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Abstract

We extend the work of Skowron et al. (AIJ, 2016) by consid-
ering the parameterized complexity of the following problem.
We are given a set of items and a set of agents, where each
agent assigns an integer utility value to each item. The goal
is to find a set of k items that these agents would collectively
use. For each such collective set of items, each agent pro-
vides a score that can be described using an OWA (ordered
weighted average) operator and we seek a set with the highest
total score. We focus on the parameterization by the number
of agents and we find numerous fixed-parameter tractability
results (however, we also find some W[1]-hardness results). It
turns out that most of our algorithms even apply to the setting
where each agent has an integer weight.

1 Introduction
We study the parametrized complexity of the problem of
choosing a collective set of items, introduced by Skowron et
al. (2016). In this problem we are given a set of agents and
a set of items, and the goal is to choose a set of k items that
the agents would jointly use. Depending on the setting, each
agent may be able to access each of the chosen items, or only
one of them (e.g., the one he or she likes most), or some sub-
set of them (e.g., the bottom half of the items, from the per-
spective of the agent), or even the agents may be uncertain
as to which items will eventually be available. Thus, each
agent has an intrinsic utility for gaining access to each of the
items, but the satisfaction (or, the utility) that the agent de-
rives from a set of items is computed as an ordered weighted
average (OWA) of these utilities. We seek a set of k items
whose sum of thus-computed satisfactions is highest.

An OWA operator Λ = (λ1, . . . , λk) is a vector of rational
numbers; to apply Λ to a vector u = (u1, . . . , uk) of utilities,
we (1) sort u in nonincreasing order—so we obtain a vector
u′ = (u′1, . . . , u

′
k)—and (2) output the value λ1u

′
1 +λ2u

′
2 +

· · ·+ λku
′
k.

Due to the expressive power of OWA operators, the prob-
lem of choosing a collective set of items is very general and
captures many interesting settings. Below we first discuss
a direct application, and then argue that it also extends the
framework of multiwinner voting (Faliszewski et al. 2017b).
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Student Recruiting Setting. Consider the task of choos-
ing PhD students for a university department. Each of the
professors assigns a utility to each of the prospective can-
didates (e.g., depending on the results of their entry exams,
his or her impressions after interviews, or the students’ in-
terests). Then the professors evaluate potential batches of k
students. If each professor thought that he or she would get
the best PhD student from the batch (with respect to his or
her preferences), and he or she is only interested in advis-
ing one new student, then the professors should use OWA-
vectors (1, 0, . . . , 0). Similarly, if each of the professors
thought that he or she would get one of the top two students
(with respect to his or her preferences), then they would
have a choice between several OWAs. If they viewed the
student-professor matching process as effectively random
(but restricted to the top two students for each professor),
then they should use OWA (1/2, 1/2, 0, . . . , 0).1 Yet, if they
were risk-averse and thought they would get the second-best
student, they should use OWA (0, 1, 0, . . . , 0). Other OWA-
vectors capture numerous other approaches how the profes-
sors might view the matching process.

Interestingly, sometimes it even makes sense to use OWA-
vectors with negative values. Let us say that each pro-
fessor assigns utility 1 to each student whose interests
are aligned with his or hers, and utility 0 to each other
one. If the student’s and the professor’s interests are
aligned, then the student is likely to require some atten-
tion from the professor. As the professors are somehow
busy, they might want to limit the number of students who
share their interests (although they certainly would like
some such students to be admitted). For example, OWA-
vector (1, 1, 0,−1,−1,−1, . . .) indicates that the professor
is happy with one student, is even happier with two, and is
as happy with three, but beyond that, his or her satisfaction
drops (so, for example, with six students he or she is less
satisfied than without any students at all).

Multiwinner Voting Setting. In the multiwinner setting
we have a set of voters (agents) who express preferences
regarding a set of candidates (items), and the goal is to
find a committee (a size-k set of items) that, in the ag-
gregate, the voters find most appealing. By choosing the
right OWA vectors and setting appropriate agent utilities, we

1Mathematically, this is equivalent to OWA (1, 1, 0, . . . , 0).



can capture a number of multiwinner voting rules, including
k-Borda, Chamberlin–Courant (CC), PAV, and many other
ones, including all OWA-based committee scoring rules and
all Thiele rules; we provide references and definitions for
these rules in Section 2.

To capture the connection with the multiwinner setting,
we pay special attention to two families of (intrinsic) utility
functions, approval utilities and Borda utilities. Under the
former, each agent assigns a 0/1 utility to each of the items,
whereas under the latter each agent ranks the items from best
to worst and assigns them linearly decreasing values.

Our Contributions. We study the parameterized com-
plexity of finding a collective set of items depending on the
nature of the utility functions and the OWA vectors used.
We focus on the parameterization by the number of agents,
sometimes supplied with parameters regarding the struc-
ture of the OWA-vector (parameterization by the number of
items leads to a simple, brute-force FPT2 algorithm for all
settings, whereas parameterization by the size of the collec-
tive set yields W[2]-hardness even in the simplest settings).
Indeed, in our student recruiting example we would expect
to have many more students than professors (the agents).
Our main contributions are as follows:

1. We show an FPT algorithm for the case of arbitrary utili-
ties and nonincreasing OWA-vectors that are constant ex-
cept for the first or last π values (for OWA-vectors that
are not nonincreasing we show W[1]-hardness). Our al-
gorithm is parametrized by the number of agents and π.
So, when π is fixed, which is common for many natural
OWA-vectors, the algorithm is actually in FPT with re-
spect to the number of agents.

2. For the case of approval utilities, we give FPT algorithms
for a very broad set of OWA-vectors. However, we also
find an interesting OWA-vector (with negative values), for
which we obtain W[1]-hardness.

3. We show that whenever we have an FPT algorithm for
approval utilities, we also have an FPT approximation
scheme for Borda utilities (and some other ones).

In the multiwinner interpretation, our results mean that for
Thiele rules (i.e., for the case of approval utilities) we typi-
cally have FPT algorithms, but for committee scoring rules
that are non-Thiele (e.g., that are based on the Borda utili-
ties) such algorithms are mostly missing, unless the under-
lying OWA-vector is of quite a special form or one accepts
approximate solutions. We present a summary of our results
in Table 1. Due to restricted space, we defer many proofs
details to a full version of this paper.

2An FPT algorithm with parameter k solves a problem in-
stance I in f(k) · |I|O(1) time, where f(k) may be an arbitrary
computable function. While an FPT algorithm can solve a prob-
lem instance for constant k in polynomial time where the degree
of the polynomial is independent of k, this is not the case for an
XP algorithm which merely gives polynomial time for constant k.
Finally, W[1]-hardness indicates strong complexity-theoretic evi-
dence that there is no FPT algorithm.

OWA-vector utilities complexity ref.

(1, 0, . . . , 0) any FPT(n) BSU
(1, . . . , 1︸ ︷︷ ︸

π

, 0, . . . , 0) any FPT(n, π) Prop. 2
XP(n) Prop. 8

(λ1, . . . , λπ, 0, . . . , 0), any FPT(n, π) Prop. 2for λ1 ≥ λ2 ≥ · · · ≥ λπ
(λ1, . . . , λk), any FPT(n, k) Thm. 1for λ1 ≥ λ2 ≥ · · · ≥ λk
(0, . . . , 0, 1) approval FPT(n) Prop. 4

(0, 1, 0 . . . , 0) approval FPT(n) Thm. 5

OWA-vector has ρ diff- approval FPT(n, ρ) Thm. 5erent values

OWA is piecewise non- approval FPT(n, ρ) Thm. 5increasing with ρ pieces
(1, 2, 3, . . . , k) approval FPT(n) Thm. 6

(λ1, . . . , λk) approval W[1]-h.(n) Thm. 7
λi ∈ {−1, 0, 1}, ∀i ∈ [k]

(0, 1, 0 . . . , 0) Borda W[1]-h.(n) Thm 3,
FPT-AS(n) Thm. 10

(1, 1/2, 1/3, . . . , 1/k)
}

Borda FPT-AS Thm. 10(λ1, . . . , λπ, 0, . . . , 0),
for λ1 ≥ λ2 ≥ · · · ≥ λπ

Table 1: Examples of the parametrized complexity of OWA-
WINNER (it is NP-hard for all the listed settings; for vectors
(1, 0, . . . , 0) this is due to Procaccia et al. (2008) and Lu
and Boutilier (2011), for vectors (1, 2, 3, . . .) this is due to
Faliszewski et al. (2018b), and for other vectors this is due
to Skowron et al. (2016)). The result marked BSU is due to
Betzler et al. (2013).

2 Preliminaries
We first specify our notation, then formalize the problem of
choosing a collective set of items, and relate it to voting.

Notation
For a positive integer t, we write [t] to refer to the
set {1, . . . , t}. We use the Iverson bracket notation, that
is, for a logical expression F , we write [F ] to denote 1
if F is true and to denote 0 otherwise. For a vector x =
(x1, . . . , xn), we sometimes write x[i] to refer to xi (this is
particularly convenient when we discuss a vector x without
listing its components explicitly).

Choosing a Collective Set of Items
Let N = [n] be a set of agents and let R = {r1, r2, . . . , rm}
be a set of items (resources). A preference function (or, a
utility function) is a function u : R→ N that assigns numer-
ical preferences (utilities) to the items. A preference profile
is a collectionU = {u1, u2, . . . , un} of preference functions
over the same set of items, with one function for each agent.
For a given item rj and a given agent i, we say that ui(rj) is
the intrinsic utility of rj for agent i.



Special Preference Functions. Certain families of prefer-
ence functions are particularly interesting because they al-
low us to connect our results to the literature on multiwin-
ner voting (Faliszewski et al. 2017b) and budgeted social
choice (Lu and Boutilier 2011). Specifically, we consider
Borda preferences and approval preferences:

1. A Borda preference function for a set R of m items is a
bijection u : R → [m − 1] ∪ {0}. Intuitively, an agent
has a ranking of the items and he or she assigns to each
item the utility equal to the number of items ranked below.
We often specify Borda preferences through preference
orders. For example, by writing i : r1 � r2 � · · · � rm,
we mean that agent i assigns utility m − 1 to item r1,
utility m− 2 to item r2, and so on.

2. An approval preference function is a function that for
each item assigns either utility 1 or 0 (the former means
that the item is approved and the latter that it is disap-
proved). Sometimes we consider weighted approval pref-
erence functions, which for each item assign either some
positive constant q or 0 (when we speak of profiles of
weighted approval functions, then each agent a may have
his or her individual value q(a)).

Ordered Weighted Average Operators (OWA). We refer
to sets of items as item sets, and to size-k item sets as k-item
sets. For a k-item set S = {s1, s2, . . . , sk} and preference
function u, we write ǔ(S) to denote the vector of utilities
that u assigns to the items from S, sorted in nonincreasing
order. Similarly, we write ů(S) to denote a vector of items
from S ordered nonincreasingly with respect to their utilities
(ties are broken lexicographically).

Example 1. Let R = {r1, r2, . . . , r10}, S = {r1, r2, r4}
and u be such that u(r1) = 10, u(r2) = 15, u(r3) = 9,
u(r4) = 10, etc. We have ǔ(S) = (15, 10, 10) and ů(S) =
(r2, r1, r4).

For a given positive integer k, let Λk = (λ1, λ2, . . . , λk)
be a vector of rational numbers. We define the Λk-score of
a k-item set S = {s1, s2, . . . , sk} according to preference
function u as Λk-scoreu(S) :=

∑k
j=1 λj

(
ǔ(S)[j]

)
. We ex-

tend this notion to preference profiles as follows. For a pref-
erence profile U = {u1, u2, . . . , un}, we have:

Λk-scoreU (S) :=
∑n
i=1 Λk-scoreui

(S).

Sometimes, when the context is clear, instead of writing
Λk-scoreui

(·), we write Λk-scorei(·). We refer to Λk as
the OWA-vector and to Λk-score as the OWA-score (OWA
stands for Ordered Weighted Average; operators of this form
were introduced by Yager (1988)).

Remark 1. One may wonder why we speak of an OWA-
score and not OWA-utility. We do so because we want our
notation to be compatible with that from the multiwinner
voting literature, where speaking of the scores of item sets
(committees) is typical.

Main Problem. We study the problem of finding a k-item
set with the highest possible OWA-score, originally intro-
duced by Skowron et al. (2016).

Definition 1. In the OWA-WINNER problem, we are given
a set N = [n] of agents, a set R of m items, a prefer-
ence profile U (consisting of n preference profiles), a pos-
itive integer k < m, an OWA-vector Λk, and an integer T .
We ask whether there exists a k-item set S ⊆ R such that
Λk-scoreU (S) ≥ T .

Relation to Multiwinner Voting
Our setting is very close to that of multiwinner voting. It is
beyond the scope of this paper to describe the multiwinner
framework in detail, but below we express some well-known
voting rules in the language of the OWA-WINNER problem:

1. For Borda utilities and OWA-vectors of the form
(1, . . . , 1), the OWA-WINNER problem is equivalent to
winner determination under the k-Borda rule. For the
same OWA-vector and approval utilities, we obtain the
multiwinner approval rule.

2. For Borda utilities and OWA-vectors of the form
(1, 0, . . . , 0), we obtain the Chamberlin–Courant rule, β-
CC (Chamberlin and Courant 1983). For approval utili-
ties, we get approval-based Chamberlin–Courant rule, α-
CC.

3. For approval utilities and OWA-vectors of the form
(1, 1/2, . . . , 1/k) we get the proportional approval voting
rule, PAV (Kilgour 2010; Thiele 1895).

The literature regarding the computational complexity of
these rules (and, thus, these variants of our problem) is
quite rich. While for k-Borda and multiwinner approval vot-
ing there are simple polynomial-time algorithms, almost all
other settings lead to NP-hardness. Indeed, this is the case
for each of α-CC (Procaccia, Rosenschein, and Zohar 2008),
β-CC (Lu and Boutilier 2011), and PAV (Skowron, Fal-
iszewski, and Slinko 2015; Aziz et al. 2015). Yet, there are
various workarounds for these hardness results, including
approximation algorithms (Lu and Boutilier 2011; Skowron,
Faliszewski, and Lang 2016; Skowron, Faliszewski, and
Slinko 2015), heuristics (Faliszewski et al. 2018c; 2018a),
and algorithms for restricted preference domains (Betzler,
Slinko, and Uhlmann 2013; Skowron et al. 2015; Peters
2018).

For the case of {α, β}-CC and PAV there are also FPT al-
gorithms (Betzler, Slinko, and Uhlmann 2013; Faliszewski
et al. 2018b) parameterized by the number of voters (agents).
We extend these results as our framework incorporates the
class of OWA-based committee scoring rules (Elkind et
al. 2017; Faliszewski et al. 2019), and the class of Thiele
rules (Lackner and Skowron 2018; Aziz et al. 2015); e.g.,
β-CC is an OWA-based committee scoring rule and PAV is
a Thiele rule. In our language, winner determination prob-
lems for OWA-based committee scoring rules correspond to
OWA-WINNER where all agents’ utility functions are iden-
tical up to permuting items. Thiele rules are modeled by
assuming that all agents have approval utilities.

3 Arbitrary Utilities
We start our discussion by considering the setting where the
utilities are unrestricted, but the OWA-vectors are required



to be nonincreasing. In this case we get an FPT algorithm
for a joint parameterization by the number of agents and the
size of the item set. Then we use this algorithm to get FPT
algorithms for more restricted OWAs, but with more useful
parameterizations.
Theorem 1. There is an FPT algorithm for OWA-
WINNER with nonincreasing OWA vectors, parameterized
by the number of agents and the size of the item set.

Proof. The input for our algorithm consists of the set of
items R = {r1, r2, . . . , rm}, preference profile U =
{u1, u2, . . . , un}, OWA vector Λk = (λ1, . . . , λk) such that
λ1 ≥ · · · ≥ λk, and the score threshold T .

We first describe our ideas intuitively. Let S =
{s1, . . . , sk} be a target k-item set. For each agent i and
each integer j ∈ [k], we define ψi(j) to be ` if for agent i,
item sj is the `-th most-valued one within those in S (break-
ing ties lexicographically). More formally, ψi(j) = ` if
ůi(S)[`] = sj . Note that each ψi is a permutation of [k].
Further, let h : [k]→ R be a function assigning each j ∈ [k]
a different item from R. (We refer to h as the matching be-
tween S and items from R.) Using this notation, we express
the OWA-score of S as:

Λk-scoreU (S) =
∑n
i=1

∑k
j=1 λψi(j)ui

(
h(j)

)
. (1)

In other words, to compute the score of S we use the follow-
ing components:

1. a matching h of the elements from S to items in R (this
moves us from the domain of items to the domain of their
indices within S), and

2. permutations ψ1, . . . , ψn, which describe orders ůi(S),
but using the indices within S instead of item names.

Note that h implicitly defines S; the matched items are in S,
the other ones are not. The main idea of our algorithm is to
guess the permutations ψ1, . . . , ψn and then find a match-
ing h (of the numbers from [k] to items) that maximizes the
score computed with Eq. (1). Then we reconstruct S using h.

We now describe our algorithm formally. First, for each
agent i, we guess a permutation ψi : [k] → [k]. Second, for
each item r ∈ R and each number j ∈ [k] we let:

w(r, j) =
∑n
i=1 λψi(j)ui(r).

Then we form a complete bipartite graph, which has the in-
tegers from [k] on the left and the items from R on the right.
For each item r ∈ R and each number j ∈ [k], we set the
weight of the edge between them to be w(r, j). Finally, we
find a maximum-weight matching in this graph.

Let h : [k] → R be such a matching with the highest
weight over all possible guesses of ψ1, . . . , ψn. We return
“yes” if the weight of h is at least T .

Next, we show the algorithm’s correctness. Let W =
{h(1), . . . , h(k)} be the set corresponding to h and let
ψ1, . . . , ψn be the permutations that lead to it. If for each
agent i and each two distinct integers j, j′ ∈ [k] it holds that
ψi(j) < ψi(j

′) implies that h(j) is ahead of h(j′) in ůi(W ),
then the weight of matching h in our bipartite graph equals
the score ofW . Indeed, in this case for each agent iwe have:

ůi(W ) = (h(ψ−1
i (1)), h(ψ−1

i (2)), . . . , h(ψ−1
i (k))).

By the choice of h as the maximum-weight matching over
the choice of ψ1, . . . , ψn, W is a highest-scoring item set.
Indeed, the item set S analyzed in the intuitive explanation
leads to a matching with the same weight.

On the contrary, if there is an agent i and two num-
bers j, j′ ∈ [k] such that ψi(j) < ψi(j

′) but in ůi(W )
item h(j′) is ahead of h(j), then we can transform ψi, so this
inversion is removed, without decreasing the weight of h.
Indeed, if there is such an inversion, then we simply swap
the values of ψi(j) and ψi(j′) (and update the weights of
the edges in our bipartite graph). Since λ1 ≥ · · · ≥ λk
(and because ůi(·) sorts items nonincreasingly with respect
to their values for agent i), it must be the case that the new
weight of h does not decrease. Further, by the choice of h
and permutations ψ1, . . . , ψn so that the original weight of h
was maximum, it also does not increase. We repeat this pro-
cess until we remove all inversions.

We prove the next result using the same approach, but
with different weights in the constructed bipartite graph.
Proposition 2. There is an FPT algorithm, parameterized
by the number of agents and π, for OWA-WINNER with
nonincreasing OWAs that are constant except for either the
top π or the bottom π values.

Theorem 1 and Proposition 2 provide a broad generaliza-
tion of the FPT algorithms for α-CC and β-CC, parameter-
ized by the number of agents (Betzler, Slinko, and Uhlmann
2013). Indeed, for constant values of π our algorithms run
in FPT time with respect to the number of voters. Since CC
rules use OWAs (1, 0, . . . , 0), Proposition 2 applies. Yet,
if we were interested in vectors of the form (0, 1, 0, . . . , 0),
then the situation would be quite different. Let us consider
the following variant of the OWA-WINNER problem.
Definition 2. Let i be an integer. By β(i)-WINNER, we
mean the OWA-WINNER problem with Borda preferences
and OWA-vector of the form (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0).

β(1)-WINNER models winner determination under the β-
CC multiwinner voting rule. There is also a number of set-
tings captured by β(i)-WINNER with i > 1 (see Section 1
and the work of Skowron et al. (2016)). Yet, for i > 1 Propo-
sition 2 does not apply and, in fact, we show W[1]-hardness.
Theorem 3. β(2)-WINNER is W[1]-hard when parameter-
ized by the number of agents.

Proof Sketch. We reduce from the W[1]-complete problem
MULTICOLORED CLIQUE (parameterized by the solution
size). An instance of this problem consists of a graph
G = (V (G), E(G)), where each vertex has one of h col-
ors, and we ask if there are h vertices such that each of them
has a different color and is connected to every other one.

Let G be our input graph and let h be the number of
colors (h ≥ 7). Without loss of generality, there are ex-
actly q vertices of each color. Hence, for each i ∈ [h], let
V (i) =

{
v

(i)
1 , . . . , v

(i)
q

}
be the set of vertices of color i. For

each two distinct i, j ∈ [h] let E(i,j) be the set of edges that
connect vertices of color i with those of color j; note that



E(i,j) = E(j,i). Further, we assume that there are no edges
between vertices of the same color. For each color j ∈ [h]
and each vertex v ∈ V (G), by Ej(v) we mean the set of
edges that connect v with vertices of color j. We assume that
for each j ∈ [h] and each v ∈ V (G) we have |Ej(v)| ≤ q−1
(if not, then we add one new vertex of each color). We set
H =

(
h
2

)
.

We form an instance of β(2)-WINNER as follows. Let
the set of items be R = V (G) ∪ E(G) ∪ D, where D =
{d1, d2, d3, . . .} is a set of dummy items (later it will become
clear we have polynomially many of them). Let:

L = 4hq + 4Hq2 + 2(h− 1)2q2

be a certain large number (its choice will become clear later).
As the agents have Borda utilities, we describe them us-

ing preference orders. Whenever in a preference order we
write D(`), where ` is some positive integer, we mean
listing ` new dummy items that do not appear among the
top L items in the other preference orders (this implicitly ex-
tends the set D). Whenever we write others in a preference
order, we mean listing the remaining items in some arbitrary
order. Each time we write a set Y in a preference order, we
mean an arbitrary but fixed order of elements in Y ; by

−→
Y we

denote the inverse order of that for Y .
Let k = h + H be the item set size. Our intention is that

if there is a multicolored clique, then each highest-scoring
item set consists of h vertex items and H edge items that
form a clique. We form the following groups of agents:

1. For each pair of colors 1 ≤ i < j ≤ h, vertex selection
group contains agents vi,j and v′i,j with preference orders:

vi,j : V (i) � V (j) � D(L− 2q) � others,

v′i,j :
−−→
V (i) �

−−→
V (j) � D(L− 2q) � others.

2. The edge selection group is defined similarly, but to spec-
ify it formally we need additional notation. We let E be a
sequence of all sets of the formE(i,j), where 1 ≤ i < j ≤
h, such that E = E(1,2), E(1,3), . . . , E(1,h), E(2,3), . . ..
We write E(`) to refer to the `-th set in this sequence.
Note that E has exactly H =

(
h
2

)
elements. By E ′(`)

we mean the partial preference order of the form E(`) �
D(q2 − |E(`)|); each occurrence of E ′(`) in a preference
order uses a fresh set of dummy items. For each 1 ≤ ` <
`′ ≤ H , the edge selection group contains two agents e`,`′
and e′`,`′ with the following preference orders:

e`,`′ : E ′(`) � E ′(`′) � D(L− 2q2) � others,

e′`,`′ :
−−→
E ′(`) �

−−−→
E ′(`′) � D(L− 2q2) � others.

3. To form the consistency group, we use the following no-
tation. Let v ∈ V (G) be a vertex. For a color j ∈ [h],
by Sj(v) we mean the partial preference order Ej(v) �
D(q−1−|Ej(v)|) � v. For each pair of colors i, j ∈ [h],
i 6= j, we have agents ci,j and c′i,j with preference orders:

ci,j : Sj(v
(i)
1 ) � · · · � Sj(v(i)

q ) � D(L− q2) � others,

c′i,j : Sj(v
(i)
q ) � · · · � Sj(v(i)

1 ) � D(L− q2) � others.

(Recall the intended form of a highest-scoring item set for
the case where our clique exists. For such an item set X ,
the agents ci,j and c′i,j would assign to X score equal to
the (Borda) utility of the selected item from V (i).)

Let m denote the total number of items in our instance.
We define the desired score value to be:

T = 2H(m− 3/2q − 1/2) + 2
(
H
2

)
(m− 3/2q2 − 1/2)

+ 2(h− 1)2(m− q/2− q2/2).

We claim that there is an item set with score at least T if and
only if G contains a multicolored clique of size h.

We say that an item set is proper if for each color i ∈ [h]
it contains a single vertex from V (i), and for each pair of
colors 1 ≤ i < j ≤ h, it contains a single edge from
E(i,j). Let X be a proper item set. We will now calcu-
late the score of X . We will see that if X corresponds to a
multicolored clique, then it has score T ; otherwise its score
is lower. Non-proper item sets have even lower scores.

Observe that each pair of vertex selection agents assigns
exactly 2m − 3q − 1 points to X . Indeed, for each two
agents vi,j and v′i,j , the second highest-ranked member ofX
is some vertex item v ∈ V (j); one of the agents assigns to v
utility of the form m− q− t and the other ones assigns m−
q − (q − t + 1), where t is an integer in [q]. Altogether,
this gives score 2m − 3q − 1. Similarly, each pair of edge
selection agents assigns utility 2m− 3q2 − 1 to X . In total,
the vertex and edge selection agents assign to X score:

H(2m− 3q − 1) +
(
H
2

)
(2m− 3q2 − 1)

= 2H(m− 3/2q − 1/2) + 2
(
H
2

)
(m− 3/2q2 − 1/2).

The agents from the consistency group assign scores as fol-
lows. Let us consider two arbitrary colors i, j ∈ [h], i 6= j.
Let u and e be the respective unique members of V (i)

and E(i,j) included in X . If u is incident to e, then both
agents ci,j and c′i,j rank e ahead of u. Thus u is the second
highest-ranked member of X according to these agents and
they assign score m− q+m− q2 = 2m− q− q2 to X . Yet,
if u is not incident to e, then u is the second highest-ranked
member of X according to exactly one of ci,j and c′i,j , and
e is the second highest-ranked member of X according to
the other one. Then these agents assign score strictly lower
than 2m− q − q2.

In summary, if X contains vertices and edges that form a
multicolored clique, then its score is T . Otherwise, if X is
proper but does not correspond to a multicolored clique, then
its score is below T . In the full proof we show that if X is
not proper, then its score is even lower.

Similar proofs show that β(i)-WINNER is W[1]-hard for
each i ≥ 2. Indeed, even β(k − 1)-WINNER is W[1] hard.
Yet the complexity of β(k)-WINNER remains elusive.

Corollary 1. For each integer i, 2 ≤ i ≤ k − 2, it holds
that the β(i)-WINNER and β(k− i)-WINNER problems are
W[1]-hard for the parameterization by the number of agents.



4 Approval Utilities
In this section we assume that the agents have (weighted)
approval utilities; i.e., effectively we consider Thiele multi-
winner rules (Aziz et al. 2015; Lackner and Skowron 2018).
We find a broad spectrum of OWA-vectors for which our
problem has FPT algorithms (for the parameterization by
the number of agents). Indeed, Faliszewski at al. (2018b)
have shown such an algorithm for nonincreasing OWAs (in
the unweighted case). We extend their result to piecewise
nonincreasing OWAs; an OWA-vector consists of ρ nonin-
creasing pieces if it is of the form:(
λ1

1, λ
2
1, . . . , λ

`(1)
1 , λ1

2, λ
2
2, . . . , λ

`(2)
2 , . . . , λ1

ρ, λ
2
ρ, . . . , λ

`(ρ)
ρ

)
where `(1), . . . , `(ρ) are the sizes of the pieces, and for each
i ∈ [ρ] and each j ∈ [`(i)−1] it holds that λj+1

i ≤ λji . While
piecewise nonincreasing OWA-vectors may seem quite arti-
ficial at first, they include a number of interesting cases. For
example, an OWA with ρ different values can be seen as
piecewise nonincreasing.

We write α-WINNER to refer to OWA-WINNER for the
case of approval preferences, and αweighted-WINNER for the
case of weighted approval preferences. As a warm-up, let us
consider the following proposition.
Proposition 4. There is an FPT algorithm, parameterized
by the number of agents, for αweighted-WINNER with OWAs
of the form (0, . . . , 0, 1).

Proof. For a given item set S, if an agent approves all mem-
bers of S, then he or she gives it score 1, and otherwise he
or she gives it score 0. Thus it suffices to guess a subset
of agents of size at least T that would give score 1 to our
item set (where T is the given score threshold) and check if
the intersection of the sets of items that these agents approve
contains at least k items (where k is the size of the item set
that we seek).

The next theorem is proved using a very broad general-
ization of the idea from the above result, where guessing the
agents is replaced with an integer linear program (solved us-
ing Lenstra’s algorithm (Lenstra, Jr. 1983) on top of the trick
of Bredereck et al. (2017)).
Theorem 5. There is an FPT algorithm, parameterized
by the number of agents and the number ρ, for αweighted-
WINNER in case of OWAs that consist of ρ nonincreasing
pieces.

We also show an FPT algorithm for αweighted-WINNER
with linearly increasing OWAs; this result is possible due to
a recent progress in integer programming.
Theorem 6. There is an FPT algorithm, parameter-
ized by the number of agents and the number z, for
αweighted-WINNER in case of linearly increasing OWAs Λ =
(λ1, λ2, . . . , λk) with λi = x + (i − 1)d when x, d and the
weight q(a) of each agent a are upper-bounded by z.

Proof. Our input consists of a set R of items, preference
profile U , OWA-vector Λ = (λ1, λ2, . . . , λk) such that for
each i ∈ [k] we have λi = x + (i − 1)d, and score thresh-
old T . Each agent a assigns either utility 0 or q(a) to each

item. We solve this instance by a reducing it to an instance
of quadratic integer programming (QIP) with the number
of integer variables bounded by a function of the parame-
ter (i.e., the number of agents). We need a quadratic goal
function in order to express, for some given number z, the
sum of the first z entries of our OWA-vector Λ. It holds that∑

1≤i≤z λi = z(x− d/2) + dz2/2.

Let N be our set of agents and let n = |N | be the number
of agents. We use the following variables:

1. For each subset N ′ ⊆ N , we use variable xN ′ indicating
the number of items in the solution that receive non-zero
utility from all agents in N ′ but zero utility from all other
agents. Note that each item is associated with exactly one
of the sets N ′.

2. For each agent a ∈ N we use an integer variable ya in-
dicating the number of items in the solution that receive
non-zero utility from a.

The main insight is that every solution can be fully char-
acterized by the xN ′ variables. We denote by #(N ′) the
number of items that receive non-zero utility from N ′ and
zero utility from N \N ′. Our QIP is as follows:

maximize
∑

1≤a≤N

(
ya(x− d/2) + dy2

a/2
)
q(a) (2)

subject to:
∑
N ′⊆N

xN ′ = k (3)

∀N ′ ⊆ N : 0 ≤ xN ′ ≤ #(N ′) (4)

∀a ∈ N : ya =
∑

N ′⊆N,a∈N ′
xN ′ (5)

Goal function 2 gives the score of the selected k-item set.
Constraint 3 ensures that exactly k items are chosen. Con-
straints 4 ensure that the solution only consists of items that
are indeed available. Constraints 5 ensure that the ya vari-
ables are correctly computed from the xN ′ variables.

The number of integer variables is upper-bounded
by 2N + N . All coefficient are upper-bounded
by max({q(a) | a ∈ N} ∪ {d, x}). Hence, fixed-parameter
tractability follows from a result of Lokshtanov (2015).

The two above theorems notwithstanding, there are vari-
ants of α-WINNER that are W[1]-hard.

Theorem 7. α-WINNER is W[1]-hard for the parameteriza-
tion by the number of agents, even if the OWAs are restricted
to contain only −1s, 0s and 1s.

The general idea is to reduce from the MULTICOLORED
CLIQUE problem, as in the proof of Theorem 3, but instead
of having a candidate for each vertex in the graph, we encode
chosen vertices of a given color with including sufficiently
many candidates of a given type in the item set. To make
this idea work, it is necessary to form a set of polynomi-
ally bounded numbers, so that the sum of each pair is differ-
ent (Erdös and Turán 1941); this way (and also using consec-
utive−1 and 1 entries in the OWA) items selected to encode
a pair of vertices also encode an edge connecting them.



It is interesting if, parameterized by the number of agents,
α-WINNER restricted to OWAs with nonnegative entries is,
in general, W[1]-hard or has an FPT algorithm. To answer
this open question, it seems that either we need to make
progress in solving integer programs, or we need to find a
particularly clever trick for building a reduction.

5 Borda Utilities and Approximation
While for (weighted) approval utilities we provided a very
broad set of FPT algorithms, for many practical OWA-
vectors, Borda utilities seem to be much harder to work with.
Indeed, aside from Theorem 1 and Proposition 2, the only
exact algorithm for this setting regards OWAs that consist of
ones followed by zeros. And even in this case we only get
an XP algorithm (but for arbitrary utilities).

Proposition 8. There is an XP algorithm, parameterized by
the number of agents, for OWA-WINNER with OWAs of the
form (1, . . . , 1, 0, . . . , 0).

Indeed, for the case of Borda utilities there are many nat-
ural families of OWA-vectors for which we neither have
FPT algorithms nor W[1]-hardness proofs, nor even XP al-
gorithms, even though we have FPT algorithms for them
for the case of (weighted) approval utilities. For example,
this is the case for harmonic OWAs, i.e., OWAs of the form
(1, 1/2, . . . , 1/k), used, e.g., in the Harmonic Borda multi-
winner rule (Faliszewski et al. 2017a). However, as a conso-
lation prize, typically for settings where we have FPT algo-
rithms for the case of (weighted) approval utilities, we auto-
matically get FPT approximation schemes for Borda utili-
ties (and for many other ones as well). To this end, we need
the ability to translate arbitrary utilities to approval ones (we
achieve this by replacing each agent with multiple ones, ap-
proving more and more items, depending on the utilities that
the original agent assigns to them).

Lemma 9. There is a polynomial-time algorithm that given
an instance of OWA-WINNER with n agents, where the
highest utility value is umax, translates it to an equivalent
instance with at most n · umax agents, the same items, and
the same OWA (by equivalence, we mean that each item set
has the same score in both instances).

Proof. Consider an OWA-WINNER instance with items
R = {r1, . . . , rm}, preference profile U for agents in the set
N , and OWA Λ = (λ1, . . . , λk). We form a new instance
which is identical, except that we replace each agent a ∈ N ,
with maxr∈R ua(r) “approval agents” as follows: We re-
name the items so that R = {r′1, . . . , r′m} and ua(r′1) ≥
ua(r′2) ≥ · · · ≥ ua(r′m), and introduce:

ua(r′1)− ua(r′2) agents who approve {r′1},
ua(r′2)− ua(r′3) agents who approve {r′1, r′2},
...
ua(r′m−1)−ua(r′m) agents who approve {r′1, . . . , r′m−1},
ua(r′m) agents who approve {r′1, . . . , r′m}.

Simple calculations show that for each k-item set S, its
scores in both instances are the same.

We also need the following definition, which requires that
each agent values sufficiently many items sufficiently highly.

Definition 3 (Skowron et al. (2016)). Consider a setting
with m items and let umax denote the highest utility that
some agent gives to an item. Let β and γ be two numbers
in [0, 1]. The agents have (β, γ)-non-finicky utilities if every
agent has utility at least βumax for at least γm items.

In particular, Borda utilities are (0.5, 0.5)-non-finicky.
We express the next theorem for this class of utilities, but
it is possible to extend it to less restricted ones.

Theorem 10. If there is an FPT algorithm (parameterized
by the number of agents) for OWA-WINNER with approval
preferences and a given family of non-negative OWAs, then
there is an FPT-approximation scheme (parametrized by
the number of agents) for OWA-WINNER with (0.5, 0.5)-
non-finicky utilities and the same family of OWAs.

Proof. Let U = {u1, u2, . . . , un} be our preference profile
of (0.5, 0.5)-non-finicky utilities of agents in N = [n] over
a set R of items, and let k be the size of the desired item set.
We use OWA Λ = (λ1, . . . , λk). Let m be the number of
items and n be the number of agents. We require that k ≤
m/2 (but see comments below the proof). We are also given
a real number ε > 0 and our goal is to find a size-k item
set S with Λ-scoreU (S) ≥ (1 − ε)OPT, where OPT :=
maxS∗⊆R,|S∗|=k Λ-scoreU (S∗).

Let t be the smallest positive integer such that 1
nt ≤ ε

and let umax be the highest utility value that an agent as-
signs to an item. We form a preference profile U ′ =
{u′1, u′2, . . . , u′n} so that for each a ∈ N and r ∈ R:

u′a(r) = b ua(r)
umax/nt+2 c = b(nt+2)ua(r)

umax
c.

Let u′max be the highest utility that an agent assigns to an
item in U ′. We note that u′max ≤ nt+2 and, thus, by
Lemma 9 and our assumptions, there is an FPT algorithm
for OWA-WINNER with preference profile U ′ and OWA Λ.
Our algorithm proceeds as follows. If n = 1, then we simply
return the top k items according to the only agent. Otherwise
we output a maximum score size-k item set with respect
to U ′. Below we argue that this item set indeed achieves
at least (1− ε)OPT score with respect to U .

We assume that n ≥ 2. Let S′ be a size-k item set that
maximizes Λ-scoreU ′ and let S = {s1, . . . , sk} be a size-k
item set that maximizes Λ-scoreU . Naturally, we have that
Λ-scoreU (S) = OPT and Λ-scoreU ′(S

′) ≥ Λ-scoreU ′(S).
(Note that Λ-scoreU ′(S) =

∑
a∈N

∑k
i=1 λiǔ

′
a(S)[i]; we

use this and similar equalities below.) We have the fol-
lowing inequality (using that for positive integers x and y:
xb yxc ≥ y − x):

Λ-scoreU (S′) ≥ umax

nt+2 Λ-scoreU ′(S
′)

≥ umax

nt+2 Λ-scoreU ′(S) = umax

nt+2

∑
a∈N

∑k
i=1 λiǔ

′
a(S)[i]

=
∑
a∈N

∑k
i=1 λi

umax

nt+2 b ǔa(S)[i]
umax/nt+2 c

≥
∑
a∈N

∑k
i=1 λi(ǔa(S)[i]− umax

nt+2 )

= Λ-scoreU (S)−
∑
a∈N

∑k
i=1 λi

umax

nt+2



= Λ-scoreU (S)−
∑k
i=1 λi

umax

nt+1

≥ Λ-scoreU (S)− ε(
∑k
i=1 λi

umax

n ).

As n ≥ 2, the utilities are (0.5, 0.5)-non-finicky, k ≤
m/2, and OPT is at least as high as the highest score that
an agent assigns to his or her top k items, we have that∑k
i=1 λi

umax

n ≤
∑k
i=1 λi

umax

2 ≤ OPT. Thus we have
Λ-scoreU (S′) ≥ Λ-scoreU (S) − ε(

∑k
i=1 λi

umax

n ) ≥ (1 −
ε)OPT. This completes the proof.

By choosing larger t, we can make the above proof work
for (x, x)-non-finicky for any fixed x and for k ≥ m/2.

6 Conclusions
We have studied the complexity of finding a collective set
of items, parameterized by the number of agents. As this
framework is very broad, we obtained results that directly
apply to multiwinner Thiele rules and to committee scor-
ing rules. For Thiele rules we obtained a very broad set
of FPT algorithms, but for committee scoring rules the
picture is more complex; for example, even though the
Chamberlin–Courant rule has an FPT algorithm, a rule with
a very similar definition (using OWA (0, 1, 0, . . . , 0) instead
of (1, 0, . . . , 0)) turned out to be W[1]-hard. Yet, we have
shown that FPT algorithms for Thiele rules yield FPT-
approximation schemes for many committee scoring rules
(in particular, those defined using Borda preferences). One
of the most challenging open problems is the parameterized
complexity for the Harmonic Borda rule (that is, for OWA-
WINNER with Borda preferences and OWA (1, 1/2, . . . , 1/k).
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