
POLYNOMIAL-TIME DATA REDUCTION FOR THE SUBSET

INTERCONNECTION DESIGN PROBLEM†

JIEHUA CHEN‡ , CHRISTIAN KOMUSIEWICZ‡ , ROLF NIEDERMEIER‡ ,

MANUEL SORGE‡ , ONDŘEJ SUCHÝ§ , AND MATHIAS WELLER¶

Abstract. The NP-hard Subset Interconnection Design problem, also known as Mini-
mum Topic-Connected Overlay, is motivated by numerous applications including the design of
scalable overlay networks and vacuum systems. It has as input a finite set V and a collection of
subsets V1, V2, . . . , Vm ⊆ V , and asks for a minimum-cardinality edge set E such that for the graph
G = (V, E) all induced subgraphs G[V1], G[V2], . . . , G[Vm] are connected. We study Subset In-
terconnection Design in the context of polynomial-time data reduction rules that preserve the
possibility to construct optimal solutions. Our contribution is threefold: First, we show the incor-
rectness of earlier polynomial-time data reduction rules. Second, we show linear-time solvability in
case of a constant number m of subsets, implying fixed-parameter tractability for the parameter m.
Third, we provide a fixed-parameter tractability result for small subset sizes and tree-like output
graphs. To achieve our results, we elaborate on polynomial-time data reduction rules which also may
be of practical use in solving Subset Interconnection Design.

Key words. NP-hard problem, fixed-parameter tractability, kernelization, combinatorial algo-
rithms, preprocessing, hypergraph support

AMS subject classifications. 05C65, 68Q25, 68R10, 68W05

1. Introduction. In many applications one wants to construct an “overlay
graph” that interconnects each member of a given family of subsets of a ground set
or, equivalently, that connects each hyperedge of a given hypergraph. We study an
NP-complete problem in this context where one wants to construct an overlay graph
containing few edges. The formal definition of the corresponding decision problem
reads as follows.

Subset Interconnection Design (SID)
Input: A hypergraph H = (V,F), k ∈ N.
Question: Is there an undirected graph G = (V,E) with |E| ≤ k
and for each F ∈ F the induced subgraph G[F] is connected?

Throughout this work, we refer to graphsG in which G[F] is connected for each F ∈ F
as solutions. Solutions with a minimum number of edges are called optimal. Two
examples are shown in Figure 1. Although we present our results for the decision
version of Subset Interconnection Design, our positive algorithmic results can
be easily adapted to its optimization version.

†JC was supported by Studienstiftung des Deutschen Volkes. MS and MW were supported by
Deutsche Forschungsgemeinschaft, projects DAPA (NI 369/12) and DARE (NI 369/11). OS was
partly supported by Deutsche Forschungsgemeinschaft, project AREG (NI 369/9), and by the Czech
Science Foundation, project 14-13017P. The main part of the work of OS and MW was done while
they were affiliated with TU Berlin. An extended abstract of this article appeared under the title
“Effective and Efficient Data Reduction for the Subset Interconnection Design Problem” in the
Proceedings of the 24th International Symposium on Algorithms and Computation (ISAAC 2013),
volume 8283 of LNCS, Springer, pages 361–371. This manuscript is to appear in SIAM Journal on
Discrete Mathematics.

‡Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany. ({jiehua.chen,
christian.komusiewicz, rolf.niedermeier, manuel.sorge}@tu-berlin.de).

§Department of Theoretical Computer Science, Czech Technical University in Prague, Czech
Republic. (ondrej.suchy@fit.cvut.cz).

¶Département Informatique, LIRMM, Montpellier University, France.
(mathias.weller@lirmm.fr).

1

Figure 1: Two hypergraphs with optimal solutions. Vertices are drawn as white
circles, hyperedges by grouping their incident vertices together inside a closed curve
filled semi-transparently, and solution edges are drawn as thick lines.

Subset Interconnection Design is a fundamental problem concerning hy-
pergraph and graph structures that has many applications. Indeed, Subset In-
terconnection Design has been studied in the context of designing vacuum sys-
tems [10, 11], scalable overlay networks [6, 18, 26], reconfigurable interconnection
networks [13, 14], and, in variants, in the context of inferring a most likely social
network [1], determining winners of combinatorial auctions [7] as well as drawing hy-
pergraphs [3, 19, 21, 22]. The respective research communities seem largely unaware
of each other’s work, for instance leading to multiple NP-hardness proofs. To the
best of our knowledge, the problem was first defined by Du [9] and the first NP-
hardness proof was presented by Du and Miller [11]. SID has been independently
studied under the names Minimum Topic-Connected Overlay by the “scalable
overlay networks community” [6, 18, 26], Subset Interconnection Design by
the “vacuum systems community” [10, 12], and Interconnection Graph Prob-
lem by the “reconfigurable interconnection systems community” [13, 14]. The term
“topic-connected” in Minimum Topic-Connected Overlay refers to the desired
property of overlay networks that agents interested in some particular topic should
be able to inform each other about updates concerning this topic without involving
other agents [26]. The “social network inference community” [1], additionally impos-
ing edge costs, refers to this more general problem as Network Inference. The
“graph drawing community” [2, 3, 19, 20] refers to a solution as support and is mainly
concerned with finding solutions with certain structure, for example, planar solutions.
In further literature, solutions are also called host graphs [5] and spanning graphs [23].

Our main focus is on analyzing the influence of three problem-specific parameters
on the computational complexity of SID. The parameters are “size d := maxF∈F |F | of
the largest hyperedge”, “number m := |F| of hyperedges in the given hypergraph H”,
and “feedback edge number φ := k − n + 1 of the solution” which is a measure of
sparseness. Here, k is the number of edges of the constructed solution and n is the
number |V | of vertices in the input hypergraph H . We perform a parameterized
complexity analysis with respect to these parameters showing that small parameters
yield efficient algorithms. Our core working machinery is the development of numerous
polynomial-time data reduction rules, thereby extending previous work.

Previous Work. As mentioned above, SID has been independently studied in
different communities. Several NP-hardness proofs have appeared [6, 11, 13]. NP-
hardness even holds for hypergraphs with d = 3 [14, 18], while d ≤ 2 allows for

2

polynomial-time solvability [18] because then the input hypergraph is itself an opti-
mal solution. If the hypergraph is closed under intersections, that is, every intersection
of hyperedges is also a hyperedge, then SID also becomes polynomial-time solvable [4,
Lemma 1]. Polynomial-time approximability has also been intensely studied, provid-
ing various logarithmic-factor approximation algorithms [1, 6, 18] and inapproxima-
bility results (implying that logarithmic-factor approximation algorithms are likely to
be optimal) [1, 18]. The currently best exact algorithm for SID has a running time
of O(n2k/4k + n2) [18]. In addition, in a series of papers it has been shown that SID
can be solved in polynomial time if 2 ≤ m ≤ 4 [9, 28, 29].

Much research focused on finding solutions of special structure [2, 3, 4, 7, 19, 20].
For example, it has been shown that it is possible to test in linear time whether
there is a solution that is a tree, a path, or a cycle [4, 19]. Conversely, it is NP-
hard to test for planar solutions [19] or 2-outerplanar solutions [4]. A variant of SID
where the edges incur costs and where the solution is restricted to be a tree has
been studied in the context of communication network design [22]; this variant can
be solved in O(n2(m+ log(n))) time [21]. Finally, in the context of overlay networks,
it is of specific interest to construct solutions with small maximum and small average
vertex degree [6, 26]; the latter is achieved by SID.

Our Contribution. We start by revealing an incorrectness in two (very similar)
plausible data reduction rules used in previous work [14, 18] by constructing a coun-
terexample that shows their failure (Section 3). Based on this, we provide both refined
and completely new data reduction rules and prove their correctness and effectiveness.
Many of our data reduction rules also work in a parameter-independent fashion, that
is, they do not require knowledge of the parameter value which is just used for the
mathematical analysis.

Generalizing previous work [9, 28, 29], we then show that SID can be solved in
linear time if the input hypergraph contains only a constant number m of hyper-
edges (Section 4). This implies that SID is fixed-parameter tractable with respect to
the parameter m.

For hyperedges of size d ≤ 4 we show that SID can be reduced in polynomial
time to an equivalent instance of O(φ) vertices1, known as “polynomial-size problem
kernel” in parameterized algorithmics (Section 5.1). Making use of the developed
data reduction rules, we further show that, for arbitrary d, SID can be solved in
d18dφ · poly(|H |) time (Section 5.2). Here |H | denotes ∑F∈F |F |. Our result implies
that SID with small hyperedges becomes tractable if the solution is required to be
almost a tree, generalizing the polynomial-time algorithm for trees [19].

2. Preliminaries.

Graphs and Hypergraphs. Given an undirected graph G = (V,E) with vertex
set V and edge set E, we use E(G) to denote the edge set E of G. We denote
by G[V ′] the subgraph (V ′, {e ⊆ V ′ | e ∈ E}) of G induced by V ′. We also use G−V ′

as a shorthand for G[V \ V ′]. A feedback edge set of a graph G is a set of edges
whose removal makes G a forest. The feedback edge number φ of G is the size of any
minimum feedback edge set. If G is connected, then the feedback edge number is
|E| − |V |+ 1.

Let V be a finite set and let F be a family of subsets of V . We call H = (V,F) a
hypergraph with vertex set V and hyperedge set F . Unless stated otherwise, we assume

1Recall that φ denotes the feedback edge number of an optimal solution G, that is, the minimum
number of edges whose removal makes G acyclic.

3

all hypergraphs to not contain singleton hyperedges, empty hyperedges, or multiple
copies of the same hyperedge since they are not meaningful for SID, and searching
for and removing them can be done in linear time. We use n to denote |V | and |H | to
denote

∑

F∈F |F |. We call v ∈ V and F ∈ F incident if v ∈ F . We denote by F(v)
the set of all hyperedges that are incident with v, that is, F(v) := {F ∈ F | v ∈ F}.
If u, v ∈ V and F(u) ⊇ F(v), then we say that u covers v. Vertices that cover each
other are called twins ; a maximal set of twins is called twin class. The subhypergraph
induced by V ′ is the hypergraph H [V ′] := (V ′,F ′) where F ′ = {F ⊆ V ′ | F ∈ F}.
By removing a vertex v from H , we mean taking the hypergraph H ′ = (V \ {v},F ′),
where F ′ is obtained from {F \{v} | F ∈ F}) by removing the empty set and singleton
sets. A hyperwalk between vertices u and v is an alternating sequence of vertices and
hyperedges starting in u and ending in v such that succeeding elements are incident.
A hypergraph is connected if there is a hyperwalk between every pair of vertices.

The covering graph of hypergraph H = (V,F) is the directed graph GC =
(V, {(u, v) | F(u) ⊇ F(v)}). In other words, GC contains an arc (u, v) if and only
if u covers v. Note that GC is transitive. Some of our reduction rules construct the
covering graph of H as a subroutine. The following lemma bounds the running time
for this step.

Lemma 2.1. Given a hypergraph H = (V,F) one can construct the covering
graph GC in O(n · |H |) time.

Proof. Initialize GC as (V, V × V). Then, for each F ∈ F , remove the arcs
in (V \ F)× F from GC in O(n · |F |) time. Clearly, if (u, v) is an arc of the resulting
directed graph GC , then there is no hyperedge containing v but not u or, equivalently,
F(u) ⊇ F(v). If GC does not contain the arc (u, v), then, by the construction of GC ,
there is a hyperedge F ∈ F such that v ∈ F but u /∈ F . Thus, GC contains exactly
the edges (u, v) such that u covers v.

Parameterized Complexity. The concept of parameterized complexity was pio-
neered by Downey and Fellows [8] (see also the textbooks [15, 25]). A parameterized
problem is a language L ⊆ Σ∗ × Σ∗, where Σ is an alphabet. The second component
is called the parameter of the problem. Typically, the parameter is a nonnegative
integer. A parameterized problem L is fixed-parameter tractable if there is an algo-
rithm that decides whether (x, k) ∈ L in f(k) · |x|O(1) time, where f is an arbitrary
computable function depending only on k. A core tool in the development of fixed-
parameter algorithms is polynomial-time preprocessing by data reduction [16]. Here,
the goal is to transform a given problem instance (x, k) in polynomial time into an
equivalent instance (x′, k′) with parameter k′ ≤ f(k) such that the size of (x′, k′) is
upper-bounded by g(k), where g and f are functions only depending on k. If this is
the case, we call the instance (x′, k′) a (problem) kernel of size g(k).

Data reduction is usually presented as a series of reduction rules. These are
polynomial-time algorithms that take as input an instance of some decision problem
and produce another instance of the same problem as output. A reduction rule is
correct if for each input instance I, the corresponding output instance of the rule is a
yes-instance if and only if I is a yes-instance. We call an instance I of a parameterized
problem reduced with respect to a reduction rule if the reduction rule does not apply
to I. That is, carrying out the reduction rule yields an unchanged instance.

3. Fundamental Observations on Twins in Optimal Solutions. In this
section, we show that a previously proposed data reduction rule for SID is incorrect.
We also show some properties of SID’s optimal solutions and some data reduction
rules that are used in our algorithms.

4

a1 b1

a2 b2

a3 b3

v

Figure 2: An example showing parts of the hypergraph H ′ in the proof of Lemma 3.1,
herein x = 3. Left: some hyperedges from H ′. Right: the 2x edges that can be
assumed to be in an optimal solution for H ′.

A very natural approach to identify edges of optimal solutions is to look for
vertices u and v such that v covers u, that is, F(v) ⊇ F(u). The following shows that
degree-one vertices of the solution are adjacent to vertices that cover them.

Observation 1. If the hypergraph H = (V,F) has a solution G such that
some u ∈ V has only one neighbor v in G, then v covers u.

Proof. Let F ∈ F be a hyperedge with u ∈ F . Since G[F] is connected, u has
degree at least one in G[F]. Since v is the only neighbor of u in G it follows that
v ∈ F .

It is thus tempting to devise a data reduction rule that adds an edge between
such vertices: creating a degree-one vertex should be optimal since every vertex needs
at least one incident edge. Indeed, such a reduction rule was proposed for vertex
pairs u, v that are twins, that is, they are in the same hyperedges [14], or where one
covers the other [18]. The variant of these reduction rules that applies less often reads
as follows.

Rule 1. If hypergraph H = (V,F) contains twins u and v, that is, F(u) = F(v),
then remove u from H and decrease k by one.

Unfortunately, this rule is not correct, as a counterexample shows.
Lemma 3.1. There is a yes-instance (H = (V,F), k) containing twins u and v

such that Rule 1 applied to u and v yields a no-instance.
Proof. Let x ≥ 3 be an arbitrary integer. Consider the hypergraph H = (V,F),

with vertex set V = {u, v, a1, . . . , ax, b1, . . . , bx} and hyperedge set F which is the
union of the following sets of hyperedges:

F1 = {{ai, bi} | i ∈ {1, . . . , x}},
F2 = {{u, v, ai, bi} | i ∈ {1, . . . , x}},
F3 = {{u, v, ai, bi, aj} | i, j ∈ {1, . . . , x}, i 6= j}, and

F4 = {{u, v, ai, bi, bj} | i, j ∈ {1, . . . , x}, i 6= j}.

Note that the graph G = (V,E) with E := F1 ∪ {{ai, u}, {bi, v} | i ∈ {1, . . . , x}} is a
solution for H containing 3x edges. Hence, (H, 3x) is a yes-instance.

Now, let (H ′ = (V ′,F ′), 3x − 1) be an instance that results from (H, 3x) by
applying Rule 1 to u and v, that is, removing u from H and decreasing the solution

5

size bound k by one. An example showing parts of the hypergraph H ′ for x = 3 is
given in Figure 2. Then, V ′ = V \ {u} and F ′ consists of the following hyperedges:

F1 = {{ai, bi} | i ∈ {1, . . . , x}},
F ′

2 = {{v, ai, bi} | i ∈ {1, . . . , x}},
F ′

3 = {{v, ai, bi, aj} | i, j ∈ {1, . . . , x}, i 6= j}, and

F ′
4 = {{v, ai, bi, bj} | i, j ∈ {1, . . . , x}, i 6= j}.

We show that every solution for H ′ has at least 3x edges and, thus, that (H ′, 3x−
1) is a no-instance. First, every solution for H ′ contains the x edges corresponding
to the size-two hyperedges of F1. Furthermore, due to the hyperedges in F ′

2, for
each i ∈ {1, . . . , x}, every solution contains {v, ai} or {v, bi}. By the symmetry
between ai and bi in the hypergraph H ′, assume without loss of generality that an
optimal solution contains the edge {v, bi} for all i ∈ {1, . . . , x} (the set of these edges
plus F1 is shown in Figure 2). Now, let G′ = (V ′, E′) be such a solution for H ′.
Let A1 = {ai | {v, ai} /∈ E′} be the set of ais that are not adjacent to v in G′ and
let A2 denote the set of the remaining ais. If A1 = ∅, then G′ contains at least 3x
edges. We show that if A1 6= ∅, then the graph G′ also has at least 3x edges. Assume
that G′ is optimal and that every optimal solution has at least y > 0 vertices in A1.
For every hyperedge F = {v, ai, bi, aj} with aj ∈ A1 and i ∈ {1, . . . , x} \ {j}, G′ has
an edge between aj and {v, ai, bi}, since G′[F] is connected. Note that if G′ contains
the edge {bi, aj}, then we can replace this edge by {v, aj}: Since j 6= i, there is only
one hyperedge, namely F , that contains both bi and aj . Clearly, G′[F] can also be
made connected by adding {v, aj} instead. This implies an optimal solution with y−1
vertices in A1, contradicting our choice of y. Hence, G′ contains no edges {bi, aj} with
i 6= j. Consequently, in order to make each hyperedge {v, ai, bi, aj} ∈ F ′

3 with aj ∈
A1 connected, there is an edge between ai and aj .

Hence, G′ has y · (x − y) edges between A1 and A2,
(

y
2

)

edges between vertices
in A1 and x−y further edges between v and A2. Altogether the total number of edges
in G′ is thus at least

2x+ y · (x− y) +

(

y

2

)

+ x− y = 3x+
y · (2x− y − 3)

2

≥ 3x+
y · (x − 3)

2
≥ 3x.

This implies that (H ′, 3x− 1) is a no-instance.
As one can see from the proof, the main reason for the incorrectness of Rule 1

is the incorrect assumption that there is an optimal solution which adds an edge
between twins. However, with some additional conditions, rules similar to Rule 1 are
correct (Rules 2 to 4, 6, and 8 below). First, if a vertex u is adjacent to some vertex v
covering u in an optimal solution, then there is an optimal solution that shifts all
other edges incident with u to v.

Lemma 3.2. Let u, v be two vertices in a hypergraph H with v covering u. If
H has an optimal solution G containing the edge {u, v}, then H also has an optimal
solution with u being adjacent only to v.

Proof. Assume that u has degree at least two in G, that is, u has some neigh-
bor w 6= v. Then, obtain a modified graph G′ by replacing the edge {u,w} by the
edge {v, w}. The modified graph G′ has the same number of edges as G. Furthermore,
the two endpoints of the removed edge {u,w} are still connected in each hyperedge

6

Figure 3: A hypergraph to which Rule 3 applies.

that contains them: Since v covers u, such a hyperedge also contains v which is in G′

a common neighbor of u and w. Hence, G′ is also an optimal solution.
The above lemma immediately implies the following reduction rule.
Rule 2. If hypergraph H = (V,F) contains vertices u, v such that v covers u and

if there is an optimal solution G containing the edge {u, v}, then remove u from H
and decrease k by one.

Of course, it is not clear how to efficiently determine whether such an optimal
solution exists. We later exhibit hypergraph structures that enforce this and then use
Rule 2 as a subroutine.

Lemma 3.3. Rule 2 is correct.
Proof. If there is a solution of size at most k for H , then the condition of the

rule together with Lemma 3.2 imply that there is a solution G of size at most k in
which u has degree one and is adjacent to v. Then, G − {u} is a solution of size at
most k− 1 for H with u removed. Conversely, if there is a solution G′ of size at most
k − 1 for H with u removed then adding the edge {u, v} gives a solution of size at
most k for H since all hyperedges F containing u also contain v and the corresponding
subhyperedges F \ {u} induce connected subgraphs of G′.

Note that the correctness of Rule 2 together with Lemma 3.1 implies that there
are instances in which a twin class is an independent set in any optimal solution.

In the counterexample to Rule 1, there are only two twins and they are contained
in hyperedges of size five, that is, the size-five hyperedges containing these two vertices
have three other “unrelated” vertices. In the following, we show that this is tight,
that is, if each hyperedge containing u also contains at most two vertices that do not
cover u, then Rule 1 is correct.

Rule 3. If there are q+1 vertices u and v1, . . . , vq in the hypergraph H = (V,F), q
being a positive integer, such that each vi covers u and if for each hyperedge F ∈ F(u),
|F | ≤ q + 3 holds, then remove u from H and decrease k by one.

See Figure 3 for a hypergraph to which Rule 3 applies with q = 3. Another
example is the hypergraphH defined in Lemma 3.1 without the hyperedges in F3∪F4.
Then q = 1 and all hyperedges are of size at most four.

Lemma 3.4. Rule 3 is correct and can be applied exhaustively in O(n·|H |) time.
Proof. Let H = (V,F) be a hypergraph, Q be the vertex set {v1, . . . , vq} ⊆ V ,

and u be a vertex in V such that Rule 3 applies. Further, let N denote the set of
neighbors of u in an optimal solution G. If N ∩ Q 6= ∅, then the correctness follows
from the correctness of Rule 2. Hence, we assume that N ∩Q = ∅.

Case 1: N contains a neighbor w of some v ∈ Q in G. Let G′ be the result of
removing the edge {u,w} from G and adding {u, v}. If there is some hyperedge F
such that G′[F] is disconnected, then u,w ∈ F . Since v covers u, also v ∈ F . Then,
there is a path between u and w via v in G′[F], implying that G′[F] is connected.

Case 2: N contains no neighbor of any v ∈ Q. Then, for each F ∈ F(u),

7

|F ∩ N | ≤ 1 since otherwise, |F | ≤ q + 3 implies that F = {u} ∪ Q ∪ (F ∩ N) and
then G[F] does not contain a path between u and any vertex in Q. Thus, G′ := G−{u}
is a solution for the hypergraph H ′ that results from H by removing u. Note that G′

has at least one edge less than G. Since all hyperedges of H that contain u are
supersets of Q, adding u with the edge {v1, u} to G′ results in a solution for H , which
is optimal since |E(G′)|+ 1 ≤ |E(G)|.

It remains to prove the running time bound. For a vertex u, let Q be the set of
vertices covering u. It is not hard to see that if Rule 3 applies to any subset of Q, then
it also applies to Q. Reversing all arcs in the covering graph GC of H allows us to
compute |Q| in constant time per vertex. Thus, assuming that the size of a hyperedge
can be computed in constant time, Rule 3 can be applied exhaustively to H = (V,F)
in O(n · |H |+ n ·∑u∈V |F(u)|) = O(n · |H |) time.

As a corollary of Lemma 3.4, we also obtain correctness of the following rule since
it is a special case of Rule 3. This rule will be useful in Section 5.

Rule 4. If there are two vertices u and v such that v covers u and |F | ≤ 4 for
each hyperedge F ∈ F(u), then remove u from H and decrease k by one.

Note that the condition |F | ≤ 4 in Rule 4 is also tight in the sense that if u is
incident with hyperedges of size at least five, then Rule 4 is not correct as shown
by Lemma 3.1.

4. Data Reduction for Instances with Few Hyperedges. In this section,
we show that SID is fixed-parameter tractable with respect to the number m of
hyperedges. A previous fixed-parameter tractability result for this parameter [18,
Theorem 8] relied on Rule 1 and is therefore incorrect.2 The intuition behind Rule 1
is that it is optimal to connect a twin class by a spanning tree and to subsequently
represent this twin class by a single vertex. This approach results in an instance
with at most 2m vertices which would imply fixed-parameter tractability. As the
counterexample in Lemma 3.1 shows, a twin class can be disconnected in the subgraph
induced by every optimal solution. Thus, in order to restore the fixed-parameter
tractability result, we need a slightly more involved rule whose correctness proof makes
use of the following upper bound on the number of edges needed in the solution.

Lemma 4.1. Every input instance of SID with k ≥
(

2m

2

)

+n−1 is a yes-instance.

Proof. We show how to construct a solution G with less than
(

2m

2

)

+ n edges.
The main idea is to first partition the vertex set into two subsets V ′ and V \ V ′. We
then construct a solution G′ for the hypergraph H ′ resulting from H by removing the
vertices in V \ V ′. Finally, we obtain a solution for H by adding each time one edge
connecting each vertex in V \ V ′ to the graph G′.

Recall that a twin class is a maximal set of vertices that mutually cover each other.
Let V ′ consist of exactly one vertex from each twin class of H . Clearly, |V ′| ≤ 2m

where m is the number of hyperedges. Let H ′ be the hypergraph resulting from
removing all vertices that are not in V ′ from H . Obviously, a complete graph G′ for
V ′ is a solution for hypergraph H ′. This solution has

(

2m

2

)

edges.
We now extend G′ to a solution G for H as follows. Add each vertex v ∈ V \ V ′

to G′. Furthermore, add an edge incident to v and its twin in V ′ (recall that at least
one vertex of each twin class is in V ′). Let G be the resulting graph. Since there is at

least one twin class, |V \V ′| ≤ n−1 and hence G contains at most
(

2m

2

)

+n−1 edges.

2The theorem of Hosoda et al. [18] actually states that an optimal solution can be computed in
polynomial time if m ≤ f(n) where f is some specific function. This is equivalent to fixed-parameter
tractability: if m ≤ f(n), then one can apply the polynomial-time algorithm, otherwise m > f(n)
implies that the instance size depends only on m.

8

Graph G is a solution for H since for each hyperedge F ∈ F , the subgraph G[F] is
connected: G[V ′ ∩F] is a complete graph and each vertex in F \ V ′ is adjacent to its
twin in F ∩ V ′. Thus, G[F] is connected.

The upper bound provided by Lemma 4.1 grows exponentially in the number
of hyperedges. It would be interesting to replace this exponential dependence by a
polynomial function. However, this is not possible in general; there are instances that
require a solution with at least 2Ω(m) + n edges, see Appendix A.

Lemma 4.1 directly yields the correctness of the following reduction rule.

Rule 5. If k ≥
(

2m

2

)

+ n− 1, then answer “yes”.

Our aim is now to shrink the size each of the 2m twin classes to be bounded by
a function of m. For this, the following rule removes vertices from large twin classes.

Rule 6. Let (H, k) be an instance that is reduced with respect to Rule 5. If there
is a twin class T in H with |T | > 4m+7·2m+1, then remove an arbitrary vertex v ∈ T
from H and decrease k by one.

To prove the correctness of Rule 6, we show that there is a solution G that has
the following property concerning its low-degree vertices. In the following, by degree-ℓ
vertices we refer to vertices of degree exactly ℓ.

Lemma 4.2. Let H = (V,F) be a connected hypergraph and |V | ≥ 3. Then, there
is a solution G = (V,E) such that for each twin class T of H, graph G has

1. at most one vertex t ∈ T that has degree-one neighbors, and
2. at most one degree-two vertex t′ ∈ T .

Proof. Let G be a solution for H . We show how to transform G into a solution G∗

which fulfills both properties of the lemma. First, suppose that there is a nonempty
set T = {T1, . . . , Tq} of twin classes of H such that at least two vertices of each Ti

have degree-one neighbors in G. Now, modify G as follows. Pick an arbitrary vertex ti
from each Ti such that ti has a degree-one neighbor and label ti as the one vertex in
twin class Ti that will have degree-one neighbors in the modified solution G∗.

Then, as long as T is nonempty, pick an arbitrary Ti and an arbitrary vertex t′ ∈
Ti \ {ti}. Let X be the set of degree-one neighbors of t′ in G. Note that ti /∈ X as,
otherwise, ti and its neighbor would form a connected component of size two in G.
This contradicts the fact that G is a solution because by definition H is connected
and contains at least three vertices. We remove all edges between X and t′ and make
all vertices in X adjacent to ti. Let G′ be the resulting graph. Observe that G′ has
the same number of edges as G. Moreover, G′ is also a solution: The vertices of X
were not part of any shortest path between two vertices in V \X . Hence, G[V \X] is
a solution for the hypergraph obtained from H by removing each vertex in X . In
particular, for each F ∈ F containing ti, vertex ti is connected to all other vertices
in G[F \X]. Therefore, adding each vertex in X as a degree-one neighbor to ti (which
results in the graph G′) produces a solution for H .

The above shows the correctness of the first modification step. After this step we
update the set T by performing the modification step, again for some arbitrary twin
class of H that contains at least two vertices with degree-one neighbors in G′. We
repeat this process until T is empty. In order to show that we can obtain a solution G∗

in which T is empty, we need to show that we only have to perform a finite number
of modification steps. To this end, note that in each step the degree of the labeled
vertex ti ∈ Ti increases and only the degree of t′ decreases. Since t′ is a twin of ti, the
degree of all other labeled vertices stays the same. Hence the number of modification
steps is finite. Summarizing, there is a solution that fulfills Property 1 of the lemma.

We now show that such a solution can be further modified such that it also fulfills

9

Figure 4: A possible situation before (left) and after the second modification step
(right) in the proof of Lemma 4.2. The gray region represents a twin class.

Property 2. Let G be a solution that fulfills Property 1 and let T = {T1, . . . , Tq}
denote the twin classes for which there are at least two degree-two vertices in G. For
each Ti do the following. Since the first property is satisfied, Ti contains at least one
degree-two vertex u such that its two neighbors a and b have degree at least two,
respectively. Then, remove the two edges incident with u, make a and b adjacent,
and make u adjacent to either the one vertex in Ti that has degree-one neighbors, or,
if such a vertex does not exist, another degree-two vertex in Ti. See Figure 4 for an
illustration of this modification step. Note that the neighbors of ti and u do not have
to be contained in Ti. Nevertheless, for each hyperedge F the connected component
of a and b is connected to the one of ti (if it exists) in G[F], which we now exploit to
show the correctness of the modification step.

Let G′ be the modified graph and let v denote the new neighbor of u in G′.
Clearly, G′ has the same number of edges as G. To show that G′ is also a solution, we
consider each F ∈ F that contains u and at least one of a and b and show that G′[F]
is connected.

Case 1: Exactly one of a and b is in F . Then, u has degree one in G[F], and
thus G[F]−{u} is connected. In particular, the twin v of u has a path to all vertices
in G[F] − {u}. Hence, “reinserting” u and making it adjacent to v results in a
connected graph isomorphic to G′[F].

Case 2: Both a and b are in F . Since G[F] is connected, the graph G′′ that is
obtained from G[F] by removing u and making a and b adjacent is also connected.
Again, this means that the twin v of u (in Ti) has in G′′ a path to all other vertices. As
above, “reinserting” u and making it adjacent to v yields a connected graph isomorphic
to G′[F].

Note that since neither a nor b are degree-one vertices and by the choice of v, the
above modification does not result in a solution in which a twin class has more than
one vertex that is a neighbor of degree-one vertices. Consequently, the modification
can be applied to all Ti’s without losing the first property. Hence, there is a solution
fulfilling both properties.

With the above lemma at hand, we can show the correctness of Rule 6. The proof
idea is as follows. Using Lemma 4.2, we show that only O(2m) vertices of every twin
class T have degree at least three but at least one low-degree neighbor. Consequently,
for sufficiently large |T | we can assume that one vertex of T has degree one in G:
Otherwise, there are many degree-(≥ 3) vertices in G that have only degree-(≥ 3)
neighbors in G. This, however, pushes the number of edges in G above the guarantee
given by Rule 5.

Lemma 4.3. Rule 6 is correct.
Proof. Let (H, k) denote the original instance and (H ′, k−1) an instance resulting

10

from one application of Rule 6. We show that both instances are equivalent. It is easy
to see that if (H ′, k − 1) is a yes-instance, then (H, k) is also a yes-instance: Let G′

be the solution for H ′. Pick one vertex u ∈ T \ {v}, make v adjacent to u, and call
the resulting graph G. Then, G has one more edge than G′. Moreover, G is also a
solution since for each F ∈ F containing v, the subgraph G′[F \ {v}] is connected.
This implies that G[F] is also connected (since F \ {v} contains u).

For the other direction of the equivalence, suppose that G is a solution for H .
Since H is reduced with respect to Rule 5, graph G has k <

(

2m

2

)

+ n edges. Let
twin class T and vertex v be as described in Rule 6. To show that (H ′, k − 1) is also
a yes-instance, we show that, since |T | > 4m + 7 · 2m + 1, hypergraph H has also
a solution with k edges where vertex v has degree one. Herein, we assume that H
and thus also G are connected. The case for disconnected input hypergraphs follows
easily.

First, we show that there are at most 4m +7 · 2m vertices whose degree in G is at
least three. Obviously, this upper-bounds the number of vertices with degree at least
three in the twin class T as well. We consider two subsets of this vertex set: by X
we denote the vertices of degree at least three that have only neighbors of degree at
least three in G, and by Y we denote the other vertices of degree at least three. Note
that Lemma 4.2 implies that Y has at most (1 + 2) · 2m = 3 · 2m vertices: First, the
number of twin classes is at most 2m. Second, in G each twin class has at most one
vertex that has degree-one neighbors. Finally, in G each twin class has at most one
degree-two vertex. Hence, there are at most 2 · 2m neighbors of degree-two vertices.

It remains to upper-bound the size of X . We do this by deriving a lower bound on
the number of edges in G and then show that, for largeX , this lower bound exceeds k,
contradicting the fact that (H, k) is a yes-instance. To this end, let Z = V \ (X ∪ Y)
denote the set of vertices that have degree one or two in G. We partition the edges
of G into two subsets EX∪Y , which contains edges with both endpoints on vertices
of degree at least three, and EY ∪Z which contains all other edges. Since we assume
that G is connected, |EY ∪Z | ≥ |Z| − 1. The number of edges in EX∪Y is at least
3|X |/2 since all vertices in X have degree at least three and only neighbors in X ∪Y .

If |X | ≥ 2 ·
(

(

2m

2

)

+ 3 · 2m
)

, then

|EX∪Y | ≥
3|X |
2

= |X |+ |X |
2

≥ |X |+ |Y |+
(

2m

2

)

,

where the last inequality holds because |Y | ≤ 3 ·2m. Hence, the number of edges in G
is

|EX∪Y |+ |EY ∪Z | ≥ |X |+ |Y |+
(

2m

2

)

+ |Z| − 1 = n+

(

2m

2

)

− 1.

This contradicts the assumption that (H, k) is a yes-instance, since k < n+
(

2m

2

)

− 1

after application of Rule 5. Hence, we have |X | < 2 · (
(

2m

2

)

+ 3 · 2m) = 4m + 5 · 2m.

Now we can upper-bound the number of vertices in the twin class T that have
degree at least two. In addition to the vertices of X , class T can contain at most
one vertex that is a neighbor of degree-one vertices, at most 2 · 2m vertices that are
neighbors of degree-two vertices, and at most one degree-two vertex. Therefore, if T
contains more than 4m +7 · 2m +1 vertices, then at least one of them is a degree-one
vertex in G. Without loss of generality, we can assume that this is v.

11

It now only remains to combine the above results to obtain a problem kernel
for SID parameterized by the number m of hyperedges. Moreover, this kernel can be
computed in linear time, thus yielding linear-time fixed-parameter tractability.

Theorem 4.4. An instance of Subset Interconnection Design can be re-
duced to an equivalent one of size at most O(8m ·m) in O(|H |) time.

Proof. The kernelization algorithm first applies Rule 5 and then exhaustively
applies Rule 6. After this, the size of each twin class in H is at most O(4m). Hence,
the instance has size O(8m ·m): The input hypergraph H has at most 2m twin classes,
each containing O(4m) vertices. Therefore, the total number n of vertices is O(8m).
The overall instance size follows.

The running time of the kernelization algorithm can be upper-bounded as follows.
Clearly, Rule 5 runs in O(|H |) time. In order to apply Rule 6, we first compute a
partition of V into the twin classes. This can be done as follows. We start with
one set containing V and then consider an arbitrary hyperedge F ∈ F . The vertices
that are in F are in a different twin class than the vertices that are not in F . Hence,
using F we partition V into two subsets. We repeat the partitioning for all hyperedges,
each time using the current hyperedge to update the partition. The partitioning can
be done in O(|F |) time [17, Lemma 1]. This process thus takes O(|H |) time. Its
output is a partition of V into all different twin classes. For each twin class, we check
whether Rule 6 can be applied. Instead of applying the rule right away, we label
the vertices of the twin classes that will be removed and decrease k by the overall
number of labeled vertices. After all twin classes have been processed, we remove all
labeled vertices from each F ∈ F , again in linear time. Thus, the overall running
time is O(|H |).

Corollary 4.5. Subset Interconnection Design can be solved in 2O(m8m)+
O(|H |) time.

Proof. By Theorem 4.4 we can obtain in O(|H |) time an equivalent instance with
at most c8m vertices for some constant c (c can be selected as 2 for m ≥ 3). Hence, by

Theorem 4.1, we can assume that k <
(

2m

2

)

+n−1 ≤ 4m+c8m ≤ (c+1)8m. Now we try

all subsets of k edges out of the at most
(

c8m

2

)

≤ c282m possible edges on at most c8m

vertices. For each of them we test, whether it is a solution in O(mk) = O(m8m) time.

Since there are at most
(

c282m

k

)

≤
(

c282m

(c+1)8m

)

≤ (c282m)(c+1)8m = 2O(m8m) such sets,

we get the 2O(m8m) bound for the running time of this part of the algorithm.

5. Data Reduction Rules for Sparse Solutions. In this section, we present
a set of reduction rules that identify and remove parts of the instance which either
produce tree-like induced subgraphs or long induced paths in the solution. We analyze
the power of these data reduction rules by showing that, for maximum hyperedge
size d ≤ 4, they yield a problem kernel for the parameter feedback edge number φ
and that, for general d, they can be used to obtain fixed-parameter tractability for
the combined parameter (d, φ). The reason for obtaining a weaker result for d > 4 is
that Rule 1 is indeed correct if d ≤ 4 but not in general (see Rule 4). Applying this
rule removes a certain class of vertices from the input graph that seem to be hard to
identify for d > 4.

Although k appears in our data reduction rules, they are applicable regardless of
the value of k. Hence, the data reduction rules can be applied also to the optimization
version of SID.

5.1. A Problem Kernel for the Parameter Feedback Edge Number φ

for d ≤ 4. We now describe how we can remove all but O(φ) vertices from a SID

12

Figure 5: Two hypergraphs to which Rule 7 applies along with optimal solutions.

instance with d ≤ 4 in O(n ·m3) time by using Rule 4 (Section 3) and an additional
reduction rule (Rule 7 below). Informally, the parameter φ upper-bounds the number
of vertices that are in cycles and have degree at least three. Using Rule 4 we can
remove vertices that have degree one in solutions. Hence, to reduce the overall number
of vertices to O(φ), we also have to remove vertices that are in long induced paths in
the solution. This is the purpose of Rule 7. This rule is also needed in Section 5.2
which deals with the case d ≥ 5. Therefore, we formulate the rule in a more general
way than needed for the special case d ≤ 4.

Rule 7. Let (H = (V,F), k) be an instance of SID. If H contains a vertex set
P := {p0, . . . , p2d} with incident hyperedge set FP :=

⋃

p∈P F(p) such that

1. no pi ∈ P covers any pj ∈ P with j 6= i,
2. for each F ∈ FP we have F ∩ P = {pi, . . . , pj} for some 0 ≤ i ≤ j ≤ 2d,
3. for each F ∈ FP with F ∩{p0, p2d} = ∅, and for every vertex v ∈ F \P , there

is a vertex p ∈ P that covers v, and
4. there is no hyperedge F ∈ FP such that F ∩ P = {pi} for any 0 < i < 2d,

then do the following.

For every F ∈ FP with F ∩{p0, p2d} = ∅, remove all vertices in F \P from H and
decrease k by their number. Furthermore, remove the vertices p2, . . . , p2d−2 from H
and decrease k by 2d− 2.

Intuitively, Conditions 1 and 2 plus the fact that the hyperedges have size at
most d enforce that there is a solution G for such a hypergraph that makes G[P] a
long induced path with endpoints p0 and p2d. Below, we use PI := {p1, . . . , p2d−1} to
denote the set of inner vertices of this path structure. Condition 3 ensures that in the
solution in which G[P] is a path all vertices that are in hyperedges with only vertices
of PI can be made degree-one neighbors of some vertex of PI .

Two examples of hypergraphs to which Rule 7 applies are shown in Figure 5 with
values d = 3 and d = 6, respectively.

In order to prove the correctness and running time of the rule, we first make some
observations on the structure of the subhypergraph that consists of the hyperedge
set FP . The first observation is about the structure of the hyperedges along the
presumed path containing P .

Observation 2. Let H be a hypergraph and P ⊆ V satisfying the condi-
tions of Rule 7. For every pi ∈ PI there is a hyperedge F+

i such that pi−1 /∈ F+
i

and {pi, pi+1} ⊆ F+
i and also a hyperedge F−

i such that {pi−1, pi} ⊆ F−
i and pi+1 /∈

F−
i . Moreover, there is a hyperedge F−

0 such that F−
0 ∩P = {p0} and a hyperedge F+

2d

such that F+
2d ∩ P = {p2d}.

13

Proof. Consider some i ∈ {1, . . . , 2d − 1}. By Condition 1 of Rule 7, there is
some hyperedge containing pi but not pi−1. Now, by Condition 4, this hyperedge
contains at least one further vertex from P , and by Condition 2 it thus contains pi+1.
Hence, there is a hyperedge F+

i containing pi and pi+1 that does not contain pi−1.
The existence of F−

i follows from a symmetric argument. Finally, Condition 1 implies
the existence of F−

0 and F+
2d.

For the second observation we consider the hyperedges that only intersect with
the set of inner vertices PI . To this end, let FI = {F ∈ FP | F ∩ P ⊆ PI} be the
hyperedges of FP that contain neither p0 nor p2d and let W :=

⋃

F∈FI
F be the union

of all vertices that are incident with some hyperedge in FI . Due to Observation 2,
FI is not empty and W ∩ P = P \ {p0, p2d}. Each vertex v in W \ P is covered by
some vertex of P \ {p0, p2d}: By the definition of W , there is a hyperedge F ∈ FI

with F ∩ {p0, p2d} = ∅ that is incident with v. By Condition 3, v is covered by
some pi ∈ P . Since F ∩ {p0, p2d} = ∅, we have pi 6= p0 and pi 6= p2d. Altogether,
W thus has the following property.

Observation 3. For each v ∈ W either v ∈ PI or there is a pi ∈ PI such that
pi covers v.

Informally, the above two observations imply that the subhypergraph H [W] has
a solution in which PI is an induced path and all other vertices of W have degree one.
The final observation is used to show that this solution for H [W] is also optimal. It is
based on the fact that any solution for a connected input hypergraph is a connected
graph.

Observation 4. Let H = (V,F) be a hypergraph and let G be a solution for H.
If the subhypergraph H [V ′] induced by a vertex subset V ′ ⊆ V is connected, then
|E(G[V ′])| ≥ |V ′| − 1.

Using these observations, we can now show the correctness of the rule.

Lemma 5.1. Rule 7 is correct.

Proof. Let H , P and FP be as described in Rule 7 and, as above, let PI =
{p1, . . . , p2d−1}, FI = {F ∈ FP | F ∩ P ⊆ PI} and W =

⋃

F∈FI
F . Consider an

arbitrary optimal solution G′ and let G be the graph obtained from G′ by removing
all edges in G′[W] and then adding the edges {pi, pi+1} for i ∈ {1, . . . , 2d− 2}, and,
for every v ∈ W \ P adding one edge {v, pi} where pi covers v. We prove that G is
an optimal solution.

First, we show that G is a solution, that is, G[F] is connected for all F ∈ F . For
this, let F ∈ F and FW = F ∩W . Observe that if |FW | < 2, then G[F] is connected.
Hence, assume |FW | ≥ 2 and let u, v ∈ FW such that {u, v} ∈ E(G′). We show
that u and v are connected in G[FW]. This directly implies that G[F] is connected,
since any path in G′[F] using {u, v} can then use the path between u and v in G[FW]
instead. By Observation 3, we have FW ∩ P ⊇ {pi, pj} for some 1 ≤ i ≤ j ≤ 2d− 1,
and Condition 2 yields FW ∩ P ⊇ {pi, pi+1, . . . , pj}. Without loss of generality, we
may assume that either u = pi or {u, pi} ∈ E(G). Similarly, we may assume that
either v = pj or {v, pj} ∈ E(G). Hence, it suffices to show that G[{pi, . . . , pj}] is
connected. This is directly implied by the construction of G. Thus, there is a path
between u and v and G is a solution.

We now prove the optimality of G. For this, we first show that the induced
subhypergraph H [W] = (W,FI) is connected, which implies a lower bound on the
number of edges in G′[W]. Let u, v ∈ W . We construct a hyperwalk between u and v
using only hyperedges of FI . By Observation 3, it suffices to show that there is a
hyperwalk between any pi, pi+1, 1 ≤ i ≤ 2d − 2. Assume without loss of generality

14

that i ≤ d. By Observation 2 there is some hyperedge F ∈ F with pi, pi+1 ∈ F
and pi−1 /∈ F for each i ∈ {1, . . . , 2d−1}. Condition 2 states that F ∩P = {pi, . . . , pj}
and since |F | ≤ d we have j ≤ i+ d− 1 < 2d. Hence, F ∈ FI and H [W] is connected.

The fact that hypergraphH [W] is connected and Observation 4 imply that G′[W]
contains at least |W |−1 edges. The graph G[W] also contains |W |−1 edges. Since W
contains all vertices pi for 1 ≤ i ≤ 2d− 1, by the construction of graph G′, graphs G′

and G share all edges not contained in G[W]. Hence, G is optimal.

We have thus shown that there is an optimal solution G where each vertex v ∈
W \ P is adjacent to a vertex in P that covers v. Combining this with Rule 2 we
conclude that removing any vertex in W \P from the hypergraph and decreasing k by
one results in an equivalent instance. Hence, in the following we assume that W ⊆ P ,
and hence W = {p1, . . . , p2d−1}. It remains to show that the remaining modifications
for p2, . . . , p2d−2 are correct.

Let (H, k) be the original instance and (H ′, k′) the instance resulting from an
application of Rule 7 to (H, k). Note that k′ = k − 2d + 2 since we assume that the
vertex set W = {p1, . . . , p2d−1} and after the application of Rule 7, only the vertices pi
with 2 ≤ i ≤ 2d− 2 are removed. Let P ∗ denote the set of the removed vertices. We
prove that the instances are equivalent.

First, let G be a solution with at most k edges for H as constructed in the first
part of the proof. We show that we can obtain a solution for H ′ with at most k′

edges from G. Consider a hyperedge F ∈ F such that G[F \ P ∗] is disconnected.
Clearly, F ∩P ∗ 6= ∅ and F \P ∗ 6= ∅. Because of Condition 2 and |F | ≤ d, the set F \P ∗

then contains exactly one of p1 and p2d−1. Without loss of generality, let p1 ∈ F .
Remove each edge {v, pi} in G[F] with i ∈ {2, . . . , d} and add {v, p1}. Let G∗ be
the graph obtained by iterating the replacements as long as possible. We obtain a
solution for H ′ by taking G∗[V \ P ∗]: We have that G∗[F \ P ∗] is connected because
any path in G[F] between two vertices in F \P ∗ that used {v, pi} can now use {v, p1}
instead. Since 2d− 2 edges are incident with P ∗ in G∗, it follows that G∗[V \P ∗] has
at most k′ edges. Hence, if (H, k) is a yes-instance, then also (H ′, k′) is a yes-instance.

For the converse, let G′ be an optimal solution for H ′ with at most k′ edges.
We claim that adding the edges {pi, pi+1} for i ∈ {1, . . . , 2d− 2} yields a solution G
for H . Clearly, it suffices to consider hyperedges F that intersect P ∗. Condition 2
implies that G[F ∩ P ∗] is connected. Hence, if F ⊆ P ∗, then G[F] is connected.
Otherwise,G′[F \P ∗] is connected sinceG′ is a solution. By Condition 2, either p1 ∈ F
or p2d−1 ∈ F . Since F∩P ∗ is connected to p1 or to p2d−1 in G, this implies that G[F] is
connected. Note that G contains at most k edges since it contains exactly 2d−2 edges
more than G′. Hence, if (H ′, k′) is a yes-instance, then also (H, k) is a yes-instance
and the rule is correct.

We now show the running time of Rule 7.

Lemma 5.2. It is possible to apply Rule 7 or to decide that it does not apply to
the hypergraph in O(m3d3) time.

Proof. First, recall Observation 2. In order to find an application of Rule 7 we
will consecutively find hyperedges that correspond to the definitions of F−

i and F+
i .

The algorithm is as follows.

We start by building the covering graph of H . Then, we construct an auxiliary
hypergraph H∗ = (V ∗,F∗) as follows: Start with the hypergraph H and while there
is a vertex in the covering graph that has an incoming arc, remove this vertex from H .
Note that V ∗ does not contain any pair of vertices u and v such that u covers v. The
running time for constructing H∗ is dominated by the O(n · |H |) = O(m2 · d2) time

15

needed for constructing the covering graph.
Intuitively, we successively discover the vertices in p1, . . . , p2d−1 from Rule 7 that

are contained in the F−
i and F+

i , giving rise to successively new hyperedges F−
i , F+

i .
By considering only V ∗, the F−

i and F+
i form a very regular structure, and when

pi is fixed, then there is little choice for pi+1. Hence, we can basically guess p1 and
greedily determine the successive pi, i > 1, until either sufficiently many are found,
or there are no choices left. Subsequently, we make this approach more formal.

We guess, trying all possibilities, which of the sets F in F∗ is the set F+
1 ∩ V ∗.

Let us assume that our guess was correct. We then check for vertices v having the
following property:

Property (a): there is a hyperedge F ′ ∈ F∗ such that F ∩ F ′ = {v}.
Discard the guess of F if there are more than two or less than two vertices with
Property (a). Otherwise, for both choices to denote one of these vertices by p1,
proceed as follows.

Set i := 1 and repeat the following as long as F \{p1, . . . , pi} 6= ∅. Check whether
there are vertices v in F \ {p1, . . . , pi} with

Property (b): there is a hyperedge F ′ ∈ F∗ such that F ′ contains v
and pi, and F ′ ∩ F ⊆ {p1, . . . , pi, v}.

If there is exactly one vertex v in F \ {p1, . . . , pi} with Property (b), then denote this
vertex pi+1 and set i := i+ 1. Otherwise discard the guess of p1.

Now, set i = |F | and repeat the following as long as i < 2d − 1. Check for each
vertex v in V ∗ \ {p1, . . . , pi} whether it has

Property (c): there is a hyperedge F ′ ∈ F∗ such that F ′ con-
tains v, F ′ ∩ {p1, . . . , pi} = {pi} and for every u ∈ F ′ \ {v, pi},
and every hyperedge F ′′ ∈ F∗ containing u and pi we have that F ′′

contains v.
If there is exactly one vertex with Property (c), then denote this vertex v as pi+1 and
set i := i+ 1. Otherwise discard the guess of p1.

Finally, let L =
⋂{F ′ ∈ F∗ | F ′ 6⊆ {p1, . . . , p2d−1} ∧ (p1 ∈ F ′)} \ {p1, . . . , p2d−1}

and similarly R =
⋂{F ′ ∈ F∗ | F ′ 6⊆ {p1, . . . , p2d−1}∧(p2d−1 ∈ F ′)}\{p1, . . . , p2d−1}.

Let p0 be an arbitrary vertex in L and p2d an arbitrary vertex in R. We now check
whether p0, . . . , p2d satisfies the conditions of Rule 7 in the original input hyper-
graph H . We claim that if there is an application of Rule 7, then the above algorithm
finds it.

Denote the vertices in P in the application of the rule by p′0, . . . , p
′
2d. Let F+

i

and F−
i be as in Observation 2 and denote F ′+

i = F+
i ∩ V ∗ and F ′−

i = F−
i ∩ V ∗,

respectively. If p′0, . . . , p
′
2d satisfies the assumptions of Rule 7 and F(u) = F(p′i), then

also p′0, . . . , p
′
i−1, u, p

′
i+1, . . . , p

′
2d satisfies the assumptions of Rule 7 and, hence, we

can assume p′0, . . . , p
′
2d ∈ V ∗.

Consider the branch in which F = F ′+
1 . The sets F ′−

1 and F ′+
|F | witness the

Property (a) for p′1 and p′|F |, respectively, and no other vertex can satisfy Property (a)

by Conditions 4 and 2. Hence, we may assume p1 = p′1. For each i ∈ {1, . . . , |F | −
1}, the set F ′−

i+1 witnesses the Property (b) for p′i+1 and no other vertex in F has
Property (b).

Next, for i ∈ {|F |, . . . , 2d − 2}, p′i+1 has Property (c), and for any other vertex

taking u = p′i+1 (which must be contained in any F ′) and F ′′ = F ′−
i+1 shows that it

does not have Property (c). Finally, it remains to note that every hyperedge which
contains p′1 = p1 and p′0 also contains the whole set L and, in particular, p0 (similarly,
R contains p2d). Hence, also p0, p

′
1, . . . , p

′
2d−1, p2d satisfy the assumptions of Rule 7,

16

and the algorithm finds an application.

As to the running time, there are |F∗| ≤ m possible choices of F , any of the
Properties (a)–(c) can be tested for all vertices in O(m2 ·d2) time by first selecting F ′

and F ′′ and then v and u inside them. As successfully testing a condition implies
finding one more vertex of p′0, . . . , p

′
2d, we test the conditions at most 2d+ 1 times in

each branch. The sets L and R can be found in O(m·d) time. Finally, the assumptions
of Rule 7 for a given sequence p0, . . . , p2d can be tested in O(m · d2) time. Hence the
total running time is O(m · ((2d+ 1) ·m2 · d2 +m · d2)) = O(m3d3).

The description of Rule 7 is quite technical and therefore it seems difficult to
obtain an efficient implementation of the rule. This impression is reinforced by the
large, although polynomial, running time bound for applying the rule. Nevertheless,
it should be possible to apply Rule 7 efficiently. First, the algorithm given above and
its analysis is rather simplistic. More sophisticated approaches should yield improve-
ments to the theoretical bounds. Since algorithm engineering is not the main focus
of this article and for the sake of clarity, we opted to describe a simple version of the
algorithm instead. Second, using a few tricks in searching for hyperedges and vertices
that satisfy the desired properties should yield a considerable speed-up in practice.
For example, to test for Property (b), it suffices to consider hyperedges F ′ that are
incident with the vertices pi−d, . . . , pi. Also further properties of the hypergraphs at
hand could be taken into account. For example, in some instances of the overlay
network application, most of the subscribers consume less than five feeds [24], mean-
ing that the vertices corresponding to the subscribers are contained in at most five
hyperedges. For these vertices, testing for Property (b) is then possible in O(d2) time.

We now derive an upper bound on the number of vertices in instances that are
reduced with respect to Rule 4 and Rule 7. As Rule 4 reduces all vertices that have
degree one in any solution, the upper bound on the overall number of vertices will be
obtained by bounding the number of vertices with degree at least two in the solution.
As mentioned above, we will use Rule 7 in Section 5.2, where we also need to bound
the number of vertices with degree at least two. Hence we use the following notation.

Definition 5.3 ([27]). The 2-core of a graph G is the uniquely defined induced
subgraph of G that has the maximum number of vertices such that each vertex has
degree at least two.

The application of Rule 7 alone does not necessarily yield a bounded-size 2-core
in a solution. Instead, the application of Rule 4 for d ≤ 4 (and of a different rule
for d ≥ 5) “prepares the hypergraph” such that application of Rule 7 yields a size
bound on the 2-core of an optimal solution G. We define the notion of being prepared
as follows.

Definition 5.4. We say that a hypergraph H = (V,F) is cleared if there is an
optimal solution G for H such that each vertex of degree at least two is in the 2-core
of G and, furthermore, for each P := {p0, . . . , p2d} with P ⊆ V and F ′ :=

⋃

p∈P F(p)
that satisfy Conditions 1, 2, and 3 of Rule 7, it holds that H and P also satisfy
Condition 4.

The intuition behind the definition is as follows. The first part of the definition
guarantees that the solution for a cleared hypergraph consists of the 2-core plus possi-
bly some degree-one vertices attached to this 2-core. The second part of the definition
guarantees that any hypergraph with long paths in the 2-core of its solution can be
reduced further by applying Rule 7.

For d ≤ 4 it is sufficient to apply Rule 4 in order to clear a hypergraph.

Lemma 5.5. Let H = (V,F) be a hypergraph with d ≤ 4 that is reduced with

17

respect to Rule 4. Then, H is cleared.

Proof. The reducedness of H directly implies that there is a solution without
any degree-one vertices, hence, the first property of being cleared is satisfied. For
the second property, consider P and F as in Rule 7 and assume that there is a
hyperedge F ∈ F such that F ∩ P = {pi} for some 1 < i < 2d. Then, by Con-
dition 3 we have F(pi) ⊇ F(u) for each u ∈ F \ P and, hence, Rule 4 applies, a
contradiction.

We now bound the size of reduced instances. We also use this bound in Section 5.2
and, hence, prove it in a slightly more general form than needed for d ≤ 4.

Lemma 5.6. Let (H, k) be a yes-instance of SID such that H is connected,
cleared, and reduced with respect to Rule 7. Then, there is a solution G = (V,E)
for (H, k) such that the 2-core of G has at most max{(9d−1)(φ−1), (3d−1)φ} vertices
and, hence, at most 9d · φ edges.

Proof. Among all optimal solutions G for (H, k) such that each vertex of degree
at least two is in the 2-core of G, choose G such that it contains the maximum number
of degree-one vertices. Now consider the 2-core G′ of G. Note that G and G′ have
the same feedback edge number φ. We show a bound on the number of vertices in G′

which then gives a bound on the number of edges in G′.

Let V≥3 denote the vertices with degree at least three in G′ and V2 the degree-
two vertices in G′. We first bound the number of components in G′[V2]. If V≥3 = ∅,
then, clearly, we have at most one component. Otherwise, consider the graph G∗ with
loops and parallel edges obtained from G′ by replacing each maximal path with inner
vertices in V2 by a single edge. The number of edges in G∗ is an upper bound on the
number of components in G′[V2]. The number of edges in G∗ is

|V≥3| − 1 + φ =
∑

v∈V≥3

degG(v)/2 ≥ 3|V≥3|/2.

The above relation implies that |V≥3| ≤ 2φ− 2. Thus, the number of edges in G∗ and
the number of components in G′[V2] is at most max{1, 3φ− 3}.

We now show that each connected component of G′[V2] contains fewer than 3d
vertices. Consider a connected component C ofG′[V2] with c+1 ≥ 3d vertices. Since C
is a path, its vertices admit an ordering p0, p1, . . . , pc with {pi, pj} ∈ E ⇐⇒ j = i+1
for all 0 ≤ i ≤ j ≤ c. Let P := {p0, p1, . . . , p2d} and let F ′ :=

⋃

p∈P F(p). We show
that Rule 7 applies to H , contradicting its reducedness.

First, assume that Condition 2 of Rule 7 does not hold for some F ∈ F ′. That is,
there are 0 ≤ i < j < ℓ ≤ 2d such that pi, pℓ ∈ F and pj /∈ F . Since c+1 ≥ |P |+ d, a
shortest pi-pℓ-path in G − {pj} contains at least d + 1 > |F | vertices. Thus, G[F] is
not connected, contradicting G being a solution for (H, k). Hence, Condition 2 of
Rule 7 is satisfied.

Now, Condition 1 of Rule 7 can be seen as follows. Assume that there is a
pair pi, pj, i < j, of vertices in C such that pj covers pi. By the above, all hyperedges
that contain pi and pj also contain {pi+1, . . . , pj−1}. Hence, pi+1 also covers pi.
Since pi and pi+1 are adjacent in G, this implies that a new solution can be obtained
by making all neighbors (except pi+1) of pi adjacent to pi+1 instead. The new graph is
also a solution, and has one additional degree-one vertex. This contradicts our choice
of G. Hence, Condition 1 of Rule 7 holds.

Let F ∈ F with F ∩ {p0, p2d} = ∅ and note that G[F] is connected. Since H is
cleared, and since there is some pj ∈ F ∩ P , we know that G[F] consists entirely of

18

vertices in P plus some degree-one vertices. Each degree-one vertex v is covered by
its neighbor p ∈ P in G. Thus Condition 3 of Rule 7 holds.

Finally, Condition 4 of Rule 7 follows since H is cleared. Thus, Rule 7 applies, a
contradiction.

By the above, each connected component in G′ − V≥3 has less than 3d vertices.
Hence, |V2| ≤ (3d− 1)max{3φ− 3, 1}. Altogether, this implies

|V2|+ |V≥3| ≤ (3d− 1)max{3φ− 3, 1}+ 2φ− 2 = max{(9d− 1)(φ− 1), (3d− 1)φ}.

By definition of φ this means that the 2-core of G has at most 9d · φ edges.
For d ≤ 4, after applying Rule 4 the size bound on the 2-core immediately gives

a bound on the overall instance size.
Theorem 5.7. An instance of Subset Interconnection Design with maxi-

mum hyperedge size d ≤ 4 can be reduced to an equivalent one with at most max{35(φ−
1), 11φ} vertices in O(n ·m3) time.

Proof. The kernelization algorithm exhaustively applies Rule 4 and Rule 7. Re-
ducedness with respect to Rule 4 ensures that there are no degree-one vertices in
any optimal solution and, by Lemma 5.5, that the hypergraph is cleared. Conse-
quently, being reduced with respect to Rule 7 implies that any solution contains at
most max{(9d− 1)(φ− 1), (3d− 1)φ} vertices of degree at least two. Altogether this
implies the bound on the number of vertices.

For the running time, we apply Rule 4 exhaustively, then apply Rule 7 exhaus-
tively, and repeat until neither applies anymore. Since each application of one of
the rules deletes at least one vertex, we iterate at most n times. Applying the run-
ning time bounds given by Lemmata 3.4 and 5.2 we obtain the overall running time
bound.

5.2. A Fixed-Parameter Algorithm for φ and d. Our polynomial-time data
reduction in the last section does not generalize to arbitrary d. The reason is that the
condition |F | ≤ 4 is necessary for the correctness of Rule 4 or, equivalently, that Rule 1
is incorrect if d > 5. However, using an additional reduction rule (Rule 8 below), we
obtain the same vertex-bound on the 2-core of a solution. However, many degree-
one vertices may still remain and it seems unclear how to remove them for d ≥ 5.
Nevertheless, using the fact that the 2-core of a solution has bounded size we obtain a
branching algorithm with running time O(d18dφ · d ·n ·m+n ·m3 · d2). The algorithm
first applies Rule 7 and Rule 8 to simplify the structure of the solution that we are
looking for. Then, we apply a branching rule that branches into O(d2) cases and finds
at least one of the edges in the 2-core of a solution. If the branching rule does not
apply, then an optimal solution can be found in polynomial time.

First, to obtain the bound on the 2-core, we replace Rule 4 with Rule 8 to clear
the input hypergraph and to make Lemma 5.6 applicable.

Rule 8. Let H = (V,F) be a hypergraph, F ∈ F , and F = {u, u1, . . . , uℓ} such
that u covers each ui. Then, remove the vertices u1, . . . , uℓ from H and decrease k
by ℓ.

Lemma 5.8. Rule 8 is correct and one application takes O(n ·m · d) time.
Proof. We first show the correctness of the rule. We show that there is an optimal

solutionG such thatG[F] is a star with center vertex u. LetG′ be any optimal solution
for H and assume that there are two adjacent vertices in F none of which is u. Note
that we may choose two such adjacent vertices ui, uj such that {u, uj} ⊆ NG′(ui);
this is possible because otherwise G′[F] is not connected. Remove the edge {ui, uj}
from G′ and add {u, uj} to obtain G. We prove that the graph G is a solution.

19

Consider any hyperedge F ′ ∈ F and any path P ′ between two vertices in G′[F ′].
If P ′ contains the edge {ui, uj}, then we may replace it by {ui, u}, {u, uj} to obtain
the walk P in G. Since u covers both ui and uj the path P is contained in G[F ′].
Thus, G[F ′] is connected for each F ′ ∈ F meaning that G is an optimal solution. By
repeating the replacement of edges described above, we may arrange that G[F] is a
star.

Now, note that Rule 8 is basically a series of applications of Rule 2. Clearly,
Rule 2 applies to u1, so one can safely remove u1 and set k := k − 1. Afterwards,
Rule 2 still applies to u2, so one can remove u2 and decrease k once more. This can
be repeated until all ui’s are removed from H .

The running time of the rule can be seen as follows. First, we construct the
covering graph GC for H in O(n · m · d) time using Lemma 2.1. Then, for each
hyperedge F ∈ F we check whether there is a vertex u such that there are arcs (u, v)
in GC for every v ∈ F \ {u}. If so, then we remove each vertex in F \ {u}. This costs
O(m · d2) time. It is easy to check that this procedure finds an application of Rule 8
if there is one.

For d ≥ 5, we can now use Rule 8 to clear hypergraphs.
Lemma 5.9. Let H = (V,F) be a hypergraph that is reduced with respect to

Rule 8. Then, H is cleared.
Proof. We first prove the first statement of being cleared, namely, that there is

an optimal solution G for H such that each vertex not in the 2-core of G has degree
one. We use the notion of “pending trees”. Let G be a graph. If G[V ′] is the 2-core
of G, then a pending tree of G is a connected component of G[V \ V ′] plus its unique
neighbor in V ′.

Pick an optimal solution G and consider its pending trees and their vertex sets
C1, . . . , Cc. For each pending tree Ci there is a unique vertex x both in Ci and in
the 2-core of G. Denote x =: root(Ci). If the 2-core of G is empty, then there is
only one pending tree C1 and we choose root(C1) to be an arbitrary vertex of degree
one instead. Next, consider optimal solutions that contain the maximum number of
degree-one vertices. Among these optimal solutions, choose G such that

val(G) :=

c
∑

i=1

∑

v∈Ci

degG(v)=1

dist(root(Ci), v)

is minimum, where dist(u, v) is the length of a shortest path between u and v in G.
Assume now that there is a pending tree with vertex set C ⊆ V such that G[C]

contains at least one vertex with degree at least two in G[C]. Choose u ∈ C with
degree at least two such that a shortest path between u and root(C) has maximum
length. Consider the neighbors of u in G. Let v be the neighbor of u on the shortest
path from u to root(C). All the neighbors of u different from v must be of degree
one due to the choice of u according to the maximum length path to root(C). Let us
call them u1, . . . , uℓ. By Observation 1, F(u) ⊇ F(ui) for all i ∈ {1, . . . , ℓ}. Consider
some ui. Since H is reduced with respect to Rule 8, there is no subset U of the
degree-one neighbors of u and no hyperedge F ∈ F such that F = U ∪ {u, ui}.
Hence, each hyperedge incident with ui also contains some vertex other than u and
its degree-one neighbors. We conclude that each hyperedge F ∈ F that contains ui

also contains v since, otherwise G[F] is not connected. Thus, the graph G′ obtained
fromG by removing the edge {ui, u} and adding the edge {ui, v} is an optimal solution.
However, the distance of ui to root(C) is smaller in G′ than in G. Hence, either ui is

20

the only degree-one neighbor of u in G, contradicting the choice of G according to the
maximum number of degree-one vertices, orG′ exhibits a smaller val(G′) contradicting
the choice of G according to the minimum val(G). Hence, there are no pending trees C
that contain degree-two vertices and the first statement of the cleared-definition now
follows.

It remains to prove the implications of the conditions from Rule 7. Let H , P :=
{p0, . . . , p2d} with P ⊆ V and F ′ :=

⋃

p∈P F(p) satisfy the Conditions 1 to 3 of
Rule 7. If there is a hyperedge F ∈ F such that F ∩ P = {pi} for some 0 < i < 2d,
then we have F(u) ⊆ F(pi) for every u ∈ F \ {pi} by Condition 3, and Rule 8 applies
to pi, u1, . . . , uℓ, where {pi, u1, . . . , uℓ} = F . Hence, if H is reduced with respect to
Rule 8, then Condition 4 is satisfied.

Now, Lemma 5.6 is applicable to hypergraphs that are reduced with respect to
Rule 8, that is, we can reduce any input instance in polynomial time to one such that
there is a solution with at most 9d ·φ edges in the 2-core. Based on this fact, we devise
a branching algorithm for the parameter (d, φ). This algorithm creates a search tree
where at each node of the search tree the current instance consists of a hypergraph H ,
a partial solution G, and an integer k′. The task is to find a solution G′ such that G′

is a supergraph of G, all edges of G are within the 2-core of G′, and the 2-core of G′

has at most k′ edges more than G. In order to obtain a search tree whose size depends
only on d and φ, we ensure that the search tree has depth at most 9d ·φ and that the
algorithm branches into at most

(

d
2

)

cases in each step.

In the following, we assume that G and H are reduced with respect to Rule 8.

Branching Rule 1. Let F be a hyperedge of H such that, with F0 ⊆ F denoting
the vertices of F whose degree in G is zero, G[F] is disconnected and cannot be
made connected by, for each u ∈ F0, adding an edge between u and some vertex v ∈
F \ F0 that covers u. Then, branch into all possibilities to add an edge to G[F],
decrementing k′ by one.

Lemma 5.10. Branching Rule 1 is correct, that is, the original instance is a
yes-instance if and only if at least one of the created instances is a yes-instance.

Proof. “⇐”: Any solution for a yes-instance created by the branching is also a
solution for the original instance.

“⇒”: We show that there is an optimal solution G′ of the original instance such
that the 2-core of G′ contains an edge that is in G′[F] but not in G[F]. Recall that
we assume H to be reduced with respect to Rule 8. Hence, H is cleared and we
can assume that all edges of G′[F] that are not in the 2-core of G′ are incident with
degree-one vertices in G′. Assume towards a contradiction that all edges in G′[F]
that are not in G[F] are not in the 2-core of G′. Thus, they are incident with degree-
one vertices in G′. Hence, all vertices in F0 have degree one in G′. Since G′[F] is
connected, each vertex u ∈ F0 is connected to some v ∈ F \ F0. By Observation 1,
v covers u and, thus, the condition of Branching Rule 1 is not satisfied.

Next, we show that, if Branching Rule 1 does not apply, meaning that its precon-
ditions are not fulfilled for any choice of hyperedge F , then we can solve the instance
by greedily assigning the remaining vertices.

Lemma 5.11. Let H be a hypergraph and let G be a graph such that there is a
solution for H that is a supergraph of G and Branching Rule 1 does not apply to H
and G. Then, an optimal solution for H can be computed in O(n · d ·m) time.

Proof. Let H = (V,F), let V0 be the set of degree-zero vertices in G, and let G′ be
obtained from G by adding exactly one edge {u, v} to G for each u ∈ V0 where v ∈ V \
V0 is an arbitrary vertex covering u. Note that G′ can be computed in O(n·d·m) time,

21

by first computing the covering graph of H using Lemma 2.1 and then iterating over
each vertex and adding the appropriate edges. We now show that G′ is an optimal
solution.

We first show that for each hyperedge F ∈ F , the graph G′[F] is connected.
Let F0 = F ∩ V0 for a hyperedge F ∈ F . Since Branching Rule 1 does not apply
to the instance, G[F] can be made connected by adding an edge for each u ∈ F0

between u and some vertex w ∈ F \F0 that covers u. Thus, because each u ∈ F0 gets
at most one incident edge in this way, G[F \F0] is connected. Since, for each u ∈ F0,
its neighbor v in G′ covers u and we know that v ∈ F \ F0, also G′[F] is connected.

It remains to show that G′ is optimal. Note that G′ has exactly |V0| more edges
than G. Let G∗ be any solution that is a supergraph of G. Now merge in G∗ all
vertices in V \ V0 into one vertex. The resulting graph contains at least |V0| edges,
since G∗ is connected. Hence, G∗ has |V0| edges which are incident with vertices
from V0. Thus, at least |V0| edges have to be added to G′ to obtain a solution.

Combining all of the above, we arrive at the main result of this section.
Theorem 5.12. Subset Interconnection Design can be solved in O(d18dφ ·

d · n ·m+ n ·m3 · d2) time.
Proof. Let H = (V,F) be the input hypergraph. The branching algorithm

works as follows. It starts by exhaustively applying Rule 8, then exhaustively ap-
plying Rule 7 and repeating until neither applies anymore. Since each application
removes at least one vertex the applications of Rule 8 take O(n · (d · n ·m)) time by
Lemma 5.8. The applications of Rule 7 take O(n/d · (m3 · d3)) = O(n ·m3 · d2) time
by Lemma 5.2 and the fact that each application removes at least 2d − 2 > d ver-
tices. Note that the running time contribution of Rule 7 dominates the one of Rule 8.
Now, Lemma 5.9 and Lemma 5.6 imply that there is a solution whose 2-core has at
most 9d·φ edges for a yes-instance. Hence, it is correct to initially search for a solution
of H that is a supergraph of the edgeless graph on V and has at most k′ := 9d · φ
edges in the 2-core. Then, we apply Branching Rule 1 as often as possible. Each
application creates at most

(

d
2

)

branches, and in each recursive branch the value of k′

is decreased by one. The correctness of this branching follows by Lemma 5.10. Note
that if k′ < 0, then we can safely abort the search at the current search tree node,
since there is no solution satisfying its constraints. Finally, if Branching Rule 1 does
not apply, we can compute an optimal solution satisfying the constraints of the search
tree node in O(n · d ·m) time (by Lemma 5.11).

To check whether Branching Rule 1 applies, we maintain the covering graph
throughout the search tree. At each node, we iterate over each edge F , add the
edges between vertices in F and arbitrary covering vertices to G, and check whether
the result is connected. This needs O(m · (d + d2)) time at each node. Initializ-
ing the covering graph can be done in O(d · n · m) time (Lemma 2.1). The size

of the search tree is at most
(

d

2

)9dφ ≤ d18dφ and hence the overall running time
is O(n ·m3 · d2 + d · n ·m+ d18dφ · (m · d2 + n ·m)) = O(d18dφ · d · n ·m+ n ·m3 · d2).

6. Conclusion. We contributed to a better understanding of a natural NP-hard
network construction problem which has been previously studied in many application
contexts (also independently from each other and under different names). In doing
so, we revealed an incorrectness in previous work, refined the complexity analysis
of the problem, and, in particular, provided a thorough investigation concerning its
amenability to efficient preprocessing.

The linear-time algorithm for a constant number m of hyperedges that follows

22

from our data reduction rules seems foremost of theoretical interest. In practice, it
seems unlikely that the data reduction rules apply often because of the large twin
classes they require which are of size exponential in m. An interesting task for future
research is thus to improve the bounds on the twin classes. However, we conjecture
that an upper bound polynomial in m on the size of the whole remaining instance,
that is, a polynomial-size problem kernel, cannot be achieved.

Of more practical value seem to be Rule 7 as well as Rules 2 to 4, 6, and 8 which
repair the incorrect Rule 1 from the literature [14, 18]. Indeed, a case study of when
Rule 1 applies, but none of the repaired rules do, would be useful and could lead to
further relevant data reduction rules.

We showed that finding tree-like solutions in hypergraphs with small hyperedges
is tractable. Here, algorithm engineering is needed to improve the running times and
to merge our reduction rules with existing solution strategies. On the theoretical side,
we did not resolve yet whether Subset Interconnection Design is fixed-parameter
tractable with respect to the feedback edge number φ of the solution alone. A possible
line of attack would be to first find out whether, in our results, we can replace the
parameter d (maximum hyperedge size) by the smaller parameter “maximum overlap
number”, that is, the maximum size of an intersection between any two input hy-
peredges. It would also be interesting to significantly improve on the straightforward
exponential upper bound 2O(n2) when solving Subset Interconnection Design
parameterized by the number n of vertices.

More generally, it seems also promising to consider data reduction for variants
of Subset Interconnection Design that ask to minimize the maximum degree
instead of the average degree (see Onus and Richa [26]), and the various variants
occurring in hypergraph drawing [2, 3, 19, 20]. It is furthermore of practical interest
to deal with edge weights for the constructed network [22]; our methods only cover
the unweighted case. Given the numerous applications, an in-depth investigation of
all relevant parameters motivated by real-world instances, that is, performing a data-
driven parameter analysis for real-world instances, is promising from a practical and
from a theoretical side.

Acknowledgments. We thank Peter Damaschke (Chalmers University, Göteborg)
for stimulating discussions and for pointing us to the Subset Interconnection
Design problem. We are grateful to Falk Hüffner for pointing us to the Minimum
Topic-Connected Overlay problem. We also thank the anonymous reviewers of
SIDMA for their helpful comments in improving our paper.

References.

[1] D. Angluin, J. Aspnes, and L. Reyzin. Inferring social networks from outbreaks.
In Proc. 21st ALT, volume 6331 of LNCS, pages 104–118. Springer, 2010.

[2] U. Brandes, S. Cornelsen, B. Pampel, and A. Sallaberry. Blocks of hypergraphs -
Applied to hypergraphs and outerplanarity. In Proc. 21st IWOCA, volume 6460
of LNCS, pages 201–211. Springer, 2011.

[3] U. Brandes, S. Cornelsen, B. Pampel, and A. Sallaberry. Path-based supports
for hypergraphs. J. Discrete Algorithms, 14:248–261, 2012.

[4] K. Buchin, M. J. van Kreveld, H. Meijer, B. Speckmann, and K. Verbeek. On
planar supports for hypergraphs. J. Graph Algorithms Appl., 15(4):533–549,
2011.

23

[5] C. Bujtás, Z. Tuza, and V. Voloshin. Color-bounded hypergraphs, V: Host graphs
and subdivisions. Discuss. Math. Graph Theory, 31(2):223–238, 2011.

[6] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg. Constructing scalable
overlays for pub-sub with many topics. In Proc. 26th PODC, pages 109–118.
ACM, 2007.

[7] V. Conitzer, J. Derryberry, and T. Sandholm. Combinatorial auctions with struc-
tured item graphs. In Proc. 19th AAAI, pages 212–218. AAAI Press / The MIT
Press, 2004.

[8] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity.
Springer, 2013.

[9] D.-Z. Du. An optimization problem on graphs. Discrete Appl. Math., 14(1):
101–104, 1986.

[10] D.-Z. Du and D. F. Kelley. On complexity of subset interconnection designs.
J. Global Optim., 6(2):193–205, 1995.

[11] D.-Z. Du and Z. Miller. Matroids and subset interconnection design. SIAM J.
Discrete Math., 1(4):416–424, 1988.

[12] D.-Z. Du, B. Gao, and W. Wu. A special case for subset interconnection designs.
Discrete Appl. Math., 78(1-3):51–60, 1997.

[13] H. Fan and Y.-L. Wu. Interconnection graph problem. In Proc. FCS 2008, pages
51–55. CSREA Press, 2008.

[14] H. Fan, C. Hundt, Y.-L. Wu, and J. Ernst. Algorithms and implementation for
interconnection graph problem. In Proc. 2nd COCOA, volume 5165 of LNCS,
pages 201–210. Springer, 2008.

[15] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
[16] J. Guo and R. Niedermeier. Invitation to data reduction and problem kerneliza-

tion. ACM SIGACT News, 38(1):31–45, 2007.
[17] M. Habib, C. Paul, and L. Viennot. Partition refinement techniques: An inter-

esting algorithmic tool kit. Int. J. Found. Comput. Sci., 10(2):147–170, 1999.
[18] J. Hosoda, J. Hromkovič, T. Izumi, H. Ono, M. Steinová, and K. Wada. On

the approximability and hardness of minimum topic connected overlay and its
special instances. Theor. Comput. Sci., 429:144–154, 2012.

[19] D. S. Johnson and H. O. Pollak. Hypergraph planarity and the complexity of
drawing Venn diagrams. J. Graph Theory, 11(3):309–325, 1987.

[20] M. Kaufmann, M. J. van Kreveld, and B. Speckmann. Subdivision drawings of
hypergraphs. In Proc. 16th GD, volume 5417 of LNCS, pages 396–407. Springer,
2008.

[21] B. Klemz, T. Mchedlidze, and M. Nöllenburg. Minimum tree supports for hyper-
graphs and low-concurrency euler diagrams. In Proc. 14th SWAT, volume 8503
of LNCS, pages 265–276. Springer, 2014.

[22] E. Korach and M. Stern. The clustering matroid and the optimal clustering tree.
Math. Program., 98(1-3):385–414, 2003.

[23] D. Král, J. Kratochv́ıl, and H.-J. Voss. Mixed hypercacti. Discrete Math., 286
(1-2):99–113, 2004.

[24] H. Liu, V. Ramasubramanian, and E. G. Sirer. Client behavior and feed char-
acteristics of RSS, a publish-subscribe system for web micronews. In Proc. 5th
IMC, pages 29–34. USENIX Association, 2005.

[25] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

[26] M. Onus and A. W. Richa. Minimum maximum-degree publish-subscribe overlay

24

network design. IEEE/ACM Trans. Netw., 19(5):1331–1343, 2011.
[27] S. B. Seidman. Network structure and minimum degree. Soc. Networks, 5:269–

287, 1983.
[28] T.-Z. Tang. An optimality condition for minimum feasible graphs. Applied Math-

ematics - A Journal of Chinese Universities, pages 24–21, 1989. In Chinese.
[29] Y. Xu and X. Fu. On the minimum feasible graph for four sets. Applied Mathe-

matics - A Journal of Chinese Universities, 10:457–462, 1995.

25

Appendix A. A Family of Instances Requiring a Solution with at least

2Ω(m) + n Edges.

In this section we show that the bound given by Theorem 4.1 and used in Section 4
is optimal in the sense that it cannot be improved to a bound polynomial in m.

To this end, we construct a hypergraphH withm = 2q+1 hyperedges F1, . . . , F2q+1,
where q ≥ 2, such that each vertex is in exactly q hyperedges and each intersection
of any q hyperedges consists of exactly one vertex. Therefore we have n =

(

2q+1
q

)

vertices v1, . . . , vn, and each of them can be described by a vector in {0, 1}2q+1 with
exactly q one-entries. Hence, a hyperedge Fi consists of those vertices whose vector
description has a one-entry in the ith position and q − 1 one-entries in the other m
positions. This sums up to

(

2q
q−1

)

. Hence, each hyperedge has exactly
(

2q
q−1

)

vertices.
This completes the construction. Note that any solution for hypergraph H must
contain at least

(

2q
q−1

)

− 1 edges if restricted to some hyperedge.
Suppose that graph G is a solution for H . If each edge in G is contained in

exactly one induced subgraph G[Fi] for some hyperedge Fi, then G would need (2q+
1) ·(

(

2q
q−1

)

−1) edges. In fact, each edge {vx, vy} in G can be contained in at most q−1

subgraphs G[Fi], 1 ≤ i ≤ m (these correspond to the positions where both vx and vy
have one-entries in their vector representations). Therefore, each solution contains at

least kopt ≥ 2q+1
q−1 ·

(

(

2q
q−1

)

− 1
)

edges. Now we compare this to the number of vertices.

We have

kopt − n ≥ 2q + 1

q − 1
·
((

2q

q − 1

)

− 1

)

−
(

2q + 1

q

)

=
1

q − 1

(

q · (2q + 1)!

q! · (q + 1)!
− (q − 1) · (2q + 1)!

q! · (q + 1)!

)

− 2q + 1

q − 1

=
1

q − 1

(

(2q + 1)!

q! · (q + 1)!

)

− 2q + 1

q − 1

=
1

q − 1

(

2q + 1

q

)

− 2q + 1

q − 1

=
2q + 1

(q − 1)(q + 1)

(

2q

q

)

− 2q + 1

q − 1

≥ 2q + 1

(q − 1)(q + 1)
· 2

2q−1

√
q

− 5

>
22q

(q + 1)
√
q
− 5.

The last but one inequality holds due to the Stirling’s approximation and q ≥ 2.
Thus, kopt ≥ 2Ω(q) + n = 2Ω(m) + n.

26

