
Technische Universität Berlin
Electrical Engineering and Computer Science
Institute of Software Engineering and Theoretical Computer Science
Algorithmics and Computational Complexity (AKT)

Preserving Paths in Temporal
Graphs

Bachelorarbeit
von Carsten Schubert

zur Erlangung des Grades „ Bachelor of Science “ (B. Sc.)
im Studiengang Informatik

Erstgutachter: Prof. Dr. Rolf Niedermeier
Zweitgutachter: Prof. Dr. Martin Skutella

Betreuer: Till Fluschnik,
Prof. Dr. Rolf Niedermeier,
Philipp Zschoche

I hereby declare that the thesis submitted is my own, unaided work, completed without
any unpermitted external help. Only the sources and resources listed were used.
The independent and unaided completion of the thesis is affirmed by affidavit:

Berlin, 30th September

Signature

2

Zusammenfassung

In dieser Arbeit stellen wir das sogenannte Multistage st-Pfad-Problem vor und
untersuchen seine parameterisierte Komplexität. Gegeben ist dabei ein temporaler Graph
G = (V,E1, . . . , Eτ), zwei spezielle Knoten s, t ∈ V und zwei natürliche Zahlen k und
`. Es wird dann die Frage gestellt, ob in jeder “Schicht” Gi = (V,Ei) von G ein Pfad
Pi von s nach t mit Länge höchstens ` existiert, sodass alle aufeinanderfolgenden Pfade
Pi, Pi+1 jeweils zueinander eine Distanz von höchstens k haben. Wir untersuchen drei ver-
schiedene solche Distanzen und folglich auch drei Varianten des Problems: Die Größe der
symmetrischen Differenz der Pfadknoten (“Knotendistanz”), die Größe der symmetrischen
Differenz der Pfadkanten (“Kantendistanz”), und die Levenshtein-Distanz.
Wir zeigen, dass alle drei Problemvarianten NP-schwer sind, sogar für beschränkte

Instanzen (z.B. wenn k konstant ist). Außerdem beweisen wir, dass die Variante mit der
Knotendistanz nicht in subexponentieller Zeit (bezogen auf die Anzahl gegebener Knoten)
entschieden werden kann, es sei denn die Exponentialzeithypothese wird widerlegt.

Wir zeigen weiterhin, dass alle drei Varianten bezüglich des Parameters k+ `+ τ W[1]-
schwer sind. Die Varianten mit Knoten- und Kantendistanz sind ebenfalls W[1]-schwer
bezüglich des Parameters ν+k+`, wobei ν die Knotenüberdeckungszahl des unterliegenden
Graphen G↓ von G darstellt.

Demgegenüber konnten wir aber auch einige positive Ergebnisse feststellen: So geben
wir beispielsweise einen Problemkern für alle drei Problemvarianten an, dessen Größe
nur von dem zusammengesetzten Parameter ν + τ abhängt. Für die dazu gehörigen
Datenreduktionen führen wir das Konzept “temporaler Zwillinge” ein. Leider haben wir
auch festgestellt, dass ein Problemkern polynomieller Größe bezüglich ν + τ + k + `
für die Variante mit Knotendistanz nicht existieren kann, es sei denn coNP ⊆ NP/poly.
Ferner geben wir einen FPT-Algorithmus für alle drei Problemvarianten für den Parameter
∆+` an, wobei ∆ den Maximalgrad über alle Schichten von G darstellt. Als letztes zeigen
wir einen Problemkern von Multistage st-Pfad mit Knotendistanz, dessen Größe
polynomiell im Parameter ρ+ τ ist. Hierin ist ρ die Größe eines minimalen “Feedback
Edge Sets” des unterliegenden Graphen von G.

3

Abstract

In this work, we introduce and study the computational and parameterised com-
plexity of the so-called Multistage st-Path problem: Given a temporal graph
G = (V,E1, . . . , Eτ), two special vertices s, t ∈ V and two integers k, ` ∈ N, the question
is whether there is an st-path Pi of length at most ` in each temporal graph layer
Gi = (V,Ei) such that all consecutive paths Pi, Pi+1 have a distance of at most k towards
each other. We investigate three different types of such distances, namely the size of
the symmetric difference of path vertices (“vertex distance”), the size of the symmetric
difference of path edges (“edge distance”), and the Levenshtein distance.
On the negative side, we show that all three problem variants are NP-hard even on

restricted inputs (e.g. if k is constant). We also show that Multistage st-Path with
vertex distance cannot be solved in time subexponential in its number of vertices, unless
the Exponential Time Hypothesis fails.

We show that all three problem variants are W[1]-hard when parameterised by τ +k+`.
Moreover, the variants with vertex and edge distance we prove to be W[1]-hard when
parameterised by ν + k + `, where ν is the vertex cover number of the underlying graph
G↓ of G.

On the positive side, we provide a problem kernelisation for all three problem variants
with respect to the combined parameter ν + τ. To this end we introduce the concept of
temporal twin vertices, which allow for efficient preprocessing in our case. Unfortunately,
a problem kernel of size polynomial in ν+τ +k+` for Multistage st-Path with vertex
distance does not exist, unless coNP ⊆ NP/poly. We then provide an FPT-algorithm
for all three problem variants with respect to the parameters ∆ and `, where ∆ is the
maximal degree over all input layers. At last, we show a problem kernel for Multistage
st-Path with vertex distance, which is of size polynomial in ρ+τ , where ρ is the feedback
edge number of G↓.

4

Contents

1 Introduction 7
1.1 Problem Formulation . 9
1.2 Related Work . 10
1.3 Our Contributions . 11
1.4 Preliminaries . 12

1.4.1 Parameterised Complexity . 12
1.4.2 Classic Graph Theory . 13
1.4.3 Temporal Graph Theory . 14

2 NP-Hardness 15
2.1 NP-Hardness of Edge-MstP . 15
2.2 Polynomial Time Reduction from Edge-MstP to Vertex-MstP 21
2.3 ETH Statement for Vertex-MstP . 24

3 Parameterised Hardness 29
3.1 W[1]-Hardness for Input Parameters τ , k and ` 29

3.1.1 W[1]-Hardness of Vertex-MstP for τ, k, and ` 29
3.1.2 W[1]-Hardness of Edge-MstP and Leven-MstP for τ, k, and ` 34

3.2 W[1]-Hardness with Vertex Cover Number as Parameter 36
3.2.1 W[1]-Hardness of Vertex-MstP parameterised by Vertex Cover

Number . 36
3.2.2 W[1]-Hardness of Edge-MstP parameterised by Vertex Cover

Number . 40

4 Efficient Preprocessing and Fixed-Parameter Tractability 47
4.1 Exponential Kernel for Multistage st-Path in the Vertex Cover Number

and Number of Layers . 47
4.1.1 Temporal Twins . 48
4.1.2 Algorithm for Finding Temporal Twins 48
4.1.3 Kernelisation . 50

4.2 No Kernel of Size Polynomial in Vertex Cover Number and Number of
Layers for Vertex-MstP . 52

4.3 FPT-Algorithm for Multistage st-Path parameterised by ∆ and ` . . 60
4.4 Problem Kernel for Vertex-MstP of Size Polynomial in Feedback Edge

Number and Number of Layers . 63
4.4.1 Data Reductions . 63
4.4.2 Reducing Weights on Vertex-WMstP 66

5

Contents

5 Conclusion and Outlook 69
5.1 Discussion . 69
5.2 Future Research Opportunities . 70

6

1 Introduction

Imagine we are in charge of managing an expanding international logistics company,
mainly specialised in transporting large valuable goods around the globe for corporate
clients with long-term contracts. As such, we often organise cargo transportation between
a limited number of locations. We have to coordinate and supervise these shipments along
different means of carriage (e.g. trains, convoys, and container ships) on different track
sections, since there is no universal transport method for the entire way that is appropriate
for our goods. Then in order to ensure safe transportation we also need to manage offices
at intermediary points between freight origin and destination or hire sub-contractors to
handle this for us. Of course, we are interested in finding a way which involves preferably
few of such maintained offices or sub-contractors in order to reduce costs. This usually
also aligns with our goal of delivering cargo fast and thus satisfying our customers.
We may encounter the problem that we are tasked with a delivery at some point in

time where some track sections are not available for our purposes. For instance, some
means of carriage might only run at scheduled times, like trains or ships. Roads might
be periodically blocked due to high traffic density or unfavourable weather, not to
mention the likeliness of accidents. Sub-contractors may also be incapable of handling
our requests at certain times—at least at rates reasonable to us—due to their work
policies or simply good order situations (think of e.g. christmas business). In short, if we
still want to deliver our goods fast and reliably in such situations, then we need to be
flexible for potentially re-routing the used paths at different points in time. But that
may require additional offices or partnerships to sub-contractors, naturally leading to
increased expenses, which we still try to keep as low as possible.

In this work, we model such a situation with a time-dependent-network, i.e. a network
whose links may be active or inactive at different limited fixed points in time. The nodes
in this network then refer to fixed locations (that are e.g. suited for an intermediary
office) and the time-dependent links refer to track sections between these locations which
are available to us at certain points in time. An example of such a model for our situation
with two points in time is shown in Figure 1.1.

The Multistage st-Path problem then informally asks, given such a time-dependent
network and two nodes in this network, whether there are short paths between the given
nodes at all times such that these paths are somewhat “similar” from each point in time
to the consecutive one. In the application above, the required path similarity results from
the intention of minimising not only the number of nodes in each time-dependent path,
but also the number of changed nodes between alternative routes taken at different times.
We will research this problem regarding its computational and parameterised complexity
by showing (parameterised) hardness results as well as providing FPT-algorithms and
kernelisations.

7

1 Introduction

Schematic for Multistage st-Path

s

v1

v2

v3

v4

v5
t

Summer:

s

v1

v2

v3

v4

v5
t

Winter:

Figure 1.1: Illustration of an example transportation network as described in the intro-
duction. We plan to deliver cargo from location s to t at different points
in time, some in summer and some in winter. Unfortunately in both sea-
sons some track sections are unavailable to us, as indicated by the crossing
signs. This especially means that we are not capable of routing our delivery
via location v5 in summer, or via locations v1 and v4 in winter (at least if we
do not want to take pointless detours). Since we still want our tracks to be
as similar as possible in both seasons, we decide to transport on the ways that
are indicated by blue lines: We use the tracks from s via v2 to v3 in summer
and winter. Subsequently, we route our cargo via v4 in summer and via v5 in
winter, as we have no other choice in order to reach t at both times.

8

1.1 Problem Formulation

1.1 Problem Formulation

We now formally describe Multistage st-Path, the main decision problem of this
work:

Definition 1.1: Multistage st-Path

Input: A temporal graph G = (V,E1, . . . , Eτ), two special vertices s, t ∈ V ,
and two integers k, ` ∈ N.

Question: Are there paths (P1, . . . , Pτ) so that Pi is an st-path in Gi = (V,Ei)
for all i ∈ [τ], |V (Pi)| ≤ ` for all i ∈ [τ], and dist(Pi, Pi+1) ≤ k for all
i ∈ [τ − 1]?

Herein, dist can be any function that somehow measures a distance between two paths.
In this work, we will study the following distance functions (and thus variants of Multi-
stage st-Path):

(1) Vertex distance, i.e. dist(Px, Py) = |V (Px)4V (Py)|

(2) Edge distance, i.e. dist(Px, Py) = |E(Px)4E(Py)|

(3) Levenshtein distance, i.e. dist(Px, Py) is the minimum number of edits between Px
and Py regarded as vertex strings, where each edit is either a single vertex insertion,
a single vertex deletion or a single vertex substitution (Yujian and Bo 2007).

The first problem variant thus considers the symmetric difference of the vertex sets of
two consecutive paths, the second variant addresses the symmetric difference of the edge
sets of two consecutive paths, and the last variant compares the number of vertex edits
between consecutive paths. From now on, we will often abbreviate the names of those
problem variants: Vertex-MstP stands for Multistage st-Path if it uses the vertex
distance, Edge-MstP is short for Multistage st-Path which uses the edge distance,
and Leven-MstP abbreviates Multistage st-Path when the Levenshtein distance is
used.

If Px and Py are two paths of length at most `, their vertex or edge distance can trivially
be computed in O(`2) time. There is also an appropriate algorithm which computes the
Levenshtein distance of Px and Py in O(`2

log `
) time (Masek and Paterson 1980). Thus, all

listed distances can be computed in O(`2) time on paths of length at most `.
We define the tuple of paths S = (P1, . . . , Pτ) as a solution for an instance of Multi-

stage st-Path if the conditions listed above are met by those paths. Two paths Px
and Py in S are called adjacent if |x− y| = 1.

It is easy to see that Vertex-MstP, Edge-MstP, and Leven-MstP are all in NP,
since each solution is of size polynomially in the corresponding input size and verifying
a solution S can be done in O(τ`2) time. In order to do this, one first goes through
each path Px in S and checks whether Px is indeed an st-path of length at most ` in the
corresponding temporal graph layer Gx. Afterwards, one computes the distance between
each two adjacent paths in S and checks whether it is at most k each time.

9

1 Introduction

1.2 Related Work

This work follows the recent trend initiated by Gupta, Talwar, and Wieder (2014)
and Eisenstat, Mathieu, and Schabanel (2014) of studying time-dependent, so-called
“multistage” generalisations of already studied decision problems. In these multistage
settings, one is not only given one but τ many instances—one for each point in time—
of the underlying problem. The goal is then still to find a solution for each given instance
of the underlying problem, but also to reach a certain “stability” (or similarity) between
solutions corresponding to consecutive points in time.
Particularly, Eisenstat, Mathieu, and Schabanel (2014) considered a multistage gen-

eralisation of facility location problems, with their main result being a logarithmic
approximation algorithm (later improved to a constant factor approximation by An,
Norouzi-Fard, and Svensson (2017)). Gupta, Talwar, and Wieder (2014) described
Multistage Maintenance Matroid problems, both in online and offline settings.
Among other results, they formulated a logarithmic approximation algorithm for their
offline version (which is optimal unless P = NP) and proved the Perfect Matching
Maintenance problem to be NP-hard to approximate. They left open whether a special
case, Bipartite Matching Maintenance, was hard to approximate as well, which
was affirmed later by Bampis et al. (2018), among other approximation results. Bampis
et al. (2019) recently also introduced a framework for online multistage maximisation
problems, but these results do not directly relate to our setting, mainly because we
exclusively consider an offline problem. More important to us, Gupta, Talwar, and
Wieder (2014) already suggested in the concluding section of their aforementioned work
to study polynomial-time solvable problems such as shortest path in a multistage setting,
which is precisely what we are going to do in this work.

In contrast to these previously listed works, we focus on exact algorithms, employing
methods from parameterised algorithmics. As such, our research is also closely related
to the study of Multistage Vertex Cover by Fluschnik et al. (2019), which was
mainly focused on parameterised complexity with respect to input parameters, such as
solution size of the classical Vertex Cover problem or the number of layers in the input
instance. A difference between their and our setting, however, is that the “single-stage”
case of their problem, Vertex Cover, is already NP-hard, whereas Shortest st-Path
(the single-stage version of our problem) is polynomial-time solvable.

In our case, we will thus show that generalising Shortest st-Path by a multistage
setting yields an NP-hard problem. This does not seem surprising, since many variants of
Shortest st-Path with additional requirements have been proven to be NP-hard as well
(see e.g. Hassin (1992), Yu and Yang (1998), and Van Bevern, Fluschnik, and Tsidulko
(2018)). Many variations of Shortest st-Path problems have also been studied
extensively on dynamic and temporal graphs. These studies involve e.g. finding short
weighted paths with dynamically changing edge weights (Ahuja et al. 2003), applications
for time-dependent vehicle routing (Malandraki and Daskin 1992), and finding several
variations of short paths emerging over time in temporal graphs as described by Wu
et al. (2014). A path in their context however includes multiple edges corresponding
to different points in time, since it “takes time” to traverse each edge along a path.

10

1.3 Our Contributions

Table 1.1: Overview on our results. Each cell corresponds to a statement about one of
our three studied problem variants with respect to a certain parameter. The
vertex cover number of the underlying graph of the input temporal graph
is referred to as ν. The feedback edge number of the underlying graph of
the input temporal graph is referred to as ρ. The maximal degree over all
input layers is denoted by ∆ and tw denotes the maximal treewidth of all
individual input layers. The other researched parameters are specified in
Definition 1.1. NoPK abbreviates that no problem kernel of size polynomial in
the respective parameter can be found unless coNP ⊆ NP/poly. On the other
hand, PK denotes that there is a problem kernel of size polynomial in the
corresponding parameter.

Vertex-MstP Edge-MstP Leven-MstP

k NP-hard even if k = 0
(Cor. 2.20)

NP-hard even if k = 4
(Cor. 3.9)

NP-hard even if k = 2
(Cor. 3.9)

` W[1]-hard (Thm. 3.1) W[1]-hard (Cor. 3.8) W[1]-hard (Cor. 3.8)
τ NP-hard even if τ = 2

(Thm. 2.11)
NP-hard even if τ = 2
(Thm. 2.1)

W[1]-hard (Cor. 3.8)

k + `+ τ W[1]-hard (Thm. 3.1) W[1]-hard (Cor. 3.8) W[1]-hard (Cor. 3.8)
k + `+ ν W[1]-hard (Thm. 3.10) W[1]-hard (Thm. 3.16)
τ + ν FPT (Thm. 4.1),

NoPK (Thm. 4.8)
FPT (Cor. 4.7) FPT (Cor. 4.7)

∆ NP-hard even if ∆ = 3
(Thm. 2.11)

NP-hard even if ∆ = 3
(Thm. 2.1)

∆ + ` FPT (Thm. 4.18) FPT (Thm. 4.18) FPT (Thm. 4.18)
ρ+ τ PK (Thm. 4.21)
tw NP-hard even if τ = 2

(Thm. 2.11)
NP-hard even if τ = 2
(Thm. 2.1)

To the best of our knowledge, we are the first who consider “preserving” paths over time,
that is, to find one short paths at each fixed point in time, but additionally require such
paths of consecutive times to be “similar” to each other to some extent.

1.3 Our Contributions

Table 1.1 summarises our parameterisation results for the three studied variants of
Multistage st-Path. We especially highlight that Vertex-MstP and Edge-MstP
are both W[1]-hard with respect to the parameters τ and ν (as can be derived from the
W[1]-hardness for k + `+ ν). However, when parameterised by the combined parameter
τ + ν, these problems are both fixed-parameter tractable.

11

1 Introduction

1.4 Preliminaries

We denote by N and N+ the natural numbers including and excluding zero, respectively.
The set of integers is denoted by Z and the set of rational numbers is denoted by Q. We
denote a set containing all natural numbers from 1 to n by [n], i.e. [n] = {x ∈ N+ : x ≤ n}
for any n ∈ N. Similarly a set of all natural numbers from a to b is denoted by [a, b], i.e.
[a, b] = {x ∈ N : a ≤ x ≤ b}. The symmetric difference of two sets A and B is denoted
by A4B = (A \ B) ∪ (B \ A). If x is a number, then we denote the smallest integer y
so that x ≤ y by

⌈
x
⌉
. If x and y are both vectors with n elements, then we denote

the standard scalar product of them by x · y, i.e. x · y =
∑n

i=1 xiyi. We also denote the
maximum metric of x by ‖x‖∞, i.e. ‖x‖∞ = maxni=1 |xi|, and the sum metric of x by
‖x‖1, i.e. ‖x‖1 =

∑n
i=1 |xi|. By log we denote the logarithm of base two.

1.4.1 Parameterised Complexity

Let Σ be a finite alphabet. In classical complexity theory, a problem is defined as
a language L ⊆ Σ∗. Given an instance x ∈ Σ∗ of L the task then arises to decide
whether x is a yes-instance, i.e. x ∈ L, or a no-instance (x 6∈ L). Two instances x, x′ of
problems L,L′ are equivalent if x ∈ L⇔ x′ ∈ L.

In parameterised complexity theory, we study problems with respect to some problem
parameter k ∈ N. A parameterised problem L is then a subset L ⊆ {(x, k) ∈ Σ∗ × N}.
Again, an instance (x, k) of L is a yes-instance if (x, k) ∈ L and a no-instance otherwise.
We also call two instances (x, k), (x′, k′) of parameterised problems L,L′ equivalent if
(x, k) ∈ L⇔ (x′, k′) ∈ L. We call a parameterised problem L fixed-parameter tractable
(FPT) if there is an algorithm deciding for each input instance (x, k) if it is a yes-instance
of L in f(k) · |x|O(1) time, where f is some computable function which only depends on k.
A W[1]-hard problem is not fixed-parameter tractable unless W[1] = FPT.

In classical complexity theory we often show NP-hardness of a problem L′ by describing
a polynomial-time many-one reduction from an NP-hard problem L to L′, i.e. an algorithm
that takes an input instance x of L and then generates in O(|x|O(1)) time an instance x′
of L′ such that x and x′ are equivalent. This equivalence property is called correctness
of the reduction.

Similarly, in parameterised complexity we often show W[1]-hardness of a parameterised
problem L′ by describing a parameterised reduction from a W[1]-hard problem L to L′.
This is an algorithm which takes an input instance (x, k) of L and computes in f(k)|x|O(1)

time an equivalent instance (x′, k′) of L′ for which it additionally holds that k′ is upper-
bounded by g(k), where both f and g are computable functions only depending on k. A
polynomial parameter transformation is a special type of parameterised reduction which,
after given its input instance (x, k), only takes O((|x|+ k)O(1)) time to output (x′, k′)
and k′ is polynomially upper-bounded in k.

A kernelisation of a parameterised problem L is an algorithm that, when given an input
instance (x, k) of L, generates an equivalent instance (x′, k′) of L in time polynomial in
|x|+k such that |x′|+k′ ≤ f(k), where f is some computable function that only depends
on k. We call (x′, k′) a problem kernel with size f . Often such a kernelisation consists of

12

1.4 Preliminaries

a set of preprocessing rules which we will call data reductions. A data reduction is safe if
its input and output instances are equivalent.

1.4.2 Classic Graph Theory

A simple graph G = (V,E) is a structure which contains a finite non-empty set V
of vertices and a finite set E ⊆ {{u,w} : u ∈ V,w ∈ V, u 6= w} of edges. We denote the
vertex set of G by V (G) and the edge set of G by E(G). We also say that G includes
a vertex v or an edge e if v ∈ V (G) or e ∈ E(G), respectively. Vertices u and w are called
endpoints of the edge {u,w}. A simple graph G′ = (V ′, E ′) is a subgraph of another
simple graph G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. We then also say that G′ is (contained)
in G. A subgraph is complete or a clique if its edge set is of maximal size.

We will denote the set of neighbours of a vertex v in a simple graph G by N(v) =
{w ∈ V : {v, w} ∈ E}. The closed neighbourhood of v, defined as the neighbours of v
together with v itself will be denoted by N [v], i.e. N [v] = N(v) ∪ {v}. If it is unclear
which graph we are referring to, we will specify this graph explicitly, like NG(v) or NG[v].
The degree of v is denoted by deg(v) and is defined as the number of neighbours of v,
i.e. deg(v) = |N(v)|. Again, degG(v) may also be used. If deg(v) = 0 for some vertex v
in a simple graph, we call v an isolated vertex. The maximal degree ∆ of a simple graph
G is defined as maxv∈V (G) deg(v).

A path P is a simple graph for which it holds that all n included vertices can be listed
as a sequence in the form v1, v2, . . . , vn so that E(P) = {{vi, vi+1} : i ∈ [n− 1]} . We call
P an st-path or a path between s and t if s = v1 and t = vn. The length of a path P is
the number of its vertices, i.e. |V (P)|.
A simple graph G is connected if there is a path in G between each two distinct

vertices u,w ∈ V (G). A (connected) component C of G is an inclusion-maximal connected
subgraph of G. Note that if G is connected, it contains only one component. An st-
separator S ⊆ V (G) in G for two distinct vertices s, t ∈ V (G) is a set of vertices such
that after removing all vertices in S (and their edges) from G there is no st-path in G left.

A bipartition B = (L,R) of a simple graph G is a tuple of two vertex sets L,R ⊆ V (G)
so that L ∪ R = V (G), R ∩ L = ∅, and for each edge e ∈ E(G) there is one endpoint
of e in L and the other one in R. A simple graph which has a bipartition is called a
bipartite graph.

A simple graph is called outerplanar if it has an embedding in the plane where no
edges cross each other and all vertices are on the same face, that is, no vertex is fully
enclosed by other vertices and edges.

A simple graph is called series-parallel if it can be constructed by repeated application
of series expansions and parallel expansions on its edges, starting from any number of
paths with at most two vertices each. A series expansion is defined as a subdivision of any
edge {a, b} by a new vertex, that is, introducing a new vertex c and replacing {a, b} by
{a, c} and {c, b}. A parallel expansion of any edge {a, b} is defined as introducing a new
vertex c adjacent to both a and b, i.e. adding the edges {a, c} and {c, b}. All outerplanar
graphs are series-parallel as shown by Duffin (1965). Moreover, it is well-known that

13

1 Introduction

a simple graph is series-parallel if and only if is is of treewidth at most two (see e.g.
Bodlaender and Antwerpen - de Fluiter (2001)).

A vertex cover of a simple graph G is a subset C ⊆ V (G) such that each edge included
in G has an endpoint in C. The vertex cover number of a simple graph G is the minimal
number ν so that there is a vertex cover of G of size ν. A feedback edge set of a simple
graph G is a subset F ⊆ E(G) such that if all edges in F are removed from G the
remaining simple graph is a forest, i.e. a simple graph with no cycles. The minimum size
of which there is a feedback edge set in G is called feedback edge number of G.
From now on, we will refer to simple graphs often only as graphs.

1.4.3 Temporal Graph Theory

We also need the notion of temporal graphs, as our studied problems are defined on such
structures. For our purposes, a temporal graph G = (V,E1, . . . , Eτ) consists of a finite
non-empty vertex set V and τ many edge sets E1, . . . , Eτ ⊆ {{a, b} : a ∈ V, b ∈ V, a 6= b}.
Intuitively, in comparison to a simple graph with only one vertex and one edge set,
a temporal graph contains τ many simple graphs which are ordered and all share the
same vertex set.
We will refer to the graph Gi = (V,Ei) as the i-th layer of the temporal graph G

from now on. Layers Gi where i is an even number will occasionally be referred to as
even layers, whereas layers Gi where i is an odd number are odd layers, respectively.
We describe two layers Gi, Gj of a temporal graph as being adjacent, if |i − j| = 1.
An edge included in some layer of a temporal graph is often referred to as temporal edge.

Moreover, we will call G↓ = (V,
τ⋃
i=1

Ei) the underlying graph of a temporal graph G.

14

2 NP-Hardness

All described problem variants of Multistage st-Path are within the complexity class
NP. In this chapter, we prove that Edge-MstP and Vertex-MstP are also NP-hard
(and consequently, NP-complete). We do this by first showing the NP-hardness of Edge-
MstP in Section 2.1. In the subsequent Section 2.2, we describe a polynomial-time
reduction from Edge-MstP to Vertex-MstP in order to then deduce the NP-hardness
of Vertex-MstP. We then strengthen this result by giving a larger running time
lower bound for solving Vertex-MstP by assuming the Exponential Time Hypothesis
in Section 2.3. NP-hardness of Leven-MstP remains unproven in this section, but will
be shown later in Corollary 3.9 of Section 3.1.

2.1 NP-Hardness of Edge-MstP

In this section, we prove the following:

Theorem 2.1: NP-hardness of Edge-MstP

Edge-MstP is NP-hard, even if τ = 2, both input layers are outerplanar graphs
and the maximal degree in G↓ is 3.

In order to do so, we will reduce from the following problem which is one of the 21
problems proven to be NP-complete by Karp (1972):

Definition 2.2: Vertex Cover (VC)

Input: A graph G = (V,E) and an integer k.
Question: Is there a subset C of V so that |C| ≤ k and for each edge {a, b} ∈ E

there is a ∈ C or b ∈ C?

The set E is assumed to be non-empty. From an instance of VC we derive an instance
of Edge-MstP as described in the following Construction 2.3.

In this construction, a temporal graph G′ with two layers is built. Per edge ej = {a, b}
in the input graph, G′ contains two “chains” of vertices, one for a ∈ ej and one for b ∈ ej.
These chains are then connected differently in the two layers, but any solution for Edge-
MstP of the output instance needs to include the same chains in both paths. In the
first layer G1, we ensure that exactly one of the two chains for ej is in each st-path in
Gi. With the second layer we then ensure that the number of vertices in the input graph
corresponding to such chains included to an st-path in G2 does not exceed k, i.e. that a

15

2 NP-Hardness

solution for Edge-MstP of the output instance corresponds to a vertex cover of size at
most k in the input instance.

Construction 2.3. Let ((V,E), k) be an instance of VC, where V = {v1, . . . , vn} and
E = {e1, . . . , em}. Let k′ = (2k + 3)m + n + 4. Let ` = 2mn + m(k′ + 2) + n + 42.
Parameters ` and k′ will be used in the output instance. Next we construct some vertex
sets.

Let Uj = {jih : i ∈ ej, h ∈ [k′ + 2]} for each j ∈ [m]. Let U =
⋃

j∈[m]

Uj.

These vertices will later form the aforementioned “chains”, i.e. two separate paths for
each edge in E. Let

X = {Xj : j ∈ [m+ 1]}, Y = {Y i
j : i ∈ [n], j ∈ [m]} and Z = {Zi

j : i ∈ [n], j ∈ [m]}.

We will use the vertices in X to “route” all st-paths in the first layer of G′, whereas
vertices Y and Z will be used in the second layer as “connection points” for the chains
formed by vertices in U. Let V ′ = V ∪X ∪ Y ∪Z ∪U ∪ {s, t, vn+1}. This set is then used
as vertex set of our constructed temporal graph G′.

As already indicated, G′ shall have two layers. To this end we build certain edge sets.
First, we create the chains of vertices in U which will be included in both layers of G′.
Thus, for each edge ej ∈ E and each vertex vi ∈ ej we build the following (k′ + 2)-long
path which we call (i, j)-chain or CHi

j:

CHi
j :=

⋃
h∈[k′+1]

{
{jih, jih+1}

}
.

Note that there are two (i, j)-chains for each j ∈ [m]. Later, if we include such an (i, j)-
chain to one path in a solution, then it shall also be included in the other path of that
solution. For this reason the chain contains k′ + 1 unique edges (from which later either
all or none can be included in any st-path).

In the first layer each st-path will contain exactly one (i, j)-chain for each j ∈ [m].
The edge set E1 for the first layer is then built as follows:

E1 =
⋃
ej∈E

⋃
vi∈ej

CHi
j ∪ ST∪

{
{s,X1}, {X(m+1), t}

}
.

Here, ST is defined in the following way:

ST :=
⋃
j∈[m]

⋃
vi∈ej

{
{Xj, j

i
1}, {ji(k′+2), X(j+1)}

}
.

In the second layer of G′ there shall be an st-path including all vertices in V. This main
path then branches at each vi ∈ V to a “detour” where (i, j)-chains can be included to it
(at the cost of taking the detour, which affects the edge difference). To this end, we first
build the main path:

MA := {{s, v1}, {vn+1, t}} ∪
⋃
i∈[n]

{{vi, vi+1}} .

16

2.1 NP-Hardness of Edge-MstP

Then we construct one detour path via vertices in Y and Z for each i ∈ [n] :

DETi :=
{
{vi, Y i

1}, {Zi
m, vi+1}

}
∪
⋃
j∈[m]

{
{Y i

j , Z
i
j}
}
∪

⋃
j∈[m−1]

{
{Zi

j, Y
i
j+1}

}
.

Each existing (i, j)-chain is then “attached” to the corresponding Y i
j and Zi

j :

AT :=
⋃
ej∈E

⋃
vi∈ej

{
{ji1, Y i

j }, {jik′+2, Z
i
j}
}
.

With this, the edge set E2 of the second layer can be constructed:

E2 = MA∪AT∪
⋃
ej∈E

⋃
vi∈ej

CHi
j ∪
⋃
i∈[n]

DETi .

We then finish building our temporal graph G′ = (V ′, E1, E2). The constructed input
instance of Edge-MstP is (G′, s, t, k′, `). �

An illustration of Construction 2.3 is shown in Figure 2.1.

In order to use Construction 2.3 to prove Theorem 2.1, we first need to make sure that
this construction describes a correct reduction from VC to Edge-MstP:

Lemma 2.4. The constructed instance of Construction 2.3 is a yes-instance of
Edge-MstP if and only if the input instance is a yes-instance of VC.

The proof of Lemma 2.4 is split into one lemma for the forward direction and one lemma
for the backward direction.

Lemma 2.5. If the input to Construction 2.3 is a yes-instance of VC, the output
is also a yes-instance of Edge-MstP.

Proof. Let C ⊆ V be a set of size at most k in the input instance so that for each
ej ∈ E holds ej ∩ C 6= ∅. We construct a solution S = (P1, P2) to the output instance
as follows:

For each ej ∈ E we pick one vi ∈ ej ∩ C and include the corresponding (i, j)-chain
to P1 and P2. To P1 we also include the vertices in X ∪ {s, t}. With that we can see
that P1 is an st-path in G′1 = (V ′, E1) with |V (P1)| ≤ `.

Let W i = {Y i
x , Z

i
x : x ∈ [m]} for each vi ∈ C. Let W be the union of all W i.

Note that for each (i, j)-chain in P2 both ji1 and jik′+2 have a distinct neighbour in W.
Therefore we also include the vertices in W ∪ V ∪ {s, t} to P2. With this, P2 is also an
st-path of length at most ` (that “detours” at each vi ∈ C to contain all vertices from
W i and the chosen (i, j)-chains).

Next we have to ensure that the edge difference of P1 and P2 is at most k′. In both
paths there are the same (i, j)-chains, so all edges included in these chains are not in

17

2 NP-Hardness

Illustration of Construction 2.3

v1

v2 v3

v4

Input Instance
(G = (V,E), k = 2)

e1

e2

e3 e4

CH1
1

CH2
1

CH2
2

CH3
2

CH2
3

CH4
3

CH3
4

CH4
4

G′1 :

G′2 :

e1 e2 e3 e4

s t

s
v1

v2

v3

v4

t

Figure 2.1: On the top left, an example instance (G = (V,E), k) of Vertex Cover is
shown. On the right, the temporal graph G′ built by Construction 2.3 for this
input instance is illustrated. This temporal graph has two layers, G′1 and G′2.
The other output parameters for this input are k′ = (2k+3)|E|+ |V |+4 = 36
and ` = 2|E||V |+m(k′ + 2) + |V |+ 42 = 230. For each ej ∈ E and vi ∈ ej
we indicate the constructed (k′+2)-long chain CHi

j by a double edge. All these
chains are listed in the legend on the bottom left. Vertices which are coloured
grey have degree zero in the other layer and thus are not depicted there.
We indicate a possible solution S = (P1, P2) for Edge-MstP of the output
instance by drawing edges included in P1 or P2 blue, making both st-paths
visible this way. Other edges are drawn black. The to S corresponding
vertex cover vertices in the input instance are marked by a blue circle.

18

2.1 NP-Hardness of Edge-MstP

E(P1)4E(P2). In P1 all other edges have endpoints in X. As |X| = m+ 1, there can
be at most 2m+ 2 edges present in P1, but not present in P2.

Let V ∗ = V ∪ {vn+1, s, t}. In V (P2) there are the vertices from V ∗, the vertices
from W and the vertices from |E| many chains (from which the edges inside are both
included in P1 and P2). As P2 is a path, there can then be at most |V ∗|+|W |+|E|−1 =
n+ 3 + 2km+m− 1 edges present in P2 which are not present in P1. Hence, the total
edge difference is at most 2m+ 2 + n+ 3 + 2km+m− 1 = (2k + 3)m+ n+ 4 = k′.
Therefore S is a solution and the constructed instance is a yes-instance.

Lemma 2.6. If the output instance of Construction 2.3 is a yes-instance of
Edge-MstP, the input instance was a yes-instance of VC as well.

Before proving Lemma 2.6 we observe two different properties of any solution to
Edge-MstP for an instance constructed by Construction 2.3:

Observation 2.7. If a solution S = (P1, P2) for Edge-MstP to the instance
constructed by Construction 2.3 exists, then

(a) for each ej ∈ E in the input instance there is exactly one constructed
(i, j)-chain included in P1 and

(b) P2 includes the same (i, j)-chains as P1.

Proof. (a) This follows from the construction of ST ⊆ E1, for each ej ∈ E there are ex-
actly two constructed paths between Xj and Xj+1, each via one (i, j)-chain. Note that
{Xj} and {Xj+1} both form st-separators, so P1 includes Xj and Xj+1.

(b) Each (i, j)-chain contains k′ + 1 edges. As the edge difference of P1 and P2 is
at most k′, they include the same such chains.

With Observation 2.7 we now derive the following statement, which will later be used
as our main argument in the proof of Lemma 2.6:

Lemma 2.8. If a solution S = (P1, P2) to the instance constructed by Construc-
tion 2.3 exists, the set

I = {i : there is a j ∈ [m] so that the (i, j)-chain is contained in P2}

has at most size k, i.e. I ≤ k (k being the parameter of the input instance).

Proof. Assume towards a contradiction that there is a solution S = (P1, P2) to the
constructed instance so that |I| ≥ k + 1. As the vertices in X are included only in P1

and there are no two distinct x, x′ ∈ X with {x, x′} ∈ E1, there are at least 2m+ 2
edges present in P1 which are not present in P2.

19

2 NP-Hardness

By Observation 2.7 we also know that there are m different (i, j)-chains in P2,
which respectively need at least m edges to get connected to other vertices in P2. As
|I| ≥ k + 1, we also have at least (k + 1)(2m) vertices from Y ∪ Z in V (P2) (which
are not in V (P1)). Then we need at least (k + 1)(2m) edges in E(P2) to connect each
of them to other vertices as well. The same holds for the vertices in V ∪ {vn+1, t}
(not counting s, because it is the first vertex of the path). Altogether this means that
there are at least m+ (k+ 1)2m+ (n+ 2) edges included in P2 which are not included
in P1.

Hence, the total edge difference of P1 and P2 is least (2m+ 2) +m+ (2k + 2)m+
(n+ 2) = (2k + 5)m+ n+ 4 > k′. This contradicts to S being a solution.

We next prove Lemma 2.6 by showing that the set I of size at most k we found
in Lemma 2.8 corresponds to a vertex cover of the same size in the input instance of
Construction 2.3.

Proof of Lemma 2.6. If the output instance of Construction 2.3 is a yes-instance,
let S = (P1, P2) be a corresponding solution for Edge-MstP. By Observation 2.7
we know that both P1 and P2 contain exactly one (i, j)-chain for each ej ∈ E. By
Lemma 2.8 we know that the set

I = {i : there is a j ∈ [m] so that the (i, j)-chain is contained in P2}

is of size at most k. As we constructed an (i, j)-chain for the edge ej if and only if
vi ∈ ej, I translates to a set C = {vi : i ∈ I} ⊆ V with |C| ≤ k, which is a vertex
cover in the input graph. This means the input instance of Construction 2.3 was a
yes-instance of VC.

The proof of Lemma 2.4 is immediate by Lemma 2.5 together with Lemma 2.6.

In order to eventually prove Theorem 2.1 it remains to show that Construction 2.3
can be applied in time polynomial in the size of its input:

Observation 2.9. Construction 2.3 can be executed in O((km+ n)m) time.

Proof. Each constructed (i, j)-chain contains k′ + 2 = (2k + 3)m+ n+ 6 vertices. As
there are 2m such constructed chains these amount to O((km+ n)m) vertices in U.
As |X| = m+ 1 and |Y | = |Z| = nm, there are O((km+ n)m) constructed vertices
in total. For each constructed v ∈ V ′ holds deg(v) ≤ 4 in each layer and τ = 2.
This means that there are also at most O((km+n)m) constructed temporal edges.

So far, the maximal degree of vertices generated by Construction 2.3 within any layer
is four, which is not sufficient to prove Theorem 2.1. However, we can modify any output
instance of Construction 2.3 to shrink this maximal degree down to three:

20

2.2 Polynomial Time Reduction from Edge-MstP to Vertex-MstP

Proposition 2.10. Each instance I constructed by Construction 2.3 can be
converted in polynomial time into an equivalent instance I ′ of Edge-MstP,
so that the maximal degree of vertices in the underlying graph of the temporal
graph in I ′ is 3.

Proof. For each v ∈ U ∪Y ∪Z ∪{X1, Xm+1, v1, vn+1} constructed by Construction 2.3
it already holds that degG↓

(v) ≤ 3.
For each Xj ∈ X \ {X1, Xm+1} we observe that degG1

(Xj) = degG1
(Xj) = 4 and

that all st-paths containing Xj go from a vertex in L = {(j − 1)ik′+2, (j − 1)i
′

k′+2}
via Xj to a vertex in R = {jxk′+2, j

x′

k′+2} for some i, i′, x, x′ ∈ [n] (also see Figure 2.1
for reference). Then we can exchange Xj for two vertices X∗j , X ′j of degree 3 in G1 so
that {X∗j , X ′j} ∈ E1, {X∗j , w} ∈ E1 for each w ∈ L and {X ′j, u} ∈ E1 for each u ∈ R.
We also increase k′ by the extra amount of vertices in each st-path in G1, which is
m− 1 (as we exchanged m− 1 vertices into two each). We also increase the length of
all constructed (i, j)-chains accordingly.

The same idea is applied to the vertices in V \ {v1, vn+1} : Each vi ∈ V \ {v1, vn+1}
has a degree of 4 in G2 (and also in G↓). Each st-path through vi comes from vi−1 or
Zi−1
m and goes via vi to vi+1 or Y i

1 . This means we may also exchange vi for two new
vertices as depicted above. After all vi have been exchanged, we increase k′ by n− 1
and again update all constructed (i, j)-chains accordingly.

Now we are set to prove Theorem 2.1:

Proof of Theorem 2.1. As can be seen from the construction (or Figure 2.1) both
layers constructed by Construction 2.3 are outerplanar graphs. This does not change
when Proposition 2.10 is applied, as its vertex exchanges do not enclose other vertices
and thus do not lead to any vertex being in a new graph face. Together with
this observation, Lemma 2.4, Observation 2.9 and Proposition 2.10 directly prove
Theorem 2.1.

2.2 Polynomial Time Reduction from Edge-MstP to
Vertex-MstP

In the previous section, we showed that Edge-MstP is NP-hard even if there are only
two layers of treewidth two in the input temporal graph and the maximal degree in G↓
is three. We now show that those properties also hold for Vertex-MstP:

Theorem 2.11: NP-hardness of Vertex-MstP with only two layers of
treewidth two

Vertex-MstP is NP-hard, even if the maximal degree in G↓ is 3, τ = 2 and both
input layers have a treewidth of at most two.

21

2 NP-Hardness

In order to prove this theorem, we first present an algorithm which describes a reduction
from Edge-MstP to Vertex-MstP. We then show the correctness of this reduction
in Lemma 2.12. After that, we can show the statements of Theorem 2.11 by proving
that the presented algorithm does not change any properties listed in Theorem 2.11
from its input temporal graph to a constructed temporal graph.

Algorithm 1: A polynomial time reduction from Edge-MstP to Vertex-MstP
Input :An instance I = (G = (V,E1, . . . , Eτ), s, t, k, `) of Edge-MstP.
Output :An instance I ′ = (G′ = (V ′, E ′1, . . . , E

′
τ), s, t, k

′, `′) of Vertex-MstP
which is equivalent to I.

1 V ′ ← V
2 for i← 1 to τ do
3 E ′i ← Ei
4 end

5 for i← 1 to τ do
6 foreach e = {a, b} ∈ Ei do /* replacing e with a k + 1-long path */
7 V ′ ← V ′ ∪

⋃
x∈[k+1]

{ex}

8 E ′i ← E ′i ∪
⋃
x∈[k]
{{ex, ex+1}} ∪ {{a, e1}, {b, ek+1}}

9 E ′i ← E ′i \ {e}
10 end
11 end
12 k′ ← (k + 1)2 − 1 /* computing output parameters */
13 `′ ← `+ (`− 1)(k + 1)
14 return (G′ = (V ′, E ′1, . . . , E

′
τ), s, t, k

′, `′)

Intuitively, Algorithm 1 replaces each temporal edge of the temporal graph in the input
instance (G, s, t, k, `) with a path that includes k + 1 new vertices, resulting in a new
temporal graph G′. Also, the parameters k′ and `′ of the output instance are computed
as k′ = ((k + 1)2 − 1) and `′ = `+ (`− 1)(k + 1).

We now prove that each output instance I ′ of Algorithm 1 to Vertex-MstP is
equivalent to the corresponding input instance I of Edge-MstP, i.e. that the reduction
described by Algorithm 1 is correct:

Lemma 2.12. The output instance of Algorithm 1 is a yes-instance of Vertex-
MstP if and only if the input instance is a yes-instance of Edge-MstP.

Proof. (⇐) Assume the input instance is a yes-instance. Let S = (P1, . . . , Pτ) be
a solution to the input instance. We construct a solution S ′ = (P ′1, . . . , P

′
τ) to the

output instance by replacing each edge e = {a, b} in each Pi with the k + 3-long path
from a to b (via new vertices {e1, . . . , ek+1}) that was inserted in Algorithm 1 for e.

As each Pi contains at most `−1 edges and for each edge we inserted k+1 additional

22

2.2 Polynomial Time Reduction from Edge-MstP to Vertex-MstP

vertices, the amount of vertices in P ′i is at most `+ (`− 1)(k + 1).
Now let Pi and Pi+1 be two adjacent paths in S, which means their edge difference

is at most k. This means the vertex difference of Pi and Pi+1 is also at most k, since for
each vertex v ∈ V (P1) \ {s, t} and v 6∈ V (Pi+1) \ {s, t} there also has to be a distinct
edge e ∈ E(Pi), which is incident to v in Pi but not included in Pi+1 and vice-versa. As
|E(Pi)4E(Pi+1)| ≤ k there are at most k(k+1) “new” vertices inserted by Algorithm 1
which are in |V (P ′i)4V (P ′i+1)|. Thus, the total vertex difference of P ′i and P ′i+1 is at
most k+ k(k+ 1) = (k+ 1) + k(k+ 1)− 1 = (k + 1)2− 1 = k′. Hence, S ′ is a solution
to Vertex-MstP.

(⇒) Assume the input instance is a no-instance. Then at least one of the following
three cases applies:

1. There is a layer Gi in the input where no st-path exists.

2. There is a layer Gi in the input where each st-path contains more than ` vertices.

3. In each S = (P1, . . . , Pτ) where each Pi is an st-path of length at most ` in the
input layer Gi there are two paths Pi and Pi+1 so that |E(Pi)4E(Pi+1)| ≥ k+ 1.

Case 1: As Algorithm 1 only replaces edges that are present in Ei with longer
paths in E ′i, it does not change connectivity of the vertices in V in any layer: If there is
no path from s to t in Gi, then there also is no path from s to t in G′i.

Case 2: Let Pi be an existing st-path in Gi with |V (Pi)| > ` (if Pi does not
exist, Case 1 applies). Then Pi includes at least ` + 1 vertices and at least ` edges.
Thus, the path that emerges from Pi after replacing its included edges with the
corresponding paths constructed in Algorithm 1 includes at least ` + 1 + `(k + 1)
vertices and is consequently of length more than `.

Case 3: Let P ′i and P ′i+1 be the paths in G′i that are constructed by exchang-
ing the edges in Pi and Pi+1 for the corresponding constructed k + 1-long paths.
Then |V (P ′i)4V (P ′i+1)| ≥ (k + 1)(k + 1) = (k + 1)2 > k′ and there is no solution of
Vertex-MstP to the output instance as a consequence.

Having shown that Algorithm 1 is a correct reduction from Edge-MstP to Vertex-
MstP, we are now set to prove Theorem 2.11.

Proof to Theorem 2.11. Edge-MstP is NP-hard even if τ = 2, both layers are series-
parallel and G↓ has a maximal degree of 3 (Theorem 2.1). Let I be an instance of
Edge-MstP with only two series-parallel layers and a maximal degree of 3 in G↓.
Then I can be reduced in O(mk) time by Algorithm 1 to an equivalent instance I ′
of Vertex-MstP (Lemma 2.12) which also has those properties. This results from
the fact that all modifications applied in Algorithm 1 are series expansions which do
not introduce new vertices of degree greater than two.

23

2 NP-Hardness

2.3 ETH Statement for Vertex-MstP

The Exponential Time Hypothesis (ETH) is a conjecture first suggested by Impagli-
azzo and Paturi (1999). It states that there is no algorithm which decides 3-SAT in
2o(n)(n+m)O(1) time, where 3-SAT is the problem to decide whether a given boolean
formula in conjunctive normal form with m clauses, each containing three of n variables,
can be satified.
In the previous section, we showed that there is no polynomial time algorithm for

solving Vertex-MstP unless P = NP. Following this line of thought, we next show an
even higher running time lower bound for solving Vertex-MstP by assuming the ETH:

Theorem 2.13: ETH Statement for Vertex-MstP

Unless the Exponential Time Hypothesis fails, Vertex-MstP cannot be solved
in 2o(|V |)(|V |+ τ)O(1) time.

This section is thus primarily dedicated to proving Theorem 2.13. At its end, we also
derive Corollary 2.20 which states that Vertex-MstP is NP-hard even if k = 0. In
order to do so, we will build upon an ETH lower bound statement formulated by Muzi
et al. (2017) for the following problem:

Definition 2.14: Positive 1-in-3-SAT

Input: A set of clauses {C1, . . . , Cm}, each consisting of exactly three out of n
boolean variables {x1, . . . , xn}.

Question: Is there an assignment to all the variables so that within each clause
there is exactly one variable assigned to true?

We always assume that m > 1 and n > 3, otherwise the instance can be solved trivially.
The Positive 1-in-3-SAT problem was shown to be NP-complete by Schaefer (1978).
However, our main interest for it lies in the aforementioned theorem by Muzi et al. (2017):

Proposition 2.15. Unless the Exponential Time Hypothesis fails, Positive
1-in-3-SAT cannot be solved in 2o(n)(n+m)O(1) time.

We next describe a polynomial time reduction from Positive 1-in-3-SAT to Vertex-
MstP which will “translate” each variable into a constructed vertex and each clause into
a temporal graph layer. Each of those layers will then guarantee that exactly one of
three vertices corresponding to variables of one clause can be included into an st-path.
This way, we will later establish the correctness of the reduction Afterwards, we will use
it together with Proposition 2.15 to prove Theorem 2.13.

Construction 2.16. Let ({C1, . . . , Cm}, {x1, . . . , xn}) be an instance of Positive 1-
in-3-SAT. Let k = 0. Let ` = n+ 42.

24

2.3 ETH Statement for Vertex-MstP

Constructed Layer Example

s

va

vb

vc

x

CLIQUE

t

Figure 2.2: This picture represents one layer constructed by Construction 2.16 for
any clause {xa, xb, xc}. Note that CLIQUE refers to a complete subgraph
formed by all vertices that are otherwise unused in that layer, that is,
V \ {s, t, x, va, vb, vc}.

We construct a temporal graph G = (V,E1, . . . , Em) with

V = {vi | i ∈ [n]} ∪ {s, t, x} .

Later, adding vi to a path in a solution shall represent the corresponding variable xi
to be assigned to true. Respectively, not adding vi shall represent the corresponding
variable xi to be assigned to false.

For each clause Cj = (xa, xb, xc), j ∈ [m], construct a layer Gj in which there are three
parallel paths (between s and x), one via each vertex for a variable in Cj. The vertices
which correspond to variables of other clauses are not important in Gj, but should still
be “accessible”. For this purpose, we make them form one big clique and let each of them
be adjacent to both x and t. Formally, we construct the edge set Ej for Cj as follows.
Let Q = {va, vb, vc}. Let R = V \ {va, vb, vc, s, x, t}. Let

Ej =
⋃
vi∈Q

{
{s, vi}, {x, vi}

}
∪
⋃
u∈R

{
{t, u}, {x, u}

}
∪
⋃

u,w∈R

{
{u,w}

}
.

This edge set is illustrated by an example in Figure 2.2. This finishes the construction,
the output instance is (G, s, t, k, `). �

We next show that output instances of Construction 2.16 are yes-instances of Vertex-
MstP if and only if the input instance is also a yes-instance of Positive 1-in-3-SAT.
For this, we first note that in any solution to such a constructed instance the vertices of
all paths are identical. Formally:

25

2 NP-Hardness

Observation 2.17. Let (P1, P2, . . . , Pτ) be a solution to an output instance of
Construction 2.16. Then V (P1) = V (P2) = · · · = V (Pτ).

Proof. Let S = (P1, P2, . . . , Pτ) be a solution to such an instance. Then by Con-
struction 2.16 we know that the parameter k is set to zero. Hence V (Px) = V (Px+1)
holds for all x ∈ [τ − 1], because otherwise |V (Px)4V (Px+1)| > k = 0, which would
contradict to S being a solution. Now Observation 2.17 follows directly.

As stated earlier, the vertices in paths of a solution for the constructed instance shall
represent which variables should be assigned to true in a solution for the input instance.
Using this one-to-one mapping between true-assigned variables in the input and vertices
included in paths of a solution for the output, we will now show the first direction of the
reduction correctness:

Lemma 2.18. If the constructed instance of Construction 2.16 is a yes-instance
of Vertex-MstP, then the input instance was also a yes-instance of Positive
1-in-3-SAT.

Proof. Let S be a solution to the corresponding constructed instance. Let Cj =
{xa, xb, xc} be a clause in an input instance of Construction 2.16. Then there is a
layer Gj in the constructed instance that was created for Cj. In that layer every
st-path includes exactly one of the vertices {va, vb, vc} (because each path between s
and x includes one of them and {x} is an st-separator). Hence, there is also a path
Pj in S including exactly one of the vertices {va, vb, vc}. Now let P be any path in
S. By Observation 2.17 it holds that V (P) = V (Pj), which means especially that P
also includes exactly one of the vertices {va, vb, vc}. Since Cj was chosen arbitrarily,
it follows that the vertices in P \ {s, x, t} correspond to a variable assignment which
leads to a solution for the input instance (as all clauses can be “satisfied” by that
assignment).

Now we know that if a solution to the constructed instance exists, then there is also a
solution to the input instance. The other direction works similarly:

Lemma 2.19. If the input instance of Construction 2.16 is a yes-instance of
Positive 1-in-3-SAT, then the constructed instance is a yes-instance of Vertex-
MstP as well.

Proof. As there is a solution to the input instance, let X be the set of all variables
assigned to true in that solution. LetW = {vi : xi ∈ X}∪{s, x, t} be the corresponding
subset of V in the constructed instance. Let Gi be any layer in that constructed
instance. As Gi was constructed for a particular input clause Ci = {xa, xb, xc}, exactly
one of the three vertices {va, vb, vc} is in W and there is an sx-path in Gi via this

26

2.3 ETH Statement for Vertex-MstP

vertex. The vertices in W \ {va, vb, vc} are in a clique in Gi, so any combination out
of them forms an xt-path. Thus, there is an st-path in Gi which is formed by exactly
the vertices in W ∪ {s, x, t}.

Now we are set to prove Theorem 2.13:

Proof of Theorem 2.13. By Lemmata 2.18 and 2.19 we know that the instance con-
structed by Construction 2.16 is equivalent to its input instance. It is also evident
that Construction 2.16 takes polynomial time in its input size, since there is one
constructed layer per input clause and each constructed layer contains at most n2

temporal edges.
This polynomial-time reduction from Positive 1-in-3-SAT to Vertex-MstP

together with Proposition 2.15 then directly proves Theorem 2.13, as for the output
instance of Construction 2.16 it holds that |V | = n+ 3 and τ = m.

As Positive 1-in-3-SAT is NP-complete and Construction 2.16 is a polynomial-time
reduction from Positive 1-in-3-SAT to Vertex-MstP which always sets the output
parameter k to zero we also derive the following corollary:

Corollary 2.20: NP-Hardness of Vertex-MstP with k = 0

Vertex-MstP is NP-hard, even if k = 0.

27

3 Parameterised Hardness

In the following chapter, we study Multistage st-Path as a parameterised problem.
We first establish that all researched problem variants are W[1]-hard when parameterised
by τ, k and ` combined (Section 3.1). In Section 3.2, we show W[1]-hardness of problem
variants Vertex-MstP and Edge-MstP with respect to the vertex cover number of
the underlying graph of the input temporal graph.

3.1 W[1]-Hardness for Input Parameters τ , k and `

In this section, we study the parameterised complexity of Multistage st-Path with re-
spect to the three most natural parameters in any input instance, that being the number
of layers τ , the maximal length of st-paths `, and the maximal distance between ad-
jacent st-paths in a solution k. We already showed in Theorems 2.1 and 2.11 that
Vertex-MstP and Edge-MstP are both NP-hard when τ is two. Hence, there can
be no FPT-time algorithm for those two problems with respect to only the parameter τ
(unless P = NP). For this reason we now combine the three parameters, i.e. we investigate
if there is an FPT-time algorithm for our researched variants of Multistage st-Path
when parameterised by τ +k+`. Unfortunately the answer is still negative for all variants,
unless FPT = W[1].

In order to prove this claim, this section is divided in two parts: At first, we show
that Vertex-MstP parameterised by τ + k + ` is W[1]-hard (Theorem 3.1). In the sec-
ond part, we derive similar W[1]-hardness results for Edge-MstP and Leven-MstP
(Corollary 3.8).

3.1.1 W[1]-Hardness of Vertex-MstP for τ, k, and `

In this subsection, we prove the following:

Theorem 3.1: W[1]-Hardness of Vertex-MstP with τ, k, and ` as Pa-
rameters

Vertex-MstP is W[1]-hard when parameterised by τ + `, even if k = 0 and all
layers in the input are bipartite graphs.

For this purpose we will describe a polynomial parameter transformation to Vertex-
MstP from Multicoloured Clique. This problem is W[1]-complete when parame-
terised by its colour number parameter k (Fellows et al. 2009).

29

3 Parameterised Hardness

Definition 3.2: Multicoloured Clique

Input: An undirected graph G = (V,E), an integer k, and a function
c : V → [k].

Question: Is there a subset C ⊆ V such that C forms a clique of size k and⋃
v∈C

c(v) = [k]?

Intuitively we interpret the function c as a colouring of vertices, that is, each vertex v
has the colour c(v). Furthermore we will refer to a set S ⊆ V as a multicoloured clique
if and only if the induced subgraph of S in G is a clique and there are no two distinct
vertices v, w ∈ S so that c(v) = c(w). We also always assume that 3 ≤ k ≤ |V | and that
there is at least one vertex v ∈ V of each colour i ∈ [k]. Otherwise deciding whether the
instance is a yes-instance of Multicoloured Clique would be trivial.

Construction 3.3. Pseudo-code of the following construction is stated in Algorithm 2.
Let (G = (V,E), k, c) be an instance of Multicoloured Clique. Let ` = k + 2

and k′ = 0. These two parameters will be used in the output instance, note that both
are linear in k. We construct a temporal graph G′ with vertex set V ′ = V ∪ {s, t} and
edge sets E1, . . . , E1+k(k−1).

For each of the edge sets in G′ we arrange the k colours in a specific order, i.e. we use
k(k − 1) + 1 permutations of colours. The constructed edge sets will later each reflect
their corresponding colour order. To this end, we begin with the natural colour order
(1, . . . , k) (Algorithm 2 line 3). Afterwards for each i ∈ [k] we “shift” colour i to the
right k − 1 times, i.e. for each j ∈ [k − 1] we swap colour i with colour i + j mod k.
Each such shift creates one new colour order (Algorithm 2 lines 4 to 10). Hence, we
create 1 + k(k − 1) colour orders in total, each one ordering all k colours in a specific
way. By doing so, we ensure that each two distinct colours i, i′ are ordered directly next
to each other in at least one created order (as i was shifted k − 1 times and after each
shift it is ordered next to a new colour).

Next we build an edge set for each colour order. Thus let ORDi = (c1, . . . , ck) be
the i-th colour order. In edge set Ei, we add an edge {s, v} for each v ∈ V where c(v)
is the first-ordered colour c1 in ORDi . Similarly, we add an edge {t, v} to Ei for each
v ∈ V where c(v) is the last-ordered colour ck in ORDi (Algorithm 2 lines 13 and 14).
Afterwards, we add an edge {a, b} to Ei for each two a, b ∈ V where {a, b} ∈ E and
c(a) = cj is ordered directly next to c(b) = cj+1 in ORDi, for j ∈ [k − 1] (Algorithm 2
lines 15 to 14).

This finishes the construction, the output instance is (G′ = (V ′, E1, . . . , Eτ), s, t, k
′, `).

An example output layer is illustrated in Figure 3.1. �

Construction 3.3 will later be used as polynomial parameter transformation in order
to prove Theorem 3.1. For this reason, we prove that Construction 3.3 is indeed an
appropriate polynomial parameter transformation from Multicoloured Clique to
Vertex-MstP and make the following observation:

30

3.1 W[1]-Hardness for Input Parameters τ , k and `

Algorithm 2: Algorithm for Construction 3.3
Input :A graph G = (V,E), an integer k ≥ 3, and a function c : V → [k].
Output :A temporal graph G′ = (V ′, E1, . . . , Eτ), two special vertices s, t ∈ V ,

and two integers k′, ` ∈ N.
1 V ′ ← {V ∪ {s, t}}
/* Creating k(k − 1) + 1 permutations of the k colours */

2 cur← 1
3 ORDcur ← (1, . . . , k)
4 for i← 1 to k do
5 for j ← 1 to k − 1 do
6 cur← cur + 1
7 ORDcur ← ORDcur−1
8 Shift i one position to the right in ORDcur

9 end
10 end

/* Using each created permutation to build an edge set */
11 for cur← 1 to k(k − 1) + 1 do
12 (c1, . . . , ck)← ORDcur

13 Ecur ← {{s, v} : v ∈ V, c(v) = c1}
14 Ecur ← Ecur ∪ {{v, t} : v ∈ V, c(v) = ck}
15 foreach {a, b} ∈ E do
16 if there is an i ∈ [k − 1] so that c(a) = ci and c(b) = ci+1 then
17 Ecur ← Ecur ∪ {{a, b}}
18 end
19 end
20 end

/* Creating the output instance */
21 G′ ← (V ′, E1, . . . , Ek(k−1)+1)
22 k′ ← 0
23 `← k + 2
24 return (G′, s, t, k′, `)

31

3 Parameterised Hardness

Illustration of Construction 3.3

Input Instance:

2 3

4 1

a

b

Example Output Layer:

s a

b

t

2 3 4 1

Figure 3.1: On the left there is a schematic input instance of Multicoloured Clique
with 4 colours. Vertices are dyed and shaped according to their respective
colour. On the right there is a corresponding constructed layer where the
current colour order is (2, 3, 4, 1). The edges indicated by dashed lines may
exist (but do not have to), whereas {a, b} represents an edge that does exist.
Then {a, b} is in the output layer, because the colour of a (which is 2) is
ordered next to the colour of b (which is 3). Each dashed edge on the right
side exists if the same edge also exists on the left side.

32

3.1 W[1]-Hardness for Input Parameters τ , k and `

Observation 3.4. If S = (P1, P2, . . . , Pτ) is a solution to the instance constructed
by Construction 3.3, then V (P1) = V (P2) = · · · = V (Pτ).

Proof. As k′ is set to zero in each output instance of Construction 3.3, this statement
follows directly.

Next we need to show the reduction correctness:

Lemma 3.5. The output instance of Construction 3.3 is a yes-instance of
Vertex-MstP if and only if the input is a yes-instance of Multicoloured
Clique.

Proof. (⇒) If there is a multicoloured clique C in G of size k, all v ∈ C∪{s, t} form an
st-path in each constructed layer. This results from the notion that for any order of the
k colours, a path within C can be found that traverses the colours (or to be specifically
the vertices with those colours) in that order. As these st-paths all include the same
vertices, the output instance (G′, s, t, k′, `) is a yes-instance of Vertex-MstP.

(⇐) Assume that the output instance is a yes-instance of Vertex-MstP. Let S =
(P1, . . . , Pτ) be its solution. Then P1 contains a vertex of each colour, because
{v : c(v) = i} is a constructed st-separator for each i ∈ [k]. Let C = V (P1) \ {s, t}.
Note that |C| = k. Let a, b ∈ C be two distinct vertices in C. Let Gi = (V ′, Ei) be
a layer that was constructed for a colour order where c(a) is ordered next to c(b).
Such an order exists, as in Construction 3.3 it is ensured that each colour is ordered
next to each other in at least one created colour order. We know that there is an
st-path Pi with V (Pi) = V (P1) = C ∪ {s, t} contained in Gi, since this path is in S.
As Pi includes especially a and b, whose colours are ordered next to each other in the
colour order for Gi, there has to be an edge {a, b} in Gi. This means {a, b} also exists
in G, otherwise it would not have been constructed. Since a and b were chosen as any
two distinct vertices in C, there is a clique in G formed by C, which is also of size k
and multicoloured. Thus the input instance was a yes-instance of Multicoloured
Clique.

Lemma 3.6. Construction 3.3 is a polynomial parameter transformation from
Multicoloured Clique parameterised by k to Vertex-MstP parameterised
by τ + `.

Proof. Construction 3.3 assigns the parameter τ + ` polynomially upper-bounded in
k, as τ + `+ k′ = (k(k − 1) + 1) + (k + 2) = k2 + 3. It also can be executed in time
O((|V | + |E|)k3), where |V |, |E| and k are the respective parameters of the input
instance. Together with Lemma 3.5 this proves the statement.

We just established that Construction 3.3 is a polynomial parameter transformation

33

3 Parameterised Hardness

from a W[1]-complete problem to Vertex-MstP parameterised by τ+`. In order to even-
tually prove Theorem 3.1, it now remains to show that all layers built by Construction 3.3
are bipartite:

Observation 3.7. Each temporal graph layer constructed by Construction 3.3 is
a bipartite graph.

Proof. Let Gi = (V ′, Ei) be a layer that was constructed for a particular colour order
ORD = (c1, . . . , ck). Let P : [k]→ [k] be the function that gives the index of a colour
in ORD, i.e. P (i) = j so that cj = i for any colour i ∈ [k]. Let L = {v ∈ V :
P (c(v)) is an odd number} and R = {v ∈ V : P (c(v)) is an even number}. Edges in
Gi between two distinct vertices a, b ∈ V only exist if their colours are ordered next
to each other, i.e. if |P (c(a))− P (c(b))| = 1. Therefore there is no {a, b} ∈ Ei so that
a ∈ L and b ∈ R. Also s is only adjacent to vertices of colour c1 in Gi and t is
only adjacent to vertices of colour ck in Gi. If k is even, then (L ∪ {t}, R ∪ {s})
is consequently a bipartition of Gi. If k is odd, then (L,R ∪ {s, t}) is a bipartition of
Gi instead.

Putting the last two statements together, Theorem 3.1 follows directly:

Proof to Theorem 3.1. Construction 3.3 is a polynomial parameter transformation
from the W[1]-hard Multicoloured Clique parameterised by k to Vertex-MstP
parameterised by τ + ` (Lemma 3.6). Moreover, in this construction the parameter k′
is always assigned to zero and each layer is a bipartite graph by Observation 3.7.
Thus, Vertex-MstP is W[1]-hard, even if k = 0 and each layer is a bipartite
graph.

3.1.2 W[1]-Hardness of Edge-MstP and Leven-MstP for τ, k,
and `

In the previous subsection we proved Vertex-MstP to be W[1]-hard for the com-
bined parameter τ + k + ` by describing a polynomial parameter transformation from
Multicoloured Clique in Construction 3.3. Now we slightly modify this construc-
tion two times in order to show similar W[1]-hardness statements for Edge-MstP and
Leven-MstP:

Corollary 3.8: W[1]-Hardness of Edge-MstP and Leven-MstP with
τ, k, and ` as Parameters

The following problems are W[1]-hard when parameterised by τ + ` :

(1) Edge-MstP, even if k = 4 and all layers in the input are bipartite graphs.
(2) Leven-MstP, even if k = 2 and all layers in the input are bipartite graphs.

34

3.1 W[1]-Hardness for Input Parameters τ , k and `

Proof. (1) We use Construction 3.3 as described to now output an instance of Edge-
MstP, except for the parameter k′, which gets changed from zero to four (meaning
we change zero to four in line 22 of Algorithm 2). As a result, Observation 3.4 still
holds, but its proof has to be adapted for this output instance of Edge-MstP with
k′ = `: We know that the used colour orders in Construction 3.3 always “swap” two
colours cj, cj+1 which are ordered next to each other from one created order to the
next one (see Algorithm 2 line 7 and 8 in particular). Then, by extension, in each two
adjacent constructed layers Gi, Gi+1 the corresponding st-paths Pi, Pi+1 each include
two edges not included in the other one, namely an edge to a vertex of colour cj−1
and an edge to a vertex of colour cj+2. These total to four edges in E(Pi)4E(Pi+1),
even if V (Pi) = V (Pi+1). If V (Pi) 6= V (Pi+1), i.e. if there was some vertex v included
in Pi and not in Pi+1 or vice-versa, then this vertex v would also lead to an additional
edge included in one of those paths, of which v is an endpoint. Hence, we conclude
that the edge difference of Pi and Pi+1 is four if and only if V (Pi) = V (Pi+1). This not
only proves the statement of Observation 3.4, but also implies that a solution for
Edge-MstP can indeed be constructed in the same way as in the proof of Lemma 3.5.
Thus, the remaining parts of proving this statement of Corollary 3.8 above are the
same as for proving Theorem 3.1 earlier.

(2) The same arguments as for (1) apply, except that the parameter k′ is now
changed to two in line 22 of Algorithm 2 in order to output an instance of Leven-
MstP. The Levenstein distance of Pi and Pi+1, which are defined as in the proof of
(1) above, is then two, since the vertex string of Pi+1 can be derived from the vertex
string of Pi by two single vertex substitutions.

As we did not show NP-hardness of Edge-MstP and Leven-MstP earlier for con-
stant k and Construction 3.3 can be used as a polynomial-time reduction from the
NP-complete Multicoloured Clique if modified as stated above, we additionally
derive the following:

Corollary 3.9: NP-Hardness of Edge-MstP and Leven-MstP with con-
stant k

The following problems are NP-hard:
(1) Edge-MstP, even if k = 4 and all layers in the input are bipartite graphs.
(2) Leven-MstP, even if k = 2 and all layers in the input are bipartite graphs.

Proof. For (1) we use Construction 3.3 as described, except that we change the
parameter k′ from zero to four (in line 22 of Algorithm 2). For (2) we change that
parameter k′ in Construction 3.3 to two instead. Then, as already explained in the
proof of Corollary 3.8, the output instance of the respective problem (Edge-MstP
in (1), Leven-MstP in (2)) is equivalent to the input instance of Multicoloured
Clique. As Construction 3.3 takes time polynomial on its input size (Lemma 3.6)
and each of its output layers is a bipartite graph (Observation 3.7), this proves both
statements.

35

3 Parameterised Hardness

3.2 W[1]-Hardness with Vertex Cover Number as
Parameter

Fellows et al. (2008) and Fiala, Golovach, and Kratochvíl (2011), among others, sug-
gested to research whether computational problems on simple graphs are in FPT when
parameterised by the vertex cover number. They also showed that some problems are in
FPT when parameterised that way but are W[1]-hard when parameterised by treewidth.
Therefore, we investigated if Vertex-MstP and Edge-MstP are fixed-parameter-
tractable when parameterised by the vertex cover number of the underlying graph of the
input temporal graph. Unfortunately, we will show that both problems are intractable
even if that vertex cover number is small (unless W[1] = FPT). In order to do so, we
will present two polynomial parameter transformations within the next two subsections,
one to Vertex-MstP and one to Edge-MstP.

3.2.1 W[1]-Hardness of Vertex-MstP parameterised by Vertex
Cover Number

This subsection is dedicated to prove the following:
Theorem 3.10: W[1]-Hardness of Vertex-MstP with Vertex Cover

Number, k, and ` as Parameters

Let ν be the vertex cover number of the underlying graph G↓ of the temporal
graph in the input instance. Vertex-MstP is W[1]-hard when parameterised by
ν + `, even if k = 1.

In order to prove this theorem, we next describe a polynomial parameter transfor-
mation from the W[1]-complete Multicoloured Clique problem (as described in
Definition 3.2) to Vertex-MstP:

Construction 3.11. Let (G = (V,E), k, c) be an instance of Multicoloured Clique.
Let n = |V |. Let k′ = 1 and ` = 2k + 4. The parameters k′ and ` will be used in the
output instance, note that both are linear in k. Let H = [k+ 1]. We construct a temporal
graph G′ with vertex set V ′ = V ∪ {s, t,X, Y } ∪H and edge sets E1, . . . , E2n(k−1).

Each odd layer Gi shall ensure that there is exactly one vertex of each colour in any
st-path in Gi.Moreover, all odd layers of G′ are identical, i.e. E1 = E3 = · · · = E2n(k−1)−1.
Let

E ′ := {{s, 1}, {t, k + 1}} ∪
⋃
d∈[k]

⋃
w∈V
c(w)=d

{{d, w}, {w, d+ 1}}

and let Ei = E ′ for each odd i ∈ [2n(k − 1)].
Next there shall be one even layer for each v ∈ V and j ∈ [k] \ {c(v)}, totalling

to n(k − 1) even layers in G′. Thus construct an edge set Ev
j for each v ∈ V and

j ∈ [k] \ {c(v)}. Later, if v is included in an st-path P in the resulting layer, then P shall

36

3.2 W[1]-Hardness with Vertex Cover Number as Parameter

Schematic of Construction 3.11

Input Instance:

1 2

3 4

a

b

Odd Output Layer:

s a b t

1 2 3 4

Even Output Layer for Vertex a and Colour 2 :

s

a
b

X

Y t

1 2 3 4

Figure 3.2: In this picture, examples of an odd and an even output layer for a small
input instance are illustrated. The vertices in the minimum vertex cover are
coloured white, whereas the vertices in V are dyed and shaped according to
their respective colour. The edges indicated by dashed lines in the input may
exist (but do not have to), whereas the thick line represents an edge that
does exist. The illustrated even output layer is built specifically for vertex a
and colour c(b) = 2. It contains the edge {X, b}, because in the input the
edge {a, b} exists (indicated by a thick line). It may also contain an edge
{X, y} for any y ∈ V if c(y) = 2 and an edge {a, y} is in the input graph
(indicated by a dashed line).

37

3 Parameterised Hardness

also include a vertex u ∈ V with colour j so that {u, v} ∈ E. To this end, Ev
j contains

the following edge set:

REQv
j := {{s, v}, {v,X}} ∪

⋃
w∈V \{v}
c(w)=c(v)

{{s, w}, {w, Y }}∪

⋃
w∈V
c(w)=j

{{Y,w}, {w, 1}} ∪
⋃
w∈V
c(w)=j
{v,w}∈E

{{X,w}} .

Vertices of other colours than c(v) and j are not important in that layer, but they
nevertheless should be allowed to be included in an st-path. Hence, an edge set similar
to the one in the odd layers is used for those vertices:

STv
j := {{c(v), c(v) + 1}, {j, j + 1}, {t, k + 1}} ∪

⋃
d∈[k]
d 6=j
d 6=c(v)

⋃
w∈V
c(w)=d

{{d, w}, {w, d+ 1}} .

The edges {{c(v), c(v) + 1}, {j, j + 1}} were added in order to complete st-paths. Then
let Ev

j = REQv
j ∪ STv

j . Each Ev
j is used as the edge set for a different even layer in

G′ (their order is irrelevant). This finishes the construction, the output instance is
(G′, s, t, k′, `). An example of this construction is illustrated in Figure 3.2. �

In order to show the correctness of Construction 3.11, we first observe the following
property of solutions for the output instance:

Observation 3.12. If S = (P1, . . . , Pτ) is a solution to Vertex-MstP for an
output instance of Construction 3.11, then V (Pi) \ {X, Y } = V (Pi+1) \ {X, Y } for
each i ∈ [τ − 1].

Proof. Let i ∈ [τ−1]. Let Gi and Gi+1 be the i-th and (i+1)-th layer in the constructed
temporal graph G′. Clearly, one of them is even and the other is odd. Without loss
of generality, assume that Gi is the odd and Gi+1 is the even layer. Vertices X
and Y both have a degree of zero in each odd layer, so Pi includes neither X nor
Y. In contrast to this, {X, Y } is an st-separator in each even layer, so Pi+1 includes
X or Y. Thus, it holds that X ∈ V (Pi)4V (Pi+1) or Y ∈ V (Pi)4V (Pi+1) and hence
|V (Pi)4V (Pi+1)| ≥ 1 = k′. If there were more vertices than one out of {X, Y } in
V (Pi)4V (Pi+1), then the vertex difference of Pi and Pi+1 would consequently exceed
1 = k′, contradicting to S being a solution.

With the knowledge from Observation 3.12, we can now prove the correctness of
Construction 3.11:

38

3.2 W[1]-Hardness with Vertex Cover Number as Parameter

Lemma 3.13. The output of Construction 3.11 is a yes-instance of Vertex-
MstP if and only if its input is a yes-instance of Multicoloured Clique.

Proof. (⇐) If there is a multicoloured clique C of size k in the input graph G = (V,E),
then let R = C ∪ H ∪ {s, t}. In each constructed odd layer Gi, R clearly forms an
st-path Pi with |V (Pi)| ≤ ` (as R contains exactly one vertex of each colour).

Now let G′i be an even layer which is constructed specifically for a vertex v ∈ V
and a colour j ∈ [k] \ {c(v)}. Let u be the vertex in R which has the colour c(v).
If u 6= v, then there is an edge {u, Y } in G′i and R ∪ {Y } forms an st-path P ′i in G′i
(for this also see the constructed edge set STv

j in G′i). Otherwise (u = v), there is an
edge {v,X} in G′i. As C is a multicoloured clique there is a neighbour w ∈ C of v in
the input graph G which has colour j, meaning there is also an edge {w,X} in G′i.
Then R ∪ {X} forms the st-path P ′i in G′i instead of R ∪ {Y } in the this case (again,
also see STv

j in G′i). In both cases, it holds that |V (P ′i)| ≤ ` and the edge difference of
Pi and P ′i is at most 1 = k′ (since either Pi4P ′i = {X} or Pi4P ′i = {Y }). Thus, there
is a solution to Vertex-MstP for the output instance which contains those paths.

(⇒) If the input is a no-instance of Multicoloured Clique, assume towards
a contradiction that an output was a yes-instance of Vertex-MstP. Then there is
a corresponding solution S = (P1, . . . , Pτ) for that output instance. Let C = V (P1)∩V.
We know that C consists of exactly one vertex of each colour, otherwise P1 could
be no st-path in the first constructed layer. However, C forms no Multicoloured
Clique in the input graph G = (V,E) (as the input is a no-instance). Then there are
two distinct vertices a, b ∈ C so that {a, b} 6∈ E.

Let Gi be the even layer constructed specifically for vertex a and colour c(b).
In this layer, {X, Y } is an ab-separator. From Observation 3.12 we infer that C =
V (Pi)∩V , as C = V (P1)∩V. As Pi−1 does not include X or Y (both have a degree of
zero in the odd layer Gi−1), Pi does not include both X and Y or |V (Pi−1)4V (Pi)| >
1 = k′ (which would contradict to S being a solution). Also there is no edge {a, Y } in
Gi, and since {a, b} 6∈ E, there is no edge {X, b} in Gi either. Consequently Pi can
not include a, b, and exactly one of X or Y , which contradicts to C = V (Pi) ∩ V .

As we want to establish that Construction 3.11 is a polynomial parameter transforma-
tion, it is still necessary to note that it has polynomial running time:

Observation 3.14. Construction 3.11 can be applied in O(n3) time, where n is
the number of vertices in the input instance.

Proof. The number of constructed vertices is at most 2n + 5, since the number of
colours is at most n. In each output layer, each v ∈ V is an endpoint of at most 3
edges and there are at most 3 edges per layer which do not have an endpoint in V.
Thus, the number of edges per layer is at most 3n + 3 and constructing each layer
takes time in O(n). There are at most 2n(n− 1) constructed layers, leading to a total

39

3 Parameterised Hardness

running time in O(n3).

The only remaining requirement for Construction 3.11 being a polynomial parameter
transformation is that the “new” parameter (which is ν + k′ + ` in Vertex-MstP) is
polynomially upper-bounded in the “old” parameter (which is the number of colours
k in Multicoloured Clique). In the following argumentation, we will show that it
does and with that prove our claim that Construction 3.11 is our desired polynomial
parameter transformation:

Lemma 3.15. Construction 3.11 is a polynomial parameter transformation from
Multicoloured Clique parameterised by k to Vertex-MstP parameterised
by ν + k′+ `, where k is the number of colours in Multicoloured Clique, k′ is
the vertex difference parameter of Vertex-MstP, ` is the path length parameter
of Vertex-MstP, and ν is the vertex cover number of the underlying graph of
the temporal graph in instances of Vertex-MstP.

Proof. In each layer constructed by Construction 3.11 the vertex set W = H ∪
{s, t,X, Y } is a vertex cover with |W | = k+5, as each constructed edge has an endpoint
in W. Thus, W also is a vertex cover of the underlying graph G↓. The parameters
k′ and ` are set to one and 2k + 4, respectively. Therefore ν + k′ + ` is at most
(k + 5) + 1 + (2k + 4) = 3k + 10. Together with Lemma 3.13 and Observation 3.14
it follows that Construction 3.11 is a polynomial parameter transformation from
Multicoloured Clique parameterised by k to Vertex-MstP parameterised by
ν + k′ + `.

Having found this polynomial parameter transformation, the main theorem of this
subsection now follows directly:

Proof of Theorem 3.10. As there is a polynomial parameter transformation from the
W[1]-hard Multicoloured Clique parameterised by k (number of colours) to
Vertex-MstP parameterised by ν + ` + k (k being the maximal vertex difference
here), the latter is also W[1]-hard.

3.2.2 W[1]-Hardness of Edge-MstP parameterised by Vertex
Cover Number

In the previous subsection we showed that Vertex-MstP is W[1]-hard when parame-
terised by the vertex cover number of the underlying graph of the temporal graph in the
input (Theorem 3.1). This immediately poses the question if this W[1]-hardness also
holds for Edge-MstP. In order to show that it does, we describe another polynomial
parameter transformation from Multicoloured Clique which shares its basic ideas
with Construction 3.11, but this time an instance of Edge-MstP is generated. Hence,
in this subsection we prove the following theorem:

40

3.2 W[1]-Hardness with Vertex Cover Number as Parameter

Theorem 3.16: W[1]-Hardness of Edge-MstP with Vertex Cover Num-
ber, k, and ` as Parameters

Let ν be the vertex cover number of the underlying graph G↓ of the temporal
graph G in an input instance of Edge-MstP. Then Edge-MstP is W[1]-hard
when parameterised by ν + k + `.

We begin by describing the construction which will be used as polynomial parameter
transformation:

Construction 3.17. Let (G = (V,E), k, c) be an instance of Multicoloured Clique.
Let n = |V |. Let k′ = 6k− 2 and ` = 3k+ 2. The parameters k′ and ` will be used in the
output instance, note that both are linear in k. Let H = [3k − 5], A =

⋃
d∈[k]

ad and B =⋃
d∈[k]

bd.We then construct a temporal graph G′ with vertex set V ′ = V ∪{s, t}∪A∪B∪H

and edge sets E1, . . . , E2n(k−1).
Each odd layer Gi shall ensure that there is exactly one vertex of each colour in any

st-path in Gi. Also each v ∈ V with colour c(v) = j shall only be adjacent to aj and bj.
Moreover, all odd layers of G′ are identical, i.e. E1 = E3 = · · · = E2n(k−1)−1. To this end,
let

E ′ := {{s, 1}, {t, k + 1}} ∪
⋃
d∈[k]

⋃
w∈V
c(w)=d

{{d, ad}, {ad, w}, {w, bd}, {bd, d+ 1}} .

and let Ei = E ′ for each odd i ∈ [2n(k − 1)].
Next there shall be one even layer for each v ∈ V and j ∈ [k] \ {c(v)}, totalling

to n(k − 1) even layers in G′. Thus, we construct an edge set Ev
j for each v ∈ V

and j ∈ [k] \ {c(v)}. Later, if v is included in an st-path P in the resulting layer, then
P shall also include a vertex u ∈ V with colour j so that {u, v} ∈ E. The vertices in H
are used in order to make the shortest st-path in the resulting layer contain exactly `
vertices.

Ev
j =

{
{s, bc(v)}, {bc(v), v}, {v, aj}, {ac(v),1, {3k − 5, t}}

}
∪

⋃
w∈V \{v}
c(w)=c(v)

{
{bc(v), w}, {w, bj}

}
∪

⋃
w∈V
c(w)=j

{
{bj, w}, {w, ac(v)}

}
∪

⋃
w∈V
c(w)=j
{v,w}∈E

{{aj, w}} ∪
⋃

h∈[3k−4]

{h, h+ 1}

We use each Ev
j as the edge set for a different even layer in G′ (their order is irrelevant).

This finishes the construction, the output instance is (G′, s, t, k′, `). An example of
this construction is illustrated in Figure 3.3. �

The following proofs are mostly similar to the ones in the previous subsection: We will
prove the claim that Construction 3.17 is a polynomial parameter transformation from

41

3 Parameterised Hardness

Schematic of Construction 3.17

Input Instance:

1 2

3 4

v

w

Odd Output Layer:

s

a1 b1 a2 b2v w

t

1 2 3 4

Even Output Layer Built for Vertex v and Colour 2 :

s b1

v
w

a2

b2

a1 t

1 2

Figure 3.3: In this picture, examples of an odd and an even output layer for a small
input instance are illustrated. The vertices in the minimum vertex cover are
coloured white, whereas vertices in V are dyed and shaped according to their
respective colour. The edges indicated by dashed lines in the input may exist
(but do not have to), whereas the thick line represents an edge that does
exist. The illustrated even output layer is built specifically for vertex v with
c(v) = 1 and colour c(w) = 2. It contains the edge {a2, w}, because in the
input the edge {v, w} exists (indicated by a thick line). It may also contain
an edge {a2, u} for any u ∈ V if c(u) = 2 and an edge {v, u} is in the input
graph (indicated by a dashed line). Vertices which are of degree zero in a
layer are not shown in that layer, e.g. the vertices in H which form a path
between a2 and t in the depicted even layer are of degree zero and thus not
shown in the depicted odd layer.

42

3.2 W[1]-Hardness with Vertex Cover Number as Parameter

Multicoloured Clique parameterised by k to Edge-MstP parameterised by ν+k′+`
(as defined in the construction) and for this reason show that all paths within a solution
to Edge-MstP for the output instance include the same vertices from the input vertex
set V. However, this time we also use to vertices in H together with the length parameter
` of Edge-MstP to guarantee this:

Observation 3.18. If P is an st-path with |V (P)| ≤ ` in an even layer Gi built
by Construction 3.17 specifically for some vertex v and colour j, then P includes
exactly one vertex with colour c(v) and exactly one vertex with colour j.

Proof. Let X = {x ∈ V : c(x) = c(v)} and Y = {y ∈ V : c(y) = j}. As X
and Y are both st-separators in Gi, at least one x ∈ X and one y ∈ Y have to
be included in P. We also see that P includes at least aj or bj and furthermore,
{s, t, bc(v), ac(v)} ∪H ⊆ V (P). This means that V (P) \ (X ∪ Y) already includes 3k
vertices. As V (P) ≤ ` = 3k + 2, P can consequently only include one x ∈ X and one
y ∈ Y.

As already indicated, we can now prove the most important lemma for the subsequent
correctness proof of Construction 3.17, which states that within a solution of Edge-MstP
for the output instance all paths include the same vertices from V :

Lemma 3.19. If S = (P1, . . . , Pτ) is a solution to Edge-MstP for an output
instance (G′ = (V ′, E1, . . . , Eτ), s, t, k

′, `) of Construction 3.17, then it holds that
V (P1) ∩ V = · · · = V (Pτ) ∩ V.

Proof. Let i ∈ [τ−1]. Let Gi and Gi+1 be the i-th and (i+1)-th layer in the constructed
temporal graph G′. Clearly, one of them is even and the other is odd. Without loss of
generality, assume that Gi is the odd layer. The corresponding st-path Pi in S clearly
includes exactly one vertex of each colour and 3k + 1 edges in total.

Since Gi+1 is an even layer, it was constructed for a particular vertex v and colour j.
By Observation 3.18 the corresponding st-path Pi+1 with |V (Pi+1)| ≤ ` in S includes
exactly one x ∈ V with colour c(v) and one y ∈ V with colour j. We next distinguish
between whether x = v or x 6= v :

Case x = v : Then Pi+1 goes from s via bc(v), v, aj, y, ac(v), and the vertices in H
to t (in that order). Then the edges which are both included in Pi and in Pi+1 can
only be {bc(v), v} and {aj, y}, as each other edge is either not included in Pi+1 or not
present in Gi. Since Pi and Pi+1 include 3k + 1 edges each and only two of them can
be in both, it holds that

|E(Pi)4E(Pi+1)| = |(E(Pi) \ E(Pi+1)) ∪ (E(Pi+1) \ E(Pi))|
≥ (3k + 1− 2) + (3k + 1− 2) = 6k − 2 = k′.

Since the edge difference of Pi and Pi+1 is at most k′, the edges {bc(v), v} and {aj, y}

43

3 Parameterised Hardness

indeed have to be included in Pi as well as in Pi+1. Thus we conclude that v and y
are both included in Pi and Pi+1, which proves the statement above for this case.

Case x 6= v : There is no difference to the previous case, except that Pi+1 now goes
from s via bc(v), x, bj, y, ac(v), and the vertices in H to t (in that order) and the two
edges which have to be included in both Pi and Pi+1 are now {bc(v), x} and {bj, y},
respectively.

We now show that Construction 3.17 is correct:

Lemma 3.20. The output of Construction 3.17 is a yes-instance of Edge-MstP
if and only if its input is a yes-instance of Multicoloured Clique.

Proof. (⇐) If there is a multicoloured clique C of size k in the input graph G = (V,E),
then let R = C ∪A ∪B ∪ {s, t}. In each constructed odd layer Gi, R clearly forms an
st-path Pi with |V (Pi)| = 3k + 2 = ` (as R contains exactly one vertex of each colour)
and consequently |E(Pi)| = 3k + 1.

Now consider Gi+1, which is an even layer specifically constructed for some vertex
v ∈ V and some colour j ∈ [k] \ {c(v)}. Let x ∈ C be the vertex in C which has colour
c(v) and let y ∈ C be the vertex in C which has colour j. If x = v, there is an st-path
Pi+1 with |E(Pi+1)| = 3k + 1 going from s via bc(v), v, aj, y, ac(v), and the vertices
in H to t (in that order) in Gi+1. Note that the edge {aj, y} in Gi+1 exists, because
an edge {x, y} exists in the input graph. Then E(Pi) ∩E(Pi+1) =

{
{bc(v), v}, {aj, y}

}
and the edge difference between Pi and Pi+1 is (3k − 1) + (3k − 1) = 6k − 2 ≤ k′.

Otherwise (x 6= v), there is an st-path P ′i+1 with |E(P ′i+1)| = 3k+ 1 in Gi+1 instead,
which goes from s via bc(v), x, bj, y, ac(v), and the vertices in H to t (in that order).
Then E(Pi) ∩ E(P ′i+1) =

{
{bc(v), x}, {bj, y}

}
and the edge difference between Pi and

P ′i+1 is again (3k − 1) + (3k − 1) = 6k − 2 ≤ k′.
We thus find a solution to Edge-MstP for the constructed instance this way,

which notably contains the same st-path in each odd layer, but different st-paths in
the even layers.

(⇒) If the input is a no-instance of Multicoloured Clique, assume towards
a contradiction that an output was a yes-instance of Edge-MstP. Then there is a
corresponding solution S = (P1, . . . , Pτ) for that output instance.

Let C = V (P1) ∩ V. We know that C consists of exactly one vertex of each colour,
otherwise P1 could be no st-path in the first constructed layer. However, C forms
no Multicoloured Clique in the input graph G = (V,E) (as the input is a
no-instance). Then there are two distinct vertices a, b ∈ C so that {a, b} 6∈ E.

Let Gi be the even layer constructed specifically for vertex a and colour c(b). Since
S is a solution, there is an st-path Pi with |V (Pi)| ≤ ` in Gi so that by Lemma 3.19
Pi also includes both a and b. Moreover, Pi does not even include any other vertices
of colours c(a) and c(b) (Observation 3.18). However, since {a, b} 6∈ E there is no
constructed edge {ac(b), b} in Gi. As the layer was constructed for vertex v = a, there
is no edge {a, bc(b)} either. With this we see that Pi can neither proceed via ac(b) nor

44

3.2 W[1]-Hardness with Vertex Cover Number as Parameter

via bc(b) and thus not includes both a and b without including other vertices of colours
c(a) and c(b), which is a contradiction.

Having dealt with the issue of correctness, we of course also note that this construction
can be executed in polynomial time:

Observation 3.21. Construction 3.17 can be applied in O(n3) time, where n is
the number of vertices in the input instance.

Proof. The number of constructed vertices is at most 6n − 3, since the number of
colours is at most n. In each constructed odd layer each v ∈ V is of degree two, so there
are 2n edges with endpoints in V. Additionally, there are at most 2n+ 1 edges between
vertices in A ∪B ∪ {s, t}. Therefore constructing each odd layer takes time in O(n).

In each constructed even layer each v ∈ V is at most of degree two, so there are
at most 3n edges with endpoints in V. Additionally, there are at most 3n− 3 edges
with endpoints in {s} ∪H. Thus constructing each even layer also takes time in O(n).
Since there are at most 2n(n− 1) ∈ O(n2) layers in the output, the total running time
is in O(n3).

Now we are set for the proof for our claim, i.e. for Construction 3.17 being an appropriate
polynomial parameter transformation:

Lemma 3.22. Construction 3.17 is a polynomial parameter transformation from
Multicoloured Clique parameterised by k to Edge-MstP parameterised by
ν + k′ + `, where k is the number of colours in Multicoloured Clique, k′ is
the edge difference parameter of Edge-MstP, ` is the path length parameter of
Edge-MstP, and ν is the vertex cover number of the underlying graph of the
temporal graph in instances of Edge-MstP.

Proof. LetG↓ be the underlying graph of a temporal graphG built by Construction 3.17
for an input instance (G = (V,E), k, c). We denote the vertex sets H, A, and B as in
the construction. We construct a vertex cover of size 2k +

⌈
3k−5
2

⌉
in G↓ as follows:

If k is an odd number, let D := {h ∈ H : h is an odd number}. Otherwise, let
D := {h ∈ H : h is an even number}. Let

C := D ∪ A ∪B.

Then C forms a vertex cover in G↓, as each edge in each layer Gi of G has an endpoint
in C.

Since C is a vertex cover of size 2k +
⌈
3k−5
2

⌉
in G↓ and the parameters k′ and ` of

Edge-MstP are assigned to 6k − 2 and 3k + 2 in Construction 3.17, it holds that
ν + k′ + ` ≤ 11k +

⌈
3k−5
2

⌉
≤ 12.5k, so ν + k′ + ` is polynomially upper-bounded in k.

Together with Lemma 3.20 and Observation 3.21 this means that Construction 3.17 is

45

3 Parameterised Hardness

a polynomial parameter transformation from Multicoloured Clique parameterised
by k to Edge-MstP parameterised by ν + k′ + `.

The main theorem of this subsection, i.e. Theorem 3.16, is now a direct result:

Proof of Theorem 3.16. By Lemma 3.22 we know that there is a polynomial parameter
transformation from the W[1]-hard Multicoloured Clique parameterised by the
number of colours to Edge-MstP parameterised by ν + k + `. Thus, Edge-MstP
parameterised by ν + k + ` is also W[1]-hard.

In contrast to Construction 3.11, Construction 3.17 does not assign the parameter
k′ of its output instance to a constant. Hence, it remains open if Edge-MstP is also
W[1]-hard when parameterised by ν + ` and k is some constant c ∈ N. We also did not
study Leven-MstP with respect to ν + k + ` in this section. Presumably, another
construction similar to Construction 3.17 can be described in order to show W[1]-hardness
of Leven-MstP for the parameter ν + k+ `, but this remains an open question for now.

46

4 Efficient Preprocessing and
Fixed-Parameter Tractability

In this chapter, we present certain kernelisation results for Multistage st-Path.
In particular, we show in Section 4.1 that our variants of Multistage st-Path each
admit an exponential-sized problem kernel when parameterised by the number of input
layers and the vertex cover number of the underlying graph of the input temporal graph.
Subsequently, we prove in Section 4.2 that no polynomial-sized kernel exists for Vertex-
MstP with those parameters combined (unless the polynomial hierarchy collapses).
In Section 4.3 we provide an FPT-algorithm for Multistage st-Path with respect to the
maximal degree over all input layers combined with the path length. Finally, in Section 4.4
we present a problem kernel of Vertex-MstP with size polynomial in the feedback
edge number of the underlying graph of the input temporal graph combined with the
number of input layers.

4.1 Exponential Kernel for Multistage st-Path in the
Vertex Cover Number and Number of Layers

We showed that Multistage st-Path (with both vertex and edge distance) is W[1]-hard
when parameterised either by the vertex cover number ν of the underlying graph G↓
(Theorems 3.10 and 3.16) or by the number of layers τ of G (Theorem 3.1 and Cor. 3.8).

Hence, we wonder whether there is an FPT-algorithm for Vertex-MstP when it is
parameterised by ν and τ combined. In this case, we can answer in the affirmative.
More specifically, we will show that there is a kernelisation of Vertex-MstP when
parameterised by these two parameters:

Theorem 4.1: Exponential-sized Kernel for Vertex-MstP parame-
terised by Vertex Cover Number and Number of Layers

Vertex-MstP admits a problem kernel with at most |V | ≤ (2τν +1)ν+2 vertices,
where ν is the vertex cover number of the underlying graph of the input temporal
graph and τ is the number of layers in the input.

This section is thus dedicated to proving Theorem 4.1. But in order to do so, we first need
some preprocessing involving temporal twin vertices. This concept will be introduced in
the following Subsection 4.1.1. In Subsection 4.1.2, we will present the polynomial-time
Algorithm 3 which computes these temporal twin vertices. We later use these vertices

47

4 Efficient Preprocessing and Fixed-Parameter Tractability

in Subsection 4.1.3 for finding an appropriate problem kernel of Vertex-MstP, which
then proves Theorem 4.1. We also find similar problem kernels for Edge-MstP and
Leven-MstP (Corollary 4.7).

4.1.1 Temporal Twins

In classic graph theory two vertices are often called twins if their neighbourhoods coincide.
More precisely, one often distinguishes adjacent twins and non-adjacent twins in simple
graphs (see e.g. Hammer and Maffray (1990) and Hernando et al. (2007)):

Definition 4.2: Twin Vertices

Two distinct vertices u, v of a graph G = (V,E) are called adjacent twins if N [u] =
N [v]. They are called non-adjacent twins if N(u) = N(v).

Note that those names are justified, because two adjacent twins always share an edge
in G, whereas non-adjacent twins never do (by Definition 4.2).

We now introduce a notion of twins to temporal graph theory. To the best of our
knowledge, this is the first time such a concept is utilised on temporal graphs. In
particular, we want to call two vertices u, v in a temporal graph G temporal twins if
within each layer of G the neighbourhoods of u and v coincide.

Definition 4.3: Temporal Twin Vertices

Two distinct vertices u, v of a temporal graph G = (V,E1, . . . , Eτ) are called
adjacent temporal twins if for all i ∈ [τ] it holds that NGi

[u] = NGi
[v]. They are

called (non-adjacent) temporal twins if for all i ∈ [τ] it holds that NGi
(u) = NGi

(v).

In the following subsections, we will only consider non-adjacent temporal twins. We
will next present a simple polynomial time algorithm for finding temporal twins in any
temporal graph and later use them for kernelisation of the Vertex-MstP problem.

4.1.2 Algorithm for Finding Temporal Twins

Algorithm 3 consists of two procedures. The first one, GetTwins, finds all twins of a
vertex v in a simple graph. The second procedure, GetTemporalTwins, calls GetTwins
separately on each layer in the input temporal graph. It then returns all vertices that
were in each result of those sub-procedure calls (and thus are a twin of v in each layer).

48

4.1 Exponential Kernel for Multistage st-Path in the Vertex Cover Number and Number of Layers

This way, we find all temporal twins of v in G.

Algorithm 3: The procedure GetTemporalTwins finds all temporal twins of a
vertex v in a temporal graph G.

1 Procedure GetTwins(G′, v)
Input :A simple graph G′ = (V,E ′) and a vertex v ∈ V.
Output :A set S ′ containing all twin vertices of v in G′.

2 S ′ ← {}
3 forall w ∈ V \ {v} do
4 if N(v) = N(w) then /* comparison in O(N(w)) time */
5 add w to S ′
6 end
7 end
8 return S ′

9 Procedure GetTemporalTwins(G, v)
Input :A temporal graph G = (V,E1, . . . , Eτ) and a vertex v ∈ V.
Output :A set of all temporal twins of v in G.

10 S ← GetTwins((V,E1), v) /* takes O(|E1|) time */
11 for i← 2 to τ do
12 S ← S ∩ (GetTwins((V,Ei), v)) /* takes O(|Ei|+ |S|) time */
13 end
14 return S

Lemma 4.4. The procedure GetTemporalTwins in Algorithm 3 finds all non-
adjacent temporal twins of a vertex v in a temporal graph G in O(m) time
(assuming all input sets are ordered), where m is the total number of temporal
edges in G, i.e. m =

∑
i∈[τ] |Ei|.

Proof. We split this proof into two parts, one for showing the correctness of Algorithm 3
and one for showing its above stated running time.

Correctness: We prove that the output set S of procedure GetTemporalTwins in
Algorithm 3 equals the set of non-adjacent temporal twins of v in G:

(⇒) Let w ∈ S. We know that S is the intersection of all sets computed by the
sub-procedure GetTwins, which was called once for each (Gi, v), i ∈ τ (lines 10 to 13
in Algorithm 3). Let Gi be any layer of G and let S ′ be the corresponding output
set of GetTwins for (Gi, v). Since S ⊆ S ′, it follows directly that w ∈ S ′. Then by
specification of GetTwins (lines 3 to 7 in Algorithm 3) it holds that w ∈ V \ {v} and
that NGi

(v) = NGi
(v). Thus, w is a temporal twin of v in G by Definition 4.3.

(⇐) Let w be a non-adjacent temporal twin of v in G. Let Gi be any layer of G. Then
w is a non-adjacent twin of v in Gi. Thus, the sub-procedure GetTwins in Algorithm 3
outputs a set S ′ with w ∈ S ′ when it is called for the input (Gi, v) (lines 3 to 7 in

49

4 Efficient Preprocessing and Fixed-Parameter Tractability

Algorithm 3). Since Gi was chosen as an arbitrary layer in G, w is in the output set of
each GetTwins call done by the GetTemporalTwins procedure. Then w is also in their
set intersection and consequently in the output set S of GetTemporalTwins (lines 10
to 13 in Algorithm 3).

Running time: We assume that V and all sets N(v) for any v ∈ V are already
ordered in the input. Thus, their set comparisons and set intersections can be computed
in linear time. The sub-procedure GetTwins takes O(|E ′|) time on an input graph
G′ = (V,E ′), as comparing two ordered sets N(v) and N(w) can be done in O(N(w))
time and is done once for each w ∈ V \ {v}.

The main procedure GetTemporalTwins hence takes time in O(|E1|) on the first
layer and time in O(|Ei| + |Ei−1|) on each subsequent layer Gi = (V,Ei), i ∈ [2, τ]
(by calling the sub-procedure and then intersecting). Thus the total running time is
O(
∑τ

i=2(|Ei|+ |Ei−1|) + |E1|) = O(
∑τ

i=1 |Ei|) which proves Lemma 4.4.

4.1.3 Kernelisation

We now use temporal twins to formulate a new data reduction rule for Vertex-MstP.
Intuitively, if two vertices are temporal twins, then they can be exchanged for each other
in the paths of any given solution. This can be used for preprocessing, because each
path can contain only a limited number of such vertices (trivially `, but we will narrow
this down more later). Therefore we can delete vertices if they can be replaced by their
temporal twins in solution paths.

Data Reduction 4.5 (Twin Reduction): Let S[v] be the set of all non-adjacent
temporal twins of some vertex v ∈ V \ {s, t} together with v itself. Let d(v)
be the maximal degree of v over all layers, i.e. d(v) = maxi∈[τ] degGi

(v). If d(v) ≤
|S[v] \ {s, t}|, then delete v from G.

Lemma 4.6. Data Reduction 4.5 is safe and can be applied once on each v ∈
V \ {s, t} in O(nm) time (assuming all input sets are ordered), where n = |V | and
m =

∑
i∈[τ] |Ei|.

Proof. Let v, S[v], d(v) be as stated in Data Reduction 4.5. Let S = S[v] \ {s, t}.
Now let P be an st-path in any layer. For every vertex u ∈ V (P) ∩ S there also

exists a distinct vertex w ∈ V (P) ∩ N(v), because all vertices in S are pairwise
non-adjacent. Obviously, P begins and ends outside S (as s, t 6∈ S). This means
that P contains more vertices from N(v) than from S. We assume that d(v) ≤ |S|
(since Data Reduction 4.5 does nothing otherwise). Then P consequently does not
include each vertex in S.

Now let M be a “vertex-minimal” solution for the instance, that is, among all so-
lutions M minimises the total number of vertices included over its st-paths. Then
we especially note that there is a vertex u ∈ S which is not included in any st-path

50

4.1 Exponential Kernel for Multistage st-Path in the Vertex Cover Number and Number of Layers

in M , since all vertices in S are temporal twins and thus exchangeable for each other.
If u = v, then v can be safely deleted (there is still a solution to the reduced instance
if and only if M exists). Otherwise, v can be exchanged for u in each st-path in M
that included v, without changing any path distance value. This way, we find another
solution in which v is not used (if and only if M exists). Hence, v can be safely deleted
in this case as well.

The stated running time follows from Lemma 4.4 if the procedure GetTemporalTwins
is called once on each v ∈ V \ {s, t}.

Applying Data Reduction 4.5 on each v ∈ V \ s, t is sufficient to obtain a problem
kernel with |V | ≤ (2τν + 1)ν + 2. Hence, we can now prove Theorem 4.1:

Proof of Theorem 4.1. We apply Data Reduction 4.5 exhaustively beforehand, which
takes polynomial time as stated in Lemma 4.6 (if any sets are not necessarily ordered,
then we sort them prior to the application of Data Reduction 4.5).

Let C ⊆ V be a vertex cover for G↓ of minimal size. Then |C| = ν and the maximal
degree in G↓ (and in any layer) is also at most ν. Now let I = V \C. We note that no
two distinct vertices in I are adjacent. We now “distribute” the vertices in I \ {s, t}
into categories according to exactly which neighbours they have in exactly which
layers.

There are at most (2ν)τ = 2τν such categories, because every combination of
any number of available layers and vertices in C may form a category. Now all vertices
within the same category are non-adjacent temporal twins, because they have the
same neighbours in each layer.

Due to the previous application of Data Reduction 4.5, we then know that in
each category there are at most ν vertices left (since N(v) ⊆ C for all v ∈ I).
Thus, it holds that |I \ {s, t}| ≤ 2τνν. As |C| ≤ ν we then infer that |V | = |I|+ |C| ≤
(2τν + 1)ν + 2, which proves Theorem 4.1.

The safeness of Data Reduction 4.5 (see proof of Lemma 4.6) does not rely on the
particular distance function of Vertex-MstP, that is, the vertex distance. The only
“requirement” on the distance function in order to allow for application of Data Reduc-
tion 4.5 is that temporal twins are “treated equally”, meaning each vertex u can be
safely exchanged with its temporal twin w in all paths in any given solution without
altering any distance function value. As a side note, Data Reduction 4.5 would e.g. not
be safe in a hypothetical weighted version of Multistage st-Path where the distance
function depends on different vertex or edge weights. Since this is clearly not the case
for Edge-MstP and Leven-MstP, Data Reduction 4.5 can also be safely applied on
instances of these two problems.

Thus, the proof of Theorem 4.1 also proves the following:

51

4 Efficient Preprocessing and Fixed-Parameter Tractability

Corollary 4.7: Exponential-sized Kernels for Edge-MstP and Leven-
MstP parameterised by Vertex Cover Number and Num-
ber of Layers

Edge-MstP and Leven-MstP both admit problem kernels with each at most
|V | ≤ (2τν + 1)ν + 2 vertices, where ν is the vertex cover number of the underlying
graph of the input temporal graph and τ is the number of layers in the input.

It is known that a parameterised problem has a kernelisation if and only if it is
fixed-parameter tractable and decidable (see e.g. the survey by Kratsch (2014)). Thus,
from Theorem 4.1 and Corollary 4.7 we also infer that Vertex-MstP, Edge-MstP
and Leven-MstP are fixed-parameter tractable when parameterised by ν + τ.

4.2 No Kernel of Size Polynomial in Vertex Cover
Number and Number of Layers for Vertex-MstP

In the previous section we showed that Vertex-MstP admits a problem kernel when
parameterised by the vertex cover number of the underlying graph of the input temporal
graph combined with the number of layers of the input temporal graph, i.e. ν + τ
(Theorem 4.1). The kernel is of size exponential in ν + τ , however. Next we show that
a polynomial kernel appears unlikely, as its existence would imply a collapse of the
polynomial hierarchy:

Theorem 4.8: No polynomial-sized Kernel for Vertex-MstP parame-
terised by Vertex Cover Number and Number of Layers

Vertex-MstP does not admit a problem kernel of size polynomial in ν+τ+k+`,
unless coNP ⊆ NP/poly. Herein, ν is the vertex cover number of the underlying
graph of the input temporal graph, τ is the number of layers in the input, k is the
maximal vertex distance between adjacent paths in a solution and ` is the maximal
length of paths in a solution.

We prove Theorem 4.8 using a polynomial equivalence relation and an or-cross-composition
as defined by Bodlaender, Jansen, and Kratsch (2014):

52

4.2 No Kernel of Size Polynomial in Vertex Cover Number and Number of Layers for Vertex-MstP

Definition 4.9

Let Σ be a finite alphabet. An equivalence relation R on Σ∗ is called a polynomial
equivalence relation if the following two conditions hold:

• There is an algorithm that given two strings x, y ∈ Σ∗ decides whether
x and y belong to the same equivalence class in time polynomial in |x|+ |y|.

• For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements
of S into a number of classes that is polynomially bounded in the size of the
largest element of S.

Definition 4.10

Let Σ be a finite alphabet. Let L ⊆ Σ∗ be a language, let R be a polynomial
equivalence relation on Σ∗, and let Q ⊆ Σ∗ × N be a parameterised problem. An
or-cross-composition of L into Q (with respect to R) is an algorithm that, given t
input instances x1, . . . , xt ∈ Σ∗ of L belonging to the same equivalence class of R,
takes time polynomial in

∑t
i=1 |xi| and outputs an instance (y, k) ∈ Σ∗ × N such

that the following conditions hold:

• The parameter value k is polynomially upper-bounded in maxti=1 |xi|+ log t.

• (y, k) is a yes-instance for Q if and only if at least one input instance xi is a
yes-instance for L.

Our results build upon the following theorem proven by Bodlaender, Jansen, and Kratsch
(2014):

Theorem 4.11

If an NP-hard language L has an or-cross-composition into the parameterised
problem Q, then Q does not admit a polynomial kernelisation or polynomial
compression unless coNP ⊆ NP/poly.

Next we describe an or-cross-composition into Vertex-MstP parameterised by ν + τ +
k+`.We choose Positive 1-in-3-SAT (from Definition 2.14) as the NP-hard language L
for Theorem 4.11. Our polynomial equivalence relation R then contains (x, y) if the two
strings x, y ∈ Σ∗ encode instances of Positive 1-in-3-SAT that have the same number
of variables and clauses each. Deciding if (x, y) ∈ R takes polynomial time, as it is
only necessary to check whether the numbers of variables and clauses in the instance
encoded by x equals the numbers of variables and clauses in the instance encoded by y.
There are nm + 1 equivalence classes (where n and m are the respective numbers of
variables and clauses of the largest instance xi, the remaining class shall be a garbage
class containing all ill-formated inputs). Therefore R is a valid polynomial equivalence
relation. Having established these requirements, we can now start the construction:

53

4 Efficient Preprocessing and Fixed-Parameter Tractability

Schematic of Construction 4.12

(a) Example layer for G1, . . . , G(log p) :

D1

D3

D2

D4

s

g0(1,h)
g0(n,h)

g1(1,h) g1(n,h)

t

v11 v12 v13 v14 v15

(b) Example layer for G(log p)+1, . . . , G(log p+m) :

s
g0(1,h)

g0(n,h) t

v11

v12

v13
v14 v15

Figure 4.1: Two example layers generated by Construction 4.12 are depicted. Isolated ver-
tices are not shown. Vertices in the minimal vertex cover V \D are illustrated
as black, whereas the vertices in D are coloured according to which input
instance they correspond to. The example layer in (b) is generated for some
clause C1

j = {x1, x2, x3} in the corresponding input instance a1.

54

4.2 No Kernel of Size Polynomial in Vertex Cover Number and Number of Layers for Vertex-MstP

Construction 4.12. An example for this construction is illustrated in Figure 4.1.
Let a1, . . . , ap be encoded instances of Positive 1-in-3-SAT, each of them having

m clauses and n variables. We assume p to be a power of two. Otherwise it would be
possible to “repeat” the first instance until p is a power of two, which at most doubles
the number of instances (and therefore effectively does not influence the construction
complexity later). We refer to the clause Cj in instance aq as Cq

j and to the variable xi
in instance aq as xqi .

We need a vertex for each variable in each instance, similar to Construction 2.16.
These vertices will not be part of a minimum vertex cover and hence their number does
not need to be polynomially upper-bounded in maxpq=1 |aq|+ log p. Let

Dq := {vqi : i ∈ [n]} for all q ∈ [p] and

D :=

p⋃
q=1

Dq.

Each Dq represents all variables of the input instance aq and therefore D represents all
variables over the p input instances. Including some vertex vqi ∈ D to an st-path within
a solution shall later represent the corresponding variable xqi to be assigned to true.

As those vertices in D shall not be part of our minimum vertex cover (but part of
st-paths), there shall be no two adjacent vertices x, y ∈ D in any constructed layer.
Instead we need other special vertices that are connected to the vertices in D. As those
will be part of the minimum vertex cover, their number must be polynomially upper-
bounded in maxpq=1 |aq|+ log p. To this end, we build the vertex sets E ′ and F ′, which
contain 2n unique vertices each. Let

E ′ :=
n⋃
i=1

{ei0, ei1}, F ′ :=
n⋃
i=1

{f i0, f i1} and

V = E ′ ∪ F ′ ∪D ∪ {s, t}.

The set V is the vertex set of the constructed instance.
The vertices in E ′ are used in even layers and the vertices in F ′ are used in odd layers.

This means that in each layer only vertices of one of these two sets have edges, depending
on if that layer is odd or even. To simplify this procedure, we define the helper functions
g0, g1 : [n]× N→ E ′ ∪ F ′ where

gb(i, h) :=

{
eib if h is even,
f ib if h is odd,

where b ∈ {0, 1}.

We now begin constructing the edge sets E1, . . . , Elog p+m (which will be used in the
output instance).

First let h ∈ [log p]. The edge set Eh shall contain two paths from s to t, one via

55

4 Efficient Preprocessing and Fixed-Parameter Tractability

g0(1, h), . . . , g0(n, h) and one via g1(1, h), . . . , g1(n, h):

LINESh := {{s, g0(1, h)}, {s, g1(1, h)}, {t, g0(n, h)}, {t, g1(n, h)}}∪⋃
i∈[n−1]

{{g0(i, h), g0(i+ 1, h)}, {g1(i, h), g1(i+ 1, h)}}

In order to make these paths extendable by the vertices in D we subdivide D
into exactly two disjoint subsets Sh0 , S

h
1 ⊆ D. Let Sh0 = {vqi ∈ D : q −

1 has a 0 at the h-th position if q−1 is binarly encoded}. Let Sh1 = D\Sh0 , which means
that Sh1 is the set containing every vertex vqi ∈ D where q− 1 has a 1 at the h-th position
if q − 1 is binarly encoded.

Let Xi :=
⋃
q∈[p]
{vqi ∈ D} for each i ∈ [n]. That means each Xi contains each vertex

corresponding to any variable xqi , q ∈ [p].
With that, we build the two remaining edge sets required for Eh. Basically, we

make each vertex u ∈ D adjacent to two vertices in E ′ ∪ F ′, depending on whether
u ∈ Sh0 or u ∈ Sh1 . If u ∈ Sh0 , u gets two neighbours with the index 0 (in edge set UPh).
Otherwise, the neighbours index is 1 (in edge set LOWh).

UPh :=
⋃

x∈X1∩S0

{{s, x}, {x, g0(1, h)}} ∪
⋃

i∈[n−1]

⋃
x∈Xi+1∩S0

{{g0(i, h), x}, {g0(i+ 1, h), x}}

LOWh :=
⋃

x∈X1∩S1

{{s, x}, {x, g1(1, h)}} ∪
⋃

i∈[n−1]

⋃
x∈Xi+1∩S1

{{g1(i, h), x}, {g1(i+ 1, h), x}}

By combining these parts we get Eh for all h ∈ [log p] :

Eh = LINESh ∪UPh ∪LOWh

Next we build the remaining m edge sets for the output temporal graph. Let h ∈
[log p+m] \ [log p] and j = h− log p. The edge set Eh shall later ensure that if a solution
to the constructed instance exists, there is also a way to assign the variables of some
input instance aq so that exactly one of the three variables in Cq

j is assigned to true
(which is why we construct m such layers, one for each clause in aq).

Let C be the set containing all vertices corresponding to variables that are in clauses
C1
j , . . . , C

p
j , i.e. C =

⋃
q∈[p]
{vqi ∈ D : xqi ∈ Cq

j }. If a solution S = (P1, . . . , Pτ) to the

constructed instance exists, it shall be later required that exactly one of the vertices in C
is in V (Ph). For this reason we build the following edge set:

REQh :=
⋃
x∈C

{{g0(n, h), x}, {t, x}}

56

4.2 No Kernel of Size Polynomial in Vertex Cover Number and Number of Layers for Vertex-MstP

Additionally, the vertices in D \ C should still be “accessible” (meaning it should be
possible for st-paths to include them). To this end, we build an edge set LINE that is
similar to LINES above, but it contains only one path (not two as earlier) and it also
does not contain an edge to t (as t shall only be “reachable” via the edges in REQh):

LINEh := {{s, g0(1, h)}} ∩
⋃

i∈[n−1]

{{g0(i, h), g0(i+ 1, h)}}

We also build an edge set ST that is similar to UP and LOW in the first log p edge sets,
but this time we do not need to distinguish between two types. Also it does not contain
an edge to t, as every path to t shall only include edges from REQh instead.

STh :=
⋃

x∈X1\C

{{s, x}, {x, g0(1, h)}} ∪
⋃

i∈[n−1]

⋃
x∈Xi+1\C

{{g0(i, h), x}, {x, g0(i+ 1, h)}}

With this we then build the desired edge set Eh :

Eh = LINEh ∪REQh ∪ STh

Set k = 2n and ` = 2n + 2. Then (G = (V,E1, . . . , Elog p+m), s, t, k, `) is the output
instance of Vertex-MstP, which finishes this construction. �

We next show the correctness of Construction 4.12, i.e. that there is a solution of
Vertex-MstP for the constructed instance of Construction 4.12 if and only if there
is a solution to at least one of its input instances a1, . . . , ap. The proof is split into one
lemma for the forward and one lemma for the backward direction. Again, we will refer
to the clause Cj in instance aq as Cq

j and to the variable xi in instance aq as xqi .

Lemma 4.13. If at least one of the input instances a1, . . . , ap of Construction 4.12
is a yes-instance of Positive 1-in-3-SAT, then the output instance is a yes-
instance of Vertex-MstP.

Proof. If there is a solution assignment to an input instance aq, let X be the set of
those variables that are assigned to true in that assignment. Let Y = {vqi : xqi ∈ X}
be the set of vertices corresponding to those variables in X.

First consider any layer Gh, h ∈ [log p]. There is an st-path of length n+ 2 formed
by LINESh . As each vertex v ∈ Y has two neighbours in this path, no two distinct
u,w ∈ Y have the same neighbours and |Y | = n, we can extend this path by including
the vertices from Y. This way we find an st-path P in Gh, which includes the vertices
Y ∪ {s, t} as well as exactly n others.

Now consider any layer Gh, h ∈ [log p+m] \ [log p]. Again, LINEh forms a similar
path from s to g0(n, h), however t is excluded. To reach t from g0(n, h), exactly one of
the vertices from the clauses Eh was built for also has to be included. By definition,

57

4 Efficient Preprocessing and Fixed-Parameter Tractability

exactly one of those vertices is in Y. The other vertices in Y can extend the path
from LINEh as described above. This means that we find an st-path P ′ containing
Y ∪ {s, t} as well as exactly n other vertices. As k is set to 2n in the output instance,
these “remaining vertices” from P and P ′ may always differ and we found a solution
to the output instance this way.

In order to show the other direction, we first observe the following:

Observation 4.14. If a solution S = (P1, . . . , Pτ) to the constructed instance of
Construction 4.12 exists, then V (P1) ∩D = · · · = V (Pτ) ∩D.

Proof. Let Ph be an st-path in layer Gh. For each i ∈ [n] the set Shi = {g0(h, i), g1(h, i)}
forms an st-separator of size two in Gh, meaning |V (Ph) ∩ Shi | ≥ 1 for each i ∈ [n].
Let Sh be the union of all Shi . As all Shi are pairwise disjoint, |V (Ph) ∩ Sh| ≥ n.

By construction those vertices get exchanged from layer to layer, i.e. Sh ∩ Sh+1 = ∅
(in even layers we use the set E ′ and in odd layers we use the set F ′). As k = 2n,
this means that all other vertices in the st-paths in a solution have to be the same,
proving Observation 4.14.

Any solution to the output instance shall correspond to a solution assignment of exactly
one input instance. Thus, Construction 4.12 ensures the following:

Lemma 4.15. If P is an st-path in a solution to the constructed instance of
Construction 4.12, then P contains only vertices corresponding to variables of
exactly one input instance, that is, there are no two distinct q, q′ ∈ [p] so that
vqi ∈ V (P) and vq

′

i′ ∈ V (P) (for any i, i′ ∈ [n]).

Proof. We assume towards a contradiction that there are two vertices vqi , v
q′

i′ in V (P)
(for any i, i′ ∈ [n]) which were constructed for variables of two different input instances
aq and a′q.

Let Q be the set of vertices corresponding to variables in aq and let Q′ be the set
of vertices corresponding to variables in a′q. As q 6= q′, there is a binary position h
where they are not similar, i.e. q has a 0 at binary position h and q′ has a 1 at binary
position h or vice-versa. This means in the construced layer Gh the vertices in Q
and those in Q′ are distributed to different sets Sh0 , Sh1 (as named in the construction)
and accordingly connected in different edge sets UPh,LOWh . The only two vertices
that are connected in UPh as well as in LOWh are s and t. Thus, there can be no
st-path including vertices connected in UPh as well as vertices connected in LOWh,
disregarding s and t. This contradicts to P including both vqi and vq

′

i′ , which was the
initial assumption.

Combining Observation 4.14 and Lemma 4.15 we can now prove the remaing direction
for the correctness of Construction 2.16:

58

4.2 No Kernel of Size Polynomial in Vertex Cover Number and Number of Layers for Vertex-MstP

Lemma 4.16. If the output instance of Construction 4.12 is a yes-instance of
Vertex-MstP, then one of its input instances a1, . . . , ap is a yes-instance of
Positive 1-in-3-SAT.

Proof. Let S be a solution to the output instance. Then all paths in S include vertices
from D which correspond to variables of the same input instance aq (Lemma 4.15) and
those vertices from D are the same over all st-paths in S (Observation 4.14). Let P
be such an st-path in S. Similar to Construction 2.16 the vertices in V (P) ∩D reflect
which variables of aq are assigned to true in a solution assignment. Regarding the
construction of REQh for each h ∈ [log p+m] \ [log p], we see that for each clause of
aq exactly one of the three corresponding vertices is in V (P). Therefore we conclude
that there is a solution assignment for aq.

Having shown the correctness of Construction 4.12, we can now prove that Construc-
tion 4.12 satisfies all requirements of being an or-cross-composition:

Lemma 4.17. Construction 4.12 is an or-cross-composition from Positive 1-
in-3-SAT into Vertex-MstP parameterised by ν + τ + k + `, where ν is the
vertex cover number of the underlying graph of the input temporal graph, τ is the
number of layers in the input and k and ` are the respective parameters of the
input instance.

Proof. We already know that the output instance of Construction 4.12 is a yes-instance
of Vertex-MstP if and only if at least one of its input instances is a yes-instance
of Positive 1-in-3-SAT as well (Lemmata 4.13 and 4.16).

We also see that Construction 4.12 can be executed time polynomial in
∑

q∈[p] |aq|,
as for each variable in each input instance there is one vertex created, among 4n+ 2
others, and there are τ = log p+m layers. Hence, the amount of temporal edges in the
constructed temporal graph G is at most (pn+ 4n+ 2)2τ = (pn+ 4n+ 2)2(log p+m).

We note that each constructed temporal edge has an endpoint in V \D. This set
thus forms a vertex cover of size 4n+ 2 in each constructed layer and consequently
also in the underlying graph G↓. We finally note that Construction 4.12 always sets
the parameter k to 2n and ` to 2n + 2. This means that all regarded parameters
(vertex cover number of G↓, number of layers of G, as well as k and `) are polynomially
upper-bounded in maxq∈[p] |aq|+ log p.

With this, Theorem 4.8 follows directly:

Proof of Theorem 4.8. Since there is an or-cross-composition from Positive 1-in-
3-SAT to Vertex-MstP parameterised by ν + τ + k + ` (Lemma 4.17), together
with Theorem 4.11 we derive that Vertex-MstP does not admit a polynomial
kernelisation or polynomial compression for ν+ τ + k+ `, unless coNP ⊆ NP/poly.

59

4 Efficient Preprocessing and Fixed-Parameter Tractability

4.3 FPT-Algorithm for Multistage st-Path
parameterised by ∆ and `

In this section, we show that Multistage st-Path is in FPT when parameterised by
the maximal degree ∆ over all input layers combined with the maximal path length `:

Theorem 4.18: FPT-Algorithm for Vertex-MstP, Edge-MstP and
Leven-MstP parameterised by ∆ and `

Vertex-MstP, Edge-MstP and Leven-MstP can be decided in O(∆2`τ |V |2)
time on an instance (G = (V,E), s, t, k, `), where ∆ = maxi∈[τ](maxv∈V (degGi

(v))).

We will prove Theorem 4.18 by presenting a simple suitable FPT-algorithm. All
our considered distance functions, i.e. vertex distance, edge distance and Levenshtein
distance, can be computed in quadratic time. Hence, we can use similar algorithms for
deciding all three problems which only differ in the computed distance function and, for
that reason, refer to any one of those distances only as dist in the following algorithm
description. We also assume from now on that there is an st-path of length at most ` in
each input layer (which can be easily checked in polynomial time) in order to simplify
further explanation.
Our algorithms base on the fact that the k′ shortest st-paths in a simple graph

G′ = (V,E ′) can be found in time polynomial in k′ + |V |. This has been shown by Yen
(1971) and improved by Katoh, Ibaraki, and Mine (1982) for edge-weighted graphs
(meaning the length of a path is the sum of its included edges lengths in their setting),
the latter formulating an algorithm of running time in O(k′|V |2). Despite the fact that
our setting is much simpler, most notably because there are no edge weights in our initial
scenario, we can still use this algorithm by assigning a weight of one to all edges. Since its
running time is also sufficiently low, we will from now on assume that the k′ shortest
st-paths in a simple graph are computed in O(k′|V |2) time.

That being said, the following Algorithm 4, as stated in pseudo-code, essentially finds
all st-paths of length at most ` in each input layer (whose number is upper-bounded
by ∆`). It then compares the distance of computed adjacent st-paths according to
Definition 1.1 of Multistage st-Path and thus trivially checks if a solution for the
input instance can exist.

We now show that Algorithm 4 correctly decides each input instance of Multistage
st-Path. In order to do so, we first note that its sub-procedure FindShortestPaths is
correct:

Observation 4.19. Let G′ = (V,E ′) be a simple graph of maximal degree at
most ∆ and let s, t ∈ V. Then the call of sub-procedure FindShortestPaths
in Algorithm 4 with arguments G′, s, t,∆` and ` returns exactly the set of all
st-paths with length at most ` in G′.

60

4.3 FPT-Algorithm for Multistage st-Path parameterised by ∆ and `

Algorithm 4: The procedure MstPath solves Multistage st-Path with a dis-
tance function dist in O(∆2`τ |V |2) time, assuming dist(p, p′) can be computed in
O(|V |2) time for two paths p, p′ of length at most `. The algorithm relies on the
fact that the k′ shortest st-paths in a simple graph G′ = (V,E ′) can be found in
O(k′|V |2) time.

1 Procedure FindShortestPaths(G′ = (V,E ′), s, t, k′, `)
Input :A simple graph G′ = (V,E ′), two special vertices s, t ∈ V and two

integers k′, ` ∈ N.
Output :A set containing up to k′ shortest st-paths in G′, which all are of

length at most `.

2 R ← set of k′ shortest st-paths in G′
3 return {p ∈ R : |V (p)| ≤ `}

4 Procedure MstPath(I = (G, s, t, k, `))
Input :An instance I of Multistage st-Path, consisting of a temporal

graph G = (V,E1, . . . , Eτ), two special vertices s, t ∈ V , and two
integers k, ` ∈ N.

Output :yes, if I is a yes-instance of Multistage st-Path with distance
function dist. no otherwise.

5 ∆← maxi∈[τ](maxv∈V (degGi
(v)))

6 P1 ← FindShortestPaths((V,E1), s, t,∆
`, `)

7 for i← 2 to τ do
8 P i ← FindShortestPaths((V,Ei), s, t,∆

`, `)
9 foreach p ∈ P i do

10 if there is no p′ ∈ P i−1 so that dist(p′, p) ≤ k then
11 delete p from P i
12 end
13 end
14 if P i = ∅ then
15 return no
16 end
17 end
18 return yes

61

4 Efficient Preprocessing and Fixed-Parameter Tractability

Proof. Since the maximal degree of G′ is at most ∆, G′ contains at most ∆` different
st-paths of length at most `. Then all of them are found as subset of R in the
sub-procedure FindShortestPaths of Algorithm 4 (line 2), since this sub-procedure
is always called to find the ∆` shortest st-paths in G′. As FindShortestPaths then
“filters” all paths longer than ` from R, the output set contains exactly all st-paths of
length at most ` in G′.

Next the correctness of the main procedure of Algorithm 4 can be proven as well:

Lemma 4.20. The procedure MstPath in Algorithm 4 returns yes if and only
if its input instance I is a yes-instance of Multistage st-Path with distance
function dist .

Proof. (⇐) Let S = (P1, . . . , Pτ) be a corresponding solution for I. Then by Observa-
tion 4.19 P1 is in the computed set P1 (line 6 of Algorithm 4) and each subsequent
Pi in S is in the computed set P i (line 8 of Algorithm 4). Hence, the computed
set P i for each i ∈ [2, τ] in Algorithm 4 contains a path which does not get deleted
for lines 10 to 12 of Algorithm 4, since S is a solution. Since Algorithm 4 only returns
no if some of those sets gets empty, that is, if every element in some set P i, i ∈ [2, τ]
gets deleted for lines 10 to 12 of Algorithm 4, the procedure MstPath returns yes
for I.

(⇒) Assume the procedure MstPath returned yes. Then the computed set Pτ
in Algorithm 4 was non-empty when checked at the end (line 14 to 16). Let Pτ ∈ Pτ .
Rewinding to lines 9 to 13 of Algorithm 4, we see that there is a Pi−1 ∈ P i−1 so that
dist(Pi−1, Pi) ≤ k, as Pτ has not been deleted. Similarly, by backwards induction
over these computed sets we infer that for each i ∈ [τ − 1] there is a path Pi in the
computed set P i, such that dist(Pi, Pi+1) ≤ k. Since all these paths are st-paths
of length at most ` by Observation 4.19, they form a solution of Multistage st-
Path with distance function dist for I.
We are now set to prove Theorem 4.18:

Proof of Theorem 4.18. For each i ∈ [τ], the main procedure MstPath of Algorithm 4
calls its subprocedure FindShortestPaths once, which returns a set P i of size at most
O(∆`), taking time in O(∆`|V |2). Each path in P i then gets compared to each path
in P i−1 by computing the distance function dist, unless i = 1. This step thus takes
time in O(∆2`|V |2).

Altogether, this results in a running time of Algorithm 4 in O(∆2`|V |2τ), which is
fixed-parameter-tractable for the combined parameter ∆ + `. Since Algorithm 4 also
correctly decides Multistage st-Path by Lemma 4.20, it proves Theorem 4.18.

62

4.4 Problem Kernel for Vertex-MstP of Size Polynomial in Feedback Edge Number and Number of Layers

4.4 Problem Kernel for Vertex-MstP of Size
Polynomial in Feedback Edge Number and
Number of Layers

In this section we show that Vertex-MstP admits a polynomial problem kernel when
parameterised by the feedback edge number ρ of the underlying graph of the input
temporal graph combined with the number of layers τ .

Theorem 4.21

Vertex-MstP admits a problem kernel with size polynomial in ρ+ τ , where ρ is
the feedback edge number of the underlying graph of the input temporal graph
and τ is the number of layers in the input temporal graph.

We prove Theorem 4.21 at the end of this section by presenting a way to kernelise any
input instance of Vertex-MstP to a size polynomial in ρ+ τ . To this end, we will next
describe some data reduction rules for Vertex-MstP.

4.4.1 Data Reductions

In order to reduce vertices of degree one in all input layers, we will apply the following
data reduction:

Data Reduction 4.22: If deg(v) = 1 for a vertex v ∈ V \ {s, t} in any layer Gi,
then delete the edge incident to v in Gi.

Lemma 4.23. Data Reduction 4.22 is safe and can be applied exhaustively in
O(τn) time, where n = |V |.

Proof. If deg(v) = 1 in Gi and v is neither s nor t, there there can be no st-path
containing v in Gi. Therefore v can be isolated in Gi without changing any solution of
the instance. We apply Data Reduction 4.22 exhaustively by checking each v ∈ V \ s, t
for its degree once in each layer Gi. If deg(v) = 1 in Gi, then let w be the neighbour
of v in Gi. We delete the edge between v and w in Gi and then check if w is now of
degree one. If yes, we recursively repeat this process on w (delete its incident edge,
check the degree of its neighbour).

The total running time is then O(τn), as there are at most n temporal edge deletions
and consequently at most 2n degree checks done in each layer.

If there is a vertex which has no neighbours in any input layer, which may for example
be a result of the repeated application of Data Reduction 4.22, then we can safely delete
this vertex:

63

4 Efficient Preprocessing and Fixed-Parameter Tractability

Data Reduction 4.24: If deg(v) = 0 for a vertex v in G↓, then delete v from V .

Lemma 4.25. Data Reduction 4.24 is safe and can be applied exhaustively in
O(|V |) time.

Proof. If v has no edges within any layer, then obviously there can be no solution
containing an st-path that includes v. Therefore, v may be deleted without changing
any possible solution.

For the next data reduction, we generalise Multistage st-Path to a weighted
problem with a weighted distance function.

Definition 4.26: Weighted Multistage st-Path

Input: A temporal graph G = (V,E1, . . . , Eτ), a weight function w : V → N,
two special vertices s, t ∈ V and two integers k, ` ∈ N.

Question: Are there paths (P1, . . . , Pτ) so that for all i ∈ [τ] : Pi connects s to t
in Gi = (V,Ei),

∑
v∈V (Pi)

w(v) ≤ ` and distw(Pi, Pi+1) ≤ k?

Again, distw can be any function that somehow measures a distance between two such
paths. However, this time it can make use of the weights assigned by the function w.
Thus, we will now define dist as a weighted version of our previous vertex distance:

distw(Px, Py) =
∑

v∈(V (Px)4V (Py))

w(v)

We will abbreviate Weighted Multistage st-Path with this weighted vertex distance
from now on as Vertex-WMstP. Obviously, an instance of Vertex-MstP can be
translated into an equivalent instance of Vertex-WMstP by setting w(v) = 1 for each
v ∈ V. But now we can additionally define another data reduction for this weighted
problem variant:

Data Reduction 4.27: Let u, v ∈ V \ {s, t} be two vertices which are adjacent in G↓
and are both of degree two in G↓. Let r be the neighbour of v in G↓ that is not u.
Then increase w(u) by w(v) and add the temporal edge {r, u} in each layer where
v is adjacent to u and r. Delete v and all its temporal edges.

Lemma 4.28. Data Reduction 4.24 is safe and can be applied exhaustively in
O(τ |V |) time.

Proof. As u and v are adjacent in G↓ and have both a degree of two, each st-path
including u (in any layer) also includes v and vice-versa. Then those two can be “merged”

64

4.4 Problem Kernel for Vertex-MstP of Size Polynomial in Feedback Edge Number and Number of Layers

to one vertex, so that each path including both of them corresponds to exactly one
path only including the merged vertex afterwards. In the defined Vertex-WMstP
problem, the original paths including u, v and r have the same lengths and distances
as the corresponding “new” paths via only u and r with accordingly increased weight.
Thus, there is a solution of Vertex-WMstP after applying Data Reduction 4.27 if
and only if there was a solution beforehand.

Applying Data Reduction 4.27 once on a vertex v takes O(τ) time as there has
to be a check and a merge operation (with constant time each) within each layer.
Applying it on every v ∈ V hence takes O(τ |V |) time.

Using these data reductions, we prove the following:

Lemma 4.29. For any instance I of Vertex-MstP with feedback edge number
ρ in G↓ one can compute an equivalent instance I ′ of Vertex-WMstP in poly-
nomial time, so that the number of vertices of I ′ is linear in ρ and the number of
temporal edges of I ′ is linear in ρτ.

Proof. Let I = (G = (V,E1, . . . , Eτ), s, t, k, `) be an instance of Vertex-MstP with
feedback edge number ρ in G↓. Let F be a feedback edge set in G↓ with |F | = ρ.
We assume that there is an st-path in each layer Gi of G. Otherwise I is a trivial
no-instance (which can be recognized in O(τ(|V |+ |E|)) time via breadth-first-search
in each layer).

We exhaustively apply Data Reductions 4.22 and 4.24 in that order. Then there
are no vertices of degree 0 or 1 left in G↓ (except possibly s and t which may both
be of degree 1). Afterwards, we “convert” I to an equivalent instance I ′ = (G′ =
(V ′, E ′1, . . . , E

′
τ), w, s, t, k, `) of Vertex-WMstP (by setting all vertex weights to one)

and then apply Data Reduction 4.27 exhaustively.
Now consider the subgraph T of G↓, which contains exactly all vertices and edges

of G↓, except for the edges in F . Then T is a forest. We call vertices of degree one in
T leaves and vertices of degree at least three in T branches. Then each leaf is either
in {s, t} or is incident to at least one edge in F (otherwise it would have been removed
by Data Reduction 4.22 together with Data Reduction 4.24). This means there are
at most 2ρ + 2 many leaves. Each non-leaf vertex is either incident to at least one
edge in F , a branch in T , or of degree two in G↓.

As T is a forest and the number of leaves is thus at least the number of branches we
infer that the number of branches also has to be at most 2ρ. Due to Data Reduction 4.27
there is only one vertex of degree two per branch or leaf in G↓, that is, we have no
paths including consecutive vertices of degree two (disregarding s and t). Hence, the
number of vertices in I ′ is at most 8ρ+ 2. Since T is a forest, it directly follows that
T includes at most 8ρ+ 1 edges. Together with the edges in F , we conclude that G↓
includes at most 9ρ+ 1 edges and, consequently, the number of temporal edges in I ′
is upper-bounded by 9ρτ + τ.

65

4 Efficient Preprocessing and Fixed-Parameter Tractability

4.4.2 Reducing Weights on Vertex-WMstP

By Lemma 4.29 we can convert each instance I of Vertex-MstP to an instance I ′ of
Vertex-WMstP so that its number of vertices is linear in ρ, its number of edges is
linear in ρτ , and I ′ is equivalent to I. However, the weights assigned by function w in
the instance I ′ are not upper-bounded in ρ. For this reason we have not yet obtained
the desired polynomial kernel for Theorem 4.21. Van Bevern, Fluschnik, and Tsidulko
(2018) have shown a way how to reduce weights in a weighted variant of an originally
unweighted problem, which then leads to a polynomial kernelisation for the original
problem (building on previous results for polynomial kernels e.g. by Marx and Végh
(2015) and Etscheid et al. (2017)). We are going to take a very similar approach for
eventually kernelising Vertex-MstP. In order to do so, we apply the following theorem
proven by Frank and Tardos (1987):

Proposition 4.30. There is an algorithm that, on input w ∈ Qd and integer N ,
computes in polynomial time a vector w∗ ∈ Zd with ‖w∗‖∞ ≤ 24d3Nd(d+2) such
that sign(w · b) = sign(w′ · b) for all b ∈ Zd with ‖b‖1 ≤ N − 1, where

sign(x) =


+1 for x > 0

0 for x = 0

−1 for x < 0

We later use this algorithm to “shrink” the weights appearing in our instance I ′ of
Vertex-WMstP. Since each weight in an instance of Vertex-WMstP has to be a
natural number, we especially note that no weight gets shrinked to a negative value in
this process:

Observation 4.31. For N ≥ 2, Proposition 4.30 maintains the signs of weights
by computing w∗ from w, i.e. sign(wi) = sign(w∗i) for all i ∈ [d].

Proof. For each i ∈ [d] let ei by the i-th unit vector (the vector with ei = 1 and ej = 0
for all j ∈ [d] \ {i}). As sign(w · ei) = sign(w∗ · ei) according to Proposition 4.30 we
see that sign(wi) = sign(w∗i).

Using Proposition 4.30 and Observation 4.31 on Vertex-WMstP we prove the
following:

66

4.4 Problem Kernel for Vertex-MstP of Size Polynomial in Feedback Edge Number and Number of Layers

Lemma 4.32. An instance I ′ = (G′ = (V ′, E ′1, . . . , E
′
τ), w, s, t, k, `) of Vertex-

WMstP can be reduced in polynomial time to an instance I∗ = (G′, w∗, s, t, k∗, `∗)
of Vertex-WMstP so that

• w∗(v) ≤ 24(|V ′|+2)3(|V ′|+ 3)(|V
′|+2)(|V ′|+4) for each v ∈ V ∗ and

• I∗ is a yes-instance if and only if I ′ is a yes-instance.

Proof. Let n = |V ′|. In this proof, we conveniently interpret the weight functions w,w∗
as vectors in Nn such that wv is defined as w(v) for each v ∈ V ′ (and similarly for w∗).
We apply Proposition 4.30 with d = n+ 2 and N = n+ 3 on the vector (w, k, `) in
order to obtain the vector (w∗, k∗, `∗) in polynomial time. Let I ′, I∗ be as stated above.
By Proposition 4.30 we know that ‖(w∗, k∗, `∗)‖∞ ≤ 24(n+2)3(n+ 3)(n+2)(n+4). By
Observation 4.31 we also know that (w∗, k∗, `∗) maintains the signs from (w, k, `).

We now show that I∗ is a yes-instance if and only if I ′ is a yes-instance. Let G′i be
a layer in G′ and let Pi be an arbitrary st-path in G′i. Let x ∈ {0, 1}

n be a vector so that
xv = 1 if and only if v ∈ V (Pi). Note that ‖(x, 0,−1)‖1 ≤ n+ 2. Since n+ 2 ≤ N − 1,
we know by Proposition 4.30 that

sign((w, k, `) · (x, 0,−1)) = sign((w∗, k∗, `∗) · (x, 0,−1)).

This is equivalent to sign(w ·x− `) = sign(w∗ ·x− `∗) which means that w ·x ≤ l ⇐⇒
w∗ · x ≤ l∗. Together with the definition of x we infer that∑

v∈V (Pi)

wv ≤ ` ⇐⇒
∑

v∈V (Pi)

w∗v ≤ `∗.

This satisfies one of the requirements for I∗ to be a yes-instance exactly if I ′ is a
yes-instance, the other being the edge difference condition. Thus let G′j be another
layer in G′ and let Pj be an arbitrary st-path in G′j. Let y ∈ {0, 1}

n be a vector
so that yv = 1 if and only if v ∈ V (Pi)4V (Pj). Note that ‖(y,−1, 0)‖1 ≤ n + 2.
Since n+ 2 ≤ N − 1, we know by Proposition 4.30 that

sign((w, k, `) · (y,−1, 0)) = sign((w∗, k∗, `∗) · (y,−1, 0)).

Together with the definition of y we infer that∑
v∈V (Pi)4V (Pj)

wv ≤ k ⇐⇒
∑

v∈V (Pi)4V (Pj)

w∗v ≤ k∗.

Thus, I∗ is a yes-instance if and only if I ′ is a yes-instance.

Particularly, the previous lemma implies that the weight of each vertex in Vertex-
WMstP can be reduced so that its encoding length is polynomially upper-bounded in
the number of vertices. As we were already able to limit that number to be linear in ρ

67

4 Efficient Preprocessing and Fixed-Parameter Tractability

(Lemma 4.29), the reduced weights will then also be polynomially upper-bounded in ρ.
With this knowledge, we can now finally prove Theorem 4.21:

Proof of Theorem 4.21. Let I be an instance of Vertex-MstP. We then apply
Lemma 4.29 and compute an instance I ′ of Vertex-WMstP with number of vertices
in O(ρ) and number of temporal edges in O(ρτ), which is equivalent to I. On I ′

we apply Lemma 4.32 to shrink its vertex weights, such that they are all upper-
bounded by 2O(ρ3) and their encoding length is consequently upper-bounded by O(ρ3).
Hence, the total encoding length of this weight-shrinked instance I ′′ is upper-bounded
by O(ρ4τ). Vertex-WMstP is, like Vertex-MstP, in NP, since its solutions can be
verified in polynomial time and are of size polynomial in the input. For this reason, we
can reduce I ′′ to a new instance I∗ of Vertex-MstP in polynomial time. As the size
of I ′′ is polynomially upper-bounded in ρ+ τ , so is the size of I∗. This means we found
our polynomial kernelisation, which concludes this proof.

68

5 Conclusion and Outlook

We introduced and studied Multistage st-path regarding its computational complexity
in three different variants, namely Vertex-MstP, Edge-MstP and Leven-MstP. All
in all, we found many hardness results in terms of both NP-hardness and parameterised
hardness for these problems. Nevertheless, we also spotted that they are fixed-parameter
tractible with respect to certain problem parameters.
In the following Section 5.1, we review and discuss the results presented throughout

this work. Subsequently, in Section 5.2 we conclude by stating still open questions and
future research opportunities which base on the discussed results.

5.1 Discussion

We showed that all studied variants are NP-hard, even if the maximal distance k between
adjacent paths is constant, for instance Vertex-MstP is NP-hard even if k = 0. For the
introductory example this means that even if no sporadically unused office is tolerated, the
problem still remains computationally hard to solve. Vertex-MstP and Edge-MstP
are also NP-hard if the number of input layers τ is only two, so limiting the amount of
considered points in time alone does not make the problem tractable either (unless τ = 1,
since then there is no time-dependent part anymore).
In terms of parameterised hardness, we proved that all three variants are W[1]-hard

when parameterised by τ + k + ` even on bipartite graph layers, where ` is the maximal
path length. We also showed that Vertex-MstP and Edge-MstP are W[1]-hard when
parameterised by ν + k + `, where ν is the vertex cover number of the underlying graph
of the input temporal graph. The question whether the same W[1]-hardness also holds
for Leven-MstP remains open.
As a main result, we then showed that all three researched problem variants admit

problem kernels of size exponential in τ+ν and are thus fixed-parameter tractable for this
combined parameter. To this end, we introduced the concept of temporal twin vertices.
We subsequently showed how to efficiently reduce these vertices to a number exponentially
upper-bounded in τ + ν without changing whether a solution of Multistage st-Path
exists. Possibly similar kernelisation methods can be used for other problems also defined
on temporal graphs in future research.

However, Vertex-MstP does not admit a kernel of size polynomial in τ + ν + k + `
(unless coNP ⊆ NP/poly). This result suggests that Vertex-MstP is computationally
even harder with respect to the parameter ν + τ than some other Multistage problems.
In particular, Fluschnik et al. (2019) showed that Multistage Vertex Cover admits
a problem kernel of size cubic in ν + τ , despite that the “single-stage” version of their

69

5 Conclusion and Outlook

problem—Vertex Cover—is already NP-complete (which is not the case for Multi-
stage st-Path). It remains open if there is a kernel of size polynomial in τ + ν + k + `
for Edge-MstP or Leven-MstP.

We then showed that our three variants of Multistage st-Path are fixed-parameter
tractable with respect to the parameters ∆ and `, where ∆ is the maximal degree over all
input layers. The presented FPT-algorithm exploits the property that there are at most
∆` st-paths of length at most ` in each layer. It remains open if there is a corresponding
problem kernel of size polynomial in ∆ + ` for any of the problems.
Lastly, we presented a polynomial-sized kernel for Vertex-MstP with respect to

the feedback edge number of the underlying graph G↓ of the input temporal graph
combined with the number of layers in the input. This is done by introducing vertex
weights to Vertex-MstP (and thus defining a new weighted variant of the problem)
and, after applying some data reductions, shrinking those vertex weights by applying a
theorem of Frank and Tardos (1987). The resulting new instance of the weighted problem
is then equivalent to the original instance and can be reduced in polynomial time to
an equivalent instance of Vertex-MstP. However, we doubt that this approach has
much practical relevance. In the first place, the feedback edge number of G↓ is often
a very large parameter in relation to the input size. Secondly, if one already obtained
an equivalent weighted instance of size polynomial in ρ+ τ , it appears more reasonable
to try solving that weighted instance than to first compute another equivalent instance
of Vertex-MstP.

It remains open whether there is an FPT-algorithm or even a kernel of polynomial size
for Vertex-MstP with respect to only the feedback edge number of G↓. We presume
the first to be true, since each st-path in a layer can be constructed by “guessing” a
number and order of edges in a minimum feedback edge set and then “filling the gaps”
between those ordered feedback edges with non-feedback edges. This is unambiguos as
there is at most one path between each two distinct vertices in a forest. Then there has
to be some computable function only depending on the feedback edge number of G↓ that
upper-bounds the number of st-paths in any layer. Accordingly, an algorithm similar to
the one in Section 4.3 can probably be employed to solve Vertex-MstP in FPT-time.

5.2 Future Research Opportunities

We already mentioned that some statements proven in this work for Vertex-MstP
remain open for Edge-MstP or Leven-MstP. In particular, we raise the question
if Edge-MstP or Leven-MstP admits a kernel of size polynomial in ν + τ , which
would make them computationally “easier” with respect to this combined parameter
than Vertex-MstP. It would further be interesting to know if there is some structural
parameter χ of the input instance, so that Edge-MstP is in FPT with respect to χ,
but Vertex-MstP is W[1]-hard for χ (or vice-versa).
Apart from that, future research may clarify
• whether Vertex-MstP is in FPT when parameterised by % + τ , where % is the

feedback vertex number of the underlying graph of the input temporal graph,

70

5.2 Future Research Opportunities

• whether Vertex-MstP is solvable in polynomial time if τ = 2 and k = 0, or

• whether there is a kernel of size polynomial in ν + τ for Vertex-MstP if k = 0.

The first of these questions seems interesting, since we found a kernel for Vertex-MstP
of size exponential in ν + τ , which is a larger parameter than %+ τ . The second question
originates from the fact that we established NP-hardness of Vertex-MstP individually
for both τ = 2 and k = 0, but never combined these restrictions. The third question
follows from a similar idea, perhaps it is beneficial to research Vertex-MstP with k = 0
as a unique problem in order to find out if it is “easier” than the general case.
Overall, it appears useful to study Multistage st-Path on more restricted input

instances. For example, in our described reductions we assumed that temporal edges
may change arbitrarily from one layer to its next layer. Assuming the number of
“changing edges” |E(Gi)4E(Gi+1)| to be upper-bounded by some r ∈ N+ for each two
adjacent layers Gi, Gi+1 in the input, is Vertex-MstP, Edge-MstP or Leven-MstP
fixed-parameter tractable with respect to r (or to r + τ)? For our introductory example,
these settings seem plausible, since we can expect e.g. the number of newly-blocked roads
to be limited at each point in time.
As a final remark, we also did not study situations where the underlying graph of

the input temporal graph is a stronger restricted graph class. For instance, it is open
whether Vertex-MstP is fixed-parameter tractable for parameters τ, k, and ` if the
underlying graph in the input is bipartite.

71

Bibliography

Ahuja, Ravindra K., James B. Orlin, Stefano Pallottino, and Maria G. Scutellà. 2003.
“Dynamic shortest paths minimizing travel times and costs.” Networks 41, no. 4
(July 1): 197–205. doi:10.1002/net.10072.

An, Hyung-Chan, Ashkan Norouzi-Fard, and Ola Svensson. 2017. “Dynamic Facility
Location via Exponential Clocks.” ACM Transactions on Algorithms (TALG) 13,
no. 2 (May 29): 21. doi:10.1145/2928272.

Bampis, Evripidis, Bruno Escoffier, Michael Lampis, and Vangelis Th. Paschos. 2018.
“Multistage Matchings.” In 16th Scandinavian Symposium and Workshops on Al-
gorithm Theory (SWAT 2018), 101:7:1–7:13. Leibniz International Proceedings in
Informatics (LIPIcs). Malmo, Sweden, June. doi:10.4230/LIPIcs.SWAT.2018.7.

Bampis, Evripidis, Bruno Escoffier, Kevin Schewior, and Alexandre Teiller. 2019. “Online
Multistage Subset Maximization Problems.” arXiv:1905.04162 [cs] (May 10).

Van Bevern, René, Till Fluschnik, and Oxana Yu Tsidulko. 2018. “Parameterized algo-
rithms and data reduction for the short secluded s-t-path problem.” arXiv:1806.09540
[cs] (June 25).

Bodlaender, H. L., and B. van Antwerpen - de Fluiter. 2001. “Parallel Algorithms for
Series Parallel Graphs and Graphs with Treewidth Two1.” Algorithmica 29, no. 4
(April): 534–559. doi:10.1007/s004530010070.

Bodlaender, Hans L., Bart M. P. Jansen, and Stefan Kratsch. 2014. “Kernelization Lower
Bounds by Cross-Composition” [in en]. SIAM Journal on Discrete Mathematics 28,
no. 1 (January): 277–305. doi:10.1137/120880240.

Duffin, R.J. 1965. “Topology of series-parallel networks.” Journal of Mathematical Analysis
and Applications 10, no. 2 (April): 303–318. doi:10.1016/0022-247X(65)90125-3.

Eisenstat, David, Claire Mathieu, and Nicolas Schabanel. 2014. “Facility Location in
Evolving Metrics.” In Automata, Languages, and Programming, 459–470. Lecture
Notes in Computer Science. Springer Berlin Heidelberg. doi:10.1007/978-3-662-
43951-7.

Etscheid, Michael, Stefan Kratsch, Matthias Mnich, and Heiko Röglin. 2017. “Polyno-
mial kernels for weighted problems.” Journal of Computer and System Sciences 84
(March 1): 1–10. doi:10.1016/j.jcss.2016.06.004.

73

http://dx.doi.org/10.1002/net.10072
http://dx.doi.org/10.1145/2928272
http://dx.doi.org/10.4230/LIPIcs.SWAT.2018.7
http://dx.doi.org/10.1007/s004530010070
http://dx.doi.org/10.1137/120880240
http://dx.doi.org/10.1016/0022-247X(65)90125-3
http://dx.doi.org/10.1007/978-3-662-43951-7
http://dx.doi.org/10.1007/978-3-662-43951-7
http://dx.doi.org/10.1016/j.jcss.2016.06.004

Bibliography

Fellows, Michael R., Danny Hermelin, Frances Rosamond, and Stéphane Vialette. 2009.
“On the parameterized complexity of multiple-interval graph problems.” Theoretical
Computer Science 410, no. 1 (January): 53–61. doi:10.1016/j.tcs.2008.09.065.

Fellows, Michael R., Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond, and
Saket Saurabh. 2008. “Graph Layout Problems Parameterized by Vertex Cover.”
In Algorithms and Computation, 5369:294–305. Berlin, Heidelberg: Springer Berlin
Heidelberg. doi:10.1007/978-3-540-92182-0_28.

Fiala, Jiří, Petr A. Golovach, and Jan Kratochvíl. 2011. “Parameterized complexity of
coloring problems: Treewidth versus vertex cover.” Theoretical Computer Science
412, no. 23 (May): 2513–2523. doi:10.1016/j.tcs.2010.10.043.

Fluschnik, Till, Rolf Niedermeier, Valentin Rohm, and Philipp Zschoche. 2019. “Multistage
Vertex Cover.” arXiv:1906.00659 [cs] (June 3).

Frank, András, and Éva Tardos. 1987. “An application of simultaneous diophantine
approximation in combinatorial optimization.” Combinatorica 7, no. 1 (March 1):
49–65. doi:10.1007/BF02579200.

Gupta, Anupam, Kunal Talwar, and Udi Wieder. 2014. “Changing Bases: Multistage
Optimization for Matroids and Matchings.” In Automata, Languages, and Program-
ming, 563–575. Lecture Notes in Computer Science. Springer Berlin Heidelberg.
doi:10.1007/978-3-662-43948-7.

Hammer, Peter L., and Frédéric Maffray. 1990. “Completely separable graphs.” Discrete
Applied Mathematics 27, no. 1 (May 1): 85–99. doi:10.1016/0166-218X(90)90131-
U.

Hassin, Refael. 1992. “Approximation Schemes for the Restricted Shortest Path Problem.”
Mathematics of Operations Research 17, no. 1 (February 1): 36–42. doi:10.1287/
moor.17.1.36.

Hernando, C., M. Mora, I. M. Pelayo, C. Seara, and D. R. Wood. 2007. “Extremal Graph
Theory for Metric Dimension and Diameter.” Electronic Notes in Discrete Mathe-
matics, European Conference on Combinatorics, Graph Theory and Applications, 29
(August 15): 339–343. doi:10.1016/j.endm.2007.07.058.

Impagliazzo, R., and R. Paturi. 1999. “Complexity of k-SAT.” In Proceedings. Fourteenth
Annual IEEE Conference on Computational Complexity (Formerly: Structure in
Complexity Theory Conference) (Cat.No.99CB36317), 237–240. May. doi:10.1109/
CCC.1999.766282.

Karp, Richard M. 1972. “Reducibility among Combinatorial Problems.” In Complexity of
Computer Computations: Proceedings of a symposium on the Complexity of Computer
Computations, 85–103. The IBM Research Symposia Series. Boston, MA: Springer
US. doi:10.1007/978-1-4684-2001-2_9.

74

http://dx.doi.org/10.1016/j.tcs.2008.09.065
http://dx.doi.org/10.1007/978-3-540-92182-0_28
http://dx.doi.org/10.1016/j.tcs.2010.10.043
http://dx.doi.org/10.1007/BF02579200
http://dx.doi.org/10.1007/978-3-662-43948-7
http://dx.doi.org/10.1016/0166-218X(90)90131-U
http://dx.doi.org/10.1016/0166-218X(90)90131-U
http://dx.doi.org/10.1287/moor.17.1.36
http://dx.doi.org/10.1287/moor.17.1.36
http://dx.doi.org/10.1016/j.endm.2007.07.058
http://dx.doi.org/10.1109/CCC.1999.766282
http://dx.doi.org/10.1109/CCC.1999.766282
http://dx.doi.org/10.1007/978-1-4684-2001-2_9

Bibliography

Katoh, N., T. Ibaraki, and H. Mine. 1982. “An efficient algorithm for K shortest simple
paths.” Networks 12 (4): 411–427. doi:10.1002/net.3230120406.

Kratsch, Stefan. 2014. “Recent developments in kernelization: A survey.” Bulletin of
EATCS 2 (113).

Malandraki, Chryssi, and Mark S. Daskin. 1992. “Time Dependent Vehicle Routing
Problems: Formulations, Properties and Heuristic Algorithms.” 26, no. 3 (August 1):
185–200. doi:10.1287/trsc.26.3.185.

Marx, Dániel, and László A. Végh. 2015. “Fixed-Parameter Algorithms for Minimum-
Cost Edge-Connectivity Augmentation.” ACM Trans. Algorithms 11, no. 4 (April):
27:1–27:24. doi:10.1145/2700210.

Masek, William J., and Michael S. Paterson. 1980. “A faster algorithm computing string
edit distances.” Journal of Computer and System Sciences 20, no. 1 (February):
18–31. doi:10.1016/0022-0000(80)90002-1.

Muzi, Irene, Michael P. O’Brien, Felix Reidl, and Blair D. Sullivan. 2017. “Being Even
Slightly Shallow Makes Life Hard.” In 42nd International Symposium on Mathe-
matical Foundations of Computer Science (MFCS 2017), 83:79:1–79:13. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany. doi:10.4230/
LIPIcs.MFCS.2017.79.

Schaefer, Thomas J. 1978. “The complexity of satisfiability problems.” In Proceedings of
the tenth annual ACM symposium on Theory of computing - STOC ’78, 216–226.
San Diego, California, United States: ACM Press. doi:10.1145/800133.804350.

Wu, Huanhuan, James Cheng, Silu Huang, Yiping Ke, Yi Lu, and Yanyan Xu. 2014.
“Path problems in temporal graphs.” Proceedings of the VLDB Endowment 7, no. 9
(May 1): 721–732. doi:10.14778/2732939.2732945.

Yen, Jin Y. 1971. “Finding the K Shortest Loopless Paths in a Network.” Management
Science 17 (11): 712–716.

Yu, Gang, and Jian Yang. 1998. “On the Robust Shortest Path Problem.” Computers &
Operations Research 25, no. 6 (June): 457–468. doi:10.1016/S0305-0548(97)00085-
3.

Yujian, L., and L. Bo. 2007. “A Normalized Levenshtein Distance Metric.” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 29, no. 6 (June): 1091–1095.
doi:10.1109/TPAMI.2007.1078.

75

http://dx.doi.org/10.1002/net.3230120406
http://dx.doi.org/10.1287/trsc.26.3.185
http://dx.doi.org/10.1145/2700210
http://dx.doi.org/10.1016/0022-0000(80)90002-1
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.79
http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.79
http://dx.doi.org/10.1145/800133.804350
http://dx.doi.org/10.14778/2732939.2732945
http://dx.doi.org/10.1016/S0305-0548(97)00085-3
http://dx.doi.org/10.1016/S0305-0548(97)00085-3
http://dx.doi.org/10.1109/TPAMI.2007.1078

	Introduction
	Problem Formulation
	Related Work
	Our Contributions
	Preliminaries
	Parameterised Complexity
	Classic Graph Theory
	Temporal Graph Theory

	NP-Hardness
	NP-Hardness of Edge-MstP
	Polynomial Time Reduction from Edge-MstP to Vertex-MstP
	ETH Statement for Vertex-MstP

	Parameterised Hardness
	W[1]-Hardness with Number of Layers, Path Distance and Path Length as Parameters
	W[1]-Hardness of Vertex-MstP
	W[1]-Hardness of Edge-MstP and Leven-MstP

	W[1]-Hardness with Vertex Cover Number as Parameter
	W[1]-Hardness of Vertex-MstP
	W[1]-Hardness of Edge-MstP

	Efficient Preprocessing and Fixed-Parameter Tractability
	Exponential Kernel for Multistage st-Path in the Vertex Cover Number and Number of Layers
	Temporal Twins
	Algorithm for Finding Temporal Twins
	Kernelisation

	No Kernel of Size Polynomial in Vertex Cover Number and Number of Layers for Vertex-MstP
	FPT-Algorithm for Multistage st-Path parameterised by Maximal Degree and Path Length
	Problem Kernel for Vertex-MstP of Size Polynomial in Feedback Edge Number and Number of Layers
	Data Reductions
	Reducing Weights on Vertex-WMstP

	Conclusion and Outlook
	Discussion
	Future Research Opportunities

