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Abstract

We introduce successive committees elections. The point is
that our new model additionally takes into account that “com-
mittee members” shall have a short term of office possibly
over a consecutive time period (e.g., to limit the influence
of elitist power cartels or to keep the social costs of over-
loading committees as small as possible) but at the same time
overly frequent elections are to be avoided (e.g., for the sake
of long-term planning). Thus, given voter preferences over a
set of candidates, a desired committee size, a number of com-
mittees to be elected, and an upper bound on the number of
committees that each candidate can participate in, the goal is
to find a “best possible” series of committees representing the
electorate.
We show a sharp complexity dichotomy between computing
series of committees of size at most two (mostly in polyno-
mial time) and of committees of size at least three (mostly
NP-hard). Depending on the voting rule, however, even for
larger committee sizes we can spot some tractable cases.

Introduction
The study of committee elections, that is, to elect a group
of representatives for a group of voters, gained strong inter-
est over the recent years (Faliszewski et al. 2017). In this
work, we consider the election of committees whose mem-
bers have short term of office (possibly in consecutive time
slots). This is motivated by, for example, avoiding the over-
loading of committee members or excluding the danger of
elitist power cartels. Modeling this, we arrive at the follow-
ing, to the best of our knowledge new model for multiwinner
voting: The input is a set of preferences over candidates (the
votes) and a natural number specifying how many commit-
tees, each of same fixed size, should be built. The goal is to
output a corresponding series of same-size committees such
that, altogether, we get a “best possible” selection. To this
end, we introduce committee evaluation functions (based on
multiwinner voting rules) together with egalitarian and util-
itarian aggregation functions, thus yielding an overall eval-
uation of the quality of a series of committees. Moreover,
we allow to model constraints such as a committee member
having to serve in a subseries of consecutive committees and
allowing only a limited number of committee participations
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language skills A B C D E F
Mandarin � � � �

Spanish � � � �
French � �
Arabic �
Hindi �

Table 1: The company’s available data on individual em-
ployees qualifications. Symbol � denotes approval.

per member. Notably, our setting is still an offline, not an
online scenario.

Our model can be applied when a selection of a “best”
series of same-sized groups (committees) of candidates is
needed. For illustration, consider the following simple ex-
ample. Imagine we are operating a big company providing a
complex service system to customers. More specifically, at
the beginning of every month the task is to build and sched-
ule weekly size-two service teams throughout the month.
The company follows a travel policy aimed at keeping a
necessary trade-off between their employees’ travel friction
and its business outcomes (see a field study on road war-
riors (Airlines Reporting Corporation 2018) describing the
importance of such policies). Thus, each employee can be
“on external service” (including traveling and hotel stays)
for at most two weeks per month. For the same reason,
the company favors consecutive service periods for every
employee. Moreover, for each employee there is data (pro-
vided both by the customers and by the internal files of
the company) that, in the simplest form, approves or dis-
approves each employee for certain qualifications (e.g., lan-
guage skills).

At first glance, it seems beneficial to select the “highest
scoring” employees according to the data to form the service
teams. However, if these employees hold very similar qual-
ifications (i.e., are supported by a relatively coherent set of
the “voters”), then this simple “greedy strategy” fails to pro-
vide a good selection of (matched-up) service teams. In par-
ticular, it may suffer from lack of diversity. Such a situation
is exhibited in Example 1. For clarity, the example features a
very small election where an optimal outcome can be found
by checking all possible solutions. However, this approach
starts to be computationally infeasible for only little bigger



instances (e.g. selecting ten committees of size three out of
ten candidates), which are likely to happen in real world.
Example 1. Suppose that we consider seven potential ser-
vice employees—A,B, . . . , F—for four service weeks. Ac-
cording to Table 1, the four most qualified employees are A,
B, C, and D. They all have at least two language skills.
Thus, a greedy solution based on individual qualifications
may select {A,C} for the first two weeks and {B,D} for
the last two weeks.

However, a (more diverse) group of employees that will
gather the largest collective set of qualifications is A, B, E,
and F . Selecting {A,E} for the first two weeks and {B,F}
for the last two weeks allows to cover three instead of two
distinct qualifications per week (and covers all qualifications
over the whole month).

The phenomenon described in Example 1 shows that
one has to be very careful when selecting successive
committees—in our example these size-two committees
consist of the selected employees. Compared with our forth-
coming concept of electing successive committees, classic
multiwinner elections are too limited to fully capture the
above indicated setting. They could easily be used to dis-
tinguish between {A,B,C,D} and {A,B,E, F} but not to
distinguish between {A,B}, {E,F} and {A,E}, {B,F}.

Summarizing, classic multiwinner elections are not suit-
able to model tasks as described in our service science ex-
ample. These include issues like how to choose employees
and arrange them in weekly teams, how to arrange teams
such that each employee is on external service for at most
two consecutive weeks, and how to make sure that the cus-
tomer satisfaction is maximized. All this leads us to our new
mathematical model (referred to as electing successive com-
mittees), which can be interpreted as an extension of multi-
winner elections. Our model is capable of capturing series
of same-sized committees with additional requirements on
the number of committees candidates can be part of, indeed
going significantly beyond the questions described in the
example. Our model is quite flexible also in terms of used
voting rules and in terms of defining the value (or quality)
of a committee series (we study both utilitarian and egali-
tarian evaluation); however, this needs some mathematical
machinery and that is why we defer the formal problem def-
initions and statements of results to the next section. Now,
we provide a high-level overview of our contributions.

Our Contributions. To the best of our knowledge, our se-
rial view on committees selected in multiwinner elections
is new. Our mathematical model, which is parameterized by
various committee evaluation functions (e.g., approval, cov-
erage, Chamberlin-Courant variants, and weakly separable
functions), and two committee quality evaluations (egalitar-
ian versus utilitarian), turns out to be structurally very rich.
Concerning the corresponding computational complexity of
determining the each time “best possible” series of com-
mittees, we experience sharp borders between polynomial-
time solvability and NP-hardness. Very roughly, our cen-
tral message here is that size-two committees (recall the
service teams example) allow for their efficient computa-
tion whereas size three or more leads to NP-hardness with,

however, notable tractable exceptions in the utilitarian set-
ting (which generally seems easier to handle). Many of our
proofs rely on intimate and subtle relations to matching
problems in algorithmic (hyper)graph theory. Refer to Ta-
ble 2 for a fairly comprehensive overview on the complexity
landscape. Modeling successive committees elections, we
believe having added a new and well-motivated “dimension”
to studying multiwinner elections. For instance, as a side-
effect we provide new variants of prominent voting rules
emerging from our modeling.

Related work. In the spirit of adding new dimensions to
classic multiwinner voting, our work is somewhat related
to the current study of other dimensions such as robustness
recently considered by Bredereck et al. (2017) and Misra
and Sonar (2019); diversity recently considered by Bred-
ereck et al. (2018), Celis, Huang, and Vishnoi (2018), and
Lang and Skowron (2018) (see therein for more literature
on diversity); or participatory budgeting recently consid-
ered by Fluschnik et al. (2019) and Talmon and Faliszewski
(2019) (see therein for a broader literature review on partic-
ipatory budgeting). Specifically, let us mention two related
directions in terms of modeling. First, Freeman, Zahedi, and
Conitzer (2017) studied dynamic social choice where can-
didates are selected sequentially and repeatedly. This is an
online scenario (ours is offline) and has quite different fea-
tures; for instance, there, the agents/voters may change their
candidate valuations at each time step, they do report utili-
ties (not approvals or rankings), and, with the help of greedy
algorithms, the aim is to maximize long-term Nash social
welfare. Second, Aziz and Lee (2018) studied subcommit-
tee voting in the context of approval voting; here a single
committee consisting of subcommittees is selected. In their
model, selected subcommittees are independent (in terms of
candidates they are consisting of) of each other and there is
no explicit time dimension and corresponding ordering of
subcommittees.

All missing (parts of) proofs are deferred to a full version
of the paper.

Basic Definitions and Problem
For a positive integer x, we use [x] to denote set
{1, 2, . . . , x}. An election E is a pair (C, V ) where
C = {c1, c2, . . . , cm} is a set of candidates and V =
{v1, v2, . . . , vn} is a collection of voters. In our work, we
focus on the two perhaps most popular election models: the
approval model and the ordinal model. In the former, each
voter vi specifies a set A(i) ⊆ C of approved candidates. In
the latter, each voter vi gives a ranking (i.e., a strict order)�i
of candidates; the top candidate according to �i is the can-
didate that is preferred the most by vi. For some voter vi
and a candidate c, by posi(c), we denote the position of c in
vi’s ranking.

Committees and Their Evaluation. A group of k candi-
dates is called a committee of size k. A function mapping
a committee to a nonnegative integer is called a committee
evaluation function while its output for a particular commit-
tee is called a committee quality.



Chamberlin-Courant (CC) egal. Chamberlin-Courant (eCC) weakly separable (∈ FWS)
k = 2 k ≥ 3 k = 2 k ≥ 3 k = 2 k ≥ 3

util
P, f ≤ 2 ( Thm. 2)

NP-h ( Thm. 6) P, f ≤ 2 ( Thm. 2)
NP-h ( Thm. 6) P ( Thm. 1) P ( Thm. 1)

P, t = f · x ( Cor. 2) P, t = f · x ( Cor. 2)
egal P ( Thm. 3, Cor. 3) NP-h ( Thm. 6) P ( Thm. 3, Cor. 3) NP-h ( Thm. 6) P ( Thm. 3, Cor. 3) NP-h ( Thm. 7)

Approval (App) threshold Approval CC (trCCα) Approval CC (AppCC)
k = 2 k ≥ 3 k = 2 k ≥ 3 k = 2 k ≥ 3

util P ( Thm. 2, Cor. 1) P ( Cor. 1) P ( Thm. 2, Cor. 2) NP-h ( Thm. 5) P, f ≤ 2 ( Thm. 2)
NP-h ( Thm. 5)

P, t = f · x ( Cor. 2)
egal P ( Thm. 3, Cor. 3) NP-h ( Thm. 7) P ( Thm. 3, Cor. 3) NP-h ( Thm. 5) P ( Thm. 3, Cor. 3) NP-h ( Thm. 5)

Table 2: The summary of the results for the approval (top) and the ordinal (bottom) model of elections. If not stated differently,
then the results hold for any frequency value (f ) and for any size of a target time series (t).

Evaluating committees in the ordinal model comes natu-
rally with extending the committee scoring functions intro-
duced by Elkind et al. (2017) and further studied by Aziz
et al. (2018) focusing on egalitarian variants of commit-
tee scoring functions. Although several of our results are
general enough to cover all computable committee scoring
functions, we focus on the rules described in Definition 1
below. We picked a varied selection of rules; from rules
that assign each candidate a number of points separately
(weakly separable committee scoring rules) to more com-
plicated ones that try to cover a concept of representing a set
of voters by, intuitively, relating a value of a single candi-
date to the other candidates in a committee (variants of the
Chamberlin-Courant misrepresentation measure (Chamber-
lin and Courant 1983; Betzler, Slinko, and Uhlmann 2013)).

Definition 1. Consider election E = (C, V ) with candi-
dates C = {c1, c2, . . . , cm}, voters V = {v1, v2, . . . , vn}
with ordinal-based preferences, and a committee S =
{w1, w2, . . . , wk} of size k. We consider the following com-
mittee evaluation functions:

CC: Chamberlin-Courant (Borda scores):
CC(S) =

∑
i∈[n] maxj∈[k](m− posi(wj)),

eCC: egalitarian Chamberlin-Courant (Borda scores):
eCC(S) = mini∈[n] maxj∈[k](m− posi(wj)),

FWS: the family of weakly separable committee scoring
functions: a committee evaluation function Q, is weakly
separable if, for some function φ : [m] → N0, Q(S) =∑
i∈[n]

∑
j∈[k] φ(posi(wj)).

In the approval model, we use adaptations of the
Chamberlin-Courant rule to approval-based pref-
erences (Procaccia, Rosenschein, and Zohar 2008;
Betzler, Slinko, and Uhlmann 2013; Skowron, Fal-
iszewski, and Lang 2016) and a basic sum of all approvals
given to the candidates in the committee. Definition 2 below
formally describes the committee evaluation functions we
use in the approval model.

Definition 2. Consider election E = (C, V ) with C =
{c1, c2, . . . , cm}, voters V = {v1, v2, . . . , vn} with
approval-based preferences, and a committee S =
{w1, w2, . . . , wk} of size k. We consider the following com-
mittee evaluation functions:

App: Approval voting: App(S) =
∑
i∈[n] |A(i) ∩ S|,

trCCα: threshold-α Chamberlin-Courant, α ∈ (0, 1]:

trCCα(S) =

{
1 if |{i ∈ [n] |A(i) ∩ S 6= ∅}| ≥ αn,
0 otherwise.

AppCC: (approval score) Chamberlin-Courant/MaxCover:
AppCC(S) = |{i ∈ [n] | A(i) ∩ S 6= ∅}|.

Committee Series and Their Quality. Let C =
{c1, c2, . . . , cm}. A committee series SC of size t is a size-
t vector of same-size committees consisting of candidates
from C; we usually omit a subscript if a set of candidates is
clear from the context. Consider some committee series S =
(S1, S2, . . . , St) of size t. For each candidate c ∈ C, we de-
fine a participation set P(c) = {i | c ∈ Si}. We call S
an f -frequency committee series if each candidate partici-
pates in at most f committees, that is, for all c ∈ C it holds
that | P(c)| ≤ f . If additionally in an f -frequency commit-
tee series each candidate participates in consecutive com-
mittees only, then the series is a consecutive f -frequency
committee series. Formally, an f -frequency committee se-
ries S is consecutive if for each candidate c ∈ C such
that P(c) 6= ∅ it holds that maxj∈P(c) j−minj∈P(c) j+1 =
| P(c)|. For some committee evaluation function Q, let U =
(u1, u2, . . . , ut) be a size-t vector such that ui = Q(Si), that
is, U is a vector of quality values of all committees in S. We
define two variants of committee series quality:
• utilitarian: util(U) =

∑
i∈[t] ui and

• egalitarian: egal(U) = mini∈[t] ui.
To simplify our notation, in a natural way we extend com-
mittee evaluation functions to operate on vectors of commit-
tees. Thus, applying a committee evaluation function Q to
a committee series S = (S1, S2, . . . , St), we obtain a vec-
torQ(S) = (Q(S1), Q(S2), . . . , Q(St)) of quality values of
the committees in S.

Problem Definition. Our central problem reads as fol-
lows.
X-Y -SUCCESSIVE COMMITTEES ELECTION (X-Y -SCE)
X ∈ {util, egal}, Y ∈ {App, trCC, eCC,CC,AppCC} ∪ FWS
Input: Election E = (C, V ) with candidates C and vot-
ers V , a number t of committees in a target series, a size k
of committees in a target series, a maximum candidate fre-
quency f , and a minimal committee quality p.
Question: Is there a consecutive f -frequency committee
series S of size t consisting of size-k committees such that
X(Y (S)) ≥ p?



Example 2. Consider an election E with six candidates c1
to c6 and three voters v1, v2, and v3 with the following pref-
erences:

v1 : c1 � c2 � c3 � c4 � c5 � c6,
v2 : c1 � c6 � c3 � c4 � c5 � c2,
v3 : c6 � c5 � c4 � c3 � c2 � c1.

Suppose that we seek a 2-frequency committee series of
size t = 4 consisting of committees of size k = 2.
For the egalitarian variant of committee series quality and
the Borda-CC committee scoring rule, it turns out that
S∗ = ({c1, c5}, {c1, c5}, {c2, c6}, {c2, c6}) has qual-
ity 13. To obtain this score, observe that CC({c1, c5}) =
14 and CC({c2, c6}) = 13. Thus, egal(CC(S∗)) =
min(13, 14) = 13. The quality of the utilitarian variant with
Borda-CC is obtained by summing the values of all commit-
tees which gives util(CC(S∗)) = 13 · 2 + 14 · 2 = 54.

Observe that a sequential greedy selection of the best-
scoring committees gives a worse result. It can be eas-
ily verified that this strategy leads to a committee se-
ries S ′ = ({c1, c6}, {c1, c6}, {c3, c5}, {c3, c5}) that is
worse than S∗ with respect to both the utilitarian and egal-
itarian aggregation for Borda-CC: util(CC(S ′)) = 50 and
egal(CC(S ′)) = 10.

Basic Observations
In this section, we present several helpful structural observa-
tions which may also be of independent interest. They will
later help to significantly ease our proofs.

First, we observe a simple lower bound on the num-
ber of pairwise disjoint committees in every consecutive f -
frequency committee series.
Observation 1. A consecutive f -frequency committee series
of size t contains at least d tf e pairwise disjoint committees.

A minor, yet useful, consequence resulting from Observa-
tion 1 is that, for committee size k, we can assume without
loss of generality that there are always at least kd tf e candi-
dates. In fact, for every possible committee evaluation func-
tion Y , egal-Y -SCE with an arbitrary candidate frequency
boils down to a very similar instance of egal-Y -SCE with
candidate frequency being one. This leads to the following.
Lemma 1. egal-Y -SCE with f ≥ 2 can be many-one re-
duced to egal-Y -SCE with f = 1 in linear time.

It is tempting to try to transfer Lemma 1 to the utilitarian
variant. However, Example 3 below shows that in general,
the fact, which is essential to prove Lemma 1, that if there
exists a solution, then there is a solution that consists of the
fewest possible different committees does not hold anymore.
Indeed, Example 3 shows that we cannot have an analogue
of Lemma 1 for utilitarian aggregation.
Example 3. Consider an election with four candidates c1,
c2, c3, c4 and the following six voters:

1 voter : c1 � c2 � c3 � c4, (1)
3 voters : c2 � c4 � c1 � c3, (2)
2 voters : c4 � c2 � c1 � c3. (3)

How does an optimal 3-frequency committee series of
size four look if we consider the utilitarian committee se-
ries evaluation with committee scoring function CC ? By
inspecting all possible combinations, it turns out that a
quality-maximizing committee series ({c1, c4}, {c2, c4},
{c2, c4}, {c2, c3}) achieves quality 15 + 2 · 17 + 15 =
64. Additionally, there is no 3-frequency committee se-
ries of size four consisting only of two disjoint com-
mittees (possibly used several times consecutively) that
reaches the optimal quality 64. For instance, committee
series ({c2, c4}, {c2, c4}, {c2, c4}, {c1, c3}), which looks
promising at first glance, achieves only quality 3 · 17 + 8 =
59.

Example 3 shows that, unlike in the egalitarian variant,
candidate frequencies indeed have an influence on the struc-
ture of the solutions in case of utilitarian aggregation. More
precisely, with f > 1 non-trivially intersecting committees
may be needed. The following lemma, however, shows that
to some extent even with utilitarian aggregation, we may re-
strict ourselves to committee series that consist of blocks of
disjoint committees.

Lemma 2. When t = f · x for some integer x, then util-
Y -SCE with f > 1 can be many-one reduced in poly-
nomial time to util-Y -SCE with f = 1. Moreover, util-
trCCα-SCE with f > 1 can be many-one reduced in poly-
nomial time to util-trCCα-SCE with f = 1.

For weakly separable scoring functions and utilitarian ag-
gregation we further exploit Observation 1 as follows.

Observation 2. Consider a set C of candidates, a commit-
tee size k, a candidate frequency f , a number t of commit-
tees and a committee evaluation function Y ∈ FWS. Then,
there exists an f -frequency committee series S of size t that
maximizes util(Y (S)) and consists of exactly d tf e pairwise
disjoint committees.

The next lemma allows us to simplify the analysis of
the threshold-α Chamberlin-Courant committee evaluation
function. It reveals a relation between trCC1 and trCCα for
parameter α ∈ (0, 1) in form of a polynomial-time many-
one reduction from the former to the latter (assuming that
the candidate frequency is one).

Lemma 3. For X ∈ {util, egal} and candidate fre-
quency f = 1, there exists a polynomial-time many-one
reduction from X-trCC1-SCE to X-trCCα-SCE for any
rational α ∈ (0, 1).

General Tractability Results
We start with weakly separable scoring functions for which
we obtain the most general, polynomial-time solvability re-
sults. Recall that for this family of rules we obtained the
strongest structural properties in the previous section. In-
deed, Observation 2 reveals a way to design a polynomial-
time algorithm to find a quality-maximizing committee se-
ries for util-Y -SCE where Y is a weakly separable com-
mittee scoring function. The algorithm greedily picks best-
scoring candidates to build d tf e committees maximizing the



overall quality. Hence, util-Y -SCE for Y ∈ FWS and arbi-
trary committee sizes can be solved in quasilinear time (we
essentially need to sort the candidates).

Theorem 1. For Y ∈ FWS computable in time y,
util-Y -SUCCESSIVE COMMITTEES ELECTION is solvable
in O(ymn+m logm) time.

Theorem 1 holds due to the so-called separability property
of weakly separable scoring rules, that is, the fact that one
can compute scores for every candidate independently. In
the approval evaluation function the score of each candidate
can also be computed separately. As a result, we obtain a
quasilinear algorithm for util-App-SCE.

Corollary 1. util-App-SUCCESSIVE COMMITTEES ELEC-
TION is solvable in O(mn+m logm) time.

Many prominent multiwinner voting rules based on or-
dinal preferences, like for example the k-Approval, Bloc
or Borda rules, are weakly separable, and thus, the respec-
tive committee evaluation functions are covered by Theo-
rem 1. However, weak separability fails, for example, for the
Chamberlin-Courant rule that is considered to be suitable
for finding a diverse committee (Faliszewski et al. 2019).
Hence, there is a need for another effective way of solv-
ing util-Y -SCE for non weakly separable committee eval-
uation functions. We address this need in the next two sec-
tions.

Committees of Size Two
We devote this section to the computational complexity
of X-Y -SCE (for non weakly separable scoring rules) for
committee size k = 2, that is, finding a good sequence of
candidate pairs. We will see that for almost all cases this task
remains tractable; only Chamberlin-Courant-based evalua-
tion functions (except for threshold Approval CC) for candi-
date frequency f > 2 remain open. However, for these cases
we give a polynomial-time 1

2 -approximation algorithm.
The subsequent theorem shows that there exists a

polynomial-time algorithm for arbitrary scoring functions in
case of utilitarian aggregation and committee size k = 2.
This generalization, however, comes at a cost of lowered
efficiency and applicability when compared to Theorem 1.
The solution presented in Theorem 2 is slower and does
not allow for candidate frequencies greater than two. At
high-level, our approach is based on a reduction of the
considered election problem to the graph problem (`, h)-
SUBGRAPH (Gabow 2018).

Theorem 2. Let Y be a committee evaluation function com-
putable in time y. Then, util-Y -SUCCESSIVE COMMITTEES
ELECTION withm candidates, f ≤ 2, and k = 2 is solvable
in O(m3 + ym2) time.

Proof for f = 1. We reduce util-Y -SCE to (`, h)-
SUBGRAPH. Given an undirected multigraph G = (V,E)
(an edge may have multiple copies) with the number n′
of vertices and the number m′ of edges; two functions
`, h : V → N ∪ {0}; a weight function w : E → R; and
an integer q, (`, h)-SUBGRAPH asks whether there exists a
multiset H ⊆ E of edges whose total weight is at least q,

forming a subgraph GH such that for each v ∈ GH the
degree of v is between `(v) and h(v). Gabow (2018) showed
that the problem can be solved in O(h(V )(m′ + n′ log n′))
time where h(V ) is the sum of all upper bounds. The
high-level idea of our proof is to construct a graph where
each candidate is associated with a vertex and each feasible
committee of size two is an edge with the weight equal to
the committee’s quality.

Suppose we have an instance of util-Y -SCE with an elec-
tion E = (C, V ), candidate frequency f = 1, committee
size k = 2, size t of a committee series, and a quality lower
bound p. To create an instance of (`, h)-SUBGRAPH, we
first construct a complete graph over a set of vertices V =
C ∪ {v}. Then, for each pair of two distinct candidates c,
c′ we set the weight of the corresponding edge e = {c, c′}
to Y (e). For each candidate c, we let the weight of edge
{v, c} be zero. Next, for every vertex c ∈ C, we set its lower
and upper bound to one. We set the lower bound and the up-
per bound of v to |C| − 2t. Finally, we look for a subgraph
of minimum weight of q = p.

To prove the correctness of the reduction, let us start with
some committee series S = (S1, S2, . . . , St) that is a solu-
tion to the original util-Y -SCE instance. Because f = 1, we
construct a set H by taking t edges representing committees
in S and |C| − 2t ≥ 0 edges adjacent to vertex v and candi-
dates that take part in no committee from S. A subgraphGH
formed byH is a correct (`, h)-subgraph of weight at least p.
Observe that set H consists of exactly |C| − t edges. There
are exactly |C| − 2t edges adjacent to vertex v in GH , so
the degree of v is exactly `(v) = h(v). Also, there are
exactly 2t vertices that are not adjacent to v in GH . Since
these vertices are adjacent to t edges, the degree of each of
these vertices in GH is exactly one, as it is required. Since
all edges have nonnegative weights and the edges represent-
ing committees in S altogether have weight at least p, then
graph GH ’s weight is also at least p. The reverse direction
can be shown analogously. In every feasible set H there is a
subset H ′ of exactly t edges that are not incident to v. We
construct a committee series S by choosing committees (in
an arbitrary order) represented by the edges in H ′. Since the
weights of edges inH ′ are directly reflecting the qualities of
the corresponding committees in S and the total weight of
edges in H \H ′ is zero, it follows that util(Y (S)) ≥ p.

The running time of (`, h)-SUBGRAPH, for our partic-
ular case, is O(m(m2 + m logm)) = O(m3). The pre-
sented reduction works in O(ym2) time. Combining the
running times of the reduction and of solving an emerg-
ing (`, h)-SUBGRAPH instance gives the desired running
time of O(m3 + ym2).

Using Lemma 2 and Lemma 3 we obtain the following.

Corollary 2. For Y ∈ {AppCC, eCC,CC} util-Y -
SUCCESSIVE COMMITTEES ELECTION is solvable in poly-
nomial time when t = f · x for some nonnegative integer x
and util-trCCα-SUCCESSIVE COMMITTEES ELECTION is
solvable in polynomial time for any f and any α.

For the egalitarian variant of successive committees elec-
tions we show a significantly more general result that does



not constrain the candidate frequency. The first step is to ap-
ply an approach similar to the one used in Theorem 2, again
for candidate frequency f = 1.

Theorem 3. Let Y be a committee evaluation function com-
putable in time y. Then, egal-Y -SUCCESSIVE COMMIT-
TEES ELECTION with m candidates, f = 1, and k = 2
is solvable in O(m3 + ym2) time.

Using Lemma 1, we extend Theorem 3 in a second step
to the case where the candidate frequency is unconstrained.

Corollary 3. Let Y be a committee evaluation function
computable in time y. Then, egal-Y -SUCCESSIVE COMMIT-
TEES ELECTION for committees of size two is solvable in
O(m3 + ym2) time.

There remain few cases for which we were unable to set-
tle complexity bounds for committee size k = 2 and can-
didate frequency f > 2. For these cases, the structure of
possible solutions seems quite complicated, yet too con-
strained to construct a hardness proof. There are examples
where no committee in an optimal solution appears f times.
However, such examples are not symmetric enough to sim-
ulate multiple choices that seem to be essential in hard-
ness constructions. To sidestep this issue, below we give a
polynomial-time 1

2 -approximation algorithm. Interestingly,
the larger size of a target committee series is, the better ap-
proximation the algorithm outputs.

Theorem 4. Let Y be a committee evaluation function
computable in time y. Then, util-Y -SUCCESSIVE COMMIT-
TEES ELECTION with m candidates, k = 2, candidate fre-
quency f ≥ 3, and number t = xf+r of committees, where
0 < x and 0 < r < f , can be (1 − 1

x+1 )-approximated in
time O(m3 + ym2).

Algorithm description. Let t = xf + r, where 0 < r < f ,
0 < x and let t′ := xf . To find an approximate solution
to an instance I of util-Y -SCE with the target number of
committees t, we consider a new instance I ′ that is identical
to I except for the target number of committees being t′.
Then, thanks to Lemma 2 (t′ is a multiple of x), we use
the algorithm from Theorem 2 to find a solution S ′ to I ′.
After pairing two arbitrarily chosen unused candidates (they
always exist) and adding such a committee r < f times
to S ′, we get an approximate solution to I.

Committees of Size at Least Three
The root of polynomial-time solvability of X-Y -SCE for
committees of size at most two lies in the fact that suitable
matching problems on graphs are also polynomial-time solv-
able.

A natural question is what happens for larger sizes of
committees. There is, however, not much hope to ob-
tain a generally efficient algorithm since already finding
a winning committee under Chamberlin-Courant is NP-
hard (Procaccia, Rosenschein, and Zohar 2008). Hence, it
is clear that in general X-Y -SCE is NP-hard for X ∈
{util, egal} and Y ∈ {trCC, eCC,CC}. Winning commit-
tees for Chamberlin-Courant can, however, be computed in

polynomial-time when the committee size is constant (Pro-
caccia, Rosenschein, and Zohar 2008). So, the question (for
Chamberlin-Courant-based scoring function) is “for what
sizes of committees are we able to compute good commit-
tee series efficiently?” In this section, we show that, with the
exception of the case of weakly separable and approval com-
mittee scoring functions under utilitarian aggregation (The-
orem 1, Corollary 1), all considered cases become NP-hard
already for committee size k = 3.

Indeed, in all proofs in this section we use committee size
exactly 3. However, the constructions can be adapted to use
any constant committee size greater than three. This usually
requires special voters that ensure that every feasible com-
mittee contains a specified number of dummy candidates.
These candidates fill up all committees leaving only three
places for “meaningful” candidates in each committee.

We start with the approval-based CC functions.

Theorem 5. For every Y ∈ {trCCα | α ∈ (0, 1] ∩ Q} ∪
{AppCC}, egal-Y -SUCCESSIVE COMMITTEES ELECTION
and util-Y -SUCCESSIVE COMMITTEES ELECTION with
f = 1 and k = 3 are NP-hard.

Proof. We show NP-hardness by giving a polynomial-time
reduction from a restricted variant of 3-DIMENSIONAL
MATCHING. Given three disjoint sets X , Y , Z of the same
cardinality and a subset J of X×Y ×Z, 3-DIMENSIONAL
MATCHING asks whether there exists a size-|X| setM⊆ J
such that for each pair of distinct triples (x, y, z) ∈ M and
(x′, y′, z′) ∈ M it holds that x 6= x′, y 6= y′, z 6= z′;
set M is called a 3-dimensional matching. It remains NP-
hard if each element x ∈ X belongs to exactly three sets
from J (Garey and Johnson 1979).

Let us consider an instance I = (X,Y, Z,J ) of 3-DI-
MENSIONAL MATCHING such that |X| = 2n ≥ 6. We
build an instance I ′ = (C, V, f, k, t, p) of egal-trCC1-SCE
where we are searching for a committee series of commit-
tees of size k = 3 assuming candidate frequency f = 1. We
set the size t of the searched committee series to 4n and the
committee series quality lower bound to p = 1. We start with
set V containing all elements from X ∪ Y ∪ Z and for each
xi ∈ S we add three voters v1i , v

2
i , v

3
i denoted by Vi. Finally,

we add a special voter v∗. Without loss of generality, let sets
X , Y , and Z be arbitrarily ordered. Then, for any of X , Y ,
Z, denote a corresponding set without the i-th element by
X−i, Y−i, Z−i. We refer to the first half of elements of X as
Ẋ and to the second half as Ẍ . For the sake of readability,
we do not specify approvals of the voters explicitly. Equiva-
lently, below we list every candidate in C together with the
list of voters that approve the candidate.

1. For each xi ∈ X consider all three triples (xi, yj , zk),
(xi, yj′ , zk′), and (xi, yj′′ , zk′′) in J to which xi belongs.
We add three key candidates c1i , c

2
i , c

3
i referring to these

triplets approved by the following voters:

c1i : {xi, v1i , v2i , v∗} ∪ Y−j ∪ Z−k (4)

c2i : {xi, v2i , v3i , v∗} ∪ Y−j′ ∪ Z−k′ (5)

c3i : {xi, v3i , v1i , v∗} ∪ Y−j′′ ∪ Z−k′′ (6)



2. For each element xi ∈ X we add one candidate approved
by the following voters:

cxi : X−i ∪ Y ∪ Z ∪ V1 ∪ . . . ∪ Vi−1 ∪ Vi+1 ∪ . . . ∪ V2n

3. For each element yi ∈ Y we add one candidate approved
by the following voters:

cyi : {yi} ∪ Ẋ ∪ V1 ∪ . . . ∪ Vn

4. For each element zi ∈ Z we add one candidate approved
by the following voters:

czi : {zi} ∪ Ẍ ∪ Vn+1 ∪ . . . ∪ V2n

The idea behind the correspondence between a 3-
dimensional matching M = {M1,M2, . . . ,M2n} and the
solution S of the constructed egal-trCC1-SCE instance is
as follows. The committee series S contains the following
two groups of committees:

1. For each Mi = (xi, yj , zk) ∈ M, there is a committee
consisting of candidates cyj , czk , and one of the candi-
dates c1i , c2i , c3i that exactly corresponds to set Mi.

2. For each xi ∈ X , there is a committee consisting of candi-
date cxi

and two candidates from c1i , c2i , and c3i that were
not selected to be part of any committee in group 1.

Committee series S consists of exactly 4n committees of
size three. SinceM is a matching, building the first group of
committees as described is always possible—we use every
candidate representing elements from Y and Z exactly once,
one key candidate corresponding to each element of X . One
can verify that by the construction of the approval lists, each
committee in the first group contains candidates that are rep-
resenting every voter. Moving on to the second group of vot-
ers, assuming thatM is a matching, it must be the case that
we are able to follow the instructions to build this group.
In every committee in the second group, every voter is also
represented. Indeed, for some i ∈ [2n], candidate cxi is ap-
proved by voters X−i, Y , Z, and V1, V2, . . ., Vi, Vi+1, Vi+2,
. . ., V2n, and voters in Vi are represented by every two can-
didates among c1i , c2i , and c3i . Finally, the quality of S is at
least one; thus, a feasible matching M implies a feasible
committee series S.

To show the opposite direction assume that S ′ is a solu-
tion to egal-trCC1-SCE. By construction, v∗ approves only
key candidates. Thus, each committee in S’ contains at least
one key candidate. In fact, each committee contains at most
two candidates at the same time. If a committee is formed
solely of key candidates, then, since each candidate is ap-
proved by only one voter in X , at least one voter x ∈ X is
not represented (observe that |X| ≥ 6). Hence, in each com-
mittee there are either one or two key candidates. Let us call
committees with one key candidate matching implementing
and those with two key candidates filling. Since we have
6n key candidates, S ′ contains exactly 2n matching imple-
menting committees and 4n filling committees. Let us focus
on the filling committees first. For every i ∈ [2n], neither cyi
nor czi could be the third candidate in a filling committee. It

is because at least one voter x ∈ X would not have its ap-
proved candidate in the committee (note that |X| ≥ 6). Con-
sequently, the only possibility to complete filling commit-
tees is to use candidates cxi , i ∈ [2n], one per filling commit-
tee. Consider some candidate cxi

. Then, the only possibility
to obtain a filling committee with positive quality (accord-
ing to trCC1), is to pick two arbitrarily chosen candidates of
c1i , c2i , and c3i . As a result, for each i ∈ [2n], there is exactly
one key candidate left to participate in matching implement-
ing committees. Consider some key candidate c1i represent-
ing triplet (xi, yj , zk) ∈ J . By the construction, to form
a matching implementing committee with positive quality,
c1i has to be accompanied by candidates cyj and czk . Thus,
indeed, matching implementing committees in S ′ must rep-
resent a perfect matching of the original instance.

The reduction clearly works in polynomial time and
hence the theorem for egal-trCC1-SCE holds. Observe that
for each committee S (and a fixed election), it holds that
trCC1(S) = 1 ⇐⇒ AppCC(S) = m. Thus, chang-
ing the lower bound on the committee series quality to m
gives a correct reduction for egal-AppCC-SCE. Observe
that the presented reductions for the egalitarian committee
series quality always require maximum possible quality of
committee. Thus, for both trCC1 and AppCC, reductions
for the respective utilitarian variants can by obtained by mul-
tiplying the respective lower bounds on committee series
quality by the size of the target committee series. Finally,
thanks to Lemma 3, NP-hardness for trCCα holds for any
rational α ∈ (0, 1].

For Chamberlin-Courant with ordinal preferences, we
obtain analogous results via reductions from the NP-hard
RAINBOW MATCHING problem (Garey and Johnson 1979).

Theorem 6. For each X ∈ {egal,util} and Y ∈
{CC, eCC}, X-Y -SUCCESSIVE COMMITTEES ELECTION
with f = 1 and k = 3 is NP-hard.

Finally, giving a reduction from 3-PARTITION (Garey and
Johnson 1979), we show that already with committee size
three, egal-Y -SCE becomes intractable for every non-trivial
weakly separable rule Y . Herein, a weakly separable rule Y
is called non-trivial if for a large-enough number of candi-
dates it does not assign the same score to every position.
More formally, there exists some constant m0 such that for
every number of candidates m′ ≥ m0 there exists a posi-
tion z(m′) such that φ(z(m′)) 6= φ(z(m′)+1), where φ de-
notes the scoring function of rule Y . All reasonable weakly
separable rules we are aware of are non-trivial.

Theorem 7. egal-Y -SUCCESSIVE COMMITTEES ELEC-
TION with committee size k = 3 is NP-hard for Y being
Approval or any non-trivial weakly separable rule fromFWS.

Conclusion
We introduced successive committees elections, a new
model extending classic multiwinner scenarios with new
optimization goals. Our results indicate that evaluating the
quality of a committee series in an egalitarian setting seems
richer in structure, but the utilitarian setting sometimes may



allow tractability where the egalitarian does not. As an in-
triguing question we leave open the computational complex-
ity of util-Y -SUCCESSIVE COMMITTEES ELECTION with
f > 2, k = 2, and Y ∈ {AppCC, eCC,CC}. However, for
this case, we provided a polynomial-time algorithm provid-
ing a 1

2 -approximate solution (the approximation ratio gets
better with growing size of a target committee series). Since
we provided multiple NP-hardness results, it is of interest to
also study the influence of parameters such as the number
of rounds on (parameterized) computational complexity. Fi-
nally, the range of natural further models in the context of
committee series is far from being exhausted. For instance,
for some applications one may demand that there is a certain
overlap between consecutive committees—this aspect is not
captured by our model.
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