all have
the same witness vector, and this same witness vector is of hamming weight of
at least 2 (that is, these are not singletons). If such a collection exists, then
choose an arbitrary integer j occurring in this same witness vector. Then, for
each witness set Vi in this collection, remove one vertex of degree j from Vi, and
form a new witness set containing only this vertex of degree j (that is, form a
new singleton witness set).

Since there are at least k witness sets where a vertex of same degree j is cut
out from them, the resulting partition is a solution for V which requires less
edge contractions than P .
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Applicability: It remains to argue that in case of copt > k · (∆ · ∆!)∆, at
least one of the two operations described above is applicable. First, assume
that P contains a witness set Vi of degree at least (∆ · ∆!). Then, since P is
k-anonymous there are at least k witness set of the same degree, which is at
least (∆ ·∆!). It follows that each of these witness sets must contain at least one
integer j which occurs at least ∆! times in it. Thus, Operation 1 is applicable.

So, let assume now that the degree of each witness set in P is at most (∆·∆!).
Then, since a witness set cannot contain vertices of degree 0, we have that there
are at most (∆ · ∆!)∆−1 different witness vectors such that none of them has
degree greater or equal to (∆ ·∆!). Hence, if P contains at least k · (∆ ·∆!)∆−1

witness sets of size at least two, then Operation 2 is applicable.
Finally, a solution for which copt > k · (∆ ·∆!)∆ edge contractions have been

performed either contains a set of size at least (∆ ·∆!) or it contains at least

k · (∆ ·∆!)∆

(∆ ·∆!)
= k · (∆ ·∆!)∆−1

witness sets of size at least two.

Using this Lemma, we can show the following.

Corollary 1. NVC-A is FPT with respect to (∆, k).

Proof. For a given instance (V, k, c) of NVC-A we decide the instance (V, k,
min{c, k · (∆ · ∆!)∆}) using the FPT-algorithm with respect to (∆, c). By
Lemma 1 these two instances are equivalent and the corresponding running
time proves fixed-parameter tractability with respect to (∆, k).

z + 1
z

z + 1

Figure 4: An input for SEC-A with small maximum degree ∆ and small
anonymity level k (k := 3), but with unbounded (in ∆ and k) solution size
c and output maximum degree ∆′. The edges going out of the nodes but reach-
ing nothing are actually paths of length z + 2. The small nodes also have two
paths of length z+2 going out of each of them, but these are omitted for picture
clarity. For NEC-A, the same construction works, but we do not need the paths
of length z + 2.
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Consider the relation between k, ∆, ∆′, and c, where ∆′ denotes the max-
imum degree in the anonymized solution graph. While for NVC-A we could
upper-bound both ∆′ and c in k and ∆, as shown in the proof of Lemma 1, for
SEC-A and NEC-A this is not always true, as the graph depicted in Figure 4
shows: for this graph we have ∆ = 4. If we additionaly set k := 3, then the
best solution for SEC-A will require 3z + 4 edge contractions. Therefore, in
this example, we have that cOpt = Ω(n) and also ∆′ = Ω(n). This means that
either a completely different proof technique is needed for these variants, or,
as we conjecture, that these variants are not fixed-parameter tractable for this
combined parameter.

6 Conclusion

We investigated the parameterized complexity of degree anonymization by sev-
eral variants of graph contractions. We showed that most of the variants are
intractable, even on very restricted graph classes, and that even the underlying
number problem is NP-hard, contrary to degree anonymization by other studied
operations. However, we could find some fixed-parameter tractable cases.

For further research, one could consider some related graph operations, such
as edge splitting (removing an edge and introducing a new vertex, connecting
it to the endpoints of the removed edge), structure contraction (contracting
a whole subgraph at the cost of one operation), and edge twisting or vertex
dissolution (both defined, for example, in [22, Chapter 3]). Another research
direction could be different notions of approximations, that is, either anonymiz-
ing the input graph by using more budget than is allowed, or only partially
anonymizing it.
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