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ON RESTRICTED TWO-FACTORS*
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Abstract. A two-factor of G consists of disjoint cycles that cover ¥ (G). The authors consider the existence
problem for two-factors in which the cycles are restricted to having lengths from a prescribed (possibly infinite)
set of integers. Theorems are presented which derive the existence of such restricted two-factors in G from their
existence in G — u and G — v. The possibility of such theorems is then related to the complexity of the
corresponding existence problem. In particular, the only four cases in which polynomial algorithms can be
expected (in the sense that all other cases are shown to be NP-hard) are identified.
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1. Introduction. A two-factor of a graph G is a subgraph F of G in which V(F) =
V(G) and every vertex has degree two. Evidently, a two-factor of G consists of disjoint
cycles that cover ¥ (G). The existence question for two-factors has been successfully
studied; there is an elegant criterion for deciding if a graph G' admits a two-factor, [1],
[17], as well as a polynomial algorithm to find such a two-factor (or determine that none
exists) [6], [7].

We consider the existence question under the additional restriction that the lengths
of all the cycles comprising the two-factor belong to a given set of integers L. Specifically,
let L < {3,4, -} be a nonempty set, and let L™ = {3, 4, -- -} — L. An L-restricted
two-factor of a graph G is a two-factor F of G with the property that each component of
F is a cycle the length of which belongs to the set L. In the case L™ = ¥ all cycle lengths
are permitted, and we refer to it as the case of unrestricted two-factors; this is the well-
studied case as explained above. The case L™ = {3} has also been studied [3] and is
usually referred to as the case of triangle-free two-factors. Another important case we
shall encounter is that of square-free two-factors, i.e., the case when L™ = {4}.

For unrestricted two-factors [8] reports the following fact (cf. also [13]): If uv €
E(G) and if G — u as well as G — v have two-factors, then G also has a two-factor. (This
follows from Tutte’s f~factor theorem, cf. [8, 13]; a simpler direct proof is given in the
next section.) We show that similar results also hold for L-restricted two-factors when
L < {3, 4}, but for no other L.

Vornberger [16] showed that recognizing graphs that have an odd-restricted two-
factor (L = {3, 5,7, - - - }) is NP-complete. Other L-restricted two-factor problems were
shown to be NP-complete in Cornuejols and Pulleyblank’s paper [4] (some of these
prootjs being attributed to Papadimitriou). On the other hand, [3] reports a polynomial
algopthm for finding a triangle-free two-factor (or for showing that none exists). As an
application of our constructions we show that recognizing graphs that have an L-restricted
two-factor is NP-hard unless L™ < {3, 4}, i.e., except for the four particular cases L™ =
Z,L™={3},L™ = {4}, and L™ = {3, 4}. This subsumes all the previous NP-com-
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pleteness results, and in view of the above-mentioned polynomial algorithms for the first
two cases (L™ = &, L™ = {3}), it suggests that the remaining two cases (L™ = {4},
L™ = {3, 4}) may also admit such algorithms. As further evidence we mention in the
last section some augmenting path theorems that can be proved for these four cases.

2. Positive results. Our objective in this section is to extend the result cited in the
Introduction, restated as Theorem 1 below. We begin by giving a simple proof of it,
which will be helpful in understanding the extensions. The original proof in [8], as well
as that in [13], depends on Tutte’s f-factor theorem; the proof given here is elementary.

In the following text we often refer to set operations and terminology (such as union,
intersection, symmetric difference, or membership) applied to subgraphs; it is to be un-
derstood that they apply to the edge-sets of those subgraphs.

THEOREM 1. If uv € E(G) and if both G — u and G — v have two-factors, then G
also has a two-factor.

Proof. Let F, and F, be two-factors of G — u and G — v, respectively, and let H be
their symmetric difference, H = F,, ® F,. In H each vertex other than u or v is incident
with an equal number of edges of F, and of F, (0, 1, or 2 of each). Let P be a maximal
trail in H of the form u = xg, X1, -+ - , Xk with all x2;x2; 4+ € F, and all xy;— ;X2 € Fy,
(i=0,1, - -+). (Recall that a trail may revisit a vertex but not an edge.) By the maximal-
ity of P and the above observation on incidencies in F, and F,, it follows that x; = # or
X = v. If X, = u then F, ® P is a two-factor of G; if x; = v then (F, ® P)U {uv} is
such a two-factor. i)

In subsequent proofs we shall also be using trails of the above type. If H is any graph

containing F,, ® F,, a trail P: u = Xo, X1, *** , Xk in H, with all xp;x5;+1 € F? and all
Xsi—1X2; € Fy (i = 0, 1, -+ +), shall be called an alternating u-trail in H. If P is such a
trail, we shall denote by P; (i = 0, 1, - - -) the alternating u-trail u = Xo, X1, ** " » Xi-

THEOREM 2. If uv € E(G) and if both G — u and G — v have triangle-free two-
factors, then G also has a triangle-free two-factor.

First we prove a slightly weaker version of Theorem 2. Let G~ denote the grgph
obtained from G by deleting the edge uv, and G* the graph obtained from G by subdividing
the edge uv with one new vertex zero, i.e., by replacing the edge uv with the path 10, Ov
(for 0 ¢ V(G)). Thus G~ and G* are defined relative to a special edge uv; however, UV
will always be clear from the context.

THEOREM 3. If uv € E(G) and if both G — u and G — v have triangle-free two-
factors, then G~ or G* also has a triangle-free two-factor.

Proof. Again let F, and F, be triangle-free two-factors of G — u and G — v, respec-
tively, and let H = F, ® F,. The idea here is very similar to the above proof. We shall
again be considering alternating u-trails in H; however, we must be careful to choose P
in such a way that the new two-factor does not contain any triangles. Therefore let P
be a maximal alternating wu-trail u = xo, Xy, *** , Xk In H satisfying, for each edge
XpiXpi41 (i =0, 1, -+ - ,), all of the following four conditions:

(i) There is no vertex y with yx,; € F, — (F, U Py;) and pxai+1 € F, — Py;

(ii) There is no vertex y with yx,; € F, — (F, U Py;) and yXzi+1 € F,N Py;;
(lll) There is no vertex y + X2i+2 with YXa2; € F, n Pz,' and YXa2i+1 & Fu = (Fu U Pz,‘)',
(iv) There is no vertex y # X+ 2 with yxz; € F, N F, and yxz; 41 € Fy — (Fy U Py;).

In Fig. 1, € and € denote, respectively, the membership and nonmembership in P;
(except for the obvious relation Xy;Xa;+1 ¢ P2, which we did not show in the figures).
The edges of F, — F, are wavy, and those of F, — F, are straight. Edges of F, N F, are
both wavy and straight; edges of F, (which could also belong to F, or not) are wavy with
an interrupted straight line.
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FIG. 1. The four forbidden configurations.

CLAIM 1. The trail P ends at x, = © Or Xx = V.

Suppose x; # u, v. Then x; has an equal number (zero, one, or two) of incident
edges of H in F, and F, ; thus P could not be maximal unless k£ = 27 and each choice of
X2iX2i+1 € F, — (F,, U P) violates one of (i)—(iv). Specifically, if k = 2i — 1 and P satisfies
(i)=(iv), then letting x»;_ ;x»; be any edge of F, — (F, U P) extends P so that it still
satisfies (i)—-(iv), contrary to the maximality of P. Now, if k = 2/ and a particular choice
of x2ix2i+1 € F, — (F, U P) violates (i) or (ii), then there is a vertex y as described in
the conditions and depicted in the figures. On the other hand, if some x,;x; 4 € Fy —
(F, U P) violates (iii) or (iv), then that means a violation occurs regardless of what
choice of x,; ; , is made (in other words, in order to satisfy (iii), (iv), two distinct vertices
would need to be xy; ). If there are two edges incident with x,; in F, — (F, U P), and
if taking either as x,;x,;, ; violates one of (i)—(iv), then it could be because both violate
one of (i), (ii), or because both violate one of (iii), (iv), or because one violates one of
(1), (ii) and the other one of (iii), (iv). We shall treat the latter two cases together; taking
into account also the possibility of there being only one edge incident with x; in F, —
(F, U P), we distinguish two situations:

(A) For each choice of x,;x,;+ some vertex y violates (i) or (ii).

(B) For some choice of x,;x2; + 1 two distinct vertices y, ¥~ are required to be Xa;+ 2
by (iii) or (iv).

Clearly if neither (A) nor (B) occurs, then some choice of x,;x,;,; leads to no
violation of (i)-(ii) and at most one vertex y is required to be x,;., by (iii)—(iv).
Therefore, letting x;; ., , equal such a vertex y if it exists, or terminating at x,, ,  if it does
not exist, then the maximality of P: u = x,, X1, * - - , X»; is contradicted.

We now show that both (A) and (B) are impossible. In case (A) we have
X2i-1X2; € F, M Py; while any violation of (i) or (ii) involves a vertex y with yxs; €
F, — (F, U Py;). Thus x,, is incident in H with two edges of F,, and two edges of F,. If
the two edges of F, are x,;z and x,;z~ then z or z~ are the choices for X2i+ 1. Suppose
X2i+1 = z violates (i) or (ii) because of some y, and x,;.; = z™~ violates (i) or (ii) because
of some y~. Clearly y =y~ or else x,; would be incident with three edges of F,. For the
same reason both x,;.; = z and x,;,; = z~ could not violate (i); thus we may assume
that the choice x,, ., 1 = z7 violates (ii). Then yz~ € F, N P»; yet no edge of F, incident
to y belongs to Py;; this is impossible as P,; begins at # # y and ends at Xz; # y. In case
(B) we have x,x5;, ; € F, ; if y # y~ both violate (iii), (iv) then x,;y and x,;y~ are two
more edges of F, incident to x,;, a contradiction. O

CLAIM 2. If x; = u, then F,, ® P is a triangle-free two-factor of G~. If x; = v, then
(F, ® P) U {u0, 0v} is a triangle-free two-factor of G™.

If F, ® P contains a triangle abc, then in G we have

(a) abe F,N Pand ac, bc € F, — P, or

(b) abe F, — Pand ac, bc€ F, N P.

X2i Xoj+1 X2i X2i+1 Xoj Xoitq
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This follows from the definition of F,, ® P and the fact that abc is not a triangle of
F,orof F,. If (F, ® P) U {u0, Ov} contains a triangle abc, then abc does not contain
the edges #0, Ov, and hence we also have (a) or (b) in G. Now we show that both (a)
and (b) are impossible in G: In case (a) if, say, a = x; and b = x»;,;, then P violates
(i) unless ac € F,, N F, in which case bc € P according to (iv). In case (b) we may assume
without loss of generality that bc precedes ac on P, i.e., that bc is an edge x;x; + and ac
an edge x;-x;-. with j < j'. If a = x»; and ¢ = x3;+,, then P violates (ii), with y = b. If
¢= Xy and a = X;+, then by (iii), b = x»; 4, a contradiction to ab ¢ P. O

To prove Theorem 2 from Theorem 3, observe that G~ is a subgraph of G. Thus it
only remains to consider the case when G* contains a triangle-free two-factor but G does
not. In terms of the above proof, that means (F, ® P) U {uv} contains a triangle, 1.e.,
that the path P constructed in that proof ends at x; = v and that x,v € F, — P. In this
case G has an obvious triangle-free two-factor obtained from F, by replacing x;v with
the path x,u, uv. O

Note that Theorems 1 and 2 do not have a strict analogue for square-free two-
factors, as can be seen by considering the graph K, with respect to any edge uv. (We
thank Pierre Fraisse for this observation.) Nevertheless, Theorem 3 does generalize as
follows.

THEOREM 4. If uv € E(G) and if both G — u and G — v have square-free two-
factors, then G~ or G** also has a square-free two-factor.

Here G*™ is the graph obtained from G by subdividing the edge uv with two new
vertices 0 and 1, i.e., by replacing uv with the path 0, 01, 1v (for 0, 1 € V(G)).

Proof. Again we assume that F, and F, are square-free two-factors of G — u and
G — v, respectively. However, instead of defining H as the symmetric difference, we let
H = F, U F,; this will have the effect of allowing the edges of F, N F, to be used in
alternating trails. Specifically, let P be a maximal alternating u-trail in H, P: u = Xo,
X1, *** , Xk, with each edge X2;x5;+1 € F, — F, (i = 0, 1, - - +) and satisfying all of the
following eight conditions:

(v) There is no edge yy' € F, — P,; with yx;; € F, — (F, U Py;) and y'xzi+1 €
(Fv—Fu)mPZi;

(vi) There is no edge yy' € (F, N F,) — Py; with yx,; € F, — (F, U Py;) and
Wosge S8y =0 U258

(vii) There is no edge yy' € (F, — F,) N Py with yx,; € F, — (F, U Py) and

otme Gy = J8,9

(viii) There is no edge yy’ € F, — P,; with y' # X»;4 2 and yxy; € F, — Paj, Y'X2i 41 €

Fu T P2i;

(ix) There is no edge yy' € (F, N F,) — Py; with ' # Xi42 and yxy; € Fyy —
U sV odneny G /i — (U85 U2 )

(x) There is no edge yy' € F, — P,; with y' # X2;1» and yxy; € (F, — F,) N P2,

WXz ELF S(EIURER)G

(xi) There is no edge yy' € (F, — F,) N Py; with ' # X2;4 2 and yxy; € F, — Py,
VixXo a1 € Fusitbom

(xii) There is no edge yy' € (F, — F,) N Py; with y' # X3;42 and yxy; € F, — Fy,
Vs 2 = (085 J)12))

In conditions (v)—(xii) it is to be assumed that yy' is disjoint from x;;X,; 1 ; as shown
in Fig. 2. (We use the same conventions as in Fig. 1.)

So far we have encountered one basic difference from the previous proofs (in addition
to an evident increase in complexity): the trail P can use the edges of F, N F,, although
only in positions x,;_ 1 X2; (i = 0, 1, + - -). The second basic difference is the following:
recall that the situation (B) from Claim 1 was shown impossible there. The analogous
situation here can actually occur (see Fig. 3).
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(ix) () (xi) (xii)

FIG. 3. 4 choice of X3;X3;+, that would require Xz, = ¥ (by (viii)) and X312 = y5 (by (ix)).

Nevertheless, the following claim remains true.

CLAIM 1. The trail P ends at x; = u or x; = v.

As before, if x; # u, v then k = 2i, and for each choice of x»;x;+ 1 € F, — (F., U P)
one of the following situations must occur:

(A) Some edge yy' violates (v), (vi), or (vii), or

(B) Some edges y;y', y,)5 force two different choices x> = »} and x3i+2 = y5
by (viii)—(xii).

We first prove that it is impossible that for all choices (there are at most two) of
X2iX2i+1 € Fy — (F,, U P) situation (A ) occurs: assume that for x,;x,; + (Vv), (vi), or (vii)
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is violated by yy'. Since x;; - 1 xp; € F, N Py;, we have y # x»;— ;, and hence there is another
choice x;x3;+1 € F, — (F, U P);assume that for x,;x; + (v)—(vii)is violated by y~p~".
Clearly y~ = y, or else x; is incident with three edges of F,. If y~' # ), then for the
same reason one of yy’ and yy~ ' is not in F,; hence, say, x;;x»;+, violates (vii) and
therefore x,;x-;+ violates (v) or (vi). (Otherwise there is an unbalanced number of
edges of F, N P and F, N P at y = y~.) This is not possible, as y # u, x; would be
incident with exactly one edge of P. If, on the other hand, 3’ = y~ ' then yy' € F, — F,
or else y’' is incident with three edges of F,. Thus both y'x,; and y'x3; are in F, N P,;
while yy' € P,;; this is impossible for y’ # u, x;.

As shown in Fig. 3, some choice of x;;X,;+ ; may lead to (B). However, there is only
a limited number of configurations that can cause this to happen: Assume that x;X2;+ 1
leads to (B), i.e., that conditions (viii)—(xii) require two different choices x3;+1 = Vi
and X, = V> for some edges y;)1, ¥»y5. We first prove that y; # ), (in addition to
Y1 # ¥2). If y1 = », then

e x,;y, € F, — P,;, and we obtain a contradiction at y,; (three edges of F,, or an
unbalanced number of edges of F,, N P,; and F, N Py;); or

® x5 1 € F, — P,;, and we have a similar contradiction (three edges of F, incident
to y1); or

® x5,y € F, N P,;, and we either note a similar contradiction again (three edges of
F, incident to y;, or an unbalanced number of edges of F, N P,; and F, N Py; at y,),
or, if both 3,7 and »,y5 contradict condition (x), we obtain the four-cycle
WY1 X2+ 1V51, contradicting the fact that F, is square-free.

Therefore y; # y», and since Xp;— 1 X2; € F,,, X2;X2i 41 € F,, we may assume without
loss of generality that x,;y; € F, and x;)» € F, (as in Fig. 3). In fact, considering the
position of x,; on the path P,;_,, and the fact that none of the edges x,;y in (viii)—(xii)
belong to F,, N P,;, we conclude that x,;y, € F,, — Py; and xy,;)» € F, —P,;. This leaves
the four possibilities obtained from combining each of (viii), (xi) with each of (ix),
(xii); in addition to the case illustrated in Fig. 3, we list them in Fig. 4.

We have just proved the following subclaim.

SUBCLAIM. IfX;;x,; 1 leads to (B) then H contains one of the four situations depicted
in Figs. 3 and 4.

Note that in Figs. 3 and 4 we have marked the edge x»;)» as € P»; even though (xii)
does not require it; this is so because x»;, € P,; would mean x»;, € P5;_ ;, contradicting
the fact that x,; is not incident with any edge of F, N P»;_,. (Recall that we are still
assuming that x,; = Xx # u, so that P,;_; cannot begin at xy;.)

In all four cases there is an obvious alternate choice, x5+, = y». We will be done
if we can show that x,;x5;+; does not lead to (A) or (B).

FIG. 4. The other configurations causing (B).
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Case 1. Xxp;x5;+1 leads to (B).

According to the above subclaim, there is a configuration similar to one of the
situations depicted in Figs. 3 and 4, on vertices Xz, — 1, X2i, X2i+1, Y1 > V1 '» Y2 » V5 '(see
Fig. 5).

By considering the degree of x,; in F, and F, we conclude that y; = y and y; =
X»i+1- Note that it is not possible that both y,y’ € F, and y{ y{ ' € F, because in such
a case we would necessarily have y; = yr'and y\x+1 € Fy,, V1X5+, € F,, yielding
three edges of F, at y'. Otherwise, say, y; yi ' € F, N P, as depicted in the example in
Fig. 5, and, regardless of whether y,;y € F,, — Por y, ¥ € F, N P, we obtain a contradic-
tion at y; = y{ arising from an unbalanced number of edges of F, N P and F, N P.
Thus Case 1 does not occur.

Case 2. ;x5 + leads to (A).

Suppose xy;, x3+1, ¥~ , ¥~ ' violate (v), (vi), or (vii). Then y~ = y,and y~' =
5. Ify~y~'€F,— P(asin (v)and (vi)) then we have a contradiction at y; because of
the degree in F, or an imbalance between F, N Pand F, N P. If y~y~ '€ F, N P (as in
(vii)) we also have a contradiction because of an imbalance between F, N P and F, N
P at y;. Thus Case 2 does not occur. This completes the proof of Claim 1. O

CLAM 2. If x; = u, then F, ® P is a square-free two-factor of G™. If x; = v, then
(F, ® P)U {u0, 01, 1v} is a square-free two-factor of G**.

If F, ® Por (F,® P)U {u0, 01, 1v} contains a four cycle abcd, then we may
assume that in G we have the following:

(a) abe(F,— F,)N\ P, bc, cd, da € F,, — P; or

(b) ‘ab,cd € (F,— F,)N'P,'bc, da € Fy— Por

(c) ab,bce(F,— F,)N P, cd,da € F, — P; or

(d) ab, bc,cde(F,— F,)N\ P,dacF, — P.

We now prove that each of these four situations is impossible.

(a) Without loss of generality a = x,;, b = x4+, for some i; then y = d, y' = ¢
contradicts (viii) because bc ¢ P implies that y' # X5 2.

(b) Similarly, we may assume without loss of generality that cd precedes ab on P
and that a = x;, b = X3, for some i (thus, cd € P,;); then, as in (a), y = d, y =c
contradicts (xi).

(c) We may assume that, say, bc precedes ab on P; but we must consider both
possibilities, that a = xy;, b = X, 1, or that @ = x;4 1, b = X2; (for some 7). In the first

FIG. 5. Both X X2+ and x»;x57 + | lead to (B). (This is only an example; there are 16 possible combinations
to illustrate.)
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case (a = Xz, b = X2i+1), y = d, y' = c contradicts (v), unless da € F, N F, (see Fig. 6).
In this situation (when da € F, N F,) we must have cd € F,, because F, is square-free.
Now bc = x3;%2,+1 (for some j < i): either ¢ = x3;, b = X, 1 and y = d, y' = a contradicts
(vi),or b = x3j, ¢ = X2;+1and y = a, y' = d contradicts (ix). (For both of these contra-
dictions we must remember to consider raemberships in P,; and not P,;.) In the second
case (b = x2;, a = X2i+1), ¥ = ¢, ' = d contradicts (x), unless da € F, N F,, which is
the situation dealt with above. Thus (c) is also impossible.
(d) We first prove that there is no four-cycle prst in G such that

preFu_(FUUPZi)y rs,tpe(Fv_Fu)an,', SleFv_(FuUPZi)

for any i. Indeed, if such a four-cycle prst were to exist in G, then we may assume that
sr precedes pt on P and that pt = X;;x;;4 forsome j <i.If p = x,;and ¢ = x4, then
y =r,y' = scontradict (vii); if £ = x;;and p = x4 then y = 5, y' = r contradict (xii).
Thus such a four-cycle prst cannot exist. It now follows that if (d) were to occur in G,
then bc cannot come after both ab and c¢d on P. (If bc = x,;x5;+ 1 and ab, cd € P,; then
abcd = rstp yields a contradiction.) Hence we may assume without loss of generality that
ab = X3;x2i+1 and bc, cd € P,;: if a = xp; and b = x5, , then y = d, y' = ¢ contradict
(vii);if a = x5, 1 and b = x,; then y = ¢, y' = d contradict (xii). This proves that (d) is
impossible; Claim 2 and Theorem 4 follow. O

Let G be a graph and uv € E(G). We denote by ¢ * the set of all graphs obtained
from G by subdividing the edge uv by any (finite) number of vertices. In the remainder
of the paper we shall often refer to elements of ¢ *. For simplicity we shall say some
(any, all) G* to mean some (any, all) G* € G*.

THEOREM 5. Let L™ < {3,4}. If uv € G and if both G — u and G — v have L-
restricted two-factors, then G~ or some G* also has an L-restricted two-factor.

Proof. For the purposes of this proof, G* may be chosen as follows: if L™ is nonempty
and finite, the edge uv is subdivided with max (L ~) — 2 (or more) new vertices; otherwise
G*=G.

When L~ = &, G* = G and Theorem 1 gives the desired conclusion. When L™ =
{3}, G* = G* and we apply Theorem 3. When L™ = {4}, G* = G*" and we conclude
by Theorem 4. Finally, when L™ = {3, 4}, we take L-restricted two-factors F, of G~
uand F, of G — v, let H = F, U F,, and define P: u = X, -+ , X to be a maximal
alternating u-trail in H with each edge x;x2;+, € F, — F, (i = 0, 1, - - -) and satisfying
all 12 constraints (i)—(xii).

CLAIM 1. The trail ends at x; = u or xx = v.

Otherwise, k = 2i and for each choice of x;x»;; |, we have the following:

(A) Some vertex y violates (i)—(ii), or some edge yy’ violates (v)—(vii); or

i =g

FIG. 6. A possible way to create (c). (The membership sign € refers to membership in P;.)
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(B) Some two vertices y) 7 y5> are required to be x4+, by (iii)—(iv) or
(viil)—(xii).

It again turns out that not every choice of x,;x;+ can lead to (A) or (B). Most of
the work in verifying this is given in the preceding proof; it only needs to be checked
that adding the rules (i)—(iv) does not change the situation. These verifications are similar
and shall be omitted here. O

CLAIM 2. If x; = u, then F,, ® Pis an L-restricted two-factor of G~. If xx = v, then
(F,® P)U {u0, 01, 1v} is an L-restricted two-factor of G*.

Since P satisfies both (i)-(iv) and (v)—(xii), Claim 2 follows from the corresponding
claims in the proofs of Theorems 3 and 4. O

3. Negative results. We begin by showing that Theorem 5 is the best possible in
the following sense.

THEOREM 6. For any nonempty set L = {3, 4, ---} with L™ & {3, 4} there exists
a graph G with an edge uv such that both G — u and G — v have L-restricted two-factors,
but neither G~ nor any G* has an L-restricted two-factor.

Proof. We define, for all A = 3 and all p = 0, g = 0, the graphs D, and P,, (see
Fig. 7).

Let L be finite and let A = max L. Then G = D, satisfies the conditions in Theorem
6. Indeed, both D, — u and D, — v are just A-cycles, while any two-factor of Dy or of
any D¥ is a cycle with more than \ vertices.

Let there exist nonnegative integers p and g such that k = p + g + 5 € L~ and
n=p+2g+9€L. Then G = P,, satisfies the conditions in Theorem 6. In fact,
(Ppq — u) — {ab, a'b'} is a cycle of length n, and (P,, — v) — {tb’, t'b} is also a cycle
of length n. On the other hand, any two-factor F of G~ or of any G* must contain the

paths 7 --- ra, and ¢’ - - - r’a’. In fact, F must also contain the path b - -- b’; this is
obvious when p # 0, and for p = 0 follows from the fact there is otherwise the forced
cyclez --- rabt' - -+ r'a’b't, which misses # and v. Moreover, F must also contain at least

one of the edges b’ ¢'b; otherwise F would miss v. If F contains both b’ and ¢'b, then
F must miss u. So, without loss of generality, b’ € F and t'b ¢ F. Then the cycle
t:--rab--- b'tin F is of the forbidden length k. Since this cycle does not contain the

special edge uv, the argument applies both to G~ and to any G *, and hence they cannot
have an L-restricted two-factor.

FIG. 7. The graphs D, and P, .
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When L~ is finite, L™ & {3, 4}, then letting kK = max L.~ and n = k + 4 implies
thatk=p+g+5andn=p+2g+9forqg=0andp=k— 5. Thus G = P,, satisfies
Theorem 6.

In the remaining case when both L and L.~ are infinite, there must also always exist
nonnegative integers p and g such that p + g + 5 € L™ and p + 2g + 9 € L. Otherwise
keL ,k=5,impliesk+4€L,k+5€L™, ---,2k— 1€L". Therefore either some
keL hask=9andmax L=k + 3,ormax L~ = 8. O

The fact that a graph G with a special edge uv satisfies Theorem 6 is closely related
to a somewhat stronger property of G, which will turn out to be crucial to prove the
apparent intractability of restricted two-factor problems. In addition to the notation
G~ = G — uv, we also introduce here the notation G™~ = G — {u, v}. We say that G
is an L-clamp (with respect to uv € E(G)), if G — u and G — v have L-restricted two-
factors but G~, G, and all G* do not. It is easy to see that when L is finite and A =
max L, the graph G = D, is actually an L-clamp. Interestingly, it is also true that each
graph G = P,, with p Z 1 is an L-clamp, providedp + g+ 5€ L andp + 29 + 9 € L.
However, this fails when p = 0, because of the cycle ¢ - - - rabt’ - - - r'a’b’t, which is an
L-restricted two-factor of G~ . Nevertheless, the following general construction (Lemma
7) shows that the existence of a graph G satisfying Theorem 6 (i.e., a counterexample to
Theorem 5) implies the existence of a clamp.

The graph H is said to be a modular extension of G~ if H contains G~ as an induced
subgraph and no vertex of G~ is adjacent to a vertex of H — G~ . The condition that
no G * has an L-restricted two-factor is equivalent to the assertion that every L-restricted
two-factor F of any modular extension H of G~ has each cycle entirely contained in G~
orin H — G~~. We say that G~ is L-coherent if neither G~ nor any G* has an L-restricted
two-factor, i.e., if in every L-restricted two-factor F of any modular extension H of G,
the union of the cycles of F that are included in G~ misses at least one of the ver-
tices u, V.

LEMMA 7. Forany L < {3, 4, - - -} the following three statements are equivalent:

(1) If G — u and G — v have L-restricted two-factors, then G~ or some G* has an
L-restricted two-factor.

(2) If G — u and G — v have L-restricted two-factors, then G~ or G~ or some G*
has an L-restricted two-factor.

(3) If G — u and G — v have L-restricted two-factors, then (both G~ and G™~) or
(some G*) has an L-restricted two-factor.

In other words, for any L either all (1)-(3) hold or none holds.

Proof. If Lis finite then the graph D, (with A = max L) shows that all three statements
are false; so we may assume that L is infinite.

Clearly (3) implies (1) and (1) implies (2). To prove that (2) implies (1), suppose
that G is a counterexample to (1), i.e., a graph G with edge uv such that G — uand G —
v have L-restricted two-factors, but G~ and all G* do not. Thus G~ is L-coherent. Con-
struct a graph H as illustrated in Fig. 8.

Since L is infinite, we may choose the value of m = 1 so that m + 5 € L. We now
claim that H is a counterexample to (2). Indeed, H — u has an obvious L-restricted two-
factor consisting of L-restricted two-factors of G7 — v, and G5 — v, together with the
lower (m + 5)-cycle of H™ containing the unnamed central vertices x, y, and vy, 2,
and v. Symmetrically, there is an L-restricted two-factor in H — v. Let F be any L-
restricted two-factor of any H* or of H~ or H . Since all of these graphs are modular
extensions of G (and of G3), the cycles of F included in G (respectively, in G2 ) must
miss at least one of u; or v, (respectively, #, or v;). But, since the path x - - - y must
belong to F, exactly one of the edges xu;, xv, (exactly one of the edges yu,, yv;, respec-
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tively) belongs to F, and hence only one of u; and v, (respectively, only one of u, and
;) can be missed by the cycles of Fincluded in G (respectively, in G5 ). Thus F contains
either the cycle xu uu,y - - - x or the cycle xv,vv,y - - - x, missing either v or u, a con-
tradiction.

To prove that (1) implies (3) we assume that G — u and G — v have L-restricted
two-factors but each G* does not. Then we construct / again as in Fig. 8. Since both
H — uand H — v have L-restricted two-factors (cf. above), (1) implies that Z~ or some
H* also has an L-restricted two-factor. It is not hard to see that the former case is im-
possible, and that in the latter case both G~ and G~ must have L-restricted two-
factors. O

The equivalence of (1) and (2) is crucial to our constructions. We remark on (3)
only because it seems to come out of the same construction. In fact, exchanging the
names #, and v; in H~ (cf. Fig. 8), and identifying as before, we obtain a new graph H'.
Arguing in H' in the same vein as we did in H we conclude that (1) also implies the
following:

(4) If both G~ and G~ have L-restricted two-factors, then some G* has an L-
restricted two-factor, or both G — v and G — v have L-restricted two-factors.

This is worth restating for the case L~ < {3, 4}, when we know (1) holds. Note
that this includes the case of unrestricted two-factors.

COROLLARY 8. If L™ < {3, 4}, and if no G* has an L-restricted two-factor, then
G — uand G — v have L-restricted two-factors if and only if G~ and G~ have L-restricted
two-factors. O

We have now shown that if L~ & {3, 4}, then there is an L-clamp; we shall denote
one such L-clamp by Gy,. We can now show our last construction (see Fig. 9).

FIG. 9. The graph Hy. .
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The graph Hy, consists of n copies of G1, labeled G; (i = 1, 2, - -+, n), with the
vertices u; joined in a cycle of length #n. The value of 7 is chosen so that # € L. Note that
H; is a modular extension of each G; .

LEMMA 9. Let L™ & {3, 4}, and let H;, be an induced subgraph of some graph
H in which no vertex of Hy-{v;, V2, ***, V,} is adjacent to any vertex of H — Hy. If
F is an L-restricted two-factor of H then every cycle C of F containing a vertex of
Hiy{ Unioe¥2.43 4 5 v, } lies entirely inside Hy,. Moreover, if one v; lies in a cycle contained
in Hy, then all do.

Proof. Since each G is L-coherent and H is a modular extension of G; , the union
of those cycles of F that are included in G; contains at most one of the vertices #; and
;. Since G;~ does not have an L-restricted two-factor, the union of these cycles must
miss precisely one of u; and v;. Suppose v; belongs to a cycle C of F that is included in
Hy.. Then by the coherence of G, C is included in G;. Hence u; is missed by all the
cycles of F that are included in G7, so the cycle uu;, - -+ u,u; must belong to Fj i.e.,
each u; must be missed by the cycles of F belonging to G . Therefore all v; must belong
to cycles of F contained in Hy,. O

We also note that the graph H; has an L-restricted two-factor: it is enough to combine

the cycle u,u, * - + u,u; with L-restricted two-factors of all G; — u;. Moreover, the graph
Hy-{v,, v, -, v, } also has an L-restricted two-factor consisting of the corresponding
factors of all G; — v,. These properties, together with Lemma 9, will be sufficient to

ensure that, when L~ & {3, 4}, the L-restricted two-factor problem is NP-hard.

Since L is a fixed set of lengths, determining if, say, the graph G = C, has an L-
restricted two-factor amounts to testing the membership of # in L. Thus we cannot in
general conclude that these problems are in NP, unless the description of L is easily
given, e.g., for finite sets L. (In fact, some of these problems are undecidable [10]; (el
[12].) This is the reason we only aim to prove the problems are NP-hard. Notice that
these results do translate to NP-completeness results for all the cases when testing mem-
bership in L is in NP (e.g., finite L or finite L. 7). (An alternative approach, cf. [5], would
be to consider the permitted cycles, viewed as subgraphs, part of the input; then all these
problems are indeed in NP.)

THEOREM 10. When L™ & {3, 4} the L-restricted two-factor problem is NP-hard.

Proof. Let n€ L. Since n = 3, the n-dimensional matching problem is NP-hard. In
that problem we are given a disjoint union of # sets, V=V, U /o U -+ U V, and a
collection E of subsets ¢ = V' with the property that each e N V; has exactly one element;
we are asked whether there is a subcollection E’ < E of the e’s that partition V. Given
an instance of the n-dimensional matching problem we take a copy H, of Hy, for every
e € E, identifying vertex v; in H, with the unique element of e N V;. It follows from the
properties of Hy explained above that the resulting graph has an L-restricted two-factor
if and only if the original problem has an n-dimensional matching (cf. [14], [15], or [9,
p. 68], for similar arguments). |

4. Conclusions and future directions. When L~ {3, 4} we have shown that L-
restricted two-factors of G — u and G — v may be used to find an L-restricted two-factor
of some G* or of G~ (and G~ 7). In fact, the proofs we have given can be interpreted as
linear-time algorithms for finding such factors. (The existence of such factors can be
proved even for infinite graphs.) When L~ & {3, 4} we have constructed examples G
having L-restricted two-factors in G — u and G — v, but none in any G* or G~ (and
G~"). These were then used to show that the corresponding L-restricted two-factor prob-
lems are NP-hard. Thus we can show the apparent intractability of all L-restricted two-
factor problems, except for the following four cases:
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(1) Ee=s
2)SEE =385
(3) L™ = {4};

(4) L™ ={3,4}.

It is well known that the unrestricted two-factor problem (1) is in P, [7]. Recently,
Cornuejols, Hartvigsen, and Pulleyblank [ 3] have shown that the triangle-free two-factor
problem (2)is also in P. We take our positive results to be an indication that the remaining
two L-restricted two-factor problems (3) and (4) should also admit polynomial algorithms.
In a future paper we shall offer further evidence of this by proving an augmenting path
theorem for each of the cases (1)—(4). In fact, these alternating “paths” are trails, very
much like our alternating u-trails, satisfying the appropriate subset of (i)—(xii), except
that the straight edges (here representing edges of a particular two-factor F, of G — v)
can be any edges of G — F,,. At this time we do not know how to find these augmenting
trails in polynomial time.
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