Aufgaben zur Vorlesung Berechenbarkeit und Komplexität Niedermeier/Kellerhals/Kunz/Zschoche WiSe 21/22 TU Berlin 29.10.2021

3. Aufgabenblatt

(Besprechung in den Tutorien 08.11.2020-12.11.2020)

Aufgabe 1. Nichtdeterminismus bei Turing-Maschinen

Jede Sprache, die von einer nichtdeterministischen Turing-Maschine akzeptiert wird, kann auch von einer deterministischen Turing-Maschine akzeptiert werden.

Zeigen Sie obige Aussage, indem Sie beschreiben, wie eine beliebige nichtdeterministische Turing-Maschine durch eine deterministische Turing-Maschine simuliert werden kann, sodass beide Maschinen dieselbe Sprache akzeptieren.

Aufgabe 2. LOOP-Programme

1. Seien P_1 und P_2 zwei LOOP-Programme. Simulieren sie das Konstrukt

IF
$$x_1 > x_2$$
 THEN P_1 ELSE P_2 END durch ein LOOP-Programm.

2. Geben Sie ein LOOP-Programm an, das die Funktion $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ mit $f(x_1, x_2) := x_1 \mod x_2$ für $x_2 > 0$ berechnet.

Aufgabe 3. LOOP- und WHILE-Programme

- 1. Warum stoppt jedes LOOP-Programm nach endlicher Zeit?
- 2. Geben Sie ein WHILE-Programm an, welches niemals stoppt.

Aufgabe 4. Eingeschränkte LOOP-Syntax

Wir betrachten meherere abgeänderte Formen der Syntax von LOOP. Zeigen oder widerlegen Sie jeweils, dass diese Versionen von LOOP die gleiche Mächtigkeit wie LOOP haben.

- 1. Anstatt der Zuweisungen $x_i := x_j + c$ und $x_i := x_j c$ dürfen nur $x_i := x_j + 1$ und $x_i := x_j 1$ verwendet werden.
- 2. Anstatt der Zuweisungen $x_i := x_j + c$ und $x_i := x_j c$ dürfen nur $x_i := x_j + 2$ und $x_i := x_j 2$ verwendet werden.
- 3. Anstatt $x_i := x_j + c$ und $x_i := x_j c$ dürfen nur $x_i := x_j \cdot c$ und $x_i := x_j / c$ verwendet werden. Die Semantik der ersten Anweisung ist dann die Multiplikation und die der zweiten die ganzzahlige Division (sprich: wenn x_j nicht durch c teilbar ist, dann wird das Ergebnis abgerundet).

Aufgabe 5. WHILE- und GOTO-Programme

1. Geben Sie ein GOTO-Programm für die Funktion an, die von folgendem WHILE-Programm (mit Eingaben x_1, x_2) berechnet wird.

$$x_3 := x_1 + 1;$$
WHILE $x_3 \neq 0$ **DO**
 $x_2 := x_2 - 1;$
 $x_3 := x_3 - 1$
END;
 $x_0 := x_2 + 0$

2. Geben Sie ein WHILE-Programm für die Funktion an, die von folgendem GOTO-Programm (mit Eingabe x_1) berechnet wird.

$$M_1: \quad x_2 := x_2 + 1;$$
 $x_0 := x_2 + 0;$ IF $x_1 = 0$ THEN GOTO $M_3;$ $x_1 := x_1 - 1;$ GOTO $M_2;$ $M_2: \quad x_0 := x_0 + 1;$ GOTO $M_1;$ $M_3:$ HALT