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Abstract

A recent report of Littmann [Commun. ACM ’21] outlines the existence and the fatal impact of
collusion rings in academic peer reviewing. We introduce and analyze the problem CYCLE-FREE
REVIEWING that aims at finding a review assignment without the following kind of collusion ring: A
sequence of reviewers each reviewing a paper authored by the next reviewer in the sequence (with the
last reviewer reviewing a paper of the first), thus creating a review cycle where each reviewer gives
favorable reviews. As a result, all papers in that cycle have a high chance of acceptance independent
of their respective scientific merit.

We observe that review assignments computed using a standard Linear Programming approach
typically admit many short review cycles. On the negative side, we show that CYCLE-FREE RE-
VIEWING is NP-hard in various restricted cases (i.e., when every author is qualified to review all
papers and one wants to prevent that authors review each other’s or their own papers or when every
author has only one paper and is only qualified to review few papers). On the positive side, among
others, we show that, in some realistic settings, an assignment without any review cycles of small
length always exists. This result also gives rise to an efficient heuristic for computing (weighted)
cycle-free review assignments, which we show to be of excellent quality in practice.

1 Introduction

As recently pointed out by Littman [2021], the integrity and legitimacy of scientific conference pub-
lications (particularly important in the context of computer science) is threatened by so-called “collu-
sion rings”, which are sets of authors that unethically review and support each other while breaking
anonymity and hiding conflicts of interest. Despite the fact that details are usually not disclosed for
various reasons, it is inevitable that the process of assigning papers to reviewers is the key point to
engineer technical barriers against such incidents. Whereas assignments at very small venues could be
performed manually, support by (semi-)automatic systems becomes necessary already for medium-size
conferences. Today computational support for finding review assignments is well-established and has
improved the quality of the reviewing and paper assignment process in many ways (see the surveys of
Shah [2021] and Price and Flach [2017] for details). Still there is huge potential for improving processes
and further computational support is urgently requested [Price and Flach, 2017, Shah, 2021].

When aiming to prevent collusion rings, one of the most basic properties one can request from
a review assignment is that the assignment does not contain any review cycle of length z, that is, a
sequence of z agents each reviewing a paper authored by the next agent in the sequence (with the
last agent reviewing a paper authored by the first). This property is of high practical relevance: For
example, in the AAAI’21 review assignment the non-existence of review cycles of length at most z = 2
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was a soft constraint [Leyton-Brown and Mausam, 2021]. Yet, there is a lack of systematic studies
concerning the computation of such assignments. Motivated by this, we propose and analyze CYCLE-
FREE REVIEWING, the problem of computing an assignment of papers to agents that is free of review
cycles of length at most z, both from a theoretical and practical perspective.

1.1 Related Work

The literature is rich in the general context of peer reviewing (see, e. g., the works of Garg et al. [2010],
Goldsmith and Sloan [2007], Kobren et al. [2019], Lian et al. [2018], Long et al. [2013], Stelmakh
et al. [2021], Taylor [2008] on computational aspects of finding a “good” review assignment, and the
survey of Shah [2021]). Closest to our work are Barrot et al. [2020] and Guo et al. [2018]. In the context
of product reviewing, among others, Barrot et al. [2020] propose and analyze a restricted case which
translates to our setting as follows: Given a set of single-author papers and a set of agents each writing a
single paper and each having some conflicts of interest over papers, find a review assignment of papers
to agents, where each agent serves as a reviewer providing one review and each paper must receive one
review. They show that in this setting finding an assignment without review cycles of length at most z
corresponds to finding a 2-factor without cycles of length at most z, which is known to be NP-hard
for z ≥ 5 but polynomial-time solvable for z ≤ 3 [Hell et al., 1988]. Closer to our setting is that of Guo
et al. [2018], who also consider the computation of cycle-free review assignments. They propose two
simple heuristics and conduct experiments measuring the quality of their heuristics and the number of
review cycles in a weight-maximizing solution on two instances, mostly focusing on the influence of the
number of reviews per paper and per reviewer.

1.2 Outline and Contributions

Our contribution is threefold. First, in Section 3, we show the intractability of CYCLE-FREE REVIEW-
ING in various restricted settings: We show NP-hardness even when just forbidding review cycles of
length at most two in “sparse” and “dense” settings (e.g., if each reviewer can review only “few” or can
review “almost all” papers, see Theorems 1 to 3). Furthermore, solving a question left open by Barrot
et al. [2020], we show NP-hardness if each agent writes just one single-author paper and can review only
few papers (Theorem 4).

Second, in Section 4, we develop greedy heuristics. In contrast to Guo et al. [2018] we provide a the-
oretical analysis for the heuristics. In particular, we prove that, if the considered instance satisfies certain
near-realistic conditions (such as that each paper has few authors and that for each paper there are many
possible reviewers), then these heuristics are guaranteed to output a z-cycle-free review assignments in
polynomial time.

Third, in Section 5, we present and discuss the results of our experiments. Our core results are:

1. Existing linear-programming-based methods for computing maximum-weight review assignments
(as often used in practice) produce assignments where a high fraction (20% or more) of agents
and papers belong to some review cycles of length two.

2. For z ∈ {2, 3, 4} maximum-weight z-cycle-free assignments computed by one of our heuristics
(see Section 4) or computed via Integer Linear Programming are almost as good as the maximum-
weight review assignments with cycles (solution quality loss less than 4% resp. 1%).

3. Somewhat surprisingly, we show that adding additional reviewers that are authors of some papers
to the reviewer pool increases the number of papers that belong to review cycles in maximum-
weight (non cycle-free) assignments.
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Table 1: Notation overview

Variable Explanation

V = A ∪· P vertex set consisting of agents A and papers P with nA = |A| and nP = |P |
EA (a, p) ∈ EA ⊆ A× P shows a can review p
EP (p, a) ∈ EP ⊆ P ×A shows a authors p
N−(v,E) in-neighbors of v ∈ V wrt. E ⊆

(
V
2

)
, i. e., N−(v,E) := {u ∈ V | (u, v) ∈ E}

N+(v,E) out-neighbors of v ∈ V wrt. E ⊆
(
V
2

)
, i. e., N+(v,E) := {u ∈ V | (v, u) ∈ E}

∆−U , ∆+
U maximum in- and out-degree in U resp., e. g., ∆−U := maxu∈U |N−(u,EA ∪· EP )|

δ−U , δ+
U minimum in- and out-degree in U resp., e. g., δ+

U := minu∈U |N+(u,EA ∪· EP )|
∆−A, δ−A maximum resp. minimum number of papers per author
∆+

P , δ+
P maximum resp. minimum number of authors per paper

∆+
A, δ+

A maximum resp. minimum number of papers any author is qualified to review
∆−P , δ−P maximum resp. minimum number of potential reviewers for any paper

2 Preliminaries

For n ∈ N, we set [n] := {1, . . . , n}. In an instance of CYCLE-FREE REVIEWING, we are given a
set P of papers and set A of agents, where each paper p ∈ P is authored by a subset aut(p) ⊆ A
of agents. Moreover, we are given for each agent a ∈ A a subset rev(a) ⊆ P of papers the agent is
qualified to review1. We capture this information in a bipartite graph (A ∪· P,EA ∪· EP ) with EA =
{(a, p) | a ∈ A, p ∈ rev(a)} and EP = {(p, a) | p ∈ P, a ∈ aut(p)} (see also Table 1 for an
overview). A (peer) review assignment E′ ⊆ EA is a subset of edges from agents to papers, where we
say that a reviews p in E′ if (a, p) ∈ E′. Given a review assignment E′ ⊆ EA, for an agent a ∈ A,
let N+(a,E′) = {p ∈ P | (a, p) ∈ E′} be the subset of papers agent a reviews in E′ and, for a
paper p ∈ P , let N−(p,E′) = {a ∈ A | (a, p) ∈ E′} be the subset of agents that review p in E′.
For c, d ∈ N a review assignment E′ ⊆ EA is called c-d-valid if each agent reviews at most c papers
and each paper is reviewed by d agents, that is, |N+(a,E′)| ≤ c for all a ∈ A and |N−(p,E′)| = d for
all p ∈ P . In a review assignment E′ ⊆ EA, we say that papers p1, . . . , pz and agents a1, . . . , az form a
review cycle (of length z) if ai is an author of pi

(
(pi, ai) ∈ EP

)
for all i ∈ [z], ai reviews pi+1 in E′(

(ai, pi+1) ∈ E′
)

for i ∈ [z − 1] and az reviews p1 in E′
(
(az, p1) ∈ E′

)
. Notably, a review cycle of

length z in E′ corresponds to a directed cycle of length 2z in (A ∪· P,E′ ∪· EP ) and a review cycle of
length one corresponds to an author reviewing one of its own papers. We say that a review assignment
E′ is z-cycle free if there is no review cycle of length i ∈ [z] in E′.

Using this notation, we define our central problem and refer to Table 1 for further necessary variable
definitions:

[WEIGHTED] CYCLE-FREE REVIEWING

Input: A directed bipartite graph (A∪· P,EA∪· EP ) and non-negative integers creviewer, dpaper,
and z [and a weight function w : EA 7→ Z and an integer W ].
Question: Is there a creviewer-dpaper-valid and z-cycle-free review assignment E′ ⊆ EA [of
weight at least W , i.e.,

∑
e∈E′ w(e) ≥W ]?

3 NP-Hardness in Various Restricted Cases

From the work of Barrot et al. [2020, Theorem 4.12] it follows that CYCLE-FREE REVIEWING is NP-
hard in the single-author-single-paper setting (∆−A = ∆+

P = 1) even if creviewer = dpaper = 1 and

1Being “qualified to review” can encode that the agent is capable of reviewing the paper or that the agent does not have a
conflict of interest with one of the co-authors or both.
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z = 2. However, as in reality instances of CYCLE-FREE REVIEWING are hardly arbitrary but have
a quite strong structure, in this section we prove that the NP-hardness of CYCLE-FREE REVIEWING

upholds even if the given instance fulfills further quite restrictive conditions, e.g., each agent is qualified
to review all papers or our problem specific parameters (∆−A,∆

+
P ,∆

+
A,∆

−
P , creviewer, dpaper, z) are small

constants.

3.1 Sparse Review Graph and Small Weights

We start by considering the case where all our parameters are small. Specifically, we show the NP-
hardness of CYCLE-FREE REVIEWING for arbitrarily z ≥ 2 even if each paper is only authored by at
most two agents, each agent authors at most two papers, each agent is only qualified to review at most
three papers, and for each paper only at most three agents are qualified to review it (see Table 1 for
definitions).

Theorem 1. For any z ≥ 2, CYCLE-FREE REVIEWING is NP-hard, even if ∆+
A = ∆−P = 3, ∆−A =

∆+
P = 2, nA = nP , and creviewer = dpaper = 1. The hardness results still hold if agents are not allowed

to review papers of co-authors.

Proof. We reduce from an NP-hard variant of SATISFIABILITY where each clause consists of exactly
three literals and each variable occurs positive in at most two clauses and negative in at most two clauses
[Berman et al., 2003].

Construction. Given an instance of SATISFIABILITY consisting of a set X of variables and a set C
of clauses, we set dpaper = creviewer = 1 and z to some integer greater than one. We construct the set A
of agents and the set P of papers as follows. For each variable x ∈ X , we introduce three agents ax,
ax̄, and bx and three papers px, px̄, and qx (qx has no author and can be considered as a dummy paper).
Agents ax and bx are qualified to review px, agents ax̄ and bx are qualified to review px̄ and agents ax
and ax̄ are qualified to review qx. Intuitively, either does ax review px (which corresponds to setting x
to false) or ax̄ review px̄ (which corresponds to setting x to true).

For each clause c = `1 ∨ `2 ∨ `3, we introduce three agents a1
c , a2

c , and a3
c and three papers p1

c , p2
c ,

and p3
c where aic is qualified to review pic for i ∈ [3]. Moreover, we introduce two dummy agents that

are both qualified to review p1
c , p2

c , and p3
c and two dummy papers who a1

c , a2
c , and a3

c are all qualified to
review. Notably, for one i ∈ [3], aic needs to review pic (which corresponds to c being fulfilled because
of `i).

Concerning the authors of each paper, for each clause c = `1 ∨ `2 ∨ `3 and i ∈ [3], aic is an author of
p`i and a`i is an author of pic.

It is easy to see that each agent is only qualified to review at most three papers and that for each paper
only at most three agents are qualified to review it. Moreover, as each literal only appears in at most two
clauses, every paper has at most two authors and each agent authors at most two papers. Moreover, note
that |A| = |P |, implying that each agent has to review exactly one paper.

(⇒) LetZ be the set of variables that are set to true in a satisfying assignment of the given SATISFIA-
BILITY instance. Then, for x ∈ Z, we assign bx to px, ax to qx, and ax̄ to px̄, while for x /∈ Z, we assign
bx to px̄, ax̄ to qx, and ax to px. For a clause c = `1 ∨ `2 ∨ `3, let `i∗ with i∗ ∈ [3] be a literal from c that
is set to true by the given assignment (such a literal exists because the given assignment is satisfying).
Then, we set ai

∗
c to review pi

∗
c . The two dummy agents from this clause are assigned arbitrarily to pic for

i ∈ [3] \ {i∗} and the agents aic for i ∈ [3] \ {i∗} are assigned arbitrarily to the two dummy papers. To
show that the constructed assignment does not contain a review cycle (of arbitrary length) note that only
papers that have an author are papers p` for some literal ` (which are authored by aic for some c ∈ C and
i ∈ [3] where ` appears in c as the ith literal) and papers pic for some c = `1 ∨ `2 ∨ `3 ∈ C and i ∈ [3]
(which are authored by a`i). Thus, every review cycle of length at least two needs to contain an agent
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aic for some c ∈ C and i ∈ [3] and a`, where ` appears in c as the ith literal, and aic reviews pic and a`
reviews p`. For aic to review pic it needs to hold that the given assignment satisfies `. However, by our
construction of the review assignment, a` reviewing p` implies that ¯̀ is satisfied. Thus, no review cycle
exists.

(⇐) Assume we are given a 1-1-valid z-cycle-free review assignment. Let Y := {x ∈ X |
ax̄ reviews px̄}. We claim that the assignment α which sets all variables in Y to true and all variables in
X \Y to false satisfies the given formula. Assume for the sake of contradiction that there exists a clause
c = `1 ∨ `2 ∨ `3 ∈ C which is not satisfied by α. As the given assignment is 1-1-valid and we have the
same number of agents and papers in the constructed instance, there is a i∗ ∈ [3] such that ai

∗
c reviews

pi
∗
c . Note that by the same reasoning, for each x ∈ X , either does ax review px or ax̄ review px̄. Thus, if

a literal ` is not satisfied by α, then a` reviews p`. As `i∗ is not satisfied by α , a`i∗ reviews p`i∗ . Thus, aic
and a`i∗ form a review cycle of length two, as aic reviews pic, which is authored by a`∗i , and a`∗i reviews
p`∗i , which is authored by aic, a contradiction.

The above reduction crucially relies on the “sparsity” of the qualifications, i.e., that each agent is
qualified to review between two and three papers and that for each paper only two or three agents are
qualified to review it. Motivated by the observation that, in practice, reviewers are typically qualified to
review more than just two or three papers and that for each paper there typically exists more than just
two or three qualified reviewers, it is a natural question whether our above hardness result still extends
to this case. We answer this question affirmative by proving hardness for arbitrary δ+

A and δ−P , i.e., for
the case where each agent is qualified to review at least δ+

A papers and for each paper there exist at least
δ−P agents that are qualified to review to:

Proposition 1. For any z ≥ 2, δ−P ≥ 2 ≤ δ+
A , CYCLE-FREE REVIEWING is NP-hard, even if ∆−A =

∆+
P = 2, nA = nP , and creviewer = dpaper = 1.

Proof. Let δ := max(δ+
A , δ

−
P ). We reduce from the restricted NP-hard variant of CYCLE-FREE RE-

VIEWING considered in Theorem 1. Given an instance I = ((A ∪· P,EA ∪· EP ), creviewer = 1, dpaper =
1, z = 2) of CYCLE-FREE REVIEWING with ∆−A = ∆+

P = 2, we modify the instance I by introducing
two sets A′ and A′′ of δ agents each and two sets P ′ and P ′′ of δ papers each. All agents from A′ are
qualified to review all papers from P ′ and from P . In addition to being qualified to review some papers
from P (as captured in EA), all agents from A are qualified to review all papers from P ′′. Moreover, all
agents from A′′ are qualified to review all papers from P ′′. Thereby, all agents are qualified to review
at least δ papers and for each paper at least δ agents are qualified to review it. Notably, we still have
|A| = |P |. Thus, as agents from A′′ are only qualified to review papers from P ′′ and |A′′| = |P ′′|,
all papers from P ′′ need to be reviewed by agents from A′′ (which is always possible to do in without
creating a review cycle as no paper from A′′ has an author). Similarly, as papers from P ′ can only be
reviewed by agents from A′ and |A′| = |P ′|, all agents from A′ need to review papers from P ′ (which
is always possible to do in without creating a review cycle as no paper from A′ has an author). Thus,
all agents from A need to review papers from P from which the correctness of the reduction directly
follows.

Lastly, note that we did not modify the set of authors for any paper from P and did not add papers
with an author. Thus, it still holds in the modified instance that each agent authors at most two papers
and each paper has at most two authors (∆−A = ∆+

P = 2).

While we prove hardness for arbitrary δ+
A and δ−P , in our construction from Proposition 1, there are

always agents that are not qualified to review “many” papers (around 2
3 ) and always papers that cannot

be reviewed by “many” agents (around 2
3 ). Thus, interpreting a qualification as the absence of a conflict

of interest, for our NP-hardness agents need to have many conflicts. In Section 4, we prove that this does
not happen by accident, as if the number of conflicts per agent/paper (and ∆−A, ∆+

P , creviewer, and dpaper)
are “small”, then CYCLE-FREE REVIEWING always admits a solution.
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In WEIGHTED CYCLE-FREE REVIEWING it is possible to encode the “qualifications” of agents
into weights: If we modify the reduction from above and give an agent-reviewer pair weight one if the
agent is qualified to review the paper and weight zero otherwise, we get that WEIGHTED CYCLE-FREE

REVIEWING is NP-hard even if each agent is qualified to review all papers and we have few non-zero
weights.

Corollary 1. For any z ≥ 2, WEIGHTED CYCLE-FREE PEER REVIEWING is NP-hard, even if each
agent is qualified to review all papers, each agent gives only at most three papers a non-zero weight, for
each paper at most three agents give it a non-zero weight, ∆+

P ≤ 2 ≥ ∆−A, nA = nP , and creviewer =
dpaper = 1.

3.2 No Conflicts of Interest

We now extend the hardness from Corollary 1 for the case where each agent is qualified to review all
papers (no conflicts) to the unweighted case. However, our new reduction relies on the existence of
papers with many authors and agents authoring many papers.

To show that CYCLE-FREE REVIEWING is NP-hard even if each agent is qualified to review all
papers, nA = nP , creviewer = dpaper = 1, and z = 2 (Theorem 2), we reduce from MULTICOLORED

INDEPENDENT SET where we are given a graph G with vertices partitioned into k sets V 1, . . . , V k

(to which we refer as color classes) and the question is whether there exists a subset of k vertices,
containing one vertex from each class, that are pairwise non-adjacent. We denote as n := |V 1| the
number of vertices in the first color class and assume without loss of generality that n > k and that
|V c| := n + c − 1 for c ∈ [k] (note that we can do so because we can always add vertices that are
connected to all other vertices and put them into one of the color classes).

Construction. Given an instance I of MULTICOLORED INDEPENDENT SET G = (V =
(V 1, . . . , V k), E), we construct an instance I ′ of CYCLE-FREE REVIEWING as follows. For each color
c ∈ [k], we add a special agent ac∗ and a special paper pc∗. Moreover, for each vertex v ∈ V c, we add
a vertex agent acv and a vertex paper pcv. Further, we add n + c − 2 dummy agents ãc1, . . . , ã

c
n+c−2 and

n+ c− 2 dummy papers p̃c1, . . . , p̃
c
n+c−2. Lastly, we insert an agent a∗ and a paper p∗.

The paper p∗ is authored by all vertex agents and dummy agents. For color c ∈ [k], pc∗ is authored
by all vertex und dummy agents from colors c′ 6= c ∈ [k] and agent a∗. Further, all dummy papers p̃ci
for i ∈ [n + c − 2] are authored by the special agent ac∗. For a vertex v ∈ V c, paper pcv is authored by
the special agent ac∗, all agents corresponding to vertices from V c \ {v} or to vertices adjacent to v in G,
i.e., pcv is authored by agents {ac∗} ∪ {acv′ | v 6= v′ ∈ V c} ∪ {ac′v′ | c′ ∈ [k], v′ ∈ V c′ , {v, v′} ∈ E}. Each
agent is qualified to review all papers and we set creviewer = dpaper = 1 and z = 2.

Lemma 1. If the given instance I of MULTICOLORED INDEPENDENT SET is a YES-instance, then the
constructed instance I ′ of CYCLE-FREE REVIEWING is a YES-instance.

Proof. Let V ′ = {w1, . . . wk} ⊆ V be a independent set of size k in the given MULTICOLORED

INDEPENDENT SET instance I with wc ∈ V c for c ∈ [k]. From this we construct a solution for the
constructed CYCLE-FREE REVIEWING instance I ′ as follows. Agent a∗ reviews paper p∗. For c ∈ [k],
special agent ac∗ reviews special paper pc∗. Vertex agents {acv′ | v′ ∈ V c\{wc}} are assigned arbitrarily to
dummy papers p̃c1, . . . , p̃

c
n+c−2. Lastly, vertex agent acwc reviews paper pcwc and the dummy agents from

class c are assigned arbitrarily to the remaining vertex papers from this class. Note that by construction,
the described assignment is 1-1 valid. Moreover, it is easy to verify that no agent reviews a paper authored
by it so it remains to check for reviewing cycles of length two. All special agents are only authors of
papers from their color class but review papers authored solely by agents outside their color class. Thus
there exist no review cycles involving special agents. All papers a∗ wrote are reviewed by special agents
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so a∗ cannot be part of a review cycle. Dummy agents only write papers that are reviewed by special
agents and a∗ so no dummy agent can be part of a review cycle. Thus, every possible review cycle of
length two needs to involve two vertex agents. As no dummy paper is written by a vertex agent, the only
vertex agents that review papers authored by other vertex agents are those assigned to vertex papers, i.e.,
agents {a1

w1 , . . . a
k
wk}. Assume for the sake of contradiction that aiwi

(which reviews paper piwi
) forms a

cycle with reviewer ai
′

wi′ with i 6= i′ ∈ [k]. However, from this it follows by the definition of a review
cycle that ai

′

wi′ is an author of paper piwi
, which implies that {wi, wi′} ∈ E contradicting that V ′ is an

independent set.

We now turn to proving the backwards direction of the reduction. To do this, we first identify several
assignments that need to be made in all solutions to the constructed CYCLE-FREE REVIEWING instance.
We start by proving that a∗ needs to review p∗.

Lemma 2. In every 1-1 valid 2-cycle-free assignment in the constructed instance I ′, a∗ reviews p∗.

Proof. Recall that all agents except all special agents and agent a∗ are authors of p∗. So for the sake
of contradiction let us assume that special agent ac∗ for some c ∈ [k] reviews p∗. However, to prevent
a reviewing cycle, this implies that only the remaining k − 1 special agents and a∗ can review papers
written by ac∗. However, as ac∗ is an author of all vertex papers corresponding to vertices from V c and we
have assumed that each set V c consists of more than k vertices, these k agents are not enough to review
all papers written by ac∗, a contradiction.

We next prove that ac∗ reviews pc∗ for all c ∈ [k]. For this, we need the following lemma:

Lemma 3. In every 1-1 valid 2-cycle-free assignment in the constructed instance I ′, if ac∗ reviews paper
pc
′
∗ for c, c′ ∈ [k], then only vertex and dummy agents from class c′ and special agents can review dummy

and vertex papers from class c.

Proof. Note that the special agent ac∗ is an author of all dummy and vertex papers from color class c.
Moreover, paper pc

′
∗ is authored by all dummy and vertex agents from color classes different from c′.

Thus, if ac∗ reviews pc
′
∗ , then no vertex or dummy agent from a class different from c′ can review papers

written by ac∗. As ac∗ authors all dummy and vertex papers from class c, the lemma follows.

Using this, we are able to prove that each special agent reviews the corresponding special paper.

Lemma 4. In every 1-1 valid 2-cycle-free assignment in the constructed instance I ′, for c ∈ [k], ac∗
reviews pc∗.

Proof. By Lemma 2, a∗ is assigned to p∗, which is authored by all dummy agents and vertex agents.
Thus, to prevent the existence of reviewing cycles, only special agents can review papers written by a∗.
As for each c ∈ [k], pc∗ is written by a∗, it follows that the set of k agents {ac∗ | c ∈ [k]} needs to review
the set of k papers {pc∗ | c ∈ [k]}. For the sake of contradiction, let us assume that special agent ac∗
reviews paper pc

′
∗ for c 6= c′ ∈ [k]. We assume without loss of generality that c′ < c (if there exists a

pair where ac̃∗ reviews paper pc̃
′
∗ with c̃ < c̃′ there also has to exist one with c′ < c). By Lemma 3 and

as special agents need to review special papers, from this it follows that only dummy and vertex agents
from color c′ can review the vertex and dummy agents from class c (which are all written by ac∗). As we
have assumed that c′ < c, the number of these agents (2n + 2c′ − 3) does not suffices to review all of
these papers (2n+ 2c− 3), a contradiction.

We are now ready to prove the correctness of the backwards direction of the reduction:

Lemma 5. If the constructed instance I ′ of CYCLE-FREE REVIEWING is a YES-instance, then the
given instance I of MULTICOLORED INDEPENDENT SET is a YES-instance.
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Proof. From Lemma 2, Lemma 3, and Lemma 4 it follows that for each color c ∈ [k] every vertex and
dummy agent from this color class needs to review a vertex or dummy paper from this color class and
that each vertex or dummy paper from this color class needs to be reviewed by a vertex or dummy agent
from this color class. As there exist n + c − 2 dummy agents from color class c but n + c − 1 vertex
papers at least one vertex paper from color class c needs to be reviewed by a vertex agent from color
class c. Note that for each v ∈ V c, agent acv is an author of all vertex papers except pcv. Thus, for each
color c ∈ [k] there needs to exist (at least) one agent acwc

for some wc ∈ V c that reviews pcwc
. So let

a1
w1
, · · · , akwk

be a list of those agents (containing one vertex agent from each color class). We claim that
{w1, . . . , wk} forms an independent set in G. For the sake of contradiction assume that {wc, wc′} ∈ E
for c 6= c′ ∈ [k], then by construction it follows that acwc

who reviews paper pcwc
is an author of paper

pc
′
wc′

and similarly ac
′
wc′

who reviews pc
′
wc′

is an author of pcwc
. Thus, acwc

and ac
′
wc′

form a reviewing cycle,
a contradiction.

From Lemma 1 and Lemma 5, Theorem 2 directly follows:

Theorem 2. CYCLE-FREE REVIEWING is NP-hard even if each agent is qualified to review all papers,
nA = nP , creviewer = dpaper = 1, and z = 2.

The reduction from Theorem 2 heavily relies on the possibility that an agent reviews a paper written
by an agent with whom she has a joint paper. As some conferences might declare an automatic conflict
of interest for co-authors, we now consider the case where an agent is qualified to review all papers that
are not authored by one of her co-authors:

Theorem 3. CYCLE-FREE REVIEWING is NP-hard even if each agent is qualified to review all papers
that are not written by one of her co-authors, creviewer = dpaper = 1, and z = 2.

Proof. We reduce from CYCLE-FREE REVIEWING with creviewer = dpaper = 1, and z = 2 where agents
are not qualified to review papers of co-authors, which is NP-hard as proven in Theorem 1. We assume
without loss of generality that for each paper there is one agent who is not qualified to review it.

Construction. Given an instance I = ((A∪· P,EA∪· EP ), creviewer = 1, dpaper = 1, z = 2) of CYCLE-
FREE REVIEWING, we construct a new instance I ′ with agentsA′ and papers P ′ and c′reviewer = d′paper =
1 and z′ = 2. We start by settingA′ = A. Next, we add agents w, x, y, and z toA′. For each agent a ∈ A
and each paper p ∈ P , we insert an agent ap to A′ and add a so called agent paper which is authored by
a and ap to P ′. For each paper p ∈ P , we introduce an agent bp to A′. Moreover, we introduce nA · nP
dummy agents d1, . . . , dnA·nP to A′. We introduce five different (types of) papers in P ′:

• For each paper p ∈ P , we introduce a paper p to P ′ that is written by all authors of p, agent bp
and by agents ap for all agents a ∈ A that are not qualified to review p in I.

• We introduce a paper q authored by w and ap for all a ∈ A and p ∈ P .

• We introduce a paper q′ authored by x and ap for all a ∈ A and p ∈ P to P ′.

• We introduce a paper r authored by y and all dummy agents d1, · · · , dnA·nP and bp for each
p ∈ P .

• We introduce a paper r′ authored by z and all dummy agents d1, · · · , dnA·nP and bp for each
p ∈ P .

Each agent is qualified to review all papers that are not written by one of her co-authors.
(⇒) Given a 1-1-valid 2-cycle-free review assignment for I, we construct a 1-1-valid 2-cycle-free

review assignment for I ′ as follows. All agents from A still review the same papers as in the given
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assignment (which are all still qualified to do so because we have not added or removed any papers
with two authors from A apart from copies of papers from P ). Agent w reviews r, agent x reviews r′,
y reviews q′, and z reviews q (which are all are qualified to do so). Moreover, the dummy agents are
assigned arbitrarily to the agent papers, which they are qualified to review because dummy agents only
author papers together with agents {bp | p ∈ P} and y and z.

Concerning review cycles, note that agents {ap, bp | a ∈ A, p ∈ P} do not review any paper.
Moreover dummy agents only review papers written by agents {ap, a | a ∈ A, p ∈ P} but are only
reviewed by x and w and thus cannot be part of a review cycle. Moreover, also no agent from A can be
part of a review cycle because there was no such cycle in the given review assignment and all agents that
author a paper reviewed by an agent from A are not part of a review cycle. Thus, any review cycle needs
to consists of w, x, y, and z. Note that w reviews a paper of y, y reviews a paper of x, x reviews a paper
of z, and z reviews a paper of w. Thus, these agents form a 4-cycle but no 2-cycle.

(⇐) Given a 1-1-valid 2-cycle-free review assignment for I ′, we claim that this assignment restricted
to agents from A and papers from P is a solution to the given instance I. To prove this, we will argue
for all agents from A′ \ A that they cannot review a paper from P from which the correctness directly
follows, as we have not added any authors from A to papers from P . Fix some paper p′ ∈ P . We now
iterate over all agents A′ \A and argue why they cannot review p′. As we have assumed in I that for all
papers there is an agent not qualified to review it, it follows that p′ has an author a∗p′ for some a∗ ∈ A
and author bp′ in I ′. For agent w and x it holds that both have a joint paper with a∗p′ and thus cannot
review p′. Next, note that as, for each a ∈ A and p ∈ P , ap is either identical to a∗p′ or has a joint paper
with a∗p′ none of these agents can review p′. Lastly, di for some i ∈ [nA · nP ], bp for p ∈ P \ {p′}, and
y and z have a joint paper with bp′ , which is an author of p′. Thus, all these agents (and thereby no agent
from A′ \A) can review p′.

3.3 Single-Author-Single-Paper Setting

In their theoretical analysis, Barrot et al. [2020] focus on CYCLE-FREE REVIEWING where each agent
writes a single-author paper (we speak of an agent and its paper interchangeably) and qualifications are
symmetric, i.e., if an agent a is qualified to review agent b, then b is qualified to review a. They prove
that this problem is NP-hard for creviewer = dpaper = 1 and z = 5 (without bounds on ∆+

A or ∆−P ) but
polynomial-time solvable for arbitrary creviewer = dpaper for z = 2. We close the gap between these
two results and extend their general picture by proving that for creviewer = dpaper = 2, CYCLE-FREE

REVIEWING is NP-hard for z = 3 even if qualifications are symmetric and each agent is only qualified
to review four agents, i.e., we need to decide for each agent a which two of these four agents review a
and which two of these agents will get a review from a.

Theorem 4. CYCLE-FREE REVIEWING is NP-hard, even if z = 3, creviewer = dpaper = 2, ∆−A = ∆+
P =

1, nA = nP , each agent is qualified to review exactly four papers and if an agent a can review the paper
written by agent b, then b can review the paper of a.

To prove Theorem 4, we reduce from TWO-IN-FOUR-SATISFIABILITY, a variant of SATISFIABIL-
ITY, where given a propositional formula ϕ over variables X where each clause contains four different
literals, the question is whether there exists an assignment α of variables X such that in each clause
exactly two out of four literals are satisfied. As to the best of our knowledge, this variant of SATISFIA-
BILITY has not been considered before, we start by proving that it is NP-hard even if each literal appears
exactly twice positive and twice negative:

Proposition 2. TWO-IN-FOUR-SATISFIABILITY is NP-hard, even if each variable appears exactly
twice positive and twice negative.
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Proof. In MONOTONE NOT-ALL-EQUAL 3-SAT, we are given a propositional formula where each
clause contains three different positive literals and the question is whether there is a variable assign-
ment such that in each clause at least one literal is set to true and at least one is set to false. Reducing
MONOTONE NOT-ALL-EQUAL 3-SAT to TWO-IN-FOUR-SATISFIABILITY (without any additional re-
strictions) is straightforward: Given an instance of MONOTONE NOT-ALL-EQUAL 3-SAT, for each
clause, we introduce a new variable which we add to the clause. Thereby, we can extend a valid as-
signment α for the MONOTONE NOT-ALL-EQUAL 3-SAT instance by setting for a clause the newly
introduced variable to true if α originally sets only one literal from this clause to true and to false if α
originally sets only one literal from this clause to false. The reverse direction is immediate. However, to
achieve that each variable appears twice positive and twice negative, a slightly more involved approach
is needed.

In fact, for simplicity, we reduce from the NP-hard variant of MONOTONE NOT-ALL-EQUAL 3-SAT

where each variable appears in exactly four clauses [Darmann and Döcker, 2020]. Given an instance
ϕ = C1 ∧ · · · ∧ Cm over variables X of MONOTONE NOT-ALL-EQUAL 3-SAT, note that m needs to
be even, as there are m = 4·|X|

3 and m needs to be an integer. We now construct a new propositional
formula φ over variable set X ′ as follows. For each clause Ci = w ∨ x∨ y for i ∈ [m], we add variables
wi, xi, yi, and zi to X ′ and clauses wi ∨ xi ∨ yi ∨ zi and wi ∨ xi ∨ yi ∨ zi to φ. Now, every variable
appears once negative and once positive. It remains to link the copies of each variable.

We do this for each variable separately. Let x ∈ X be some original variable and let j1, . . . , j4
denote the list of all clauses where x appears in ϕ. We introduce dummy variables a1

x and a2
x to X ′ and

add clauses xj1 ∨ xj2 ∨ a1
x ∨ a1

x, xj2 ∨ xj3 ∨ a1
x ∨ a1

x, xj3 ∨ xj4 ∨ a2
x ∨ a2

x, and xj4 ∨ xj1 ∨ a2
x ∨ a2

x

to φ. As for each j ∈ [3], exactly one of xji and xji+1 need to be set to true, these clauses enforce
that xj1 , xj2 , xj3 , and xj4 , all have the same truth value. Lastly, for i ∈ [m2 ], we add twice the clause
z2i−1 ∨ z2i−1 ∨ z2i ∨ z2i which are always trivially satisfied.

The correctness of the reduction is immediate and all variables appear twice positive and twice
negative in φ.

Using this, we are now ready to prove Theorem 4:

Proof of Theorem 4. We reduce from TWO-IN-FOUR-SATISFIABILITY where each variable appears ex-
actly twice positive and twice negative.

Construction. Given an instance of TWO-IN-FOUR-SATISFIABILITY consisting of a propositional
formula ϕ = C1 ∧ · · · ∧ Cm over variables X = {x1, . . . , xn}, for i ∈ [n], we denote as tpos

i,1 and tpos
i,2

the indices of the two clauses in which variable xi appears positive and as tneg
i,1 and tneg

i,2 the indices of the
two clauses in which variable xi appears negative. From this, we construct an instance of PEER CYCLE-
FREE REVIEWING as follows. For i ∈ [n], we introduce four agents apos

i , aneg
i , a1

i , and a2
i (constituting

a gadget modeling this variable). Moreover, for j ∈ [m], we introduce one agent bj . Qualification are
symmetric, i.e., if agent a is qualified to review b, then b is qualified to review a. For i ∈ [n], apos

i is
qualified to review a1

i , a2
i , btpos

i,1
, and btpos

i,2
(and the other way round). Moreover, aneg

i is qualified to review

a1
i , a2

i , btneg
i,1

, and btneg
i,2

(and the other way round). Lastly, a1
i and a2

i are qualified to review each other and

a2
i and a1

i+1 are qualified to review each other (where i is taken modulo n). We set creviewer = dpaper = 2
and z = 3.

(⇒) Let α be an assignment of variables in X that is a solution to the given TWO-IN-FOUR-
SATISFIABILITY instance. For i ∈ [n − 1], we let a1

i review a2
i and a2

i review a1
i+1. Moreover, we

let a1
n review a2

n and a2
n review a1

1.
For i ∈ [n] where xi is set to true by α, we let a1

i and a2
i review a

pos
i and aneg

i review a1
i and a2

i .
Moreover we let apos

i review btpos
i,1

and btpos
i,2

and we let btneg
i,1

and btpos
i,2

review a
neg
i . Conversely, for i ∈ [n]
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where xi is set to false by α, we let a1
i and a2

i review a
neg
i , we let apos

i review a1
i and a2

i . Moreover, we
let aneg

i review btneg
i,1

and btneg
i,2

and let btpos
i,1

and btpos
i,2

review a
pos
i .

As α sets exactly two literals in each clause to true and two to false, for each j ∈ [m], bj is reviewed
by two agents and reviews two agents. The same also holds for all other agents, implying that the
constructed review assignment is 2-2 valid. It is easy to see that there are no 2-cycles. Moreover, as no
two agents bi and bj for i 6= j are qualified to review each other and, for no j ∈ [m], are there two agents
that are both qualified to review bj and that are qualified to review each other, each 3-cycle needs to
solely consist of agents from a gadget corresponding to a single variable. So let us fix some i ∈ [n]. The
only possible 3-cycles consist of apos

i , a1
i and a2

i or aneg
i , a1

i and a2
i . However, there is no such 3-cycle,

as either apos
i reviews both a1

i and a2
i and both a1

i and a2
i review a

neg
i , or aneg

i reviews both a1
i and a2

i and
both a1

i and a2
i review a

pos
i . Thus, the constructed assignment is 3-cycle-free.

(⇐) Assume we are given a 2-2-valid 3-cycle-free review assignment in the constructed CYCLE-
FREE REVIEWING instance. Assume that a2

n reviews a1
1 in the given assignment (if a1

1 reviews a2
n an

analgous argument works). We now argue that a1
1 needs to review a2

1. Assume for the sake of contra-
diction that this is not the case, then as a1

1 is reviewed by a2
n and a2

1, she needs to review a
pos
1 and

a
neg
1 . However, to prevent a 3-cycle, a2

1 then needs to review a
pos
1 and aneg

1 , a contradiction (as a2
1 gives

three reviews). Next, we want to argue that a2
1 reviews a1

2. For the sake of contradiction, assume that
a1

2 reviews a2
1. Then, a2

1 already gets two reviews and thus needs to review a
neg
1 and apos

1 . However, as
a1

1 already reviews a2
1 either aneg

1 or apos
n review a1

1 which leads to a 3-cycle together with a1
1 and a2

1.
Applying the same arguments inductively, it follows that for i ∈ [n − 1], a1

i review a2
i and a2

i reviews
a1
i+1 and that a1

n reviews a2
n.

Further, observe that for each i ∈ [n] agents a1
i and a2

i either both review a
pos
i or both get reviews

from a
pos
i . For the sake of contradiction, assume that this is not the case. If a2

i reviews apos
i and apos

i

reviews a1
i , then we have a 3-cycle consisting of these three agents. Otherwise, a1

i reviews apos
i and

a
pos
i reviews a2

i . However, as the given assignment is 2-2-valid, from this it follows that a2
i reviews aneg

i

and aneg
i reviews a1

i , which leads to a 3-cycle consisting of a1
i , a2

i , and aneg
i . Thus, we have reached a

contradiction proving our initial claim. Moreover, as the given assignment is 2-2 valid, in case that a1
i

and a2
i both review a

pos
i , then aneg

i reviews a1
i and a2

i , and in case that apos
i reviews both a1

i and a2
i , then

a1
i and a2

i both review a
neg
i . We now construct an assignment α by, for i ∈ [n], setting variable xi to

true if a1
i and a2

i review a
pos
i and xi to false if a1

i and a2
i review a

neg
i . Using our argument from above,

it follows that α is well-defined. Moreover, the given assignment is 2-2-valid, if α sets a literal to true,
then the agents corresponding to this literal review the agents corresponding to the two clauses in which
the literal appears. Similarly, if α sets a literal to false, then the agents corresponding to this literal get a
review from the two agents corresponding to the two clauses in which the literal appears. Thus, as each
agent corresponding to a clause gets and issues two reviews (as the given assignment is 2-2-valid), it
follows that α sets for each clause exactly two literals to true and thus that α is a solution to the given
instance of TWO-IN-FOUR-SATISFIABILITY.

4 Polynomial-Time Solvable Special Cases

In this section, we identify conditions under which a short-cycle-free review assignment provably exists
and can be computed in polynomial time. As we will see in our experiments, the subsequently presented
algorithms provide short-cycle-free review assignments even beyond the theoretical limitations we dis-
cuss below. As we are interested in computing z-cycle-free review assignments for z ≥ 1, no author is
allowed to review one of its own papers. That is why throughout this section we assume that we do not
have (a, p) ∈ EA and (p, a) ∈ EP at the same time.

Our algorithms in this section are based on the following simple observation: Given a partial z-
cycle-free review assignment E′ and a paper p ∈ P that requires more assigned reviewers, the number
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Algorithm 1: A greedy algorithm computing a dpaper-dpaper-valid completely cycle-free assign-
ment E′.
1 E′ ← ∅;S0 ←agents without papers
/* φi(a) is the free reviewing capacity of a before iteration i of

the for-loop from Line 3; each agent reviews at most dpaper
papers */

2 foreach a ∈ A do φ0(a)← dpaper
/* Assign reviewers to one paper per iteration: */

3 for i← 0 to nP − 1 do
4 foreach a ∈ A do φi+1(a)← φi(a)
5 select some (p, a) ∈ EP where p has no reviews yet

/* collect qualified reviewers and assign dpaper of them to p */
6 R← {b ∈ Si | (b, p) ∈ EA}
7 for j ← 1 to dpaper do
8 arbitrary b ∈ R reviews p : E′ ← E′ ∪ {(b, p)}
9 φi+1(b)← φi(b)− 1; R← R \ {b}

/* collect possible reviewers for next paper */
10 Si+1 := {a} ∪ {b ∈ Si | φi+1(b) > 0}
11 return E′

of potential reviewers that would create a z-cycle–if assigned to review p–is bounded by a function in z,
the maximum number ∆+

P of authors per paper, and the maximum number creviewer of reviews per agent;
the precise function is given in the subsequent proofs. Thus, assuming that the minimum number δ−P
of potential reviewers for each paper is large compared to z, ∆+

P , dpaper, and creviewer, for each paper p
there are always reviewers that can be assigned to review p without creating a z-cycle. Note that in
practice we can expect that z, dpaper, and creviewer are quite small. Moreover, while the minimum number
of fitting reviewers might be not very large, it is not uncommon to assign papers to reviewers that are
not “perfect”. Thus, interpreting δ−P as the number of community members that do not have a conflict of
interest actually yields relative large values for δ−P in practice.

We start with a very restrictive setting and then, step by step, generalize the approach and the results.
First, each paper is written by exactly one author, each agent has at most one paper and we want a
completely cycle-free review assignment (i. e., z-cycle-free for every z ∈ N). This of course implies that
some agents cannot be authors of papers and so the number nP of papers is smaller than the number nA
of agents. However, it allows Algorithm 1 to work (implicitly) with the topological ordering of the
(acyclic) review assignment while constructing it.

Proposition 3. If ∆−A ≤ 1 = δ+
P = ∆+

P , dpaper ≤ creviewer, and δ−P ≥ nP + dpaper, then Algorithm 1
computes a dpaper-dpaper-valid and completely cycle-free review assignment in linear time.

Proof. We first show the correctness of Algorithm 1. Clearly, if in each iteration of the loop in Line 3
the set of eligible reviewers R (see Line 6) is of size at least dpaper, then a completely cycle-free re-
view assignment is created as each agent only reviews papers from agents “occurring” later during the
algorithm. Observe that if |Si| ≥ nA − δ−P + dpaper for i ∈ {0, . . . , nP − 1}, then in iteration i we
have |R| ≥ dpaper: There are at most nA − δ−P agents in Si that cannot review p (the corresponding edge
is not in EA) and, thus, at least dpaper agents in Si are eligible to review p. It remains to show that |Si| ≥
nA−δ−P +dpaper for all i ∈ {0, . . . , nP −1} follows from our assumptions. By assumption of the lemma
we have nP ≤ δ−P −dpaper. Hence, |S0| = nA−nP ≥ nA−δ−P +dpaper. We next show that |Si| ≥ |S0| for
all i ∈ [nP −1]. Observe that at the start we have

∑
a∈S0

φ0(a) = |S0| ·dpaper. Moreover, after the ith it-
eration of the loop in Line 3 we have

∑
a∈Si+1

φi+1(a) =
∑

a∈Si
φi(a) as each paper gets dpaper reviews
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Algorithm 2: Greedy algorithm to compute a creviewer-dpaper-valid z-cycle-free review assign-
ment E′.
1 E′ ← ∅
2 while ∃p ∈ P : |N−(p,E′)| < dpaper do
3 if ∃(a, p) ∈ EA \ E′ : E′ ∪ {(a, p)} is z-cycle free and |N+(a,E′)| < creviewer then

/* Case 1: greedy assignment of reviews as long as no
z-cycles are created: */

4 E′ ← E′ ∪ {(a, p)}
5 else

/* Case 2: replace one review assignment by two: */
6 pick (a′, p′) ∈ E′ and a ∈ A so that |N+(a,E′)| < creviewer, (a′, p), (a, p′) ∈ EA,

and (E′ \ {(a′, p′)}) ∪ {(a′, p), (a, p′)} is z-cycle free
7 E′ ← (E′ \ {(a′, p′)}) ∪ {(a′, p), (a, p′)}

8 return E′

and the reviewer a in Si+1 \ Si starts with φi+1(a) = dpaper. Observe that φi(a) ≤ dpaper for all a ∈ A
and i ∈ {0, . . . , nP − 1}. Thus, we have |Si|dpaper ≥

∑
a∈Si

φi(a) =
∑

a∈S0
φ0(a) = |S0|dpaper and,

hence, |Si| ≥ |S0|. This completes the correctness proof.
As to the running time, everything outside the loop starting in Line 3 clearly runs in linear time. As

to the part inside the loop, note that by keeping just one array of length nA we can store the values of φ in
linear time. Moreover, the reviewers for p are selected arbitrarily fromR, which is doable in |N−(p,EA)|
time. Hence, the loop in Line 3 can be processed inO(nP + |EA|) time. Thus, the overall algorithm runs
in O(nA + nP + |EA|), that is, linear time.

For our next result we replace the completely cycle-free property of the resulting review assignment
with z-cycle freeness. This implies that the idea of constructing the review assignment along its topolog-
ical ordering (as done by Algorithm 1) cannot be employed. Instead, Algorithm 2 constructs greedily a
maximal z-cycle-free assignment and then extends the assignment by replacing one review assignment
by two other assignments. The argument behind the replacement strategy is an extension of the argument
in Algorithm 1 that there are always enough reviewers to assign in Lines 7 to 9.

To keep our arguments simple we first consider the case that each agent reviews at most one paper
and each paper requires one review. Moreover, as before, we are in the setting that each paper has one
author and each agent authors at most one paper. Formally, we have the following.

Proposition 4. If ∆−A ≤ 1 = δ+
P = ∆+

P = creviewer = dpaper, nA ≥ nP , δ+
A > z, δ−P > z, and nP ≤

δ+
A + δ−P − 2z, then Algorithm 2 computes a creviewer-dpaper-valid z-cycle-free review assignment in

polynomial time.

Proof. Obviously, Algorithm 2 terminates after at most nP iterations of the while loop as in each it-
eration the number of assigned reviews increases. Moreover, a creviewer-dpaper-valid z-cycle-free review
assignment is returned if a, a′, p′ as described in case 2 (Line 6) always exist. To prove their existence,
we introduce some notation. For some v ∈ A ∪· P let N+

z (v,E′ ∪· EP ) be the z-out-neighborhood of v,
that is, the set of vertices that can be reached from v in the review graph (A ∪· P,E′ ∪· EP ) via a path of
length at least one and at most 2z. Similarly, let N−z (v,E′ ∪· EP ) be the 2z-in-neighborhood of v, that
is, the set of vertices that can reach v in the review graph (A ∪· P,E′ ∪· EP ) via a path of length at least
one and at most 2z. Note that if v ∈ N−z (v,E′ ∪· EP ), then also v ∈ N+

z (v,E′ ∪· EP ) and v is contained
in a review cycle of length z (that is a directed cycle of length 2z in (A ∪· P,E′ ∪· EP )). Subsequently,
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we present upper bounds on the size of N−z (v,E′ ∪· EP ) and N+
z (v,E′ ∪· EP ) for v ∈ A ∪· P thereby

proving the existence of a, a′, p′.
Let p ∈ P be the paper without reviewer selected in Line 2 when the algorithm enters case 2.

Let Ap ⊆ A be the set of agents that could review p without creating a z-cycle, that is, Ap := {a ∈ A |
(a, p) ∈ EA ∧ E′ ∪ {(a, p)} is z-cycle free}. Since dpaper = creviewer = ∆+

P = 1, there are at most z
agents whose assignment to review p would create a review cycle, that is, |N+

z (p,E′ ∪· EP ) ∩ A| ≤ z,
and thus |Ap| ≥ δ−P − z. Since we are in case 2, no more review assignments could be added without
creating a z-cycle. Hence, the algorithm assigned the at least δ−P −z potential reviewers inAp to different
papers. Let Pp be the set of these papers. Since dpaper = creviewer = 1 we have |Pp| = |Ap| ≥ δ−P − z.

Let a ∈ A be an arbitrary agent without assigned review, that is, @p′′ : (a, p′′) ∈ E′. Since dpaper =
creviewer = ∆−A = 1, we have |N−z (a,E′∪·EP )∩P | ≤ z. Thus, there are δ+

A−z papers that a could review
without creating a z-cycle; letPa denote the set of these papers. Since we assume that nP ≤ δ+

A+δ−P−2z,
it follows that there is a p′ ∈ Pa∩Pp. By definition of Pp there is an agent a′ with (a′, p′) ∈ E′ and a′ ∈
Ap. Thus, a, a′, p′ exist and E′ can be updated to (E′ \ {(a′, p′)}) ∪ {(a′, p), (a, p′)} in Line 7.

We now turn our attention to our general case where agents can author and review many papers and
papers can have multiple authors and can require several reviews. While the conditions that guarantee the
existence of a z-cycle-free review assignment need adjustments, we can still use Algorithm 2 together
with a correctness proof that follows a similar pattern as the proof of Proposition 4.

Theorem 5. If, nA·creviewer ≥ nP ·dpaper, δ+
A > 2(∆−A ·dpaper)

z+creviewer, δ−P > 2(∆+
P ·creviewer)

z+dpaper,
and nP ≤ δ+

A − 2(∆−A · dpaper)
z − creviewer + (creviewer/dpaper)(δ

−
P − 2(∆+

P · creviewer)
z − dpaper), then

Algorithm 2 computes a creviewer-dpaper-valid z-cycle-free review assignment in polynomial time.

Proof. We use the same notation as in the proof of Proposition 4 and similarly to this proof we need to
show that a, a′, p′ as described in Line 6 actually always exist.

Let p ∈ P be the paper with a missing review selected in Line 2 and the algorithm entered case 2.
Let Ap ⊆ P be the set of agents that could review p without creating a z-cycle, that is, Ap := {a ∈ A |
(a, p) ∈ EA \ E′ ∧ E′ ∪ {(a, p)} is z-cycle free}. As every paper has at most ∆+

P authors and every
author has at most creviewer assigned papers to review, it follows that

|N+
z (p,E′ ∪· EP ) ∩A| ≤ ∆+

P ·
z−1∑
i=0

(∆+
P · creviewer)

i

= ∆+
P · ((∆

+
P · creviewer)

z − 1)/((∆+
P · creviewer)− 1)

< 2(∆+
P · creviewer)

z.

Thus, |Ap| > δ−P − 2(∆+
P · creviewer)

z − dpaper, as at most dpaper − 1 agents are already assigned to p
and at most |N+

z (p,E′ ∪· EP ) ∩ A| < 2(∆+
P · creviewer)

z agents cannot review p because this would
cause a review cycle of length at most z. When case 2 was entered, no more review assignment could be
added without creating a z-cycle. Hence, the algorithm assigned the potential reviewers in Ap already to
different papers. Let Pp be the set of these papers. Note that |Pp| ≥ creviewer|Ap|/dpaper.

Let a ∈ A be an arbitrary agent that can do one more review, that is, |N+(a,E′)| < creviewer. Using a
similar argument as above, we can show |N−z (a,E′ ∪· EP )∩P | < 2(∆−A · dpaper)

z . Thus, there are more
than δ+

A − 2(∆−A · dpaper)
z − creviewer papers that a could review additionally without creating a z-cycle;

let Pa denote the set of these papers. Note that by our assumptions that δ+
A > 2(∆−A · dpaper)

z + creviewer
and δ−P > 2(∆+

P · creviewer)
z +dpaper, Pa and Pp are both non-empty. Since nP ≤ δ+

A − 2(∆−A ·dpaper)
z−

creviewer + (creviewer/dpaper)(δ
−
P − 2(∆+

P · creviewer)
z − dpaper) < |Pa| + |Pp|, it follows that there is

a p′ ∈ Pa ∩ Pp. By definition of Pp there is an agent a′ with (a′, p′) ∈ E′ and a′ ∈ Ap. Thus, a, a′, p′

exist and E′ can be updated to (E′ \{(a′, p′)})∪{(a′, p), (a, p′)} in Line 7. This finishes the correctness
proof.
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To simplify the statement of Theorem 5 consider a “symmetric” case where nA ≥ nP , δ−P = δ+
A ,

and ∆+
P = ∆−A. For brevity, set n := nP , δ := δ−P , and ∆ := ∆+

P . Let coi be the maximum number of
papers any agent is not qualified to review/has a conflict of interest with, that is, coi = n − δ. Setting
creviewer = 6 and dpaper = 3 as in our experiments we get:

Corollary 2. If n − 6 ≥ 1.5 · coi +∆z(6z · 2 + 3z), then there always exists a 6-3-valid z-cycle-free
review assignment that can be found in polynomial time.

Considering that AAAI’22 had 9,251 submissions and that there was a submission limit of 10 papers
per author and assuming that each paper has at most ten authors (implying that ∆ = 10) and that
each author has at most 700 conflict of interests, it follows that there is a 6-3-valid 2-cycle-free review
assignment computable with Algorithm 2.

As we see in the experiments in the next section, our algorithm returns 2/3/4-cycle-free review
assignments even well beyond the theoretical guarantees given above. We also remark that Algorithm 2
allows for an easy extension to the weighted case which we use in our experiments in the next section. To
this end, in the first case (Line 4) we do not pick an arbitrary edge (a, p) but a eligible edge of maximum
weight to be added to the assignment E′.

5 Experiments

In this section, we compare the weight of review assignments computed using different methods and
analyze the occurrences of review cycles.2 For this, we use a dataset from the 2018 International Con-
ference on Learning Representations (ICLR ’18) prepared by Xu et al. [2019]. Xu et al. [2019] collected
all 911 papers submitted to ICLR ’18 and the identity of all 2428 authors. As reviewers identities are un-
known, they considered all authors to be reviewers and computed for each author-paper pair a similarity
score.3

From the dataset of Xu et al. [2019], we created multiple instances of WEIGHTED CYCLE-FREE

REVIEWING as follows. Given a number nP of papers and a ratio rAP of the numbers of agents and
papers, we sample a subset of nP of the 911 ICLR ’18 papers and set this as our set of papers. Subse-
quently, we compute the set of all authors of one of these papers and sample a subset of rAP ·nP authors
and set this as our set of agents. Notably, the created instances can be seen as particularly challenging
when it comes to avoiding review cycles, as in reality also “uncritical” reviewers, i.e., reviewers that do
not author any paper, exist.

As done in other papers using the same dataset, we focus on the case with dpaper = 3 and creviewer = 6,
i.e., every paper needs exactly three reviews and each agent can review at most six papers [Jecmen et al.,
2020, Xu et al., 2019]. We consider three different types of review assignments: As “optimal” we denote
a maximum-weight creviewer-dpaper-valid review assignment. Such an assignment can be computed using
a simple Linear Program (LP) as, for instance, described by Taylor [2008]. As “optimal z-cycle free”
we denote a maximum-weight creviewer-dpaper-valid z-cycle-free review assignment. This solution can be
computed by treating the LP of Taylor [2008] as an Integer Linear Program (ILP) and adding for each
possible i-cycle for i ∈ [z] a separate constraint which imposes that at least one of the agent-paper pairs
from the cycle is not assigned. We solved all (I)LPs using Gurobi Optimization, LLC [2021]. Lastly, as
“heuristic z-cycle free”, we denote a creviewer-dpaper-valid z-cycle-free review assignment computed by
the weighted variant of Algorithm 2 as described at the end of Section 4.4 In all experiments conducted in
this section, the heuristic always returned a solution despite the fact that most of the time we are beyond
the setting in which Theorem 5 guarantees this behavior of the heuristic. In experiment I presented in

2The code for our experiments is available at github.com/n-boehmer/Combating-Collusion-Rings-is-Hard-but-Possible.
3To the best of our knowledge, in all other publicly available datasets, there are similarity scores for reviewer-paper pairs

but the link between the identities of authors and reviewers is missing (as this is considered sensitive information).
4We could not use the heuristics of Guo et al. [2018] as these are not available and their algorithm details are ambiguous.
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Figure 1: For different values of
z, weight of an optimal/heuristic
z-cycle-free assignment divided
by the weight of an optimal as-
signment.
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Figure 2: Fraction of agents that
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types of assignment.
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Figure 3: Fraction of papers that
are part of a review cycle of at
most some length for different
types of assignment.

the following subsection, for z = 2/3/4, an unoptimized implementation of our heuristic was always
able to find a z-cycle-free review assignment in less than 30 seconds, being on average around 2 times
faster than the “optimal” LP, on average around 3.7 times faster than the “optimal 2-cycle free” ILP, and
on average more than 100 times faster than the “optimal 3-cycle free” ILP.

5.1 Experiment I

In this experiment, we focus on the case where the total number of needed reviews is the same as the
total number of reviews that can be written, which is in some sense the most “challenging” but probably
also one of the more realistic scenarios. Specifically, for nP ∈ {150, 175, . . . , 900}, we prepared 100
instances with rAP = 0.5 as described above and computed for each of these instances the optimal,
heuristic 2/3/4-cycle-free, and optimal 2-cycle-free review assignment. Moreover, for all instances with
nP ≤ 225, we also computed the optimal 3-cycle-free review assignment (for larger instances the ILP
solver run out of memory.)

To measure the “price of z-cycle freeness”, in Figure 1, we display the weights of different cycle-free
review assignments divided by the weight of an optimal review assignment. What stands out here is that
forbidding the existence of 2-cycles only comes at the cost of decreasing the assignment’s weight by on
average at most 0.8% (if the optimal 2-cycle-free assignment is used). Turning to the results produced
by our heuristic, the quality decrease for 2/3/4-cycle-free assignments lies, on average, around 3.1%,
3.2%, and 3.3%. The weight of assignments computed using our heuristic is thus clearly worse than the
weight of the optimal cycle-free assignment, yet still not far away from the the weight of an optimal
assignment. What is particularly surprising here is that for both our heuristic and the optimal cycle-free
assignment, whether 2, 3 or 4 cycles are forbidden seems to be rather irrelevant for the quality decrease.
All in all, it is encouraging that 2/3/4-cycle freeness can be realized at a low cost independent of whether
our heuristic or an ILP is used.

The necessity of dealing with review cycles is underlined by the data displayed in Figure 2. Here, we
show the fraction of agents that are contained in at least one review cycle of some length in an optimal
assignment and in a heuristic 2/3-cycle-free assignment. Overall, as the number of papers increases the
fraction of agents contained in review cycles constantly decreases, yet for all considered values of nP
the results are worrisome. In the optimal assignment for 150 papers, the fraction of agents contained
in a review cycle of length at most 2/3/4 is, on average, 40%/58%/76% , while even for 900 papers,
still 32%/41%/55% of agents are contained in a review cycle. Considering heuristic z-cycle-free as-
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of a review cycle of at most some length in an
optimal assignment for 200 papers and between
100 and 400 agents.

signments, the fraction of agents contained in a cycle of length z + 1 is considerably lower than for the
optimal solution but still non-negligible (the results for optimal 2/3-cycle-free assignments are similar
to the displayed results for our heuristic).

We also computed the fraction of papers that are contained in at least one review cycle (see Figure 3).
The results are as in Figure 2 with all values roughly halved, e.g, even in the optimal assignment for 900
papers, 15%/20%/27% of papers are contained in a review cycle of length at most 2/3/4. An intuitive
explanation for this difference between agents and papers is that the number of papers is twice the
number of agents and that there exist some papers without reviewing authors. Overall, it is striking
that even for a high number of papers, in an optimal assignment around 15% of papers could have a
considerably higher chance of getting accepted if two agents coordinate to give each others paper better
reviews and 32% of reviewers would have an opportunity to participate in such a collusion.

5.2 Experiment II

In this experiment, we analyze how the results from experiment I depend on the assumption that
the supply and demand of reviews exactly matches. In particular, as describe before, for rAP ∈
{0.5, 0.6, . . . , 1.9, 2} we prepared 100 instances with 200 papers and rAP · 200 agents (we also re-
peated this experiment for 400 and 600 papers producing similar results) and computed the differ-
ent types of review assignments. Considering the assignment weights (see Figure 4), increasing rAP

from 0.5 to 2, the normalized weight of an optimal 2/3-cycle-free assignment decreases by 0.005 to
0.987/0.985, while the normalized weight of a heuristic 2/3/4-cycle-free assignment increases by 0.01
to 0.982/0.979/0.976: our heuristic performs particularly well if there are (considerably) more reviews
available then needed; this supports our theoretical statements for our heuristic in Section 4.

Turning to the possible impact of review cycles, we visualize the fraction of agents/papers contained
in a review cycle in an optimal assignment in Figure 5.5 While the fraction of agents contained in a
review cycle constantly and significantly decreases if more and more agents are added, the fraction
of papers contained in a cycle constantly increases. The former observation is quite intuitive, as when
more and more agents are added, the average review load decreases and even if the number of review
cycles remains the same, it is likely that the fraction of agents contained in one gets smaller. The latter
observation is less intuitive but probably a consequence of the fact that, starting with rAP = 0.5, for

5For readability, we do not display the values for the optimal/heuristic cycle-free assignment, as their relationship to the
optimal assignment is again similar as in Figure 2.
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some papers none of the authors is part of the agent set, implying that these papers cannot be part of a
review cycle; however, if we start to add more and more agents, more and more papers can potentially be
part of a review cycle. Overall, it might be quite counter intuitive that adding more and more reviewers
(that are also authors) to the reviewer pool does not decrease the number of papers contained in a review
cycle but increases them.

6 Conclusion

Our work provides a first systematic analysis of CYCLE-FREE REVIEWING. On the theoretical side,
we show that CYCLE-FREE REVIEWING is a computationally hard problem even in very restricted
settings, yet practically relevant polynomial-time solvable special cases exist. In our practical analysis,
we could show that in assignments that do not care for review cycles a high fraction of authors and papers
will likely be part of a short review cycle. While collusion rings can certainly also emerge without the
existence of review cycles, for example, when authors coordinate over multiple conferences [Littman,
2021, Shah, 2021], allowing so many easy opportunities means to leave a huge door unlocked without
good reason: Our heuristic significantly improves the situation, since it seems to always find cycle-free
review assignment at a very low quality loss.

For future work, it would be valuable to further investigate the limits of our heuristic. While our
current bounds are certainly not tight, there are also clear limitations for possible extensions imposed by
our NP-hardness results in quite restrictive settings from Section 3. However, a concrete and practically
very relevant open question is whether the minimum degree in our analysis can be replaced by the
average degree; this would make the results much more robust against outliers. Finally, due to the lack
of data, we tested our model on just one dataset. Obtaining more data to test our and other models on
would be extremely valuable.
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