
Pattern-Guided k-Anonymity

Robert Bredereck?, André Nichterlein, and Rolf Niedermeier

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Berlin, Germany
{robert.bredereck,andre.nichterlein,rolf.niedermeier}@tu-berlin.de

Abstract. We suggest a user-oriented approach to combinatorial data
anonymization. A data matrix is called k-anonymous if every row appears
at least k times—the goal of the NP-hard k-Anonymity problem then is
to make a given matrix k-anonymous by suppressing (blanking out) as few
entries as possible. We describe an enhanced k-anonymization problem
called Pattern-Guided k-Anonymity where the users can express the
differing importance of various data features. We show that Pattern-
Guided k-Anonymity remains NP-hard. We provide a fixed-parameter
tractability result based on a data-driven parameterization and, based on
this, develop an exact ILP-based solution method as well as a simple but
very effective greedy heuristic. Experiments on several real-world datasets
show that our heuristic easily matches up to the established “Mondrian”
algorithm for k-Anonymity in terms of quality of the anonymization
and outperforms it in terms of running time.

1 Introduction

Making a matrix k-anonymous, that is, each row has to occur at least k times,
is a classic model for (combinatorial) data privacy [12, 21].1 The idea behind is
that each row of the matrix represents an individual and the k-fold appearance of
the corresponding row avoids that the person or object behind can be identified.
To reach this goal, clearly some information loss has to be accepted, that is,
some entries of the matrix have to be suppressed (blanked out); in this way,
information about certain attributes (represented by the columns of the matrix)
is lost. Thus, the natural goal is to minimize this loss of information when
transforming an arbitrary data matrix into a k-anonymous one. The corresponding
optimization problem k-Anonymity is NP-hard (even in special cases) and hard
to approximate [1, 2, 3, 7, 20]. Nevertheless, it played a significant role in
many applications, mostly relying on heuristic approaches for making a matrix
k-anonymous [6, 13, 21].

? Supported by the DFG, research project PAWS, NI 369/10.
1 We omit considerations on the recently very popular model of “differential privacy” [8]
which has a more statistical than a combinatorial flavor. It is well-known that there
are certain weaknesses of the k-anonymity concept when the anonymized data is used
multiple times [5, 12]. Here, we focus on k-anonymity which due to its simplicity and
good interpretability continues to be of interest in current applications.

To appear in Proceedings of the Joint Conference of the 7th International
Frontiers of Algorithmics Workshop and the 9th International Conference on
Algorithmic Aspects of Information and Management (FAW-AAIM ’13), Dalian,
China, June 2013. c© Springer.

It was observed that care has to be taken concerning the “usefulness” (also
in terms of expressiveness) of the anonymized data [18, 22]. Indeed, depending
on the application that has to work on the k-anonymized data, certain entry
suppressions may “hurt” less than others. E.g., considering medical data records,
the information about eye color may be less informative than information about
the blood pressure. Hence, it would be useful for the later user of the anonymized
data to specify information that may help doing the anonymization process
in a more sophisticated way. Thus, in recent work [4] we proposed a “pattern-
guided” approach to data anonymization, in a way allowing the user to specify
which combinations of attributes are less harmful to suppress than others. More
specifically, the approach allows “pattern vectors” which may be considered as
blueprints for the structure of anonymized rows—each row has to be matched with
exactly one of the pattern vectors. The correspondingly proposed optimization
problem [4], however, has the clear weakness that each pattern vector can only
be used once, disallowing that there are different incarnations of the very same
anonymization pattern. We have no justification why this should be so and
we see no reason to justify this constraint from the viewpoint of data privacy.
This leads us to proposing a modified model whose usefulness for practical data
anonymization tasks is supported by experiments on real-world data.

Altogether, with our new model we can improve both on k-Anonymity
by letting the data user influence the anonymization process as well as on the
previous model [4] by allowing the full flexibility for the data user to influence
the anonymization process.

Formal Introduction of the New Model. A row type is a maximal set of identical
rows of a matrix. Matrices are made k-anonymous by suppressing some of their
entries. Formally, suppressing an entry M [i, j] of an n × m-matrix M over
alphabet Σ with 1 ≤ i ≤ n and 1 ≤ j ≤ m means to simply replace M [i, j] ∈ Σ
by the new symbol “?”, ending up with a matrix over the alphabet Σ ∪ {?}.

Our central enhancement of the k-Anonymity model lies in the user-specific
pattern mask guiding the anonymization process: Every row in the k-anonymous
output matrix has to conform to one of the given pattern vectors. A row r in
a matrix M ∈ {Σ, ?}n×m matches a pattern vector v ∈ {�, ?}m if and only if
∀1 ≤ i ≤ m : r[i] = ? ⇐⇒ v[i] = ?, that is, r and v have ?-symbols at the
same positions. With these definitions we can now formally define our central
computational problem. The decisive difference to our previous model [4] is that
in our new model two non-identical output rows can match the same pattern
vector.

Pattern-Guided k-Anonymity
Input: A matrix M ∈ Σn×m, a pattern mask P ∈ {�, ?}p×m, and two

positive integers k and s.
Question: Can one suppress at most s elements of M in order to get a

k-anonymous matrix M ′ such that each row type of M ′ can be
matched to one pattern vector of P?

2

Our Results. We show that Pattern-Guided k-Anonymity is NP-complete,
even if the input matrix only consists of three columns, there are only two pattern
vectors, and k = 3. Motivated by this computational intractability result, we
develop an exact algorithm that solves Pattern-Guided k-Anonymity in
O(2tpt6p5m+ nm) time for an n ×m input matrix M , p pattern vectors, and
the number of different rows in M being t. In other words, this shows that
Pattern-Guided k-Anonymity is fixed-parameter tractable for the combined
parameter (t, p) and actually can be solved in linear time if t and p take con-
stant values. This result paves the way to a formulation of Pattern-Guided
k-Anonymity as an integer linear program for exactly solving moderate-size
instances of Pattern-Guided k-Anonymity. Furthermore, our fixed-parameter
tractability result also leads to a simple and efficient greedy heuristic whose prac-
tical competitiveness is underlined by a set of experiments with real-world data,
also favorably comparing with the Mondrian algorithm for k-Anonymity [15].

Due to the lack of space, several details and experimental evaluations are
deferred to a full version.

2 Complexity and Algorithms

Natural parameters occurring in the problem definition of Pattern-Guided
k-Anonymity are the number n of rows, the number m of columns, the alphabet
size |Σ|, the number p of pattern vectors, the degree of anonymity k, and the
cost bound s. In general, the number of rows will arguably be large and, thus,
also the cost bound s tends to be large. However, analyzing the adult dataset [10]
prepared as described by Machanavajjhala et al. [19], it turns out that some of
the other mentioned parameters are small: The dataset has m = 9 columns and
the alphabet size is 73. Furthermore, it is natural to assume that also the number
of pattern vectors is not that large. Indeed, compared to the n = 32, 561 rows
even the number of all possible pattern vectors 29 = 512 is smaller. Finally there
are applications where k, the degree of anonymity, is small [9]. Summarizing, we
can state that fixed-parameter tractability with respect to the parameters |Σ|, m,
or p could be of practical relevance. Unfortunately, by reducing from the 3-Set
Cover we can show that Pattern-Guided k-Anonymity is NP-hard in very
restricted cases.

Theorem 1. Pattern-Guided k-Anonymity is NP-complete even for two
pattern vectors, three columns, and k = 3.

Proof. We reduce from the NP-hard 3-Set Cover [14]: Given a set family F =
{S1, . . . , Sα} with |Si| = 3 over a universe U = {u1, . . . , uβ} and a positive
integer h, the task is to decide whether there is a subfamily F ′ ⊆ F of size
at most h such that

⋃
S∈F ′S = U . In the reduction we need unique entries

in the constructed input matrix M . For ease of notation we introduce the 4-
symbol with an unusual semantics. Each occurrence of a 4-symbol stands for a
different unique symbol in the alphabet Σ. One could informally state this as
“4 6= 4”. We now describe the construction. Let (F , U, h) be the 3-Set Cover

3

instance. We construct an equivalent instance (M,P, k, s) of Pattern-Guided
k-Anonymity as follows: Initialize M and P as empty matrices. Then, for each
element ui ∈ U add the row (ui,4,4) twice to the input matrix M . For each
set Si ∈ F with Si = {ua, ub, uc} add toM the three rows (ua, Si, Si), (ub, Si, Si),
and (uc, Si, Si). Finally set k = 3, s = 4|U |+3|F|+3h and add to P the pattern
vectors (�, ?, ?) and (?, �, �).

We show the correctness of the above construction by proving that (F , U, h)
is a yes-instance of 3-Set Cover if and only if (M,P, 3, s) is a yes-instance of
Pattern-Guided k-Anonymity.

“⇒:” If (F , U, h) is a yes-instance of 3-Set Cover, then there exists a set
cover F ′ of size at most h. We suppress the following elements in M : First,
suppress all 4-entries in M . This gives 4|U | suppressions. Then, for each Si ∈ F ′
suppress all Si-entries in M . This gives at most 6|F ′| suppressions. Finally, for
each Sj /∈ F ′ suppress the first column of all rows containing the entry Sj . This
are 3(|F| − |F ′|) suppressions. Let M ′ denote the matrix with the suppressed
elements. Note that M ′ contains 4|U | + 3|F| + 3|F ′| ≤ s suppressed entries.
Furthermore, in each row in M ′ either the first element is suppressed or the last
two elements. Hence, each row of M ′ matches to one of the two pattern vectors
of P . Finally, observe that M ′ is 3-anonymous: The three rows corresponding
to the set Sj /∈ F ′ are identical: the first column is suppressed and the next two
columns contain the symbol Sj . Since F ′ is a set cover, there exists for each
element uj a set Si ∈ F ′ such that uj ∈ Si. Thus, by construction, the two rows
corresponding to the element uj and the row (uj , Si, Si) in M coincide in M ′:
The first column contains the entry uj and the other two columns are suppressed.
Finally, for each row (ui, Sj , Sj) in M that corresponds to a set Sj ∈ F ′ the row
in M ′ coincides with the two rows corresponding to the element ui: Again, the
first column contains the entry ui and the other two columns are suppressed.

“⇐:” If (M,P, 3, s) is a yes-instance of Pattern-Guided k-Anonymity,
then there is a 3-anonymous matrix M ′ that is obtained from M by suppressing
at most s elements and each row of M ′ matches to one of the two pattern
vectors in P . Since M and so M ′ contain 2|U | + 3|F| rows, M ′ contains at
most s = 4|U | + 3|F| + 3h suppressions and each pattern vector contains a ?-
symbol, there are at most 2|U | + 3h rows in M ′ containing two suppressions
and at least 3|F| − 3h rows containing one suppression. Furthermore, since
the 2|U | rows in M corresponding to the elements of U contain the unique
symbol 4 in the last two columns, in M these rows are suppressed in the last two
columns. Thus, at most 3h rows corresponding to sets of F have two suppressions
in M ′. Observe that for each set Si ∈ F the entries in the last two columns
of the corresponding rows are Si. There is no other occurrence of this entry
in M . Hence, the at least 3|F| − 3h rows in M ′ with one suppression correspond
to |F| − h sets in F . Thus, the at most 3h rows in M ′ that correspond to sets
of F and contain two suppressions correspond to at most h sets of F . Denote
these h sets by F ′. We now show that F ′ is a set cover for the 3-Set Cover
instance. Assume by contradiction that F ′ is no set cover and, hence, there is a
set u ∈ U \ (

⋃
S∈F ′ S). But since M ′ is 3-anonymous, there has to be a row r

4

in M ′ that corresponds to some set Si such that this row coincides with the
two rows ru1 and ru2 corresponding to u. Since all rows in M ′ corresponding to
elements of U contain two suppressions in the last two columns, the row r also
contains two suppressions in the last two columns. Thus, Si ∈ F ′. Furthermore,
r has to coincide with ru1 and ru2 in the first column, that is, r contains as entry
in the first column the symbol u. Hence, u ∈ Si, a contradiction. ut

Contrasting Theorem 1, we will show fixed-parameter tractability with respect to
the combined parameter (|Σ|,m). To this end, we additionally use as parameter
the number t of different input rows. Indeed, we show fixed-parameter tractability
with respect to the combined parameter (t, p). This implies fixed-parameter
tractability with respect to the combined parameter (|Σ|,m) as |Σ|m ≥ t
and |Σ|m ≥ 2m ≥ p. This results from an adaption of combinatorial algorithms
from previous work [4, 5].

Theorem 2. Pattern-Guided k-Anonymity can be solved in O(2tp · t6p5 ·
m+ nm) time where p is the number of pattern vectors and t is the number of
different rows in the input matrix M .

ILP Formulation. Next, we describe an integer linear program (ILP) formulation
for Pattern-Guided k-Anonymity employing ideas behind the fixed-parameter
algorithm of Theorem 2. To this end, we need the following notation. We dis-
tinguish between the input row types of the input matrix M and the output
row types of the output matrix M ′. Note that in the beginning we can compute
the input row types of M in O(nm) time using a trie [11], but the output row
types are unknown. By the definition of Pattern-Guided k-Anonymity, each
output row type R′ has to match a pattern vector v ∈ P . We call R′ an instance
of v.

More specifically, our ILP contains the integer variables xi,j denoting the
number of rows from type i being assigned into an output row type compatible
with pattern vector j. The binary variable uj,l is 0 if instance l of pattern vector j
is used in the solution, that is, there is at least one row mapped to it, otherwise
it may be set to 1. Furthermore, ni denotes the number of rows of type i, ωj
denotes the costs of pattern vector j, and k is the required degree of anonymity.
Let p̂i ≤ t denote the number of instances of pattern vector i and let c(i, j, l)
be 1 if mapping row i to pattern vector j produces pattern vector instance l,
otherwise c(i, j, l) = 0. With this notation we can state our ILP formulation:

min

t∑
i=1

p∑
j=1

x(i, j) · ωj (1)

t∑
i=1

c(i, j, l) · xi,j ≤ (1− uj,l) · n 1≤j≤p
1≤l≤p̂j (2)

5

t∑
i=1

c(i, j, l) · xi,j + k · uj,l ≥ k 1≤j≤p
1≤l≤p̂j (3)

p∑
j=1

xi,j = ni 1 ≤ i ≤ t. (4)

The goal function (1) ensures that the solution has a minimum number of
suppressions. Constraint (2) ensures that the variables uj,l are consistently set
with the variables xi,j , that is, if there is some positive variable xi,j indicating
that the instance l of pattern vector j is used, then uj,l = 0. Constraint (3)
ensures that every pattern vector instance that is used by the solution contains
at least k rows. Constraint (4) ensures that the solution uses as many rows from
each row type as available.

We remark that, as Theorem 2, our ILP formulation also yields fixed-parameter
tractability with respect to the combined parameter (t, p). This is due to a famous
result of Lenstra [16] and the fact that the number of variables in the ILP is
bounded by O(tp). Theorem 2, however, provides a direct combinatorial algorithm
with better worst-case running time bounds. Nevertheless, in the experimental
section we decided to use the ILP formulation and not the combinatorial algorithm
based on the experience that there are very strong (commercial) ILP solvers that
in practice typically perform much better than the worst-case analysis predicts.

Greedy Heuristic. We now provide a greedy heuristic based on the ideas of
the fixed-parameter algorithm of Theorem 2. The fixed-parameter algorithm
basically does exhaustive search on the assignment of rows to pattern vectors.
More precisely, for each row type R and each pattern vector v it tries both
possibilities of whether rows of R are assigned to v or not. In contrast, our greedy
heuristic will just pick for each input row type R the “cheapest” pattern vector v
and then assigns all compatible rows of M to v. This is realized as follows: We
consider all pattern vectors one after the other ordered by increasing number
of ?-symbols. This ensures that we start with the “cheapest” pattern vector. Then
we assign as many rows as possible of M to v: We just consider every instance R′
of v and if there are more than k rows in M that are compatible with R′, then we
assign all compatible rows to R′. Once a row is assigned, it will not be reassigned
to any other output row type and, hence, the row will be deleted from M . Overall
this gives a running time of O(pnm). See Algorithm 1 for the pseudo-code of the
greedy heuristic. If at some point of time there are less than k remaining rows
in M , then these rows will be fully suppressed. Note that this slightly deviates
from our formal definition of Pattern-Guided k-Anonymity. However, since
fully suppressed rows do not reveal any data, this potential violation of the
k-anonymity requirement does not matter.

Our greedy heuristic clearly does not always provide optimal solutions. Our
experiments indicate, however, that it is very fast and that it typically provides
solutions close to the optimum and outperforms the Mondrian algorithm [15]
in most datasets we tested. While this demonstrates the practicality of Algo-

6

Algorithm 1 Greedy Heuristic (M,P, k)
1: Sort pattern vectors P by cost (increasing order)
2: for each v ∈ P do
3: Compute all instances of v
4: for each instance R′ of v do
5: if ≥ k rows are compatible with R′ then
6: Assign all compatible rows of M to R′

7: Delete the assigned rows from M .

rithm 1, the following result shows that from the viewpoint of polynomial-time
approximation algorithmics it is weak in the worst case.

Theorem 3. Algorithm 1 for Pattern-Guided k-Anonymity runs in O(pnm)
time and provides a factor m-approximation. This approximation bound is asymp-
totically tight for Algorithm 1.

Proof. Since the running time is already discussed above, it remains to show
the approximation factor. Let sheur be the number of suppressions in a solution
provided by Algorithm 1 and sopt be the number of suppressions in an optimal
solution. We show that for every instance it holds that sheur ≤ m · sopt. Let M
be a matrix and M ′heur be the suppressed matrix produced by Algorithm 1
and M ′opt be the suppressed matrix corresponding to an optimal solution. First,
observe that if any row of M occurs more than k times, then this row does not
contain any suppressed entry inM ′heur. Hence, for any row inM ′opt not containing
any suppressed entry it follows that the corresponding row in M ′heur also does
not contain any suppression. Clearly, each row in M ′heur has at most m entries
suppressed. Thus, each row inM ′heur has at most m times more suppressed entries
than the corresponding row in M ′opt.

To show that this upper bound is asymptotically tight, consider the following
instance. Set k = m and let M be as follows: The matrix M contains k times
the row with the symbol 1 in every entry. Furthermore, for each i ∈ {1, . . . ,m}
there are k − 1 rows in M such that all but the ith entry contains the symbol 1.
In the ith entry each of the k − 1 rows contains a uniquely occurring symbol.
Finally, the pattern mask simply contains all 2m possible rows/vectors over the
alphabet {�, ?}. Algorithm 1 will suppress nothing in the k all-1 rows and will
suppress every entry of the remaining rows. This gives sheur = (k − 1) ·m2 =
(m− 1) ·m2 suppressions. However, an optimal solution suppresses in each row
exactly one entry: The rows containing in all but the ith entry the symbol 1 are
suppressed in the ith entry. Furthermore, to ensure the anonymity requirement,
in the submatrix with the k rows containing the symbol 1 in every entry the
diagonal is suppressed. Thus, the number of suppressions is equal to the number
of rows, that is, sopt = k + (k − 1)m = m2. Hence, sheur = (m− 1)sopt. ut

7

3 Implementation and Experiments

In this section we present the results of our experimental evaluation of the
heuristic and the ILP formulation presented in Section 2. We used four datasets
for our experimental evaluations; these were taken from the UCI machine learning
repository [10]. In this extended abstract we only discuss two of them.

Adult2: This was extracted from a dataset of the US Census Bureau Data
Extraction System. It consists of 32,561 records over 15 attributes. Since the
entries in one attribute are unique for roughly half of the records, we removed this
attribute from the dataset. Following Machanavajjhala et al. [19], we prepared
also this dataset with nine attributes and call this variant Adult-2.
CMC3: This dataset is a subset of the 1987 National Indonesia Contraceptive
Prevalence Survey. It contains 1,473 records over 10 attributes.

All our experiments are performed on an Intel Xeon E5-1620 3.6GHz machine
with 64GB memory under the Debian GNU/Linux 6.0 operating system. The
heuristic is implemented in Haskell. The ILP implementation is using ILOG
CPLEX by its C++ API. Both implementations are licensed under GPL Ver-
sion 3. The source code is available from http://akt.tu-berlin.de/menue/
software/.

We tested our greedy heuristic in two types of experiments. In the first type
we “misused” our greedy heuristic to solve the classical k-Anonymity problem by
specifying all possible pattern vectors since we wanted to compare the practical
relevance of our greedy heuristic with an existing implementation. We decided to
compare with an implementation of the well-known Mondrian [15] algorithm4 since
we could not find a more recent implementation of a k-Anonymity algorithm
which is freely available. In the second type of experiments, we analyze the
distance of the results provided by our greedy heuristic from an optimal solution
(with a minimum number of suppressed entries). The optimal solution is provided
by the ILP implementation.

Obvious criteria for the evaluation of the experiments are the number of
suppressions and the running time. Furthermore, we use the average size havg and
the maximum size hmax of the output row types as already done by Li et al. [17]
and Machanavajjhala et al. [19], as well as the number #h of output row types.
The perhaps most difficult to describe measurement we use is the “usefulness”
introduced by Loukides and Shao [18]. Roughly speaking, the usefulness is the
average tuple diversity of all output row types. Usefulness values lie between
zero and the number m of columns. Except for #h, small values indicate better
solutions.

2 ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult/
3 ftp://ftp.ics.uci.edu/pub/machine-learning-databases/cmc/
4 http://cs.utdallas.edu/dspl/cgi-bin/toolbox/index.php?go=home

8

http://akt.tu-berlin.de/menue/software/
http://akt.tu-berlin.de/menue/software/
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/adult/
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/cmc/
http://cs.utdallas.edu/dspl/cgi-bin/toolbox/index.php?go=home

Table 1. Heuristic vs. Mondrian: Results for the Adult dataset. The usefulness is
denoted by u, the running time in seconds by r, #h denotes the number of output row
types, havg denotes the average size of the output row types, and hmax denotes the
maximum size of the output row types.

Greedy Heuristic

k u r #h havg hmax

2 2.062 5.5 14589 2.232 16
3 2.290 13.2 9208 3.536 18
4 2.470 19.538 6670 4.882 25
5 2.615 24.9 5199 6.263 31
6 2.738 29.663 4315 7.546 42
7 2.851 34.126 3669 8.875 53
8 2.942 37.629 3193 10.198 53
9 3.026 41.216 2832 11.498 52
10 3.106 44.8 2559 12.724 56
25 3.840 79.281 1046 31.129 161
50 4.462 117.0 537 60.635 317
75 4.873 144.536 354 91.980 317
100 5.151 163.582 274 118.836 317

Mondrian

k u r #h havg hmax

2 3.505 2789.4 11136 2.709 61
3 3.782 1803.5 7306 4.128 61
4 4.007 1337.860 5432 5.553 61
5 4.191 1062.0 4325 6.974 61
6 4.362 885.939 3597 8.385 61
7 4.498 754.652 3053 9.879 61
8 4.622 659.184 2663 11.326 61
9 4.766 588.347 2368 12.737 69
10 4.875 535.9 2145 14.062 69
25 6.009 229.248 850 35.485 90
50 6.729 127.4 430 70.144 135
75 7.339 93.621 287 105.094 242
100 7.805 76.005 209 144.316 242

Heuristic vs. Mondrian

For each dataset, we computed k-anonymous datasets with our greedy heuristic
and Mondrian for k ∈ {2, 3, . . ., 10, 25, 50, 75, 100}. The running time behavior of
the tested algorithms is somewhat unexpected. Whereas Mondrian gets faster with
increasing k, our greedy heuristic gets faster with decreasing k. The reason why
the greedy heuristic is faster for small values of k is that usually the cheap pattern
vectors are used and, hence, the number of remaining input rows decreases soon.
On the contrary, when k is large, the cheap pattern vectors cannot be used and,
hence, the greedy heuristic tests many pattern vectors before it actually starts
with removing rows from the input matrix. Thus, for larger values of k the greedy
heuristic comes closer to its worst-case running time of O(pnm) with p = 2m.

Adult and Adult-2. Our greedy heuristic anonymized the Adult dataset in less
than three minutes for all tested values of k. For k = 3 and k = 4 Mondrian took
more than half an hour to anonymize the dataset. However, in contrast to all
other values of k, Mondrian was slightly faster for k = 75 and k = 100. Except
for hmax with k ≥ 25 all quality measures indicate that our heuristic produces
better solutions. The usefulness value of the Mondrian solutions is between 1.5
and 1.7 times the usefulness value of the heuristic for all tested k—this indicates
significantly better quality of the results of our heuristic. See Table 1 for details
and Figure 1 for an illustration.

The solutions for Adult-2 behave similarly to those for Adult. Our greedy
heuristic with a maximum running time of five seconds is significantly faster than

9

Heuristic

Mondrian

0 10 20 30 40 50 60 70 80 90 100

degree k of anonymity

1

101

102

103

104

ru
n
n

in
g

 t
im

e
 i
n
 s

e
c
o

n
d

s
 (

lo
g
 s

c
a
le

)

Heuristic

Mondrian

0 10 20 30 40 50 60 70 80 90 100

degree k of anonymity

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

u
s
e

fu
ln

e
s
s

Fig. 1. Comparing running time and usefulness for the Adult dataset.

Mondrian with a maximum running time of 20 minutes (at least 10 times faster
for all tested k). However, the usefulness is quite similar for both algorithms.
Mondrian beats the heuristic by less than 1% for k = 50; the heuristic is slightly
better for each other tested k.

CMC. For the CMC dataset, both algorithms were very fast in computing
k-anonymous datasets for every tested k. Mondrian took at most 10 seconds
and our greedy heuristic took at most 1.2 seconds and was always faster than
Mondrian. As for the solution quality, the heuristic can compete with Mondrian.
The usefulness of the heuristic results is always slightly better, the Mondrian
results have always at least 20% less output row types, and the average output
row type size of the heuristic results is always smaller. Only for k = 5, 6, 7, and 8,
the Mondrian results have a lower maximum size of the output row types.

Conclusions for Classical k-Anonymity. We showed that our greedy heuristic
is very efficient even for real-world datasets with more than 30,000 records and
with k ≤ 100. Especially for smaller degrees of anonymity k ≤ 10, Mondrian is at
least ten times slower. Altogether, our heuristic outperforms Mondrian in terms
of quality of the solution. Hence, we demonstrated that even for the very special
case of specifying all possible pattern vectors, our heuristic already produces
useful solutions that can at least compete with Mondrian’s solutions.

Heuristic vs. Exact Solution

In three scenarios with real-world datasets, we showed that our greedy heuristic
performs well in terms of solution quality compared with the optimal solution
produced by the ILP implementation. The results of the heuristic are typically

10

within 15% away from the optimal solution to the optimum and in fact for many
cases they were optimal, although our heuristic is much more efficient than the
exact algorithm (the ILP was, on average, more than 1000 times slower). The
heuristic results tend to get closer to the optimal number of suppressions with
increasing degree of anonymity k.

4 Conclusion

We introduced a promising approach to combinatorial data anonymization by
enhancing the basic k-Anonymity problem with user-provided “suppression
patterns.” It seems feasible to extend our model with weights on the attributes,
thus making user influence on the anonymization process even more specific. A
natural next step is to extend our model by replacing k-Anonymity by more
refined data privacy concepts.

On the experimental side, several issues remain to be attacked. For instance,
we use integer linear programming in a fairly straightforward way almost without
any tuning tricks (e.g., using the heuristic solution or “standard heuristics”
for speeding up integer linear program solving). It also remains to perform
tests comparing our heuristic algorithm against methods other than Mondrian
(unfortunately, for the others no source code seems freely available).

Acknowledgements. We thank Thomas Köhler and Kolja Stahl for their great
support in doing implementations and experiments.

Bibliography

[1] J. Blocki and R. Williams. Resolving the complexity of some data privacy problems.
In Proceedings of the 37th International Colloquium on Automata, Languages and
Programming (ICALP ’10), volume 6199 of LNCS, pages 393–404. Springer, 2010.
(Cited on p. 1)

[2] P. Bonizzoni, G. Della Vedova, and R. Dondi. Anonymizing binary and small tables
is hard to approximate. Journal of Combinatorial Optimization, 22(1):97–119,
2011. (Cited on p. 1)

[3] P. Bonizzoni, G. Della Vedova, R. Dondi, and Y. Pirola. Parameterized complexity
of k-anonymity: hardness and tractability. Journal of Combinatorial Optimization,
2011. Available online. (Cited on p. 1)

[4] R. Bredereck, A. Nichterlein, R. Niedermeier, and G. Philip. Pattern-guided data
anonymization and clustering. In Proceedings of the 36th International Symposium
on Mathematical Foundations of Computer Science (MFCS ’11), volume 6907 of
LNCS, pages 182–193. Springer, 2011. (Cited on pp. 2 and 5)

[5] R. Bredereck, A. Nichterlein, R. Niedermeier, and G. Philip. The effect of homogene-
ity on the computational complexity of combinatorial data anonymization. Data
Mining and Knowledge Discovery, 2012. Available online. (Cited on pp. 1 and 5)

[6] A. Campan and T. M. Truta. Data and structural k-anonymity in social networks.
In Proceedings of the 2nd ACM SIGKDD International Workshop on Privacy,
Security, and Trust in KDD (PinKDD ’08), volume 5456 of LNCS, pages 33–54.
Springer, 2009. (Cited on p. 1)

11

[7] V. T. Chakaravarthy, V. Pandit, and Y. Sabharwal. On the complexity of the
k-anonymization problem. CoRR, abs/1004.4729, 2010. (Cited on p. 1)

[8] C. Dwork. A firm foundation for private data analysis. Communications of the
ACM, 54(1):86–95, 2011. (Cited on p. 1)

[9] P. A. Evans, T. Wareham, and R. Chaytor. Fixed-parameter tractability of
anonymizing data by suppressing entries. Journal of Combinatorial Optimization,
18(4):362–375, 2009. (Cited on p. 3)

[10] A. Frank and A. Asuncion. UCI machine learning repository, 2010. URL http:
//archive.ics.uci.edu/ml. (Cited on pp. 3 and 8)

[11] E. Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.
(Cited on p. 5)

[12] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-preserving data publishing:
A survey of recent developments. ACM Computing Surveys, 42(4):14:1–14:53, 2010.
(Cited on p. 1)

[13] A. Gkoulalas-Divanis, P. Kalnis, and V. S. Verykios. Providing k-anonymity in
location based services. ACM SIGKDD Explorations Newsletter, 12:3–10, 2010.
(Cited on p. 1)

[14] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller and J. W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972. (Cited on p. 3)

[15] K. LeFevre, D. DeWitt, and R. Ramakrishnan. Mondrian multidimensional k-
anonymity. In Proceedings of the 22nd International Conference on Data Engi-
neering (ICDE ’06), pages 25–25. IEEE, 2006. (Cited on pp. 3, 6, and 8)

[16] H. W. Lenstra. Integer programming with a fixed number of variables. Mathematics
of Operations Research, 8:538–548, 1983. (Cited on p. 6)

[17] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity
and l-diversity. In Proceedings of the 23rd International Conference on Data
Engineering (ICDE ’07), pages 106–115. IEEE, 2007. (Cited on p. 8)

[18] G. Loukides and J. Shao. Capturing data usefulness and privacy protection in k-
anonymisation. In Proceedings of the 2007 ACM Symposium on Applied Computing,
pages 370–374. ACM, 2007. (Cited on pp. 2 and 8)

[19] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. `-diversity:
Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from
Data, 1(1), 2007. (Cited on pp. 3 and 8)

[20] A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In Pro-
ceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS ’04), pages 223–228. ACM, 2004. (Cited on p. 1)

[21] G. Navarro-Arribas, V. Torra, A. Erola, and J. Castellà-Roca. User k-anonymity
for privacy preserving data mining of query logs. Information Processing &
Management, 48(3):476–487, 2012. (Cited on p. 1)

[22] V. Rastogi, D. Suciu, and S. Hong. The boundary between privacy and utility
in data publishing. In Proceedings of the 33rd International Conference on Very
Large Data Bases, pages 531–542. VLDB Endowment, 2007. (Cited on p. 2)

12

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Pattern-Guided k-Anonymity

