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Abstract We extend previous work on the parameterized complexity of local search

for the Traveling Salesperson Problem (TSP). So far, its parameterized complexity has

been investigated with respect to the distance measures (defining the local search area)

“Edge Exchange” and “Max-Shift”. We perform studies with respect to the distance

measures “Swap” and “r-Swap”, “Reversal” and “r-Reversal”, and “Edit”, achieving

both fixed-parameter tractability and W[1]-hardness results. In particular, from the

parameterized reduction showing W[1]-hardness we infer running time lower bounds

(based on the exponential time hypothesis) for all corresponding distance measures.

Moreover, we provide non-existence results for polynomial-size problem kernels and we

show that some in general W[1]-hard problems turn fixed-parameter tractable when

restricted to planar graphs.

Keywords NP-hard problem, heuristics, problem kernel, fixed-parameter tractability,

W[1]-hardness, lower bounds based on ETH

1 Introduction

The Traveling Salesperson Problem (TSP) is probably the most studied combinatorial

optimization problem. Almost all algorithm design techniques have been applied to it or
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were even specifically developed for it [21, 29]. Famous results include the Held/Karp-

algorithm [24], the polynomial-time factor-1.5 approximation algorithm for Metric

TSP of Christofides [8], and the polynomial-time approximation scheme for Euclidean

TSP [1]. Many heuristic algorithms for TSP have been developed and evaluated [26, 27].

Most of them follow the paradigm of local search: Incrementally try to improve a solution

by searching within its local neighborhood defined by a distance measure. Perhaps the

most prominent and best examined distance measure for TSP is the k-Edge Exchange

neighborhood (also called k-Opt neighborhood in some literature), where one is allowed

to exchange at most k edges of the Hamiltonian cycle forming the tour. Implementations

of this strategy for k = 2, 3 and generalizations such as the Lin-Kernighan-heuristic

belong to the best performing heuristic algorithms for real-world instances [27] both

in terms of quality and in terms of running time. However, for larger k, for which one

would expect a strong increase of quality, the running time becomes infeasible since

until now no algorithm is known which significantly beats the trivial O(nk) running

time needed for a brute-force exploration of the local distance-k neighborhood on

n-vertex graphs. In an important step forward, considering the problem within the

framework of parameterized complexity [11, 16, 35], Marx [32] has shown by proving

W[1]-hardness that there is no hope for an algorithm running in f(k) · nc time for any

function f (solely depending on k) and any constant c. Note that such an algorithm is

desirable since the degree of the polynomial in the input size n does not depend on the

parameter k. Moreover, assuming that the ETH (exponential time hypothesis) [25] does

not fail, Marx [32] has shown that there is no algorithm running in O(no(
3√
k)) time.

In this work, besides the k-Edge Exchange neighborhood (briefly, Edge distance

measure), we consider various other distance measures such as the Reversal distance

where the order of some consecutive vertices is reversed,1 the Swap distance where one

is allowed to exchange two vertices, and the Edit distance where one can move a vertex

to an arbitrary new position. For λ being any of these distance measures, we study the

following problem.

LocalTSP(λ)

Input: An undirected graph G = (V,E) with vertices labeled v1, . . . , vn such

that the identical permutation (id) v1, v2, . . . , vn, v1 is a Hamiltonian cycle in G,

an edge weight function ω : E → R+
0 , and a positive integer k.

Question: Is there a permutation π with λ(π, id) ≤ k that yields a Hamil-

tonian cycle with ω(π) < ω(id), where ω(π) :=
∑n−1
i=1 ω({vπ(i), vπ(i+1)}) +

ω({vπ(n), vπ(1)})?

Reflecting different distance measures λ, we speak about LocalTSP(Edge), Lo-

calTSP(Reversal), LocalTSP(Swap), LocalTSP(Edit), etc. We use LocalTSP

if the measure in use is not important. Notably, all problems have the same set of

instances.

Our Results. Table 1 summarizes our results. We show that the W[1]-hardness result

of Marx [32] for LocalTSP(Edge) can be extended, that is, we show that LocalTSP(λ)

for λ ∈ {Swap, Edit, Reversal} is also W[1]-hard, implying that it is probably not

fixed-parameter tractable for the “locality parameter” k. Furthermore, we strengthen

Marx’s running time lower bound based on the ETH by showing that LocalTSP(λ)

1 The reversal distance is also widely studied in bioinformatics in the context of genome
rearrangements [6, 15].
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r-Swap Swap Edit r-Reversal Reversal Edge
general
graphs

FPT
(Thm. 3.3)

W[1]-h
(Thm. 3.1)

W[1]-h
(Thm. 3.1)

FPT
(Thm. 3.4)

W[1]-h
(Thm. 3.1)

W[1]-h
[32]

planar
graphs

FPT FPT∗
(Thm. 4.2)

FPT∗
(Thm. 4.2)

FPT ? ?

Table 1.1 Overview of our results using k as the parameter and assuming r to be a constant.
The two results written in italics are a direct consequence of a more general result. Furthermore,
unless NP ⊆ coNP/poly, we show that for all distance measures above there cannot be a
polynomial-size problem kernel even on planar graphs (Theorem 4.1). Results marked by ∗
indicate that the corresponding algorithm is only a permissive FPT algorithm (see Section 2).

for λ ∈ {Swap, Edit, Reversal, Edge} does not admit an algorithm with running time

O(no(k/ log k)).

Additionally, for the Swap distance we show that, restricting by a parameter r the

distance of two vertices that are allowed to swap, makes LocalTSP(r-Swap) fixed-

parameter tractable with respect to the combined parameter (k, r). Specifically, we

outline an algorithm running in O(r2k(r − 1)2k · 4k · (k2 + n) · n) time. Furthermore,

we show that an analogously restricted Reversal distance, called r-Reversal, admits an

algorithm running in O(2rk · r2k−1 · (r − 1)k · (k2 + rk + n) · n) time and thus again

leads to fixed-parameter tractability. Continuing to chart the border of tractability, we

show that LocalTSP(λ) for λ ∈ {Swap, Edit} is fixed-parameter tractable on planar

graphs. In addition, exploring the limitations of polynomial-time preprocessing, we

indicate that, unless NP ⊆ coNP/poly, even on planar graphs there is no polynomial-size

problem kernel for LocalTSP(λ) for any of the considered distance measures λ.

Related Work. The most important reference point to our work is Marx’s study of

LocalTSP(Edge) [32] (using different notation). Long before Marx, Balas [2] studied

LocalTSP(Max-Shift), where Max-Shift distance k means that in order to obtain an

improved Hamiltonian cycle the maximum number of positions that a vertex is allowed

to shift is k. Contrasting the parameterized hardness result of Marx [32], Balas showed

that LocalTSP(Max-Shift) is fixed-parameter tractable by providing an algorithm

running in O(4k−1k1.5n) time.

Local Search in Parameterized Algorithmics. It is very natural to use parame-

terized algorithmics to study the computational complexity of local search measured

in the size of the local neighborhood where one tries to find an improved solution. In

fact, when k measures the “diameter” of the local neighborhood, it is often not hard

to come up with an algorithm running in nO(k) time, but since such an algorithm

usually becomes intractable already for very small k, the question whether there is an

algorithm with running time f(k) · nO(1) for a moderately growing function f naturally

arises. Parameterized algorithmics provides a framework to prove the existence of such

algorithms or to deliver some evidence that it cannot exist.

We will briefly summarize the state of the art on parameterized results for local

search. Fellows et al. [14] showed that searching the k-exchange neighborhood for prob-

lems such as r-Center, Vertex Cover, Odd Cycle Transversal, Max-Cut, and

Min-Bisection can be done on planar graphs in 2O(k) · n2 time, and is W[1]-hard on

general graphs. Fomin et al. [17] outlined a color-coding based algorithm for Weighted

Feedback Arc Set in Tournaments that decides in O(2o(k) · n logn) time whether

there is an improved solution in the k-exchange neighborhood (symmetric difference
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of the corresponding arc sets). Marx and Schlotter [34] studied a variant of the Stable

Marriage problem with respect to local search in the framework of parameterized

algorithmics. To analyze local search in the framework of parameterized algorithmics is

relatively new; further applications include Boolean Constraint Satisfaction [28],

Incremental Coloring [23], Sat [39], and Vertex Cover [19].

2 Basic Notation and Distance Measures

Notation. Let Sn denote the set of all permutations on {1, . . . , n} and let id ∈ Sn be

the identity. If not otherwise stated, we consider undirected simple graphs G = (V,E)

with vertex set V and edge set E. We set V (G) := V , E(G) := E, n := |V |, and

m := |E|. A directed graph G = (V,A) consists of a vertex set V and an arc set A.

A Hamiltonian cycle through a graph G = (V,E) with vertices labeled v1, v2, . . . , vn
is expressed by a permutation π ∈ Sn such that the edge set E(π) of π, defined as

E(π) = {{vπ(i), vπ(i+1)} | 1 ≤ i < n} ∪ {{vπ(n), vπ(1)}}, is a subset of E. Clearly, in

case of a directed graph G = (V,A) we require that A contains (vπ(i), vπ(i+1)) for

all i < n and (vπ(n), vπ(1)). For a weight function ω : E → R+
0 we define the weight

of π by ω(π) =
∑
e∈E(π) ω(e). The Hamiltonian cycle π is called improved compared

to id when ω(π) < ω(id). In this sense, LocalTSP(λ) is the question whether there is

an improved Hamiltonian cycle π with λ(π, id) ≤ k.

Parameterized Algorithmics. A parameterized problem is said to be fixed-parameter

tractable if there is an algorithm that solves every instance (I, k) (where k is the pa-

rameter) within f(k) · |I|c time for a constant c and a function f which solely depends

on k [11, 16, 35]. A recent development extends parameterized complexity analysis into

a multivariate complexity analysis where multiple parameters are combined [12, 36].

A kernelization algorithm computes for a given instance (I, k) in polynomial time a

new instance (I ′, k′) (called kernel) such that (I ′, k′) is a yes-instance if and only if

(I, k) is a yes-instance, k′ ≤ g(k), and |I ′| ≤ g(k) for a function g which solely depends

on k [4, 20, 31]. The function g measures the size of the kernel. If g is a polynomial

function, then the kernel is called polynomial-size kernel.

The basic class of parameterized intractability is W[1]. A parameterized problem

shown to be W[1]-hard by means of a parameterized reduction from another W[1]-

hard problem is believed not to be fixed-parameter tractable. For two parameterized

problems L and L′, a parameterized reduction from L to L′ maps any instance (I, k)

of L in f(k) · |I|O(1) time for some function f to an instance (I ′, k′) of L′ such that

k′ ≤ g(k) for some function g and (I, k) ∈ L⇔ (I ′, k′) ∈ L′.
It has been shown that, unless the exponential time hypothesis (ETH)2 fails, Clique

(deciding whether a graph contains a complete graph/clique of size k) cannot be solved

in f ′(k) · no(k) time for any function f ′ [7]. Thus, providing a parameterized reduction

from Clique to a parameterized problem L, not only proves that L is W[1]-hard but

also shows that, unless the ETH fails, L cannot be solved in f ′(k) · no(g
−1(k)) time for

any function f ′, where g is the function from the corresponding parameterized reduction;

refer to a recent survey [30] for more details on lower bounds based on the ETH.

2 Roughly speaking, the ETH states that 3-Sat cannot be solved in subexponential time.
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Permissive Algorithms. Marx and Schlotter [34] proposed to distinguish between

strict and permissive local search algorithms. Strict local search algorithms find an

improved solution (or prove that it does not exist) within some limited distance from

the given solution. Permissive local search algorithms find any improved solution

(potentially, with unbounded distance to the given solution), provided that an improved

solution exists within the limited distance of the given solution. The motivation for this

distinction is that finding an improved solution within a bounded distance of a given

solution may be hard even for problems where an optimal solution can easily be found,

e. g., Minimum Vertex Cover on bipartite graphs [28]. Gaspers et al. [19] recently

showed for Vertex Cover that for a class of inputs strict local search is hard while

permissive local search is tractable.

Distance Measures. So far, the distance between Hamiltonian cycles was usually

measured in terms of Edge distance, counting the number of edges used by one cycle

but not used by the other. Another measure considered is the Max-Shift distance, which

equals the maximum shift of the position of a vertex between the two permutations [2].

We consider several further measures based on the following operations on permutations.

Definition 2.1 For a permutation 1, 2, . . . , n, we define the following operations:

reversal ρ(i, j) results in 1, . . . , i− 1, j, j − 1, . . . , i+ 1, i, j + 1, . . . , n;

swap σ(i, j) results in 1, . . . , i− 1, j, i+ 1, . . . , j − 1, i, j + 1, . . . , n;

edit ε(i, j) results in 1, . . . , i− 1, i+ 1, . . . , j − 1, j, i, j + 1, . . . , n.

For a constant r a swap σ(i, j) (or a reversal ρ(i, j)) is called an r-swap (r-reversal,

resp.) if 0 < j− i ≤ r−1 or n+j− i ≤ r−1. The distance measures Swap, r-Swap, Edit,

Reversal, and r-Reversal count the minimum number of the appropriate operations to

apply to one permutation in order to obtain the other.

We do not consider the elements 1 and n to be anyhow special and, therefore, the

operations above can also be applied “over them”, e. g. σ(n− 1, 2) is a 4-swap.

We next show how the relation between the distance measures from Definition 2.2

can be used to easily transfer results shown for one distance measure to other ones.

Definition 2.2 A distance measure λ is bounded by a distance measure τ (or τ -

bounded) if there is a function f : N→ N such that for any two permutations π, π′ ∈ Sn
it holds that λ(π, π′) ≤ f(τ(π, π′)).

The relation of boundedness is reflexive and transitive and, therefore, forms a quasi-

order on the distance measures. Figure 2.1 depicts all relations between the measures,

omitting relations that can be deduced from the transitivity, in this sense showing a

Hasse diagram of this quasi-order. Before arguing about correctness of the relations

depicted in Figure 2.1, we show a tight relationship between our notion of bounded

distance measures and the existence of permissive FPT-algorithms.

Lemma 2.1 If a distance measure λ is τ -bounded, then a (permissive) FPT-algorithm

for LocalTSP(λ) is a permissive FPT-algorithm for LocalTSP(τ).
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Fig. 2.1 Hasse diagram of the relations between the distance measures. Let f : N→ N. An
arrow labeled “f(k)” from a distance measure τ to a measure λ means that λ is τ -bounded
with function f(k), implying that two Hamiltonian cycles of distance k with respect to τ have
distance at most f(k) with respect to λ.

Proof Consider an instance of LocalTSP(τ) with an improved Hamiltonian cycle in

τ -distance at most k from the given Hamiltonian cycle. Then this improved Hamiltonian

cycle is in λ-distance at most f(k) from the given Hamiltonian cycle. Thus, running

the (permissive) FPT-algorithm for LocalTSP(λ) with parameter f(k) returns an

improved Hamiltonian cycle and thus is a permissive algorithm for LocalTSP(τ). ut

We next argue about the correctness of the relations depicted in Figure 2.1 (we

consider r to be a constant in these comparisons): Obviously, an r-swap is a special

case of a swap and, therefore, Swap distance is bounded by r-Swap distance. Next, an

r-swap can be simulated by at most two r-reversals and a swap can be simulated by two

edits. Thus, the r-Reversal distance is bounded by the r-Swap distance and the Edit

distance is Swap-bounded. Further, one r-swap or r-reversal shifts a position of any

vertex in the Hamiltonian cycle by at most r, and, therefore, k of them shift no vertex

by more than rk, which implies that Max-Shift distance is both r-Swap-bounded and

r-Reversal-bounded. Similarly an r-reversal can be simulated by at most r/2 r-swaps

and, hence, r-Swap distance is r-Reversal-bounded. Since one edit can be simulated by

at most two reversals and a reversal breaks at most two edges, it follows that Reversal

distance is Edit-bounded and Edge distance is Reversal-bounded. Additionally, an edit

breaks at most three edges and thus the Edge distance is Edit-bounded. It remains to

show that Reversal distance is Edge-bounded.

Lemma 2.2 The Reversal distance is bounded by the Edge distance.

Proof Assume that from a given Hamiltonian cycle one can obtain an improved one

by first deleting k edges and adding another k edges. Consider the paths of the given

Hamiltonian cycle after we remove k edges. Now we build the improved Hamiltonian

cycle by gradually connecting the appropriate paths. We start from any path and

consider the path that should come next. By two reversals we can achieve that the

paths follow each other in the correct order (the first reversal moves the path next to

the previous one and the second rotates it into the right direction). By this we introduce

at least one edge of the new Hamiltonian cycle. As we never break any edge not deleted

from the Hamiltonian cycle and the reversals can be taken to operate outside the already
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Fig. 2.2 A planar graph with two different Hamiltonian cycles (marked by bold lines). The
cycles are only four edge modifications and four reversals from each other, while they can be
made arbitrarily far apart for any other of the measures by extending the horizontal lines.
Furthermore, the vertices affected by the changes are also arbitrarily large apart from each
other in the underlying graph and, as the graph has no other Hamiltonian cycles, there is no
other solution with changes concentrated in a constant distance to one particular vertex.

built part of the Hamiltonian cycle, we build the whole improved Hamiltonian cycle by

at most 2k reversals. This shows that Reversal distance is bounded by Edge distance.

ut

It is also not hard to come up with examples showing that no further boundedness

relations hold between the distance measures. See Figure 2.2 for an interesting case of

two Hamiltonian cycles which are close for Reversal and Edge distances, but far apart

for all the other distances considered.

3 General Graphs

In this section, we provide parameterized hardness as well as fixed-parameter tractability

for LocalTSP using various distance measures.

3.1 W[1]-Hardness and an O(no(k/ log k)) Lower Bound

We show that LocalTSP(λ) is W[1]-hard for λ ∈ {Swap, Edit, Reversal}. Furthermore,

for all these distance measures plus the Edge distance we provide a computational

lower bound of O(no(k/ log k)). To this end, we build on the W[1]-hardness proof

for LocalTSP(Edge) by Marx [32]. In contrast to Marx, who gave a parameterized

reduction from the k-Clique problem, we reduce from the Partitioned Subgraph

Isomorphism problem. This makes the construction more structured and more powerful.

Partitioned Subgraph Isomorphism (PSI)

Input: Two undirected graphs H and G with |V (H)| ≤ |V (G)|, and a (not

necessarily proper) coloring f : V (G) → V (H) of vertices of G with vertices

of H.

Question: Is there a mapping h : V (H) → V (G) such that ∀v ∈ V (H) :

f(h(v)) = v and h is a homomorphism, that is, ∀{u, v} ∈ E(H) : {h(u), h(v)} ∈
E(G)?

If such a homomorphism h exists, then we say that there is a colored H-subgraph in G.

PSI is W[1]-hard for the parameter k := |E(H)| as it is a generalization of the W[1]-hard

k-Multicolored Clique problem [13].

Our main result in this section is the following.

Theorem 3.1 LocalTSP(λ) is W[1]-hard with respect to k for λ ∈ {Swap, Edit,

Reversal, Edge}.
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γ δ
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γ δ
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Fig. 3.1 Switch gadget (a) and the two possible ways to traverse it (b) and (c)

Theorem 3.1 follows from the following lemma, the fact that PSI is W[1]-hard and from

that the Edit, Reversal, and Edge distances are all Swap-bounded.

Lemma 3.1 There is a parameterized reduction from Partitioned Subgraph Iso-

morphism parameterized by k := |E(H)| to LocalTSP(Swap) such that any improved

Hamiltonian cycle can be obtained by performing at most O(k) swaps.

Proof We provide a parameterized reduction from PSI parameterized by k := |E(H)| to
DirectedLocalTSP(Swap), this is, the variant of LocalTSP(Swap) where the input

graph is directed. We show that in the constructed graph any improved Hamiltonian

cycle can be obtained by performing at most 24k swaps to the given cycle. The claim is

then obtained from the parameterized reduction from DirectedLocalTSP(Swap) to

LocalTSP(Swap) given by Marx [32, Lemma 3.1].

Construction: Assume that the graph G = (V,E) with V = {v1, . . . , vn}, the

graph H with k = |E(H)| and V (H) := {1, . . . , l}, and a coloring f constitute an

instance of PSI. We assume without loss of generality that H is connected. We construct

an equivalent instance of DirectedLocalTSP(Swap) on the directed graph D by

multiple copies of the so-called switch gadget (see Figure 3.1(a)). There are only two

possibilities to traverse a switch on a Hamiltonian cycle, by using either the upper

path α → β (Figure 3.1(b)) or the lower path γ → δ (Figure 3.1(c)). Next, since the

constructed graph D will contain only one non-zero-weight arc, all arcs have weight

zero if not explicitly stated otherwise.

Each vertex vi ∈ V is represented in D by its segment Vi, which is formed by

degH(f(vi)) many switch gadgets Vi,j , where j ∈ {1, . . . , degH(f(vi))}. To form the

segment, we sequentially connect the switches by connecting each β-vertex to the

α-vertex of the subsequent switch. Furthermore, we add a start vertex vsi which has

an outgoing arc to the α-vertex of the first switch and an end vertex vei which has an

incoming arc from the β-vertex of the last switch.

We connect all segments V1, V2, . . . , Vn by adding an arc from the end vertex vei
of segment Vi to the start vertex vsi+1 of segment Vi+1 for all 1 ≤ i < n. In addition,

we add a start vertex vs which has an outgoing arc to the start vertex vs1 of the first

segment V1 and an end vertex ve which has an incoming arc from the end vertex ven of

the last segment Vn.

For each color j ∈ V (H) we add a so-called template tj , which is a directed simple

path consisting of 6 degH(j) vertices. Furthermore, for all segments Vi where f(vi) = j

there is an arc from vsi to the first template vertex tsj and an arc from the last template

vertex tej to vei . Finally, there are arcs from ve to ts1, from tej to tsj+1 for all j ∈ V (H),

and an arc of weight one from the last vertex in the last template tel to vs. This allows

to traverse all templates starting from the end vertex ve, and after reaching tel we can

go back to the start vertex vs.
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The given Hamiltonian cycle C in our DirectedLocalTSP(Swap) instance on D is

as follows. It starts in vs, traverses each segment by using the upper path for each switch,

follows the zero-weight arcs between subsequent segments, ends up in ve, afterwards

traverses all templates and finally uses the weight-one arc from tel to get back to the

start vertex vs. Hence, the weight of cycle C is one.

Observe that, once a cycle enters a segment Vi via vei and begins to traverse the first

switch by using the upper path, it has to traverse all switches in this segment by the

upper path. We call such a segment passive. Symmetrically, if one switch is traversed

by the lower path, all switches in the same segment have to be traversed by the lower

path, and we call such a segment active. All segments on the cycle C are passive and,

so far, it is the only possible Hamiltonian cycle through D.

Now, by adding some further arcs to D we will “encode” the structure of G to

ensure the existence of an alternative cycle C′ with weight strictly less than w(C) = 1

if and only if there is a colored H-subgraph in G. The only possibility to get a cycle

with weight less than w(C) = 1 is to skip the weight-one arc (tel , v
s). The idea is that

the cycle C′ starts in vs, follows the order of the segments but (in distinction to C)

“decides” for each segment Vi whether it traverses the segment through the switches or

it “skips” the segment by using the template tf(vi). After the cycle reaches ve, the new

arcs allow C′ to traverse all skipped segments by using the lower path for each switch,

and in this way all these switches become active. The vertices in G which correspond

to the active segments in D on C′ are intended to form a colored H-subgraph.

For the purpose of a formal description of the new arcs in D which are necessary to

traverse the active segments starting at ve, consider the directed graph H ′ obtained

from H by replacing each edge by two arcs with opposite directions. Further, consider a

closed Eulerian cycle p′ := p0, p1, p2 . . . , p2k−1, p2k in H ′, where pi ∈ V (H ′) = V (H),

p0 = p2k, and (pi−1, pi) ∈ A(H ′) for every i ∈ {1, . . . , 2k}. We remove p0 from p′ to

obtain p := p1, . . . , p2k. In the trail p, we define b(pi) := |{i′ | i′ ≤ i and pi′ = pi}| to

count how many times vertex pi already appeared on p when we reach pi (we have

b(pi) ∈ {1, . . . , degH(pi)}).
We want our new cycle C′ to follow the Eulerian trail p, using the b(pi)-th switch

of the segment of some vertex of color pi in the i-th place. To allow this, we add

arcs between the segments as follows. If there is an edge {vi, vj} ∈ E(G) and the arc

(f(vi), f(vj)) appears in p as (pφ, pφ+1), then add into D the arc from the δ-vertex of

the switch Vi,b(pφ) to the γ-vertex of switch Vj,b(pφ+1). To complete the construction

of D, connect this structure to the rest of the graph by adding for each vertex vi with

f(vi) = p1 an arc from ve to the γ-vertex of switch Vi,1 and by adding for each vertex vj
with f(vj) = p2k an arc from the δ-vertex of the switch Vj,b(p2k) to the vertex vs.

Correctness: We show that there is a Hamiltonian cycle C′ of weight zero within

Swap-distance at most 24k of C if and only if there is a colored H-subgraph in G.

Furthermore, we show that any improved Hamiltonian cycle in D can be obtained by

performing at most 24k swaps.

“⇐”: Assume that the vertices vi1 , vi2 , . . . , vil ∈ V (G) form a colored H-subgraph

in G such that f(vij ) = j for all j ∈ V (H). Then there is a cycle C′ that, starting

in vs, uses the template tj instead of segment Vij , continues after reaching ve to the

γ-vertex of switch Vi1,1, then mimics the trail p and finishes by using the arc from the

δ-vertex of switch Vil,b(p2k) to vertex vs. Note that each switch is traversed exactly

once. Moreover, for each j ∈ V (H) there is exactly on active segment Vi corresponding

to the vertex vi ∈ V (G) with f(vi) = j.
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It remains to count the number of swaps that have to be performed to C to get C′.
To this end, observe that the template of color j as well as the switches of a segment

(without start and end vertex) of a vertex of this color consists of exactly 6 degH(j)

vertices each. Since activating a segment is done by swapping the vertices in the

corresponding switches with the vertices in a template, we only need 6 degH(j) swaps

to activate a segment of color j. In total we need exactly
∑
j∈V (H) 6 degH(j) = 12k

swaps to activate all segments. Finally, we need at most 12k swaps to “sort” the vertices

in the active segments such that the order of the switches corresponds to the trail p.

We can conclude that the Hamiltonian cycle C′ can be obtained from C by performing

at most 24k swaps.

“⇒”: For the reverse direction, assume that in D there is a cycle C′ of weight

zero. We prove that C′ is within Swap-distance 24k from C and that there is a colored

H-subgraph in G. As cycle C′ has to be different from C, at least one segment Vu has

to be active in it. Call a color j active if there is a vertex vi ∈ V with f(vi) = j such

that the segment Vi is active and passive otherwise.

We first show that in C′ all colors are active. Towards a contradiction assume there

is a passive color x. Then there must be two colors x′ and y′ such that x′ is passive,

y′ is active, and {x′, y′} ∈ E(H), since there is at least one active color and H is

connected. The trail p uses (y′, x′) or (x′, y′). Consider the first case, that is, y′ = pi
and x′ = pi+1 for some i ∈ {1, . . . , 2k − 1}. Also suppose that Vu′ is an active segment

with f(vu′) = y′. Due to our construction, the only way how the cycle C′ can leave the

switch Vu′,b(pi) is that there is an active segment corresponding to a vertex of color x′,
which is a contradiction. As the second case also leads to a contradiction in a similar

way, we get that every color is active.

On the other hand, there is at most one active segment of each color, as the only way

to make a segment active is to replace it by the template. Hence, for each color j there

is exactly one vertex vij such that the segment Vij is active. Since, in order to traverse

these active segments, the Hamiltonian cycle C′ has to follow the Eulerian trail p, this

enforces that the vertices vij and vij′ are adjacent in G whenever {j, j′} ∈ E(H) and

thus vij ’s form a colored H-subgraph in G.

Moreover, since the improved Hamiltonian cycle C′ contains exactly one active

segment for each vertex in V (H), it follows that C′ is within Swap-distance 24k of C:

As already argued above, replacing |V (H)| many segments in the cycle C by the

corresponding templates and then sorting the switches within these active segments

according to the Eulerian trail p is possible by at most 24k swaps. ut

We next show the running time lower bound that can be derived from Lemma 3.1.

To this end, the following theorem of Marx [33], proving a lower bound for PSI, is

extremely useful.

Theorem 3.2 ([33, Corollary 6.3]) Unless the ETH fails, Partitioned Subgraph

Isomorphism cannot be solved in f(H) ·no(k/ log k) time, where f is an arbitrary func-

tion and k := |E(H)|.

Lemma 3.1 together with Theorem 3.2 implies the following corollary. For the case of

Edge distance, it improves the lower bound O(no(
3√
k)) given by Marx [32, Corollary 3.5].

Corollary 3.1 Unless the ETH fails, LocalTSP(λ) does not admit a (permissive)

algorithm with running time O(no(k/ log k)) for λ ∈ {Swap, Edit, Reversal, Edge}.
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3.2 Tractability

In Section 3.1 we have shown that on general graphs LocalTSP(λ) for λ ∈ {Swap,

Edit, Reversal, Edge} is W[1]-hard. In this section we show that LocalTSP becomes

fixed-parameter tractable when using the more restrictive distance measures r-Swap

and r-Reversal instead of Swap and Reversal, respectively. Actually, we prove a stronger

result, that is, fixed-parameter tractability with respect to the combined parameter (k, r).

The corresponding algorithms are based on the bounded search tree technique, and

they are mainly based on the observation that the solution can be assumed to be given

by a sequence of r-swaps (or r-reversals, resp.) that are somehow related.

We first describe the algorithm for LocalTSP(r-Swap). To this end, we need the

following definition. Let S be a sequence of swaps. We define an undirected auxiliary swap

graph GS as follows. There is a vertex for each swap in the sequence S, and two swaps

σ(i, j) and σ(t, l) are adjacent if either t or l is contained in {i− 1, i, i+ 1, j− 1, j, j+ 1}.
Furthermore, if a swap σ(i, j) is applied, then we call the positions i and j and the

vertices at these positions affected.

Lemma 3.2 If a LocalTSP(λ) instance for λ ∈ {r-Swap, Swap} admits an improved

Hamiltonian cycle, it also admits an improved Hamiltonian cycle which can be obtained

by swaps (or r-swaps) such that their swap graph is connected.

Proof Suppose that we are given a sequence S of swaps whose application to the

Hamiltonian cycle id ∈ Sn creates an improved Hamiltonian cycle π ∈ Sn. Towards a

contradiction, assume that C1, . . . , Cp with p ≥ 2 are the connected components of the

corresponding swap graph GS . For any of these components C, we denote by πC ∈ Sn
the permutation that results from applying the swaps in C to id preserving their order

relative to S.

We shall show that the sets E(πC1)4 E(id), . . . , E(πCp)4 E(id) form a partition

of the set E(π)4 E(id) (4 denotes the symmetric difference). Having proved this, the

rest of the argumentation is as follows. Since ω(π) < ω(id) or equivalently ω(E(π) \
E(id)) < ω(E(id) \ E(π)), it follows that there is at least one component C of GS

with ω(E(πC) \E(id)) < ω(E(id) \E(πC)). This implies that ω(πC) < ω(id) and thus

applying only swaps contained in C also results in an improved Hamiltonian cycle πC .

It remains to prove that E(πC1)4E(id), . . . , E(πCp)4E(id) is a partition of E(π)4
E(id). First, for all 1 ≤ i < j ≤ p, by definition of the swap graph it follows that the

positions, and thus also the vertices, affected by Ci are disjoint from the positions and

vertices that are affected by Cj . Formally, (E(πCi)4 E(id)) ∩ (E(πCj )4 E(id)) = ∅.
For any component C, we next argue that E(πC)4E(id) ⊆ E(π)4E(id). Clearly, for

an edge e = {i, j} ∈ E(πC)4 E(id), either vertex i or j has to be affected by at least

one swap in C. Then, no swap in S \ C affects any of i and j, because such a swap

would be adjacent to at least one swap in C. Hence, e ∈ E(π)4 E(id).

Finally, consider an edge e = {i, j} ∈ E(π)4E(id). By the same argument as above,

all swaps that affect any of i and j belong to the same component of GS . Thus, since

either vertex i or j is affected by a swap, it follows that there is a component C of GS

such that e ∈ E(πC)4 E(id). ut

Theorem 3.3 LocalTSP(r-Swap) is fixed-parameter tractable with respect to the

combined parameter (k, r). It is solvable in O(r2k(r − 1)2k · 4k · (k2 + n) · n) time.

Proof Let (G,ω, k) be an instance of LocalTSP(r-Swap). Furthermore, let S be

a sequence of at most k r-swaps such that applying S to id results in an improved
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Hamiltonian cycle π. By Lemma 3.2 we can assume that GS is connected. The algorithm

consists of two parts. First, the algorithm guesses the positions of all swaps in S and,

second, it finds their correct order.

To describe the first part, for convenience, we assume for all swaps σ(i, j) that

j ∈ {i+ 1, i+ 2, . . . , i+ r− 1}. Furthermore, we define an ordering relation ≤ on swaps

with σ(i, j) ≤ σ(t, p) if and only if i < t or i = t ∧ j ≤ p. Let σ1, σ2, . . . , σs with s ≤ k
be the swaps of S sorted with respect to ≤ in ascending order.

In the first part of the algorithm, by branching into all possibilities for the positions

of the swaps, the algorithm guesses all swaps in the order given above: At the beginning,

the algorithm branches into all possibilities to find the position i1 for σ1(i1, j1) and then

into the r−1 possibilities to find the position j1. Now, suppose we have already found the

swap σt(it, jt). We next describe how to find the swap σt+1(it+1, jt+1). By the ordering

we know that i1 ≤ . . . ≤ it ≤ it+1 and, since all swaps are r-swaps, for all 1 ≤ p ≤ t with

jp > it it holds that jp−it ≤ r−1. From this and since GS is connected (Lemma 3.2), it

follows that it+1− it ≤ r. Thus, we can find the position of it+1 by branching into r+ 1

possibilities. Afterwards, by branching into r − 1 possibilities we find the position jt+1.

Overall, the positions of σt+1 can be guessed by branching into at most r2 possibilities,

and there are at most r2k−1 · n possible positions of the swaps in total.

In the second part, the algorithm guesses the order of the r-swaps. Clearly, the

trivial way to do that is by trying all permutations of the swaps, resulting in a total

running time of O(r2k−1k! · n). This already shows that the problem is fixed-parameter

tractable for (k, r). We next describe how this can be accelerated in case that 4r2 < k.

To this end, let σ(1), σ(2), . . . , σ(s) be all swaps in S in the order of their application

resulting in π. Clearly, if there are two subsequent swaps σ(t)(i, j) and σ(t+1)(i′, j′)
such that {i, j} ∩ {i′, j′} = ∅, then reversing their order in the application of the swaps

also results in π. More generally, instead of finding a total order of the swaps, it is

sufficient to find a partial order of the swaps that defines the order for any pair of

swaps σ(i, j) and σ(t, p) where |{i, j}∩ {t, p}| = 1. Clearly, we do not have to define the

order of two swaps which are of the same type, that is, where {i, j} = {t, p}. Thus, for a

position i, consider all swaps which affect position i. Since all these swaps are r-swaps,

there can be at most 2r − 2 different types that affect position i. Hence, if there are

ki swaps that affect position i, then there are at most (2r− 2)ki different permutations

of these swaps. Combining the number of possibilities of all affected positions, since

each swap affects exactly two positions, it follows that there are at most (2r − 2)2k

permutations of all swaps yielding different Hamiltonian cycles. Once the partial orders

at all relevant positions are determined, we check whether this can be obtained by some

total order of the swaps, and find this order in O(k2) time, by representing the partial

orders by arcs in a directed graph on the set of swaps and finding a topological order

for this graph. Then we apply the swaps in this order in O(k) time and check whether

we obtain an improved Hamiltonian cycle in linear time. Together with the first part,

the whole algorithm runs in O(r2k(r − 1)2k · 4k · (k2 + n) · n) time. ut

Since the r-Swap distance is bounded by the r-Reversal distance (the corresponding

function is rk/2, see Figure 2.1), the above theorem implies also the existence of an

O(rrk(r−1)rk ·2rk ·((rk)2+n)·n)-time permissive algorithm for LocalTSP(r-Reversal),

that is, an algorithm that returns an improved Hamiltonian cycle whenever there is

an improved Hamiltonian cycle in r-Reversal distance at most k from the given cycle.

By modifying the algorithm from Theorem 3.3, we can obtain a strict local search

algorithm for LocalTSP(r-Reversal) with a better running time.
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Theorem 3.4 LocalTSP(r-Reversal) is fixed-parameter tractable with respect to the

combined parameter (k, r). It is solvable in O(2rk · r2k−1 · (r − 1)k · (k2 + rk + n) · n)

time.

Proof We modify the algorithm from Theorem 3.3. We use the first part without

changing it. That is, the position of the r-reversals are guessed in the “≤” order in

O(r2k−1 · n) time. Again one can show that if the t-th guessed reversal is ρ(it, jt),

then the (t+ 1)-th reversal ρ(it+1, jt+1) must fulfill it+1 − it ≤ r, as, otherwise, the

first t reversals or the last k − t reversals would yield an improved Hamiltonian cycle

themselves.

For the second part we again observe that we do not need to know the total order

of the guessed r-reversals. It is enough to know the order of reversals ρ(i, j) and ρ(i′, j′)
if {i, i+ 1, . . . , j} ∩ {i′, i′ + 1, . . . , j′} 6= ∅ and (i, j) 6= (i′, j′). Also observe that for this

purpose it suffices to provide the order on positions where some of the guessed reversals

start, that is, on positions i for which there is a j such that ρ(i, j) is one of the guessed

reversals. Now assume that the orders for all such positions 1 ≤ t′ < t have been already

determined and we want to find the order at position t. Suppose that there are at
reversals ρ(i, j) with i < t ≤ j and bt of them with t = i < j. Observe that the order of

the at reversals is already known from some previous position. We first determine the

order of the bt reversals starting at position t. As there are at most r − 1 types of r-

reversals starting at t, there are at most (r−1)bt different orders of them. Now it remains

to determine the relative order of the reversals starting at t and those starting before.

With the known orders within these groups, we have less than 2at+bt such orders. To

determine the running time of the algorithm, we multiply the number of possibilities over

all positions. The total number of orders of the reversals yielding different Hamiltonian

cycles is at most
∏n
t=1(r − 1)bt · 2at+bt = (r − 1)

∑n
t=1 bt · 2

∑n
t=1 at+bt ≤ (r − 1)k · 2rk

as the sum
∑n
t=1 bt of the number of reversals starting at some position is at most k,

while the sum
∑n
t=1 at + bt of the number of reversals affecting the particular position

is at most rk for r-reversals.

Once the partial orders at all positions are determined, we check whether this can

be obtained by some total order of the reversals, and find this order in O(k2) time.

Then we apply the reversals in this order in O(kr) time and check whether we obtain

an improved Hamiltonian cycle in linear time. Therefore the whole algorithm runs in

O(2rk · r2k−1 · (r − 1)k · (k2 + rk + n) · n) time. ut

Note that the swap graph of a swap sequence that yields the best improved Hamiltonian

cycle in the local neighborhood does not have to be connected, and thus Lemma 3.2

cannot be extended to this case. However, we remark that, for LocalTSP(λ) with

λ ∈ {r-Swap, r-Reversal}, by applying a standard dynamic programming approach, the

algorithms given in the proofs of Theorems 3.3 and 3.4 can be extended such that not

only any improved Hamiltonian cycle is found but also the best improved Hamiltonian

cycle within the local neighborhood.

Further, analyzing the proofs of Theorems 3.3 and 3.4, one can show that if there

is an improved Hamiltonian cycle in LocalTSP(r-Swap) or LocalTSP(r-Reversal),

then there is also an improved cycle which differs from the given one only on ver-

tices vi, vi+1, . . . , vi+rk−1 for some i. Therefore, one can reduce an input instance to

polynomially many instances of the same problem, each having its size bounded by a

polynomial in k and r. It is enough to replace the part of the cycle between vi+rk−1
and vi by a length-rk path formed by dummy vertices. Such a self-reduction is known

as polynomial Turing kernelization [31].
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Proposition 3.1 LocalTSP(r-Swap) and LocalTSP(r-Reversal) admit a reduction

to n Turing kernels, each with at most 2rk vertices, and the reduction can be computed

in linear time.

In contrast to Proposition 3.1, in the next section we show that LocalTSP(λ) does

not admit a polynomial-size kernel for any distance measure λ considered in this work,

even when restricted to planar graphs.

4 Planar Graphs

In this section we investigate the complexity of LocalTSP on planar graphs. Note that

whether LocalTSP(Edge) on planar graphs parameterized by the locality parameter k

is fixed-parameter tractable or not is the central open question stated by Fellows

et al. [14]. We do not answer this question; however, we show that on planar graphs

LocalTSP(λ) for λ ∈ {Swap, Edit} is fixed-parameter tractable for parameter k. Before

that, we show that LocalTSP(λ) on planar graphs does not admit a polynomial-size

kernel for any of the distance measures λ considered in this work.

4.1 Non-Existence of a Polynomial-Size Kernel

Bodlaender et al. [5] have shown that a parameterized problem does not admit a

polynomial-size kernel (unless NP ⊆ coNP/poly) if its unparameterized variant is NP-

hard and if it is compositional. A parameterized problem is compositional if there is a

polynomial time algorithm that takes as input instances (I1, k), . . . , (It, k) and computes

a new instance (I, k′) where k′ is upper-bounded by a polynomial in k and (I, k′) is a

yes-instance if and only if (Ij , k) is a yes-instance for some 1 ≤ j ≤ t.
We prove in detail that LocalTSP(r-Swap) does not admit a polynomial-size

problem kernel. As can be seen in Figure 2.1, all distance measures considered in this

work are r-Swap bounded and thus r-Swap can be viewed as the least powerful distance

measure. Thus, a similar argumentation is also valid for the other distance measures.

To show that LocalTSP(r-Swap) on planar graphs has no polynomial-size kernel,

we first consider a more restricted variant, namely LargeLocalTSP(r-Swap), where it

is required that the underlying planar graph has more than 2rk vertices. We show that

LargeLocalTSP(r-Swap) is NP-hard on planar graphs by a many-to-one reduction

from Weighted Antimonotone 2-Sat; by exploiting the properties implied by the

requirement that there are more than 2rk vertices, we then show that it is compositional.

Lemma 4.1 LargeLocalTSP(r-Swap) on planar graphs is NP-hard.

Proof We reduce from the NP-complete Weighted Antimonotone 2-Sat problem

to the LocalTSP(r-Swap) problem and then show how to extend the construction to

LargeLocalTSP(r-Swap).

Weighted Antimonotone 2-Sat

Input: A Boolean formula in 2-conjunctive normal form (2-CNF) where all

literals are negative, and a positive integer c.

Question: Is there a satisfying assignment such that at least c variables are set

to True?
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Weighted Antimonotone 2-Sat can be easily seen to be equivalent to the NP-

complete Independent Set problem, where the vertices correspond to the variables

of the formula, the edges correspond to the clauses of the formula, the vertices taken

into the independent set correspond to the variables set to True and the question is

whether the graph admits an independent set of size at least c.

Let F be a 2-CNF formula which forms together with a positive integer c an instance

of Weighted Antimonotone 2-Sat. We first form a 3-CNF F ′ by adding to F a new

so-called dummy variable y such that each clause contains the literal ¬y. Furthermore,

except for y, for every variable x in F we add the clause (¬x ∨ y) to F ′. Observe that

the formulas F and F ′ have a trivial satisfying assignment where all variables are set

to False.

Next, we apply to F ′ a reduction from 3-Sat to Planar Hamiltonian Cycle due

to Garey et al. [18], obtaining a planar graph G such that G admits a Hamiltonian cycle

if and only if F ′ has a satisfying assignment. Then, the trivial satisfying assignment

where all variables are set to False induces a Hamiltonian cycle in G. Moreover, it

follows from the details of the construction that for every variable there are two edges

such that the usage of these edges in a Hamiltonian cycle specifies whether, in the

corresponding satisfying assignment, the variable has to be set True or False. This

means that there is an edge that is used if and only if the variable is set False and

another edge that is used if and only if the variable is set True. We briefly refer to

them by the False-edge and True-edge, respectively.

In order to form a LocalTSP(r-Swap) instance, we assign weight one to every

False-edge. Hence, if F ′ contains n variables, then the satisfying assignment where all

variables are set to False has weight n. Finally, assign weight c to the True-edge of y,

whereas all remaining edges have weight zero. Every permutation of t elements can be

sorted by at most
(
t
2

)
2-swaps. Hence, denoting the Hamiltonian cycle through G that

uses all False-edges by id and setting k =
(|V (G)|

2

)
allows to choose any permutation

as a solution of the LocalTSP(r-Swap) instance (G,ω, k).

We next show the correctness of the construction above, meaning that there is a

satisfying assignment for F with at least c variables set to True if and only if there

is a Hamiltonian cycle through G with weight strictly less than n. First, assume that

there is a satisfying assignment for F with at least c variables set to True. It is clear

that extending this assignment by setting y = True we also get a satisfying assignment

for F ′. Moreover, since in the corresponding Hamiltonian cycle through G at least

c zero-weight True-edges are used, and since the weight-c True-edge for y is used

instead of the weight-1 False-edge, the weight of the Hamiltonian cycle is at most

n+ c− 1− c < n.

For the reverse direction, assume that there is a Hamiltonian cycle with weight

strictly less than n and consider the corresponding satisfying assignment for F ′. Then,

there is at least one variable, say x, that is set to True. Since the clause (¬x ∨ y) ∈ F ′
has to be satisfied, it follows that y is also set to True. Hence, removing y from the

assignment results in a satisfying assignment for F and since the True-edge of y has

weight c but the weight of the cycle is less than n, in total there have to be at least c

other variables set to True.

The presented argumentation shows that LocalTSP(r-Swap) is NP-hard on planar

graphs. Moreover, it is clear from the construction by Garey et al. [18] that there is an

edge (for instance, the edge from the last clause-gadget to the first variable-gadget) that
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has to be used in any Hamiltonian cycle. Thus, subdividing this edge an appropriate

number of times, we also get an equivalent LargeLocalTSP(r-Swap) instance. ut

In order to apply the framework of Bodlaender et al. [5], it remains to show that

LargeLocalTSP(r-Swap) on planar graphs is compositional. To prove this, we first

need the following easy observation.

Observation 4.1 For a LargeLocalTSP(r-Swap) instance (G,ω, k), let π ∈ Sn be

an improved Hamiltonian cycle that can be obtained by a sequence S of at most k

r-swaps. Then, there is an edge e = {vt, vt+1} ∈ E(π) ∩E(id) such that the vertices vt
and vt+1 are unaffected and no swap goes over these vertices. Formally, this means that

for all σ(i, j) ∈ S it holds that neither t nor t+ 1 is contained in {i, i+ 1, . . . , j − 1, j}.

Proof A LargeLocalTSP(r-Swap) instance fulfills n > 2kr. Then, since performing k

r-swaps cannot affect more than 2k vertices, it follows that there are some r consecutive

vertices that are unaffected. The second statement follows because one r-swap cannot

“span” more than r− 1 vertices and thus no swap affects or goes over these vertices. ut

Lemma 4.2 LargeLocalTSP(r-Swap) on planar graphs is compositional.

Proof Suppose that we are given, for a positive integer t ∈ N, instances (G1, ω1, k),

(G2, ω2, k), . . . , (Gt, ωt, k) of LargeLocalTSP(r-Swap). For each graph Gi with 1 ≤
i ≤ t we introduce several copies of Gi, and in each copy we choose a start and an end

vertex. Then, a graph G with weight function ω is composed by arranging the copies in

an arbitrary order and connecting the end vertex of a copy by a zero-weight edge to the

start vertex of the subsequent copy. Finally, the end vertex of the last copy is connected

by a zero-weight edge to the start vertex of the first copy. We describe a Hamiltonian

path from the start to the end vertex of each copy. All these paths together with the

zero-weight edges between the copies form the Hamiltonian cycle id and (G,ω, k) forms

the composed instance. Furthermore, since the start and the end vertex of each copy

are connected by an edge, and, therefore, there is an embedding of the copy with both

vertices on the boundary of the outer face, graph G is planar.

In order to form the composed graph G, for 1 ≤ i ≤ t and ni := |V (Gi)| let

vi1, v
i
2, . . . , v

i
ni , v

i
1 be the given Hamiltonian cycle in Gi. For 1 ≤ j < ni, we add one copy

of Gi with the vertex vij+1 being the start vertex and vij being the end vertex. The given

Hamiltonian cycle in Gi then induces a Hamiltonian path vij+1, v
i
j+2, . . . , v

i
ni , v

i
1, . . . , v

i
j

from vij+1 to vij in this copy. We complete the construction by adding a copy of Gi

where vi1 is the start and vini is the end vertex.

In the following we prove the correctness of the reduction, that is, the composed

instance (G,ω, k) is a yes-instance of LargeLocalTSP(r-Swap) if and only if there

is a yes-instance (Gi, ωi, k) with 1 ≤ i ≤ t. First, suppose that there is an improved

Hamiltonian cycle for G which performs at most k swaps. By our construction it is

obvious that any Hamiltonian cycle through G enters a copy at its start vertex and leaves

it at its end vertex. Thus, there is at least one copy where the improved Hamiltonian

cycle for G implies an improved Hamiltonian path from the start to the end vertex. As

the improved Hamiltonian path does not use the edge between the end vertex and the

start vertex of the particular copy, by adding this edge we obviously get an improved

Hamiltonian cycle in the corresponding graph, which is in r-Swap distance at most k

from the given Hamiltonian cycle.
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For the reverse direction, suppose that there is an improved Hamiltonian cycle for

the graph Gi. By Observation 4.1 there is at least one “preserved” edge {vij , v
i
j+1} or

{vini , v
i
1}, where no swap goes over its endpoints. It is clear that the same swaps are

also r-swaps in the copy of Gi with vij+1 (or vi1) as a start vertex and vij (or vini) as

the end vertex. Hence all swaps which were performed to Gi can be performed to this

copy, resulting in an improved Hamiltonian cycle for G. ut

Employing the framework of Bodlaender et al. [5], Lemma 4.2 and Lemma 4.1 together

imply that LargeLocalTSP(r-Swap) does not admit a polynomial-size kernel, unless

NP ⊆ coNP/poly. Thus, the next theorem follows.

Theorem 4.1 Unless NP ⊆ coNP/poly, LocalTSP(r-Swap) on planar graphs does

not admit a polynomial-size kernel with respect to the parameter k for any r ≥ 2.

Following exactly the same argumentation as for LocalTSP(r-Swap), we state that

one can show that on planar graphs LocalTSP(λ) for λ ∈ {r-Reversal (for any r ≥ 2),

Swap, Edit, Reversal, Max-Shift, Edge} does not admit a polynomial-size kernel with

respect to parameter k, unless NP ⊆ coNP/poly.

Corollary 4.1 Unless NP ⊆ coNP/poly, LocalTSP(λ) for λ ∈ {r-Reversal, Swap, Edit,

Reversal, Max-Shift, Edge} on planar graphs does not admit a polynomial-size kernel

with respect to the parameter k for any r ≥ 2.

4.2 LocalTSP(Edit) and LocalTSP(Swap) are Fixed-Parameter Tractable

LocalTSP(Edit) and LocalTSP(Swap) on planar graphs are unlikely to allow for

polynomial-size kernels; however, they admit a permissive FPT-algorithm. In the follow-

ing we argue for LocalTSP(Swap); the result for the Edit distance can be obtained

along the same lines. The proof relies on the following two lemmas.

Lemma 4.3 If a LocalTSP(Swap) instance with parameter k admits an improved

Hamiltonian cycle, then it also admits an improved Hamiltonian cycle which differs

from the given one only within the distance-3k neighborhood around some vertex.

Proof Due to Lemma 3.2 from Section 3.2, it suffices to prove the statement only for

improved Hamiltonian cycles obtained by a sequence of swaps where the corresponding

swap graph is connected. Consider the set A of all vertices affected by swaps and their

neighbors in the given Hamiltonian cycle Q. Since there are at most k swaps we have

|A| ≤ 6k. Clearly, the improved Hamiltonian cycle R coincides with Q outside A.

Now we consider the connected components of G[A]. Furthermore, we also consider

some maximal path P of R such that P is formed only by vertices of A. Obviously,

P contains vertices of only one component of G[A]; call this component C. Let x, y be

the two neighbors of P on R. Since the part of Q outside of A is preserved, the path P ′

of Q between x and y also contains only vertices of C. Moreover, since x and y are not

affected by any swap and, therefore, there must be the same number of vertices between

them in Q and in R, path P ′ has the same length as P . By repeating the argument,

one can show that C can be partitioned into such paths of Q and R in a one-to-one

correspondence. Therefore, one can obtain R in C from Q only using swaps within C.

Due to the above argument, it suffices to consider the case that each swap is within

one component of G[A]. Observe that swaps in different components of G[A] are not
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adjacent in the swap graph. Therefore, since we assumed the swap graph to be connected,

G[A] has only one component, that is, G[A] is connected. Finally, in a connected graph

with at most 6k vertices there is at least one vertex that has distance at most 3k to

all others. ut

The following lemma shows that, regardless of the distance measure, on planar graphs

it is fixed-parameter tractable to find the best improved Hamiltonian cycle that differs

from the given one only within the neighborhood of one specific vertex.

Lemma 4.4 For an instance of LocalTSP on planar graphs and a vertex v one can

find in O(2O(k) · n + n3) time the best Hamiltonian cycle among those differing from

the given one only within distance k from v.

Proof Start by deleting the edges having an endpoint of distance greater than k from v

which are not part of the given Hamiltonian cycle (they cannot be used by the new

Hamiltonian cycle anyway). Now contract the paths of the given Hamiltonian cycle

formed by vertices in distance more than k from v into one vertex (to avoid duplicate

edges). Then the whole graph is still planar and has diameter at most 2k + 2 and,

therefore, by a result of Robertson and Seymour [37] (see also [3]) has treewidth at most

6k+ 6. Thus it has branch-width at most 6k+ 6 [38]. Dorn et al. [10] showed that TSP

on planar graphs (referred to as Planar Hamiltonian Cycle) with branch-width l

can be solved in O(23.292l · l · n+ n3) time. To modify their algorithm for our problem

it is enough to force their algorithm to preserve the edges of paths that represent the

parts of the given Hamiltonian cycle in distance more than k from vertex v. This is

easy, as Dorn et al. [10] basically consider the solution to be the set of edges of the

Hamiltonian cycle, and the branch-decomposition based dynamic programing actually

starts with individual edges. It is enough to fill the tables so that the only solution on

a required edge is to take this edge. ut

Theorem 4.2 There is a permissive FPT-algorithm for LocalTSP(λ) on planar

graphs with respect to k for λ ∈ {Swap,Edit}.

Proof We prove the theorem only for the Swap distance, the result for the Edit distance

can be obtained along the same lines. Assume that there is an improved Hamiltonian

cycle in Swap distance at most k from the given Hamiltonian cycle. By Lemma 4.3 we

know that in this case there is an improved Hamiltonian cycle, differing from the given

one only within distance at most 3k from some vertex v. We can find such a Hamiltonian

cycle or a Hamiltonian cycle that is at least as good, by applying the algorithm from

Lemma 4.4 on the 3k-neighborhood of each vertex. The O(n · (2O(k) · n+ n3)) running

time follows. ut

Following the same approach as Fellows et al. [14], Theorem 4.2 can be easily generalized

to any class of graphs with bounded local treewidth. As Lemma 4.3 does not assume

anything about the graph, we only have to modify Lemma 4.4. The lemma is true in

any class of graphs with bounded local treewidth, but the corresponding running time

depends on the respective class.

5 Conclusion

We left open the central open problem posed by Fellows et al. [14] whether Lo-

calTSP(Edge) restricted to planar graphs is fixed-parameter tractable. However, we
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indicated (see Section 2) that a permissive FPT-algorithm for LocalTSP(Edge) implies

a permissive FPT-algorithm for LocalTSP(Reversal) and vice versa. Thus, the ques-

tions whether the problems are fixed-parameter tractable, are equivalent and this might

help to shed new light on Marx’s question. To this end, it might be beneficial to explore

the connections of LocalTSP(Reversal) to the topic of Sorting by Reversals as

studied in bioinformatics [6]. Moreover, it might be worthwhile to explore whether there

are strict algorithms for LocalTSP(λ) for λ ∈ {Swap, Edit} on planar graphs.

Assuming the Exponential Time Hypothesis [7, 25], we showed that there is no

O(no(k/ log k))-time algorithm for LocalTSP(λ) for λ ∈ {Swap, Edit, Reversal, Edge}.
Is there also a matching upper bound or can the lower bound still be improved?

Finally, our investigations might also be extended by moving from local neighbor-

hoods for TSP to so-called exponential (but structured) neighborhoods as undertaken

already in a non-parameterized setting [9, 22].
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