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Abstract

Motivated by applications in privacy-preserving data publishing, we study
the problem of making an undirected graph k-anonymous by adding few vertices
(together with some incident edges). That is, after adding these “dummy
vertices”, for every vertex degree d appearing in the resulting graph, there
shall be at least k vertices with degree d. We explore three variants of vertex
addition (justified by real-world considerations) and study their (parameterized)
computational complexity. We derive mostly intractability results, even for very
restricted cases (including trees and bounded-degree graphs) but also obtain
some encouraging fixed-parameter tractability results.
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1. Introduction

This work is concerned with making an undirected graph k-anonymous, that
is, transforming it (at “low cost”) into a graph where every vertex degree occurs
either zero or at least k times. This graph modification scenario is motivated by
data privacy requests in social networks; it focuses on degree-based attacks on
identity disclosure of network nodes. Liu and Terzi [26] (also see Clarkson et al.
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[10] for an extended version) pioneered degree-based identity anonymization in
graphs, which recently developed into a very active research field [2, 4, 7, 8, 9,
20, 22, 21, 27, 31] with theoretical as well as practical work. So far, the most
frequently studied models have relied on edge modifications (allowing either only
edge addition or both edge addition and deletion) [7, 10, 22, 26, 27, 31]. We are
aware of one theoretical work [4] that considers vertex deletion as modification
operation; there mostly computational hardness results have been achieved. We
are also aware of another theoretical work [20] that considered graph contractions
as modification operation. Chester et al. [8] started to investigate vertex addition,
and we follow this last line of research.

There is good reason why vertex addition may be preferred to other graph
modification operations when aiming at k-anonymity. The central point here
is the “utility” of the anonymized graph. For instance, in the edge addition
scenario, inserting a new edge always destroys distance properties between
vertices and indeed may introduce undesirable and misleading “fake relations”.
Adding new vertices and connecting them to some of the vertices of the original
graph could avoid this problem and gives at least a better chance to preserve
essential graph properties such as connectivity, shortest paths, or diameter. For
example, adding a new vertex and connecting it to only one existing vertex does
not change distances between any existing vertices. Chester et al. [8] provided a
more thorough discussion of the benefits of vertex addition.

The basic decision version of the vertex addition problem we study is as
follows.

Degree Anonymization (VA)
Input: A simple undirected graph G = (V,E) and k, t ∈ N.
Question: Is there a k-anonymous graph G′ = (V ∪ V ′, E ∪ E′) such that

|V ′| ≤ t and E′ ⊆ {{u, v} ⊆ V ∪ V ′ | u ∈ V ′ ∨ v ∈ V ′}?

It is important to note that Chester et al. [8] studied a slightly different model,
with decisive consequences for computational complexity: Their model gets as
input a simple undirected graph G = (V,E), integers t and k, and also a vertex
subset X ⊆ V , and the task is to k-anonymize the degree sequence (that is, the
vertex degrees sorted in ascending order) of X ∪ V ′ and the degree sequence
of X. On the contrary, we consider the simpler model where X = V , and we
require to k-anonymize only the degree sequence of X ∪ V ′ (= V ∪ V ′).

To better understand the difference in the models, consider the example
depicted in Figure 1: In this example, the minimum solution size for the model
of Chester et al. [8] is four, while the minimum solution size for our model is
two. The crucial difference is that in the solution for our model, the new vertex
and the old vertex of degree five together will form a 2-anonymized “block”.
Nevertheless, we conjecture that our results (both positive and negative) extend
to the model of Chester et al. [8].

Our Contributions. Partially answering an open question of Chester et al. [8], we
show that Degree Anonymization (VA) is weakly NP-hard for a compact en-
coding of the input. Based on this encoding, we provide several (fixed-parameter)
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Figure 1: An example showing the difference between our model and the model of Chester
et al. [8]. In this example, k = 2, and X = V . The input graph on the left is not 2-anonymous.
The graph in the middle is a minimum solution for our model, using only one additional vertex,
while the graph on the right is a minimum solution for the model of Chester et al. [8], using
four addition vertices.

Figure 2: Degree Anonymization (VA): The input graph on the left is not 2-anonymous.
The graph on the right is a possible solution for anonymizing by vertex addition. The new
vertex (black) is arbitrarily connected to some other vertices.

tractability results, exploiting parameterizations by the maximum vertex degree
of the input graph, the number of added vertices, and the maximum number
of (implicitly) added new edges. The tractability result regarding the parameter
maximum number of (implicitly) added new edges is given by developing a bik-
ernelization [1, 24] to a closely related number problem. This is one of our most
technical results. Moreover, we also study variants of Degree Anonymiza-
tion (VA) where we only allow “cloned” vertices to be added4 (that is, identical
copies of existing vertices with exactly the same neighborhood; we denote this
problem variant by Degree Anonymization (VC); see Figure 3 for an ex-
ample) or we explicitly demand the preservation of some desirable features of
the input graph (expressed by Π) such as distance properties (this problem
variant is denoted by Π-Preserving Degree Anonymization (VA)). For
these practically interesting variants, we prove computational hardness already
for very restricted cases (for instance even on trees). Table 1 surveys most of
our results, and some open questions.

Organization of Our Work. Preliminaries and problem definitions are given
in Section 2. In Section 3, we consider degree anonymization by vertex addition,
where there are some specific constraints on the allowed edges connecting the

4The cloning operation is frequently studied in the context of privacy, see, for example, the
work by Bilge et al. [3]. It is also studied in other contexts, for example, in social choice [12].
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Figure 3: Degree Anonymization (VC): The input graph on the left is not 2-anonymous.
The graph on the right is a possible solution for anonymizing by vertex cloning. The two added
vertices (black) are clones of the middle vertex. Note that it is not possible to 2-anonymize
the graph by adding only one clone.

Table 1: Overview of our results: Each column represents a different problem variant, where
VC (respectively Π, VA) stands for Degree Anonymization (VC) (respectively Π-Preserving
Degree Anonymization (VA), Degree Anonymization (VA)). The first row refers to
standard complexity analysis, while the remaining rows show parameterized complexity results
with respect to several parameters. Here, ∆ denotes the maximum vertex degree of the input
graph, k is the degree of anonymity, s is the maximum number of added edges, and t is the
maximum number of added vertices.

parameter VC Π VA

- NP-h. [Th. 1] NP-h. [Th. 3] weakly NP-h. [Th. 6]

∆
NP-h. [Th. 1] open open
(∆ = 3)

k
NP-h.a [Th. 2] NP-h.a [Th. 3] open
(k = 2) (k = 2)

s open W[1]-h.b [Th. 4] FPT [Th. 10]
t W[2]-h. [Th. 2] W[2]-h. [Th. 3] XPc [Th. 7]

(∆, k) open open FPT [Th. 9]
(∆, t) open open FPT [Th. 8]
(k, t) W[2]-h. [Th. 2] W[2]-h. [Th. 3] XPc [Th. 7]

aEven on trees.
bOnly for Π = Distances.
cOpen whether in FPT.

newly added vertices (including degree anonymization by vertex cloning). Here,
we give strong hardness results (sometimes, even on trees). Then, in Section 4,
we move on to consider degree anonymization by vertex addition, without
constraints on the allowed edges connecting the newly added vertices. Here, we
solve some easy cases in Section 4.1, then we give a hardness result in Section 4.2,
accompanied by some tractable cases in Section 4.3. We conclude in Section 5.

2. Preliminaries

We consider simple undirected graphs G = (V,E) where n denotes the
number of vertices. We denote by deg(v) the degree of a vertex v ∈ V and
by ∆ := maxv∈V deg(v) the maximum degree of G. For an integer 0 ≤ i ≤ ∆, we
define Bi := {v ∈ V | deg(v) = i}, the block of degree i. We say that Bi is empty
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(full) if Bi = ∅ (|Bi| ≥ k). For a full block Bi, we say that it has z := |Bi| − k
many spare vertices. We call a block Bi good if it is empty or full, otherwise we
call it bad (that is, 0 < |Bi| < k). The block sequence B(G) := {(i, |Bi|) | Bi 6= ∅}
of G contains the degrees and sizes of each non-empty block. We call a block
sequence realizable if it is the block sequence of a graph. For any graph G and
for any pair of vertices u and v, we define distG(u, v) to be the length of the
shortest path between u and v in G (and distG(u, v) = ∞ if there is no path
connecting u and v in G). For n ∈ N, we define [n] := {1, 2, . . . , n}.

Problem Definitions. Degree Anonymization (VA) allows to add vertices
and edges incident to the new vertices. For a given solution of a yes-instance, we
denote the actual number of new vertices by t′ and the total number of newly
inserted edges by s′ (indeed, 0 ≤ t′ ≤ t and 0 ≤ s′ ≤ s).

Π-Preserving Degree Anonymization (VA) defines some constraints
on the new edges. The idea is to preserve some desirable properties of the input
graph. A general definition reads as follows.

Π-Preserving Degree Anonymization (VA)
Input: An undirected graph G = (V,E) and k, t ∈ N.
Question: Is there a k-anonymous graph G′ = (V ∪ V ′, E ∪ E′) such that

|V ′| ≤ t, E′ ⊆ {{u, v} ⊆ V ∪ V ′ | u ∈ V ′ ∨ v ∈ V ′}, and Π is
preserved?

We now discuss what “Π is preserved” means for three properties we consider
here. First, we say that the connectedness remains preserved if any pair of
disconnected vertices in G remains disconnected in G′. As introducing ver-
tices and edges cannot disconnect vertices, this property can be formalized
as ∀ u, v ∈ V : distG(u, v) =∞ ⇐⇒ distG′(u, v) =∞. Second, we say that the
distances remain preserved if, for any pair of vertices in G, their distance is the
same in G and G′, formally, ∀ u, v ∈ V : distG(u, v) = distG′(u, v). Third, we
say that the diameter remains unchanged if the diameter of G and G′ is the
same, formally, maxu,v∈V distG(u, v) = maxu,v∈V ∪V ′ distG′(u, v). Note that the
diameter property also considers paths between newly added vertices, whereas
this is not the case for the first two properties. The reason for this is that the
diameter is naturally defined as a single number, whereas the other properties
store information for each pair of vertices.

A further restricted variant of Degree Anonymization (VA) is to use
vertex cloning for modifying the graph. Here, cloning a vertex v means to
introduce a new vertex v′ and make v′ adjacent to all neighbors of v. Formally,
we arrive at the following problem:

Degree Anonymization (VC)
Input: An undirected graph G = (V,E) and k, t ∈ N.
Question: Can G be transformed into a k-anonymous graph by at most t

vertex cloning operations?

We remark that there are different cloning variants: Consider two adjacent
vertices u and v. If both u and v are cloned, then although the clone u′ is
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adjacent to v and the clone v′ is adjacent to u, the clones u′ and v′ may
or may not be adjacent depending on the variant. If the clones are inserted
simultaneously at the same time, then u′ and v′ are not adjacent. If the clones
are inserted one after the other, then u′ and v′ are adjacent (no matter in
which order they are inserted). Our results for Degree Anonymization (VC)
(Theorems 1 and 2) hold for both variants.

Parameterized Complexity. An instance (I, k) of a parameterized problem con-
sists of the actual instance I and an integer k being the parameter [11, 16, 29].
A parameterized problem is called fixed-parameter tractable (FPT) if there is an
algorithm solving it in f(k) · |I|O(1) time, whereas an algorithm with running
time O(|I|f(k)) only shows membership in the class XP (clearly, FPT ⊆ XP).

A core tool in the development of fixed-parameter algorithms is polynomial-
time preprocessing by data reduction, called kernelization5 [18, 24]. Here, the
goal is to transform a given problem instance (I, k) in polynomial time into an
equivalent instance (I ′, k′) whose size is upper-bounded by a function of k. That
is, (I, k) is a yes-instance if and only if (I ′, k′), k′ ≤ g(k), and |I ′| ≤ g(k) for
some function g. Thus, such a transformation is a polynomial-time self-reduction
with the constraint that the reduced instance is “small” (measured by g(k)).
In case that such a transformation exists, (I ′, k′) is called kernel of size g(k).
Usually, a kernel is achieved by exhaustively applying a set of reduction rules,
each of them transform an instance to another instance, while shrinking the
instance of simplifying it. A reduction rule is said to be correct if the transformed
instance is always equivalent to the original instance, that is, either both are
yes-instances or both are no-instances.

One can show that a parameterized problem L is (presumably) not fixed-
parameter tractable with a parameterized reduction from a W[1]-hard or W[2]-
hard problem (such as Clique or Set Cover parameterized by solution size)
to L. A parameterized reduction from a parameterized problem L to another
parameterized problem L′ is a function that, given an instance (I, k), computes
in f(k) · |I|O(1) time an instance (I ′, k′) (with k′ ≤ g(k)) such that (I, k) ∈ L⇔
(I ′, k′) ∈ L′.

3. Constrained Degree Anonymization

Cloning seems a natural and well-motivated modification operation for so-
cial networks. Unfortunately, we face computational intractability even on
very restricted input graphs with maximum degree three. The corresponding
parameterized reduction is from Independent Set.

Theorem 1. Degree Anonymization (VC) is NP-hard, even on graphs with
maximum degree three.

5It is well-known that a decidable parameterized problem is fixed-parameter tractable if
and only if it has a kernelization. [6]
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Proof. We provide a reduction from Independent Set which remains NP-hard
even on cubic graphs (that is, 3-regular graphs) [17]. Given a simple undirected
graph G and a positive integer h, the Independent Set problem asks whether G
contains an independent set (a set of pairwise non-adjacent vertices) of size at
least h.

Let G = (V,E) be a cubic graph. First, we construct the incidence graph G′ =
(V ′, E′) of G, where G′ is a bipartite graph with the two vertex sets V and E
and for each edge e = {u, v} ∈ E, we have {u, e}, {v, e} ∈ E′. Then, we
add n+ 2(h+ 3)2 triangles (K3) and (h+ 3)2 cliques of order four (K4). Finally,
we set t := h and k := n+ 4(h+ 3)2 + 4h.

It remains to show that G has an independent set of size at least h if and
only if G′ can be k-anonymized by cloning at most t vertices.

“⇒”: Let I ⊆ V denote an independent set of size h. Denote by G′′ the
graph that results from cloning all vertices of I in G′. We show that G′′ is k-
anonymous. First, observe that G′ contains exactly n + 4(h + 3)2 vertices of
degree three and 1.5n+ 3(n+ 2(h+ 3)2) vertices of degree two. Cloning a vertex
of I in G′ increases the degree of three degree-two vertices by one and introduces
one degree-three vertex. Furthermore, as I is an independent set, the degree
of no vertex is increased to four. Hence, G′′ contains n + 4(h + 3)2 + 4t = k
degree-three vertices and more than 3(n + 2(h + 3)2) > k degree-two vertices
and thus is k-anonymous.

“⇐”: Let G′′ be the k-anonymous graph obtained from cloning t vertices in G′.
First, observe that cloning t vertices in G′ can increase the maximum degree by
at most t. Thus, ∆G′′ ≤ 3 + t. Next, we show that G′′ contains no vertex of
degree four or more. Assume towards a contradiction that there exists a vertex v
of degree four or more. As cloning one vertex u can introduce at most ∆G′′ + 1
vertices of degree degG′′(v) (namely u and its neighbors) and since there are no
degree-degG′′(v) vertices in G′, there are at most t(∆G′′ + 1) ≤ h(h + 4) < k
vertices of degree degG′′(v). This is a contradiction to the assumption that G′′

is k-anonymous. Hence, all vertices in G′′ have degree at most three.
Observe that cloning a vertex e ∈ E ⊆ V ′ or any vertex in one of the K4’s

creates degree-four vertices and, hence, no such vertex is cloned to obtain G′′.
Cloning two vertices (or one vertex twice) of a triangle creates a vertex of degree
four. Hence, at most one vertex of each triangle is cloned, creating exactly two
degree-three vertices. Since cloning a vertex v ∈ V ⊆ V ′ introduces at most four
degree-three vertices and G′′ has to have at least 4t degree-three vertices more
than G′, it follows that only vertices in V are cloned to obtain G′′. Furthermore,
as cloning two vertices that are adjacent in G or one vertex twice introduces a
degree-four vertex, it follows that the cloned vertices form an independent set of
size t = h in G.

Also from the viewpoint of fixed-parameter algorithms, we have no good
news with respect to the standard parameter “solution size” t, even on trees.
The corresponding reduction is from Set Cover.

Theorem 2. Degree Anonymization (VC) is NP-hard and W[2]-hard with
respect to the maximum number t of clones, even if k = 2 and the graph is a tree.
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Proof. We provide a reduction from the W[2]-complete Set Cover problem
parameterized by the solution size [11]. Here, given a collection S = {S1, . . . , Sm}
of sets over a universe U = {x1, . . . , xn} and a positive integer h, the question
is whether there is a set cover of size at most h, that is, a subset S ′ ⊆ S such
that

⋃
S∈S′ S = U . Given a Set Cover instance I = (S, U, h), we construct a

graph G = (V,E) as follows. For each xi ∈ U , we define f(xi) := (h+ 3)i+m.
First, for each element x ∈ U , we add a star with f(x) leaves (a K1,f(x)) whose
center-vertex is denoted by vx. Next, for each set S ∈ S, we add a star K1,2|S|
and a set gadget consisting of a tree of depth three. The root of the tree is vS
with 2|S| child vertices, partitioned into |S| parts with two vertices each. The
two vertices of each part correspond to one element x ∈ S and have f(x) − 2
degree-one child vertices each and, thus, a degree of f(x)−1. Finally, we set t = h
and k = 2.

It remains to show that I has a set cover of size h if and only if G can be
k-anonymized by cloning at most t vertices. To this end, first observe, that the
vertices vx, for x ∈ U , are the only vertices violating 2-anonymity. We denote
the set containing all these vertices by VX .

“⇒”: Let S ′ ⊆ S be a set cover of size h. We show that cloning all vertices
in the set VC := {vS | S ∈ S ′} (containing the vertices corresponding to the
sets in S ′) results in a 2-anonymous graph. Since S ′ is a set cover, for every
vertex vx ∈ VX , there exists a corresponding pair of vertices in a set-gadget
whose degree is increased from f(x)− 1 to f(x) due to the cloning. Furthermore,
no new degrees are introduced, as each neighbor v of a cloned vertex corresponds
to an element x and degG(v) = f(x)− 1.

“⇐”: Let VC , |VC | ≤ t, denote the set of cloned vertices and let G′ be the
resulting 2-anonymous graph. For each set S ∈ S, CS denotes the set of all child
vertices of vS . Define CS :=

⋃
S∈S CS . Furthermore, set VS := {vS | S ∈ S}.

Observe that, for each x ∈ U , the only vertices in G whose degrees differ by at
most t from vx are vertices in CS . Furthermore, notice that, by construction,
cloning a vertex from V \ VS introduces at most one vertex having the same
degree as a vertex from VX . As cloning a vertex in VS neither decreases the
size of any block to one nor introduces a block of size one, and since every
vertex in CS has a neighbor in VS , we can assume that VC ⊆ VS (otherwise,
we can replace vertices in VC \ VS with vertices in VS). Next, observe that, for
each vertex vx ∈ VX , there has to be another vertex in G′ having the same
degree as vx. Thus, the vertices in VC ⊆ VS correspond to a set cover of size at
most t = h.

We can adjust the reduction from Theorem 2 to also work for Π-Preserving
Degree Anonymization (VA).

Theorem 3. For Π ∈ {Distances, Diameter, Connectivity}, Π-Preserving
Degree Anonymization (VA) is NP-hard and also W[2]-hard with respect to
the maximum number t of added vertices, even for k = 2. For Π ∈ {Distances,
Connectivity}, this is also true on trees.
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Proof. The proof is based on extending ideas from the proof of Theorem 2. We
provide a reduction from the W[2]-complete Set Cover problem parameterized
by the solution size. Here, given a collection S = {S1, . . . , Sm} of sets over a
universe U = {x1, . . . , xn} and a positive integer h, the question is whether
there is a set cover of size at most h, that is, a subset S ′ ⊆ S of size at
most h, such that

⋃
S∈S′ S = U . Given a Set Cover instance I = (S, U, h),

we construct a Π-Preserving Degree Anonymization (VA) instance as
follows. First, we set k = 2 and t = h. Next, for notational convenience, we
define a helper function f(i, z) := (t + 1)n + (z − 1)n(t + 2) + i(t + 2). Now
we construct a graph G = (V,E) as follows. For each element xi, we define
an element gadget containing, for each z ∈ [t+ 1], a star K1,f(i,z) with center
vertex vi,z. For technical reasons, we further add an element safety gadget for
each element xi, containing two stars K1,f(i,z)−1 for each z ∈ [t+ 1]. We also
define, for each set Sj , a set gadget containing, for each element xi ∈ Sj and for
each z ∈ [t+ 1], a star K1,f(i,z)−1 (its center denoted vj,i,z). The general idea
is that the element gadgets can be anonymized by connecting the set gadgets
to some new vertices such that each new vertex corresponds to a set which
contains the element corresponding to the element gadget. For the new vertices,
in order to be k-anonymous, we add a safety gadget consisting of k stars K1,d

for each d ∈ [(t+ 1)n].
The various gadgets are connected differently, depending on the property Π.

The idea is to ensure that no new vertex can be connected to element gadgets
corresponding to elements of different sets, by forcing such a connection to violate
the property. For Π ∈ {Distances, Diameter, Connectivity} and a fixed Sj , we
introduce a new vertex vj and connect it to vj,i,z for each xi ∈ Sj and each
z ∈ [t + 1]. We further add degree-one vertices connected to vj to fill up its
degree to f(n, t+ 2).

For Π ∈ {Distances, Diameter}, we introduce another new vertex u, and
connect u to all of the vj . Again, we fill up its degree to f(n, t+ 2) by connecting
new degree-one vertices to u.

For Π=Diameter, we add two new vertices v′1 and v′m. We connect v′1 to v1

and v′m to vm by a path of length 5. For each j ∈ [m − 1], we connect vj
to vj+1 by a path of length t+ 8. We connect u to each vj by a path of length
d((t+ 8)m+ 1)/2e.

It remains to show that I is a yes-instance if and only if (G, k, t) is a yes-
instance.

“⇒”: Given a set cover S ′, we add one new vertex wj for each Sj ∈ S ′ and
connect it to all of the vj,i,z for each xi ∈ Sj and each z ∈ [t+ 1]. We next show
that this operation is permitted, as we do not violate Π. Indeed, consider any Sj
together with any pair of elements xi1 , xi2 ∈ Sj and any pair z1, z2 ∈ [t + 1]:
For Π=Connectivity, it holds that vj,i1,z1 and vj,i2,z2 were already connected;
for Π ∈ {Distances, Diameter}, it holds that vj,i1,z1 and vj,i2,z2 already had
distance two, therefore the shortest path of no pair of vertices has been changed.
Furthermore, the maximum distance in the new graph is still attained by the
distance between v′1 to v′m, therefore the diameter did not change as well.

We now show that the graph is k-anonymous. First, note that the only
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vertices that need to be anonymized are the vi,z. Since S ′ is a set cover, for
each i and for each z, the degree of at least one vj,i,z is incremented by one, thus
anonymizing the corresponding vi,z. Also, the element safety gadgets ensure
that we introduced no new bad blocks, and the safety gadget ensures that the
new vertices are anonymized.

“⇐”: Consider a new vertex w, two different sets Sj1 , Sj2 ∈ S and z1, z2 ∈
[t+ 1]. We show that vj1,i1,z1 and vj2,i2,z2 cannot both be connected to w: For
Π=Connectivity, this is true because they are not connected; for Π = Distances,
this is true because the distance between them is four, and would change to
two; for Π=Diameter, this is true because this would decrease the diameter
(specifically, the distance between v′1 and v′m) by more than t, and also creating
a shortcut between the paths of length t+ 8 does not help.

Now, assume that (G, k, t) is a yes-instance. As only t new vertices are
added, there exists an integer z′ ∈ [t+ 1] such that no new vertex has the same
degree as vi,z′ for any xi ∈ U . Note that there is a gap of t+ 1 above each vi,z′ .
Hence, it must be anonymized from below. The only possible vertices to use
are the vj,i,z′ and the centers of the stars in the element safety gadgets. We
can assume, without loss of generality, that every element xi is contained in
at least one set Sj (as we can easily check if this is not the case, and return a
negative answer). Therefore, if some vertex from an element safety gadget is
used, we can always use another vj,i,z′ to anonymize vi,z′ . We can then associate
a unique set Sj with every newly added vertex, and because all of the vi,z′ are
anonymized, we get a set cover.

We strengthen parts of Theorem 3 (using a reduction from the W [1]-hard
problem Clique) by also showing that the problem remains intractable with
respect to the typically larger parameter number s of added edges. For simplicity,
we consider s as part of the input.

Theorem 4. For Π = Distances, Π-Preserving Degree Anonymization (VA)
is W[1]-hard with respect to the maximum number s of new edges.

Proof. We give a reduction from the W[1]-complete Clique problem parameter-
ized by the clique size. Here, given a simple undirected graph G = (V,E) and an
integer h, the question is whether G contains a clique of size at least h. Given a
Clique instance I := (G, h), we construct a graph G′ = (V ′, E′) such that G
has a clique of size h if and only if G′ can be k-anonymized by adding at most t
new vertices and at most s new edges, that is, an instance I ′ := (G′, k, t, s).
For each z ∈ [t + 1], we define f(z) := (t + 1)(h − 1) + z(t + 3), and add a
star K1,f(z) with center vertex vz to G′. For each z ∈ [t+ 1] and for each edge
ei ∈ E = {e1, . . . , em}, we add a vertex (denoted by vz,i), and we say that ei is
the corresponding edge of vz,i.

For each pair z1, z2 ∈ [t + 1] and for each pair of edges ei1 and ei2 , we
connect vz1,i1 and vz2,i2 by a path of length two, if the corresponding edges ei1
and ei2 share a common vertex as an endpoint. We add some new leaves to
each vz,i such that the degree of each vz,i is changed to f(z)− 2. We add some
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safety gadgets for the new vertices to safely fall into their block: Specifically, we
create k stars K1,(t+1)(h−1). Finally, we set k =

(
h
2

)
+1, t = h, and s = 2(t+1)

(
h
2

)
.

It remains to show that I is a yes-instance if and only if (G, k, t) is a yes-
instance.

“⇒”: Given a clique of size h in G, we add one new vertex for each clique
vertex v connecting it to all vz,i where the corresponding edge ei is incident
to v and inside the clique. We show that this operation is permitted, as we do
not violate Π. Indeed, it holds that each pair vz,i1 , vz,i2 whose corresponding
edges ei1 , ei2 share a common vertex already had distance two.

We now show that the graph is k-anonymous. First, note that the only
vertices that need to be anonymized are the vz’s. The degree of each vz,i whose
corresponding edge is inside the clique was incremented by exactly two, and
since there are exactly

(
h
2

)
such edges, the vz’s are now anonymized. We can

assume that m ≥ k +
(
h
2

)
(as this case can be easily dealt with), and, therefore,

no new blocks were introduced. Finally, the new vertices fall into the block
anonymized by the safety gadgets.

“⇐”: Consider a new vertex w, a pair z1, z2 ∈ [t + 1], and a pair of edges
ei1 , ei2 . The vertices vz1,i1 and vz2,i2 cannot both be connected to w, because
the original distance between them was at least four and would be changed to
two if both were connected to w.

Now, assume that (G, k, t, s) is a yes-instance. As only t new vertices are
added, there exists a z′ ∈ [t+ 1] such that no new vertex has the same degree
as vz′ . Since there is a gap of t+ 1 above vz′ , it must be anonymized from below.
The only possible vertices to use are the vz′,i. At least

(
h
2

)
of the vz′,i must reach

the degree of vz′ and because we can associate an original vertex to each new
vertex, it follows that they correspond to a clique.

4. Plain Degree Anonymization

In this main section of our work, we study the unrestricted problem Degree
Anonymization (VA), without any restrictions on how to connect the new
vertices to the input graph. This freedom might raise hope to find solutions
more efficiently. Indeed, settling the computational complexity of Degree
Anonymization (VA) turns out to be tricky in that, on the one hand, we
observe that several cases are fairly easy to solve, but we are not aware of any
polynomial-time algorithm solving the problem in general. On the other hand,
we can only prove weak NP-hardness for a number version of the problem.

In terms of fixed-parameter tractability, however, Degree Anonymiza-
tion (VA) turns out to be more accessible. We obtain some fixed-parameter
tractability results regarding, amongst others, certain (combined) parameters
(for example, s, (∆, k), and (∆, t)), for some of which we proved the cloning and
property-preserving problem variants to be W-hard.

4.1. Easy Cases

We start by analyzing the complexity of Degree Anonymization (VA)
with respect to the two input values degree k of anonymity and number t of added
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Figure 4: Visualization of our knowledge about the complexity of Degree Anonymization (VA)
depending on the degree k of anonymity, the number n of vertices in the input graph, and the
maximum number t of added vertices. The NO-cases follow from Observation 1, the YES-cases
are due to Proposition 1, and the polynomial-time solvable cases follow from Proposition 2.
For values inside the “?-area”, the complexity is open for the graph problem (the number
version is shown to be weakly NP-hard, see Theorem 6).

vertices. Figure 4 provides a two-dimensional map indicating those combinations
of k and t for which the problem is polynomial-time solvable or even trivial.
In the following, we briefly state the corresponding results, starting with the
following easy observation.

Observation 1. Let I = (G, k, t) be an instance of Degree Anonymiza-
tion (VA) with G being an n-vertex graph. If k > n+ t, then I is a no-instance.

This holds as there are not enough vertices to make the graph anonymous, even
if all vertices are in the same block, that is, the resulting graph is regular. For
the other two solvable cases in Figure 4, we use the following result by Erdős
and Kelly [13]:

Theorem 5 (Erdős and Kelly [13]). Let G = (V,E) be a graph with n vertices,
maximum degree ∆, and minimum degree δ. Let d ≥ ∆ be some integer and
let ξ =

∑
v∈V (d − deg(v)). Then, there exists a d-regular graph H with n + t

vertices containing G as an induced subgraph if and only if

1. td ≥ ξ,

2. t2 − (d+ 1)t+ ξ ≥ 0,

3. t ≥ d− δ, and

4. (t+ n)d is even.

We remark that the proof given by Erdős and Kelly [13] is stated for the
case d = ∆ but actually proves this more general result. We also remark that
the proof is constructive (indeed, it uses a result of Erdős and Gallai [14], which
has a corresponding constructive version due to Hakimi [19] and Havel [23]).

First, it follows from Theorem 5 that if we are allowed to add enough new
vertices (that is, at least n), then it is always possible to construct a regular
graph (which is also clearly anonymous):
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Proposition 1. Let I = (G, k, t) be an instance of Degree Anonymiza-
tion (VA) with G being an n-vertex graph. If k ≤ n+ t and t ≥ n, then I is a
yes-instance.

Proof. We use Theorem 5 to show that for t ≥ n there always exists a ∆-
or (∆+1)-regular supergraph H with n+ t vertices containing the input graph G
as induced subgraph. To this end, we check Conditions (i) to (iv) of Theorem 5.
First, observe that ξ ≤ n · d ≤ t · d and, thus, Condition (i) is satisfied for d = ∆
and d = ∆ + 1. Second, as ∆ ≤ n− 1 in each graph, it follows that, for d = ∆
we have that

t2 − (d+ 1)t+ ξ ≥ t(t− (n− 1 + 1)) + ξ = ξ ≥ 0,

and for d = ∆ + 1 we have that

t2 − (d+ 1)t+ ξ ≥ t(t− (n+ 1)) + ξ ≥ ξ − n ≥ 0,

as in the case of d = ∆ + 1 it follows that ξ ≥ n. Third, we have that

t ≥ n ≥ ∆ + 1 ≥ d ≥ d− δ.

Fourth, observe that either (n+ t)∆ or (n+ t)(∆ + 1) is even. Hence, if we are
given a Degree Anonymization (VA) instance with t ≥ n, then it is always
possible to create a regular graph with n+ t vertices. Thus, if t ≥ n, then the
Degree Anonymization (VA) is a yes-instance if and only if k ≤ t+ n.

We can also use Theorem 5 algorithmically, as follows.

Proposition 2. Degree Anonymization (VA) is polynomial-time solvable
for 2k > (n+ t).

Proof. Let I = (G = (V,E), k, t) be an instance of Degree Anonymiza-
tion (VA) with 2k > (n + t). By Observation 1 and Proposition 1, we can
assume that k ≤ n+ t < 2k and t < n. Observe that in this case any solution
(if it exists) transforms G into a regular graph. Hence, the question is whether
there is a regular graph H with at most n+ t vertices containing G as induced
subgraph.

Our algorithm is as follows. First, we guess in O(n2) time the number t′ ≤ t
of vertices that we will add and the degree d of the final regular graph H. Then,
we reduce to Theorem 5, that is, we compute ξ =

∑
v∈V d− deg(v) and check

the four inequalities.

4.2. (Weak) NP-Hardness

In Figure 4, we left open the computational complexity of the Degree
Anonymization (VA) problem for instances with 2k ≤ n+ t. We now partially
settle this question by proving that a closely related number version of the
problem is weakly NP-hard. To this end, note that since we are not allowed to
add any edges between old vertices, the actual structure of the input graph G
becomes negligible and we only need to store the information of how many
vertices of which degree it contains (that is, its block sequence B(G)):
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Observation 2. Let G and G′ be two graphs with identical block sequences, that
is, B(G) = B(G′). Then, for the Degree Anonymization (VA) instances
I := (G, k, t) and I ′ := (G′, k, t), it holds that I is a yes-instance if and only
if I ′ is a yes-instance.

Based on Observation 2, we can now define a closely related number version
of Degree Anonymization (VA).

Block Sequence Anonymization (VA)
Input: A realizable block sequence B and k, t ∈ N.
Question: Is there an undirected graph G with block sequence B such that

(G, k, t) is a yes-instance of Degree Anonymization (VA)?

Note that Block Sequence Anonymization (VA) is a pure number
problem (that is, its input consists only of numbers). This helps us to develop
a polynomial-time reduction from a weakly NP-hard version of the Subset
Sum problem. An NP-hard problem is weakly NP-hard if it can be solved in
polynomial-time provided that the input is encoded in unary. We obtain the
following theorem.

Theorem 6. Block Sequence Anonymization (VA) is weakly NP-hard.

Proof. We reduce from the weakly NP-hard Change Making problem [28]:
Given integers a1, . . . , an, m, and b, are there nonnegative integers x1, . . . , xn
such that Σi∈[n]xi ≤ m and Σi∈[n]xiai = b? We can assume, without loss of
generality, that ∀i 6= j : |ai − aj | ≥ m3. If this property does not hold, then we
simply multiply all numbers by m3, that is, we set ai to be m3 · ai and set b to
be m3 · b. It is easy to verify that this new instance is a yes-instance if and only
if the original instance is a yes-instance.

We now create an equivalent Block Sequence Anonymization (VA)
instance (B, k, t), with t := m and k := t(b+ n+ 5t+ 1). The realizable block
sequence B is the block sequence of a graph G, which is defined as follows. We
introduce several gadgets, that is, subgraphs of G with distinguished vertices
of specific degrees which play an important role in the correctness proof. In
the following, we only specify the degrees of these proper vertices. To build
these gadgets, we add an appropriate number of degree-one neighbors. Our
construction ensures that, when k-anonymizing G by adding t vertices, the
degree-one vertices will always keep their degree. The construction works as
follows.

Add a b-gadget consisting of 5t base vertices of degree n + t, add b count
vertices of degree n + 2t − 1, and add k − b − 5t b-catch vertices of degree
n+ 2t. For each i ∈ [n], add one ai-gadget consisting of one ai-vertex of degree
ai + n + 4t + 1 and k − 1 ai-catch vertices of degree ai + n + 5t + 1. Finally,
add a dummy gadget consisting of one dummy vertex of degree n+ 4t+ 1 and
k− 1 dummy catch vertices of degree n+ 5t+ 1. This completes the construction.
See Figure 5 for an illustration.

We show that (a1, . . . , an,m, b) is a yes-instance of Change Making if and
only if (B, k, t) is a yes-instance of Block Sequence Anonymization (VA).
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Figure 5: The reduction used in Theorem 6. The construction (corresponding to a Change
Making input) is depicted top, while an anonymized solution (corresponding to a Change
Making solution) is depicted bottom. The plots show the number of vertices in each block
(that is, of each degree).
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“⇒”: Assume that there are integers x1, . . . , xn such that Σi∈[n]xi ≤ m, and
Σi∈[n]xiai = b. We construct a k-anonymous graph G′ by adding t new vertices
to G as follows. For each i ∈ [n], add xi new solution vertices and connect them
with ai count vertices such that the degree of each count vertex is increased by
one. (Note that this is possible because Σi∈[n]xiai = b.) If d := t− Σi∈[n]xi > 0,
then add d further new auxiliary vertices. Connect each of the new vertices
(solution and auxiliary vertices) to each ai-vertex, i ∈ [n], to the base vertices,
and to the dummy vertex.

We now claim that G′ is k-anonymous: First, observe that all new vertices
are k-anonymous: The auxiliary vertices are of degree n + 5t + 1 together
with k further vertices from the dummy gadget. Each solution vertex is of some
degree ai + n + 5t + 1, i ∈ [n], together with k − 1 ai-catch vertices and one
ai-vertex. Second, the original vertices are also k-anonymous: All k vertices
from the dummy gadget get degree n+ 5t+ 1 because we connected the dummy
vertex to all t new vertices and the degree of each dummy catch vertex remains
unchanged. All k vertices from the b-gadget get degree n+ 2t since we connected
each base vertex to all t new vertices, each count vertex with exactly one new
vertex, and the degrees of the b-catch vertices remain unchanged. For each
i ∈ [n], all k vertices of the ai-gadget get degree ai + n + 5t + 1 since the
degree of each ai-catch vertex remains ai + n+ 5t+ 1 and each ai-vertex gets
degree ai + n+ 5t+ 1 because we connected it to all t new vertices. Thus, G′ is
k-anonymous.

“⇐”: Assume that there is a vertex set V ′ := {v1, . . . , vt′}, t′ ≤ t, and a set
of edges E′ such that the graph G′ := (V ∪V ′, E∪E′) is k-anonymous. We show
that y1, . . . , yn with yi = |{v ∈ V ′ | degG′(v) = ai + n+ 5t+ 1}| is a solution for
(a1, . . . , an,m, b). First, we show that, for each proper original vertex from V ,
the degree in G′ is already determined by the construction of G. To this end,
recall that we can only increase the degree of each original vertex by at most t.
We say two original vertices are close enough if their degrees in G differ by at
most t. Consider some proper vertex from the b-gadget, from an ai-gadget, or
from the dummy gadget, and observe that only proper vertices from the same
gadget are close enough. Moreover, since, even together with t potential new
vertices from V ′, each gadget contains less than 2k proper vertices, it follows
that all vertices from the same gadget must end up with the same degree in G′.
More precisely, all vertices from the b-gadget must have degree n + 2t in G′:
Adding V ′ must increase the degree of each base vertex by t to n+ 2t, which is
already the original degree of the b-catch vertices. All vertices from the dummy
gadget must have degree n+ 5t+ 1 in G′: Adding V ′ must increase the degree
of the dummy vertex by t to n + 5t + 1, which is already the original degree
of the dummy catch vertices. For each i ∈ [n], all vertices from the ai-gadget
must have degree ai + n+ 5t+ 1 in G′: Adding V ′ must increase the degree of
each ai-vertex by t to ai + n+ 5t+ 1, which is already the original degree of the
ai-catch vertices.

Second, observe that each new vertex from V ′ must have degree ai+n+5t+1
for some i ∈ [n] or degree n+ 5t+ 1: Clearly, as we have already seen, adding V ′

increases the degree of all 5t base vertices, of all n ai-vertices, and of the dummy
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vertex by t. Thus, each new vertex has degree at least n+ 5t+ 1. Since we have
at most t < k new vertices, each new vertex must have the same degree in G′ as
some proper original vertex.

Third, observe that each (non-proper) degree-one vertex from V will keep
degree one in G′: Only other degree-one vertices are close enough and the
degree-one vertices also cannot reach the degree of any new vertex. Thus, if
some original degree-one vertex has degree at least two in G′, then at least k
original degree-one vertices must have degree at least two in G′. Then, since
k = t(b+n+5t+1), at least one new vertex would have degree at least b+n+5t+1
in G′. This is not possible because no proper original vertex can reach this
degree.

Finally, recall that yi, i ∈ [n], denotes the number of new vertices from V ′

that have degree ai + n+ 5t+ 1 in G′. Since adding V ′ must increase the degree
of each of the b count vertices by exactly one, there are exactly b edges between
new vertices and count vertices. Furthermore, let ` denote the number of edges
between new vertices. It holds that b+ `/2 = Σi∈[n]yiai. More precisely,

`

2m3
=

Σi∈[n]yiai

m3
− b

m3

must be an integer since each ai, i ∈ [n], and b are divisible by m3. Since
0 ≤ ` <

(
t
2

)
< m2, this is only possible if ` = 0. Thus, there are no edges between

new vertices in E′ but there exist some y1, . . . , yn such that Σi∈[n]yiai = b. Hence,
y1, . . . , yn is indeed a solution for (a1, . . . , an,m, b).

4.3. Tractability Results

While it remains open whether Degree Anonymization (VA) is NP-hard,
the weak NP-hardness result for Block Sequence Anonymization (VA)
(Theorem 6) lets us conjecture that also the graph problem may be hard to solve.
Hence, a parameterized approach solving Degree Anonymization (VA) is
reasonable. Notably, we provide several (fixed-parameter) tractability results
contrasting the hardness results for the constrained problem versions considered
in Section 3.

A natural parameter to consider is the solution size t. Unfortunately, we do
not know whether Degree Anonymization (VA) is fixed-parameter tractable
with respect to t; we can only show that Degree Anonymization (VA) is
polynomial-time solvable when t is a constant.

Theorem 7. Degree Anonymization (VA) parameterized by the maximum
number t of added vertices is in XP.

Proof. Let us denote the number of edges that a new vertex ti has to old vertices
by dold(ti). We first guess t′ (in O(t) time), and dold(ti), for each new vertex
ti (in O(nt) time). We also guess the subgraph induced by the new vertices

(in O(2t
2

) time). Then, we use a modified version of a dynamic program used
by Liu and Terzi [26].

17



The first modification is needed because we have to satisfy the guessed
degrees of the new vertices when we k-anonymize the old vertices. Specifically,
we k-anonymize the combined degree sequence containing the original degrees
of the old vertices, and also the guessed degrees of the new vertices, with the
exception that the new vertices’ degrees are fixed (that is, cannot be changed, as
they are already guessed). The second modification is needed to make sure that
we can realize the overall increases of degrees by using exactly the guessed degrees
of the new vertices. Specifically, we maintain a vector of size t′ with entries
upper-bounded by the guessed dold(ti), where each entry in the vector contains
the number of edges already used for the corresponding new vertex (the vector
is initialized to contain only zeros). These modifications give a multiplicative
factor of O(nt) to the running time of the dynamic programming, resulting in
an overall time complexity of O(f(t) · k · nt).

We can “improve” containment in XP (as shown in Theorem 7) to fixed-
parameter tractability with respect to the combined parameter (t,∆). Before
proving the corresponding theorem, we introduce some notation and a helpful
lemma.

For a set A of vertices whose addition (together with the addition of edges)
transforms a graph G = (V,E) into a k-anonymous graph, we call A an addition
set and we write G + A for the k-anonymous graph. Furthermore, the edges
in G + A having at least one endpoint in A (the “added” edges) are denoted
by E(A). Hence, G+A = (V ∪A,E ∪ E(A)).

Clearly, for an addition set A of size t, all vertices in G + A, except those
in A, have degree at most ∆ + t where ∆ is the largest degree in G. It may
happen that the degree of some (potentially all) vertices from A in G + A is
larger than ∆ + t. In this case, there are full blocks in G+A of degree larger
than ∆ + t consisting only of vertices from A, implying that t ≥ k. We call
blocks corresponding to degrees greater than ∆ + t large-degree blocks. Lemma 1
shows that we may assume that there are at most two large-degree blocks which
are, in terms of their degree values, not “too far away” from each other.

Lemma 1. Let (G, k, t) be a yes-instance of Degree Anonymization (VA).
There is an addition set A of size at most t such that in G+A there are at most
two large-degree blocks. Furthermore, if there are two large-degree blocks, then
their degrees differ by exactly one.

Proof. Let (G, k, t) be a yes-instance of Degree Anonymization (VA) and
let A be a corresponding addition set. Assume that there are at least two
large-degree blocks Bi and Bj in G+A with |j − i| > 1. We restructure E(A)
to obtain a solution as desired. To this end, we introduce some notation.
Let AL = {a1, . . . , a`} denote the set of vertices in the large-degree blocks.
Observe that ` ≥ 2k. For any vertex v ∈ (V ∪A) \AL, denote by degL(v) the
number of neighbors of v in AL, formally degL(v) := |NG+A(v) ∩AL|.

The idea is to restructure the graph such that each old vertex will be adjacent
to the same number of new vertices, but the new vertex degrees will be closer
to each other. We achieve this by a round-robin method. Specifically, the
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restructuring is done as follows: First, remove all edges that have at least
one endpoint in AL. Let v1, . . . , vn+|A|−` be an arbitrary ordering of vertices
in (V ∪ A) \ AL. Then, we add edges in several steps such that in step i,
vertex vi ∈ (V ∪A) \AL gets degL(vi) incident edges, that is, overall the degree
of vi will remain unchanged. For every a ∈ AL, denote by degLi (a) the degree
of a before step i. Then, let Xi denote the degL(vi) vertices in AL having the
smallest value degLi (a). In step i, we make vi adjacent to all vertices in Xi.
Observe that, since degL(vi) ≤ `, in each step it holds for all j, j′ ∈ {1, . . . , `}
that |degLi (aj) − degLi (aj′)| ≤ 1. Hence, after the last step, there are at most
two large-degree blocks Bd and Bd+1 whose degrees differ by at most one.

It remains to ensure that |Bd| ≥ k and |Bd+1| ≥ k. If |Bd| is even, then
add a perfect matching on the vertices in Bd resulting in one large block of
size ` ≥ 2k. Otherwise, if |Bd| < |Bd+1|, then set d′ := d + 1 and add edges
to introduce a Hamilton cycle in G[Bd], increasing the degree of every vertex
in Bd by two. If |Bd| ≥ |Bd+1|, then set d′ := d. Now, add a matching
between vertices in Bd′ such that after adding these edges it holds that 0 ≤
|Bd′ | − |Bd′+1| ≤ 2. Observe that this is always possible as |Bd′ | ≥ |Bd′+1|.
We claim that |Bd′ | ≥ k and |Bd′+1| ≥ k. Suppose towards a contradiction
that |Bd′+1| < k. Since |Bd′+1| ≤ |Bd′ | ≤ |Bd′+1|+2 and |Bd′+1|+|Bd′ | = ` ≥ 2k,
it follows that ` = 2k, |Bd′+1| = k − 1, and |Bd′ | = k + 1. Furthermore, as we
already handled the case where |Bd| was even, it follows that |Bd′ | and |Bd′+1|
are odd and k is even. Also, observe that we started with the assumption that
there is a solution with at least two large blocks Bi and Bj . Since ` = 2k, there
are exactly two large blocks in this solution. Thus, the sum of the degrees of all
vertices in AL is |Bi| · i+ |Bj | · j which is an even number as |Bi| = |Bj | = k is
even. However, as |Bd′ | and |Bd′+1| are odd, the sum of all degrees of vertices
in AL after the restructuring is |Bd′ | · d′ + |Bd′+1| · (d′ + 1) which is odd as
either d′ or d′+1 is odd. This is a contradiction to the fact that our restructuring
did not change the degrees of vertices in (V ∪A) \AL and our operations (edge
deletions and insertions) do not change the parity of the sum of the degrees of
the vertices in AL.

Using Lemma 1, we can now prove fixed-parameter tractability for the
parameter combination (t,∆); however, the result uses Lenstra’s result about
the fixed-parameter tractability of integer linear programs [25], thus making it
of mainly theoretical interest only.

Theorem 8. Degree Anonymization (VA) is fixed-parameter tractable with
respect to the combined parameter (t,∆).

Proof. Our algorithm consists of three phases. First (Phase I), we guess what
the solution looks like, specifically guessing the degrees of the good blocks, and
the degrees of the new vertices, while respecting the guessed degrees of the good
blocks. Then (Phase II), we use a bottom-up “lazy” method to solve the instance
for the old vertices, respecting the guessed degrees of the new vertices. Finally
(Phase III), we use integer linear programming to solve the instance for the new
vertices. A detailed description follows.
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Phase I: We guess the subgraph induced by the new vertices (in O(2t
2

)
time). We know, from Lemma 1, that the number of possible blocks in the
solution is upper-bounded by ∆ + t + 2 ∈ O(∆ + t). We guess the degrees of
the two large-degree blocks (in O(n+ t) time). Then, we guess, for each block,
whether it is empty or full (in O(2∆+t)). Finally, we guess the degree of each new

vertex (in O(∆ + t)t time). Phase I runs in O
(

(n+ t) · 2t2 · 2∆+t · (∆ + t)t
)

=:

O ((n+ t) · f1(t,∆)) time.
For ease of presentation, we say that we move a vertex up, meaning that we

connect it to some new vertices, thus changing its degree and moving it to a
different block of some desired degree. We can choose which new vertices to use
in a round-robin way, subject to their guessed degrees (that is, each new vertex
participates in the round-robin until it reaches its guessed degree).

Phase II: We perform the following bottom-up lazy method. We start from
the lowest degree block, and work all the way up to the highest degree block. If
the current block Bi is guessed to be empty, then we move its vertices up, to the
first block above it which is guessed to become full (if there is a gap greater than
t to such a block, then we continue with the next iteration). Otherwise, if it is
guessed to be full, then we distinguish between the following two cases: If the
number of old vertices in the block plus the number of new vertices guessed to be
in this block is at least k, then we do nothing because it means that this block
is already anonymized, and continue with the next block. Otherwise, Bi has
a shortage of some zi many vertices to become full, so we find the maximum
j < i such that the number of old vertices in Bj plus the number of new vertices
guessed to be in Bj is greater than k (specifically, equals k + zj for some zj
spare vertices in Bj ; if the gap i− j is greater than t, then we continue with the
next iteration because Bi cannot be k-anonymized). We move min(zi, zj) spare
vertices from Bj to Bi. If, after moving these spare vertices, Bi still needs some
more vertices (that is, if zi > zj), then we repeat this step once more, looking
for the maximum j′ < j such that the number of old vertices in Bj′ plus the
number of new vertices guessed to be in Bj′ is greater than k, until we have
enough vertices in the current block. If in the end of this phase all of the blocks
are anonymized, then we continue with the next phase. The overall time cost of
Phase II is in O(∆ + t)3 =: O(f2(t,∆)).

Our approach is lazy because we are performing the minimum amount of
changes to make the old vertices anonymous. First, we use the spare vertices
from the closest full block below the current one. Second, we move the minimum
number of vertices to make the blocks anonymized with respect to the old
vertices, that is, we only make the bad blocks full, but never overfull.

Phase III: We check whether each new vertex reached its guessed degree. If
so, then we halt with a positive answer. If there are new vertices which do not
yet have their guessed degrees, then we still have some hope of reaching these
degrees, because of the laziness of Phase II, so we try to move up some more old
vertices, until we reach the guessed degrees, while not destroying the anonymity
of the blocks. To this end, denote the number |Bi| − k of spare vertices in each
full block Bi by zi. Note that we can move any number of up to zi vertices from
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this block, to any full block above it, and no other moves are possible. Now, our
problem reduces to the following integer linear program:

Input: Integers {z′1, . . . , z′n′}, an n′ ×m′ matrix A = aij , and an integer Z.
Task: Maximize

∑
i∈[n′]

∑
j∈[m′] aijxij such that

∑
i∈[n′]

∑
j∈[m′] aijxij ≤ Z

and ∀j :
∑
i∈[n′] aij ≤ zj .

Specifically, we set n′ and m′ to be the number of full blocks (that is, n′ =
m′ ∈ O(∆ + t)). For each full block, we set z′i to be zi and aij to be the gap
between the jth full block and the ith full block. We set Z equal to the overall
sum of differences of guessed degrees of the new vertices and their degrees after
Phase II. Note that any solution to the integer linear program is realizable as
each aij is upper-bounded by the number of spare vertices zj . Moreover, the
number of variables is upper-bounded by the number of full blocks squared, that
is, by O((∆ + t)2). By a famous result of Lenstra [25], it follows that the running
time is exponential only in the number of variables, therefore the cost of this
phase is in poly(n, t) · f3(t,∆), for some computable function f3.

We now prove the correctness of the algorithm. As the algorithm only
performs permitted operations (that is, adds up to t new vertices and connects
them such that each edge is incident to at least one new vertex), it follows
that if the input is a no-instance, then the algorithm returns a negative answer.
Otherwise, if the input is a yes-instance, then at least one set of guesses from
Phase I will be correct. Any solution must at least move the vertices that are
moved in Phase II, and then the problem reduces to the integer linear program
presented in Phase III.

The question whether fixed-parameter tractability also holds for the single
parameters t or ∆ remains open. Nevertheless, we find that fixed-parameter
tractability also holds for the combined parameter (∆, k).

Theorem 9. Degree Anonymization (VA) is fixed-parameter tractable with
respect to the combined parameter (∆, k).

Proof. It follows, from Theorem 8 that if t ≤ (∆k + k) · (∆ + 1)2, then we are
done; therefore, we assume that t > (∆k+ k) · (∆ + 1)2. If ∆ = 0, then the input
graph is already anonymized; therefore, we assume that ∆ > 0. If k ≥ n, then we
can solve the input instance in polynomial time by Observation 1, Proposition 1,
and Proposition 2. Hence, we assume k < n.

Consider the following method for k-anonymizing the graph, showing that
we can answer positively for any remaining instance. For each block Bi, if
|Bi| < ∆k+ k, then we connect each vertex in Bi to ∆ + 1− i new vertices such
that the degree of each old vertex in Bi becomes ∆ + 1 and the degree of each
new vertex becomes one. If |Bi| ≥ ∆k + k, we do the same, but only for ∆k
arbitrarily chosen vertices in Bi.

The resulting graph has exactly two non-empty blocks: B1 containing all of
the new vertices (and only them) and B∆+1 filled with all of the old vertices
(and only them). Since k < n = |B∆+1|, the block B∆+1 is good.
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Let t′ := |B1| denote the number of new vertices added by our method. There
are at most ∆ + 1 blocks in the original graph and we move at most ∆k + k
vertices from each block by at most ∆+1. Therefore, t′ ≤ (∆k+k) · (∆+1)2 ≤ t.
If there are no blocks of size greater than ∆k + k in the original graph, then
t′ ≥ n > k because we moved all of the old vertices. Otherwise, if there is at
least one block of size greater than ∆k + k, then t′ ≥ ∆k ≥ k because we moved
at least ∆k vertices from this block by at least one block.

Contrasting the W[1]-hardness of Π-Preserving Degree Anonymiza-
tion (VA) parameterized by the maximum number s of new edges (Theorem 4),
we conclude with fixed-parameter tractability for Degree Anonymization (VA)
with respect to s. We again assume that s is given as part of the input.

Theorem 10. Degree Anonymization (VA) is fixed-parameter tractable with
respect to the maximum number s of newly inserted edges.

To prove Theorem 10, we define the problem of anonymizing a general
(not necessarily realizable) block sequence by vertex addition. Indeed, the
fixed-parameter tractability of Degree Anonymization (VA) directly follows
by providing a so-called bikernelization to this new problem (informally, a
bikernelization is a kernelization to a different problem).

A general block sequence is a tuple B = (b0, . . . , bd) of nonnegative inte-
gers bi ≥ 0. We say that bi denotes the size of the block of degree i ∈ {0, . . . , d}
and we denote the length of B by |B|. We consider tuples of integers x =
(x0, . . . , xd), where 0 ≤ xi ≤ bi for all i ∈ {0, . . . , d}, and as we usually think
about these tuples as corresponding to the new vertices that we add in the
anonymization process, we call such a tuple a vertex. We denote the requirement
that 0 ≤ xi ≤ bi for all i ∈ {0, . . . , d}, by writing x ≤ B. We define now what it
means to add the vertex x to the general block sequence B. Intuitively, for each
x = (x0, . . . , xd), xi denotes the number of degree-i vertices to which the “newly
added vertex” x is connected. We denote the resulting general block sequence
by B⊕ x. Before giving the definition, we make a technical disclaimer: whenever
we use an index i that is not contained in B (that is, i > d), then we implicitly
assume that B is extended to length i by appending the corresponding number
of zero entries to B.

The general block sequence B ⊕ x is generated out of B by iteratively per-
forming the following operations, for each i ∈ {0, . . . , d}: decrease bi by xi and
increase bi+1 by xi. These replacements correspond to increasing the degrees of
the specified number of original vertices that are connected to the new vertex by

one. Moreover, in order to insert the new vertex, let δ(x) :=
∑|x|
i=0 xi be its degree

and increase bδ(x) by one. Note that the number of added edges equals δ(x). For
a sequence of vertices (x1, . . . , xt) such that xj ≤ ((B ⊕ x1) . . .)⊕ xj−1 holds for
all 1 ≤ j ≤ t, we define B ⊕ (x1, . . . , xt) := ((B ⊕ x1) . . .)⊕ xt. Notice that the
order of adding the vertices does make a difference, as it might be that some
orderings are possible while some other orderings are not. The total number of
added edges then equals

∑t
j=1 δ(x

j).
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Now, we can define the problem of anonymizing a general block sequence as
follows:

General Block Sequence Anonymization (VA)
Input: A general block sequence B and k, t, s ∈ N.

Question: Are there vertices x1, . . . , xt
′
, t′ ≤ t, with

∑t′

j=1 δ(xj) ≤ s such

that B′ := B ⊕ (x1, . . . , xt
′
) is k-anonymous, that is, either b′i ≥ k

or b′i = 0 holds for each b′i in B′?

Note that this definition ensures that any Degree Anonymization (VA)
instance (G, k, t, s) is a yes-instance if and only if ((|B0|, . . . , |Bn−1|), k, t, s) is a
yes-instance of General Block Sequence Anonymization (VA). Therefore,
in order to prove Theorem 10, it is sufficient to show that General Block
Sequence Anonymization (VA) is fixed-parameter tractable with respect
to s. To this end, we give a kernelization algorithm.

Lemma 2. General Block Sequence Anonymization (VA) admits a
problem kernel with respect to the maximum number s of newly inserted edges.
The kernel is of size sO(s) and can be computed in linear time.

To prove Lemma 2, we will introduce several polynomial-time data reduction
rules. We give an overview of these rules now. First, we upper-bound the
anonymity level k (Reduction Rule 1). Then, we upper-bound the maximum
block size, that is maxi(bi) (Reduction Rule 2). After that, we upper-bound the
number t of added edges (Reduction Rule 3), followed by upper-bounding the
number of bad blocks, that is, the number of blocks that have strictly less than
k vertices, but also strictly more than 0 vertices (Reduction Rule 4). We then
upper-bound the number of non-empty blocks (Reduction Rule 5), and finally,
upper-bound the overall number of blocks (Reduction Rule 6). We mention here
that all our reduction rules are easily seen to be polynomial-time computable,
therefore, in what follows, we only explicitly prove their correctness.

We are ready to delve into the details. In order to prove the correctness of
some of these reduction rules, we need the following simple lemma, which states
that a sequence (x1, . . . , xt) of vertices that can be added to a general block
sequence B can also be added to another general block sequence B′ of equal
length if each entry in B′ has value of at least

∑t
j=1 δ(x

j).

Lemma 3. Let B = (b0, . . . , bd) be a general block sequence and let x1, . . . , xt be
a sequence of vertices such that xj ≤ ((B⊕x1) . . .)⊕xj−1 holds for all 1 ≤ j ≤ t.
Further, let s :=

∑t
j=1 δ(x

j) and let B′ = (b′0, . . . , b
′
d) be a general block sequence

with b′i ≥ min{bi, s} for all i ∈ {0, . . . , d}.
Then, also xj ≤ ((B′ ⊕ x1) . . .)⊕ xj−1 holds for all 1 ≤ j ≤ t.

Proof. Let I := {i | s ≤ b′i < bi} be the set of indices where B′ is strictly less
than B but at least s. Note that for all other indices i, we have b′i ≥ bi. Moreover,

note that, for each i ∈ {0, . . . , d}, it holds that
∑t
j=1 x

j
i ≤ s, and thus, clearly,

also xji ≤ s−
∑j−1
l=1 x

l
i holds for each j ∈ {1, . . . , t}.
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We prove the lemma by induction on j. For j = 1, by assumption, we
have x1

i ≤ min{bi, s} ≤ b′i for all i ∈ {0, . . . , d}, and thus x1 ≤ B′. Now,
for j ≥ 2, let B′(j − 1) := B′ ⊕ (x1, . . . , xj−1) = (b′0(j − 1), . . . , b′q(j − 1)) for
some q ∈ N. This is well-defined by the inductive hypothesis. Note that for
all i ∈ {0, . . . , q} \ I, we have b′i(j − 1) ≥ bi(j − 1) ≥ xji . For each i ∈ I, it

holds b′i(j − 1) ≥ s−
∑j−1
l=1 x

l
i ≥ x

j
i . Hence, xj ≤ B′(j − 1).

Let us now specify the reduction rules. The first reduction rule upper-bounds
the degree k of anonymity linearly in s.

Reduction Rule 1. We transform an instance ((b0, . . . , bd), k, t, s) of General
Block Sequence Anonymization (VA) to the instance ((b′0, . . . , b

′
d), k

′, t, s),
where k′ := min{k, 2s+ 1} and, for i ∈ {0, . . . , d}, we set

b′i :=

{
bi − (k − k′), bi ≥ k − s,
bi, else.

Lemma 4. Reduction Rule 1 is correct.

Proof. The general intuition behind this rule is that if k is very large (with
respect to s), then any small block must be somehow “fixed” (either by moving
some vertices into it, or by moving all of the vertices in it to some other blocks).
Therefore, for these blocks, the actual k could be just slightly larger than their
sizes. Moreover, for any large block, not all of the vertices of this block can be
moved to another block. Therefore, k and their sizes can be decreased.

More formally, we have to show that I := (B = (b0, . . . , bd), k, t, s) is a yes-
instance if and only if I ′ := (B′ = (b′0, . . . , b

′
d), k

′, t, s) is a yes-instance. Clearly,
this is true for k′ = k since this implies I = I ′. Thus, we can assume that k′ =
2s+1 < k. Therefore, b′i ≥ min{bi, k−s−(k−k′)} = min{bi, k′−s} ≥ min{bi, s}
holds for each i ∈ {0, . . . , d}. Let (x1, . . . , xt

′
), for t′ ≤ t, be a sequence of vertices

with
∑t′

j=1 δ(x
j) ≤ s such that

B(t′) := B ⊕ (x1, . . . , xt
′
) = (b0(t′), . . . , bq(t

′))

is well-defined. Then, by Lemma 3, also

B′(t′) := B′ ⊕ (x1, . . . , xt
′
) = (b′0(t′), . . . , b′q(t

′))

is well-defined. Now, for i ≤ q such that i > d, we have b′i(t
′) = bi(t

′) since these

values only depend on (x1, . . . , xt
′
). Also, for all i ≤ d with bi = b′i, it clearly

holds that b′i(t
′) = bi(t

′). Finally, for the remaining indices i, we have bi(t
′) > 0

since bi ≥ k−s > s+1, and also b′i(t
′) > 0 since b′i ≥ k−s−(k−k′) = k′−s = s+1.

Moreover, it holds

b′i(t
′)− b′i = bi(t

′)− bi ⇔
b′i(t
′)− (bi − (k − k′)) = bi(t

′)− bi ⇔
b′i(t
′)− k′ = bi(t

′)− k.
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Hence, b′i(t
′) ≥ k′ if and only if bi(t

′) ≥ k. Consequently, B(t′) is k-anonymous
if and only if B′(t′) is k′-anonymous showing that I is a yes-instance if and only
if I ′ is a yes-instance.

The next reduction rule upper-bounds the maximum block size by k + s.

Reduction Rule 2. We transform an instance ((b0, . . . , bd), k, t, s) of General
Block Sequence Anonymization (VA) to the instance ((b′0, . . . , b

′
d), k, t, s),

where, for i ∈ {0, . . . , d}, we set b′i = min {k + s, bi}.

Lemma 5. Reduction Rule 2 is correct.

Proof. The general idea of this rule is that the size of any very large block can
be decreased. The basic reason is that we cannot use more than s vertices of
any block, including these large blocks.

More formally, let I := (B, k, t, s) be an input instance and let I ′ :=
(B′, k, t, s) denote the transformed instance. Note that b′i ≥ min{bi, s} for

each i ∈ {0, . . . , d}. Let (x1, . . . , xt
′
), for t′ ≤ t, be a sequence of vertices with∑t′

j=1 δ(x
j) ≤ s such that

B(t′) := B ⊕ (x1, . . . , xt
′
) = (b0(t′), . . . , bq(t

′))

is well-defined. Then, again, by Lemma 3, also

B′(t′) := B′ ⊕ (x1, . . . , xt
′
) = (b′0(t′), . . . , b′q(t

′))

is well-defined. Clearly, for any i with bi > k + s, we have bi(t
′) > k and

also b′i(t
′) ≥ k since b′i = k+ s. For all other i, it holds b′i(t

′) = bi(t
′). Hence, I is

a yes-instance if and only if I ′ is a yes-instance.

Next, we upper-bound the number t of new vertices in s and k.

Reduction Rule 3. We transform an instance (B, k, t, s) of General Block
Sequence Anonymization (VA) to the instance (B, k,min{t, k + 2s}, s).

Lemma 6. Reduction Rule 3 is correct.

Proof. The general idea of this rule is that in any solution which uses a lot of
new vertices, most of these new vertices must be isolated (that is, of degree 0).
However, a solution does not need a lot of new isolated vertices, therefore, we
can reduce t.

More formally, let t∗ := min{t, k + 2s}. For t∗ = t, there is nothing to show.
Thus, assume that t∗ = k + 2s < t. If I := (B, k, t, s) is a no-instance, then,
clearly, also I ′ := (B, k, t∗, s) is a no-instance since t∗ < t. Thus, let I be a
yes-instance and let t′ = t0 + t1 ≤ t be the number of newly added vertices,
where t0 denotes the number of added degree-zero vertices and t1 denotes the
number of added vertices of degree at least one (by saying the degree of the
vertex we mean, naturally, the total sum of the elements in the vertex vector).

Let (x1, . . . , xt
′
) be the added vertices with

∑t′

j=1 δ(x
j) ≤ s and note that we can
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assume that the t0 first vertices x1 = . . . = xt0 = (0, . . . , 0) are the degree-zero
vertices. Moreover, note that t1 ≤ s holds. Let µ := min{t0, k + s}. We show
that adding the µ+ t1 ≤ k + s+ s = t∗ vertices (x1, . . . , xµ, xt0+1, . . . , xt

′
) is a

solution for I ′. This is clearly true for µ = t0, hence we can assume that µ =
k + s < t0. First, we have to show that B ⊕ (x1, . . . , xµ, xt0+1, . . . , xt

′
) is well-

defined. Trivially, B ⊕ (x1, . . . , xµ) is well-defined. Let B(µ) := B ⊕ (x1, . . . , xµ)
and let B(t0) := B ⊕ (x1, . . . , xt0). Note that we have b0(µ) = b0 + µ ≥ s
and, for all i > 0, we have bi(µ) = bi(t0) = bi. Thus, since by assumption
B(t′) := B(t0) ⊕ (xt0+1, . . . , xt

′
) is well-defined, it follows from Lemma 3 that

also B∗ := B(µ)⊕(xt0+1, . . . , xt
′
) is well-defined. Note also that the total number

of added edges does not change.
It remains to show that B∗ is k-anonymous. This is true since b∗i = bi(t

′)
holds for each i > 0, and b∗0 ≥ k holds since b0(µ) ≥ k + s.

The next two reduction rules upper-bound the number of non-zero entries
in the block sequence. First, we identify those blocks whose sizes need to be
changed. Recall that a block is said to be bad if it contains less than k but more
than zero vertices.

The general idea for these two reduction rules is to keep all blocks of degree
at most 2s (since new vertices may end up in the first s blocks and an already
existing vertex with degree at most s can reach degree at most 2s), the bad
blocks (since we have to fix them), some good blocks close to the bad blocks (to
allow movement of vertices to or from bad blocks), and also some further good
blocks (to set the correct degrees of the newly added vertices).

Our next reduction rule transforms the instance into a trivial no-instance if
there are more bad blocks than one could fix by adding at most s edges. Each
new edge introduced by a new vertex x with xi > 1 can fix at most three bad
blocks, namely bi, bi+1, and bδ(x). Note that other block sizes are not affected
by the edges corresponding to xi.

Reduction Rule 4. Let (B, k, t, s) be an instance of General Block Se-
quence Anonymization (VA) with B = (b0, . . . , bd). If B contains more than
3s entries bi with 0 < bi < k, then return a trivial no-instance.

Reduction Rule 4 is obviously correct.
In order to upper-bound the number of good blocks, the decisive observation

is that adding two edges to good blocks cannot be considered to be independent.
We first explain the intuition behind.

For example, adding an edge to a vertex from a degree-i block of size k
may only be possible if one also adds an edge to a vertex from a degree-(i− 1)
block—one vertex moves from the degree-i block to the degree degree-(i + 1)
block (causing it to be momentarily bad) and one moves from the degree-(i− 1)
block to the degree-i block and block i ends up with size k.

The idea now is to consider consecutive blocks where operations on one block
have influence on operations on the next block. Fortunately, the number of
operations influencing each other is upper-bounded by the total number s of
added edges.
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More formally, we use the concepts of “scope” and “chain”. Let B =
(b0, . . . , bd) be a general block sequence. The scope of a position z > s in B is
the sequence of positions (z − s, . . . , z). The scope fingerprint Fz of z is the
subsequence Fz := (bz−s, . . . , bz). Let (x1, . . . , xt) be a sequence of vertices. A
chain with respect to (x1, . . . , xt) is a pair (y, z) of positive integers with y < z
such that ∀i ∈ {y, . . . , z − 1} : ∃xj : xji > 0 (that is, every degree in the chain is
moved). A chain (y, z) is maximal if (y − 1, z) and (y, z + 1) are no chains.

Note that a chain has length at most s, that is, z − y ≤ s, because the total
number of added edges is at most s. That is, every (maximal) chain (y, z) is
“fully contained” in the scope of z.

We are now ready to formulate our most technical reduction rule which
upper-bounds the number of good blocks which are not empty. It will iteratively
mark positions in B corresponding to blocks that have to be kept and finally set
the entries in B at all non-marked positions to zero.

Reduction Rule 5. Let (B, k, t, s) be an instance of General Block Se-
quence Anonymization (VA) with B = (b0, . . . , bd).

1. Mark the positions 0, . . . , 2s.

2. Mark all positions i with ∃z : |z − i| ≤ s ∧ 0 < bz < k.

3. Iteratively do the following starting with j := 0.

(a) Find the next non-marked position z > j.

(b) Compute the scope fingerprint Fz and set j := z.

(c) If Fz has been computed before less than 2s2 + s times, then mark
positions z − s, . . . , z.

4. For each 0 ≤ i ≤ d, set b′i := bi if position i is marked, and b′i := 0
otherwise.

Return (B′ = (b′0, . . . , b
′
d), k, t, s).

Lemma 7. Reduction Rule 5 is correct.

Proof. The general idea of this rule is that, besides the first 2s blocks (which
are important because the old vertices and the new vertices can reside in them
at the end), and besides the chains corresponding to bad blocks, all other chains
can be used only in order to let the new vertices achieve some desired degree.
As we have only a limited number of such possible chains, and as they are used
only by the new vertices, we can upper-bound the number of such useful chains.

More formally, first, assume that there is a solution (x̄1, . . . , x̄t
′
), t′ ≤ t, such

that B′ ⊕ (x̄1, . . . , x̄t
′
) is k-anonymous. It is easy to verify that B ⊕ (x̄1, . . . , x̄t

′
)

is also k-anonymous.
Second, assume that there is a solution (x1, . . . , xt

′
), t′ ≤ t, such that

B ⊕ (x1, . . . , xt
′
) is k-anonymous. We show how to adjust (x1, . . . , xt

′
) to obtain

a solution (x̄1, . . . , x̄t
′
) such that B′⊕(x̄1, . . . , x̄t

′
) is k-anonymous. Intuitively, we
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show that every maximal chain (y, z) with respect to (x1, . . . , xt
′
) can either be

realized equivalently with respect to (x̄1, . . . , x̄t
′
) or else we show a replacement

ensuring k-anonymity.
We construct (x̄1, . . . , x̄t

′
) as follows. First, we initialize x̄j = (0, . . . , 0) of

the same length as xj for each 1 ≤ j ≤ t′. For each maximal chain (y, z) with
respect to (x1, . . . , xt

′
), we distinguish two cases:

Case 1. ∀i ∈ {y, . . . , z} : bi = b′i. We set x̄ji := xji for all j ∈ {1, . . . , t′},
i ∈ {y, . . . , z}, that is, this chain can be realized equivalently.

Case 2. ∃i ∈ {y, . . . , z} : bi ≥ k but b′i = 0. This is only possible because not
all positions between y and z have been marked by the reduction rule.
Hence, the scope fingerprint Fz of z must have been computed more than
2s2 + s times before.

In the following, we say that the scope of z is touched by a sequence of
vertices (x1, . . . , xt

′
) if ∃j ∈ {1, . . . , t′} : ∃i ∈ {z − s, . . . , z} : xji > 0.

We show that there is at least one position z′ with fingerprint Fz′ = Fz
whose scope is neither touched by (x1, . . . , xt

′
) nor by (x̄1, . . . , x̄t

′
) as

constructed so far. Note that each edge touches at most s + 1 scopes
(as each scope is basically an interval of size s). Moreover, there are
at most s edges in (x1, . . . , xt) and, until now, at most s − 1 (possibly
different) edges in (x̄1, . . . , x̄t) have been introduced. Altogether, at most
(2s−1)·(s+1) = 2s2+s−1 scopes (with any fingerprint) have been touched.
In particular, there is one scope (z′ − s, . . . , z′) with scope fingerprint Fz
that is not touched so far by (x̄1, . . . , x̄t) and that is also not touched by
(x1, . . . , xt).

Finally, we use the scope of z′ to realize (y, z) by setting x̄ji−z+z′ := xji for
all j ∈ {1, . . . , t′}, i ∈ {y, . . . , z}.

By construction of (x̄1, . . . , x̄t
′
), the number of newly added edges is

t′∑
j=1

δ(x̄j) =

t′∑
j=1

δ(xj).

More precisely, it even holds that the degrees of the newly introduced vertices
remain unchanged, that is,

∀j ∈ {1, . . . , t} : δ(x̄j) = δ(xj).

Now, let B̂ := (b̂0, . . . , b̂d) = B′ ⊕ (x̄1, . . . , x̄t
′
) and B̌ := (b̌0, . . . , b̌d) =

B ⊕ (x1, . . . , xt
′
). It remains to show that B̂ is k-anonymous. To this end,

consider an arbitrary index h in B̂.

Case 1. h is neither in a maximal chain with respect to (x1, . . . , xt
′
) nor with

respect to (x̄1, . . . , x̄t
′
). By construction of (x̄1, . . . , x̄t

′
), this solution

introduces the same number of new vertices with degree h as the solution
(x1, . . . , xt

′
) does. Thus, b̂h = b̌h and (b̌h = 0) ∨ (b̌h ≥ k).
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Case 2. h is in a maximal chain (y, z) with respect to (x1, . . . , xt
′
), and in

a maximal chain (y′, z′) with respect to (x̄1, . . . , x̄t
′
). By construction

of (x̄1, . . . , x̄t
′
), it holds that y′ = y, z′ = z, and ∀j ∈ {1, . . . , t′} : ∀i ∈

{y, . . . , z} : x̄ji := xji . Furthermore, (x̄1, . . . , x̄t
′
) introduces the same

number of new vertices with degree h as (x1, . . . , xt
′
) does. Hence, b̂h = b̌h

and (b̌h = 0) ∨ (b̌h ≥ k).

Case 3. h is in a maximal chain (y, z) with respect to (x1, . . . , xt
′
), but not in

a maximal chain with respect to (x̄1, . . . , x̄t
′
). We claim that δ(xj) 6= h

(and thus, also δ(x̄j) 6= h) holds for all j ∈ {1 . . . , t′}, and prove this as
follows. Assume towards a contradiction that there is a new vertex xj with
degree δ(xj) = h. Then, h ≤ s. However, all positions up to 2s have been
marked in Step 1 of the reduction rule. In particular, all positions between y
and z have been marked and, hence, by construction of (x̄1, . . . , x̄t

′
) the

pair (y, z) would also be a maximal chain with respect to (x̄1, . . . , x̄t
′
). This

contradicts the assumption of Case 3, and hence z > 2s and h > s, and
there is no new vertex with degree h. Analogously, h does not correspond
to a bad block because then all positions between y and z would have been
marked in Step 2 of the reduction. Thus, b̂h = b′h and (b′h = 0) ∨ (b′h ≥ k).

Case 4. h is not in a maximal chain with respect to (x1, . . . , xt
′
), but in a

maximal chain (ȳ, z̄) with respect to (x̄1, . . . , x̄t
′
). This is only possible

if there is a position z with the same scope fingerprint as z′ such that
(z − (z̄ − ȳ), z) is a maximal chain with respect to (x1, . . . , xt

′
) and

∀j ∈ {1, . . . , t′} : ∀i ∈ {ȳ, . . . , z̄} : x̄ji := xji−z̄+z.

Furthermore, neither (x1, . . . , xt
′
) nor (x̄1, . . . , x̄t

′
) introduce new vertices

with degree h because all positions up to 2s have been marked in Step 1
of the reduction, and hence, z > 2s. That is, b̂h = b̌h−z̄+z and (b̌h−z̄+z =
0) ∨ (b̌h−z̄+z ≥ k).

Hence, B̂ is indeed k-anonymous.

It remains to upper-bound the largest degree by some function in s. To this
end, observe the following with respect to high-degree blocks. First, by adding
at most s edges, no new vertex can end up in a block of vertices with degree
larger than s. Second, by adding some vertices and at most s edges, we cannot
decrease the degree of any original vertex and we can only increase the degree of
an original vertex by at most s.

Based on the observations above, we introduce the concept of “high-degree
large gaps” as follows. Let (B = (b0, . . . , bd), k, t, s) be an instance of General
Block Sequence Anonymization (VA). We say that a pair of positive
integers (`, r) describes a high-degree large gap of B if

• s < ` < r,

• r − ` > s, and
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• ∀i ∈ {`, . . . , r} : bi = 0.

Our final reduction rule shrinks the high-degree large gaps in a general block
sequence.

Reduction Rule 6. We transform an instance (B, k, t, s) of General Block
Sequence Anonymization (VA) with some high-degree large gap (`, r) in B, to
the instance (B′, k, t, s), where B′ is constructed from B by removing the entries
b`+s, . . . , br.

Lemma 8. Reduction Rule 6 is correct.

Proof. The general idea of this rule is that the size of any such high-degree large
gap can be reduced, as no vertex can cross-over this gap.

More formally, we first observe that the entries b`+s, . . . , br are all 0-entries
in B. Moreover, in any Bj := B ⊕ (x1, . . . , xj), inserting at most s edges to B,
these entries b`+s, . . . , br are all 0-entries.

First, assume that there is a solution (x1, . . . , xt
′
), t′ ≤ t, such that B ⊕

(x1, . . . , xt
′
) is k-anonymous. Then, obtain x̄j from xj by removing the entries

xj`+s, . . . , x
j
r for each 1 ≤ j ≤ t′. (Note that these entries must be 0-entries.) It

is easy to verify that B′ ⊕ (x̄1, . . . , x̄t
′
) is k-anonymous.

Second, assume that there is a solution (x̄1, . . . , x̄t
′
) such that B′⊕(x̄1, . . . , x̄t

′
)

is k-anonymous. Then, obtain xj from x̄j by inserting r− `− s 0-entries between
x̄j`−1 and x̄j` . It is easy to verify that B ⊕ (x1, . . . , xt

′
) is k-anonymous.

For proving Lemma 2, it remains to show that the above reduction rules
indeed yield a problem kernel with respect to s.

Proof (of Lemma 2). Let I := (B, k, t, s) be an arbitrary General Block
Sequence Anonymization (VA) instance. Our kernelization algorithm first
applies to I Reduction Rules 1, 2, and 3, in that order. Let I ′ := (B′, k′, t′, s)
be the instance achieved after that. Clearly, we have k′ ∈ O(s), maxi b

′
i ≤

k′ + s ∈ O(s), and also t′ ≤ k′ + 2s ∈ O(s). Thus, all numbers in I ′ are
upper-bounded by s. In order to upper-bound the maximum degree in s, we
apply Reduction Rules 4 and 5 once, and Reduction Rule 6 exhaustively to I ′.
We denote the resulting instance by I ′′ := (B′′, k′, t′, s). After application of
Reduction Rule 4, I ′′ either is a constant-size no-instance, or B′′ contains at
most 3s bad blocks. Now, consider the number of marked positions in each
step of Reduction Rule 5. In Step 1, we mark 2s+ 1 positions. Step 2 marks
at most 3s(2s + 1) positions, whereas in Step 3 we mark at most (2s2 + s)s
positions for each possible scope fingerprint. The number of possible scope
fingerprints is (maxi b

′
i + 1)s ∈ sO(s). Thus, the total number of non-zero blocks

in B′′ is bounded by a function in s. Finally, after exhaustive application of
Reduction Rule 6 there are no more large-degree gaps in B′′, hence, the number
of degree-zero blocks in B′′ is at most s times the number of non-zero blocks,
which is again bounded in s. The correctness is guaranteed by Lemmas 4 to 8.
Clearly, this process can be done in linear time since each reduction rule is
applied at most a linear number of times and runs in linear time. The size of the
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kernel is governed by the number of possible chains, therefore upper-bounded by
sO(s). Finally, since each reduction rule can be carried in polynomial time, it
follows that the kernelization can be performed in polynomial time.

5. Conclusion

Table 1 in the introductory section overviews most of our results and leaves
several specific open questions. Moreover, it is fair to say that our positive
algorithmic results are basically of classification nature only and require further
improvement for practical relevance. Indeed, a more holistic approach in terms
of a full-fledged multivariate complexity analysis [15, 30], perhaps also driven
by the analysis of real-world network data characteristics, may help to derive
practically useful algorithmic results. A deeper investigation of approximation
algorithms (cf. [8, 9]) may be beneficial as well. Finally, typical social network
properties such as measured by the clustering coefficient or the average path
length are studied in experimental work [8], but the computational complexity of
Π-Preserving Degree Anonymization (VA) with respect to these properties
is unexplored so far.
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