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Abstract

To make a joint decision, agents (or voters) are often required to provide their prefer-
ences as linear orders. To determine a winner, the given linear orders can be aggregated
according to a voting protocol. However, in realistic settings, the voters may often only
provide partial orders. This directly leads to the POSSIBLEWINNER problem that asks,
given a set of partial votes, whether a distinguished candidate can still become a win-
ner. In this work, we consider the computational complexityof POSSIBLEWINNER for
the broad class of voting protocols defined by scoring rules.A scoring rule provides a
score value for every position which a candidate can have in alinear order. Prominent
examples include plurality,k-approval, and Borda. Generalizing previous NP-hardness
results for some special cases, we settle the computationalcomplexity for all but one
scoring rule. More precisely, for an unbounded number of candidates and unweighted
voters, we show that POSSIBLEWINNER is NP-complete for all pure scoring rules ex-
cept plurality, veto, and the scoring rule defined by the scoring vector(2, 1, . . . , 1, 0),
while it is solvable in polynomial time for plurality and veto.

Key words: Voting systems, NP-hardness,k-approval, partial votes, incomplete
information

1. Introduction

Voting scenarios arise whenever the preferences of different parties (voters) have
to be aggregated to form a joint decision. This is what happens in political elections,
group decisions, web site rankings, or multiagent systems.Often, the voting process is
executed in the following way: each voter provides his preference as a ranking (linear
order) of all the possible alternatives (candidates). Given these rankings as an input,
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a voting ruleproduces a subset of the candidates (winners) as an output. However,
in realistic settings, the voters may often only provide partial orders (or partial votes)
instead of linear ones: For example, it might be impossible for the voters to provide
a complete preference list because the set of candidates is too large, as it is the case
for web page ranking. In addition, not all voters might have given their preferences
yet during the aggregation process, or new candidates mightbe introduced after some
voters already have given their rankings. Moreover, one often has to deal with partial
votes due to incomparabilities: for some voters it might notbe possible to compare
two candidates or certain groups of candidates, be it because of lack of information
or due to personal reasons. Hence, the study of partial voting profiles is natural and
essential. One question that immediately comes to mind is whether any information on
a possible outcome of the voting process can be given in the case of incomplete votes.
More specifically, in this paper, we study the POSSIBLE WINNER problem: Given a
partial order for each of the voters, can a distinguished candidatec win for at least one
extension of the partial orders into linear ones?

Of course, the answer to this question depends on the voting rule that is used. In
this work, we will stick to the broad class ofscoring rules. A scoring rule provides
a score value for every position that a candidate can take within a linear order, given
as ascoring vectorof lengthm in the case ofm candidates. The scores of the can-
didates are then added over all votes and the candidates withthe highest score win.
Famous examples are Borda, defined by the scoring vectors(m − 1, m − 2, . . . , 0)
and k-approval, defined by(1, . . . , 1, 0, . . . , 0) starting withk ones. Two relevant
special cases ofk-approval are plurality, defined by(1, 0, . . . , 0), and veto, defined
by (1, . . . , 1, 0). Typically, k-approval can be used in political elections whenever
the voters can express their preference fork candidates within the set of all candi-
dates. Another example is the Formula 1 scoring, which untilthe year 2009 used
the scoring rule defined by the vector(10, 8, 6, 5, 4, 3, 2, 1, 0, . . . , 0) and since 2010
uses(25, 18, 15, 12, 10, 8, 6, 4, 2, 1, 0, . . . , 0).

The study of the computational complexity of voting problems is an active area of
research (see the surveys [9, 19]). The POSSIBLEWINNER problem was introduced by
Konczak and Lang [26] and has been further investigated since then for many types of
voting systems [7, 27, 31, 33, 34]. Note that the related NECESSARYWINNER problem
(Given a set of partial orders, does a distinguished candidatec win for every extension
of the partial orders into linear ones?) can be solved in polynomial time for all scoring
rules [34]. A prominent special case of POSSIBLE WINNER is MANIPULATION (see
e.g. [8, 13, 25, 36, 37]). Here, the given set of partial orders consists of two subsets; one
subset contains linearly ordered votes and the other one completely unordered votes.
Clearly, all NP-hardness results would carry over from MANIPULATION to POSSIBLE

WINNER. However, whereas the case ofweighted votersis settled by a full dichotomy
for MANIPULATION for scoring rules [25], so far, forunweighted voterswe are only
aware of one NP-hardness result for a specially constructedscoring rule [35]. Indeed,
the NP-hardness of MANIPULATION for Borda is a prominent open question [35, 36].
There are NP-hardness results for MANIPULATION in the unweighted voter case for
several common voting rules which are not scoring rules [20,21, 36]. Another closely
related problem is PREFERENCEELICITATION (see e.g. [11, 12]). Here, the idea is to
avoid that each voter has to report his whole preference list, but to ask only for some
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part of the information that suffices to determine a winner.
Now, let us briefly summarize the known results for POSSIBLEWINNER for scoring

rules. Correcting Konczak and Lang [26] who claimed polynomial-time solvability for
all scoring rules, Xia and Conitzer [34] provided NP-completeness results for a class of
scoring rules, more specifically, for all scoring rules thathave four “equally decreasing
score values” followed by another “strictly decreasing score value”; we will provide
a more detailed discussion later. Betzler et al. [7] studiedthe multivariate complexity
of POSSIBLE WINNER for scoring rules and other types of voting systems, providing
an NP-hardness proof fork-approval in case of only two partial votes. However, this
NP-hardness result holds only ifk is part of the input and does not carry over for fixed
values ofk. Furthermore, whereas the corresponding many-one reduction relies on two
partial votes, the construction used in this work makes use of an unbounded number of
partial votes and thus is completely different.

Until now, the computational complexity of POSSIBLE WINNER was still open for
a large number of naturally appearing scoring rules. One such open case has beenk-
approval for small values ofk which is motivated as follows. A common way of voting
for a board consisting of a small number, for example, of five members, is that every
voter awards one point each to five of the candidates (5-approval). A second example
is given by voting systems in which each voter is allowed to specify a (small) group of
favorites and a (small) group of most disliked candidates. As final example, we mention
scoring rules that have decreasing differences between successive score values as, for
example, the scoring vector(2m, 2m−1, . . . , 0).

This work aims at a computational complexity dichotomy forpure scoring rules.
The class of pure scoring rules covers all of the common scoring rules. It only consti-
tutes some restrictions in the sense that for different numbers of candidates the corre-
sponding scoring vectors cannot be chosen completely independently (see Section 2).
Our results can also be extended to broad classes of “non-pure” scoring rules, see Sec-
tion 7. Altogether, we settle the computational complexityof POSSIBLE WINNER for
all pure scoring rules except the scoring rule defined by(2, 1, . . . , 1, 0). For plural-
ity and veto, we provide polynomial-time algorithms whereas for the remaining cases
we show NP-completeness. Surprisingly, this includes the NP-hardness of POSSIBLE

WINNER even for2-approval. Our NP-hardness result for 2-approval has also been
used to settle the complexity of the SWAP BRIBERY problem [16].

2. Preliminaries

Let C = {c1, . . . , cm} be the set ofcandidates. A vote is a linear order (i.e., a
transitive, antisymmetric, and total relation) onC. An n-voter profileP on C con-
sists ofn votes(v1, . . . , vn) on C. A voting ruler is a function from the set of all
profiles onC to the power set ofC, that isr(P ) denotes the set of winners.(Posi-
tional) scoring rulesare a special kind of voting rules. They are defined by scoring
vectors−→α = (α1, α2, . . . , αm) with integersα1 ≥ α2 ≥ · · · ≥ αm, thescore values.
More specifically, we define that a scoring ruler consists of a sequence of scoring vec-
torss1, s2, . . . such that for anyi ∈ N>0 there is a scoring vectorsi for i candidates
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which can be computed in time polynomial ini.2 Here, we focus our attention onpure
scoring rules, that is for everyi ≥ 2, the scoring vector fori candidates can be obtained
from the scoring vector fori − 1 candidates by inserting an additional score value at
an arbitrary position (respecting the described monotonicity). This definition includes
all of the common protocols like Borda ork-approval. We further assume thatαm = 0
and that there is no integer greater than one that divides allscore values. This does not
constitute a restriction since for every other voting system there must be an equivalent
one that fulfills these constraints [25, Observation 2.2]. Moreover, we only consider
non-trivial scoring rules, that is, scoring rules withα1 6= 0 for scoring vectors of every
size.

For a votev ∈ P and a candidatec ∈ C, let thescores(v, c) be defined bys(v, c) :=
αj wherej is the position ofc in v. For any profileP = {v1, . . . , vn}, let s(P, c) :=∑n

i=1 s(vi, c). Whenever it is clear from the context whichP we refer to, we will just
write s(c). A scoring rule selects all candidatesc as winners with maximums(P, c)
over all candidates.

A partial voteon C is a transitive and antisymmetric relation onC. We use>
to denote the relation given between candidates in a linear order and≻ to denote the
relation given between candidates in a partial vote. Sometimes, we specify a whole
subset of candidates in a partial vote, e.g.,e ≻ D for a candidatee ∈ C and a subset
of candidatesD ⊆ C. Unless stated otherwise, this notation means thate ≻ d for
all d ∈ D and there is no specified order among the candidates inD. In contrast,
writing e > D in a linear order means thate > d1 > · · · > dl for an arbitrary but fixed
order ofD = {d1, . . . , dl}. A linear orderv′ extendsa partial votev if v ⊆ v′, that
is, for anyi, j ≤ m, from ci ≻ cj in v it follows thatci > cj in v′. Given a profile of
partial votesP = (v1, . . . , vn) on C, a candidatec ∈ C is apossible winnerif there
exists an extensionP ′ = (v′1, . . . , v

′
n) such that eachv′i extendsvi andc ∈ r(P ′). The

corresponding decision problem is defined as follows.

POSSIBLE WINNER

Given: A set of candidatesC, a profile of partial votesP = (v1, . . . , vn)
onC, and a distinguished candidatec ∈ C.
Question: Is there an extension profileP ′ = (v′1, . . . , v

′
n) such that eachv′i

extendsvi andc ∈ r(P ′) ?

This definition allows that multiple candidates obtain the maximal score and we end
up with a whole set of winners. If the possible winnerc has to be unique, one speaks
of a possibleunique winner, and the corresponding decision problem is defined analo-
gously. All our results hold for both cases.

Several of our NP-hardness proofs rely on reductions from the NP-complete EX-
ACT COVER BY 3-SETS (X3C) problem [24] defined as follows. Given a set of el-
ementsE = {e1, . . . , eq}, a family of subsetsS = {S1, . . . , St} with |Si| = 3 and
Si ⊆ E for 1 ≤ i ≤ t, it asks whether there is a subsetS′ ⊆ S such that for every ele-
mentej ∈ E there is exactly oneSi ∈ S′ with ej ∈ Si. In our NP-hardness proofs we

2For scoring rules that are defined for a constant number of candidates, the POSSIBLEWINNER problem
can be decided in polynomial time, see [13, 33].
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Scoring rule Result

Plurality and Veto in P Proposition 1, Section 4
different-type NP-c (X3C) Theorem 1, Section 5
equal-type NP-c (MC/X3C) Theorem 2, Lemmata 3 – 6, Section 6.1
α1 > α2 = αm−1 > 0 NP-c (X3C) Theorem 4, Section 6.2

andα1 6= 2 · α2

(2, 1, . . . , 1, 0) ?

Table 1: Overview of results and outline of the work. Basically, we partition the scoring rules into five
different types according to the types of algorithms or many-one reductions that are used to achieve the
results. By “different-type” we denote all scoring vectorswith an unbounded number of different score
values. By “equal-type” we denote all scoring vectors with an unbounded number of equal score values if not
listed explicitly in another type. Reductions are from EXACT COVER BY 3-SETS(X3C) or MULTICOLORED

CLIQUE (MC).

need to describe the consequence of extending partial votesfor specific candidates. To
this end, we say that a candidateci is shifted to the left (right)by another candidatecj

when adding the constraintci ≻ cj (cj ≻ ci) to a partial vote.
In some of our theorems, we will need functions that map each instance of a certain

problemP to some natural number and in some sense behave like a polynomial. For
this sake, we call

f : {I | I is an instance ofP} → N
apoly-type function forP if the function valuef(I) is bounded by a polynomial in|I|
for every input instanceI of P .

3. General strategy

This work aims at providing a dichotomy for POSSIBLE WINNER for practically
relevant scoring rules. To this end, we will show the following.

Theorem. POSSIBLE WINNER is NP-complete for all non-trivial pure scoring rules
except plurality, veto, and scoring rules for which there isa constantz such that
the produced scoring vector is(2, 1, . . . , 1, 0) for every number of candidates greater
thanz. For plurality and veto,POSSIBLE WINNER is solvable in polynomial time.

The proof consists of several parts, see Table 1 for an overview. The polynomial
time results for plurality and veto are based on flow computations. Regarding the
NP-hardness results, we give many-one reductions that workfor scoring rules that
produce specific “types of scoring vectors” for an appropriate number of candidates.
We combine the single results to obtain the main result in Section 7. To this end, we
have to take into account that, in general, a scoring rule might produce different types
of scoring vectors for different numbers of candidates.

The basic observation to classify the scoring vectors is that a scoring vector of
unbounded size must have an unbounded number of different score values or an un-
bounded number of equal score values. This leads to the following strategy. First,
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we show NP-hardness for all scoring vectors having an unbounded number of differ-
ent score values. To this end, we generalize a many-one reduction due to Xia and
Conitzer [34]. Second, we deal with scoring vectors having an unbounded number
of equal score values. Here, we consider two subcases, i.e.,scoring vectors of type
α1 > α2 = αm−1 > 0 but α1 6= 2 · α2, and all remaining scoring vectors with an
unbounded number of equal score values.

Before stating the specific results, we give a construction scheme that is used in all
many-one reductions in this work.

3.1. A General Scheme to Construct Linear Votes

In all many-one reductions presented in this work, one constructs a partial profileP
consisting of a set of linear ordersV l and a set of partial votesV p. The position
of the distinguished candidatec is already determined in every vote fromV p, that
is, s(P ′, c) is the same in every extensionP ′ and thus is fixed. The “interesting” part
of the reductions is given by the partial votes ofV p in combination with upper bounds
for the scores which the non-distinguished candidates can make in V p. For every
candidatec′ ∈ C\{c}, themaximum partial scoresmax

p (c′) is the maximum number
of pointsc′ may make inV p without beatingc in P . More precisely, for the unique
winner case,smax

p (c′) = s(P ′, c) − s(V l, c′) − 1 and, for the winner case,smax
p (c′) =

s(P ′, c) − s(V l, c′) for any extensionP ′ of P . Since the maximum partial scores can
be adjusted to the unique and to the winner case, all results hold for both cases.

In the following, we show that for all our reductions, there is an easy way to cast
the linear votes such that the maximum partial scores that are required in the reductions
arerealized. For every many-one reduction of this work, it will be easy toverify that
the underlying partial profile fulfills the following two properties.3

Property 1 There is a “dummy” candidated which cannot beat the distin-
guished candidate in any extension, that is,smax

p (d) ≥ α1 ·|V p|.

Property 2 For everyc′ ∈ C\{c}, the maximum partial scoresmax
p (c′)

can be written as a sum of at most|V p| integers from{α1, . . . , αm}. For-
mally, the definition ofsmax

p (c′) will be of the formsmax
p (c′) =

∑m
j=1 nj αj

wherenj ∈ N0 denotes how often the score valueαj is added. We will
always have that

∑m
j=1 nj ≤ |V p|, that is, the total number of summands

is at most the number of partial votes.

The sets of linear votes which are necessary for the reductions given in this paper
can be obtained according to the following lemma.

Lemma 1. Given a scoring ruler, a set of candidatesC with distinguished candi-
datec ∈ C, a set of partial votesV p in which c is fixed, andsmax

p (c′) for all c′ ∈
C\{c}, a set of linear votes that realizes the maximum partial scores for all candidates
can be constructed in time polynomial in|V p| andm if Properties 1 and 2 hold.

3The only exception appears in the proof of Theorem 4 and will be discussed there.
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v1 : c1 > c2 > . . . > cm−1 > cm

v2 : c2 > c3 > . . . > cm > c1

...
...

...
...

...
...

vm−1 : cm−1 > cm > . . . > cm−3 > cm−2

vm : cm > c1 > . . . > cm−2 > cm−1

Figure 1: Circular block forc1, c2 . . . , cm

PROOF. We are interested in “setting” relative score difference between the distin-
guished candidatec and every other candidate. By inserting one linear order we change
the relative score difference betweenc and all other candidates. To be able to change
the relative score difference only forc and one specific candidate while keeping the rel-
ative score difference ofc and all other candidates, we will buildV l by sets of circular
shifts instead of single votes. More precisely, for a set of candidates{c1, c2, . . . , cm} ,
acircular blockconsists ofm linear orders as given in Figure 1. Clearly, all candidates
have the same score within a circular block.

We start with the construction for the winner case and then explain how to adapt
it for the unique winner case. For the winner case (smax

p (c′) = s(P ′, c) − s(V l, c′)
for any extensionP ′), for each candidatec′ ∈ C\{c, d} whered denotes a dummy as
specified in Property 1, add the following votes to the set of linear votesV l. For each
nj 6= 0 as specified in Property 2, constructnj circular blocks overC such that in
one of the linear orders of every block,c′ sits on positionj andd sits on positionm.
Exchange the places ofc′ and d in this linear order and add the modified circular
block to V l. Then, for one block,c′ has lostαj points and gainedαm = 0 points
relative toc. Thus, in total, one has the situation thatc andc′ have exactly the same
score ifc′ makessmax

p (c′) points inV p. This settles the winner case. For the unique-
winner case, we additionally decrease the score ofc′ by the minimum of{αi −αj |
αi > αj andi, j ∈ {1, 2, . . . , m}}. This can be achieved by adding a circular block
such that in one of the linear orders of the block,c′ sits on positionαi andd sits on
positionαj , and by exchanging the places ofc′ andd in this linear order. Then,c
beatsc′ if c′ makes at mostsmax

p (c′) points inV p andc′ beatsc, otherwise.
Altogether, due to Property 2, we add at most|V p| summands for each candidate.

Hence, so far, the number of linear votes is bounded bym2 · (|V p| + 1) and can be
constructed in polynomial time. It remains to adjust the maximum partial score ofd.
Until now, we added at mostm · (|V p| + 1) circular blocks. Thus,d can make at most
α1 ·m · |V p| points more thanc. By addingm(|V p|+ 1)+ |V p| further circular blocks
for candidates fromC\{d} that are inserted in the firstm − 1 positions, whiled is put
on the last position in these votes,smax

p (d) can be realized in polynomial time. 2

4. Plurality and Veto

Employing network flows turned out to be useful to design algorithms for several
voting problems (see e.g. [17, 18]). Here, by using some flow computations very simi-
lar to [7, Theorem 6], we show the following.
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v4

v1 a

b

d
1

1
1

1

1
1

1
s(c) − 11

1

v5

s(c) − 1

t

s(c) − 1

s

v1 : a ≻ c ≻ d, b ≻ c
v2 : c ≻ a ≻ b ⇒ c > a > b > d
v3 : a ≻ d ≻ b ⇒ c > a > d > b
v4 : a ≻ b ≻ c
v5 : a ≻ c, b ≻ d

Figure 2: POSSIBLE WINNER for plurality: The left-hand side shows an example for an election and the
right-hand side the corresponding flow network. The votesv2 andv3 can be extended such thatc takes the
first position. The position of the remaining candidates in theses votes is not relevant; one possibility how to
extend these votes is shown in the picture.

Proposition 1. POSSIBLEWINNER can be solved in polynomial time for plurality and
veto.

PROOF. First, we give an algorithm for plurality. LetP on C denote a POSSIBLE

WINNER-instance with distinguished candidatec. Clearly, it is safe to setc to the
first position in all votes in which this is possible. Then thescore ofc is fixed at the
maximum possible value. We denote the partial votes ofP in which the first position is
not taken byc asP1. Now, we can model the problem as network flow as follows (see
Figure 2): The flow network consists of a source nodes, a target nodet, one node for
every vote ofP1, and one node for every candidate fromC\{c}. There are three layers
of arcs:

1. an arc froms to every node corresponding to a vote inP1 with capacity one,
2. an arc from a node corresponding tovj ∈ P1 to a node corresponding to a

candidatec′ ∈ C\{c} with capacity one if and only ifc′ can take the first position
in an extension ofvj , and

3. an arc from every node corresponding toc′ ∈ C\{c} to targett with capac-
ity s(c) − 1.

Now, c is a possible winner if and only if there is a flow of size|P1|: The first layer
simulates that the first position of every partial vote fromP1 has to be taken, the second
layer that it can only be taken by appropriate candidates, and the last one that the score
of every candidate will be lower than the score ofc. Clearly, the flow network can be
constructed in time polynomial in|P1| and an integral flow computation can be done
in polynomial time [14].

For veto, we first fixc at the best (leftmost) possible position in every vote. This
fixes the maximum score ofc. Then for every candidatec′ ∈ C \ {c}, let z(c′) denote
the minimum number of last positions thatc′ must take such that it does not beatc.
Let P1 denote the set of partial votes in whichc does not take the last position. Again,
we model the problem by a flow network with source nodes, target nodet, one node
for every candidate fromC\{c}, and one node for every vote ofP1. The arcs are as
follows:

1. an arc froms to every node corresponding toc′ ∈ C\{c} with capacityz(c′),
2. an arc from a node corresponding toc′ ∈ C\{c} to a node corresponding tovj ∈

P1 with capacity one if and only ifc′ can take the last position in an extension
of vj , and
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3. an arc from every node corresponding tovj ∈ P1 to targett with capacity1.

By similar arguments as for plurality, it follows thatc is a possible winner if and only
if there is a flow of size

∑
c′∈C\{c} z(c′). 2

5. An unbounded number of positions with different score values

Xia and Conitzer [34] developed a many-one reduction from EXACT COVER BY

3-SETS showing that POSSIBLE WINNER is NP-complete for any scoring rule with
scoring vectors which contain four consecutive, “equally decreasing” score values, fol-
lowed by another strictly decreasing score value. Using some additional gadgetry, we
extend their proof to work for scoring vectors with an unbounded number of different,
not necessarily equally decreasing score values.

We start by describing the basic idea employed in [34] (usinga slightly modified
construction). Given an X3C-instance(E,S), construct a partial profileP := V l ∪V p

on a set of candidatesC whereV l denotes a set of linear orders andV p a set of partial
votes. To describe the basic idea, assume that there is a scoring vector withα1 > α2

and and the differences between the four following score values areequally decreasing,
that is,α2 −α3 = α3 −α4 = α4 −α5. Then,C := {c, x, w} ∪ E whereE is the
universe from the X3C-instance. The distinguished candidate is c. The candidates
whose element counterparts belong to the setSi are denoted byei1, ei2, ei3. The partial
votesV p consist of one partial votevp

i for everySi ∈ S which is given by

x ≻ ei1 ≻ ei2 ≻ ei3 ≻ C′, w ≻ C′

with C′ := C\{x, ei1, ei2, ei3, w}. Note that invp
i , the positions of all candidates

exceptw, x, ei1, ei2, ei3 are fixed. More precisely,w has to be inserted between posi-
tions1 and5 maintaining the partial orderx ≻ ei1 ≻ ei2 ≻ ei3. By setting the linear
votes, the maximum partial scores are realized such that thefollowing three conditions
hold.

• For everyelement candidatee ∈ E one has the following. Insertingw behinde
in two partial votes has the effect thate would beatc, whereas whenw is inserted
behinde in at most one partial vote,c still beatse (Condition 1). Note thate may
occur in several votes at different positions, e.g.e might be identical withei1

andej3 for i 6= j. However, due to the condition of “equally decreasing” scores,
“shifting” e increases its score by the same value in all of the votes.

• The maximum partial score ofx is set such that if takes more than|V p| − |E|/3
times the first position, then it would beatc. That is,w must be inserted beforex
at least|V p| − |E|/3 times (Condition 2).

• We setsmax
p (w) = (|V p| − |E|/3) · α1 +|E|/3 · α5. This implies that ifw

is inserted beforex in |V p| − |E|/3 votes, then it must be inserted at the last
possible position, that is, position5, in all remaining votes (Condition 3).

Having an exact 3-cover for(E,S), extend the partial votes as follows.
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vp
i : x > ei1 > ei2 > ei3 > w > . . . if Si is in the exact 3-cover

vp
i : w > x > ei1 > ei2 > ei3 > . . . if Si is not in the exact 3-cover.

Then, every element candidatee is shifted exactly once (invp
i for e ∈ Si, if Si is in

the exact 3-cover) and thus is beaten byc. It is easy to verify thatc beatsw andx as
well. In a yes-instance for(C, P, c), it follows directly from Condition 2 and 3 thatw
must have the position5 in exactly|E|/3 votes and the first position in all remaining
partial votes. Since there are|E|/3 partial votes such that three element candidates are
shifted in each of them, due to Condition 1, every element candidate must appear in
exactly one of these votes. Hence,c is a possible winner inP if and only if there exists
an exact 3-cover ofE.

By inserting further candidates, one can pad the construction such that is also works
if the equally decreasing score differences appear at otherpositions [34]. Now, we
consider the situation in which no such equally decreasing score differences appear
at all. More precisely, we show how to extend the reduction toscoring vectors with
strictly, but not equally decreasing scoring values. The problem we encounter is the
following: By sending candidatew to the last possible position in the partial votevp

i ,
each of the candidatesei1, ei2, ei3 improves by one position and therefore improves
its score by the difference given between the correspondingpositions. In [34], these
differences all had the same value, but now we have to deal with varying differences.
Since the same candidatee ∈ E may appear in several votes at different positions,
e.g. e might be identical withei1 and ej3 for i 6= j, it is not clear how to set the
maximum partial score ofe. Basically, to cope with this situation, we construct three
partial votesv1

i , v2
i , and v3

i for every setSi ∈ S and permute the positions of the
candidatesei1, ei2, ei3 such that each of them takes a different position inv1

i , v2
i , v3

i .
For example:

v1
i : · · · ≻ x ≻ ei1 ≻ ei2 ≻ ei3 ≻ . . .

v2
i : · · · ≻ x ≻ ei2 ≻ ei3 ≻ ei1 ≻ . . .

v3
i : · · · ≻ x ≻ ei3 ≻ ei1 ≻ ei2 ≻ . . . .

In this way, if the candidatew is sent to the last possible position in all three partial
votes of a setSi, each of the candidatesei1, ei2, ei3 improves its score by the same
value. We only have to guarantee that wheneverw is sent back in the partial votev1

i ,
then it has to be sent backv2

i andv3
i as well. This is realized by a gadget construction,

which is the main technical contribution of the following theorem.

Theorem 1. An X3C-instanceI can be reduced to aPOSSIBLE WINNER-instance for
a scoring rule which produces a scoring vector havingf(I) positions with different
score values. A suitable poly-type functionf can be computed in polynomial time.

PROOF. Given an X3C-instance(E,S) with S = {S1, . . . , St} andSi = {ei1, ei2, ei3}
for i ∈ {1, . . . , t}, construct a partial profileP onC as follows. The set of candidates
is defined asC := {x, w, c} ⊎ E ⊎ D12 ⊎ D13 ⊎ L (where⊎ denotes the disjoint
union), whereE is the set of candidates that represent the elements of the universe of
the X3C-instance,D12 := {d1, . . . , dt, h1, . . . , ht}, D13 := {d′1, . . . , d

′
t, h

′
1, . . . , h

′
t},

and L := {l1, . . . , lt}. We definef ((E,S)) := |C|. To ease the presentation,
we first assume that we have a strictly decreasing scoring vector of sizef ((E,S))
and describe how to generalize this at the end of the proof. The partial profile con-
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smax
p (w) = (3t − q) · α1 +q · α5+2t

smax
p (x) = q · α1 +(3t − q) · α2

∀e ∈ E smax
p (e) = (α2 + α3 + α4) + (ne − 1) · (α3 + α4 + α5) + fixed(e)

∀di smax
p (di) = q/3 · α4+i +(t − q/3) · α5+i + fixed(di)

∀hi smax
p (hi) = q/3 · α4+i +(t − q/3) · α5+i + fixed(hi)

∀d′i smax
p (d′i) = q/3 · α4+i+t +(t − q/3) · α5+i+t + fixed(d′i)

∀h′
i smax

p (h′
i) = q/3 · α4+i+t +(t − q/3) · α5+i+t + fixed(h′

i)
∀li smax

p (li) = 2t · α1 + fixed(li)

Table 2: Maximum partial scores. Recall thatt = |S|, q = |E|, andne = |{Si ∈ S | e ∈ Si}|.

sists of a set of partial votesV p and a set of linear votesV l. The partial votes are
V p := {v1

i , v2
i , v3

i | 1 ≤ i ≤ t} with,

for 1 ≤ i ≤ t − 1,
v1

i : x ei1 ei2 ei3 d1 . . . di hi+1 . . . ht d′1 . . . d′i h′
i+1 . . . h′

t ≻ C1
i , w ≻ C1

i

v2
i : x ei2 ei3 ei1 h1 . . . hi di+1 . . . dt l1 . . . . . . . . . lt ≻ C2

i , w ≻ C2
i

v3
i : x ei3 ei1 ei2 l1 . . . . . . . . . lt h′

1 . . . h′
i d′i+1 . . . d′t ≻ C3

i , w ≻ C3
i

and
v1

t : x et1 et2 et3 d1 . . . dt d′1 . . . d′t ≻ C1
t , w ≻ C1

t

v2
t : x et2 et3 et1 h1 . . . ht l1 . . . lt ≻ C2

t , w ≻ C2
t

v3
t : x et3 et1 et2 l1 . . . lt h′

1 . . . h′
t ≻ C3

t , w ≻ C3
t

where “≻” signs are partially omitted andC1
i , C2

i , andC3
i denote the remaining can-

didates that are fixed in an arbitrary order, respectively. Now, we give some notation
needed to define the maximum partial scores. Forc′ ∈ C\{c}, let fixed(c′) denote
the number of points whichc′ makes in the partial votes in which the position ofc′ is
already fixed. Letne denote the number of subsets withe ∈ Si andq = |E|. Due to
Lemma 1, one can set the maximum partial scores as given in Table 2. The particular
partial scores will be explained within the proof of the following claim.

Claim: Candidatec is a possible winner ofP if and only if there is an exact 3-cover
for (E,S).

“⇐”: Given an exact 3-coverS′ ⊆ S, complete the votes inV p in the following
way: For eachSi ∈ S′, placew in the last possible position (i.e., position5 + 2t)
in the partial votesv1

i , v2
i , andv3

i , and on the first position in the remaining partial
votes. Since|S′| = q/3, in the extension of the votes fromV p ones hass(w) =
(3t − q) · α1 +q · α5+2t = smax

p (w) ands(x) = q · α1 +(3t − q) · α2 = smax
p (x).

Furthermore, it is easy to see thats(li) < smax
p (li) for everyi. Every element candi-

datee is shifted to the left in exactly three partial votes. More precisely, in the three
votes that correspond toSi ∈ S′ with e ∈ Si, it makesα2 + α3 + α4 points and
(ne − 1) · (α3 + α4 + α5) + fixed(e) points in the remaining votes and thus does not
beatc. Every candidate fromD12 is not “fixed” in exactly one vote of every triple
corresponding to anSi. More precisely, it can be shifted either inv1

i or in v2
i and never

in v3
i . Due to the insertion ofw, it is shifted to position4 + i in q/3 of the votes and

takes position5 + i in the remainingt − q/3 non-fixed votes. Thus, it does not beatc.
Analogously, every candidate fromD13 makesα4+i+t points inq/3 of the non-fixed
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votes andα5+i+t in the remainingt−q/3 votes and hence does not beatc. Altogether,c
beats every other candidate and wins.

“⇒”: Consider an extension ofP in which c wins. Due to its maximum partial score,
candidatex can take the first position onlyq times. Thus, it must be shifted3t − q
times to position2. Clearly, this is only possible ifw is placed on the first position
in 3t − q votes. Then due to its maximum partial score,w can only be set to posi-
tion 5 + 2t in the remainingq votes. In the following, we will show that for everyi, w
takes position5 + 2t in v1

i if and only if it takes position5 + 2t in v2
i if and only if it

takes position5 + 2t in v3
i (Observation I). Then it follows that in the votes in whichw

takes position5 + 2t, the corresponding element candidates are shifted to the left and
obtainα2 + α3 + α4 points each, whereas they obtainα3 + α4 + α5 points in the re-
maining corresponding vote triples. Since each element candidateej can only obtain
α2 + α3 + α4 points exactly once (and the scoring values are strictly decreasing), the
setS′ := {Si | w is placed on position5 + 2t in v1

i } must be an exact 3-cover ofE.
It remains to settle Observation I, which says thatw behaves equally in the votes

corresponding to one subset. First, we argue thatw must be inserted at position5 + 2t
in exactlyq/3 votes ofV p

1 := {v1
i | 1 ≤ i ≤ t}, V p

2 := {v2
i | 1 ≤ i ≤ t}, and

V p
3 := {v3

i | 1 ≤ i ≤ t}, respectively. Assume thatw is inserted at position5 + 2t in
more thanq/3 votes ofV p

1 . Then,d1, which is not fixed in every vote ofV p
1 , would

beatc. Analogously, ifw was inserted at position5 + 2t in more thanq/3 votes ofV p
2

or V p
3 , thenc would be beaten byh1 or h′

1, respectively. Now, we have thatw must
take position5 + 2t in q votes and can take this position in at mostq/3 votes fromV p

i ,
for everyi ∈ {1, 2, 3} and thus must take this position in exactlyq/3 votes of V p

1 , V p
2 ,

andV p
3 .

Second, we show that the candidates fromD12 ensure thatw takes position5 + 2t
in v1

i if and only ifw takes position5+2t in v2
i . The proof is by contradiction. Assume

that there is an extension in whichw takes position5 + 2t in v1
i and another position

in v2
i for anyi. Sincedi andhi+1 have been shifted to the left inv1

i , each of them can
only be shifted to the left in at mostq/3 − 1 further votes. By construction,v2

i is the
only vote ofV p

1 ∪ V p
2 in which neitherdi nor hi+1 is shifted to the left by settingw

to position5 + 2t. However, sincew can either take the first or position2t + 5 in an
extension (as argued above), it must take the first position in v2

i . Now, w has to take
the position5 + 2t in 2q/3 − 1 further votes fromV p

1 ∪ V p
2 and thus in each of these

votesw will either shiftdi or hi+1. Hence, eitherdi or hi+1 must be shifted to the left
in more thanq/3 − 1 further votes and will beatc, a contradiction. The other case (w
takes position5 + 2t in v2

i and another position inv1
i ) follows in complete analogy by

consideringhi anddi+1. One can show analogously that the candidates ofD13 ensure
thatw takes position5 + 2t in v1

i if and only if it takes the same position inv3
i . Thus,

Observation I follows.
Now, one has that POSSIBLE WINNER is NP-hard for all scoring rules with a scor-

ing vector of sizef((E,S)) with strictly decreasing score values. By using some sim-
ple padding, we extend the result for the remaining cases, that is for scoring vectors of
sizem′ > f((E,S)) andf((E,S)) different score values. To this end, we introduce a
set ofm′−f((E,S)) new dummy candidates and cast the linear votes such they cannot
beat the distinguished candidate in any extension. The original candidates fromC are
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placed on positions endued with strictly decreasing points, whereas the new candidates
are placed on the remaining positions. Then, if the positions of candidates get shifted
(whenw is inserted), the “old” candidates are affected in the same manner as in the
above construction and the theorem follows. 2

6. An unbounded number of positions with equal score values

In the previous section, we showed NP-hardness for scoring vectors with an un-
bounded number of different score values. In this section, we discuss scoring vec-
tors with an unbounded number of positions with equal score value. In the first sub-
section, we show NP-hardness for POSSIBLE WINNER for scoring vectors that ful-
fill α2 6= αm−1, and, in the second subsection, we consider the special casethatα1 >
α2 = · · · = αm−1 > 0. Note that these two cases cover all scoring vectors with an
unbounded number of equal score values (except plurality and veto): There are three
ways to “violate”α1 > α2 = · · · = αm−1 > 0. First, if one requiresα1 = α2, then
one ends up with veto. Second, requiringαm−1 = 0, one arrives at plurality. Third,
requiringα2 6= αm−1, then one ends up with the other case that includes the famous
examples 2-approval and(m − 2)-approval.

6.1. An unbounded number of equal score values andα2 6= αm−1

The scoring vectors considered in this subsection divide into two classes. First,
there are at least two score values that are greater than the “equal score value”. Sec-
ond, there are at least two score values that are smaller thanthe “equal score value”.
Formally, a size-m scoring vector for the second class looks as follows: there is ani,
with i < m − 2 and an “unbounded” integerx such thatαi−x = αi > αi+1. This
property can be used to construct a basic “logical” tool usedin the many-one reductions
of this subsection: For two candidatesc, c′, havingc ≻ c′ in a partial vote implies that
settingc such that it makes less thanαi points implies that alsoc′ makes less thanαi

points whereas all candidates placed in the range betweeni − x andi make exactlyαi

points. This can be used to model some implication of the type“c ⇒ c′” in a vote.
For (m − 2)-approval, which will play a prominent role for stating our results, this
condition means thatc only has the possibility to make zero points in a vote if alsoc′

makes zero points in this vote whereas all other candidates make one point.
Most of the reductions of this subsection are from the NP-complete MULTICOL-

ORED CLIQUE (MC) problem [22]:

Given: An undirected graphG = (X1∪X2∪· · ·∪Xk, E) with Xi∩Xj =
∅ for 1 ≤ i < j ≤ k and the vertices ofXi induce an independent set for
1 ≤ i ≤ k.
Question: Is there a complete subgraph (clique) of sizek?

Here,1, . . . , k are considered as different colors. Then, the problem is equivalent to
ask for amulticolored clique, that is, a clique that contains one vertex for every color.
To ease the presentation, for any1 ≤ i 6= j ≤ k, we interpret the vertices ofXi as red
vertices and writer ∈ Xi, and the vertices ofXj as green vertices and writeg ∈ Xj .
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Reductions from MC are often used to show parameterized hardness results [22].
Intuitively, the different colors give some useful structure to the instance. The general
idea is to construct different types of gadgets. Here, the partial votes realize four kinds
of gadgets. First, gadgets that choose a vertex of every color (vertex selection). Second,
gadgets that choose an edge of every ordered pair of colors, for example, one edge
from green to red and one edge from red to green (edge selection). Third, gadgets that
check the consistency of two selected ordered edges, e.g. does the chosen red-green
candidate refer to the same edge as the choice of the green-red candidate (edge-edge
match)? Finally, gadgets that check whether all edges starting from the same color start
from the same vertex (vertex-edge match). Though reductions from MC have become a
standard tool to obtain hardness results, the reduction given here is not straightforward.
For example, we are not aware of any reduction in the literature for which it is necessary
to employ vertex-edge match gadgets.

We start by giving a reduction from MC that settles the NP-hardness of POSSIBLE

WINNER for (m − 2)-approval. Then we describe how the given construction can
be generalized to work for most of the cases considered in this subsection. The NP-
hardness of the remaining cases will be shown by reductions from EXACT COVER BY

3-SETS.

Lemma 2. POSSIBLE WINNER is NP-hard for(m − 2)-approval.

PROOF. Given an MC-instanceG = (X, E) with X = X1∪X2∪· · ·∪Xk. LetE(i, j)
denote all edges fromE betweenXi andXj . Without loss of generality, we can assume
that there are integerss andt such that|Xi| = s for 1 ≤ i ≤ k, |E(i, j)| = t for all
i, j, and thatk is odd since every other instance can be padded easily in thisway.
We construct a partial profileP on a setC of candidates such that the distinguished
candidatec ∈ C is a possible winner if and only if there is a size-k clique inG. The
set of candidatesC := {c} ⊎ CX ⊎ CE ⊎ D, where⊎ denotes the disjoint union, is
specified as follows:

• For i ∈ {1, . . . , k}, let Ci
X := {r1, . . . , rk−1 | r ∈ Xi} andCX :=

⋃
i Ci

X .

• For i, j ∈ {1, . . . , k}, i 6= j, let

Ci,j := {rg | {r, g} ∈ E(i, j), r ∈ Xi, andg ∈ Xj}

and
C′

i,j := {rg′ | {r, g} ∈ E(i, j), r ∈ Xi, andg ∈ Xj}.

Then,CE := (
⋃

i6=j Ci,j) ⊎ (
⋃

i6=j C′
i,j), i.e., for every edge{r, g} ∈ E(i, j),

the setCE contains the four candidatesrg, rg′, gr, gr′.

• The setD := DX ⊎ D1 ⊎ D2 is defined as follows. Fori ∈ {1, . . . , k}, Di
X :=

{cr
1, . . . , c

r
k−2 | r ∈ Xi} andDX :=

⋃
i Di

X . For i ∈ {1, . . . , k}, one has
Di

1 := {di
1, . . . , d

i
k−2} andD1 :=

⋃
i Di

1. The setD2 is defined asD2 := {di |
i ∈ {1, . . . , k}}.

We refer to the candidates ofCX as vertex-candidates, to the candidates ofCE as
edge-candidates, and to the candidates ofD asdummy-candidates.

14



The partial profileP consists of a set of linear votesV l and a set of partial votesV p.
In each extension ofP , the distinguished candidatec gets one point in every vote
fromV p (see definition below). Thus, according to Lemma 1, we can setthe maximum
partial scores as follows. For every candidatedi ∈ D2, smax

p (di) = |V p| − s + 1, that
is, di must get zero points (take a zero position) in at leasts − 1 of the partial votes.
For every remaining candidatec′ ∈ C\({c} ∪ D2), smax

p (c′) = |V p| − 1, that is,c′

must get zero points in at least one of the partial votes.
In the following, we defineV p := V1 ∪ V2 ∪ V3 ∪ V4. For all our gadgets only

the last positions of the votes are relevant. Hence, in the partial votes it is sufficient to
explicitly specify the “relevant candidates”. More precisely, we define for all partial
votes that each candidate that does not appear explicitly inthe description of a partial
vote is positioned before all candidates that appear in thisvote.

The partial votes ofV1 realize theedge selection gadgets. Basically, selecting
an ordered edge(r, g) with {r, g} ∈ E means to select the correspondingpair of
edge-candidatesrg and rg′. The candidaterg is used for the vertex-edge match
check andrg′ for the edge-edge match check. Now, we give the definition ofV1.
For every ordered color pair(i, j), i 6= j, V1 has t − 1 copies of the partial vote
{rg ≻ rg′ | {r, g} ∈ E(i, j)}, that is, one partial vote contains the constraintrg ≻ rg′

for every{r, g} ∈ E(i, j). The idea of this gadget is as follows. For every ordered
color pair we havet edges andt− 1 corresponding votes. Within one vote, one pair of
edge-candidates can get the two available zero positions. Thus, it is possible to set all
but one, namely the selected pair of edge-candidates, to zero positions.

The partial votes ofV2 realize thevertex selection gadgets. Here, we will use the
k − 1 candidates corresponding to a selected vertex to do the vertex-edge match for
all edges that are incident in a multicolored clique. Formally, we setV2 := V a

2 ∪ V b
2

as further defined in the following. Intuitively, inV a
2 we select a vertex and inV b

2 ,
by a cascading effect, we achieve that allk − 1 candidates that correspond to this
vertex are selected. InV a

2 , for every colori, we haves − 1 copies of the partial vote
{r1 ≻ cr

1 | r ∈ Xi}. In V b
2 , for every colori and for every vertexr ∈ Xi, we have the

following k − 2 votes.
For all oddz ∈ {1, . . . , k − 4}, vr,i

z : {cr
z ≻ cr

z+1, rz+1 ≻ rz+2}.
For all evenz ∈ {2, . . . , k − 3}, vr,i

z : {cr
z ≻ cr

z+1, d
i
z−1 ≻ di

z},

vr,i
k−2 : {cr

k−2 ≻ di
k−2, rk−1 ≻ di}.

The partial votes ofV3 realize thevertex-edge match gadgets. Fori, j ∈ {1, . . . , k},
for j < i, V3 contains the vote{rg ≻ rj | {r, g} ∈ E, r ∈ Xi, andg ∈ Xj} and,
for j > i, V3 contains the vote{rg ≻ rj−1 | {r, g} ∈ E, r ∈ Xi, andg ∈ Xj}.

The partial votes ofV4 realize theedge-edge match gadgets. For every unordered
color pair{i, j}, i 6= j there is the partial vote{rg′ ≻ gr′ | {r, g} ∈ E(i, j), r ∈
Xi, andg ∈ Xj}.

This completes the description of the partial profile. Now, we verify a property
of the construction that is crucial to see the correctness: In total, the number of zero
positions available in the partial votes is exactly equal tothe sum of the minimum
number of zero position the candidates ofC\{c} must take such thatc is a winner. We
denote this property of the construction astightness. To see the tightness property, we
first compute the number of partial votes:
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V1 : · · · > rg > rg′ for i, j ∈ {1, . . . , k}, i 6= j, r ∈ Xi\Q, andg ∈ Xj\Q
V a

2 : · · · > r1 > cr
1 for 1 ≤ i ≤ k andr ∈ Xi\Q

V b
2 : vr,i

z · · · > rz+1 > rz+2 for 1 ≤ i ≤ k, r ∈ Xi\Q for all z ∈ {1, 3, 5, . . . , k − 4}
vr,i

z · · · > cr
z > cr

z+1 for 1 ≤ i ≤ k, r ∈ Xi\Q for all z ∈ {2, 4, 6, . . . , k − 3}

vr,i
k−2 · · · > rk−1 > di for 1 ≤ i ≤ k, r ∈ Xi\Q

vr,i
z · · · > cr

z > cr
z+1 for 1 ≤ i ≤ k, r ∈ Xi ∩ Q for all z ∈ {1, 3, 5, . . . , k − 4}

vr,i
z · · · > di

z−1 > di
z for 1 ≤ i ≤ k, r ∈ Xi ∩ Q for all z ∈ {2, 4, 6, . . . , k − 3}

vr,i
k−2 · · · > cr

k−2 > di
k−2 for 1 ≤ i ≤ k, r ∈ Xi ∩ Q

V3 : · · · > rg > rj for i, j ∈ {1, . . . , k}, j < i, r ∈ Xi ∩ Q, andg ∈ Xj ∩ Q
· · · > rg > rj−1 for i, j ∈ {1, . . . , k}, j > i, r ∈ Xi ∩ Q, andg ∈ Xj ∩ Q

V4 : · · · > rg′ > gr′ for i, j ∈ {1, . . . , k}, i 6= j, r ∈ Xi ∩ Q, g ∈ Xj ∩ Q

Figure 3: Extension of the partial votes for the MC-instance. Extensions in which candidates that do not
correspond to the solution setQ take the zero positions are highlighted.

|V1| + |V2| + |V3| + |V4| =

k(k − 1)(t − 1) + k(s − 1) + ks(k − 2) + k(k − 1) + k(k − 1)/2 =

t(k2 − k) + s(k2 − k) + k2/2 − 3k/2. (1)

Regarding the number of zero positions that must be taken, wefirst compute the
number of candidates for each subset:

• |CX | = sk(k − 1),

• |CE | = 2tk(k − 1),

• |DX | = sk(k − 2), |D1| = k(k − 2), and|D2| = k.

The candidates ofD2 must take at leasts−1 zero positions and all other candidates
at least one. Thus, in total the number of zero positions mustbe at least

sk2 − sk + 2tk2 − 2tk + sk2 − 2ks + k2 − 2k + k(s − 1) =

2s(k2 − k) + 2t(k2 − k) + k2 − 3k. (2)

Furthermore, there are two zero positions for every partialvote. It is easy to ver-
ify that (1) times two equals (2). Hence, the tightness of theconstruction is shown.
It directly follows that if there is a candidate that takes more zero positions than de-
sired, thenc cannot win in this extension since then at least one zero position must be
“missing” for another candidate.

We can now show the following claim to complete the proof.

Claim: The graphG has a clique of sizek if and only if c is a possible winner inP .

“⇒” Given a multicolored cliqueQ of G of sizek. We refer to the vertices and edges
belonging toQ as solution vertices and solution edges, respectively, andto the corre-
sponding candidates as solution candidates. Then, extend the partial profileP as given
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in Figure 3. In the following we argue that in the given extension every candidate takes
the required number of zero positions.

In V1, for every ordered color pair, all pairs of edge-candidatesexcept the pair of
solution edge-candidates are set to the last two positions in one of thet − 1 votes.

In V a
2 for every colori, we set all candidatesr1 that do not belong to the solution

vertices and the correspondingcr
1 to zero positions in one of the votes. InV b

2 for every
non-solution vertexr ∈ Xi\Q we set the corresponding candidatesrz+1 andrz+2 at
zero positions in the votesvr,i

z with odd indexz ∈ {1, . . . , k − 4}. In the votes with
even indexz ∈ {2, . . . , k−3}, we set the corresponding dummy candidatescr

z , c
r
z+1 at

zero positions. We further set the candidaterk−1 at a zero position in votesvr,i
z for all

thes−1 non-solution vertices of colori, which implies that the dummy candidatedi is
placed ats−1 zero positions. Thus, we have “enough” zero positions for all the copies
of the non-solution candidates, the corresponding dummy candidates{cr

1, . . . , c
r
k−2 |

r ∈ Xi \ Q}, anddi. The remaining votes ofV b
2 “correspond” to the gadgets for the

solution vertices. Here, we set the candidate pairscr
z > cr

z+1 in the votes with odd
indexz ∈ {1, . . . , k − 4} at position zero and the candidate pairs with candidatesdi

p

for p = 1, . . . , k − 2 to zero positions in the votes with even index. Thus, inV2, we
have improvedc upon all dummy candidates and upon all candidates corresponding to
non-solution vertices, whereas each candidate corresponding to a solution vertex must
still take a zero position.

Now, it remains to set every candidate corresponding to a solution vertex or a so-
lution edge to a zero position in at least one vote. Due to construction, for a solution
edge{r, g} ∈ E, the two corresponding candidatesrg′ andgr′ can be set to zero in
the corresponding vote ofV4. And, in V3 the k − 1 vertex-candidates belonging to
every solution vertex can be set to a zero position in combination with the correspond-
ing edge-candidate. Thus, the distinguished candidatec is the winner of the described
extension.

“⇐” Given an extension ofP in which c is a winner, we show that the “selected” can-
didates must correspond to a size-k clique. Recall that the number of zero positions
that each candidate must take is “tight” in the sense that if one candidate gets an un-
necessary zero position, then for another candidate there are not enough zero positions
left.

First (edge selection), fori, j ∈ {1, . . . , k}, i 6= j, we consider the candidates
of Ci,j . The candidates ofCi,j can take zero positions in one vote ofV3 and int − 1
votes ofV1. Since|Ci,j | = t and in the considered votes at most one candidate ofCi,j

can take a zero position, every candidate ofCi,j must take one zero position in one
of these votes. We refer to a candidate that takes the zero position in V3 as solution
candidatergsol. For every non-solution candidaterg ∈ Ci,j\{rgsol}, its placement
in V1 also implies thatrg′ gets a zero position, whereasrg′sol still needs to take one
zero position (which is only possible inV4).

Second, we consider the vertex selection gadgets. Here, analogously to the edge
selection, for every colori, we can argue that inV a

2 , out of the set{r1 | r ∈ Xi}, we
have to set all but one candidate to a zero position. The correspondingsolution vertex
is denoted asrsol. For every vertexr ∈ Xi\{rsol}, this implies that the corresponding
dummy-candidatecr

1 also takes a zero position inV a
2 . Now, we show that inV b

2 we have
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to set all candidates that correspond to non-solution vertices to a zero position whereas
all candidates corresponding torsol must appear only at one-positions. Since for every
vertexr ∈ Xi\{rsol}, the vertexcr

1 has already a zero position inV a
2 , it cannot take

a zero position withinV b
2 anymore without violating the tightness. In contrast, for the

selected solution candidatersol, the corresponding candidatescrsol

1 andrsol1 still need
to take one zero position. The only possibility forcrsol

1 to take a zero position is within
votevrsol,i

1 by settingcrsol

1 andcrsol

2 to the last two positions. Thus, one cannot setrsol2

andrsol3 to a zero position withinV2. Hence, the only remaining possibility forrsol2

andrsol3 to get zero points remains within the corresponding votes inV3. This implies
for every non-solution vertexr that r2 andr3 cannot get zero points inV3 and thus
we have to choose to put them on zero positions in the votevr,i

1 from V b
2 . The same

principle leads to a cascading effect in the following votesof V b
2 : One cannot choose

to set the candidatescrsol

p for p ∈ {1, . . . , k − 2} to zero positions in votes ofV b
2

with even indexz and thus has to improve upon them in the votes with odd indexz.
This implies that all vertex-candidates belonging torsol only appear in one-positions
within V b

2 and that all dummy candidatesdi
p for p ∈ {1, . . . , k − 2} are set to one zero

position. In contrast, for every non-solution vertexr, one has to set the candidatescr
p,

p ∈ {2, . . . , k−2}, to zero positions in the votes with even indexz, and thus in the votes
with odd indexz, one has to set all vertex-candidates belonging tor to zero positions.
This further implies that for every non-solution vertex in the last vote ofV b

2 one has to
setdi to a zero position, and since there are exactlys−1 non-solution vertices,di takes
the required number of zero positions. Altogether, all vertex-candidates belonging to a
solution vertex still need to be placed at a zero position in the remaining votesV3 ∪V4,
whereas all dummy candidates ofD and the candidates corresponding to the other
vertices must have taken enough zero positions.

Third, consider the vertex-edge match realized inV3. For i, j ∈ {1, . . . , k}, i 6= j,
there is only one remaining vote in whichrgsol with r ∈ Xi andg ∈ Xj can take a zero
position. Hence,rgsol must take this zero-position. This implies that the corresponding
incident vertex-candidatex is also set to a zero-position in this vote. Ifx 6= rsoli , thenx
has already a zero-position inV2. Hence, this would contradict the tightness andrgsol

and the corresponding vertex must “match”. Furthermore, the construction ensures that
each of thek − 1 candidates corresponding to one vertex appears exactly in one vote
of V3 (for each of thek − 1 candidates, the vote corresponds to edges from different
colors). Hence,c can only be a possible winner if a selected vertex matches with all
selected incident edges.

Finally, we discuss the edge-edge match gadgets. InV4, for i, j ∈ {1, . . . , k}, i 6=
j, one still needs to set the solution candidates fromCi,j to zero positions. We show
that this can only be done if the two “opposite” selected edge-candidates match each
other. For two such edgesrgsol andgrsol, r ∈ Xi, g ∈ Xj , there is only one vote inV4

in which they can get a zero position. Ifrgsol andgrsol refer to different edges, then
in this vote only one of them can get zero points, and thus the other one still beatsc.
Altogether, ifc is a possible winner, then the selected vertices and edges correspond to
a multicolored clique of sizek. 2

By generalizing the reduction used for Lemma 2, one can show the following.

Theorem 2. An MC-instanceI can be reduced to aPOSSIBLE WINNER-instance for
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a scoring rule which produces a size-m scoring vector that fulfills the following. There
is an i ≤ m − 1 such thatαi−x = · · · = αi−1 > αi with x = f(I). A suitable
poly-type functionf can be computed in polynomial time.

PROOF. We describe how to modify the reduction given in the proof ofLemma 2 to
work for the considered cases. For this, letP on C denote a partial profile as con-
structed in the proof of Lemma 2. Sincei ≤ m − 1, the positioni + 1 must exist. We
setx = f(I) := |C|−2 and fill all positions smaller thani−x and all positions greater
thani + 1 with dummy candidates that are different from candidates inC and that are
beaten byc in every extension. We distinguish the two subcasesαi = αi+1 (1a) and
αi 6= αi+1 (1b).

For the case (1a), one can argue in complete analogy to Lemma 2by “identifying”
the two zero positions of Lemma 2 with positioni andi + 1 and setting the maximum
partial score as follows (which can be done without changingthe partial votes due to
Lemma 1). For alldi ∈ D2, smax

p (di) = (s − 1) · αi +(|V p| − s + 1) · αi−1 and for
all c′ ∈ C\({c} ∪ D2), smax

p (c′) = αi +(|V p| − 1) · αi−1.
For (1b), we need to argue that the tightness argument still holds. For this, we set

the maximum partial scores as follows (which can be done without changing the partial
votes due to Lemma 1). For alldi ∈ D2, smax

p (di) = (s−1)·αi+1 +(|V p|−s+1)·αi−1

and, for allc′ ∈ C\({c} ∪ D2), smax
p (c′) = αi +(|V p| − 1) · αi−1. Now, in any

extension in whichc wins, each candidate inD2 must be placed at leasts− 1 times on
positioni + 1, and each of the other candidates must be placed on positioni or i + 1
at least once. Then again, the number of positionsi and i + 1 that still have to be
assigned to candidates is exactly equal to the number of candidates that need to take
these positions, hence, the tightness argument still holds. Thus, the correctness of the
modified reduction can be shown in complete analogy to Lemma 2. 2

In the following, we consider scoring rules with an unbounded numberx of equal
positions for which it holds that there is ani ≥ 2 such thatαi > αi+1 = · · · =
αi+x. Parts of the results are based on further extensions of the MC-reduction used to
prove Lemma 2. After that there still remain some cases for which it seems even more
complicated to adapt the MC-reduction. However, for these cases we can make use of
other properties of the scoring rules and settle them by lessinvolved reductions from
EXACT COVER BY 3-SETS. As we will see in Section 7, the following Lemmata 3–6
cover all scoring vectors withi ≥ 2 such thatαi > αi+1 = · · · = αi+x.

Lemma 3. An MC-instanceI can be reduced to aPOSSIBLE WINNER-instance for a
scoring rule which produces a size-m scoring vector that fulfills the following. There
is an i ≥ 2 such thatαi > αi+1 = · · · = αi+x with x = f(I) and there is a
positionj < i with αj < 2 αj+1. A suitable poly-type functionf can be computed in
polynomial time.

PROOF. We describe how to modify the MC-reduction given in the proof of Lemma 2
to work for the considered case. For this, letP on C denote a partial profile as con-
structed in the proof of Lemma 2. First, we describe the construction for j = i − 1,
that is, one hasαi−1 < 2 αi. We construct a partial profilẽP as follows. We set
x = f(I) = |C| − 2 and all positions< i − 1 and> i + x are filled with dummy
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candidates that are beaten byc in every extension. The positions not filled with dum-
mies “contain” the partial votes ofP in “reverse” order: InP all relative orders are
given for pairs of candidates. IñP we just “flip” every pair, for example, instead of
havingrg ≻ rg′ we haverg′ ≻ rg in V1. We define that all candidates that are not
given explicitly are worse than the given candidates in a vote (instead of being better).
By flipping the order of a pair, we adapt the “logical implication”, for example, instead
of having “if rg makes zero points, then alsorg′ makes zero points” inP , we have “if
rg makesαi points, then alsorg′ makes at leastαi points” in P̃ . Furthermore, we set
the maximum partial scores tosmax

p (di) = (s − 1) · αi−1 +(|V p| − s + 1) · αi+1 for
all di ∈ D2 andsmax

p (c′) = αi−1 +(|V p| − 1) · αi+1 for all c′ ∈ C\({c} ∪ D2). Note
that sinceαi−1 < 2 αi, every candidatec′ can take either positioni or positioni − 1
in one of the partial votes. Then, we can use a “reverse” tightness argument: Since the
positionsi andi − 1 must be taken by two candidates in every vote and every candi-
date can take at most one such position (or at mosts − 1 such positions for candidates
in D2, respectively), by counting candidates and positions it holds that if every candi-
date ofD2 must makeαi−1 points exactly(s − 1) times, then every other candidate
must makeαi−1 or αi points exactly once. Thus, it remains to show that everydi ∈ D
must take positioni − 1 in s − 1 of the votes. Assume this is not the case, then there
must be two votesvr,i

k−2 andvr′,i
k−2 with r 6= r′ in whichdi does not take positioni− 1.

Due to construction, the only remaining candidate that can take this position in these
votes isdi

k−2, but this is not possible due tosmax
p (di

k−2). Hence, we can use a tightness
argument analogously to Lemma 2. Since we also adapted the logical implication, the
correctness follows in complete analogy to Lemma 2.

The remaining cases (j < i − 1) follow by padding positions within the gadgets.
More precisely, replace each specified pair, e.g.rg′ ≻ rg by rg′ ≻ rg ≻ H with a
dummy setH of sizei − (j + 1) and replaceαi−1 by αj in the new definitions of the
maximum partial scores. 2

So far, we settled the NP-hardness for scoring vectors withi ≥ 2 such thatαi >
αi+1 = · · · = αi+x if there is a positionj < i with αj < 2 αj+1. Without the con-
straintαj < 2 αj+1, it seems pretty complicated to adapt the tightness property which
is crucial for the MC-reduction. Fortunately, the remaining cases have some differ-
ent properties that allow to settle them by less complicatedreductions from EXACT

COVER BY 3-SETS. More precisely, in the following, we give three reductionswith
increasing difficulty. (Although all three reductions are self-contained, they might be
easier to understand when reading them in the given order.)

Lemma 4. An X3C-instanceI can be reduced to aPOSSIBLEWINNER-instance for a
scoring rule which produces a size-m scoring vector that fulfills the following. There
is an i ≥ 2 such thatαi > αi+1 = · · · = αi+x with x = f(I) and there is a posi-
tion j < i with αj ≥ 3 αi. A suitable poly-type functionf for X3C can be computed in
polynomial time.

PROOF. Let (E,S) denote an X3C-instance. Construct a partial profileP on a set of
candidatesC. The setC of candidates is defined byC := {c}⊎S ⊎E ⊎H ⊎D where
c denotes the distinguished candidatec, S := {sz | Sz ∈ S}, E the set of candidates
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that represent the elements of the universe, andH andD contain disjoint candidates
such that the following hold. We defineH :=

⊎|S|
z=1 Hz with |Hz| = i − j for all z ∈

{1, . . . , |S|} needed to “pad” some positions relevant to the constructionand |D| =
m− |S| − |E| − |H | − 1 needed to pad irrelevant positions. We refer to the candidates
from S assubset candidatesand to the candidates fromE aselement candidates. Set
f((E,S)) := |C \ D| − (i − j). For 1 ≤ z ≤ |S|, let Sz = {ez1, ez2, ez3}. The
partial profileP consists of a set of linear votes and a set of partial votesV p. In all
votes ofV p, we pad all irrelevant positions, i.e. all positions smaller thanj and greater
thanj − 1 + |C \ D| by fixing candidates fromD (omitted in the further description).
The setV p consists of|S| − |E|/3 copies of the vote

s1 ≻ H1 ≻ C\(S ∪ H), s2 ≻ H2 ≻ C\(S ∪ H), . . . , s|S| ≻ H|S| ≻ C\(S ∪ H)

denoted asV p
1 and the following three votes, denoted asV p

2 (z), for everysz ∈ S
v1

z : H1 ≻ {sz, ez1} ≻ C\({sz, ez1} ∪ H1),
v2

z : H1 ≻ {sz, ez2} ≻ C\({sz, ez2} ∪ H1),and
v3

z : H1 ≻ {sz, ez3} ≻ C\({sz, ez3} ∪ H1).
The basic idea of this construction is that inV p

1 one has to set all but|E|/3 “subset”
candidates to positionj whereas the remaining candidates will be able to take a position
greater thani in all votes fromV p

1 . Therefore, the remaining|E|/3 subset candidates
can makeαj −αi+1 points more than the other candidates within the remaining votes.
This will enable them to shift their corresponding element candidates to positioni + 1
by taking positioni. Sinceαj > 3 · αi, they will be able to shift all three element
candidates, respectively. To realize the basic idea, we adapt the maximum partial scores
appropriately. Fore ∈ E, let ne denote the number of subsets inS which containe.
Then according to Lemma 1, we can cast the linear votes such that the following holds:

• smax
p (sz) = αj +(|V p| − 1) · αi+1, for all sz ∈ S,

• smax
p (e) = (ne − 1) · αi +(|V p| − ne + 1) · αi+1, for all e ∈ E, and

• all other candidates are beaten byc in every extension.

We show thatc is a possible winner inP if and only if there is an exact 3-cover
for (E,S):

Assume there is an exact 3-coverQ. Then one extendsP by setting eachsz

with Sz /∈ Q at positionj in one vote fromV p
1 and the corresponding candidates

from Hz to the positionsj + 1, . . . , i in the same vote. Furthermore, setsz to posi-
tion i + 1 in v1

z , v2
z , andv3

z . Now, we have that everysz with Sz /∈ Q takes positionj
in one vote and a position greater thani in all remaining votes and thus is beaten byc.
This also means that inV p

1 all positions≤ i are filled and thus every candidatesz

with Sz ∈ Q takes a position greater thani in all votes fromV p
1 . Thus, the remaining

votes can be extended by setting everysz with Sz ∈ Q to positioni in v1
z , v2

z , andv3
z .

Sinceαj ≥ 3 αi, the maximum partial score ofsz is not exceeded. BecauseQ is an
exact 3-cover, all element candidates are shifted to position i + 1 in one vote and thus
are beaten byc. Hence,c is a winner in the described extension.

For the other direction, consider an extension ofP in which c wins. Due to con-
struction, inV p

1 only subset candidates fromS can take positionj. Because of the
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maximum partial scores, positionj must be taken by different candidates fromS in
the |S| − |E|/3 votes ofV 1

p . We denote these candidates as non-solution candidates
and the remaining|E|/3 candidates fromS as solution candidates. Due tosmax

p (sz),
every non-solution candidate must take positioni + 1 in all remaining votes and thus
the corresponding element candidates must makeαi points in the corresponding votes.
Hence, there remain only|E|/3 solution candidates that have to “shift” the|E| ele-
ment candidates to positioni + 1. Since every solution candidate can shift at most 3
candidates, the solution candidates must correspond to an exact 3-cover. 2

In the following lemma, we consider a more specific type of scoring vector in the
sense that there are only two score values greater than zero.This restriction allows us
to find an easy way to “lift” the condition “αj ≥ 3 ·αi” for two special types of scoring
rules that will be sufficient for the proof of the main result in Section 7. Compared to
the reduction from the previous lemma, for the following cases we also choose a set of
“solution subset candidates” within the first part of the partial votes, but we will need
some additional gadgetry to be able to “shift” the corresponding element candidates.

Lemma 5. An X3C-instanceI can be reduced to aPOSSIBLE WINNER-instance for
a scoring rule which produces a size-m scoring vector(α1, α2, 0, . . . , 0) with 3 α2 >
α1 > 2 α2 andm = f(I) + 2. A suitable poly-type functionf can be computed in
polynomial time.

PROOF. Let (E,S) denote an X3C-instance. Construct a partial profileP on a set of
candidatesC as follows. The set of candidates consists of a distinguished candidatec,
a setS := {si | Si ∈ S} (the subset candidates), a setD := {di | Si ∈ S},
the setE (the element candidates), a candidatex, andH := {h1, . . . , h|S|}. Set
f((E,S)) := |C| − 2. For1 ≤ i ≤ |S|, let Si = {ei1, ei2, ei3}. The partial profileP
consists of a set of linear votes and a set of partial votesV p. The setV p consists
of |S| − |E|/3 copies of the vote

s1 ≻ h1 ≻ C\(S ∪ H), s2 ≻ h2 ≻ C\(S ∪ H), . . . , s|S| ≻ h|S| ≻ C\(S ∪ H)

denoted asV p
1 and the following three votes for everySi ∈ S

v1
i : di ≻ ei1 ≻ C\{di, ei1, si}, si ≻ C\{di, ei1, si}

v2
i : x ≻ {di, ei2} ≻ C\{di, ei2, x}

v3
i : x ≻ {di, ei3} ≻ C\{di, ei3, x}

Let ne denote the number of subsets in whiche occurs. Then, due to Lemma 1, we
can set the maximum partial scores as follows:

• smax
p (si) = α1 for all si ∈ S,

• smax
p (di) = 3 · α2 for all di ∈ D,

• smax
p (e) = (ne − 1) · α2 for all e ∈ E,

• all other candidates are beaten byc in every extension.
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We show thatc is a possible winner inP if and only if there is an exact 3-cover
for (E,S):

Assume there is an exact 3-coverQ for (E,S). Then we extendP as follows. For
everySi /∈ Q, si takes position 1 andhi takes position2 in one vote fromV p

1 andsi

takes position 3 inv1
i . The correspondingdi takes position 3 inv2

i andv3
i . Clearly,

for Si /∈ Q, smax
p (si) is not exceeded,sp(di) = α1 < 3 α2 = smax

p (di), and withinV p
1

all first positions are fixed. For every solution setSi ∈ Q, we setsi to a position greater
than 2 in all votes fromV p

1 and to the first position inv1
i . Since this implies thatdi takes

the second position inv1
i , this enables us to setdi to the second position inv2

i andv3
i

without violatingsmax
p (di). SinceQ is an exact 3-cover, all corresponding element

candidates are shifted to the third position once and for every element candidate the
maximum partial score is not exceeded. Hence,c is a winner.

To see the other direction, assume there is an extension in which c wins. InV p
1 , the

first positions can only be taken by candidates fromS. Since eachsi ∈ S can getα1

points exactly once,|S| − |E|/3 different subset candidates fromS have to be placed
on the first position. Let the set consisting of these candidates be denoted byS′. Every
candidatesi from S′ has exploited its maximum partial score and therefore has tobe
placed on the third position inv1

i . This implies that the corresponding candidatedi

takes the first position inv1
i . Sinceα1 > 2 α2 andsmax

p (di) = 3 α2, di has to take
the third position in bothv2

i andv3
i . Hence, forsi ∈ S′, the corresponding element

candidatesei1, ei2, ei3 receiveα2 points each. However, each of the element candidates
from E has to be placed on position3 at least once due to its maximum partial score.
This can only be in the remaining partial votes, that is, allv1

i , v2
i , v3

i with si ∈ S \ S′.
Since|S \ S′| = |E|/3, one must shift one element candidate in each of these votes.
For this, the only possibility is to set everysi ∈ S \ S′ to position 1 inv1

i , and the
corresponding candidatedi takes the second position inv2

i andv3
i . Sincec wins, all|E|

element candidates must get shifted to position3. Hence,S\S′ corresponds to an exact
3-cover of(E,S). 2

Finally, we settle the NP-hardness for a specific scoring vector.

Lemma 6. An X3C-instanceI can be reduced to aPOSSIBLEWINNER-instance for a
scoring rule which produces a size-m scoring vector(2, 1, 0, . . . , 0) for m = f(I)+2.
A suitable poly-type functionf can be computed in polynomial time.

PROOF. Let (E,S) denote an X3C-instance. Construct a partial profileP on a set of
candidatesC as follows. The set of candidates consists of a distinguished candidatec,
a setS := {si | Si ∈ S} (the subset candidates),D := {di | Si ∈ S}, T := {ti |
Si ∈ S}, E (the element candidates), a candidatey, andX := {x1, . . . , x|S|−|E|/3}.
Setf((E,S)) := |C| − 2. For 1 ≤ i ≤ |S|, let Si = {ei1, ei2, ei3}. The partial
profileP consists of a set of linear votes and a set of partial votesV p. The setV p :=
V p

1 ∪ V p
2 ∪ V p

3 is further defined as follows. The setV p
1 consists of|S| − |E|/3 copies

of the partial vote

s1 ≻ t1 ≻ C\(S ∪ T ), s2 ≻ t2 ≻ C\(S ∪ T ), . . . , s|S| ≻ t|S| ≻ C\(S ∪ T ).

The setV p
2 consists of|S| − |E|/3 copies of the partial vote

y ≻ T ≻ C\(T ∪ {y})
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V p
1 : si > ti > . . . for Si /∈ Q

V p
2 : y > ti > . . . for Si /∈ Q

V p
3 : v1

i di > ei1 > si > . . . for Si /∈ Q
v2

i y > ei2 > di > . . . for Si /∈ Q
v3

i ei3 > xq > ti . . . for Si /∈ Q and differentq
v1

i si > di > ei1 > . . . for Si ∈ Q
v2

i y > di > ei2 > . . . for Si ∈ Q
v3

i ti > ei3 > . . . for Si ∈ Q

Table 3: Extension for the X3C-reduction for the case(2, 1, 0, . . . ). The remark “differentq” means that for
i 6= i′ with Si /∈ Q andSi′ /∈ Q one chooses two different candidates fromX. Extensions corresponding
to non-solution candidates are highlighted.

andV p
3 contains the following three votes for everySi ∈ S
v1

i : di ≻ ei1 ≻ C\{di, ei1, si}, si ≻ C\{di, ei1, si}
v2

i : y ≻ {di, ei2} ≻ C\{di, ei2, y}
v3

i : {ti, ei3} ≻ C\({ti, ei3} ∪ X)
Let ne denote the number of subsets in whiche occurs andne,3 the number of

subsets in whiche is denoted asei3 for i ∈ {1, . . . , |S|}. Then, using Lemma 1, we set
the maximum partial scores as follows:

• smax
p (si) = smax

p (ti) = smax
p (di) = 2 for i ∈ {1, . . . , |S|}

• smax
p (xi) = 1 for i ∈ {1, . . . , |S| − |E|/3}

• smax
p (e) = 2ne,3 + (ne − ne,3) − 1 for e ∈ E

• the candidatey is beaten byc in every extension

We show thatc is a possible winner inP if and only if there is an exact 3-cover
for (E,S):

Assume there is an exact 3-coverQ for (E,S). Then we extendP as given in
Table 3. For everySi /∈ Q, si takes the first position in one vote fromV p

1 and makes
zero points in all remaining votes. The correspondingti takes the second position
in one vote fromV p

1 and one vote fromV p
2 and makes zero points in all remaining

votes. Hence,c beats thesesi and ti and the votes fromV p
1 andV p

2 are fixed. For
everySi /∈ Q, we extendv3

i by setting a different candidate fromX at the second
position such that none of them is put on this position twice,and hencec also beats
every candidate fromX . For everySi ∈ Q, di, ti andsi make exactly 2 points inV p

3

and thus are beaten byc as well. It remains to consider the element candidates. To
this end, note that a candidatee ∈ E is beaten byc if there is ani such thate takes
position 3 inv1

i or v2
i or takes position 2 inv3

i . SinceQ is an exact 3-cover and all
candidates corresponding to subsets fromQ are shifted to the right in one vote,c wins
in the given extension.

To see the other direction, assume there is an extension in which c wins. LetG1 :=
{v1

i | 1 ≤ i ≤ |S|}, G2 := {v2
i | 1 ≤ i ≤ |S|}, andG3 := {v3

i | 1 ≤ i ≤ |S|}. We
start by arguing that at most2/3 · |E| candidates fromE can make zero points in a vote
from G1∪G2. For anyi, at most two element candidates, namelyei1 andei2 can make
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zero points inG1 ∪G2. More precisely, due tosmax
p (di), if si takes the first position in

v1
i , thenei1 andei2 can take the third position and ifsi takes the second position, then

only ei1 can be shifted to the third position, sincedi takes the first position inv1
i and

has exploited its maximum partial score. Thus, the number ofpoints that all candidates
from S can make withinV p

3 is an upper bound for the number of element candidates
that can be shifted. Since only candidates fromS can take the first positions inV p

1 ,
|V p

1 | = |S|−|E|/3, andsmax
p (si) = 2, the candidates fromS can make at most2/3|E|

points inV p
3 . Thus, there are at most2/3|E| element candidates that can take a position

with zero points inG1∪G2. Thus, due tosmax
p (e), in G3 one must shift (at least)|E|/3

candidates to the second position (Observation 1). In the following, we show that the
only way to do so leads to an extension in which exactly|E|/3 candidatessi from S
make zero points inV p

1 and the correspondingti make zero points inV p
1 ∪V p

2 whereas
all other candidates fromS∪T have already accomplished their maximum partial score
in V p

1 ∪ V p
2 (Claim 1). This means that the element candidates that are shifted tothe

right correspond to exactly|E|/3 subsetsSi ∈ S. Since every element candidate must
be shifted at least once, these subsets must form an exact 3-cover in(E,S).

We use a tightness criterion (analogously to the MC-reduction from Lemma 2) to
prove Claim 1. To this end, we show that the score of all positions that must be filled
equals the sum of the maximum partial scores of all candidates. Again, it directly
follows that a candidatec′ ∈ C\{c} cannot make less thansmax

p (c′) points since oth-
erwise there must be another candidate that beatsc. Now, we show the tightness. The
total number of votes is

|V p
1 | + |V p

2 | + |V p
3 | = |S| − |E|/3 + |S| − |E|/3 + 3|S| = 5|S| − 2/3|E|.

In V p
2 andV p

3 , candidatey is already fixed at the first position in2|S| − 1/3|E| votes
and since in every vote 3 points have to be given, there are3 · (5|S| − 2/3|E|) − 2 ·
(2|S| − 1/3|E|) = 11|S| − 4/3|E| points for the remaining candidates left. The sum
of the maximum partial scores from all candidates fromS ∪ T ∪ D ∪ X ∪ E is

3 · 2 · |S| + |S| − |E|/3 + 2|S| + 2|S| − |E| = 11|S| − 4/3|E|.

To see this, note that clearly
∑

e∈E ne,3 = |S| and
∑

e∈E ne = 3|S|. Thus, the
tightness follows.

Now, we finally show the correctness of Claim 1. Due to the tightness, the|S| −
|E|/3 candidates fromX must take position 2 in|S| − |E|/3 votes fromG3. Thus,
there remain|E|/3 second positions inG3 that are not fixed. Note that due to tightness,
a candidateei3 cannot take the third position inv3

i . Hence, if the remaining second po-
sitions are not taken by candidates fromE, we shift less than|E|/3 candidates inG3,
a contradiction to Observation 1. Hence, these positions must be taken by candidates
from E and thus all second positions withinG3 are fixed. This implies that every can-
didateti from T must take either the first or the third position inv3

i . More precisely,
since|E|/3 candidates fromE take a second position there must be|E|/3 candidates
from T that take the first positions within the corresponding votes. However, a can-
didate fromT can only take the first position if it makes zero points inV p

1 ∪ V p
2 .

Hence, there must be|E|/3 candidates fromT , denoted asT ′, that make zero points
in V p

1 ∪ V p
2 and, due to tightness, all remaining candidates fromT must make 2 points
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in V p
1 ∪ V p

2 . A candidateti ∈ T can make at most one point inV p
1 since due to the

condition “si ≻ ti” it shifts si to the first position (andsmax
p (si) = 2). Hence, making

two points withinV p
1 ∪ V p

2 implies thatti must make one point inV p
1 and one point

in V p
2 and that the correspondingsi must make 2 points inV p

1 . This fixes all positions
in V p

1 ∪V p
2 and since a candidatesi with ti ∈ T ′ clearly makes zero points inV p

1 ∪V p
2 ,

the correctness of Claim 1 follows. Altogether, we have that{Si | ti ∈ T ′} forms an
exact 3-cover for(E,S). 2

6.2. Scoring vectors withα1 > α2 = · · · = αm−1 > 0

In this subsection, we consider scoring rules defined by scoring vectors that ful-
fill α1 > α2 = · · · = αm−1 > 0. Although quite special, these rules might be of inter-
est of their own. They can be considered as a direct combination of the very common
plurality and veto rules where one allows to weight the contribution of the plurality or
veto part. For example, by using(10, 1, . . . , 1, 0) the “plurality” part would have more
influence to the outcome, whereas for(10, 9, . . . , 9, 0) the “veto” part would be more
important. To show NP-hardness, we give two types of many-one reductions from
X3C; one for the caseα1 < 2 · α2 and one for the caseα1 > 2 · α2. As mentioned be-
fore, the caseα1 = 2 · α2 remains open. Intuitively, for all other cases we make use of
the “asymmetry” of the differences of the score values, thatis, by shifting a candidate
from the first to the second position one decreases its score by a different amount than
by shifting it from the last but one to the last position. In the two following proofs, the
position in a linear order in which a candidate getsα1 points is denoted astop position,
a position in which a candidate getsα2 points asmiddle position, and the position in
which a candidate gets zero points aslast position.

Theorem 3. An X3C-instanceI can be reduced to aPOSSIBLE WINNER-instance for
a scoring rule which produces a size-m scoring vector satisfying the conditionsα1 >
α2 = αm−1 > αm = 0 andα1 < 2 · α2 for m = f(I) + 2. A suitable poly-type
functionf can be computed in polynomial time.

PROOF. Let (E,S) denote an X3C-instance. We construct a partial profileP for which
the distinguished candidatec ∈ C is a possible winner if and only if(E,S) is a yes-
instance. The set of candidates isC := {c, h} ⊎ {si, di, ti | Si ∈ S} ⊎ E. The
partial profileP consists of a set of partial votesV p and a set of linear ordersV l.
For1 ≤ i ≤ |S|, let Si = {ei1, ei2, ei3}. Then the set of partial votesV p := V p

1 ∪ V p
2

is given by the following subsets. The setV p
1 consists of|E|/3 copies of the partial

vote
h ≻ C \ {h, s1, . . . , s|S|} ≻ {s1, . . . , s|S|}.

For everyi ∈ {1, . . . , |S|}, the setV p
2 contains the three votes

v1
i : h ≻ C\{h, si, di} ≻ {si, di},

v2
i : ei1 ≻ C\{ei1, ti, di} ≻ ti, and

v3
i : ei2 ≻ C\{ei2, ei3, ti} ≻ ei3.

Now, we pass on to the definitions of the maximum partial scores. To this end, for
a candidatee corresponding to an elemente ∈ E (referred to as element candidate),
let ne,1+2 denote the number of subsets fromS in which e is identical withei1 or ei2.
Due to Lemma 1, we can cast the linear votes such that the following hold:
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V p
1 : h > . . . > si Si ∈ Q

V p
2 : v1

i h > . . . > si > di Si ∈ Q
v2

i di > ei1 > . . . > ti Si ∈ Q
v3

i ti > ei2 > . . . > ei3 Si ∈ Q
v1

i h > . . . > di > si Si /∈ Q
v2

i ei1 > . . . > ti > di Si /∈ Q
v3

i ei2 > . . . > ei3 > ti Si /∈ Q

Figure 4: Extension for the caseα1 > α2 = αm−1 > 0 andα1 < 2 · α2. Extensions for candidates that
do not correspond to subsets belonging to the solution setQ are highlighted.

• smax
p (si) = (|V p| − 1) · α2,

• smax
p (di) = smax

p (ti) = α1 +(|V p| − 2) · α2,

• smax
p (e) = (|V p| − ne,1+2 + 1) · α2 +(ne,1+2 − 1) · α1,

• h is beaten byc in every extension.

The maximum partial scores of the element candidates are setsuch that every el-
ement candidate has to be “shifted” to the right at least once. More precisely, if a
candidatee took the first position in all votes in which it is identical with ei1 or ei2 and
the second position in all remaining votes (including the votes in which it is identical
with ei3), thens(e) = (|V p| − ne,1+2) · α2 +ne,1+2 · α1 > smax

p (e) sinceα1 > α2.
However, if, for anyi, ti or di are inserted at the first position in one of the votes in
whiche appears, thene makes at leastα1 −α2 points less and thus is beaten byc. We
denote this asObservation 2. Now, we show the correctness of the construction.

Claim: Candidatec is a possible winner inP if and only if (E,S) is a yes-instance.

“⇐”: Let Q denote an exact 3-cover for(E,S). Then extendP as displayed in Fig-
ure 4. More precisely, withinV p

1 every candidatesi with Si ∈ Q takes the last po-
sition in exactly one of the|E|/3 votes. Then, the candidates make the following
points within the extension of the partial votes. Everysi takes the last position in one
vote and middle positions in all other votes and thus makes exactly smax

p (si) points.
For Si ∈ Q, every candidateti and every candidatedi takes one first and one last
position, and thus,s(di) = s(ti) = α1 +(|V p| − 2) · α2 = smax

p (di) = smax
p (ti).

In the corresponding votes every element candidate is shifted once sinceQ is an ex-
act 3-cover and thus is beaten byc due to Observation2. Clearly, forSi /∈ Q, si is
beaten byc as well. It remains to considerdi and ti with Si /∈ Q. Here, one has
s(di) = (|V p| − 1) ·α2 < smax

p (di) ands(ti) = (|V p| − 1) · α2 < smax
p (ti). Hence,c

beats all other candidates and wins.

“⇒”: Consider an extension in whichc wins. Due tosmax
p (si), every candidatesi

must take the last position in at least one of the votes. Since|V p
1 | = |E|/3, at most

|E|/3 candidates can take a last position inV p
1 ; denote the set of them byS′. Hence at

least|S|− |E|/3 candidatessi must take the last position inv1
i . Now, we show that for

these candidates the corresponding element candidates cannot be shifted to the right
in v2

i or v3
i . Sincesi takes the last position inv1

i , di already makes(|V p| − 1) · α2 in
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the extended partial votes withoutv2
i . Hence,di must take the last position inv2

i since
otherwises(di) = |V p| · α2 > smax

p (di) becauseα1 < 2 α2. This implies thatei1 is
not shifted and thatti takes a middle position inv2

i . Now, for ti it follows analogously
that ti must take the last position inv3

i and thus neitherei2 nor ei3 is shifted. Alto-
gether, this means that all element candidates must be shifted by candidates fromS′.
Every si ∈ S′ can shift three candidates by settingsi in the last position inv1

i and
di andti to the first positions inv2

i andv3
i , respectively. Since there are|E| element

candidates, it follows that|S′| = |E|/3 and that allsi ∈ S′ must shift disjoint sets of
element candidates. Hence,S′ corresponds to an exact 3-cover for(E,S). 2

In the remainder of this subsection, we consider the case that α1 > 2 · α2. We also
give a reduction from X3C. Note that the previous proof cannot be transferred directly
and thus we give a modified construction for which it will be more laborious to show
the correctness.

Theorem 4. An X3C-instanceI can be reduced to aPOSSIBLE WINNER-instance for
a scoring rule which produces a size-m-scoring vector satisfying the conditionsα1 >
α2 = αm−1 > αm = 0 andα1 > 2 · α2 for m = f(I) + 2. A suitable poly-type
functionf can be computed in polynomial time.

PROOF. Let (E,S) denote an X3C-instance. Letk denote the size of a solution
for (E,S), that is,k := |E|/3, andt := |S|. We construct a partial profileP for which
the distinguished candidatec ∈ C is a possible winner if and only if(E,S) is a yes-
instance. The set of candidates isC := S ⊎D⊎E ⊎{c, h} with S := {si | 1 ≤ i ≤ t}
(the subset candidates) andD := {di | 1 ≤ i ≤ t}, andE (the element candidates).

Very roughly, the basic idea of the reduction is as follows. There are three subsets
of partial votes, in the first subsetV p

1 one “selects”t − k subset candidates fromS
that do not correspond to an exact 3-cover and in the second subsetV p

2 one selectsk
subset candidates that correspond to an exact 3-cover. Selecting hereby means that a
solution subset candidate gets zero points in one vote ofV p

2 whereas every non-solution
candidate getsα1 points in a vote ofV p

1 . Hence, a solution candidate can make more
points than a non-solution candidate in the third subsetV p

3 . Thus, a solution candidate
can take a top position inV p

3 which yields a cascading effect that makes it possible to
shift the corresponding element candidates such that they do not beat the distinguished
candidatec.

Formally, the partial profileP consists of a set of partial votesV p and a set of
linear ordersV l. For 1 ≤ i ≤ t, let Si = {ei1, ei2, ei3}, then the set of partial
votesV p := V p

1 ∪ V p
2 ∪ V p

3 is given by the following subsets.

V p
1 : t − k copies of the partial vote S ≻ C\(S ∪ {h}) ≻ h

V p
2 : k copies of the partial vote h ≻ C\(S ∪ {h}) ≻ S

V p
3 : for 1 ≤ i ≤ t the three partial votes wi

1: di ≻ C\{di, ei1, si} ≻ ei1

wi
2: h ≻ C\{di, ei2, h} ≻ {ei2, di}

wi
3 : h ≻ C\{di, ei3, h} ≻ {ei3, di}

Note that inwi
1, candidatesi can be inserted at any position. The distinguished can-

didatec makesα2 points in every partial vote fromV p. Hence, according to Lemma 1,
we can set the linear orders ofV l such that the following holds. Fori = 1, . . . , t,

smax
p (si) = (|V p| − 2) · α2 + α1,
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V p
1 : si > C\{si, h} > h ∀si with Si /∈ S′

V p
2 : h > C\{si, h} > si ∀si with Si ∈ S′

V p
3 : wi

1 di > C\{si, di} > si ∀si with Si /∈ S′

wi
2 h > C\{di, h} > di ∀si with Si /∈ S′

wi
3 h > C\{di, h} > di ∀si with Si /∈ S′

wi
1 si > C\{si, ei1} > ei1 ∀si with Si ∈ S′

wi
2 h > C\{ei2, h} > ei2 ∀si with Si ∈ S′

wi
3 h > C\{ei3, h} > ei3 ∀si with Si ∈ S′

Figure 5: Extension ofV p for an exact 3-coverS′ ⊆ S. The middle positions are not given explicitly since
the order of the candidates is irrelevant. Extensions for candidates which do not belong to the solution setS′

are highlighted.

smax
p (di) = (|V p| − 2) · α2 + α1 −z

with z = α1 mod α2 if α1 < 3 α2, andz = α2, otherwise4. Note that it holds
thatα2 ≥ z and

α1 −z ≥ 2 α2 . (3)

For all e ∈ E, smax
p (e) = (|V p| − 1) · α2, that is,e must have the last position in one

of the partial votes. And,smax
p (h) ≥ |V p| · α1, that is,h can beatc in no extension.

We now prove the following claim.

Claim: Candidatec is a possible winner of(V, C) if and only if (E,S) is a yes-instance
for X3C.

“⇐”: Let S′ ⊆ S denote an exact 3-cover for(E,S). Then, we extend the partial
profile as follows (Figure 5). IfSi ∈ S′, thensi is placed at the last position in one
vote of V p

2 and at a middle position in all other votes fromV p
1 ∪ V p

2 . If Si /∈ S′,
thensi is placed at the first position in one of the votes inV p

1 and at a middle po-
sition in all other votes fromV p

1 ∪ V p
2 . This is possible since there aret − k top

position andk last positions that can be taken by candidates fromS in V p
1 ∪ V p

2 .
In V p

3 , every candidatesi with Si ∈ S′ is placed at the top position and the corre-
sponding element candidatesei2, ei3 at the last position in the respective votes. Every
candidatesi with Si /∈ S′ is placed at the last position and the corresponding element
candidatesei2, ei3 are placed at a middle position.

In the described extension, the candidates make the following points inV p. Every
candidatesi ∈ S takes exactly one top position and exactly one last positionin V p.
Hences(si) = smax

p (si). For the candidates ofD one has to distinguish two cases.
First, if Si /∈ S, then,s(di) = (|V p| − 3) ·α2 + α1 ≤ smax

p (di) sinceα2 ≥ z. Second,
if Si ∈ S, thens(di) = |V p| ·α2 = (|V p|−2) ·α2 +2 α2 ≤ (|V p|−2) ·α2 + α1 −z =

4Note that this maximum partial score does not exactly fulfillthe conditions of Lemma 1 ifz 6= α2.
However, the construction can be easily extended to work forthis case as well. More precisely, in this
casez = α1 −⌊α1 / α2⌋ ·α2 and⌊α1 / α2⌋ ≤ 3. Thus, in the construction given in the proof of Lemma 1
one can addα1 and “subtract”α2 as often as required. The subtraction can be accomplished bychanging
the role of the dummy “d” anddi within a block.
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smax
p (di) because of Inequality (3). Finally, we have to consider the candidates fromE.

Since for everySi in the 3-cover, the corresponding element candidatesei1, ei2, andei3

get at the last position, every candidate ofE takes one last and|V p|−1 middle positions
and thus makes(|V p|−1)·α2 points. It follows thatc wins in the considered extension.

“⇒”: In an extension ofV in which c is the winner, every element candidate fromE
must take the last position in one vote ofV p. This is only possible inV p

3 since every
element candidate is already fixed at a middle position inV p

1 ∪ V p
2 . More precisely,

for everyi, ei1 gets a last position ifsi is inserted at a middle or the top position in
the corresponding votewi

1 andei2/ei3 can get a last position only ifdi takes a middle
position in the corresponding votewi

2/wi
3.

To find out what this means for the other candidates, we have togo into details here.
For i = 1, . . . , t, let bi denote the “benefit”, i.e., the maximum number of element
candidates that can be put at a last position inV p

3 depending on wheresi is placed
in wi

1. Then, we can show the following.

Observation 3:

1. bi = 3 if si is placed in a top position inwi
1.

2. bi = 1 if si is placed in a middle position inwi
1.

3. bi = 0 if si is placed in a last position inwi
1.

To see Observation 3, note that ifsi is on the top position inwi
1, thendi can take

the middle position inwi
2 or wi

3 since the corresponding scores(di) = |V p| · α2 ≤
smax

p (di). Thus, all three element candidates can be shifted to the last position. If si

is not placed on the top, but in the middle position, thenei1 is still shifted to the last
position, butdi must take the last position inwi

2 or wi
3 and thus neitherei2 norei3 can

have a last position inwi
2 or wi

3. To see this, assume thatdi has the top position inwi
1

and a middle position inwi
2 or wi

3, then
s(di) ≥ |V p

1 ∪ V p
2 | · α2 +(|V p

3 | − 2) · α2 + α1 = (|V p| − 2) · α2 + α1 > smax
p (di),

a contradiction. Ifsi is placed on the last position inwi
1, thenei1 cannot take the last

position inV p
3 , and neither canei2 andei3, becausedi takes the first position inwi

1 and
getsα1 points and has to take the last position in bothwi

2 andwi
3 by the same argument

as before.
In the following, we show that in an extension in whichc wins, inV p

1 there must be
t − k different subset candidatessi that take the top position and each of the remain-
ing k (solution) candidates ofS must take one last position inV p

2 . It directly follows
by Observation 3 that for all non-solution candidates we must have thatbi = 0 and
thus every solution candidate must shift the three corresponding element candidates
that must be different from the element candidates corresponding to the other solution
candidates.

For everyi, let ti denote the number of top positions thatsi takes withinV p
1 andli

the number of last positions thatsi takes withinV p
2 . Observe that the following condi-
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tions must hold.

t∑

i=1

li = k,

t∑

i=1

ti = t − k, since every position must be taken, (4)

t∑

i=1

bi ≥ 3k, since there are3k element candidates and each
one must take at least one last position.

In the following, our strategy consists of three steps:

• We first investigate the dependencies ofli, ti, andbi upon each other. For that
sake, we distinguish the casesli = 0, li = 1, andli ≥ 2.

• Second, based on these case distinctions, we can show that the caseli ≥ 2 is not
possible, that is, everysi can have at most one last position inV i

2 . This will need
the most technical effort and will directly implyti ≤ 1 for all i.

• Third, we show that there is no candidatesi with li = ti = 1, which will imply
that only candidates withli = 1 contribute with a positive benefit and can place
their element candidates at a last position. Since there areonlyk such candidates,
they must correspond to an exact 3-cover.

First step. We show some dependencies ofli, ti, andbi by systematically enumer-
ating all possible cases. (In the argumentation that follows the case distinction we are
only interested in upper bounds ofbi. Hence, we omit to show lower bounds.)

Case I: li = 0 a) if ti = 0, thenbi ≤ 1,
b) if ti = 1, thenbi = 0,
c) ti ≥ 2 is not possible.

Proof of Case I:
Ia) (li = ti = 0): Assumebi = 3, i.e.,si is on the top position inwi

1 due to Observa-
tion 3. Thens(si) = (|V p| − 1)α2 + α1 > smax

p (si), a contradiction, hencebi ≤ 1.
Ib) (li = 0, ti = 1): Assumebi = 1, i.e.,si is on a middle position inwi

1 due to Obser-
vation 3. Thens(si) = (|V p| − 1)α2 + α1 > smax

p (si), a contradiction, hencebi = 0.
Ic) (li = 0, ti ≥ 2): Assumesi takes the last position inwi

1, that is,si makes as few
points as possible within this case. Then,

s(si) = (|V p| − ti − 1)α2 +ti α1

> (|V p| − ti − 1 + 2(ti − 1))α2 + α1

> smax
p (si),

a contradiction, hence this case is not possible.

Case II: li = 1 a) if ti = 0, thenbi ≤ 3,
b) if ti = 1, thenbi ≤ 1,
c) ti ≥ 2 is not possible.
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Proof of Case II:
IIa) (li = 1, ti = 0), trivial upper bound.
IIb) (li = ti = 1) Assumebi = 3, i.e.,si is on the top position inwi

1 due to Observa-
tion 3. Thens(si) = (|V p| − 3)α2 +2 α1 > smax

p (si), a contradiction, hencebi ≤ 1.
IIc) (li = 1, ti ≥ 2): Even ifsi takes the last position inwi

1 one has

s(si) = (|V p| − ti − 2)α2 +ti α1

> (|V p| − ti − 2 + 2(ti − 1))α2 + α1

= (|V p| + ti − 4)α2 + α1

≥ smax
p (si),

a contradiction, hence this case is not possible.

Case III: li ≥ 2 a) if ti = li, thenbi = 0,
b) if ti = li − 1, thenbi ≤ 1,
c) if ti ≤ li − 2, thenbi ≤ 3,
d) ti > li is not possible.

Proof of Case III:
IIIa) (li ≥ 2, ti = li): Assumebi = 1, i.e., si is on a middle position inwi

1 due to
Observation 3. Then

s(si) = (|V p| − ti − li)α2 +ti α1

= (|V p| − 2ti)α2 +ti α1

> (|V p| − 2ti + 2(ti − 1))α2 + α1

= (|V p| − 2)α2 + α1

= smax
p (si),

a contradiction, hencebi = 0.
IIIb) ( li ≥ 2, ti = li − 1): Assumebi = 3, i.e.,si is on the top position inwi

1 due to
Observation 3, then

s(si) = (|V p| − ti − li − 1)α2 +(ti + 1)α1

= (|V p| − 2ti − 2)α2 +(ti + 1)α1

> (|V p| − 2ti − 2 + 2ti)α2 + α1

= (|V p| − 2)α2 + α1

= smax
p (si),

a contradiction, hencebi ≤ 1.
IIIc) ( li ≥ 2, ti ≤ li − 2): trivial upper bound.
IIId) ( li ≥ 2, ti > li): Then

s(si) = (|V p| − ti − li − 1)α2 +ti α1

> (|V p| − ti − li − 1 + 2(ti − 1))α2 + α1

= (|V p| + ti − li − 3)α2 + α1

≥ smax
p (si),
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a contradiction, hence this case is not possible.

Second step. Using the previous case distinctions, we show that no subsetcandi-
datesi can take more than one last position inV p

2 . For this, without loss of generality,
we assume that the candidatessi are sorted in decreasing order according to their cor-
respondingli, i.e.,

s1, . . . , sj︸ ︷︷ ︸
li≥2

, sj+1, . . . , sr︸ ︷︷ ︸
li=1

, sr+1, . . . , st︸ ︷︷ ︸
li=0

.

Claim 1: In an extension in whichc wins, it holds thatli ≤ 1 for all i.

To prove Claim 1, we show thatj = 0. More specifically, we prove thatj > 0 implies
that the total benefitB :=

∑t
i=1 bi is less than3k. This means that not all3k element

candidates can take a last position and thusc cannot win.
Assume thatj > 0. We start to show how to distribute the last and the first positions

of V p
1 andV p

2 in order to maximizeB. For that sake, letTj :=
∑j

i=1 ti denote the
number of top positions that were taken by the firstj candidatess1, . . . , sj. Now, we
consider the remaining indicesi ∈ {j + 1, . . . , t}. Since for all of themli ≤ 1, it must
also holdti ≤ 1 (see Case I and Case II). Thus and because of Equation (4), there must
be at leastt − k − Tj candidates fromsj+1, . . . , st with ti = 1. For both remaining
cases (li = 1 and li = 0), the benefitbi is greater for the caseti = 0 than it is for
the caseti = 1 (cf. Case I and Case II). Hence, to maximize the total benefitB, it is
desirable to minimize the number of candidates havingti = 1. Since there aret − j
indices greater thanj andti must be equal to one for at leastt − k − Tj indices, there
are at mostt − j − (t − k − Tj) = k + Tj − j indices withti = 0 (Observation 4).
Furthermore, for every index from{j + 1, . . . , sr}, by settingti to zero or one, one
can “choose” betweenbi = 1 andbi = 3 (Case II). For the remaining indices, one can
choose betweenbi = 0 andbi = 1 by settingti to zero or one (Case I). We show by
contradiction that choosing Case IIa (which results inbi = 3) as often as possible is
the way to maximizeB:

Assume that Case IIa holds, that isli = 1 andti = 0, is not chosen as often as
possible. Then, first, there must be an indexi ∈ {j + 1, . . . , r} with ti = 1 and hence
with bi = 1 (Case IIb). Second, there must be an indexx > r with tx = 0 and
hencebx = 1 (Case Ia). Then settingti = 1 andtx = 0 does not violate Equation (4)
and has the following effect.

• bi is increased by 2 (from 1 to 3),

• bx is decreased by 1 (from 1 to 0).

Thus,B =
∑t

i=1 bi was not maximal.
Now, we have argued that to maximizeB, one has to choose Case IIa as often

as possible (Observation 5). Using this, we can compute the maximal valuemaxB
of B (showing that is must be less than3k). For that sake, we first consider the benefit
coming from the firstj candidatess1, . . . , sj, which we denote byBj :=

∑j
i=1 bi.

Let B0
j denote the set of indicesi ∈ {1, . . . , j} with bi = 0, let B1

j denote the set of
indicesi ∈ {1, . . . , j} with bi = 1, and letB3

j denote the set of indicesi ∈ {1, . . . , j}

33



with bi = 3. Then, Case III directly gives the following bound for the number of top
positions assumed by the firstj candidates.

Tj ≤
∑

i∈B0

j

li +
∑

i∈B1

j

(li − 1) +
∑

i∈B3

j

(li − 2) =

j∑

i=1

li − |B1
j | − 2|B3

j |, (5)

which will be needed in the following.
Due to the previous discussion we know that in the remaining positions, we have to

chooseti = 0 for k+Tj−j indices (cf. Observation 4) and one should choose Case IIa,
that is, li = 1 andti = 0, as often as possible (cf. Observation 5). Clearly,li = 1
must be chosenk −

∑j
i=1 li times whereas there arek + Tj − j indices withti = 0.

Hence, to compute a total upper bound onB, we have to distinguish two cases: First,
k −

∑j
i=1 li ≤ k + Tj − j, and, second,k −

∑j
i=1 li > k + Tj − j.

For the first case, we obtain

maxB = |B1
j | + 3|B3

j |︸ ︷︷ ︸
Bj

+3 (k −

j∑

i=1

li)

︸ ︷︷ ︸
li=1, ti=0

+ k + Tj − j − (k −

j∑

i=1

li)

︸ ︷︷ ︸
li=0, ti=0

= |B1
j | + 3|B3

j | + 3k − 2 ·

j∑

i=1

li + Tj − j

(5)

≤ |B1
j | + 3|B3

j | + 3k − 2 ·

j∑

i=1

li +

j∑

i=1

li − |B1
j | − 2|B3

j | − j

= 3k −

j∑

i=1

li − j + |B3
j |

Since|B3
j | ≤ j it holds that the maximal value ofB is strictly less than3k for j ≥

1. Thus, at least one element candidate does not take a last position and hence beatsc,
a contradiction.

For the second case, we obtain

max B = |B1
j | + 3|B3

j |︸ ︷︷ ︸
Bj

+3 (k + Tj − j)︸ ︷︷ ︸
li=1, ti=0

+ k −

j∑

i=1

li − (k + Tj − j)

︸ ︷︷ ︸
li=1, ti=1

= |B1
j | + 3|B3

j | + 3k + 2Tj − 2j −

j∑

i=1

li

(5)

≤ |B1
j | + 3|B3

j | + 3k +

j∑

i=1

li − |B1
j | − 2|B3

j | + Tj − 2j −

j∑

i=1

li

= 3k + |B3
j | + Tj − 2j

Furthermore, in this case it follows directly fromk−
∑j

i=1 li > k+Tj−j that
∑j

i=1 li+
Tj < j. Forj > 0 this means thatTj < j. By definition, we have|B3

j | ≤ j, and thus
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maxB is less than3k. This completes the proof of Claim 1. We therefore havej = 0
which meansli ≤ 1 for all i ∈ {1, . . . , t} and thus alsoti ≤ 1 for all i (Case I and II).

Third step. We now show that there cannot be any candidatesi which takes one
last position and one first position inV1 ∪ V2, i.e. we cannot haveti = li = 1 for
anysi. Assume that the set of candidatesQ := {si | ti = li = 1} is not empty. Then,
due to Observation 3, the maximum value ofB is

maxB = 1 · |Q|︸ ︷︷ ︸
li=ti=1

+ 3 · (k − |Q|)︸ ︷︷ ︸
li=1,ti=0

+ 0︸︷︷︸
li=0,ti=1

+ 1 · |Q|︸ ︷︷ ︸
li=ti=0

= 3k − |Q|,

a contradiction. Thus,t− k many of the subset candidatessi take a top position inV p
1 ,

and the remainingk subset candidates take a last position inV p
2 . Now, each of thesek

candidates must place its corresponding element candidates at the last positions inV p
3 .

Sincec can only be a winner if each of the3k element candidates takes a last position
in a vote fromV p

3 and in total at most3k element candidates can take a last position
in V p

3 , every element candidate must take exactly one last position. Thus, fori 6= j
such thatsi andsj take a last position inV p

2 , {ei1, ei2, ei3} and{ej1, ej2, ej3} must be
disjoint. It follows that{Si | si takes a last position inV p

2 } forms an exact 3-cover.2

7. Putting all together

We are now ready to combine the many-one reductions from the previous sections
to one general reduction. Basically, the problem we encounter by using one specific re-
duction from the previous sections is that such a reduction produces a POSSIBLEWIN-
NER-instance with a certain numberm of candidates. Thus, one needs to ensure that
the size-m scoring vector provides a sufficient number of positions with equal/different
scores. This seems not to be possible in general. However, for every specific instance of
EXACT COVER BY 3-SETS or MULTICOLORED CLIQUE, we can compute a number
of positions with equal or different scores that is sufficient for the corresponding reduc-
tion, and we can use the maximum of all these numbers for the combined reduction.
This is the underlying idea for the following proof.

Theorem 5. POSSIBLEWINNER is NP-complete for a scoring ruler if there is a con-
stantz such that all scoring vectors produced byr for more thanz candidates are
different from(0, . . . , 0), (1, 0, . . . , 0), (1, . . . , 1, 0), and(2, 1, . . . , 1, 0).

PROOF. We give a reduction from X3C restricted to instances of sizegreater thanz
to POSSIBLE WINNER for r. Let I with |I| > z denote an X3C-instance. Since
X3C and MC are NP-complete, there is a polynomial-time reduction from X3C to MC.
Hence, letI ′ denote an MC-instance whose size is polynomial in|I| and which is a
yes-instance if and only ifI is a yes-instance.

Let f1 denote a poly-type function to compute the number of different score val-
ues as stated for Theorem 1,f ′

1 as for Theorem 2,f ′
2 as for Lemma 3,f2 as for

Lemma 4,f3 as for Lemma 5,f4 as for Lemma 6, andf5 as for Theorem 4. Define
x := max{f1(I), f ′

1(I
′), f ′

2(I
′), f2(I), f3(I), f4(I), f5(I)} and consider the scoring

vector−→α of sizex · (x + 1) produced byr. Then we show the following.
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Table 4: Subcases for scoring rules having an unbounded number of equal score values.

Case I ∃i ≤ m − 1 s.t. αi−x = · · · = αi−1 > αi Theorem 2
Case IIa ∃i ≥ 2, ∃j < i s.t. αi > αi+1 = · · · = αi+x andαj < 2 αj+1 Lemma 3
Case IIb ∃i ≥ 2, ∃j < i s.t. αi > αi+1 = · · · = αi+x andαj ≥ 3 αi Lemma 4
Case IIc (α1, α2, 0, . . . , 0) and3 α2 > α1 > 2 α2 Lemma 5
Case IId (2, 1, 0, . . . , 0) Lemma 6
Case III α1 > α2 = αm−1 > αm = 0 andα1 6= 2 · α2 Theorem 4

Claim: For−→α it holds that|{i | αi > αi+1}| ≥ x or thatαi = · · · = αi+x for some
positioni.

The correctness of the claim can be seen as follows. First, assume that−→α does not
fulfill αi > αj for x different positionsi. Then considerx ·(x+1) indices of−→α . Since
they can have at mostx different score values, there must be a single score value that
is assigned to at leastx + 1 indices, that is, there is an indexi with αi = · · · = αi+x.
Second, if there is no indexi such thatαi = · · · = αi+x for a positioni, then again
considerx · (x + 1) indices of−→α . Since each score value can be assumed at mostx
times, there must be at leastx different score values.

Now, due to the Claim, we can distinguish two main cases. If−→α has at leastx dif-
ferent score values, then we apply the X3C-reduction given in Theorem 1. Otherwise,
we have an unbounded number of equal score values. In this case we distinguish the
subcases given in Table 4. For all these subcases, there are many-one reductions used
in the corresponding lemmata/theorems. Hence, it remains to show that each scoring
vector can be handled by at least one of these cases. Clearly,−→α must have the form
αi−x = · · · = αi−1 > αi for an i ≤ m − 1 (Case I), orαi > αi+1 = · · · = αi+x

for i ≥ 2 (Case II), orα1 > α2 = αm−1 > αm = 0 andα1 6= 2 · α2 (Case III). For
Case I and Case III, the existence of many-one reductions follows immediately from
the corresponding Theorems 2 and 4. Thus, it remains to discuss Case II, the case that
−→α has the formαi > αi+1 = · · · = αi+x for i ≥ 2.

To this end, we start with the casei > 2. Clearly, there must be at least three scoring
values which are not equal to zero, namely,αi−2, αi−1, andαi. If one hasαi−1 < 2 αi

or αi−2 < 2 αi−1, then NP-hardness follows directly from Lemma 3. Otherwise, one
must haveαi−1 ≥ 2 αi andαi−2 ≥ 2 αi−1. Hence, it follows thatαi−2 ≥ 4 αi and
NP-hardness follows directly from Lemma 4. It remains to consider all scoring rules
of type(α1, α2, 0, . . . , 0). Here, we can distinguish the following four cases:

• α1 < 2 α2: NP-hardness follows from Lemma 3,

• α1 = 2 α2: NP-hardness follows from Lemma 6,

• 2 α2 < α1 < 3 α2: NP-hardness follows from Lemma 5, and

• α1 ≥ 3 α2: NP-hardness follows from Lemma 4.

Since the membership in NP is obvious, the main theorem follows. 2
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Pure scoring rules.Based on all previous considerations, for pure scoring rules we
almost arrive at a dichotomy. More precisely, we can state the following.

Theorem 6. POSSIBLEWINNER is NP-complete for all non-trivial pure scoring rules
except plurality, veto, and scoring rules for which there isa constantz such that
the produced scoring vector is(2, 1, . . . , 1, 0) for every number of candidates greater
thanz. For plurality and veto it is solvable in polynomial time.

PROOF. Plurality and veto are polynomial-time solvable due to Proposition 1. Having
any non-trivial scoring vector different from(1, 0, . . . , 0), (1, . . . , 1, 0), and(2, 1, . . . , 1, 0)
for m candidates, it is not possible to obtain a scoring vector of one of these three types
(or (0, . . . , 0)) for m′ > m by inserting scoring values. Hence, since we only consider
pure scoring rules, the scoring rule does not produce a scoring vector of type plural-
ity, veto, (0, . . . , 0), or (2, 1, . . . , 1, 0) for all m ≥ z. Then the statement follows by
Theorem 5. 2

“Non-pure” scoring rules. We end this section with a brief informal discussion about
the problem of classifying non-pure scoring rules in general. As stated in Theorem 5,
we can show NP-hardness for non-pure scoring rules if (starting from a constant num-
ber of candidates) all produced scoring vectors are “difficult”. Clearly, it is possible to
extend the range of NP-hardness results to scoring rules that produce only few “easy”
vectors; for example, having a difficult vector for all odd numbers of candidates and
an easy vector for all even ones. However, this is not possible in general. Roughly
speaking, if the underlying difficult part of the language becomes too sparse, then there
cannot be a many-one reduction from an NP-complete problem since the densities of
the problems are not polynomially related (see e.g. [30]). Note that this situation does
not appear for the dichotomy result from Hemaspaandra and Hemaspaandra [25] for
MANIPULATION for weighted voters. The intuitive reason for this is that their reduc-
tions for the NP-hardness in the case of weighted voters already hold for a constant
number of candidates (and all scoring rules except plurality are NP-hard in this case).

8. Conclusion and outlook

In this work, we settled the computational complexity for POSSIBLE WINNER for
almost all pure scoring rules. More precisely, the only casethat was left open regards
the scoring rule defined by the scoring vector(2, 1, . . . , 1, 0), whereas for all other rules
except plurality and veto, we obtained NP-completeness results. In a very recent work,
Baumeister and Rothe [2] completed the dichotomy by showingthe NP-completeness
of POSSIBLE WINNER for the case of(2, 1, . . . , 1, 0).

A natural next step of research is to investigate algorithmic approaches that deal
with NP-hard problems like approximation algorithms or “efficient” exponential-time
algorithms. Here, an interesting approach is to consider the parameterized complex-
ity [15, 23, 28] and its sequel multivariate algorithmics [29]. There are first consid-
erations for several voting rules [7] as well as fixed-parameter tractability results for
POSSIBLE WINNER for k-approval with respect to the combined parameter “number
of partial votes” andk [3]. A parameter of general interest is the “number of candi-
dates”. In this case, POSSIBLE WINNER is shown to be fixed-parameter tractable for
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several voting systems using a powerful classification framework based on integer lin-
ear programming but still lacks efficient combinatorial fixed-parameter algorithms [7].
Furthermore, multivariate complexity analysis might offer a way to tackle the POSSI-
BLE WINNER problem for voting systems for which the “normal” winner determina-
tion is already NP-hard. For example, there are recent studies for Kemeny, Dodgson,
and Young elections that contain parameterized algorithmswith respect to several pa-
rameters [4, 5, 6, 32]. It is open whether such results can be achieved for the POSSIBLE

WINNER problem.
The POSSIBLE WINNER problem not only generalizes the MANIPULATION prob-

lem but also comprises other relevant special cases. For example, very recently, Cheva-
leyre et al. [10] investigated the computational complexity of the following problem:
Given a set of linear votes, an integers, and a distinguished candidatec, can one add
s candidates such thatc becomes a winner? There is reasonable hope to achieve more
positive algorithmic results for this and other relevant special cases of POSSIBLEWIN-
NER.

A further direction of future research regards the countingversion of POSSIBLE

WINNER [1]. Here, one wants to find out in how many extensions a distinguished
candidate wins. Answering this question allows to compare two candidates that are
possible winners.
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