
On the Computational Complexity of Length- and
Neighborhood-Constrained Path Problems

Max-Jonathan Luckowa,1, Till Fluschnika,2,∗

aInstitut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany

Abstract

Finding paths in graphs is a fundamental graph-theoretic task. In this work,
we study the task of finding a path with some constraints on its length and the
number of vertices neighboring the path, that is, being outside of and incident
with the path. Herein, we consider short and long path on the one side, and
small and large neighborhoods on the other side—yielding four decision prob-
lems. We show that all four problems are NP-complete, even in planar graphs
with small maximum degree. Moreover, we study all four variant when param-
eterized by the bound k on the length of the path, by the bound ` on the size
of neighborhood, and by k + `.

Keywords: secludedness, fixed-parameter tractability, W-hardness, problem
kernelization

1. Introduction

Finding paths (connecting two designated terminal vertices) is a fundamental
problem in computer science. The task differs from finding short paths, which
is tractable by folklore results, or long paths, being an NP-complete problem.
In this work, we study short and long paths with small and large open neigh-
borhoods. The open neighborhood of a path consists of all vertices that are
not contained in the path but adjacent with at least one vertex in the path.
Formally, we study the following 2× 2 problems:

{S,L} × {S,U} Path
Input: An undirected graph G, two integers k ≥ 1, ` ≥ 0.
Question: Is there a simple path P in G with open neighborhood N :=
|NG(V (P))| such that

Short Secluded Path (SSP): |V (P)| ≤ k & N ≤ `?
Long Secluded Path (LSP): |V (P)| ≥ k & N ≤ `?

Short Unsecluded Path (SUP): |V (P)| ≤ k & N ≥ `?
Long Unsecluded Path (LUP): |V (P)| ≥ k & N ≥ `?

∗Corresponding author
Email addresses: mj.luckow@campus.tu-berlin.de (Max-Jonathan Luckow),

till.fluschnik@tu-berlin.de (Till Fluschnik)
1This work base on the first authors bachelor thesis [11].
2Supported by the DFG, project DAMM (NI 369/13-2).

Table 1: Overview of our results: NP-c., W[1]/W[2]-h., p-NP-h., noPK abbreviate NP-
complete, W[1]/W[2]-hard, para-NP-hard, no polynomial kernel, respectively. a (even on pla-
nar graphs, Thm. 1) b (even on planar graphs with maximum degree seven, Thm. 7)

Problem Compl. Parameterized Complexity
k ` k + `

(st-)SSP NP-c.a XP, W[1]-h. (Thm. 5) p-NP-h.a FPT (Thm. 3)/noPKb

(st-)LSP NP-c.a p-NP-h.a p-NP-h.a p-NP-h.a

(st-)SUP NP-c.a XP, W[2]-h. (Thm. 6) open FPT (Thm. 4)/noPKb

(st-)LUP NP-c.a p-NP-h.a p-NP-h.a open/noPKb

We also consider their so-called s-t variants: Herein, two distinct vertices
are part of the input, and the question is whether there is an s-t path fulfilling
the respective conditions. Note that herein k ≥ 2, as at least s and t must be
contained in the path. We indicate the s-t variants by using st as prefix.

Short paths with small neighborhoods are of considerable interest in network
security [3]. Moreover, SUP and the k-Dominating Path problem [10] are
related.3

Our Contributions. Our main results are summarized in Table 1. We prove
{S,L}×{S,U} Path (and their s-t variants) to be NP-complete even on planar
graphs with maximum degree five (seven). In ten-out-of-twelve cases, we settle
the parameterized complexity of the four problems regarding their problem-own
parameters number k of vertices in the path and size ` of the open neighborhood
of the path. Regarding the parameter k, we have containment in XP for the
“short” variants, and para-NP-hardness for the “long” variants. However, the
“short” variants are—presumably—fixed-parameter intractable (W-hard) when
parameterized by k. The only cases in which we identified fixed-parameter
tractability are for the “short” variants when parameterized by the combined
parameter k + `. Complementing this, we prove that a polynomial problem
kernelization is—presumably—excluded, even in planar graphs with small max-
imum degree. Regarding the parameter `, we identified in three of the four cases
para-NP-completeness.

Related Work. Chechik et al. [3] introduced the Secluded Path problem, that,
different to SSP, seeks to minimize the closed neighborhood of the path in
question, where the closed neighborhood are all vertices that are either contained
in the path or adjacent with a vertex in the path. They proved Secluded
Path to be NP-hard on weighted or directed graphs of maximum degree four,
and polynomial-time solvable in undirected unweighted graphs (note that we
prove SSP to be NP-complete in this case). They study Secluded Path
(and a “secluded” variant of the Steiner Tree problem) in the context of
approximation algorithms.

3There is a straight forward reduction from k-Dominating Path to SUP: Add for each
vertex a private neighbor, set k′ = k and ` = n, where n denotes the number of vertices in
the input graph.

2

Fomin et al. [8], building upon the work of Chechik et al. [3], studied the
parameterized complexity of Secluded Path (in its weighted version). They
prove Secluded Path to be W[1]-hard when parameterized by the length of the
path (which refers to the value k− 1 in SSP). Moreover, they prove Secluded
Path to be in FPT when parameterized by the size of the closed neighborhood
of the path (which refers to the value k+` in SSP), but does not—presumably—
admit a polynomial kernel when parameterized by the combined parameter size
of the closed neighborhood of the path, treewidth and maximum degree of the
underlying graph. We point out that in our proofs of our related results (see
Theorem 5 and Theorem 7), we use ideas similar to those of Fomin et al. [8].

Bevern et al. [1] studied the problems of finding st-separators with small
closed neighborhood (“secluded”) and of finding small st-separators with small
open neighborhood (“small secluded”). They motivated to distinguish between
the size of the subgraph in question and the size of the open neighborhood.
In addition, they studied several other classical optimization problems in their
“secluded” and “small secluded” variant. Moreover, they also studied the Inde-
pendent Set problem, being a maximization problem, in its “large secluded”
variant.

2. Preliminaries

We use basic notation from graph theory [5] and parameterized complexity
theory [4].

A path P is of length `− 1 is a graph with vertex set {v1, . . . , v`} and edge
set {{vi, vi+1} | 1 ≤ i < `}. We call v1 and v` the endpoints of P , and hence also
refer to P as a v1-v` path. For a graph G = (V,E), we denote by NG(W) :=
{v ∈ V \W | ∃w ∈ W : {v, w} ∈ E} for any W ⊆ V the open neighborhood
ofW in G. We say that path is k-short (k-long) if |V (P)| ≤ k (|V (P)| ≥ k). We
say that path is `-secluded (`-unsecluded) if |NG(V (P))| ≤ ` (|NG(V (P))| ≥ `).
We denote by ∆(G) the maximum vertex-degree of G. We use O∗-notation,
which is the O-notation hiding polynomial factors. For a problem Π and a
parameter p, Π(p) stands for “Π parameterized by p”: E.g., SSP(k) stands for
Short Secluded Path parameterized by the number k of vertices in the path.

3. All Variants are NP-complete

We show that even in planar graphs with small maximum degree, {S,L} ×
{S,U} Path is NP-complete, in some cases even if the requested size of the
path and of the open neighborhood is constant.

Theorem 1. The following problems are NP-complete, even on planar graphs:
(a) SSP even if ` = 0 and ∆ = 3;
(b) LSP even if ` = 0, ∆ = 3, and k = 1;
(c) SUP even if ∆ = 5;
(d) LUP even if ` = 0 and ∆ = 3, or k = 1;

In the proof of Theorem 1, we give many-one reductions from the following
NP-complete problem:

3

Planar Cubic Hamiltonian Path (PCHP)
Input: An undirected, planar, cubic, connected graph G = (V,E).
Question: Is there a cycle in G that contains every vertex in V exactly once?

Proof. The containment in NP is immediate. Let (G) be an instance of PCHP.
Let G′ denote a copy of G. Denote by G′′ the graph obtained from G′ by adding
for each vertex v ∈ V two vertices to G′ and making them adjacent only with v.
(a) & (d): Construct the instance (G′, k = n, ` = 0). On the one hand, note that
that G′ admits a k-short `-secluded path if and only if G admits a Hamiltonian
path, as no neighboring vertices are allowed. On the other hand, note that that
G′ admits a k-long `-unsecluded path if and only if G admits a Hamiltonian
path, as all vertices are required to be contained in the path.
(b): Construct the instance (G′, k = 1, ` = 0). Observe that G′ admits a k-long
`-secluded path if and only if G admits a Hamiltonian path, as no neighboring
vertices are allowed.
(c): Construct the instance (G′′, k = n, ` = 2n). Observe that every path with
at least 2n neighbors needs to contain all the vertices in G′, as every path of
length 1 ≤ r ≤ n has at most 2r + (n− r) = n+ r ≤ 2n neighbors. Hence, G′′
admits a k-short `-unsecluded path if and only if G admits a Hamiltonian path.
(d): Construct the instance (G′′, k = 1, ` = 2n). Again, similar to (c), ev-
ery path with at least 2n neighbors needs to contain all the vertices in G′.
Analogously, G′ admits a k-long `-unsecluded path if and only if G admits a
Hamiltonian path.

We will show that the st-variants are NP-complete in the same restricted
cases, that is, on planar graphs of small maximum degree.

Theorem 2. Even on planar graphs with s-t being on the outerface, the follow-
ings hold: st-SUP is NP-complete. st-{SSP,LSP,LUP} are NP-complete for
any constant ` ≥ 0 and ∆ ≥ 4. For st-LSP additionally holds k ≥ 2.

Proof. We give a many-one reduction from Planar Cubic Hamiltonian Cy-
cle (PCHC), which is PCHP where instead of asking for a Hamiltonian path,
one asks for a Hamiltonian cycle.

Let I = (G) be an instance for PCHC, and let c > 0 be constant. We
construct an instance I ′ = (G′, s, t, k, `) as follows. Let G′′ denote a copy of G,
and let G′ initially be G′′. Consider a plane embedding of G such that x,y,z
are incident to the outerface and y, z are neighbors of x. We add s and t to G,
as well as the edges {s, x} and {y, t}, {z, t}. Next, we add a set Z of c vertices
to G′ and make each vertex in Z adjacent only with s. Finally, we set k = n+ 2
and ` = c. This finishes the construction of I ′. We exemplify the correctness
via st-SSP.

Let G admit a Hamiltonian cycle C. As G is cubic, vertex x has three
neighbors including y and z, at least one of them is connected to x in the
cycle C. Assume it is y (for z the arguments work analogously). Then, we
construct an s-t path P as follows. We set V (P) := {s, t, V (C)}. Next, we
set E(P) := {{s, x}, {y, t}}∪ (E(C)\{x, y}). On a high level, P is starting at s,
going to x and following cycle C, starting at the neighbor of x not being y, and
ending at y, and finally taking the edge from y to t. Clearly, P is an s-t path

4

and contains n+ 2 vertices. Moreover, P is also `-secluded as NG′(V (P)) = Z.
It follows that I ′ is a yes-instance.

Conversely, let G′ admit a k-short `-secluded s-t path P . Note that Z ⊆
NG′(V (P)) (and hence V (P)∩Z = ∅). Moreover, since |Z| = c, Z = NG′(V (P)),
that is, P has no neighbors outside of Z. Since x ∈ V (P), needs to contain x,
P must contain all vertices in V (G′′). Moreover, P needs to contain either
edge {y, t} or edge {z, t}. Assume it is {y, t} (for {z, t} the arguments work
analogously). Let P ′ ⊆ P be the subpath of P with V (P ′) = V (G′′). Then C :=
(V (P ′), E(P ′)∪{y, x}) forms a cycle in G′′ containing every cycle exactly once.
It follows that I is a yes-instance.

Observe that for st-LSP, k = n+ 2 forces the path to visit all vertices in G,
and hence the statement follows.

For st-SUP, modify I ′ as follows. For each vertex in v ∈ V (G′′), add a two
vertices and make them adjacent only with v. Denote the obtained graph by G+.
Set k′ := k = n+2, and `′ = 2n+c. Consider the instance I+ := (G+, s, t, k

′, `′).
With the same arguments as in the proof of Theorem 1, the statement follows.
Note here that ∆(G′′) = max{c, 7}.

For st-LUP, we can use I− = (G+, s, t, k
′′, `′), where we can set k′′ = 1.

4. Parameterized Complexity

Lemma 1. There is a many-one reduction that maps any instance (G, k, `) of
{S,L}×{S,U} Path in polynomial time to an instance (G′, s, t, k′, `′) of its s-t
variant such that k′ = k + 2 and `′ = 2(

(|V (G)|
2

)
− 1) + `.

Proof. Given a non-trivial instance I := (G, k, `), construct instance I ′ :=
(G′, s, t, k′, `′) as follows. Let G′ initially only consist of the (isolated) vertices s
and t. Next, for each pair {v, w} ∈

(
V (G)

2

)
, add a copy Gv,w of G to G′ and

make s adjacent with v and t adjacent with w. Observe that every s-t path
in G′ must contain—except for s and t—only vertices in exactly one copy of G
in G′. Hence, every s-t path has 2(

(|V (G)|
2

)
− 1) unavoidable neighbors.

Let I be a yes-instance and let P be a path with endpoints v and w forming
a solution to I. Consider the copy Gv,w in G′, and let P ∗ denote the copy of P
in Gv,w. Then the path P ′ = (V (P ∗) ∪ {s, t}, E(P ∗) ∪ {{s, v}, {w, t}}) in G′

forms a solution to I ′ as ||V (P)| − |V (P ′)|| = |k − k′| = 2 and ||NG(V (P))| −
|NG′(V (P ′))|| = |`− `′| = 2(

(|V (G)|
2

)
− 1).

Let I ′ be a yes-instance and let P ′ be a path forming a solution to I.
LetNP ′(s) = {x} andNP ′(t) = {y}. and letGv,w be the copy ofG with V (Gv,w)∩
V (P ′) 6= ∅. Let P ∗ denote P ′ restricted to Gv,w, that is, the path with vertex
set V (Gv,w)∩V (P ′). Let P be the copy of P ∗ in G. We have ||V (P)|−|V (P ′)|| =
|k − k′| = 2 and ||NG(V (P))| − |NG′(V (P ′))|| = |` − `′| = 2(

(|V (G)|
2

)
− 1), and

hence, P forms a solution to I.

As the many-one reduction given in Lemma 1 is also a parameterized reduc-
tion regarding the solution size k, we get the following.

Corollary 1. The s-t variants of {S,L} × {S,U} Path are W[i]-hard with
respect to k whenever its general version is W[i]-hard with respect to k, for
every i ≥ 1.

5

On the other hand, with a similar idea as in Lemma 1, one can see that
positive results for the st-variants propagate to its counter part.

Lemma 2. Any instance I = (G, k, `) of {S,L}× {S,U} Path can be decided
in O(|V (G)|2f(|I|))-time by an algorithm having access to an oracle deciding
st-{S,L} × {S,U} Path in f(|I|)-time.

Proof. Let I := (G, k, `) be a non-trivial instance. We can test for each candi-
date pair for s and t, that is, we call the st-variant on instance (G′, s, t, k, `) for
every {s, t} ∈

(
V (G)

2

)
, where G′ denotes a copy of G. Observe that I is a yes-

instance if and only if there is at least one {s, t} ∈
(
V (G)

2

)
such that (G′, s, t, k, `)

is a yes-instance.

Due to Lemma 2 we obtain the following.

Corollary 2. {S,L}×{S,U} Path is in FPT when parameterized by k and/or
by ` whenever its s-t variant is in FPT when parameterized by k and/or by `,
respectively.

Due to Corollaries 1 and 2, for positive result, we encounter the st-variants,
and for negative results, the general versions.

4.1. Upper Bounds
Observation 1. st-SSP and st-SUP are contained in XP when parameterized
by k.

Proof. We can test all
∑k

i=2

(
n
i

)
≤ k

(
n
k

)
subsets S ⊆ V with 2 ≤ |S| ≤ k, where n

denotes the number of vertices in the input graph. For each such subset S, we
can test in polynomial time whether they form an `-secluded st-path.

Proposition 1. st-SSP and st-SUP admit a linear-time O(∆k+1)-vertex prob-
lem kernelization and hence are in FPT when parameterized by ∆ + k.

Proof. Let I = (G, s, t, k, `) be an instance of st-SSP or st-SSP, where ∆ :=
∆(G). Start a breadth-first search rooted in s, and stop when depth k + 1 is
explored, takingO(n+m) time. LetNk+1

G (s) = N=0
G (s)]N=1

G (s)]· · ·]N=k+1
G (s)

denote the vertex set explored through this step, where N=i
G (s) denote the

vertices found at depth i, 0 ≤ i ≤ k. Moreover, it holds true that |N=i+1
G (s)| ≤

∆ · |N=i
G (s)| for all 0 ≤ i ≤ k. It follows that |Nk+1

G (s)| =
∑k+1

i=0 |N=i
G (s)| ≤∑k+1

i=0 ∆i ≤ (k + 1)∆k+1. Analogously, start a breadth-first search rooted in t,
and stop when depth k+ 1 is explored, taking O(n+m) time. Finally, consider
the intersection Nst := Nk+1

G (s) ∩ Nk+1
G (t) where |Nst| ≤ (k + 1)∆k+1, and

let G′ = G[Nst]. Our kernel then consists of I ′ = (G′, s, t, k, `). Observe that
every k-short st-path in G cannot contain vertices in (V (G)\Nst)∪(N=k+1

G (s))∪
N=k+1

G (t)). Hence, for every k-short st-path P it holds true that NG(P) ⊆ Nst.
We conclude that I is equivalent to I ′.

Theorem 3. st-SSP admits an O∗((k + `)k) time algorithm and hence is in
FPT when parameterized by k + `.

6

Proof. Let (G = (V,E), s, t, k, `) be an instance of st-SSP. We partition V =
R]B such that R := {v ∈ V | deg(v) ≥ k+`+1}. Clearly, no k-short `-secluded
s-t path can contain any vertex from v. We admit a BFS-like branching tree
algorithm as follows. Starting at s, consider all neighbors of s and branch on
vertices from B but not from R, that is, only on vertices of degree at most k+`,
and proceed recursively. Stop branching at depth k − 1 (s is by convention
at depth zero). Clearly, every k-secluded s-t path of length k is found in the
branching, and we can verify in polynomial time whether the found path is
also `-secluded (return yes in this case). As we only branch on vertices from B,
we have at most (k+`)k nodes in our branching tree. If the whole branching tree
is explored without returning yes, then return no. Hence, we can decide I for
st-SUP in O∗((k + `)k) time.

Observe that since every instance (G, k, `) of SUP is trivial if ∆ ≥ `, we get
that SUP is in FPT when parameterized by k+ `. For st-SUP, tractability also
holds true.

Theorem 4. st-SUP admits an O∗((` + 1)k)-time algorithm and hence is in
FPT when parameterized by k + `.

Proof. Let I = (G = (V,E), s, t, k, `) be an arbitrary but fixed input instance
to st-SUP. Our FPT-algorithm consists of two phases.

In the first phase, we identify the set of vertices with high degree, formally,
we consider the set R := {v ∈ V | deg(v) ≥ ` + 2}. For each v ∈ R, we do
the following. Check whether there is an k-secluded s-t path containing v. If
yes, then we can return yes as I is a yes-instance: There is an k-secluded
s-t path (of minimal length) containing v having at least ` neighbors. We can
check whether there is a k-secluded s-t path containing v in polynomial time, by
solving the following minimum-cost flow problem. We construct the following
directed graph D as follows. Let D be initially empty. First, add a source
vertex σ and a sink vertex τ . Next, for each vertex w ∈ V , add two vertices w+

and w−, as well as the arc (w+, w−) and set the cost and capacity to one. For
each {u,w} ∈ E, add the two arcs (u−, w+) and (w−, u+), and set for each the
cost to zero and the capacity to one. Next, add the arcs (s−, τ) and (t−, σ)
with cost zero and capacity one. Finally, add the arc (σ, v−) with cost zero
and capacity two. We denote the set of vertices and the set of arc of D by W
and A, respectively. We claim that D admits a flow of value two with cost at
most k − 1 if and only if there is a k-secluded s-t path containing v in G. Note
that minimum-cost flow can be solved through e.g. linear programming.
(⇒) Let D admits a flow f of value two with cost at most k − 1. As all
capacities are integral, we can assume that f is integral. Let F = {(w+, w−) ∈
A | f((w+, w−)) = 1}. Observe that |F | ≤ k − 1. We claim that U = {u ∈
V | (u+, u−) ∈ F} ∪ {v} forms a k-short s-t path P in G containing v. Note
that since f(a) ∈ {0, 1} for all a ∈ A \ {(σ, v−)}, we can derive an v-s path Ps

on the one hand, and an v-t path Pt on the other hand from f . Observe that
by construction of D, Ps and Pt are vertex-disjoint. It follows that P is an s-t
path P in G containing v. Finally, as |U | = |F | + 1 ≤ k, we have that P is
also k-short.
(⇐) Let P be a k-secluded s-t path containing v in G. We denote V (P) =
{u1, . . . , uk′} and E(P) = {{ui, ui+1} | 1 ≤ i < k′}, where u1 = s, uk′ = t

7

and k′ ≤ k. Note that there is some index x ∈ [k′] with ux = v. We construct
a function f : A → {0, 1, 2} as follows. Set f((σ, v−)) := 2, f((s−, τ)) := 1
and f((t−, σ)) := 1. Finally, set

f((u, u′)) :=

1, if ∃j ∈ [k′] \ {x} : (u, u′) = (uj+, u

j
−) or

∃j ∈ {x, . . . , k′ − 1} : (u, u′) = (uj−, u
j+1
+) or

∃j ∈ {2, . . . , x} : (u, u′) = (uj−, u
j−1
+)

0, otherwise.

Clearly, f is an σ-τ flow of value two. As |V (P)| ≤ k′ ≤ k and f assigns one to
exactly k′ − 1 arcs of cost one each, f has cost at most k − 1.

In the second phase, we admit a BFS-like branching-tree algorithm as follows.
Note that the set B := V \ R only consists of vertices of degree at most ` + 1.
Starting at s, consider all neighbors of s and branch on vertices from B but
not from R, that is, only on vertices of degree at most ` + 1, and proceed
recursively. Stop branching at depth k − 1 (s is by convention at depth zero).
Clearly, every k-secluded s-t path of length k is found in the branching, and
we can verify in polynomial time whether the found path is also `-unsecluded
(return yes in this case). As we only branch on vertices from B, we have
at most (` + 1)k nodes in our branching tree. If the whole branching-tree is
explored without returning yes, then return no. Hence, we can decide I for
st-SUP in O∗((`+ 1)k) time.

4.2. Lower Bounds
In the previous section, we proved SSP to be solvable in O∗(2k log(k+`))-

time (Theorem 3) and SUP to be solvable in O∗(2k log(`+1))-time (Theorem 4).
Due to the reductions given in Theorem 1, assuming the Exponential Time
Hypothesis (ETH) [9] holds true, we cannot essentially improve the running
times for Short Secluded Path and Short Unsecluded Path regarding
the parameter k + `.

Corollary 3. Unless the ETH breaks, (st-)SSP(k+`) and (st-)SUP(k+`) are
not solvable in O∗(2o(k+`))-time.

Proof. In the many-reductions given in Theorem 1, we have that k + ` ∈ O(n),
where n denotes the number of vertices in the input graph. The statement then
follows by the fact that Hamiltonian Path is not solvable in O∗(2o(n))-time
unless the ETH breaks [4].

Due to Proposition 1, we know that both SSP(k) and SUP(k) are con-
tained in XP. Our two following results show that containment in FPT when
parameterized by k only is excluded for SSP (unless FPT = W[1]) and for SUP
(unless FPT = W[2]).

Theorem 5. SSP is W[1]-hard with respect to k.

In the following proof, we consider the Clique problem: Given an undirected
graph G and an integer k ∈ N, decide whether G contains a k-clique, where
a k-clique is a graph on at least k vertices such that each pair of vertices is
adjacent. Clique parameterized by the solution size k is a classical W[1]-
complete problem [6, 7].

8

· · · C

v w
· · · V ′

evw
· · · E′

Figure 1: G′

Proof. We give an FPT-reduction from Clique parameterized by the solution
size. Let (G = (V,E), k) be an instance of Clique. We construct the instance
(G′, k′, `) of SSP as follows (refer to Figure 1 for an illustration).
Construction: Let G′ be initially empty. We add a copy V ′ of V to G (if v ∈ V ,
we denote its copy in V ′ by v′). Moreover, for each e ∈ E, we add the vertex ve
to G′ (denote the vertex set by E′). If e = {v, w} ∈ E, then we add the edges
{ve, v′} and {ve, w′} to G′. Next, add the vertex set C consisting of |E|+ k+ 1
vertices to G′. Finally, make C and E′ a clique. Set k′ =

(
k
2

)
and ` = |E|−k′+k.

This finishes the construction.
Correctness: We prove that G contains a k-clique if and only if G′ admits a
k′-short `-secluded path.
(⇒) Let G contain a k-clique G[K] with |K| = k and edge set F ⊆ E. Denote
by K ′ and F ′ the vertices in V ′ and E′ corresponding to K and F , respectively.
Then construct the k′-short `-secluded path P . Let P be an arbitrary ordering
of the vertices in F except one. Recall that E′ forms a clique, and hence P
can be constructed this way. Note that P contains k′ vertices. The neighbor-
hood NG′(P) of P contains |E| − k′ vertices in E′, and k vertices in V ′ (recall
that K forms a clique in G). Hence, P is a k′-short `-secluded path.
(⇐) Let G′ admit a k′-short `-secluded path P . First, observe that P contains
no vertex in V ′ ∪ C, as otherwise |NG′(P)| ≥ |E| + k + 1 − k′ ≥ `, yielding a
contradiction. Hence, P only contains vertices in E′. As P contains at most k′
vertices and E′ forms a clique in G′, |NG′(P) ∩ E′| ≥ |E| − k′. It follows that
NG′(P) contains at most k vertices K ′ ⊆ V ′. If

(
k
2

)
edges are incident with k

vertices, it follows that the vertex set K corresponding to K ′ forms a k-clique
in G.

Theorem 6. SUP is W[2]-hard with respect to k.

In the following proof, we consider the Red-Blue Dominating Set (RBDS)
problem: Given an undirected graph G = (V = R]B,E) and an integer k ∈ N,
decide whether G contains a red k-dominating set, where a red k-dominating
set is a subset V ′ ⊆ R with |V ′| ≤ k such that each vertex in B is adjacent
to at least one vertex in V ′. RBDS parameterized by the solution size k is a
W[2]-complete problem [6, 7].

Proof. We give a many-one FPT-reduction from Red-Blue Dominating Set
(RBDS) when parameterized by the solution size. Let (G = (V = R]B,E), k)

9

b b′
· · · B

r r′
· · · R

· · · U

Figure 2: G′

be an instance of RBDS(k). We construct the instance (G′, k′, `) of SUP as
follows (refer to Figure 2 for an illustration).
Construction: Let G′ be initially empty. Add a copy of G to G′. Next add
the vertex set U = {u1, . . . , uk+1} to G′. Connect every vertex in R′ with
every vertex in U via an edge (i.e. R ∪ U forms a biclique). Finally, for each
vertex u ∈ U , add n2 vertices making each adjacent only to u. Denote by H all
the vertices introduced in the previous step. Set k′ = 2k+1 and ` = k·n2+2n−k.
This finishes the construction.
Correctness: We prove that G admits a red k-dominating set if and only if G′
admits a k′-short `-unsecluded path.
(⇒) Let W ⊆ V be a red k-dominating set in G with |W | = k. Let W ′ =
{w′1, w′2, . . . , w′k} ⊆ V ′ denote the vertices in V ′ corresponding to the vertices
in W . We claim that the path P := (u1, w

′
1, u2, w

′
2, . . . , w

′
k, uk+1) is a k′-short

`-unsecluded path in G′. First observe that the number of vertices in P is
k′ = 2k + 1. As W is a dominating set in G, NG′(W ′) = V ′′ ∪ U . Moreover,
NG′(U) = V ′ ∪ H. As P consists exactly of the vertices in W ′ ∪ U , we have
|NG′(W ′ ∪U)| = |NG′(W ′)| − |U |+ |NG′(U)| − |W ′| = n+ k · n2 + (n− k) = `.
(⇐) Let P be a k′-short `-unsecluded path in G′. The first observation is that P
contains all vertices from U as P has more than k · n2 neighbors. The second
observation is that P needs to alternate between the vertices in V ′ and U as
P only contains k′ = 2k + 1 vertices and all of U . It follows that P contains
exactly k vertices W ′ in V ′. As V (P) ∪N ′G(V (P)) = V (G′), the vertex set W ′
dominate all the vertices in V ′′. It follows that the set W ⊆ V corresponding
to W ′ forms a k-dominating set in G′.

We proved SSP(k + `) (Theorem 3) and SUP(k + `) (Theorem 4) to be
contained in FPT. We next prove that, presumably, we do not expect any of
the two problems to admit a problem kernel of polynomial size, even on planar
graphs with small maximum degree.

Theorem 7. Unless coNP ⊆ NP / poly, (st-){S,L} × {S,U} Path does not
admit a polynomial problem kernel with respect to k + ` even on planar graphs
with maximum degree seven.

Proof. We employ the OR-composition framework [2]. An easy application
(taking the disjoint union of the graphs) proves the statement for {S,L} ×
{S,U} Path. Hence, we next consider the st-variants. Let {Ii = (Gi, si, ti, k, `) |
1 ≤ i ≤ p} be a set of p input instances, where p is a power of two, and Gi is

10

planar, is of maximum degree five, and allows for an embedding with s, t being
on the outer face.

(st-SSP) We construct the instance I ′ = (G′, s, t, k′, `′) as follows. Let G′
initially empty. We add two binary trees Ts and Tt with root s and t, respec-
tively, where each tree has p leaves all being at the same depth. Let σ1, . . . , σp
denote the leaves of Ts enumerated through an post-order depth-first search.
Similarly, let τ1, . . . , τp denote the leaves of Tt enumerated through an post-
order depth-first search. Next, for each i ∈ [p], add copy G′i of Gi to G′,
and add the edges {σi, si} and {tiτi}. Finally, for each i ∈ [p], subdivide the
edges {σi, si} and {tiτi} each k times, and denote the vertices by σ1

i , . . . , σ
k
i re-

sulted from the subdivision from {σi, si}, enumerated by the distance from σi,
and by τ1i , . . . , τ

k
i resulted from the subdivision from {τi, ti}, enumerated by

the distance from ti. For simplicity, we also denote σi and si by σ0
i and σk+1

i ,
respectively, and ti and τi by τ0i and τk+1

i , respectively, This finishes the con-
struction of G′. Observe that one can embed both Ts and Tt such that when
adding the edge set {{σi, τi} | 1 ≤ i ≤ p}, the resulting graph is crossing free
and s and t are on the outer face. As each Gi is planar and allows for an embed-
ding with s, t being on the outer face, it follows that G′ is planar with s and t
being on the outer face. Moreover, note that ∆(G′) ≤ 1 + max1≤i≤p ∆(Gi).
Finally, set k′ := 3k+2(log(p)+1) and `′ := `+2 log(p). We next prove that I ′
is a yes-instance if and only if there is at least one i ∈ [p] such that Ii is a
yes-instance.
(⇐) Let i ∈ [p] such that Ii is a yes-instance, and let P be an k-short `-
secluded si-ti path in G. Let P ′ denote its copy in G′i. Let Ps,i denote the
unique path with endpoints s and σi in Ts. Note that |V (Ps,i)| = log(p) +
1. Similarly, Let Pt,i denote the unique path with endpoints t and τi in Tt.
Note that |NTs

(Ps,i)| = log(p), as each vertex in Ps,i except s and σi are of
degree three in Ts, and s has one unique neighbor not in Ps,i. With the same
argument, we have |NTt(Pi,t)| = log(p). Let VP := V (P) ∪ V (Ps,i) ∪ V (Pi,t

and EP := E(P) ∪ E(Ps,i) ∪ E(Pi,t) ∪
⋃k

j=0{{σ
j
i , σ

j+1
i }} ∪

⋃k
j=0{{τ

j
i , τ

j+1
i }}.

We claim that the path Q = (VP , EP) is a k′-short `′-secluded st-path in G′.
By construction, Q is a k′-short st-path in G′. Moreover, we have |NG′(Q)| =
|NTs(Ps,i)|+ |NTt(Pi,t)|+ |NG′

i
(P ′)| ≤ 2 log(p) + ` = `′.

(⇒) Let I ′ be a yes-instance, and let P be a k′-short `′-secluded s-t path in G′.
We claim that there is a subpath P ′ ⊆ P such that P ′ is a k-short `-secluded si-
ti path inGi, for some i ∈ [p]. Observe that P must contain at least one leaf in Ts
and one leaf in Tt. Hence, |V (P) ∩ V (Ts)| ≥ log(p) + 1 and |V (P) ∩ V (Ts)| ≥
log(p) + 1. Moreover, si ∈ V (P) if and only if ti ∈ V (P), as P has only
endpoints s and t, and {si, ti} separates V (Gi) \ {si, ti} from V (G′) \ V (Gi).
Hence, let i ∈ [p] such that σi ∈ V (P) (and hence τi ∈ V (P)). Let P ′ be
the subpath of P with endpoints si and ti. Clearly, V (P ′) ⊆ V (G′i). We
claim that P ′ is a k-short `-secluded si-ti path in G′i (and hence, also in Gi).
First, suppose |V (P ′)| > k. Then we have |V (P)| ≥ |V (P) ∩ V (Ts)|+ |V (P) ∩
V (Tt)| + |V (P ′)| + 2k > 3k + 2(log(p) + 1) = k′, contradicting the fact that
P is a k′-short s-t path in G′. Next, we claim that there is no j ∈ [p] \ {i}
such that sj ∈ V (P) (and hence, tj ∈ V (P)). Suppose not. Then |V (P)| ≥
|V (P)∩V (Ts)|+|V (P)∩V (Tt)|+4k > 3k+2(log(p)+1) = k′, again contradicting
the fact that P is a k′-short s-t path in G′. It follows that Ts[V (P)∩V (Ts)] is the
unique path in Ts with endpoints s and σi, and Tt[V (P) ∩ V (Tt)] is the unique

11

path in Tt with endpoints t and τi. Moreover, |NTs
(V (P))| = |NTt

(V (P))| =
log(p). Finally, suppose that |NG′

i
(V (P ′))| > `. Then we have |NG′(V (P))| =

|NTs
(V (P))| + |NTt

(V (P))| + |NG′
i
(V (P ′))| > ` + 2 log(p) = `′, contradicting

the fact that P is a `′-secluded s-t path in G′. We conclude that P ′ is a k-short
`-secluded si-ti path in Gi, and hence, Ii is a yes-instance.

(st-SUP) The construction is exactly the same as for st-SSP. The crucial
observation is, again, that every k′-short `′-unsecluded s-t path P in G′ only
contains si (and ti) for exactly one i ∈ [p].

(st-LSP) Let I ′ as in the construction for st-SSP. Make each vertex of
the binary trees a star with 2 log(p) + `+ 1 leaves, and denote by G′′ the graph
obtained fromG′ in this step. Set `′′ := 2(log(p)+1)·(2 log(p)+`+1)+`+2 log(p).
This forces every k′-long `′′-secluded s-t path P in G′ to only contain log(p)
vertices in each of the binary trees, as otherwise such a path P would contain
at least 2(log(p) + 1) · (2 log(p) + `+ 1) + (2 log(p) + `+ 1) > `′ neighbors.

(st-LUP) There is an straight-forward polynomial parameter transformation
from Longest st-Path on planar graphs with maximum degree three [2]. Note
there herein, we set ` = 0.

5. Conclusion and Outlook

We conclude that in all four variants remain NP-complete in planar graphs
with small vertex degree. The “short” and “long” variants are distinguishable
through their parameterized complexity regarding k. We conjecture that all
four variants are pairwise distinguishable through the parameterized complex-
ity regarding the parameters k, `, and k + `. To resolve this conjecture, the
parameterized complexity of SUP(`) and LUP(k+ `), that we left open, has to
be settled.

As a further research direction, we find it interesting to investigate the prob-
lem of finding small/large secluded/unsecluded (sub-)graphs different to paths.
For instance, the class of trees could be an interesting next candidate in this
context. Note that herein, the large secluded variant is polynomial-time solv-
able.

[1] R. Bevern, T. Fluschnik, G. B. Mertzios, H. Molter, M. Sorge, and
O. Suchý. The parameterized complexity of finding secluded solutions to
some classical optimization problems on graphs. Discrete Optimzation,
2018. In press, an extended abstract appeared in Proc. 11th IPEC. 3

[2] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On
problems without polynomial kernels. J. Comput. Syst. Sci., 75(8):423–
434, 2009. doi: 10.1016/j.jcss.2009.04.001. 10, 12

[3] S. Chechik, M. P. Johnson, M. Parter, and D. Peleg. Secluded con-
nectivity problems. Algorithmica, 79(3):708–741, 2017. doi: 10.1007/
s00453-016-0222-z. 2, 3

[4] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.
3, 8

[5] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.
Springer, 4th edition, 2010. 3

12

[6] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Com-
plexity. Texts in Computer Science. Springer, 2013. 8, 9

[7] R. G. Downey, M. R. Fellows, A. Vardy, and G. Whittle. The parametrized
complexity of some fundamental problems in coding theory. SIAM J. Com-
put., 29(2):545–570, 1999. 8, 9

[8] F. V. Fomin, P. A. Golovach, N. Karpov, and A. S. Kulikov. Parameter-
ized complexity of secluded connectivity problems. Theory of Computing
Systems, 61(3):795–819, 2017. doi: 10.1007/s00224-016-9717-x. 3

[9] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. 8

[10] G. Kutiel. Hardness results and approximation algorithms for the minimum
dominating tree problem. CoRR, abs/1802.04498, 2018. URL http://
arxiv.org/abs/1802.04498. 2

[11] M.-J. Luckow. Paths under neighborhood constraints—algorithms
and complexity, May 2017. URL http://fpt.akt.tu-berlin.de/
publications/theses/BA-max-luckow.pdf. Bachelor thesis. TU Berlin,
Berlin, Germany. 1

13

http://arxiv.org/abs/1802.04498
http://arxiv.org/abs/1802.04498
http://fpt.akt.tu-berlin.de/publications/theses/BA-max-luckow.pdf
http://fpt.akt.tu-berlin.de/publications/theses/BA-max-luckow.pdf

	Introduction
	Preliminaries
	All Variants are NP-complete
	Parameterized Complexity
	Upper Bounds
	Lower Bounds

	Conclusion and Outlook

