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Zusammenfassung

Das Ziel dieser Arbeit ist es, die, insbesondere parametrisierte, Komplexität einer Ve-
rallgemeinerung des bekannten Vertex Cover-Problems zu untersuchen: Multi-
stage Vertex Cover (MSVC). Ersteres fragt nach einer Teilmenge V ′ ⊆ V (einer
Knotenüberdeckung, engl. vertex cover), wobei G = (V,E) ein ungerichteter Graph
ist, sodass für jede Kante e = {u, v} ∈ E mindestens einer der beiden Knoten u und
v in V ′ enthalten ist. Multistage Vertex Cover nimmt als Eingabe einen tem-
poralen statt einem statischen Graphen entgegen. Ein temporaler Graph unterscheidet
sich insofern von einem statischen Graphen, als dass er zwar eine feste Knotenmenge
hat, seine Kantenmenge sich jedoch mit der Zeit ändert. Ein Graph der durch die
Knotenmenge eines temporalen Graphen und die Kantenmenge zu einem bestimmten
Zeitpunkt gegeben ist, wird als eine Stufe (engl. layer) des temporalen Graphen bezeich-
net. Multistage Vertex Cover fragt nach einer Knotenüberdeckung für jede Stufe,
wobei bestimmte Beschränkungen beachtet werden müssen. Da sich die Topologie realer
Netzwerke ebenfalls mit der Zeit ändert, könnten temporale Graphen und das MSVC-
Problem ein sinnvoller Ansatz sein, solche Netzwerke und manche ihrer Anwendungen
zu modellieren.

Wir zeigen, dass MSVC teilweise selbst unter solchen Beschränkungen NP-vollständig
bleibt, die für das klassische Vertex Cover eine effiziente Lösung in Linearzeit er-
lauben, wie z.B. Bäume als Eingabegraphen bzw. Stufen. Außerdem untersuchen wir die
Möglichkeit einer Problemkernreduktion, wobei wir je nach Problemvariante sowohl nach
Problemkernen mit polynomiell beschränkter Größe suchen, als auch untere Schranken
für die Größe der Problemkerne angeben. Zu diesem Zweck greifen wir auf das Konzept
der cross-composition zurück. Wir entwickeln einen FPT-Algorithmus für den Parameter
k mit Laufzeit O(τ · (22k2+5k ·k2) + |V |3), sowie Varianten des Algorithmus, die entweder
die Berechnung einer konkreten Lösung erlauben, oder die Speicherkomplexität des Al-
gorithmus senken. Kurz behandeln wir auch eine Variante von MSVC, MSVC-Sum.
Der einzige Unterschied zwischen den beiden Problemvarianten ist, dass bei MSVC-
Sum die Summe der symmetrischen Differenzen S14S2, ..., Sτ−14Sτ durch ` nach oben
beschränkt wird, statt den einzelnen Differenzen. Wir zeigen, dass MSVC und MSVC-
Sum meist ähnliche Eigenschaften bezüglich ihrer Komplexität haben.
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Abstract

The aim of this thesis is to study the computational and in particular parameterized
complexity of a generalization of the well known Vertex Cover problem, Multistage
Vertex Cover (MSVC). Vertex Cover asks to find a subset (a vertex cover) V ′ ⊆ V
where G = (V,E) is an undirected graph, such that for every edge e = {u, v} ∈ E, u
or v is contained in V ′. For MSVC, the input is a temporal instead of a static graph.
A temporal graph is different from a static graph in the sense that while the vertex set
is fixed, the edge set varies with time. The graph given by the vertex set and the edge
set for each time step is called a layer. The Multistage Vertex Cover problem
asks to find a vertex cover for each layer while meeting certain constraints. Because the
topology of real-world networks also varies with time, temporal graphs and the MSVC
problem could be a good way to model certain real-world applications.

We prove that MSVC remains NP-complete even under constraints such as the layers
being trees. Notably, classic Vertex Cover is trivially linear-time solvable on trees.
Further, we provide polynomial kernels and lower bounds for kernelizations. For this
purpose, the cross-composition framework is employed. For the parameter k, we develop
an FPT algorithm running in O(τ · (22k2+5k · k2) + |V |3) time, including optimizations
for space complexity and the ability to extract a specific solution. A variant of MSVC,
MSVC-Sum, is covered briefly. The only difference between MSVC and MSVC-Sum is
that the sum of the symmetric differences S14S2, ..., Sτ−14Sτ is upper-bounded in `,
rather than the individual symmetric differences. We show that MSVC-Sum has similar
characteristics with respect to computational complexity in most cases.
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1 Introduction

Vertex Cover is a well-known NP-complete graph problem. It asks to find a subset
V ′ ⊆ V where G = (V,E) is an undirected graph, such that for every edge e = (u, v) ∈ E,
u or v is contained in V ′. The Vertex Cover problem has many real-world applica-
tions, including but not limited to computational biology [Hua] and network security
[Fil+07]. Filiol et al. [Fil+07] have studied worm propagation in computer networks.
They describe a scenario where after an initial infection, the attacker continues to com-
municate with the worm in order to update it. To reduce the communication overhead,
the attacker only sends the updates to a few “privileged” nodes, which are able to ef-
ficiently communicate with all other nodes, and distribute the update. The defender
too has an interest in finding such “privileged” nodes, because knowing the potential
weak points of the network may help identify a worm attack more quickly. The “privi-
leged” nodes can be modeled as a vertex cover set of the network graph where each edge
represents a communication link. However, some modern worms such as the famous
Stuxnet are known to remain dormant in the network for several weeks between attacks
[mueller2012stuxnet], and the topology of real-world networks is always subject to
change over time. For this reason, we are required to introduce a notion of time to
both graphs and the Vertex Cover problem: In this thesis, we will study a variation
of Vertex Cover, Multistage Vertex Cover (MSVC). MSVC asks to maintain
a vertex cover of a temporal graph (formally defined in Definition 2.2) in every time
step, while only limited adjustments between time steps are allowed. We will study the
computational and parameterized complexity of MSVC under various constraints such
as the graph being a tree in every layer, or every layer containing just a single edge (see
Table 1.1). We will also study the possibility of polynomial kernelizations (see Table 1.2)
and develop a parameterized algorithm (Algorithm 3.42) which allows us to solve the
problem efficiently for low values of the parameter k, the size of the desired vertex cover
set.

1.1 Related Work

As Vertex Cover is a classic NP-complete problem, lots of research has been done
regarding its complexity and that of its variations. For instance, Chen, Kanj, and Xia
[CKX06] provide a parameterized polynomial-space algorithm that decides an instance of
Vertex Cover in O((1.2738k+kn)), which is currently the fastest known algorithm for
this problem. Buss and Goldsmith [BG93], Chen, Kanj, and Jia [CKJ01] and Downey,
Fellows, and Stege [DFS99] provide us with studies on polynomial-time data reduction
rules and polynomial kernels, where the lowest known upper bound is O(k2). Other
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1 Introduction

Table 1.1: Complexity classes and best known running times for MSVC, MSVC-Sum
and their variants.

parameters / constraints MSVC MSVC-Sum
A

rb
it

ra
ry

la
y
er

s k FPT (Thm. 3.38) FPT (Conjecture 4.16)
τ para-NP-hard (Thm. 3.8) para-NP-hard (Thm. 4.3)
τ or ` are fixed constants NP-complete (Thm. 3.1) NP-complete(Thm. 4.1)
` ≥ 2k FPT(Thm. 3.35) N/A
` ≥ 2k · (τ − 1) N/A FPT(Thm. 4.14)
k ≥ |V | yes-instance (Lemma 3.19) yes-instance (??)

E
ve

ry
la

ye
r

is
a

tr
ee

k FPT (Thm. 3.38) FPT (Conjecture 4.16)
τ para-NP-hard (Thm. 3.8) para-NP-hard(Thm. 4.3)
no constraint NP-complete (Thm. 3.1) NP-complete(Thm. 4.1)
` = 0 NP-complete (Thm. 3.1) NP-complete(Thm. 4.1)
τ = 1 Polynomial (Thm. 3.20) Polynomial (Thm. 4.2)
` ≥ 2k Polynomial (Thm. 3.20) N/A
` ≥ 2k · (τ − 1) N/A Polynomial (Thm. 4.2)

|E
i|

=
1

fo
r

a
ll

la
ye

rs
G

i

k FPT (Thm. 3.38) FPT (Conjecture 4.16)
τ FPT (Thm. 3.34) FPT (Thm. 4.15)
no constraint NP-complete (Thm. 3.1) NP-complete (Thm. 4.1)
k ≥ τ yes-instance (Thm. 3.17) yes-instance (Thm. 4.4)
` ≤ 1 NP-complete (Thm. 3.1) N/A
` ≥ 2 yes-instance (Thm. 3.17) N/A
` ≥ 2 · (τ − 1) N/A yes-instance (Thm. 4.4)

Table 1.2: Smallest known kernel sizes for MSVC, MSVC-Sum and their variants (PK
stands for polynomial kernel).

parameters / constraints MSVC MSVC-Sum

k

` = 0 O(k2)** (Thm. 3.24) O(k2)** (Thm. 4.5)
` > 0 no PK* (Thm. 3.25) N/A
2k · (τ − 1) > ` > 0 N/A no PK* (Observation 4.9)
` ≥ 2k · (τ − 1) N/A no PK*(Thm. 4.6)
|Ei| = 1 for all layers Gi no PK* (Thm. 3.25) N/A
and ` = 0

k
+
τ no constraint 3k2 · τ (Thm. 3.30) 3k2 · τ (Thm. 4.10)

` ≥ 2k O(k2 · τ)****(Thm. 3.32) N/A
` ≥ 2k · (τ − 1) N/A O(k2 · τ)****(Thm. 4.11)

τ

Arbitrary layers no kernelization** (Lemma 3.33) no kernelization** (Lemma 4.13)
|Ei| = 1 for all layers Gi 5τ + 1 (Thm. 3.34) 7τ − 2 (Thm. 4.12)

*Assuming that NP * coNP / poly.
**Assuming that P 6= NP
’***Bikernel
****Turing kernelization
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1.1 Related Work

studies on kernelization of Vertex Cover include Abu-Khzam et al. [AK+04], who
introduce the technique of crown reduction. Guo, Niedermeier, and Wernicke [GNW05]
have studied problem generalizations such as Connected Vertex Cover, Capac-
itated Vertex Cover, and Maximum Partial Vertex Cover with respect to
fixed-parameter tractability. Very little research has been done on variations of Ver-
tex Cover on temporal graphs, such as MSVC. A notable exception is Akrida et al.
[Akr+18], who studied a problem called Temporal Vertex Cover (TVC). The fun-
damental difference to MSVC is that Temporal Vertex Cover asks for every edge
being covered only once throughout the lifetime of the temporal graph, or at least once
in every ∆ consecutive time steps, where ∆ is a natural number, in case of the sliding
window variation. Akrida et al. [Akr+18] provide hardness results, approximations and
algorithms for TVC.

Michail [Mic16] give an introduction to temporal graphs in general. There are some
studies on temporal generalizations of graph theory problems: Wu et al. [Wu+14] have
studied path problems on temporal graphs. The temporal notion allows for new prob-
lem definitions such as Earliest-Arrival Path, Latest-Departure Path and
Fastest Path. Other examples of (NP-hard) problems on temporal graphs are given
by Michail and Spirakis [MS16], who studied problems such as Matching and Travel-
ing Salesman on temporal graphs, and zschoche2017computational, who studied
the problem of finding separators in temporal graphs. A separator is a vertex set such
that if it is removed, all temporal paths between two designated terminal vertices are
eliminated. There is plenty of work available on fixed-parameter tractability and kernel-
ization in general, for example the studies by Downey and Fellows [DF95] and Bodlaen-
der, Jansen, and Kratsch [BJK14], the latter of which introduce the cross-composition
framework, which can be used to establish lower bounds for the size of kernels.
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2 Preliminaries

The following chapter includes the most important basic definitions which are used
throughout this thesis. In some obvious cases, such as edges and vertices, we will adhere
to the well-known definitions given by textbooks such as [VLL90].

2.1 Problem Definitions

Definition 2.1. (parameterized problem) A parameterized problem is a language L ⊆
Σ? × N where Σ is a finite alphabet (we assume that 0 ∈ N). The second element is
called the parameter of the problem.

Vertex Cover
Input: An undirected graph G = (V,E) and an integer k ∈ N.
Question: Is there a subset V ′ ⊆ V with |V ′| ≤ k (also referred to as a vertex

cover of size (at most) k) such that for every edge e = {u, v} ∈ E ⇒
u ∈ V ′ ∨ v ∈ V ′?

If such a subset V ′ exists, then it is referred to as a solution to the given Vertex
Cover instance.

Unlike static graphs, temporal graphs do not have a static edge set, but each edge
of a temporal graph has a time stamp. As a prerequisite to MSVC, we provide formal
definitions for temporal graphs and some related terms.

Definition 2.2. (temporal edge, temporal graph and layers) Let V be a vertex set and
τ ∈ N, then a temporal edge on V and τ is a pair e = ({v, w}, t) where v, w ∈ V and
1 ≤ t ≤ τ ∈ N. A temporal graph is a triple (V, E , τ) where V is a vertex set, E is
a set of temporal edges on V and τ ∈ N. Let G = (V, E , τ) be a temporal graph and
Ei = {{v, w} | ({v, w}, i) ∈ E} for all i ∈ {1, ..., τ}, then G1 = (V,E1), ..., Gτ = (V,Eτ )
are the layers of G.

As stated in the introduction, MSVC asks to find a vertex cover set in every time
step, where only limited adjustments between time steps are possible. As a notion of
such adjustments, we use the symmetric difference. The symmetric difference S4T =
(S ∪ T ) \ (S ∩ T ) of two sets S and T is the set of elements that are contained in either
S or T but not both.
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2 Preliminaries

Multistage Vertex Cover (MSVC)

Input: A temporal graph G = (V, E , τ) and two integers k, ` ∈ N.
Question: Is there a sequence S = (S1, ..., Sτ ) with Si ⊆ V for every i ∈ {1, ..., τ}

such that

• Si is a vertex cover of size at most k of Gi for every i ∈ {1, ..., τ},
and

• |Si4Si+1| ≤ ` for every i ∈ {1, ..., τ − 1}?

If such a sequence S exists, then it is referred to as a solution to the given MSVC
instance.

Next, we introduce a variation of MSVC, MSVC-Sum. The difference lies in the
function of the parameter `: In MSVC, it is an upper bound to the cardinality of the
symmetric difference between two consecutive vertex covers in a solution. In MSVC-
Sum, it is an upper bound to the sum of all such cardinalities.

Multistage Vertex Cover Sum (MSVC-Sum)

Input: A temporal graph G = (V, E , τ) and two integers k, ` ∈ N.
Question: Is there a sequence S = (S1, ..., Sτ ) with Si ⊆ V for every i ∈ {1, ..., τ}

such that

• Si is a vertex cover of size at most k of Gi for every i ∈ {1, ..., τ},
and

•
∑τ−1

i=1 |Si4Si+1| ≤ ` ?

If such a sequence S exists, then it is referred to as a solution to the given MSVC-Sum
instance.

Definition 2.3. (yes-instance and no-instance) A tuple containing all necessary inputs
as specified in the definition of a decision problem is an instance of the respective prob-
lem. If for an instance I the question of a decision problem can be answered with “yes”,
then I is a yes-instance of the problem, otherwise it is a no-instance.

Definition 2.4. (fixed-parameter tractability) A parameterized problem P with param-
eter k is fixed-parameter tractable if there is an algorithm that can decide whether an
instance I of P is a yes-instance or a no-instance in time f(k) · |I|O(1) where f is an
arbitrary computable function depending only on k.

2.2 Auxiliary Definitions

For later reference we provide auxiliary definitions, which are specific to this thesis and
the MSVC problem.

14



2.3 Kernelization and Cross-Composition

Definition 2.5. (covered edges) Let V be a set of vertices and let E be a set of undirected
edges on V . An edge e = {u, v} is covered by a subset V ′ ⊆ V if u or v is contained
in V ′. If V = {v}, then e is covered by v. A temporal edge et = (e, t) is covered by a
sequence S = (S1, ..., Sτ ) of vertex sets if e is covered by St.

Definition 2.6. (delete and add actions) Let (G, k, `) be an instance of MSVC, and let
S = (S1, ..., Sτ ) be a solution. If v ∈ Si and v /∈ Si+1 for v ∈ V and 1 ≤ i ≤ τ −1, then v
has been deleted in layer Gi+1 (a delete action has been performed on v in solution S at
layer Gi+1). If v /∈ Si and v ∈ Si+1 for v ∈ V and 1 ≤ i ≤ τ − 1, then v has been added
in layer Gi+1 (an add action has been performed on v in solution S at layer Gi+1).

Definition 2.7. (optimal actions) Let I = (G, k, `) be an instance of MSVC. An action
is optimal for I if I is a no-instance, or if there is a solution to I in which the action is
performed.

Definition 2.8. (initial configuration) Let (G, k, `) be an instance of MSVC, and let
S = (S1, ..., Sτ ) be a solution. Then S1 is the initial configuration of S.

2.3 Kernelization and Cross-Composition

It is often possible to preprocess an instance of a parameterized problem in order to
obtain an equivalent, but smaller instance, which subsequently saves running time when
solving it. Next, two approaches to this problem, kernels and bikernels, are formally
defined. In a later section, we will provide both polynomial kernels and lower bounds
for kernelization.

Definition 2.9. (kernel and kernelization) A kernelization of a parameterized (decision)
problem with input x and parameter k is a polynomial-time algorithm that takes an
instance I = (x, k) as its only argument and returns an instance K = (x′, k′) of the
same parameterized problem with parameter k′ such that K is a yes-instance if and only
if I is a yes-instance and |x′| + k′ ≤ f(k) for a computable function f : N → N. The
instance K is called a kernel of I, and f(k) is its size. If f(k) ≤ kc for a non-negative
integer c, then I has a polynomial kernel.

In the case where K is an instance of a different parameterized problem than I, we
refer to K as a bikernel.

The next two definitions are part of the Cross-Composition framework by Bodlaender,
Jansen, and Kratsch [BJK14]. It is used to rule out polynomial kernels for a parameter-
ized problem.

Definition 2.10. (polynomial equivalence relation — based on [BJK14]) An equivalence
relationR on Σ? is called a polynomial equivalence relation if the following two conditions
hold:

• There is an algorithm that, given x, y ∈ S, decides whether x and y belong to the
same equivalence class in time polynomial in |x|+ |y|.
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2 Preliminaries

• For any finite set S ⊆ Σ? the equivalence relation R partitions the elements of
S into a number of classes that is polynomially upper-bounded in the size of the
largest element of S.

Definition 2.11. (AND-cross-composition — based on [BJK14]) Let L ⊆ Σ? be a
language, let R be a polynomial equivalence relation on Σ?, and let Q ⊆ Σ? × N be
a parameterized problem. An AND-cross-composition of L into Q (with respect to R)
is an algorithm that takes t instances I1, I2, ..., It ∈ Σ? of L which belong to the same
equivalence class of R as its input, takes time polynomial in

∑t
i=1 |Ii|, and returns an

instance I = (y, k) ∈ Σ? × N of Q such that the following two conditions hold:

• The parameter k is polynomially bounded in maxi |Ii|+ log t

• The instance I is a yes-instance of Q if and only if Ii is a yes-instance of Q for
every i ∈ {1, ..., t}.

16



3 Multistage Vertex Cover (MSVC)

3.1 Hardness

In this section, we investigate MSVC with respect to hardness under various constraints.
In particular, we will treat the case where every layer is a tree, and the case where every
layer contains just a single edge. In some cases, we can prove NP-hardness for a constant
value of a parameter, which implies para-NP-hardness.

3.1.1 NP-hard cases

Theorem 3.1. MSVC is NP-complete even if

• τ ≥ 1 is any fixed constant,

• ` ≥ 0 is any fixed constant,

• every layer Gi is a tree and ` = 0,

• or |Ei| = 1 for every layer Gi = (V,Ei) and ` ≤ 1.

In order to prove Theorem 3.1, we first have to prove that MSVC is contained in NP.
Next, we provide polynomial-time many-one reductions to prove NP-hardness for MSVC
under different constraints.

Lemma 3.2. MSVC is contained in NP.

Proof. Given an MSVC instance I and a solution S = (S1, ..., Sτ ), we can verify if S is
a solution to I in polynomial time. We have to prove that:

• Si is a vertex cover of size at most k of Gi for every i ∈ {1, ..., τ};

• |Si4Si+1| ≤ ` for every i ∈ {1, ..., τ − 1}.

We can verify that Si is a vertex cover of size at most k of Gi for every i ∈ {1, ..., τ} in
polynomial time because Vertex Cover is contained in NP. Moreover, |Si4Si+1| ≤ `
for every i ∈ {1, ..., τ − 1} can be verified in polynomial time because each symmetric
difference can be computed in polynomial time, and a total of τ−1 symmetric differences
have to be computed.

Lemma 3.3. There is a polynomial-time many-one reduction from Vertex Cover to
MSVC where ` is any fixed constant.

17



3 Multistage Vertex Cover (MSVC)

Proof. Let I = (G = (V,E), k) be an instance of Vertex Cover and let c ∈ N be an
arbitrary but fixed constant. We construct the MSVC instance as follows: Set V ′ = V ,
E = {({v, w}, 1) | {v, w} ∈ E},G ′ = (V, E , 1), k′ = k and `′ = c. All of these operations
can be performed in polynomial time. Now I ′ = (G ′, k′, `′) is an instance of MSVC. We
have to prove that I is a yes-instance of Vertex Cover if and only if I ′ is a yes-instance
of MSVC. Assume that I is a yes-instance of Vertex Cover, then there is a subset
V ′ ⊆ V with |V ′| ≤ k so that V ′ is a vertex cover of size at most k = k′. Set S1 = V ′.
We do not have to verify the second condition because G ′ has only one layer. Assume
I ′ is a yes-instance of Vertex Cover, then the only layer G1 has a vertex cover S1

of size at most k′ = k. Because G1 = G, S1 is also a vertex cover of size at most k of
G.

Lemma 3.4. There is a polynomial-time many-one reduction from Vertex Cover to
MSVC where τ is any fixed constant.

Proof. Let I = (G = (V,E), k) be an instance of vertex cover. We construct the MSVC
instance as follows: Set V ′ = V , τ = c (can be an arbitrary constant), E = {({v, w}, 1) |
{v, w} ∈ E} ∪ {({v, w}, 2) | {v, w} ∈ E} ∪ ...∪ {({v, w}, τ) | {v, w} ∈ E}, G ′ = (V, E , τ),
k′ = k and `′ = 0. All of these operations can be performed in polynomial time. Now
I ′ = (G ′, k′, `′) is an instance of MSVC. We have to prove that I is a yes-instance of
Vertex Cover if and only if I ′ is a yes-instance of MSVC. Assume that I is a yes-
instance of Vertex Cover, then there is a subset V ′ ⊆ V with |V ′| ≤ k so that V ′ is
a vertex cover of size at most k = k′. Set S1 = S2 = ... = Sτ = V ′. By doing this we
also get |Si4Si+1| = 0 ≤ ` for every i ∈ {1, ..., τ − 1}. Assume that I ′ is a yes-instance
of Vertex Cover, then the set S1 (and S2, ..., Sτ ) is a vertex cover of size at most
k′ = k of G1. Because G1 = G, S1 is also a vertex cover of size at most k of G.

Lemma 3.5. There is a polynomial-time many-one reduction from Vertex Cover to
MSVC with |Ei| = 1 for all layers Gi and ` = 0.

Proof. Let I = (G, k) be an instance of vertex cover. We construct the MSVC instance
I ′ = (G, k′, `) as follows: I and I ′ share the same vertex set V . For each edge in the
Vertex Cover instance, the MSVC instance receives a layer containing only the said
edge, so τ = |E|. We set k′ = k, and ` = 0. All of these operations can be performed in
polynomial time.

If the vertex cover instance is a yes-instance, a set S of at most k vertices exists that
covers all edges of G. Then S = (S1, ..., Sτ ) where Si = S for every i ∈ {1, ..., τ} is a
solution to the MSVC instance, because by covering each edge of the original graph G,
S also covers the corresponding layers of I ′.

If I ′ is a yes-instance, a set of at most k vertices S and a solution S = (S1, ..., Sτ )
exists such that S1 = . . . = Sτ = S because ` = 0. As S is a solution to I ′, it covers
all of its layers. Then S is also a solution to the Vertex Cover instance, because by
covering each layer of I ′ it also covers the corresponding edges of G.

Lemma 3.6. There is a polynomial-time many-one reduction from MSVC with |Ei| = 1
for all layers Gi and ` = 0 to MSVC |Ei| = 1 for all layers Gi and ` = 1.
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3.1 Hardness

Proof. Let I = (G, k, l) be an instance of MSVC with |Ei| = 1 for all layers Gi and
` = 0. We construct the instance I ′ = (G ′ = (V ′, E ′, τ ′), k′, `′) as follows: We set V ′ =
V ∪{v′1, ..., v′2τ} and E ′ = {(e, τ) | (e, τ/2) ∈ E}∪F with F = {({v′i, v′i+τ}, 1 + (2(i−1))}
for every i ∈ {1, ..., τ}, τ ′ = 2τ , k′ = k + 1 and ` = 1. Intuitively speaking, by doing
this we add 2τ additional vertices and τ additional temporal edges such that every new
vertex is connected to exactly one other new vertex and none of the old ones. Each of
the new edges is featured in exactly one layer. The layers featuring the new edges all
have odd indexes, the original layers have even indexes. The total amount of layers is
increased to 2τ . All of these operations can be performed in polynomial time.

If I is a yes-instance with a solution S = (S1, ..., Sτ ) (with S1 = . . . = Sτ because
` = 0), then we can construct a solution S ′ = (S ′1, ..., S

′
2τ ) to I ′ as follows: Set S ′i = Si

for every i ∈ {2, 4, ..., 2τ} and S ′j = Sj ∪ {v′(j+1)/2 | j ∈ {1, 3, ...2τ − 1}. The sequence S
is a solution to I ′ because

• S ′k = Sk and E ′k = Ek for every k ∈ {2, 4, ...2τ} and thus S ′k is a vertex cover of
G′k. S

′
k = Sk∪{v′(j+1)/2 | k ∈ {1, 3, ..., 2τ−1}} and G′k only contains one additional

edge when compared to Gk, which is covered by v′(j+1)/2. Thus S ′k is a vertex cover
of G′k.

• |S ′i4S ′i+1| ≤ ` for every i ∈ {1, 3, ..., τ − 1} holds because |Si| = k for layers with
an even index and |Si| = k + 1 for layers with an odd index.

If I ′ is a yes-instance, then its solution S uses a maximum of k + τ different vertices:
To prove this, we try to construct a solution that uses as many different vertices as
possible: We can select at most k+ 1 different vertices for the initial configuration (S ′1).
Using a smaller initial configuration does not allow us to use a higher amount of different
vertices because one would have to add vertices to reach even k + 1. The next action
(in layer 2) has to be a delete because we cannot add any more vertices. After that, we
can add and delete vertices alternatingly. There is no way to use a higher amount of
vertices than using this method because we add a vertex whenever possible and delete
when we cannot add any more. By doing this we can add (τ ′−1)/2 = (2τ−1)/2 = τ−1
further vertices. This leaves us with a maximum of (k + 1) + (τ − 1) = k + τ different
vertices. We know that throughout the MSVC we have to use exactly τ vertices to cover
the newly added layers (with odd indices), because the τ contained edges are mutually
disjoint. Also, none of these edges are connected to the original graph, so the remaining
k vertices have to be sufficient to cover the original layers. This implies that the input
(G, k, `) is a yes-instance.

Lemma 3.7. There is a polynomial time many-one reduction from vertex cover to
MSVC where every layer is a tree and ` = 0.

Proof. Let I = (G = (V,E), k) be an instance of vertex cover. We construct a set
of spanning trees such that every edge e ∈ E is contained in the edge set of at least one
of the spanning trees using the following algorithm: Let T1 be an arbitrary spanning
tree of G (a spanning tree can be found in polynomial time using Breadth-First-Search)
[VLL90]. Given i ∈ N spanning trees T1 = (V,E1), ..., Ti = (V,Ei) (in the first iteration
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of the algorithm we only have the first spanning tree T1), we compute Ti+1 = (V,Ei+1)
as follows: We select an arbitrary edge e = {u, v} ∈ E such that e /∈ Ej for every
j ∈ {1, ..., i}. If no such e exists, then we are done, as each edge of the graph G is
contained in at least one of the spanning trees T1, ..., Ti. Otherwise, we add this edge
to Ei+1 and build the remaining spanning tree using Breadth-First-Search by starting
the search from u and inserting v into the BFS queue first (which forces the algorithm to
discover v right after u) so that {u, v} = e is contained in the resulting spanning tree. All
of these operations can be performed in polynomial time: A single spanning tree can be
found in polynomial time, and at most |E| spanning trees are computed: G can have at
most |E| edges and Ti always contains at least one edge that is not contained in any Tj for
j ∈ {1, ..., i− 1}. Therefore, after at most |E| iterations, the algorithm terminates, after
the final spanning Et′ tree has been computed. An instance I ′ = (G, k′, `) is constructed
by setting G = (V ′, E , τ) with V ′ = V , E = {({u, v}, t)|{u, v} ∈ Et, t ∈ {1, ..., t′}} and
τ = t′, k′ = k and ` = 0.

We now prove that the constructed instance I ′ is a yes-instance of MSVC if and only
I is a yes-instance of MSVC: Assume that I is a yes-instance of Vertex Cover, then
there is a subset V ′ ⊆ V with |V ′| ≤ k that covers all edges of G. Because we only added
temporal edges ({u, v}, t) to G such that {u, v} is contained in E and therefore covered
by V ′, V ′ is also a vertex cover of size at most k for every layer of G. Let S = (S1, ..., Sτ )
with S1 = . . . = Sτ = V ′. We get |Si4Si+1| = 0 ≤ ` for every i ∈ {1, ..., τ − 1}, which
implies that I ′ is a yes-instance of MSVC. Assume that I ′ is a yes-instance of MSVC.
Because ` = 0 we have S1 = . . . = Sτ = S for any solution S = S1, ..., Sτ . Such vertex set
S covers every edge of every layer, and by construction every edge of G is contained in
at least one of the layers. Therefore, S is a vertex cover of G, and I is a yes-instance.

Proof of Theorem 3.1. There are polynomial-time many-one reductions from Vertex
Cover to MSVC with arbitrary values of τ (Lemma 3.4) and ` (Lemma 3.3), to MSVC
with |Ei| = 1 for all layers Gi and ` = 0 (Lemma 3.5), and to MSVC where each layer Gi

is a tree and ` = 0 (Lemma 3.7), which proves NP-hardness for these problem variants.
There is another polynomial-time many-one reduction from MSVC with |Ei| = 1 for all
layers Gi and ` = 0 to MSVC with |Ei| = 1 for all layers Gi and ` = 1 (Lemma 3.6), which
proves NP-hardness for the latter. MSVC is contained in NP (Lemma 3.2), therefore all
of its variants which were proven to be NP-hard are also NP-complete.

Notably, we were able to prove NP-hardness even if every layer is a tree, or every layer
contains just a single edge, even though trees and single edges are tractable cases for the
classic Vertex Cover problem.

3.1.2 para-NP-hard cases

Next, we will prove that some variants of MSVC are NP-hard even for constant values
of certain parameters, and thus para-NP-hard. This rules out kernelizations and fixed-
parameter algorithms, which will be studied in depth later.
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We know that Vertex Cover (which is equivalent to MSVC with only one layer)
can be solved efficiently on trees, and MSVC generally - for arbitrary values of τ - can
not. We prove that MSVC remains NP-complete in the intermediate case where τ = 2.

Theorem 3.8. MSVC is para-NP-hard for the parameter τ even if every layer is a tree.

To prove Theorem 3.8, we provide three different polynomial-time many-one reduc-
tions, which we can compose to receive a polynomial-time many-one reduction from a
variation of the NP-hard Independent Set to MSVC on trees where τ = 2. As an in-
termediate step, we reduce from Independent Set to Hamiltonian Cycle, a formal
definition of which is presented below.

Hamiltonian cycle
Input: An undirected graph G = (V,E)
Question: Is there a cycle H = (V,EH) with EH ⊆ E in G such that H visits

every vertex of V exactly once?

If such a cycle exists, then it is referred to as a Hamiltonian cycle of G.

Lemma 3.9. There is a polynomial-time many-one reduction from Independent Set
on cubic Hamiltonian graphs to Vertex Cover on cubic Hamiltonian graphs.

Proof. We reduce from the NP-hard Independent Set on cubic Hamiltonian (planar)
graphs [FSS10] to Vertex Cover on cubic Hamiltonian graphs by using the well-
known reduction which maps an instance I = (G = (V,E), k) of Independent Set to
an instance I ′ = (G = (V,E), |V | − k) of Vertex Cover [Kar72]. This reduction does
not change the structure of the graph G. Hence, Vertex Cover remains NP-complete
on cubic Hamiltonian graphs.

Fleischner, Sabidussi, and Sarvanov [FSS10] assume that, when speaking of a Hamil-
tonian graph G = (V,E), a specific Hamiltonian cycle H = (V,EH) with EH ⊆ E is
given, and prove NP-completeness even under this condition. We will maintain this
assumption and use H in the next reduction.

Lemma 3.10. There is a polynomial-time many-one reduction from Vertex Cover
on cubic Hamiltonian graphs to MSVC where every layer is a forest, τ = 2 and ` = 0.

Proof. Let I = (G = (V,E), H, k) be an instance of Vertex Cover such that G
is a cubic Hamiltonian graph with Hamiltonian cycle H = (V,EH) where EH ⊆ E.
We construct an instance I ′ = (G, k′, `) of MSVC, where G has the layers G1 and G2,
as follows: Let e ∈ EH be an arbitrary edge of the Hamiltonian cycle H. We set
G1 = (V,EH \ {e}), G2 = (V, (E \ EH) ∪ {e}). Further, we set k′ = k and ` = 0. All of
these operations can be performed in polynomial time. Now G1 is a Hamiltonian path
(which is a forest with exactly one connected component) and G2 is the graph that is
obtained when we remove all edges of G1 from G. Removing the edges of G1 lowers
the degree of each vertex by two, except at the two endpoints of the Hamiltonian path
which have their degree lowered by one. Since each vertex of G is of degree three, G2
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contains |V | − 2 vertices of degree one and two vertices of degree two. A cycle requires
three vertices of degree two, and thus G2 is a forest. Now I ′ = (G, k′, `), where G has
the layers G1 and G2, is an instance of MSVC on forests, and we have τ = 2.

Assume that I is a yes-instance of Vertex Cover. Then there is a vertex cover V ′

of size at most k for G, which is also a vertex cover of size at most k for both G1 and G2

as every edge of these two layers is also present in G. Also, if we choose S = (V ′, V ′) as
solution to I ′, then we have |V ′4V ′| = 0 ≤ `. Thus, I ′ is a yes-instance of MSVC.

Conversely, assume that I ′ is a yes-instance of MSVC. Then there are two vertex
covers each of size at most k, V1 and V2, that cover G1 and G2, respectively. Since ` = 0,
we have V1 = V2. Thus, V1 covers both G1 and G2. Because every edge of G is present
in either G1 or G2, V1 is a vertex cover of size at most k of G, and I is a yes-instance of
Vertex Cover.

Lemma 3.11. There is a polynomial-time many-one reduction from MSVC where every
layer is a forest, τ = 2 and ` = 0 to MSVC where every layer is a tree, τ = 2 and ` = 0.

Proof. Let I = (G = (V, E , τ), k, 0) be an instance of MSVC and let the forests G1 and G2

be the only layers of G. We construct an instance I ′ = (G ′, k′, 0), where G ′ = (V ′, E ′, 2)
has the layers G1 and G2, as follows: We set V ′ = V ∪{u, v}, add the edge e = {u, v} to
both G1 and G2 and set k′ = k+ 1. The graph T = ({u, v}, {e}) is a tree and thus both
G1 and G2 retain the properties of a forest. We want to connect exactly one vertex of
each connected component (except T ) of both layers to the vertex v.

Note that the connected components of a given graph G can be found in polynomial
time [VLL90]. A bridge is an edge e = {u, v} such that if e is removed, then there is no
path from u to v. If two acyclic subgraphs of a given graph G are connected by only a
bridge, then G is acyclic as well.

We repeat the following steps for G1 and G2: Assume that Gi consists of m + 1
connected components with vertex sets C1, ..., Cm, Cm+1 = {u, v}. Let v1, ..., vm be
arbitrary vertices with vi ∈ Ci for i ∈ {1, ...,m}. We add m edges e1, ..., em where
ej = {vj, v} for j ∈ {1, ...,m} to Gi. All of these operations can be performed in
polynomial time. Because we connected Cm+1 to all other connected components, G1

and G2 are now connected graphs. However, because the ej are bridges for j ∈ {1, ...,m},
the resulting graph remains acyclic and we get an acyclic connected graph, a tree. Now
I ′ = (G ′, k′, 0) is an instance of MSVC where every layer is a tree, τ = 2 and ` = 0.

Assume that I is a yes-instance of MSVC. Then there are two vertex covers each of
size at most k, V1 and V2, that cover G1 and G2, respectively. Since ` = 0 we have
V1 = V2. Thus, V1 covers both G1 and G2. The reduction only adds edges which are
adjacent to v, which implies that S = (S1 = V1 ∪ {v}, S2 = V1 ∪ {v}) is a solution to
I ′. Thus we have |S1| = |S2| ≤ k + 1 = k′ and |S14S2| = 0, and I ′ is a yes-instance of
MSVC.

Conversely, assume that I ′ is a yes-instance of MSVC, then there are two vertex covers
each of size at most k′, V ′1 and V ′2 , that cover G′1 and G′2, respectively. Since ` = 0 we
have V ′1 = V ′2 . Thus, V ′1 covers both G′1 and G′2. Because u is a leaf in both layers, every
solution that includes u can be modified such that it includes its only neighbor v instead.
We set V1 = V2 = (V ′ \{u})∪{v}, where V1 still covers both G′1 and G′2 and |V | ≤ k+1.
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Also, G1 and G2 are covered by V1, because all of their edges are also present in G′1 and
G′2. However, v does not exist in G1 and G2, and we can remove v from V to get a
vertex cover of size at most k for G1 and G2 and the solution S = (V1, V2). Therefore,
I is a yes-instance of MSVC.

Proof of Theorem 3.8. We know the following three polynomial-time many-one reduc-
tions:

• The reduction r1 from the NP-hard Independent Set on cubic Hamiltonian
graphs to Vertex Cover on cubic Hamiltonian graphs (Lemma 3.9)

• The reduction r2 from Vertex Cover on cubic Hamiltonian graphs to MSVC
where every layer is a forest, τ = 2 and ` = 0. (Lemma 3.10)

• The reduction r3 from MSVC where every layer is a forest, τ = 2 and ` = 0 to
MSVC where every layer is a tree, τ = 2 and ` = 0. (Lemma 3.11)

Assume that I is any instance of the NP-hard Independent Set on cubic Hamil-
tonian graphs, then we can compute the composition r(I) = r3(r2(r1(I))) of the three
reductions and map I to an instance I ′ of MSVC where every layer is a tree, τ = 2 and
` = 0 in polynomial time. Thus, r is a polynomial-time many-one reduction from an
NP-hard problem to MSVC where every layer is a tree and τ is a constant, which proves
that MSVC remains para-NP-hard for the parameter τ even if every layer is a tree.

We have proven that MSVC remains NP-hard if every layer is a tree and τ = 2. Next,
we want to extend this result to arbitrary values of τ . To do this, we need to provide
two additional lemmata first.

Theorem 3.12. MSVC remains para-NP-hard for the parameter τ for any constant
value of ` ∈ N if every layer is a tree.

Lemma 3.13. Let I = (G = (V, E , τ), k, `) be an instance of MSVC with k ≤ |V |. If I
has a solution S = (S1, ..., Sτ ) with |S1| < k, then I also has a solution S ′ = (S ′1, ..., S

′
τ )

with |S ′1| = |S1|+ 1.

Proof. Let Sm be the first layer in which a vertex is added in S, and let v be the respective
vertex. If no such v exists, then let v ∈ S1 be an arbitrary vertex (we know that such
v exists because we have k ≤ |V |). Now set S ′1 = S1 ∪ {v}, ..., S ′m−1 = Sm−1 ∪ {v}
(if we chose an arbitrary vertex v, we set m = τ + 1 and add v to every Si with
i ∈ {1, ..., τ}). Then S ′ = (S ′1, ..., S

′
τ ) is a solution to I: We have Si ⊆ S ′i for i ∈ {1, ..., τ}

because we have S ′i = Si for i ≥ m and S ′i = Si ∪ {v} for i < m. Moreover, we have
|S ′i4S ′i+1| ≤ ` for i ∈ {1, ..., τ}: If i ≥ m, we have S ′i = Si and S ′i+1 = Si+1 and thus
|S ′i4S ′i+1| = |Si4Si+1| ≤ `. If i < m − 1, we have S ′i = Si ∪ {v} and S ′i+1 = Si+1{v}
and thus |S ′i4S ′i+1| = |Si4Si+1| ≤ `. Finally, if i = m − 1, we know that v /∈ Sm−1,
v ∈ S ′m = Sm, S

′
m−1 = Sm−1 ∪ {v} and thus |S ′m−14S ′m| = |Sm−14Sm| − 1 ≤ `.

Lemma 3.14. Let I = (G, k, `) be an instance of MSVC. If I has a solution S =
(S1, ..., Sτ ) and k ≤ |V |, then I also has a solution S ′ = (S ′1, ..., S

′
τ ) with |S1| = k.
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Proof. If |S1| = k, then we are done. If |S1| < k, then we can apply Lemma 3.13
iteratively until |S1| = k.

Proof of Theorem 3.12. First, we prove by induction that MSVC is para-NP-hard for
the parameter τ and every even natural number ` if every layer is a tree.

We have already seen that MSVC is para-NP-hard (and NP-hard for τ = 2) for ` = 0
if every layer is a tree (Theorem 3.8). Now, assume that MSVC on trees is para-NP-
hard (and NP-hard for τ = 2) if ` = c where c is an arbitrary even number. Let
I = (G = (V, E , 2), k, c) be an instance of MSVC on trees where G has the layers G1

and G2. We prove that MSVC on trees is NP-hard for c+2 by constructing a polynomial-
time many-one reduction that maps I to an instance I ′ = (G ′ = (V ′, E ′, τ), k′, c+2) where
G ′ has the layers G′1 and G′2, each being a tree.

Let v ∈ V be an arbitrary vertex. We set V ′ = V ∪ {v1, v2, v3, v4} and E ′ = E ∪
{({v1, v2}, 1), ({v3, v4}, 2), ({v1, v}, 1), ({v3, v}, 2)}. Effectively, this adds four vertices to
the temporal graph G, and two disjoint edges (one in each layer) between them. Another
edge connects either endpoint of the newly added edge to the rest of the graph. We also
set k′ = k + 1. All of these operations can be performed in polynomial time.

Assume that I is a yes-instance of MSVC, then there are two vertex covers each of size
at most k, S1 and S2, that cover G1 and G2, respectively. Also, we have |S14S2| ≤ c.
Now set S ′1 = V1 ∪{v1} and S ′2 = V2 ∪{v3}. Then (S ′1, S

′
2) is a solution to I ′, because S ′1

and S ′2 are vertex covers of size at most k′ = k + 1 of G′1 and G′2, and |S ′14S ′2| ≤ c+ 2.
Assume that I ′ is a yes-instance of MSVC, then there are two vertex covers each of size
at most k′, S ′1 and S ′2, that cover G′1 and G′2, respectively. Also, because v1 and v2
are incident to the edge e = {v1, v2} connecting them in G1, either v1 or v2 must be
contained in V ′1 . Analogous to this, either v3 or v4 must be contained in V ′2 . Without loss
of generality, we assume that v1 ∈ V ′1 and v3 ∈ V ′2 , because by doing so we also cover the
edges ({v1, v}, 1) and ({v3, v}: If a there is a solution that includes v2 (v4) in G1 (G2),
then there is also a solution with v3 (v4) in the respective layer. Because every edge of G1

(G2) is also present in G′1 (G′2), and S ′1 and S ′2 are vertex covers of size at most k′ = k+1
of G′1 and G′2, they are also vertex covers G1 and G2. Further, because we have v1 /∈ V
and v3 /∈ V , we can set V1 = V ′1 \ {v1} and V2 = V ′2 \ {v3} and get two vertex covers of
size at most k′ − 1 = k of G1 and G2. We have |V14V2| = |V ′14V ′2 | − 2 = c+ 2− 2 = c,
and thus I ′ is a yes-instance of MSVC.

Next, we prove that MSVC is para-NP-hard for the parameter τ and every uneven
natural number ` if every layer is a tree.

Let I = (G = (V, E , 2), k, c) be an instance of MSVC on trees where G has the layers
G1 and G2. Assume that MSVC on trees is para-NP-hard (and NP-hard for τ = 2)
for ` = c where c is an arbitrary even number. We prove that MSVC on trees is para-
NP-hard for ` = c + 1 by proving that I is a yes-instance of MSVC if and only if the
instance I ′ = (G, k, c + 1) is a yes-instance of MSVC (technically, we are performing a
polynomial-time many-one reduction here, which changes nothing but the value of `).
Assume that I = (G, k, c) is a yes-instance of MSVC and its layers G1 and G2 are trees.
Then there is a solution S = (S1, S2) with |S14S2| ≤ c ≤ c + 1 and thus I remains a
yes-instance of MSVC if we increment c by one.
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Now assume that I ′ = (G, k, c+ 1) is a yes-instance of MSVC and its layers G′1 and G′2
are trees. Either we have |V | ≤ k, in which case I is a yes-instance due to Lemma 3.19,
or because of Lemma 3.14 there is a solution S ′ = (S ′1, S

′
2) such that |S ′1| = k. Further,

we can assume that no more than c
2

vertices are deleted in S ′2: If exactly c
2

vertices are
deleted in S ′2, at most ` − c

2
= c + 1 − c

2
= c

2
+ 1 vertices can be added in S ′2. If d > c

2

vertices are deleted in S ′2, then only c+ 1− d < c
2

+ 1 vertices can be added. As soon as
we exceed c

2
delete actions in S ′2, it does not allow us to perform any more add actions.

Thus, if there is a solution that deletes more than deleting c
2

vertices is in G2, then there
is another one with no more than c

2
delete actions in G2. If only c

2
vertices are deleted

and |S ′1| = k, then we can only add c
2

vertices in S ′2 and we have |S ′14S ′2| ≤ 2 · c
2

= c,
which implies that I is a yes-instance of MSVC.

3.2 Tractable cases

In some cases, we can solve the MSVC problem in polynomial time, or even return “yes”
instantly. In most of the situations discussed in this section, either the parameters k
and ` are high enough to allow us to choose every relevant vertex in every layer, or we
prove that a variant of MSVC is equivalent to a variant of Vertex Cover which is
known to be solvable in polynomial time.

Lemma 3.15. If for an instance of MSVC or MSVC-Sum with |Ei| = 1 for all layers
Gi one has k ≥ τ , then it is a yes-instance.

Proof. Let ei = {vi, ui} ∈ Ei be the only edge of layer Gi. Because k ≥ τ we can choose
S1 = S2 = ... = Sτ = {v1, v2, ..., vτ}. Now (S1, ..., Sτ ) is a solution to the MSVC instance
because

• vi ∈ ei for every i ∈ {1, ..., τ} and thus Si is a vertex cover of size at most τ ≤ k.

• |Si4Si+1| ≤ ` for every i ∈ {1, ..., τ−1} because Si = Si+1 for every i ∈ {1, ..., τ−1}
and thus |Si4Si+1| = 0 for every i ∈ {1, ..., τ − 1}.

Lemma 3.16. If for an instance of MSVC with |Ei| = 1 for all layers Gi one has ` ≥ 2,
then it is a yes-instance.

Proof. Let ei = {vi, ui} ∈ Ei be the only edge of layer Gi. We choose Si = {vi} for every
i ∈ {1, ..., τ}. Now (S1, ..., Sτ ) is a solution to the MSVC instance because

• vi ∈ ei for i ∈ {1, ..., τ} and as vi covers the only edge in Ei, Si is a vertex cover
of size at most 1.

• |Si4Si+1| ≤ ` for every i ∈ {1, ..., τ − 1} because |Si4Si+1| = 2 for every i ∈
{1, ..., τ − 1} and ` ≥ 2.
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Theorem 3.17. If for an instance of MSVC with |Ei| = 1 for all layers Gi one has
k ≥ τ or ` ≥ 2, then it is a yes-instance.

Proof. See Lemma 3.15 and Lemma 3.16.

Lemma 3.18. If for an instance of MSVC-Sum with |Ei| = 1| for all layers Gi one has
` ≥ 2τ − 2, then it is a yes-instance.

Proof. Let ei = {vi, ui} ∈ Ei be the only edge of layer Gi. We choose Si = {vi} for every
i ∈ {1, ..., τ}. Now (S1, ..., Sτ ) is a solution to the MSVC instance because

• vi ∈ ei for i ∈ {1, ..., τ} and as vi covers the only edge in Ei, Si is a vertex cover
of size at most 1.

•
∑τ−1

i=1 |Si4Si+1| ≤ ` because |Si4Si+1| = 2 for every i ∈ {1, ..., τ − 1} and thus∑τ−1
i=1 |Si4Si+1| = 2τ − 2 ≤ ` .

Lemma 3.19. Let I = (G = (V, E , τ), k, `) be an instance of MSVC. If k ≥ |V |, then I
is a yes-instance of MSVC.

Proof. Let S = (S1, ..., Sτ ) with Si = V for every i ∈ {1, ..., τ}. Then S is a solution to I,
because V covers every (temporal) edge of G and thus all of its layers, and |Si4Si+1| =
|V4V | = 0 ≤ ` for all i ∈ {1, ..., τ − 1}.

In Theorem 3.1 we have proven that MSVC is NP-hard even if every layer is a tree.
However, if there is only a single layer, or ` is too high to limit the selection of vertices for
a solution, then the given MSVC instance effectively degrades to τ independent instances
of Vertex Cover, which can be solved in polynomial time. The following theorem
will prove this.

Theorem 3.20. MSVC can be solved in polynomial time if every layer is a tree and
τ = 1 or ` ≥ 2k

To prove Theorem 3.20, we construct two polynomial-time reductions. They can be
used to transform an instance of MSVC where every layer is a tree and τ = 1 or ` ≥ 2k
to an instance of Vertex Cover on trees, which is known to be solvable in polynomial
time.

Lemma 3.21. There is a polynomial-time many-one reduction from MSVC with τ = 1
where the only layer is a tree to Vertex Cover on a tree

Proof. Let I = (G, k, `) be an instance of MSVC with τ = 1 such that the only layer G1 is
a tree. We construct an instance I ′ = (G′, k′) of vertex cover by setting G′ = G1 (which
implies that the input graph to the Vertex Cover instance is also a tree) and k′ = k
(obviously this can be performed in polynomial time). Assume that I is a yes-instance
of MSVC, then a vertex cover of size at most k exists for G1, which is also a vertex cover
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of size at most k′ = k for G′ = G1. This implies that I ′ is a yes-instance of Vertex
Cover. Assume I ′ is a yes-instance of Vertex Cover, then a vertex cover of size at
most k′ exists for G′, which is also a vertex cover of size at most k = k′ for G1 = G′.
We also have |Si4Si+1| ≤ ` for every i ∈ {1, ..., τ − 1} in any solution S = (S1, ..., Sτ )
because τ = 1. This implies that I is a yes-instance of MSVC.

Lemma 3.22. There is a polynomial-time Turing reduction from MSVC where every
layer is a tree and ` ≥ 2k to Vertex Cover on trees

Proof. Let I = (G, k, `) be an instance of MSVC with ` ≥ 2k such that every layer
is a tree, and G1, ..., Gτ its layers. We construct τ Vertex Cover instances I ′1, ...,
I ′τ by setting I ′i = (Gi, k) for every i ∈ {1, ..., τ} (obviously this can be performed in
polynomial time). This implies that the input graphs for each Vertex Cover instance
are also trees. Assume that I is a yes-instance of MSVC, then a vertex cover of size
at most k exists for every layer Gi, and the constructed Vertex Cover instances
I ′i are yes-instances. Assume that I ′i is a yes-instance for every i ∈ {1, ..., τ}, then a
vertex cover of size at most k exists for every Gi. We also have |Si4Si+1| ≤ ` for every
i ∈ {1, ..., τ − 1} because regardless of the specific solution S = (S1, ..., Sτ ) for any two
sets Si and Si+1 with |Si| ≤ k and |Si+1| ≤ k the maximum symmetric difference is
2k ≤ `. This implies that I is a yes-instance of MSVC.

Note that this is equivalent to a polynomial-time Turing reduction: We create τ
instances of Vertex Cover in polynomial time, which allows us to solve the MSVC
instance efficiently if the solutions to the Vertex Cover instances are known.

Proof of Theorem 3.20. Due to Lemma 3.21, there is a polynomial-time many-one re-
duction from any instance of the MSVC problem with τ = 1 where the only layer is a tree
to Vertex Cover on trees. It is folklore that Vertex Cover on trees is polynomial-
time solvable, which implies that MSVC with τ = 1 where the only layer is a tree is also
polynomial-time solvable by applying the reduction and solving the returned instance
of Vertex Cover. Due to Lemma 3.22, there is a polynomial-time Turing reduction
from MSVC where every layer is a tree and ` ≥ 2k to Vertex Cover on trees, which
is contained in P. This implies that the problem itself is polynomial-time solvable.

3.3 Kernelizations

In this section, we study the possibility of polynomial kernels for MSVC and MSVC-
Sum. In many cases, we can provide polynomial kernels or bikernels by using data
reduction rules or reductions to Vertex Cover, for which kernelizations are known.
In other cases, we rule out polynomial kernels using the cross-composition framework
by Bodlaender, Jansen, and Kratsch [BJK14].

First, we study the case where ` = 0. Intuitively, ` = 0 means that we can consider
the MSVC instance as an instance of Vertex Cover where all layers are combined to
a single graph. This is because if ` = 0, we have to cover all layers with the same vertex
set. Consequently, the case where ` = 0 has similar properties to Vertex Cover, and
admits a kernel of size O(k2). Next, we will formally prove this.
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Lemma 3.23. There are polynomial-time many-one reductions that map an instance
I = (G, k, `) with ` = 0 of either MSVC or MSVC-Sum to an instance I ′ = (G, k) of
Vertex Cover.

Proof. Let I = (G = (V, E , τ), k, 0) be an instance of either MSVC or MSVC-Sum and
G1 = (V,E1), ..., Gτ = (V,Eτ ) the layers of G. We set G = (V,E = E1 ∪ . . . ∪Eτ , which
can be performed in polynomial time, and I ′ = (G, k). Assume that I is a yes-instance of
either MSVC or MSVC-Sum, then there is a solution (S1, ..., Sτ ) with S1 = . . . = Sτ ⊆ V
such that S1 is a vertex cover of size at most k of all layers of G, and thus S1 covers all
edges of every layer. Therefore, I ′ is a yes-instance of Vertex Cover. Assume that
I ′ is a yes-instance of Vertex Cover, then G has a vertex cover S1 of size at most
k. Because G = (V,E), and E includes all edges of every layer of G, S1 is also a vertex
cover of size at most k of Gi for every i ∈ {1, ..., τ}, and (S1, ..., Sτ ) with Si = S1 for
every i ∈ {1, ..., τ} is a solution to I: We have |Si4Si+1| ≤ ` for every i ∈ {1, ..., τ − 1}
(if I is an instance of MSVC) and

∑τ−1
i=1 |Si4Si+1| ≤ ` (if I is an instance of MSVC-

Sum), because we have S1 = . . . = Sτ . Therefore, I is a yes-instance of either MSVC or
MSVC-Sum.

Theorem 3.24. Any instance I = (G, k, `) of MSVC where ` = 0 has a bikernel of size
at most O(k2).

Proof. We know that there is a polynomial-time reduction from MSVC to Vertex
Cover (Lemma 3.23), and it is known that Vertex Cover has a kernel of size at
most O(k2) [CKJ01]. Therefore, we can obtain a bikernel of size O(k2) for MSVC
by performing the reduction to Vertex Cover first, then the known kernelization
for Vertex Cover. Both of these steps require polynomial time, and the retrieved
bikernel K is a yes-instance if and only if I is a yes-instance because

• The intermediate instance J of Vertex Cover obtained through a polynomial-
time reduction from I is a yes-instance if and only if I is a yes-instance, as this is
a general property of reductions.

• The retrieved kernel K is a yes-instance if and only if the instance J , which serves
as the input for the kernelization algorithm of Vertex Cover, is a yes-instance,
as this is a general property of kernelizations.

For arbitrary values of `, we can rule out kernels of size polynomial in k using the
technique of AND-cross-composition.

Theorem 3.25. MSVC admits no kernel of size polynomial in k, even if every layer
contains exactly one edge and ` = 1.

Proof. We prove that MSVC with |Ei| = 1 for all layers Gi and ` = 1 AND-cross-
composes into itself: Let R be a relation on the set which contains all possible valid
inputs for MSVC with |Ei| = 1 for all layers Gi and ` = 1 such that for two instances
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I = (Gi, ki, `) and J = (Gj, kj, `) with Gi = (Vi, Ei, τi) and Gj = (Vj, Ej, τj) one has
(I, J) ∈ R if and only if |Vi| = |Vj| and ki = kj. Now R is a polynomial equivalence
relation because:

• It is obvious that R is an equivalence relation.

• Given two MSVC instances I = (Gi, ki, `i) and J = (Gj, kj, `j), we can decide
whether they belong to the same equivalence class in polynomial time by comparing
Vi to Vj and ki to kj.

• For any finite set S of Vertex Cover instances, R partitions its elements into a
number of classes that is polynomially bounded in the size of the largest element
of S: Let I1 = (G1 = (V1, E1), k1) be the element of S with the highest number of
vertices in its graph, and let I2 = (G2 = (V2, E2), k2) be the element of S with the
highest parameter k. Then the number of equivalence classes is at most |V1| · k2.

Our AND-cross-composition now takes t instances I1 = (G1, k, `), ..., It = (Gt, k, `) of
MSVC with |Ei| = 1 for all layers Gi and ` = 1 which belong to the same equivalence
class of R as its input and creates an instance I = (G = (V, E , τ), k, `) of MSVC with
` = 0 as follows: Let Gi,1, ..., Gi,τi be the layers of Gi for every i ∈ {1, ..., t}. We
combine all of these layers for every Gi with i ∈ {1, ..., t} to a single sequence of layers
by performing the following three steps:

• Start with an empty sequence of layers and E = ∅. Now, for every i ∈ {1, ..., t}
add the layers Gi,1, ..., Gi,τi in that order to our temporal graph G. We receive the
following sequence of layers in G: G1,1, ..., G1,τ1 , ..., Gt,1, ..., Gt,τt = G′1, ..., G

′
θ.

• After every layer Gi,τi with i ∈ {1, ..., t− 1}, add 2k− 2 layers which are identical
to Gi,τi .

• Before every layer Gi,1 with i ∈ {2, ..., t}, add a layer identical to Gi,1.

The parameter k is polynomially bounded in max
i
|xi|+ log t as I uses the same k as

the Ii.
Assume that Ii = (Gi, k, 1) is a yes-instance of MSVC for every i ∈ {1, ..., t}. Then

there is a vertex cover Vj of size at most k for any layer Gj of Gi and j ∈ {1, ..., τi},
and thus, there are such vertex covers for all layers of G. We can construct a solution
S = (S1,1, ..., St,τt) = (S1, ..., Sθ) to G as follows: For every layer Gj that has been added
to G at position p ∈ N in the first step, we set Sp = Vj. Now, consider a sequence of
2k − 2 layers added after a layer Gq,τq for q ∈ {1, ..., t} in the second step, which along
with the layers added in the third step we will refer to as duplicate layers. For any
such sequence, we start with the first of its layers Gm with m ∈ {1, ..., θ} and set the
corresponding vertex set Sm in our solution S to Sm−1 \ {v} where v is an arbitrary
vertex that is not needed to cover Gm = . . . = Gm+k−2. If no such v exists and we have
|Sm| = 1, then we do nothing. We repeat these steps with Gm, . . . , Gm+k−2, k− 1 times
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in total. Because we have |Ei| = 1 for all layers of all temporal graphs in all of the input
instances and thus also in our constructed instance I, each layer only requires one vertex
to be covered. Thus, after repeating the steps k − 1 times, starting with a set Sm with
|Sm| ≤ k, we are left with a set Sm+k−2 containing only a single vertex w which covers
the only edge of the corresponding layer Gm+k−2. In each of the next k − 1 duplicate
layers, we add vertices that we need to cover the next sequence of non-duplicate layers:
If the next non-duplicate layer Ga with a ∈ {1, ..., θ} originally belonged to a temporal
graph with solution G∫ = (Ss,1, ..., Ss,τs) and s ∈ {1, ..., t}, we want to have Sa = Ss,1.
To achieve this, we first add a vertex u that covers Ga. Next, we proceed to add one
vertex of Ss,1 in each layer until we reach a layer Gr with r ∈ {1, ..., θ} where for the
corresponding vertex set Sr, we have |Sr| = k.

Note that here we assume that |Ss,1| = k, which is possible due to Lemma 3.14.
If we have w /∈ Ss,1 , we delete it in the final, (2k − 1)-st, duplicate layer, and add

the k-th vertex of Ss,1 = Sr next. Intuitively speaking, the additional 2k − 1 duplicate
layers allow us to replace every vertex we used to cover the layers of one of the original
t MSVC instances with a new initial configuration for layers of the next original MSVC
instance.

We know that every Si is either a vertex cover taken from a solution to one of the
original t MSVC instances where it covers the same layer as in I, or was created through
a sequence of add and delete actions which do not affect the vertex cover property
(vertices were only deleted if it was unaffected, and adding vertices never affects it unless
we exceed k vertices, which doesn’t happen here). Thus, every Si in S remains a vertex
cover of size at most k for every i ∈ {1, . . . , τ1 + . . .+ τt + (2k − 1) · (t− 1)}. Moreover,
we have |Si4Si+1| ≤ ` = 1 for every i ∈ {1, ..., τ − 1} because only single add and delete
actions were performed in the duplicate layers (and those layers following a sequence of
duplicate layers), and the subsequences of layers which do not contain duplicate layers
fulfill this condition because they were taken from yes-instances of MSVC. Therefore, I
is a yes-instance of MSVC.

Assume that I = (G, k, 1) is a yes-instance of MSVC with G having layers G1, ..., Gt.
Then there is a solution S = (S1, ..., St) such that Si is a vertex cover of size at most k
of Gi for every i ∈ {1, ..., t} and |Si4Si+1| ≤ ` = 1 for every i ∈ {1, ..., t− 1} holds. The
layers of the temporal graphs G1, . . .Gt of the instances I1, ..., It all occur in exactly the
same order in the yes-instance G, and therefore also fulfill these conditions. This implies
that all of them are yes-instances of MSVC.

We have now proven that MSVC with |Ei| = 1 for all layers Gi and ` = 1 AND-cross-
composes into itself, which proves that in general no kernel of size polynomial in k exists
assuming that NP * coNP / poly.

For arbitrary values of `, we do not have a simple reduction to Vertex Cover
available — thus, we approach this case in a different way. We provide kernels (instead
of bikernels, as for the case of ` = 0). In order to decrease the size of an instance, we use
two data reduction rules. The first one allows us to delete vertices which are isolated in
every layer and thus cannot be used to cover any edges.
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Figure 3.1: A temporal graph G = (V, E , τ) with layers G1, G2 and G3. The vertex d is
isolated in all three layers of G. Let I = (G, k, `) be an instance of MSVC.
Then, according to Reduction Rule 3.26, d can be deleted from V regardless
of the values of k and `.

Reduction Rule 3.26. Let I = (G = (V, E , τ), k, `) be an instance of MSVC or MSVC-
Sum, with vertex v ∈ V such that for all layers Gi = (V,Ei) one has e ∈ Ei ⇒ v /∈ e.
Then delete v from G.

Lemma 3.27. Reduction Rule 3.26 is correct and can be applied in linear time.

Proof. Let S = (S1, ..., Sτ ) be a solution to I and let G1, ..., Gτ be the layers of G.
Further, set S ′ = (S ′1, ..., S

′
τ ) where S ′i = Si \{v} for every i ∈ {1, ..., τ}, and let I ′ be the

instance I after application of Reduction Rule 3.26. Then S ′ is a solution to I ′ because

• Si is a vertex cover of size at most k of Gi for every i ∈ {1, ..., τ}. Because v does
not have any incident edges, S ′i = Si \{v} also covers Gi, and G′i which is identical
to Gi except that v has been removed in G′i.

• |Si4Si+1| ≤ ` for every i ∈ {1, ..., τ − 1} (if I is an instance of MSVC) because
this holds for I and neither any Si nor ` have been changed in I ′.

•
∑τ−1

1 |Si4Si+1| ≤ ` (if I is an instance of MSVC-Sum) because this holds for I
and neither any Si nor ` have been changed in I ′.

Reduction Rule 3.26 can be applied in linear time (O(|V | · τ)), because it has to be
checked for each vertex if it has any neighbor exactly τ times.

Figure 3.1 shows an example of Reduction Rule 3.26 being used to eliminate an isolated
vertex.
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Figure 3.2: Let I = (G, k = 3, `) be an instance of MSVC with G having layers G1

and G2. We use Reduction Rule 3.28 to transform G into G ′ having layers
G′1 and G′2: Because b is of degree 4 > 3 = k, we know that b ∈ S1 where
S = (S1, S2) is a solution to I. If (G1, k) was an instance of Vertex Cover,
then we could simply delete b and its incident edges and decrease k by one.
However, because all layers of an instance of MSVC share the same vertex
set and the same k, we have to keep b. Instead, we delete all of its incident
edges and add a new vertex w and an edge {b, w} connecting both. We are
now forced to select either b or w in S1 — deleting the edges has not made
the instance easier to solve, but we managed to decrease its size.
Because all layers share the same vertex set, w is present in all layers (in this
case we can see that w has been added in G2).

Our second data reduction rule allows us to delete the incident edges of a vertex
whenever it is obvious that the vertex has to be part of a solution, in which case it will
cover the edges.

Reduction Rule 3.28. Let I = (G, k, `) be an instance of MSVC or MSVC-Sum,
G1, ..., Gτ the layers of G and v ∈ V a vertex. If v has a degree greater than k in a
subset of layers L ⊆ {G1, ..., Gτ}, then add a vertex w to V , remove all incident edges
of v in all layers L ∈ L and add the edge {v, w} to all of them instead.

Lemma 3.29. Reduction Rule 3.28 is correct and can be applied in O(|V |2 · τ) time.

Proof. Assume that I is a yes-instance of MSVC or MSVC-Sum, and I ′ the instance we
get by applying Reduction Rule 3.28. Then a solution S = S1, ..., Sτ exists such that
every Si is a vertex cover of size at most k of Gi. We know that every (temporal) edge e
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in G ′ either also exists in G, or is connected to a vertex v which has a degree greater
than k in the corresponding layer Gm in G with m ∈ {1, ..., τ}. In the first case, it is
covered by S. In the second case, we know that v ∈ Sm because v has a degree greater
than k and it would therefore be impossible to cover all of its incident edges without
adding v to Sm. This implies that S is a solution to I ′ (which fulfills |Si4Si+1| ≤ ` for
every i ∈ {1, ..., τ − 1} for MSVC or

∑τ−1
i=1 |Si4Si+1| ≤ ` for MSVC-Sum as it did in I),

and I ′ is a yes-instance.
Assume that I ′ is a yes-instance of MSVC or MSVC-Sum. Then a solution S =

S1, ..., Sτ exists such that every Si is a vertex cover of size at most k of Gi. Let e =
({v, w}, t) be a temporal edge where v is a vertex which we haveReduction Rule 3.28
used on in Gt. We know that both v and w are incident only to the edge e. Therefore,
we can set S = S ′ = (S1, ..., Sτ ) and modify it to include v but not w (by setting
S ′t = St \ {w} ∪ {v}). If we perform this for all edges which we did not use Reduction
Rule 3.28 on, then the modified sequence S ′ covers all edges of G because:

• If a (temporal) edge e ∈ E has not been affected by Reduction Rule 3.28, then it is
still present in G ′ and it is therefore covered by S and also by S ′, as S ′ is identical
to S with respect to vertices which were not affected by Reduction Rule 3.28.

• If e = ({v, w}, t) has been deleted through application of Reduction Rule 3.28,
and v was a vertex with degree greater than k in Gt, then by above construction
v ∈ St.

This implies that S is a solution to I (which fulfills |Si4Si+1| ≤ ` for every i ∈
{1, ..., τ − 1} for MSVC or

∑τ−1
1 |Si4Si+1| ≤ ` for MSVC-Sum as it did in I ′), and I is

a yes-instance.
Reduction Rule 3.28 can be applied in O(|V |2 · τ) time because each time we apply it

we have to check the degree of every vertex at most τ times (one time in every layer),
add at most τ vertices and edges, and remove at most τ · |V | − 1 edges.

Figure 3.2 shows an example of Reduction Rule 3.28 being used to decrease the amount
of edges in a temporal graph.

As we have now proven the correctness of two data reduction rules, we can try to
apply them to instances of MSVC in order to decrease their size. Next, we will show
how iterative application of Reduction Rule 3.26 and Reduction Rule 3.28 can be used
to retrieve a kernel of a bounded size.

Theorem 3.30. Let K = (G, k, `) be an instance of MSVC such that Reduction Rule 3.28
and Reduction Rule 3.26 are not applicable. Then K is of size at most 3k2 · τ .

Proof. Because Reduction Rule 3.26 and Reduction Rule 3.28 are not applicable, I is
an MSVC instance where there is no vertex v such that for all layers Gi = (V,Ei) one
has e ∈ Ei ⇒ v /∈ e, or v has a degree greater than k in any layer Gi.

If any layer has more than k2 edges, we can return a trivial no-instance as kernel
because k vertices each of degree at most k can cover at most than k2 edges. Otherwise,
we get a maximum of k2 · τ edges, with a maximum of 2k2 · τ incident vertices. Any
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vertex that is not incident to any edge has already been deleted by Reduction Rule 3.26.
Hence, the total size of K is at most 3k2 · τ .

In cases where ` is high enough to allow disjoint vertex covers being chosen for every
layer, we can view an instance of MSVC as several separate instances of Vertex Cover.
This observation can be used to retrieve a Turing kernelization.

Observation 3.31. Let I = (G, k, `) be an instance of MSVC where ` ≥ 2k, and
S1, ..., Sτ vertex covers of size at most k of the layers G1, ..., Gτ of G. We have |Si4Si+1| ≤
` for every i ∈ {1, ..., τ −1} because regardless of the specific solution S = (S1, ..., Sτ ) for
any two sets Si and Si+1 with |Si| ≤ k and |Si+1| ≤ k the maximum symmetric difference
is 2k ≤ `.

Theorem 3.32. Let I = (G, k, `) be an instance of MSVC where ` ≥ 2k. If we are able
to solve an instance of MSVC with size bounded in k2 in constant time, then we can
decide I in polynomial time.

Proof. Let G1, ..., Gτ be the layers of G. We construct τ instances I1, ..., Iτ of Vertex
Cover by setting Ii = (Gi, k) for every i ∈ {1, ..., τ}. This can be performed in
polynomial time, as the amount of instances Ii created is linear in τ and each of them
can also be created in linear time.

Now, assume that I is a yes-instance of MSVC. Then a sequence S = (S1, ..., Sτ )
exists such that Si is a vertex cover of size at most k of Gi for every i ∈ {1, ..., τ}. The
existence of such vertex covers for the Gi implies that Ii = (Gi, k) is a yes-instance for
every i ∈ {1, ..., τ}.

Assume that Ii = (Gi, k) is a yes-instance of Vertex Cover for every i ∈ {1, ..., τ}.
Then there are vertex covers S1, ..., Sτ of size at most k for G1, ..., Gτ . Along with
Observation 3.31, this implies that I is a yes-instance of MSVC.

In total, τ instances of Vertex Cover have been created, each of which has a kernel
of size at most O(k2) (Chen, Jia and Kanj 1999). Thus, if we can solve each instance in
constant time, we can decide I in polynomial time.

This is equivalent to a linear-time Turing kernel of size at most O(k2).

Lemma 3.33. MSVC admits no kernelizations on arbitrary layers for parameter τ .

Proof. MSVC and MSVC-Sum are para-NP-hard for the parameter τ (Theorem 3.8),
which implies that neither problem is fixed-parameter tractable or allows a kernelization
for τ .

Theorem 3.34. Let I = (G, k, `) be an instance of MSVC where |Ei| = 1 for all
layers Gi, then I has a kernel of size at most 5τ + 1.

Proof. If k ≥ τ or ` ≥ 2, then I is a yes-instance due to Lemma 3.15 and Lemma 3.16, so
we can return a trivial yes-instance as kernel. Otherwise, use Reduction Rule 3.26 repeat-
edly as many times as possible. We receive an MSVC instance K = (G ′ = (V ′, E , τ), k, `)
where Reduction Rule 3.26 is not applicable which means there is no vertex v so that
for all layers Gi = (V,Ei) one has e ∈ Ei ⇒ v /∈ e. Thus, each remaining vertex must be
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contained in at least one temporal edge. We have |E| = τ because we assumed |Ei| = 1
for each of the τ layers. Because each temporal edge can contain at most 2 vertices,
and each vertex must be contained in at least one temporal edge, at most 2τ vertices
remain. Also, by assumption we have k < τ and ` ≤ 1. For the size of K we get
|V |+ |E|+ τ + k + ` ≤ 2τ + τ + τ + τ + 1 = 5τ + 1.

3.4 FPT Algorithm

Before we study an FPT algorithm for the parameter k in depth, we show that MSVC
can be solved in O((1.2738k + kn) · τ) if ` ≥ 2k. Note that MSVC is fixed-parameter
tractable for τ if |Ei| = 1 for all layers Gi due to Theorem 3.34, and for k + τ due to
Theorem 3.30.

Theorem 3.35. An instance I = (G, k, `) of MSVC can be solved in O((1.2738k+kn)·τ),
where n is the size of the given instance if one has ` ≥ 2k.

Proof. We show that any MSVC instance can be reduced to τ separate Vertex Cover
instances if ` ≥ 2k: Let I = (G, k, `) be an instance of MSVC with ` ≥ 2k. We construct
τ Vertex Cover instances I ′1, ..., I ′τ by setting I ′i = (Gi, k) for every i ∈ {1, ..., τ}
(obviously this can be performed in linear time).

Assume that I is a yes-instance of MSVC, then a vertex cover of size at most k exists
for every layer Gi, and the constructed Vertex Cover instance I ′i is a yes-instance
for {1, ..., τ}. Assume that I ′i is a yes-instance for every i ∈ {1, ..., τ} and the respective
solutions S ′1, ..., S

′
τ exist, then a vertex cover S ′i of size at most k exists for every Gi.

We also have |Si4Si+1| ≤ ` for every i ∈ {1, ..., τ − 1} because of Observation 3.31.
This implies that I is a yes-instance of MSVC. Moreover, we can derive a solution
S = (S1, ..., Sτ ) from the solutions to the Vertex Cover instances by setting Si = S ′i
for every i ∈ {1, ..., τ}. We can solve the instance by using the reduction and solving the
τ instances of Vertex Cover. Each can be decided in O((1.2738k + kn)) [CKX06].
In total we get a running time of O((1.2738k + kn) · τ).

In the remaining section we will provide an FPT algorithm for the parameter k and
the respective complexity upper bounds.

Intuitively speaking, the algorithm generates a list of all possible vertex covers of size
either k or k− 1 for each layer of a given temporal graph. Then, taking the parameter `
into consideration, the algorithm checks if one of the possible vertex covers of the final
layer is reachable from one of the possible initial configurations. The algorithm consists
of a main routine (Algorithm 3.42) and three subroutines searchTree (Algorithm 3.39),
checkReachability (Algorithm 3.41) and resolveDC (Algorithm 3.40).

Further, we will allow vertex sets to contain “don’t care values” (DCs): As stated
above, we want to generate all vertex covers of size either k or k − 1 for each layer.
If we find a vertex cover of a smaller size, we can fill the remaining slots with DCs,
because any vertex will work. If a vertex cover of a layer contains a DC X, then X
can be considered as equal to any vertex contained in a vertex cover of the layer before
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when computing the symmetric difference. Each set can contain multiple DCs but each
vertex only once (it is a multiset with respect to DCs and a set with respect to vertices).
Because of this, we have to introduce a slightly different notion of symmetric difference.

We will now provide formal definitions of reachability and symmetric difference be-
tween vertex sets containing DCs.

Definition 3.36. (Symmetric difference between vertex sets containing DCs) Assume
that S and T are vertex sets possibly containing DCs. Then S4̂T is the symmetric
difference of S and T . Our FPT algorithm does not require us to compute the actual
symmetric difference set, but we can compute its cardinality as follows:While both S
and T contain at least one DC, remove one DC from both. When we are done, either
S, T , or both contain no DCs. Now we can compute |S4̂T | by applying the following
rules iteratively:

Let A and B be two vertex sets such that either A or B possibly contains DCs, let v
be a vertex and let X be a DC.

• |A4̂B| = |A4B| if A and B do not contain any DCs

• |(A ∪ {X})4̂B| = |A4̂B|+ 1

• |(A ∪ {v})4̂(B ∪ {X})| = |A4̂B| (choose v /∈ B if possible)

• If A = ∅ then |A4̂B| = |B|

• If B = ∅ then |A4̂B| = |A|

It is important to note that A4̂B is no longer commutative if either A or B contain
DCs. A DC contained in B is considered as equal to any element in A, a DC contained
in A is not.

Definition 3.37. (reachability) Let I = (G = (V, E , τ), k, `) be an instance of MSVC
with G having layers G1, ..., Gτ , and let Vi and Vj be vertex covers of size of at most k
of Gi and Gj with i, j ∈ {1, ..., τ}. The vertex set Vj is reachable from Vi if i + 1 = j

and |Vi4̂Vj| ≤ `, or if i + 1 < j, there is a vertex cover Vi+1 of size at most k of Gi+1,

|Vi4̂Vi+1| ≤ `, and Vj is reachable from Vi+1.
Note that I is a yes-instance of MSVC if and only if there are two vertex covers V1

and Vτ of size at most k of G1 and Gτ such that Vτ is reachable from V1.

Theorem 3.38. MSVC is fixed-parameter tractable with respect to parameter k, an
instance can be decided in O(τ · (22k2+5k · k2) + |V |3) time.

We want to prove that the algorithm is both correct and runs in FPT time. To do
this, we need to prove several lemmata first. For instance, we will prove the correctness
of the subroutines of the main algorithm.

Lemma 3.43. If resolveDC is called by checkReachability, then the returned family R
contains only vertex sets U such that |U4̂T | ≤ `.
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Algorithm 3.39.
searchTree:
Input : An undirected graph G = (V,E), two integers k, k′ ∈ N, a family L of

vertex sets and a vertex set S.
Output: If searchTree is initially called with L = S = ∅, then L now contains

all vertex covers of G of size k and k − 1. Vertex covers of a smaller
size are filled with DCs until their size is k − 1, then until it is k, and
the resulting vertex set is added to L in both cases.

1 if k′ = 0 then
2 if |E| = 0 then
3 Add S to L ;
4 end
5 return

6 end
7 if |E| = 0 then
8 Add DCs to S such that |S| = k − 1 ;
9 Add S to L ;

10 Add a DC to S ;
11 Add S to L ;
12 return

13 end
14 e← {u, v} ∈ E ;
15 searchTree(G− u, k′ − 1, L, S ∪ {u}) ;
16 searchTree(G− v, k′ − 1, L, S ∪ {v}) ;
17 return

Algorithm 3.40.
resolveDC:
Input : Two vertex sets S and T such that `+ 2d ≥ |S4̂T |, an integer i.
Output: A family R containing vertex sets such that for every U ∈ R we have

|U4̂T | ≤ `, where i determines the number of DCs removed from S.
1 i← d i

2
e ;

2 R ← ∅ ;
3 Remove i DCs from S and all DCs from T ;
4 U ← T \ S ;
5 for each i-element subset M of U do
6 Add S ∪M to R ;
7 end
8 return R
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Algorithm 3.41.
checkReachability:
Input : Two families of vertex sets L1 and L2 and an integer `.
Output: L1 now contains only vertex sets A such that there is a vertex set B

in L2 with |A4̂B| ≤ `.

1 for each S ∈ L1 do
2 Let d be the number of DCs in S ;
3 for each T ∈ L2 do

4 if |S4̂T | ≤ ` then
5 Break;

6 else if `+ 2d ≥ |S4̂T | > ` then

7 L1 = (L1∪ resolveDC(S, T , |S4̂T | − `)) \ {S} ;
8 Break;

9 end
10 Delete S from L1;

11 end

12 end
13 return

Algorithm 3.42.
main:
Input : An instance I = (G, k, `) of MSVC with G having layers G1, ..., Gτ ,

and empty families L1, ...,Lτ of vertex sets.
Output: [TRUE] if I is a yes-instance of MSVC, otherwise [FALSE].

1 Apply kernelization as described in Theorem 3.30 and its proof ;
2 searchTree(Gτ , k, Lτ , ∅);
3 for i← τ − 1 to 1 do
4 searchTree(Gi, k, k′, Li, ∅);
5 checkReachability(Li, Li+1, `);

6 end
7 if L1 6= ∅ then
8 return [TRUE];
9 end

10 return [FALSE];

Proof. We can assume that `+ 2d ≥ |S4̂T | (see input of resolveDC). Let S ′ denote the
vertex set S after line 3 of resolveDC has been executed and i DCs have been removed.
We now have |S ′4̂T | = |S4̂T | − i, because whenever we remove a DC, |S ′4̂T | will
decrease by one. This is because of Definition 3.36: The DC contained in T is counted
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as equal to an arbitrary element of S.

For better understanding, we provide an example:
Let S = {v,X} and T = {w,X}, S4̂T = {v, w}, and |S4̂T | = 2. If we remove a DC

from S, then we get S ′ = {v}, S ′4̂T = {w}, |S4̂T | = 1.
Now, let U = S ′ in line 6 of resolveDC. We add i elements of T which are not

contained in S (see line 4) to U , which decreases |U4̂T | by i. In total, we get |U4̂T | =
|S4̂T | − 2i ≤ |S4̂T | − (|S4̂T | − `) = `.

Lemma 3.44. Let I = (G = (V, E , τ), k, `) be a yes-instance of MSVC and k ≤ |V |.
Then there is a solution S = (S1, ..., Sτ ) with k − 1 ≤ |Si| ≤ k for every i ∈ {1, ..., τ}.

Proof. Because I is a yes-instance of MSVC, we know that a solution S = (S1, ..., Sτ )
exists. Because of Lemma 3.14 we can assume that |S1| = k. If k − 1 ≤ |Si| ≤ k for
every i ∈ {1, ..., τ}, then we are done. Else, let Sp be the first element of the solution
S with |Sp| < k − 1, where p ∈ {2, ..., τ}. We know that |Sp| < |Sp−1|, which implies
that a vertex v is deleted in Gp. Now, consider the next add action being performed
in S, let w be the vertex added and Gq, where q ∈ {3, ..., τ}, the layer in which the
action is performed (if no such Gq exists, we skip the next steps). We construct a new
solution S ′ = (S ′1 = S1, ..., S

′
p−1 = Sp−1, S

′
p, ..., S

′
q−1, S

′
q = Sq, S

′
q+1 = Sq+1..., S

′
τ = Sτ ) as

follows: Let S ′i = Si for every i ∈ {1, ..., p − 1} ∪ {q, ..., τ} and let S ′i = Si ∪ {v, w} for
every i ∈ {p, ..., q − 1}. Effectively, we swap the add and the delete action: The vertex
v is not deleted until Gq, and the vertex w is added in Gp rather than in Gq. Next, we
prove that S ′ is a solution to I: We have |S ′i| ≤ k for every i ∈ {1, ..., τ}, because if
i ∈ {1, ..., p− 1} ∪ {q, ..., τ}, we have S ′i = Si ≤ k. Further, we have S ′i = Si ∪ {v, w} for
every i ∈ {p, ..., q−1}, which implies that |S ′i| ≤ k, because we know that |Sp| < k−1, in
the original solution S no vertex was added until Sq, and in S ′ we only add two vertices
v and w until Sq. Also, Si ⊆ S ′i for every i ∈ {1, ..., τ}, and thus we know that Si is a
vertex cover of size at most k of Gi for every i ∈ {1, ..., τ}. We have |S ′i4S ′i+1| ≤ ` for
every i ∈ {1, ..., p − 2} ∪ {q, ..., τ − 1} because S ′i = Si. Further, we have S ′p−14S ′p ≤ `
because Sp−14Sp ≤ `, S ′p−1 = Sp−1 and S ′p = Sp ∪ {v, w} where v ∈ S ′p−1. Similarly,
S ′q−14S ′q ≤ ` holds because of Sq−14Sq`, S ′q = S1 and S ′q−1 = Sq−1 ∪ {v, w} where
w ∈ Sq. Finally, we have Si4Si+1 for every i ∈ {p, ..., q − 2} because S ′i = Si ∪ {v, w}
for every i ∈ {p, ..., q − 1} and Si4Si+1 ≤ ` for every i ∈ {p, ..., q − 2}. Now set S = S ′.
We repeat the last steps as long as Sp and Gq an be found as described above. If no
Sp can be found, we are done, because we have Si ≥ k − 1 for every i ∈ {1, ..., τ}. If
a Sp can be found, but no Gq, we know that no more add actions are performed after
Gp. Assume that |Sp| = k − r with r ∈ N. We know that |Sp−1| ≥ k − 1 because Sp
is the first element of S with a cardinality lower than k − 1. This implies that r − 1
vertices v1, ..., vr−1 are deleted in Gp. We omit the respective delete actions (and all
delete actions performed after Gp), and add v1, ..., vr−1 to Sp, ..., Sτ : We set S ′i = Si for
i ∈ {1, ..., p− 1} and S ′i = Si ∪ {v1, ..., vr−1} for i ∈ {p, ..., τ} and receive a new solution
S = (S ′1, ..., S

′
τ ). We prove that S ′ is a solution: We know that Si is a vertex cover of size

at most k of Gi for every i ∈ {1, ..., τ}. We have Si ⊆ S ′i for every i ∈ {1, ..., τ}, and we
know that |Si|′ ≤ k for every i ∈ {1, ..., τ} because after omitting all delete actions after
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Gp, we have |Sp| = . . . = |Sτ | = k − r, and we add exactly r − 1 vertices to Sp, ..., Sτ .
Further, we have |S ′i4S ′i+1| ≤ ` for every i ∈ {1, ..., τ} because we have |Si4Si+1| ≤ `
for every i ∈ {1, ..., τ} and S ′i = Si ∪ T for every i ∈ {1, ..., τ}, where T ⊆ Si−1. Now we
have S ′i ≥ k − 1 for every i ∈ {1, ..., τ}.

Lemma 3.45. Algorithm 3.42 is correct — it returns [TRUE] if and only if the input
I is a yes-instance of MSVC.

Proof. Because kernelizations return a yes-instance if and only if the input is a yes-
instance, line 1 does not affect the correctness of the algorithm. Assume that I = (G, k, `)
is a yes-instance of MSVC. Then there is a solution S = S1, ..., Sτ with k− 1 ≤ |Si| ≤ k
for i ∈ {1, ..., τ} (Lemma 3.44)*. Because searchTree initially generates all vertex covers
of size either k or k− 1 of Gi (by trying out both incident vertices of every edge in lines
15-16), we can assume that Si ∈ Li after the respective searchTree call for i ∈ {1, ..., τ}.
Because we have |Sj4̂Sj+1| ≤ ` for j ∈ {1, ..., τ − 1}, every Sj will trigger the break in
line 6 of checkReachability, including S1, which will stop checkReachability from deleting
S1 from L1 and leave us with L 6= ∅. Consequently, main returns [TRUE].

Assume that Algorithm 3.42 returns [TRUE]. We prove by induction that vertex
covers V1 and Vτ exist such that Vτ is reachable from V1: We have L1 6= ∅. Let V1 be an
arbitrary element of L1. Then there is a V2 ∈ L2 such that |V14̂V2| ≤ `. Either we had
|V14̂T | ≤ ` for T ∈ L2 in line 5 of checkReachability, or V1 was added through a call
to resolveDC, in which case we have |V14̂T | ≤ ` for T ∈ L2 (Lemma 3.43). Therefore,
V2 is reachable from V1. Assume that Li 6= ∅ for an i ∈ {1, ..., τ − 1}. Then there is a
Vi+1 ∈ Li+1 such that |Vi4̂Vi+1| ≤ `. Either we had |Vi4̂T ≤ `| for T ∈ Li+1 in line 5 of
checkReachability, or Vi was added through a call to resolveDC, in which case we have
|Vi4̂T ≤ `| for T ∈ Li+1 (Lemma 3.43). Therefore, Vi+1 is reachable from Vi. We can
conclude that there are vertex covers V1 and Vτ of G1 and Gτ such that Vτ is reachable
from V1, there is a solution S = V1, ..., Vτ , and I is a yes-instance of MSVC.
*Note that technically Lemma 3.44 can only be applied if k ≤ |V |. However, since our
algorithm allows DCs, we can easily achieve |Si| ≥ k − 1 for a solution S = (S1, ..., Sτ )
and every i ∈ {1, ..., τ} by adding DCs to the Si. Alternatively, we can modify the
algorithm such that it instantly returns [TRUE] in the trivial case of k > |V |.

Lemma 3.46. When searchTree is called, the number of subsequent recursive calls is
bounded in O(2k).

Proof. Each call causes further recursive calls with a branching factor of 2 (searchTree
calls itself 2 times), and a maximum call stack depth of k: In each call k is decreased
by one, and when k reaches zero, the function terminates. This implies a maximum of
O(2k) calls.

Lemma 3.47. Whenever checkReachability is called, we have |L1| · |L2| ≤ 22k2+4k.

Proof. Whenever checkReachability is called, L1 contains a list of vertex covers generated
by searchTree and has not yet been modified by checkReachability. Because searchTree
is called a maximum of O(2k) times with each vertex set family (Lemma 3.46) and
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each call generates a maximum of two vertex covers, we can assume that |L1| ∈ O(2k).
However, |L2| has possibly been modified through calls to resolveDC. Let S ′ ∈ L1 be a
vertex set. We prove that resolveDC is called a maximum of 22k2+k times with S = S ′,
because there are no more than 22k2+k possible values for T which cause resolveDC
to be called along with S ′. If resolveDC is called with S = S ′ and T = T ′, we have
`+ 2d ≥ |S ′4̂T ′| > `. We can think of S ′ and T ′ as two consecutive parts of a possible
solution S = S1, ..., S

′ = Si, T
′ = Si+1, ..., Sτ such that at most p add and q delete

actions are performed in Gi+1, and p+ q = |S ′4̂T ′|. There are
(
k
q

)
≤ 2k ways to delete q

vertices from a set containing at most k vertices. Next, we have to add p vertices. The
vertices added in T ′ have to be selected such that they cover the layer Gi+1, or, if it is
already covered by the other vertices in T ′, the next layer Gi+2, etc. This is because if
it was possible to add arbitrary vertices, the respective entry in T ′ would be a DC (DCs
are only replaced with specific vertices if a certain vertex is needed to cover the next
layers without letting the cardinality of the symmetric difference exceed the parameter
`). We can find all vertex sets which cover as many layers as possible with a branching
algorithm analogous to searchTree. However, the branching algorithm may only find
a partial vertex cover for the last layer it attempts to cover. To find every possible
partial vertex cover of a layer, we have to try out both vertices contained in every edge
in every step of the algorithm (except for the vertices already added in earlier steps),
and the branching factor increases to 2k2 (as after applying the kernelization mentioned
in Theorem 3.30, only k2 edges with 2k2 incident vertices remain). We get a maximum

of O(
(
2k2

k

)
) ≤ O(22k2) possible results, which is the amount of k-element subsets of the

2k2 vertices which are incident to the remaining edges.

In total, we get O(2k · 22k2) = 22k2+k possible values for T ′ which cause solveDC to
be called with S ′ and T ′, each call to solveDC causes at most O(2k) elements to be
added to a list, and each family has at most O(2k) entries before checkReachability is
called. This implies that on a checkReachability call, L2, which has been modified by
checkReachability and resolveDC before, has at most 2k · 2k · 2k·(2k+1) = 22k2+3k entries,
and |L1| · |L2| ≤ 2k · 22k2+3k) = 22k2+4k.

Lemma 3.48. Algorithm 3.42 can decide an instance of MSVC in O(τ · (22k2+5k · k2) +
|V |3) time.

Proof. The kernelization runs in O(|V |3 · τ) as Reduction Rule 3.26 and Reduction
Rule 3.28 are performed at most |V | times and run in O(|V | · τ) and O(|V |2 · τ) (see
Lemma 3.27 and Lemma 3.29).

The function searchTree is called 1+ τ −1 = τ times from the main function and each
calls induces no more than O(2k) subsequent recursive calls (Lemma 3.46). We get a
total running time of O(τ · 2k · |V |), because each call requires O(|V |) time to remove a
vertex and its incident edges from the graph in the final two steps. All other steps can
be performed in constant time.

The function checkReachability is called τ − 1 times from the main function. The
inner loop is executed |L1| · |L2| ≤ 22k2+4k times (Lemma 3.47), and in each iteration we
compute the symmetric difference of two sets with cardinality at most k, which can be
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performed in O(k2), and call resolveDC. In resolveDC, we iterate over i-element subsets
of a set with at most k elements, which allows for at most

(
k
i

)
≤ 2k iterations where each

iteration can be performed in O(k2) because |S| < k and |M | < k. Therefore, we get a
running time of O(2k · k2) for each call to resolveDC, and O(τ · 22k2+4k · (2k · k2 + k2)) ⊆
O(τ · 22k2+5k · k2) for the total running time of all checkReachability calls. To compute
the total running time, we need to add the running times of both searchTree (which
does not change the asymptotic complexity) and the kernelization. In total we get
O(τ · (22k2+5k · k2) + |V |3).

Proof of Theorem 3.38. We know that Algorithm 3.42 solves MSVC correctly (Lemma 3.45)
in O(τ ·(22k2+5k ·k2)+ |V |3) time (Lemma 3.48), which implies fixed-parameter tractabil-
ity.

Lemma 3.49. After executing Algorithm 3.42 on an instance I = (G, k, `) of MSVC,
each element contained in the family Li is a vertex cover of size either k or k − 1 of
layer Gi of G for i ∈ {1, ..., τ}.

Proof. All elements are generated by either searchTree or resolveDC. The subroutine
searchTree only adds a vertex set S to a family if the two following conditions hold:

• We have |E| = 0, which implies that all edges in |E| have been removed by
searchTree. This happens if and only if searchTree has added vertices to S such
that S covers all edges, and is thus a vertex cover of G = (V,E).

• Either we have k′ = 0, which implies that exactly k vertices have been added to
S, or we add DCs to S such that |S| ≥ k + 1.

The subroutine resolveDC only replaces DCs with specific vertices, which doesn’t
affect the vertex cover property or the cardinality of the respective vertex set.

Algorithm 3.42 allows us to solve MSVC as a decision program, but is useless if we
want to extract a specific solution. With some small modifications we can trace back
the solution after the main algorithm terminates. However, we have to decide if we
want to exatact a solution or optimize memory consumption. The main idea behind
Algorithm 3.51, which will be discussed later, is that we reduce the amount of vertex
set families used, which we need to save enough history to be able to trace back the
solution.

Theorem 3.50. Algorithm 3.42 can be modified such that a solution S can be extracted
whenever the input contains a yes-instance of MSVC.

Proof. We make the following changes to Algorithm 3.42 and its subroutines: The Li
where i ∈ {1, ..., τ} contain pairs of vertex sets instead of just single vertex sets. The
first element is the same vertex set as used in the unmodified version of the algorithm
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— a vertex cover of size at most k generated by searchTree. The second element is
initialized as NULL by searchTree,

We modify checkReachability and resolveDC as follows: Whenever an element S ∈ L1

is not deleted but kept (see line 5 of checkReachability), or resolved and replaced by
elements S1, ..., Sm with m ∈ N after being compared to T (see line 6 of resolveDC), we
add a tuple containing both S and T rather than just S to L1. The vertex set T can
be considered as a possible successor to S in a solution S = (S1, ..., S, T, Sτ ), because
both S and T are vertex covers of size at most k of their respective (consecutive) layer
(if they were not, searchTree would not have generated them in the first place) and we
have |S4̂T | ≤ ` (because if we did not, checkReachability would have deleted S from
its respective list), or resolveDC would not have added them (Lemma 3.43).

Next, assume that our input contains a yes-instance of MSVC. We extract a solution
S = (S1, ..., Sτ ) as follows: We select vertex sets S1, ..., Sτ from the lists L1, ..., Lτ . We
know that each element of the family Li is a vertex cover of size at most k of Si Because
our input contains a yes-instance, we have L1 6= ∅, and we can select an arbitrary
tuple (S ′1, S

′
2) ∈ L1 and set S1 = S ′1. Next, we set S2 = S ′2, with (S ′2, S

′
3) ∈ L3, and

continue to iteratively add S ′i to S whenever S ′i−1 was the last element added and we
have (S ′i−1, Si ∈ Li).

Algorithm 3.42 uses a different family of vertex sets for every layer, which can be
considered wasteful as each family is used as an input to checkReachability only twice.
The algorithm can be optimized such that the space complexity is lowered drastically.
The basic idea here is to reduce the amount of families used to only two (L0 and L1).
However, by doing so we lose the ability to extract a specific solution as described in
Theorem 3.50.

Theorem 3.52. Algorithm 3.42 can be modified such that its space complexity is lowered
to O(22k2+3k · k + 3k2 · τ) without increasing the running time

Proof. Intuitively, we want to use only two (instead of τ) families of vertex sets. Instead
of using one family per layer, we alternate between L0 and L1. Consider a modified
version of Algorithm 3.42, Algorithm 3.51. The proof of correctness is analogous to
that of Algorithm 3.42, as is the proof of it running in O(τ · (22k2+5k · k2) + |V |3) time
Lemma 3.48. We will analyze the space complexity by listing the variables used.

• The input instance I = (G, k, `) with G having layers G1, ..., Gτ requires space
bounded in O(3k2 · τ) (after the kernelization has been applied),

• The families L0 and L1 contain a total of at most 22k2+3k elements in every step
(Lemma 3.47) where every element is a vertex set of size at most k. We get a total
space requirement of O(22k2+3k · k),

The space requirements for all variables used in searchTree are multiplied by k
because the maximum call stack depth is k (see Lemma 3.46).

• The input graphs G = (V,E) require space bounded in O(k · 3k2).
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Algorithm 3.51.
main space:
Input : An instance I = (G, k, `) of MSVC with G having layers G1, ..., Gτ ,

and empty families L0,L1 of vertex sets
Output: [TRUE] if I is a yes-instance of MSVC, else [FALSE]

1 Apply kernelization as described in Theorem 3.30 and its proof ;
2 searchTree(Gτ , k, k′ L1, ∅);
3 j ← 0 ;
4 for i← τ − 1 to 1 do
5 searchTree(Gi, k, Lj, ∅);
6 checkReachability(Lj, L(j+1) mod 2, `);
7 j ← (j + 1) mod 2 ;

8 end
9 if L1 6= ∅ then

10 return [TRUE];
11 end
12 return [FALSE];

• The integers k require space bounded in O(k · k) = O(k2).

• The vertex sets S, each having a size of at most k, require O(k2).

• In total, we get a space complexity of O(22k2+3k · k + 3k2 · τ).

We neglect certain variables such as the loop counters and the parameters k and τ
because it is obvious that these do not affect the asymptotic complexity.
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First, we investigate MSVC-Sum with respect to NP-hardness. It is important to note
that in many cases, the proof is completely analogous to regular MSVC. This is due to
the fact that many of our reductions are based on corner cases such as ` = 0 or τ = 1,
where MSVC and MSVC-Sum are equivalent.

Theorem 4.1. MSVC-Sum is NP-complete even if

• τ is any fixed constant,

• ` is any fixed constant,

• every layer Gi is a tree and ` = 0,

• or |Ei| = 1 for every layer Gi = (V,Ei) and ` = 0.

Proof. There are polynomial-time many-one reductions from Vertex Cover to MSVC-
Sum with arbitrary values of τ (analogous to Lemma 3.4) and ` (analogous to Lemma 3.3),
to MSVC-Sum with |Ei| = 1 for all layers Gi and ` = 0 (analogous to Lemma 3.5), and
to MSVC-Sum where each layer Gi is a tree and ` = 0 (analogous to Lemma 3.7), which
proves NP-hardness for these problem variants. MSVC-Sum is contained in NP (analo-
gous to Lemma 3.2), therefore all of its variants which were proven to be NP-hard are
also NP-complete.

Theorem 4.2. MSVC-Sum can be solved in polynomial time if every layer is a tree and
τ = 1 or ` ≥ 2k · (τ − 1)

Proof. The proof is analogous to that of Theorem 3.20.

Theorem 4.3. MSVC-Sum is para-NP-hard for the parameter τ even if every layer is
a tree.

Proof. The proof is analogous to that of Theorem 3.8.

Theorem 4.4. Let I = (G = (V, E , τ), k, `) be an instance of MSVC-Sum and let
G1, ..., Gτ be the layers of G. If one has |Ei| = 1 for all layers Gi and k ≥ τ or
` ≥ 2 · (τ − 1), or if one has k ≥ |V |, then I is a yes-instance of MSVC-Sum..

Proof. The proof is analogous to that of Theorem 3.17 and Lemma 3.19.
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Next, we will discuss kernelizations for MSVC-Sum. Again, in most cases the results
are analogous or very similar to MSVC. One notable exception is the proof that MSVC
does not admit a kernel of size polynomial in k for high values of `: For MSVC, we used
an AND-cross-composition approach that combines the layers of the temporal graphs
of t input instances of MSVC, I1, ..., It, into the single temporal graph of a output
instance of MSVC, I. Between the layers which originally belonged to Ii and Ij, where
i ∈ {1, ..., t− 1}, we added duplicate layers such that in a solution we can select disjoint
vertex covers for the last of the original layers of Ii and the first of the original layers of
Ij. Intuitively speaking, the original layers of Ii and Ij remain independent in I, and I
effectively consists of t independent instances of MSVC (for details, see Theorem 3.25).
We cannot use this approach for MSVC-Sum because the value of ` is “distributed”
between the layers of I: For instance, if I1 is a yes-instance but I2 is a no-instance, we
expect I to be a no-instance. But if the symmetric difference between the layers of I1
is very small, and “I1 uses very little `”, we can use the remaining ` for I2, and I might
become a yes-instance. Therefore, MSVC-Sum requires a different approach.

Theorem 4.5. Let I = (G, k, `) be an instance of MSVC-Sum where ` = 0. Then I has
a bikernel of size at most O(k2).

Proof. The proof is analogous to that of Theorem 3.24

Theorem 4.6. MSVC-Sum admits no kernel of size polynomial in k, even if ` ≥ 2k ·
(τ − 1).

Proof. We prove Vertex Cover AND-cross-composes into MSVC-Sum with ` ≥ 2k ·
(τ − 1): Let R be a relation on the set which contains all possible valid inputs for
Vertex Cover such that for Vertex Cover instances I = (Gi = (Vi, Ei), ki) and
J = (Gj = (Vj, Ej), kj) one has (I, J) ∈ R if and only if |Vi| = |Vj| and ki = kj. Now R
is a polynomial equivalence relation because:

• It is obvious that R is an equivalence relation.

• Given two Vertex Cover instances I = (Gi = (Vi, Ei), ki) and J = (Gj =
(Vj, Ej), kj), we can decide whether they belong to the same equivalence class in
polynomial time by comparing Vi to Vj and ki to kj.

• For any finite set S of Vertex Cover instances, R partitions its elements into a
number of classes that is polynomially bounded in the size of its largest element:
Let I = (G = (V,E), k) be the largest element of S. Let I1 = (G1 = (V1, E1), k1)
be the element of S with the highest number of vertices in its graph, and let
I2 = (G2 = (V2, E2), k2) be the element of S with the highest parameter k. Then
the number of equivalence classes is at most |V1| · k2.

Our AND-cross-composition algorithm now takes t instances I1 = (Gi, k)..., It =
(Gt, k) of Vertex Cover which belong to the same equivalence class of R as its
input and creates an instance of MSVC-Sum I = (G, k, `) as follows: Set ` = c with c
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being an arbitrary integer equal to or greater than 2k · (τ − 1). The temporal graph G
receives G1, ..., Gt as its layers (which implies τ = t).

The parameter k is polynomially bounded in max
i
|xi|+ log t as I uses the same k as

the Ii.
Assume that Ii = (Gi, k) is a yes-instance of Vertex Cover for every i ∈ {1, ..., t}.

Then there are vertex covers S1, ..., St of size at most k for G1, ..., Gt. Moreover, we have
|Si4Si+1| ≤ 2k for every i ∈ {1, ..., t − 1} because regardless of the specific solution
S = (S1, ..., Sτ ) for any two sets Si and Si+1 with |Si| ≤ k and |Si+1| ≤ k the maximum
symmetric difference is 2k. This implies that

∑t−1
i=1 |Si4Si+1| ≤ 2k · (t−1) ≤ `, and that

I is a yes-instance of MSVC-Sum with ` ≥ 2k · (τ − 1).
Assume that I is a yes-instance of MSVC-Sum with ` ≥ 2k · (τ − 1). Then a solution
S = (S1, ..., Sτ ) exists such that every Si is a vertex cover of size at most k of Gi. This
implies that Ii is a yes-instance of Vertex Cover for every i ∈ {1, ..., t}.

We have now proven that Vertex Cover AND-cross-composes into MSVC-Sum
with ` ≥ 2k · (τ − 1), which for the latter proves that no kernel of size polynomial in k
exists assuming that NP * coNP / poly.

Reduction Rule 4.7. Let I = (G, k, `) be an instance of MSVC-Sum, and let be
G1, ..., Gτ its layers. Add an additional layer G0 = G1 before G1.

Lemma 4.8. Reduction Rule 4.7 is correct and can be applied in linear time.

Proof. Assume that I is a yes-instance of MSVC-Sum with solution S = (S1, ..., Sτ )., and
I ′ the same instance after applying Reduction Rule 4.7. Then S ′ = (S0 = S1, S1, S2, ..., Sτ )
is a solution to I ′: We know that S1 is a vertex cover of size at most k the newly
added layer G0 = G1, and that Si is a vertex cover of size at most k of Gi for
ıin{1, ..., τ}. Further, we have

∑τ−1
i=1 |Si4Si+1| ≤ ` for every ıin{1, ..., τ − 1}, and we

know that S0 = S1. Assume that I ′ is a yes-instance of MSVC-Sum with solution
S ′ = (S0 = S1, S1, S2, ..., Sτ ), then S = (S1, ..., Sτ ) is a solution to I because we have∑τ−1

i=1 |Si4Si+1| ≤ ` for every ıin{0, ..., τ − 1} and Si is a vertex cover of Gi for every
i ∈ {1, ..., τ}.

Obviously, copying a layer can be performed in linear time.

Observation 4.9. The AND-cross-composition given in Theorem 4.6 always outputs an
instance I = (G, k, `) of MSVC-Sum with ` ≥ 2k · (τ − 1), which rules out polynomial
kernels only for this case. However, we can use Reduction Rule 4.7 to increase τ ar-
bitrarily at the end of the AND-cross-composition, which allows us to apply the result
tothe case of 2k · (τ − 1) > ` > 0.

Theorem 4.10. Any instance I = (G, k, `) of MSVC-Sum has a kernel of size at most
3k2 · τ .

Proof. The proof is analogous to that of Theorem 3.30

Theorem 4.11. Any instance I = (G, k, `) of MSVC-Sum where ` ≥ 2k · (τ − 1) has a
Turing kernel of size at most O(k2 · τ).
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4 Multistage Vertex Cover Sum (MSVC-Sum)

Proof. The proof is analogous to that of Theorem 3.32. The condition
∑τ−1

i=1 |Si4Si+1| ≤
` always holds when ` ≥ 2k · (τ − 1) because regardless of the specific solution S =
(S1, ..., Sτ ) for any two sets Si and Si+1 with |Si| ≤ k and |Si+1| ≤ k the maximum

symmetric difference is 2k ≤ `, and thus we have
∑τ−1

i=1 |Si4Si+1| ≤ 2k · (τ − 1) ≤ `.

Theorem 4.12. Let I = (G, k, `) be an instance of MSVC-Sum where |Ei| = 1 for all
layers Gi has a kernel of size at most 7τ − 1.

Proof. If k ≥ τ or ` ≥ 2τ − 2), then I is a yes-instance due to Lemma 3.15 and
Lemma 3.18, so we can return a trivial yes-instance as kernel. Otherwise, use Reduction
Rule 3.26 repeatedly as many times as possible. We receive an MSVC-Sum instance
K = (G ′ = (V ′, E , τ), k, `) where Reduction Rule 3.26 is not applicable which means
there is no vertex v so that for all layers Gi = (V,Ei) one has e ∈ Ei ⇒ v /∈ e. Thus,
each remaining vertex must be contained in at least one temporal edge. We have |E| = τ
because we assumed |Ei| = 1 for each of the τ layers. Because each temporal edge can
contain at most 2 vertices, and each vertex must be contained in at least one temporal
edge, at most 2τ vertices remain. Also, by assumption we have k < τ and ` < 2τ − 2.
For the size of K we get |V |+ |E|+ τ + k + ` ≤ 2τ + τ + τ + τ + 2τ − 2 = 7τ − 2.

Lemma 4.13. MSVC-Sum does not admit a kernelization on arbitrary layers for pa-
rameter τ .

Proof. The proof is analogous to that of Lemma 3.33.

Theorem 4.14. An instance I = (G, k, `) of MSVC-Sum can be solved in O((1.2738k +
kn) · τ), where n is the size of the given instance if one has ` ≥ 2k · (τ −1). This implies
fixed-parameter tractability for the parameter k + τ .

Proof. The proof is analogous to that of Theorem 3.35.

Theorem 4.15. MSVC-Sum with |Ei| = 1 for all layers Gi is fixed-parameter tractable
for the parameter τ .

Proof. MSVC-Sum on instances I = (G = (V, E , τ), k, `) with |Ei| = 1 for all of its
layers Gi has a polynomial kernel for the parameter τ according to Theorem 4.12, which
implies fixed-parameter tractability.

Finally, we discuss the possibility of an FPT algorithm for MSVC-Sum. While we
cannot use Algorithm 3.42 without modifications, we can assume that a slightly modified
version of the same algorithm can solve any instance of MSVC-Sum.

Conjecture 4.16. MSVC-Sum could fixed-parameter tractable with respect to parameter
k, an instance can be decided in O(τ · (22k2+5k · k2) + |V |3). The proof idea is analogous
to that of Theorem 3.38. However, we need to change the way the concept of reachability
and the subroutine checkReachability work. Let I = (G = (V, E , τ), k, `) be an instance
of MSVC with G having layers G1, ..., Gτ , let S1, ..., Sτ be vertex covers of the respective
layers, let c, c′, c′′ ∈ N and let i, j ∈ {1, ..., τ}. Now a vertex set Vj is considered reachable

48



with a “consumption” of c from a vertex set Vi if i + 1 = j and |Vi4Vj| = c ≤ `, or if
i+ 1 < j, there is a vertex cover Vi+1 of size at most k of Gi+1, |Vi4Vi+1| = c′ ≤ `, and
Vj is reachable from Vi+1 with consumption c′′ ≤ ` such that c = c′ + c′′ ≤ `. As soon
we know that a vertex set is not reachable with a consumption of c ≤ `, it is considered
unreachable and deleted. The subroutine resolveDC is called in every iteration of the
inner loop of checkReachability.
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5 Conclusion

We studied the computational complexity of MSVC and MSVC-Sum, provided upper
and lower bounds for kernelization when possible, and developed an FPT algorithm for
MSVC and the parameter k.

We proved NP-hardness for MSVC and many of its variants, as seen in Theorem 3.1.
This is quite unsurprising, as the NP-hard Vertex Cover can be viewed as a corner
case of MSVC, where τ = 1. In general, we can divide all variations of MSVC into three
subgroups: If τ = 1 or ` = 0, we have to cover every temporal edge with just a single
vertex set, which means that the given instance can be viewed as an instance of Vertex
Cover. If ` ≥ 2k, we can choose a completely new vertex set for every layer. In this
case, the MSVC instance effectively degrades into τ separate, independent instances of
Vertex Cover. In both cases, MSVC inherits properties of Vertex Cover, such
as NP-hardness. The intermediate case of τ > 1 and 0 < ` < 2k is more interesting:
No direct relationship with Vertex Cover can be found, and in some cases MSVC
exhibits different behavior: For example, while Vertex Cover can be solved in linear
time when the input graph is a tree, MSVC remains NP-hard on trees if τ > 1 and
0 < ` < 2k, and even if we have |Ei| = 1 for every layer Gi. This is comparable to some
of the results of Akrida et al. [Akr+18], who showed that TVC remains NP-hard even
on star graphs. All of our complexity results are summed up in Table 1.1.

We studied kernelizations for MSVC and proved various lower and upper bounds for
kernels and bikernels. Unsurprisingly, we found that MSVC does not admit a polynomial
kernelization for the parameter τ , because as stated above, Vertex Cover can be
considered as a corner case of MSVC with τ = 1, and a polynomial kernel would allow
a kernel of constant size for Vertex Cover. A notable exception is the case where
every layer contains just a single edge. Further, we found that MSVC does not admit
a polynomial kernel for the parameter k, unless in the case of ` = 0 where MSVC
is equivalent to Vertex Cover. The parameter k + τ is more interesting here: We
proved the correctness of two data reduction rules which allow us to reduce the size of
an instance to 3k2 · τ . As there are many studies on kernelizations of Vertex Cover,
future research could aim to transfer these results to MSVC and reduce the kernel size
further. All of our kernelization results are summed up in Table 1.2.

We discussed an FPT algorithm (Algorithm 3.42) for the parameter k, which runs in
O(τ · (22k2+5k · k2) + |V |3). This makes it possible for us to solve instances of MSVC
efficiently when k is small, even for high values of τ . Unfortunately, the proof of this
(Lemma 3.48) uses several very coarse-grained estimates. If one were to find more accu-
rate estimates, they might be able to show that the running time is in fact much lower.
Also, because networks in real-world applications such as our introductory example of
worm propagation are often large, it might be desirably to develop approximation algo-
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5 Conclusion

rithms as Akrida et al. [Akr+18] have done for the TVC problem: For high values of
k, the running time of our algorithm is still relatively high. Further, we have provided
optimizations which either reduce space complexity or grant the ability to extract a
specific solution — so far no algorithm can perform both.

Finally, we discussed a variation of MSVC, MSVC-Sum. The results are mostly anal-
ogous to MSVC, however, we cannot use the same algorithm. In Conjecture 4.16 we
suggest changes which could allow the FPT algorithm for MSVC (Algorithm 3.42) to be
modified such that instances of MSVC-Sum can be solved; however, the details of such
an algorithm are subject to future research.
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