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Abstract

Given a set of individuals qualifying or disqualify-
ing each other, group identification is the task of
identifying a socially qualified subgroup of indi-
viduals. Social qualification depends on the spe-
cific rule used to aggregate individual qualifica-
tions. The bribery problem in this context asks how
many agents need to change their qualifications in
order to change the outcome.

Complementing previous results showing polyno-
mial-time solvability or NP-hardness of bribery for
various social rules in the constructive (aiming at
making specific individuals socially qualified) or
destructive (aiming at making specific individuals
socially disqualified) setting, we provide a compre-
hensive picture of the parameterized computational
complexity landscape. Conceptually, we also con-
sider a more fine-grained concept of bribery cost,
where we ask how many single qualifications need
to be changed, and a more general bribery goal that
combines the constructive and destructive setting.

1 Introduction

The University of Actual Truth (UAT) was paralyzed for
months due to a heavy dispute of the scientists about who
belongs to the group of true scientists. Starting a mediation
process, the scientists quickly agreed that only a (true) sci-
entist could know who qualifies as true scientist. After some
literature research on group identification, they asked every
scientist to report who they believe is qualified for being a
true scientist. Based on these individual qualifications, they
applied several group identification rules to find the group of
true scientists. Unfortunately, each rule either decided that
nobody is a true scientist or that all are true scientists. It is,
however, obvious to everyone that the group of true scientists
must be a proper non-empty subset of scientists.

As the next step, the UAT scientists computed their “de-
gree of truthfulness” as follows. First of all, every department
was invited to submit a proposal specifying who they believe
the true scientists are. For every group of scientists being
proposed by someone, they computed two different quality
measures. For the rules that initially identified nobody as a

true scientist, they defined the “truth distance” as the mini-
mum number of scientists whose qualifications would need
to be changed to make the proposed group part of the true
scientists. For the rules that initially identified everyone as a
true scientist, they defined the “margin of truth” as the min-
imum number of scientists whose qualifications would need
to be changed to make no one from the proposed group a true
scientist. Although they could not finally agree on the set
of true scientists, the dispute was resolved because everyone
was included in at least one proposed subset of scientists with
minimum truth distance or maximum margin of truth.

The above example describes a problem that appears in
many situations where one needs to identify a qualified
group of individuals based only on the individuals’ pair-
wise qualifications. To solve this task, group identification
rules have been developed [Kasher and Rubinstein, 1997;
Samet and Schmeidler, 2003]. Despite the simplicity of our
example, it illustrates an important aspect of group identifi-
cation rules: Group identification rules provide only a binary
decision about the membership to a specific group while mul-
tiple degrees of certainty about the membership may be de-
sired. In extreme cases (as in the example), the identified
group might contain obviously too many or too few individ-
uals. The distances that “solve” this issue in our example are
concepts known in the literature, but usually motivated from a
different viewpoint: “truth distance” corresponds to construc-
tive bribery and “margin of truth” corresponds to destructive
bribery. Herein, the classical bribery model assumes an exter-
nal agent (with full knowledge over the individual qualifica-
tions) that aims to influence the outcome of the group identifi-
cation process by convincing a limited number of individuals
to change their qualifications. While the assumptions behind
the classical bribery motivation may be questionable, we em-
phasize that computing bribery costs as a quality measure is
very natural, as illustrated in our example.

Our Contributions

In this paper, we provide a more fine-grained view on com-
puting bribery costs for group identification rules in three
ways. First, we allow to combine constructive and destruc-
tive bribery. In particular, we allow to specify two sets A"
and A~ of individuals that must be (resp. must not be) so-
cially qualified after the bribery. This includes as a spe-
cial case exact bribery, where one can specify the final so-



cially qualified subgroup. Second, we consider a more fine-
grained concept of bribery costs called link bribery, where
one counts the number of individual qualifications that need
to be changed. So far, in the classical model, which we call
agent bribery, the number of individuals that alter their qual-
ifications is counted. Third, we complement the classical (P
vs. NP) computational complexity landscape by providing a
comprehensive analysis of the parameterized complexity fo-
cusing on naturally well-motivated parameters such as the
bribery cost and the sizes of the sets AT and A~ as well as
rule-specific parameters. We refer to Table 1 for an overview
of our results and to Section 2 for formal definitions of the
rules and parameters. Note that the results for constructive
bribery depicted in Table 1b analogously hold for destructive
bribery with switched roles of s and ¢ [Erdélyi et al., 2020].

Related Work

Faliszewski et al. [2009a] introduced bribery problems to the
study of elections. Since then, multiple variants of bribery
differing in the goal and the pricing of a bribery have been
proposed [Faliszewski and Rothe, 2016]. For example, Fal-
iszewski et al. [2009b] introduced microbribery, where the
manipulator pays per flip in the preference profile of the given
election. Microbribery is conceptually closely related to link
bribery in the context of our problem. Furthermore, while
Baumeister et al. [2011] already considered a variant of ex-
act bribery in the context of judgment aggregation, we are
not aware of any applications of the combined setting of con-
structive and destructive bribery that we propose in this paper.

Despite different initial motivations, bribery in elections
is closely related to the concept margin of victory, where
the goal is to measure the robustness of the outcome of
an election or the ’distance’ of a candidate from winning
the election [Cary, 2011; Magrino et al., 2011]. While
both concepts have been mostly studied separately, some
authors have developed a unified framework [Xia, 2012;
Faliszewski et al., 2017b].

Initially, the group identification problem has been mainly
studied from a social choice perspective by an axiomatic anal-
ysis of the problem and some social rules (see, e.g., [Dim-
itrov, 2011; Kasher and Rubinstein, 1997; Samet and Schmei-
dler, 2003]). Possible applications of the group identifica-
tion problem range from the identification of a collective
identity [Kasher and Rubinstein, 1997] to the endowment of
rights with social implications [Samet and Schmeidler, 2003].
Among the most important rules studied in the literature are
the consent rule [Samet and Schmeidler, 2003] and the two it-
erative rules: consensus-start-respecting rule (CSR, [Kasher,
1993]) and liberal-start-respecting rule (LSR, [Kasher and
Rubinstein, 1997]). Using the consent rule, which is param-
eterized by integers s and ¢, each agent qualifying himself is
socially qualified if and only if at least s agents qualify him,
and each agent disqualifying himself is socially disqualified if
and only if at least ¢ agents disqualify him. In iterative rules,
some criterion is used to determine an initial set of socially
qualified agents which is then iteratively extended by adding
all agents who are qualified by at least one agent from the
set of already socially qualified agents until convergence is
reached. Under CSR, an agent is initially socially qualified

if he is qualified by all agents, while, under LSR, all agents
qualifying themselves are initially socially qualified.

Recently, Yang and Dimitrov [2018] and Erdélyi et
al. [2020] initiated the study of manipulation by an exter-
nal agent in a group identification problem for the three men-
tioned social rules. Yang and Dimitrov [2018] considered the
complexity of agent deletion, insertion and partition for con-
structive control, while Erdélyi et al. [2020] extended their
studies to destructive control. Moreover, Erdélyi et al. [2020]
analyzed the complexity of constructive agent bribery and de-
structive agent bribery. They proved that for both destructive
and constructive bribery, for CSR and LSR, the related com-
putational problems are polynomial-time solvable. Moreover,
for constructive bribery, they proved that the computational
problems for consent rules with ¢ = 1 are also polynomial-
time solvable. On the other hand, for ¢ > 2 and s > 1, con-
structive bribery is already NP-complete. Finally, Erdélyi et
al. [2020] established a close relationship between construc-
tive and destructive bribery by proving that every constructive
bribery problem with f(5*) can be converted into a destruc-
tive bribery problem with f(*:*) by flipping all qualifications.

The group identification problem is formally related to
multiwinner voting [Faliszewski er al., 2017al. However,
multiwinner voting is of a different flavor both in terms of
intended applications and studied social rules. Neverthe-
less, formally, group identification is equivalent to approval-
based multiwinner voting with a variable number of win-
ners where the set of voters and candidates coincide. While
(approval-based) multiwinner voting with a variable num-
ber of winners has been studied by, for example, Duddy et
al. [2016], Kilgour [2016] and Faliszewski et al. [2017c],
this setting has never been studied from a voting perspec-
tive. Moreover, so far, the work on bribery for (approval-
based) multwinner elections is limited to the setting where
the number of winners is fixed [Bredereck et al., 2016;
Faliszewski et al., 2017b]). Similar to our motivation, Fal-
iszewski ef al. [2017b] also studied how to measure margin
of victory in approval-based multiwinner elections through
the lens of bribery.

2 Preliminaries

Group Identification. Given a set of agents A =
{a1,...,a,} and a so-called gqualification pro-
file : A x A — {—1,1}, the group identification problem
asks to return a subset of socially qualified agents using
some social rule f. We write f(A, ) to denote the set
of agents that are socially qualified in the group identifi-
cation problem (A, ) according to f. All agents which
are not socially qualified are called socially disqualified.
For two agents a,a’ € A, we say that a qualifies a
if p(a,a’) = 1; otherwise, we say that a disqualifies a’. For
each agent a € A, let Qf(a) = {a’ € A | p(d’,a) = 1}
denote the set of agents qualifying a and @ (a) = {d’ €
A | p(a’,a) = —1} the set of agents disqualifying a in
p. Let A* ={a € A|Vd € A: p(a’,;a) = 1} be the
set of agents who are qualified by everyone. For every
group identification problem, A and ¢ induce a so-called
qualification graph G 4,, = (A, E) with (a,ad’) € E if and



FOSR/FLSR fls:0) s t 14 complexity
Agent Link Agent Link 1 2 any  NP-c. (})
) ) para. 1 para.  W[1]-h. (Th. 5)
Const P NP-c. (Th. 3) NP-c. (1) P 1 any  para. W[2]-h. (Th. 6)
Dest P (1) P (Th. 2) NP-c. (}) P constant para. para. FPT (Th. 7)
Const+Dest P (Th. 1) NP-c. (Th. 3) NP-c. (Ob. 1) P (b) Parameterized analysis of CONST-f(") AGENT
Exact P(Co.1) P (Th.2) NP-c. (Ob. 1) P BRIBERY, where ’any’ means that the parameter is an

(a) Overview of classical complexity results.

unfixed part of the input. Additionally, the problem is
FPT wrt. to |A™| (Th. 8).

Table 1: Overview of our results. Additionally, in Theorem 4, we prove that CONST- f<S®/ 'SR LINK BRIBERY is FPT wrt. | A™|. In Theorem
3, we prove W[2]-hardness of CONST-fS®/fI5R 1 INK BRIBERY wrt. £. Results with a T were proven by Erdélyi et al. [2020].

only if ¢(a,a’) = 1. For two agents a,a’, we say that there
exists a path from a to a’ in (A4, ) if there exists a path
fromatoa inGa,,.

Now, we define social rules considered in this paper: For
the liberal-start-respecting rule (f"S®), we start with the
set K1 = {a € A| p(a,a) =1} and compute the set of so-
cially qualified agents iteratively for ¢ = 2, ... using

Ki={a€A|3d € K;_y:p(d,a)=1}. (1)

Notice that we always have K; 1 C K;. We stop the process
when K;_1 = K; and output K.

For the consensus-start-respecting rule (f©S®), we start
with the set K1 = A* and for i = 2,... we use Equa-
tion (1) to compute iteratively the set of socially qualified
agents. Note that it is also possible to compute the set of
socially qualified agents under fXSR and fOSR as the set of
agents that correspond to vertices in the qualification graph
that are reachable from vertices with a self-loop and with in-
coming arcs from all vertices, respectively.

The consent rule (f5*)) with parameters s and ¢ with s +
t < n + 2 determines the set of socially qualified agents as
follows: If p(a,a) = 1 for an agent a € A, then a is socially
qualified if and only if |Q*(a)| > s. If p(a,a) = —1 for
an agent a € A, then a is socially disqualified if and only if
Q~(a)] > ¢.

Bribery Variants. In the most general form of
bribery, which we call CONSTRUCTIVE+DESTRUCTIVE
(CONST.+DEST.) bribery, we are given a group identifica-
tion problem (A, ¢) and a social rule f together with two
groups of agents A and A~ and a budget ¢. The task is
then to alter the qualification profile ¢ such that in the al-
tered profile ¢’ all agents in A1 are socially qualified, i.e.,
A* C f(A, '), and all agents in A~ are socially disquali-
fied, i.e., A~ C A\ f(A,¢’). The cost of the bribery (com-
puted as specified below) is not allowed to exceed /.

We also consider the following three special cases of
CONST+DEST-BRIBERY:

CONSTRUCTIVE (CONST.) Given a set AT C A of agents
find a bribery such that AT C f(A, ¢').

DESTRUCTIVE (DEST.) Given aset A~ C A of agents find
a bribery such that A= C A\ f(A4,¢").

EXACT Given a set AT C A of agents find a bribery such
that A* = f(A,¢").

We now specify the cost of a bribery: In AGENT BRIBERY,
the cost of a bribery is equal to the number of agents whose
opinions are modified. Consequently, we ask whether it is
possible to achieve the specified goal by altering the pref-
erences of at most ¢ agents, where the briber is allowed to
change the preferences of each agent in an arbitrary way. On
the other hand, in LINK BRIBERY, the cost of a bribery is
equal to the number of single qualifications changed. There-
fore, we ask whether it is possible to achieve the specified
goal by altering at most ¢ qualifications, that is, flipping at
most £ entries in ¢.

3 Iterative Rules

Agent Bribery. For agent bribery, the already known pos-
itive results for constructive bribery and destructive bribery
extend to constructive+destructive bribery. The algorithm
for the general problem, however, is more involved than the
known ones, as “positive” and “negative” constraints need to
be taken into account. The general idea of the algorithm is to
bribe the agents that form a minimum separator between the
agents in A" and the agents in A~ in the qualification graph
such that they qualify themselves and all agents in AT,

Theorem 1. CONST+DEST-f R/fSR AGENT BRIBERY is
solvable in polynomial time.

Proof. In the following, we prove the theorem for f'SR. The
proof for &R works similar. Let L = {a € A~ | p(a,a) =
1} be the set of all agents in A~ who qualify themselves. We
first bribe all agents a € L such that they disqualify everyone.
To determine which further agents we want to bribe, we try
to find a minimum separator between the nodes A+ and A~
in the qualification graph G. To this end, we introduce one
source node ¢ into G and connect o to all nodes in AT and
nodes with a self-loop. Moreover, we merge all nodes in A~
into one sink node 7. Subsequently, we calculate a minimum
(o, 7)-separator A', which can be done in polynomial time
[Even, 1 975].

If A = 0 and all agents a € AT are already socially
qualified, we are done. If A" = () and this is not the case,
we bribe an arbitrary agent @ € At and make him qual-
ify all agents in A" (including himself) and disqualify all
other agents. Now, all agents in A™ are socially qualified,
and since A" = 0, all agents in A~ are socially disqualified.



If A" # 0, as the existence of a (o, 7)-path in the con-
structed graph implies that some agent in A~ will be socially
qualified as soon as we make all agents in AT socially quali-
fied, we need to bribe at least |Al| more agents to destroy all
(o, T)-paths.

In fact, we bribe all agents in A’ such that they qual-
ify themselves and all agents in A" and disqualify all other
agents. Let G’ be the resulting underlying graph which is ob-
tained from G by deleting all edges corresponding to qual-
ifications that got deleted and adding edges corresponding
to qualifications that got inserted. By construction, there is
no (o, 7)-path in G'. In the modified qualification profile, all
agents in AT are socially qualified, as they are qualified by at
least one agent a € A’ qualifying himself. We claim that no
agent in A~ can be socially qualified. Assume that there ex-
ists an agent a~ € A~ that is socially qualified. Then, there
exists a path from some agent a* which qualifies himself to

a~ in the altered instance. If a* ¢ A’, then such a path im-
plies that there exists an (o, 7)-path in G’ which cannot be

the case. If a* € A', since a* only qualifies agents from A™
and himself, there is also a path from some agent in A™ to a™
in the altered instance. This also implies that there needs to
exist an (o, 7)-path in G’ which cannot be the case. O

From this it immediately follows that agent bribery is also
polynomial-time solvable for all other considered variants in-
cluding the previously unstudied case of exact bribery.

Corollary 1. EXACT-/CONST-/DEST- fCSR/fLSR  AGENT
BRIBERY is solvable in polynomial time.

Link Bribery. We now turn to the setting of link bribery
and settle the complexity of the related decision problem for
all problem variants considered in this paper. We start by
proving that the problem is polynomial-time solvable for de-
structive bribery and exact bribery. For destructive bribery,
similar to Theorem 1, we separate the agents that are initially
socially qualified from the agents in A~ in the qualification
graph. However, here, as we pay per changed qualification,
we need to calculate a minimum cut.

Theorem 2. DEST-fSR/fLSR LINK BRIBERY and EXACT-
FESR/FLSR LINK BRIBERY are solvable in polynomial time.

Proof. We exemplarily prove the theorem for DEST-
SR LINK BRIBERY: We start by bribing all agents from A~
who qualify themselves such that they all disqualify them-
selves. Let G be the qualification graph of the altered in-
stance. We now consider a slightly modified version of G
and calculate a minimum cut to solve the problem. First of
all, we add a source node o to GG and connect o to all nodes
with a self-loop. Additionally, we introduce a sink node 7 and
n? 4+ 1 dummy nodes. We connect every node from A~ to all
dummy nodes and all dummy nodes to the sink 7. Now, we
compute a minimum (o, 7)-cut E’ C E, which can be done
in polynomial time [Karger and Stein, 1996], and remove the
corresponding qualifications from the qualification profile: If
(a,a’) € E' for some a,a’ € A, we make a disqualify a’.
If (0,a) € E’ for some a € A, we make a disqualify him-
self. No edge starting or ending in some dummy node will
be in E’, as such an edge can never be part of a minimum

cut. After this bribery, no agent a~ € A~ is socially qual-
ified, as the absence of a (o, 7)-path implies that there does
not exist a path from an agent qualifying himself to ¢~ in the
altered qualification profile. On the other hand, the described
bribery is optimal, as the existence of a (o, 7)-path always
implies that at least one agent in A~ is socially qualified in
the end.

In contrast to this, the corresponding problem for construc-
tive bribery is NP-complete. This difference in the com-
plexity of the problem for constructive bribery and destruc-
tive bribery is somewhat surprising, as their complexity is the
same in the case of agent bribery. We show the hardness of
CONST- fCSR/fLSR [ INK BRIBERY by a reduction from SET
COVER, which is NP-complete and W[2]-hard with respect
to the requested size of the cover. The general idea of the re-
duction is to introduce one agent for each element (these form
the set A1) and for each set, where each set-agent qualifies
the agents corresponding to the elements in the set.

Theorem 3 (x). CONST-fSR/fLSR LINK BRIBERY is NP-
complete and W(2 ]-hard with respect to {.

Apart from the parameter budget ¢, which might be small
in most applications as only agents which are close to the
boundary of being socially (dis)qualified might be interested
in their precise margin, another natural parameter is the set
of agents we want to make socially qualified, i.e., |A™|. This
parameter may also be not too large in most applications, as
one is usually only interested in the classification of a limited
number of agents. In contrast to the negative parameterized
result for ¢, utilizing that SET COVER is FPT with respect to
the size of the universe, it is possible to prove that CONST-
FOSR/FLSR LINK BRIBERY is FPT with respect to |[AT| by
reducing this problem to an instance of SET COVER and ap-
plying the algorithm from Fomin er al. [2004].

Theorem 4 (x). CONST-fCSR/fISR INK BRIBERY is FPT
with respect to |A™|.

The hardness results for constructive bribery imply that
constructive+destructive bribery is also NP-hard and W[2]-
hard with respect to ¢. Utilizing a slightly more involved re-
duction from EXACT COVER BY 3 SETS, it is even possi-
ble to show that the NP-hardness of constructive+destructive
bribery extends to the case where the briber is only allowed to
delete qualifications. This is surprising, as destructive bribery
alone is polynomial-time solvable.

Proposition 1 (x). CONST+DEST-fSR/fESR LNk
BRIBERY remains NP-complete even if the briber is
only allowed to delete qualifications.

A remaining question is to pinpoint the parameterized
complexity of constructive+destructive bribery with respect
to |[AT| 4+ |A~|. Despite the fact that the FPT result for con-
structive bribery suggests that it may be possible to prove FPT
for this case, we were not even able to prove that this problem
lies in XP, leaving this as an open problem for future work.

4 Consent rule

Link Bribery. CONST+DEST-f(**) LINK BRIBERY is
polynomial-time solvable. For each a™ € AT\ f(A4, ), the



optimal strategy is to make him qualify himself and to make
5 —1QF (a™)| agents from Q_ (a™) qualify him. For A~, we
proceed analogously. Thereby, all problem variants for link
bribery are polynomial-time solvable.

Agent Bribery. Erdélyi et al. [2020] proved that construc-
tive agent bribery is NP-complete forall s > 1and¢ > 2by a
reduction from VERTEX COVER in which they set AT = A.
This implies the following:

Observation 1. EXACT-/CONST+DEST-f(**)  AGENT
BRIBERY is polynomial-time solvable for s =t = 1. For all
other values of s and t, this problem is NP-complete.

Studying bribery problems for the consent rule, s and ¢
are natural parameters to consider, as at least one of these
parameters may be small in most applications: In problems
where socially qualified agents acquire a privilege, ¢ should
be small, while for problems where social qualification im-
plies some obligation or duty, s should be small. However,
the hardness result of Erdélyi er al. [2020] for constructive
bribery directly implies that this problem is para-NP-hard
with respect to s + ¢. The reduction has no implications on
the parameterized complexity of the problem with respect to
¢ and |AT|. In the following, we conduct a parameterized
analysis of CONST-f(**) AGENT BRIBERY with respect to
s, t, ¢ and |AJr , before we explain how to adapt our results to
the other three variants considered.

Erdélyi et al. [2020] further proved that CONST-
f(*Y) AGENT BRIBERY is in XP with respect to s if t = 1.
However, they left open whether this problem is FPT or W[1]-
hard with respect to s. Moreover, there exists a trivial brute
force XP-algorithm for ¢, while it is again open whether the
problem is FPT or W[1]-hard with respect to . We answer
both questions negatively in the following theorem:

Theorem 5. CONST-f(5*) AGENT BRIBERY is W/!]-hard
with respect to s + £ even if t = 1.

Proof. We show the theorem by a reduction from INDEPEN-
DENT SET (G = (V, E), k), which is W[1]-hard with respect
to k. Given an instance of the problem, in the correspond-
ing group identification problem, we insert for each vertex
v € V, one vertex-agent a, and, for each edge {u,v} € E,
one edge-agent a,,, and one designated dummy agent G, .
We set AT = {ay v, Gy | {u,v} € E}. All dummy agents
qualify only themselves. For each {u,v} € E, a,,, qualifies
@y, and himself, while he is only qualified by the two agents
a, and a,. Wesets = k+2,t = 1 and £ = k. Note that
all dummy agents need at least k£ additional qualifications to
be socially qualified, while all edge-agents need at least k — 1
additional qualifications.

=: Assume that ¥V’ C V is an independent set of size k
in G. Then, we bribe all vertex-agents that correspond to the
agents in V' and let them qualify everyone. Thereby, every
edge-agent gains at least £ — 1 additional qualifications, as
every edge-agent was qualified by at most one agent a,, with
v € V' before the bribery. Moreover, as no vertex-agent qual-
ifies a dummy agent, all dummy agents gain k qualifications.

<: Assume we are given a successful bribery A’ C A
consisting of k£ agents. We claim that only vertex-agents can
be part of A’. Assuming that for some {u, v} € E either a,,,

or a,,, are part of A’, a,, cannot be socially qualified after
the bribery, as he gained at most £ — 1 qualifications over the
bribery. It additionally holds that, for each {u,v} € E, at
most one of a, and a, can be part of 4’, as a,,, gained at
least k£ — 1 additional qualifications by the bribery. Thereby,
A’ consists of k vertex-agents which initially do not qualify
the same edge-agent twice. From this it follows that V' =
{veV]|a, € A’} is an independent set of size k in G. [

This reduction relies crucially on the fact that no non-
vertex-agent can be bribed. This is ensured by the dummy
agents for which the number of qualifications they are miss-
ing to become socially qualified is equal to the given budget.
In fact, if we are given an instance of the problem with param-
eters s, £ and ¢ = 1 and we can bound the number of agents
a for which it holds that £ = s — |Q™" (a)| by some function
g in s, we can solve the problem in time g(s)O(n?) using a
recursive branching algorithm.

From Theorem 5 it follows that combining ¢ with parame-
ters s and ¢ is not enough to achieve fixed-parameter tractabil-
ity. The only case that is left open is the case where we treat
s as a constant. Here, parameterizing the problem by £ is not
enough to achieve fixed-parameter tractability even in the re-
stricted case where s = 1. This can be shown by a reduction
from DOMINATING SET where we introduce for each vertex
a vertex-agent, which we include in the set A™. All vertex-
agents qualify everyone except themselves and their neigh-
bors. Moreover, we insert additional dummy agents such that
every agent gets the same number of disqualifications.

Theorem 6 (). CONST-f(*!) AGENT BRIBERY is W/[2]-
hard with respect to £ even if s = 1.

Parameterizing the problem by ¢ + ¢, however, while treat-
ing s as a constant, the problem becomes, in fact, fixed-
parameter tractable:

Theorem 7. CONST- (%) AGENT BRIBERY is FPT with re-
spect to £ + t (treating s as a constant).

Proof sketch. We give a proof sketch for the special case
where s = 1. For each a € A, let y, = max(0,|Q (a)| —
(t — 1)), i.e., y, is the number of additional qualifications a
needs to get to become socially qualified without qualifying
himself. Let A’ be the set of agents that we bribe (it is always
rational to make all agents in A’ qualify everyone). For every
a € A" with y, > /, it needs to hold that a € A’. More
generally, for all @ € AT, either a € A’ or a y,-subset of
@~ (a) needs to be part of A’. These ideas give rise to Algo-
rithm 1. This algorithm called as CalcB(A,p,A™,),¢) returns
a successful bribery A’ if one exists.

The depth of the recursion is bounded by ¢. Moreover, the
branching factor is bounded by |Q~ (a*)| + 1. As for every
a* it needs to hold that y, < /, it follows that |Q~ (a*)| <
£+ (t—1). Thereby, the overall running time of the algorithm
lies in O(n2(¢ + t)*).

For s > 1, the same underlying reasoning applies. How-
ever, here, in the case where we want to make an agent
a € AT qualifying himself (either in the case where 3, > £
or in the branching in line 8), we additionally need to branch
over bribing all max(0,s — |Q*(a)|)-subsets of Q@ (a) to
make a socially qualified in the end. O



Algorithm 1 CalcB(4,p, AT, A’,p)

Input: Agents A, qualification profile ¢, subset of agents
AT and A’, maximal depth of recursion p

Output: Set of agents A’ to bribe
1: fora € AT withy, — |[A'NQ (a)| > p do
2 A=A U{a}; At =AT\{a};p=p—1;
3: fora € AT witha € A" or |[A' N Q™ (a)| > y, do
4: AT = AT\ {a};

5: if p < O then return Reject

6

7

8

9

. if AT = () then return A’
: Pick an arbitrary a* € A"
s fora e {a*} U(Q (a*)\ A’) do
return CalcB(A,p, AT, A’ U {a},p—1)

Finally, analyzing the influence of the number of agents
that should be made socially qualified on the complexity of
the problem, it turns out that restricting this parameter is more
powerful than restricting ¢, as the problem is FPT with respect
to |AT| for arbitrary s and ¢.

Theorem 8. CONST-f(*) AGENT BRIBERY is FPT with re-
spect to |AT|.

Proof. We reduce to an ILP with |A™| + 1 constraints: First,
we guess the subset AT C AT of agents from A% which
qualify themselves in the end. We make all agents a € AT

qualify everyone and all agents a € A*\ AT disqualify them-
selves and qualify everyone else (we lower the budget ¢ ac-
cordingly). Now, for every agent a € A, we introduce a vari-
able z, € {0,1} (with z, = 1 if and only if we are going to
bribe a). We have two types of conditions based on A™:

Y te2s—|Q7(a)
a’€A:p(a’,a)=—1

S we2lQ (@l (t—1) Vae A\ At
a’'€A:p(a’,a)=—1

Va € AT

Finally, we require ), cA Ta < L. If the above ILP is feasi-
ble, then there exists a successful bribery (given by z, = 1).
We bribe all a € A\ (A*\ AT) with z, = 1 to qualify every-
one including themselves and all a € AT\ At with z, = 1
to qualify everyone excluding themselves. In the bribed in-
stance, for every agent a € A", we have v(a,a) = 1 and at
least s agents qualify a, and for every agent a € AT\ AT,
we have p(a,a) = —1 and at most ¢t — 1 agents disqualify a.
We use the algorithm of Eisenbrand and Weismantel [2018]
to solve the above ILP in time O(n|A™| A2 ). O

By Lemma 1 of Erdélyi ez al. [2020], all results from above
naturally extend to DEST-f(5*) AGENT BRIBERY where s
and ¢ switch roles. Moreover, it is also possible to extend
some of our results to constructive+destructive bribery by a
slight adaption of Theorem 8 and Theorem 6:

Corollary 2 (x). CONST+DEST-f(*!) AGENT BRIBERY
is FPT with respect to |AT| + |A7|. CONST+DEST-
fY) AGENT BRIBERY parameterized by { +t is W[2]-hard

even if s is one and also W[2 ]-hard with respect to £ + s even
if t is one.

Aiming for positive results, parameterizing construc-
tive+destructive bribery by just one of |A™| and |A™| is not
enough, as the problem is even NP-hard for s = 2 and ¢t = 1
and A" = (), which follows from the reduction from Erdélyi
et al. [2020] mentioned at the beginning of this section.

Finally, we consider exact bribery. Here, the two W[2]-
hardness results from the previous corollary, which follow
from Theorem 5, extend to this setting, as it is possible to pre-
cisely specify the desired outcome of the group identification
problem in the reduction in Theorem 5. While parameterizing
the problem by |A*|+ | A~ | is not meaningful in this context,
as discussed above, one of |AT| and |A~| combined with s
and t is not enough to achieve any positive results.

5 Conclusion

We extended the research on bribery in group identification
by considering a new model for bribery cost and two new
bribery goals. Moreover, we described how it is possible to
use bribery as a method to calculate the margin of victory
or distance from winning in a group identification problem.
We showed that for all considered rules both quantities can
be computed efficiently if the number of agents whose so-
cial qualification we want to change is small. Moreover, we
identified some further cases where the general problem is
polynomial-time solvable: For both LSR and CSR, we ob-
served that every bribery involving destructive constraints
somehow splits the qualification graph into two parts. As
in agent bribery it is easy to make multiple agents socially
qualified at the same time, this observation gives rise to a
polynomial-time algorithm for the most general variant of
constructive+destructive bribery. For link bribery, it is pos-
sible to use this observation to construct a polynomial-time
algorithm for destructive bribery. However, the correspond-
ing question for constructive bribery is NP-hard.

For the consent rule, link bribery turns out to be solvable
in a straightforward way. In contrast to this, for agent bribery,
finding an optimal bribery corresponds to finding a set of
agents fulfilling certain covering constraints. This task makes
the problem para-NP-hard with respect to s + ¢ [Erdélyi et
al., 2020] and W[1]-hard with respect to £ even for t = 1 or
s = 1. We proved that in the constructive setting, the rule
parameter ¢t is slightly more powerful than the rule parameter
s in the sense that the problem is still hard parameterized by
s+ ¢ evenift = 1, while becoming fixed-parameter tractable
parameterized by ¢ + ¢ for constant s.

Acknowledgments

NB was supported by the DFG project MaMu (NI 369/19).
DK is partly supported by the OP VVV MEYS funded project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for In-
formatics”; part of the work was done while DK was affil-
iated with TU Berlin and supported by project MaMu (NI
369/19). JL was supported by the DFG project AFFA (BR
5207/1 and NI 369/15). This work was started at the research
retreat of the TU Berlin Algorithms and Computational Com-
plexity group held in September 2019.



References

[Baumeister ef al., 2011] Dorothea  Baumeister, Gabor
Erdélyi, and Jorg Rothe. How hard is it to bribe the
judges? A study of the complexity of bribery in judgment
aggregation. In Algorithmic Decision Theory - Second
International Conference (ADT ’11), pages 1-15, 2011.

[Bredereck et al., 2016] Robert Bredereck, Piotr Fal-
iszewski, Rolf Niedermeier, and Nimrod Talmon.
Complexity of shift bribery in committee elections. In
Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence (AAAI ’16), pages 2452-2458, 2016.

[Cary, 2011] David Cary. Estimating the margin of victory
for instant-runoff voting. In 2011 Electronic Voting Tech-
nology Workshop / Workshop on Trustworthy Elections
(EVI/WOTE ’11), 2011.

[Dimitrov, 2011] Dinko Dimitrov. The social choice ap-
proach to group identification. In Consensual Processes,
pages 123-134. 2011.

[Duddy er al., 2016] Conal Duddy, Ashley Piggins, and
William S. Zwicker.  Aggregation of binary evalua-
tions: a borda-like approach. Social Choice and Welfare,
46(2):301-333, 2016.

[Eisenbrand and Weismantel, 2018] Friedrich  Eisenbrand
and Robert Weismantel. Proximity results and faster
algorithms for integer programming using the steinitz
lemma. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA
’18), pages 808-816, 2018.

[Erdélyi er al., 2020] Gdabor Erdélyi, Christian Reger, and
Yongjie Yang. The complexity of bribery and control in
group identification. Autonomous Agents and Multi-Agent
Systems, 34(1):8, 2020.

[Even, 1975] Shimon Even. An algorithm for determining
whether the connectivity of a graph is at least k. SIAM J.
Comput., 4(3):393-396, 1975.

[Faliszewski and Rothe, 2016] Piotr Faliszewski and Jorg
Rothe. Control and bribery in voting. In Handbook of
Computational Social Choice, pages 146—-168. 2016.

[Faliszewski et al., 2009a] Piotr Faliszewski, Edith Hemas-
paandra, and Lane A. Hemaspaandra. How hard is bribery
in elections? J. Artif. Intell. Res., 35:485-532, 2009.

[Faliszewski et al., 2009b] Piotr Faliszewski, Edith Hemas-
paandra, Lane A. Hemaspaandra, and Jorg Rothe. Llull
and copeland voting computationally resist bribery and
constructive control. J. Artif. Intell. Res., 35:275-341,
2009.

[Faliszewski et al., 2017a] Piotr Faliszewski, Piotr Skowron,
Arkadii Slinko, and Nimrod Talmon. Multiwinner voting:
A new challenge for social choice theory. In Trends in
Computational Social Choice, pages 27-47. 2017.

[Faliszewski et al., 2017b] Piotr Faliszewski, Piotr Skowron,
and Nimrod Talmon. Bribery as a measure of candidate
success: Complexity results for approval-based multiwin-
ner rules. In Proceedings of the 16th Conference on Au-

tonomous Agents and MultiAgent Systems (AAMAS ’17),
pages 614, 2017.

[Faliszewski et al., 2017¢c] Piotr ~ Faliszewski, Arkadii
Slinko, and Nimrod Talmon. The complexity of multiwin-
ner voting rules with variable number of winners. CoRR,
abs/1711.06641, 2017.

[Fomin et al., 2004] Fedor V. Fomin, Dieter Kratsch, and
Gerhard J. Woeginger. Exact (exponential) algorithms for
the dominating set problem. In Graph-Theoretic Concepts
in Computer Science, 30th International Workshop (WG
'04), pages 245-256, 2004.

[Karger and Stein, 1996] David R. Karger and Clifford
Stein. A new approach to the minimum cut problem. J.
ACM, 43(4):601-640, 1996.

[Kasher and Rubinstein, 1997] Asa Kasher and Ariel Rubin-
stein. On the question “who is a j?7” a social choice ap-
proach. Logique et Analyse, 40(160):385-395, 1997.

[Kasher, 1993] Asa Kasher. Jewish collective identity. In
Jewish Identity, pages 56—78. 1993.

[Kilgour, 2016] D Marc Kilgour. Approval elections with
a variable number of winners. Theory and Decision,
81(2):199-211, 2016.

[Magrino et al., 2011] Thomas R. Magrino, Ronald L.
Rivest, and Emily Shen. Computing the margin of vic-
tory in IRV elections. In 2011 Electronic Voting Tech-
nology Workshop / Workshop on Trustworthy Elections
(EVI/WOTE ’11), 2011.

[Samet and Schmeidler, 2003] Dov  Samet and David
Schmeidler. Between liberalism and democracy. J.
Economic Theory, 110(2):213-233, 2003.

[Xia, 2012] Lirong Xia. Computing the margin of victory
for various voting rules. In Proceedings of the 13th ACM
Conference on Electronic Commerce (EC ’12), pages 982—
999, 2012.

[Yang and Dimitrov, 2018] Yongjie Yang and Dinko Dim-
itrov. How hard is it to control a group? Autonomous
Agents and Multi-Agent Systems, 32(5):672-692, 2018.



	Introduction
	Our Contributions
	Related Work


	Preliminaries
	Iterative Rules
	Consent rule
	Conclusion

