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Abstract

To make a joint decision, agents (or voters) are often reduio provide their prefer-
ences as linear orders. To determine a winner, the givearlorelers can be aggregated
according to a voting protocol. However, in realistic seg8, the voters may often only
provide partial orders. This directly leads to theds1BLEWINNER problem that asks,
given a set of partial votes, whether a distinguished catdidan still become a win-
ner. In this work, we consider the computational compleaftiPoSSIBLEWINNER for
the broad class of voting protocols defined by scoring rudescoring rule provides a
score value for every position which a candidate can havdiivear order. Prominent
examples include plurality;-approval, and Borda. Generalizing previous NP-hardness
results for some special cases, we settle the computatongblexity for all but one
scoring rule. More precisely, for an unbounded number oflates and unweighted
voters, we show that®ssIBLEWINNER is NP-complete for all pure scoring rules ex-
cept plurality, veto, and the scoring rule defined by theisgovector(2,1,...,1,0),
while it is solvable in polynomial time for plurality and \eet

Key words: Voting systems, NP-hardnegsapproval, partial votes, incomplete
information

1. Introduction

\oting scenarios arise whenever the preferences of diffgrarties yoter9 have
to be aggregated to form a joint decision. This is what happempolitical elections,
group decisions, web site rankings, or multiagent systéften, the voting process is
executed in the following way: each voter provides his peiee as a ranking (linear
order) of all the possible alternativesafididates Given these rankings as an input,
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a voting rule produces a subset of the candidatesfierg as an output. However,
in realistic settings, the voters may often only providetiphorders (or partial votes)
instead of linear ones: For example, it might be impossibtetlie voters to provide
a complete preference list because the set of candidates large, as it is the case
for web page ranking. In addition, not all voters might haieeg their preferences
yet during the aggregation process, or new candidates rogtroduced after some
voters already have given their rankings. Moreover, onendifias to deal with partial
votes due to incomparabilities: for some voters it might betpossible to compare
two candidates or certain groups of candidates, be it becaiugck of information
or due to personal reasons. Hence, the study of partialytiofiles is natural and
essential. One question that immediately comes to mind &tlven any information on
a possible outcome of the voting process can be given in theafancomplete votes.
More specifically, in this paper, we study the$s1BLE WINNER problem: Given a
partial order for each of the voters, can a distinguishedlicktec win for at least one
extension of the partial orders into linear ones?

Of course, the answer to this question depends on the vatleghat is used. In
this work, we will stick to the broad class storing rules A scoring rule provides
a score value for every position that a candidate can tak@mét linear order, given
as ascoring vectorof lengthm in the case oin candidates. The scores of the can-
didates are then added over all votes and the candidategheithighest score win.
Famous examples are Borda, defined by the scoring vegtors 1,m — 2,...,0)
and k-approval, defined byl,...,1,0,...,0) starting withk ones. Two relevant
special cases of-approval are plurality, defined b1, 0,...,0), and veto, defined
by (1,...,1,0). Typically, k-approval can be used in political elections whenever
the voters can express their preferenceifarandidates within the set of all candi-
dates. Another example is the Formula 1 scoring, which uhélyear 2009 used
the scoring rule defined by the vectar, 8, 6,5,4,3,2,1,0,...,0) and since 2010
uses(25, 18, 15,12, 10,8,6,4,2,1,0,...,0).

The study of the computational complexity of voting probteisman active area of
research (see the surve , 19]). TlesBIBLEWINNER problem was introduced by
Konczak and La§6 and has been further investigateegtmen for many types of
voting systemsﬂ EQEHEM]. Note that the related KSSARYWINNER problem
(Given a set of partial orders, does a distinguished catelidain for every extension
of the partial orders into linear ones?) can be solved inrpatyial time for all scoring
rules [%]-Ihl]s A prominent special case o0bBSIBLE WINNER iS MANIPULATION (see
e.g. []S B?]). Here, the given set of partial ss@ensists of two subsets; one
subset contains linearly ordered votes and the other on@letely unordered votes.
Clearly, all NP-hardness results would carry over fromMPULATION to POSSIBLE
WINNER. However, whereas the casevedighted voterss settled by a full dichotomy
for MANIPULATION for scoring ruIes|E5], so far, fannweighted votersve are only
aware of one NP-hardness result for a specially constristtiedng ruIeEb]. Indeed,
the NP-hardness of MNIPULATION for Borda is a prominent open questim[, 36].
There are NP-hardness results foaMPULATION in the unweighted voter case for
several common voting rules which are not scoring rdles ]. Another closely
related problem is REFERENCEELICITATION (see e.g.|_[__;|| 2]). Here, the ideais to
avoid that each voter has to report his whole preferencebligtto ask only for some



part of the information that suffices to determine a winner.

Now, let us briefly summarize the known results fards1BLEWINNER for scoring
rules. Correcting Konczak and LarE[ZG] who claimed polyradftime solvability for
all scoring rules, Xia and Conitzdﬂ34] provided NP-contplesss results for a class of
scoring rules, more specifically, for all scoring rules thate four “equally decreasing
score values” followed by another “strictly decreasingrecealue”; we will provide
a more detailed discussion later. Betzler etlal. [7] stutthedmultivariate complexity
of PossiBLE WINNER for scoring rules and other types of voting systems, prowgdi
an NP-hardness proof férapproval in case of only two partial votes. However, this
NP-hardness result holds onlyfifis part of the input and does not carry over for fixed
values ofk. Furthermore, whereas the corresponding many-one rextueties on two
partial votes, the construction used in this work makes @isa anbounded number of
partial votes and thus is completely different.

Until now, the computational complexity ofd3siBLE WINNER was still open for
a large number of naturally appearing scoring rules. Onk spen case has beén
approval for small values df which is motivated as follows. A common way of voting
for a board consisting of a small number, for example, of fivamhers, is that every
voter awards one point each to five of the candidaiegpfproval). A second example
is given by voting systems in which each voter is allowed tecdfy a (small) group of
favorites and a (small) group of most disliked candidatesfiral example, we mention
scoring rules that have decreasing differences betweearessige score values as, for
example, the scoring vect¢™, 2™~ ... 0).

This work aims at a computational complexity dichotomy fare scoring rules.
The class of pure scoring rules covers all of the common sgatiles. It only consti-
tutes some restrictions in the sense that for different remnbf candidates the corre-
sponding scoring vectors cannot be chosen completely arimtly (see Sectidn 2).
Our results can also be extended to broad classes of “n@i-georing rules, see Sec-
tion[d. Altogether, we settle the computational complegityPossIBLE WINNER for
all pure scoring rules except the scoring rule defined®hy, ..., 1,0). For plural-
ity and veto, we provide polynomial-time algorithms wheréar the remaining cases
we show NP-completeness. Surprisingly, this includes tRehidrdness of ®SSIBLE
WINNER even for2-approval. Our NP-hardness result for 2-approval has atsm b
used to settle the complexity of thev&P BRIBERY problem EB].

2. Preliminaries

LetC = {c1,...,cn} be the set otandidates A voteis a linear order (i.e., a
transitive, antisymmetric, and total relation) 6h An n-voter profile P on C' con-
sists ofn votes(vy,...,v,) onC. A voting ruler is a function from the set of all

profiles onC to the power set of’, that isr(P) denotes the set of winnergPosi-
tional) scoring rulesare a special kind of voting rules. They are defined by scoring
vectorsa’ = (ay, as, . .., a,,) With integersa; > ag > --- > a,,,, thescore values
More specifically, we define that a scoring ruleonsists of a sequence of scoring vec-
tors sy, s, ... such that for any € N+ there is a scoring vectoy; for i candidates



which can be computed in time polynomialifl Here, we focus our attention quure
scoring rules, that is for evely> 2, the scoring vector forcandidates can be obtained
from the scoring vector foir — 1 candidates by inserting an additional score value at
an arbitrary position (respecting the described monoticThis definition includes
all of the common protocols like Borda érapproval. We further assume that, = 0
and that there is no integer greater than one that dividesaitk values. This does not
constitute a restriction since for every other voting systkere must be an equivalent
one that fulfills these constrainis__[ZS, Observation 2.2prébver, we only consider
non-trivial scoring rules, that is, scoring rules with # 0 for scoring vectors of every
size.

Foravotev € P and acandidatee C, letthescores(v, ¢) be defined by(v, ¢) :=
«; wherej is the position ot in v. For any profileP = {v1,...,v,}, lets(P,¢) :=
Yoy s(vi, ¢). Whenever it is clear from the context whi¢hwe refer to, we will just
write s(c). A scoring rule selects all candidatess winners with maximuma(P, c)
over all candidates.

A partial voteon C' is a transitive and antisymmetric relation 6h We use>
to denote the relation given between candidates in a linefar@and- to denote the
relation given between candidates in a partial vote. Sonestj we specify a whole
subset of candidates in a partial vote, eeg D for a candidate € C and a subset
of candidatesD C C. Unless stated otherwise, this notation means ¢hat d for
all d € D and there is no specified order among the candidatds.irn contrast,
writing e > D in a linear order means that> d; > --- > d; for an arbitrary but fixed
order of D = {dy,...,d;}. Alinear ordery’ extendsa partial votev if v C o/, that
is, for anyi, j < m, frome; > ¢; in v it follows thate; > ¢; in v’. Given a profile of
partial votesP = (v1,...,v,) onC, a candidate € C' is apossible winneif there
exists an extensioR’ = (v}, ..., v} ) such that each; extends; andc € r(P’). The

rn

corresponding decision problem is defined as follows.

PossIBLEWINNER

Given: A set of candidate€’, a profile of partial vote® = (v1,...,v,)
onC, and a distinguished candidate C'.
Question: Isthere an extension profif®’ = (v}, ..., v],) such that each,

extends; andc € »(P’) ?

This definition allows that multiple candidates obtain thaximal score and we end
up with a whole set of winners. If the possible winrdras to be unique, one speaks
of a possiblainique winneyrand the corresponding decision problem is defined analo-
gously. All our results hold for both cases.

Several of our NP-hardness proofs rely on reductions fra\R-complete E-
ACT COVER BY 3-SeTs (X3C) problem [[24] defined as follows. Given a set of el-
ementsk = {ey,...,eq}, a family of subsetss = {51, ...,5;} with |S;| = 3 and
S; € Efor1 < i < t, it asks whether there is a sub&tC S such that for every ele-
mente; € E there is exactly ong; € S’ with e; € S;. In our NP-hardness proofs we

2For scoring rules that are defined for a constant number afidates, the BSsIBLEWINNER problem
can be decided in polynomial time, s&d 3, 33].



Scoring rule Result

Plurality and Veto inP Propositidd 1, Sectidn 4
different-type NP-c (X3C) Theorel 1, Sectidn 5
equal-type NP-c (MC/X3C) Theorelth 2, LemmBtald - 6, Se¢iidi 6.
a; > as = a1 >0 NP-c(X3C) Theorerfl4, Sectidn 6.2
anda1 7§ 2o
(2,1,...,1,0) ?

Table 1: Overview of results and outline of the work. Badjcale partition the scoring rules into five
different types according to the types of algorithms or mang reductions that are used to achieve the
results. By “different-type” we denote all scoring vectavih an unbounded number of different score
values. By “equal-type” we denote all scoring vectors withuabounded number of equal score values if not
listed explicitly in another type. Reductions are fromA€T COVERBY 3-SETS(X3C) or MULTICOLORED
CLIQUE (MC).

need to describe the consequence of extending partial fatspecific candidates. To
this end, we say that a candidatés shifted to the left (rightpy another candidaie
when adding the constraint > ¢; (¢; > ¢;) to a partial vote.

In some of our theorems, we will need functions that map eastiaince of a certain
problem?P to some natural number and in some sense behave like a paindror
this sake, we call

f:{I|Iisaninstance oP} — N

apoly-type function fofP if the function valuef (1) is bounded by a polynomial ifT |
for every input instanceé of P.

3. General strategy

This work aims at providing a dichotomy foroBsiBLE WINNER for practically
relevant scoring rules. To this end, we will show the follogi

Theorem. PossIBLE WINNER is NP-complete for all non-trivial pure scoring rules
except plurality, veto, and scoring rules for which thereaixonstantz such that
the produced scoring vector {§, 1, ..., 1,0) for every number of candidates greater
thanz. For plurality and vetoPossIBLE WINNER is solvable in polynomial time.

The proof consists of several parts, see Téble 1 for an aaervihe polynomial
time results for plurality and veto are based on flow companiat Regarding the
NP-hardness results, we give many-one reductions that ¥ewrkcoring rules that
produce specific “types of scoring vectors” for an apprdprimumber of candidates.
We combine the single results to obtain the main result iri@2@. To this end, we
have to take into account that, in general, a scoring ruldtpgoduce different types
of scoring vectors for different numbers of candidates.

The basic observation to classify the scoring vectors i @ahscoring vector of
unbounded size must have an unbounded number of differers salues or an un-
bounded number of equal score values. This leads to theniokpstrategy. First,



we show NP-hardness for all scoring vectors having an untiedinumber of differ-
ent score values. To this end, we generalize a many-onetiedwtue to Xia and
Conitzer Eh]. Second, we deal with scoring vectors havingitabounded number
of equal score values. Here, we consider two subcasessé@ing vectors of type
a1 > as = a1 > 0butay # 2 - g, and all remaining scoring vectors with an
unbounded number of equal score values.

Before stating the specific results, we give a constructibiese that is used in all
many-one reductions in this work.

3.1. A General Scheme to Construct Linear Votes

In all many-one reductions presented in this work, one cantt a partial profile®
consisting of a set of linear ordefs’ and a set of partial voteE?. The position
of the distinguished candidateis already determined in every vote fron?, that
is, s(P’, ¢) is the same in every extensidt and thus is fixed. The “interesting” part
of the reductions is given by the partial votesigf in combination with upper bounds
for the scores which the non-distinguished candidates cakenm V?. For every
candidater’ € C'\{c}, the maximum partial score;'**(c’) is the maximum number
of points¢’ may make inV’? without beating: in P. More precisely, for the unique
winner casesy™(¢’) = s(P’,¢) — s(V',¢’) — 1 and, for the winner casej'**(c) =
s(P',c) — s(V!, ') for any extensiorP’ of P. Since the maximum partial scores can
be adjusted to the unique and to the winner case, all resuiisér both cases.

In the following, we show that for all our reductions, thesean easy way to cast
the linear votes such that the maximum partial scores tieaeguired in the reductions
arerealized For every many-one reduction of this work, it will be easyéoify that
the underlying partial profile fulfills the following two pp@rtiesﬂ

Property 1 There is a “dummy” candidatéwhich cannot beat the distin-
guished candidate in any extension, thatjs(d) > a1 -[V?|.

Property 2 For everyc’ € C\{c}, the maximum partial scorg;**(c’)
can be written as a sum of at m¢B¥ | integers from{a, . .., o, }. For-
mally, the definition ok;**(c") will be of the formsg’a".(c’) = Z;.”:l nja
wheren; € N, denotes how often the score valigis added. We will
always have that " | n; < |[V?|, thatis, the total number of summands

is at most the number of partial votes.

The sets of linear votes which are necessary for the recieciven in this paper
can be obtained according to the following lemma.

Lemmal. Given a scoring ruler, a set of candidate§’ with distinguished candi-
datec € C, a set of partial vote3/” in which c is fixed, ands;***(¢’) for all ¢’ €
C\{c}, a set of linear votes that realizes the maximum partial esdor all candidates
can be constructed in time polynomial|ii?| andm if Properties 1 and 2 hold.

3The only exception appears in the proof of Theof@m 4 and wiltliscussed there.



V1t Cc1 > Ca2 > ... > Cm—-1 > Cnp

V2 - Co > C3 > ... > Cm >
Um—1 Cm—1 > Cm > ... > Cm—-3 > Cp—29
Um - Cm > > ... > Cp—2 > Cpm-1

Figure 1: Circular block foey,ca ..., cm

PROOF We are interested in “setting” relative score differenetween the distin-
guished candidateand every other candidate. By inserting one linear orderheage
the relative score difference betweeand all other candidates. To be able to change
the relative score difference only feand one specific candidate while keeping the rel-
ative score difference afand all other candidates, we will build’ by sets of circular
shifts instead of single votes. More precisely, for a setaofdidateq ¢y, ca, ..., cm},
acircular blockconsists ofn linear orders as given in Figuk 1. Clearly, all candidates
have the same score within a circular block.

We start with the construction for the winner case and thguaéx how to adapt
it for the unique winner case. For the winner casgt(c’) = s(P’,c) — s(V', )
for any extensiorP’), for each candidate’ € C'\{c, d} whered denotes a dummy as
specified in Property 1, add the following votes to the setrafdr votes/!. For each
n; # 0 as specified in Property 2, construct circular blocks ovelC' such that in
one of the linear orders of every blocK,sits on position; andd sits on positionmn.
Exchange the places ef andd in this linear order and add the modified circular
block to V!. Then, for one block¢’ has losta; points and gained.,,, = 0 points
relative toc. Thus, in total, one has the situation tlraindc¢’ have exactly the same
score if¢’ makessy'**(c’) points inV’?. This settles the winner case. For the unique-
winner case, we additionally decrease the score by the minimum of{a; — «; |
a; > o andi,j € {1,2,...,m}}. This can be achieved by adding a circular block
such that in one of the linear orders of the blocksits on positiony; andd sits on
position«;, and by exchanging the places dfandd in this linear order. Therg
beatsc’ if ¢’ makes at most;!**(c’) points inV? andc’ beatsc, otherwise.

Altogether, due to Property 2, we add at m@st| summands for each candidate.
Hence, so far, the number of linear votes is boundedBy (|V?| + 1) and can be
constructed in polynomial time. It remains to adjust the immaxn partial score ofl.
Until now, we added at most - (]V?| + 1) circular blocks. Thusjf can make at most
aq -m - |VP| points more thawr. By addingm(|V?| 4 1) + [V?| further circular blocks
for candidates fron®"\{d} that are inserted in the first — 1 positions, whiled is put
on the last position in these votes;**(d) can be realized in polynomial time. O

4. Plurality and Veto

Employing network flows turned out to be useful to design atgms for several
voting problems (see e.ﬂ]lﬂ 18]). Here, by using some flomputations very simi-
lar to |4, Theorem 6], we show the following.



vita>=c=d,b>c

va:cr=arb =c>a>b>d
vg:a-d=b =c>a>d>b
vgia>=b>c

vs:ia > c,b-d

Figure 2: P ssIBLEWINNER for plurality: The left-hand side shows an example for arct@de and the
right-hand side the corresponding flow network. The veteandvs can be extended such thatakes the
first position. The position of the remaining candidateshses votes is not relevant; one possibility how to
extend these votes is shown in the picture.

Proposition 1. PossIBLEWINNER can be solved in polynomial time for plurality and
veto.

PROOF First, we give an algorithm for plurality. Le on C' denote a BSSIBLE
WINNER-instance with distinguished candidate Clearly, it is safe to set to the
first position in all votes in which this is possible. Then go®re ofc is fixed at the
maximum possible value. We denote the partial voteB of which the first position is
not taken by asP;. Now, we can model the problem as network flow as follows (see
Figurel2): The flow network consists of a source neda target node, one node for
every vote ofP;, and one node for every candidate fraéf{c}. There are three layers
of arcs:

1. an arc froms to every node corresponding to a voteltpwith capacity one,

2. an arc from a node corresponding®p € P; to a node corresponding to a
candidate’ € C'\{c} with capacity one if and only if’ can take the first position
in an extension of;, and

3. an arc from every node correspondingctoe C\{c} to targett with capac-
ity s(c) — 1.

Now, c is a possible winner if and only if there is a flow of siZ& |: The first layer
simulates that the first position of every partial vote frérhas to be taken, the second
layer that it can only be taken by appropriate candidatestlamlast one that the score
of every candidate will be lower than the scorecofClearly, the flow network can be
constructed in time polynomial ifP;| and an integral flow computation can be done
in polynomial time [[14].

For veto, we first fixc at the best (leftmost) possible position in every vote. This
fixes the maximum score ef Then for every candidat® € C'\ {c}, letz(¢’) denote
the minimum number of last positions thdtmust take such that it does not beat
Let P, denote the set of partial votes in whicldoes not take the last position. Again,
we model the problem by a flow network with source nede&arget node, one node
for every candidate fron®'\{c}, and one node for every vote &f. The arcs are as
follows:

1. an arc froms to every node correspondingtbe C\{c} with capacityz(¢’),

2. anarc from a node correspondingfoc C'\{c} to a node correspondingtg
P with capacity one if and only i’ can take the last position in an extension
of v;, and



3. an arc from every node correspondingjos P; to targett with capacityl.

By similar arguments as for plurality, it follows thais a possible winner if and only
if there is a flow of siz) . o\ .y 2(¢). ]

5. An unbounded number of positionswith different score values

Xia and ConitzerE4] developed a many-one reduction froxa®&r COVER By
3-SETs showing that BssIBLE WINNER is NP-complete for any scoring rule with
scoring vectors which contain four consecutive, “equadlgréasing” score values, fol-
lowed by another strictly decreasing score value. Usingesadditional gadgetry, we
extend their proof to work for scoring vectors with an unbdec number of different,
not necessarily equally decreasing score values.

We start by describing the basic idea employed_ih [34] (usistightly modified
construction). Given an X3C-instan¢g, S), construct a partial profil® := Viuv?
on a set of candidates whereV! denotes a set of linear orders avid a set of partial
votes. To describe the basic idea, assume that there isiageector witha; > s
and and the differences between the four following scoreesreequally decreasing
that is,ae —a3 = a3 —ag = oy — 5. Then,C := {c,z,w} U E whereF is the
universe from the X3C-instance. The distinguished candidac. The candidates
whose element counterparts belong to theSsetre denoted by; 1, e;2, ¢;3. The partial
votesV'” consist of one partial vote!’ for everyS; € S which is given by

x»eﬂ»eig»ew»(}",w»(]’

with C" := C\{z,e;1, €2, €3, w}. Note that inv?, the positions of all candidates
exceptw, x, e;1, e;2, ¢;3 are fixed. More preciselyy has to be inserted between posi-
tions1 and5 maintaining the partial order > ¢;; = e;2 = e;3. By setting the linear
votes, the maximum partial scores are realized such thébtlogving three conditions
hold.

e For everyelement candidate € F one has the following. Inserting behinde
in two partial votes has the effect thatvould beat:, whereas whew is inserted
behinde in at most one partial vote,still beatse (Condition 1). Note that may
occur in several votes at different positions, e.gnight be identical withe;;
ande;s for i # j. However, due to the condition of “equally decreasing” ssor
“shifting” e increases its score by the same value in all of the votes.

e The maximum partial score ofis set such that if takes more than?| — |E|/3
times the first position, then it would beatThat is,.ww must be inserted before
at leastV?| — | E|/3 times (Condition 2).

e We sets)**(w) = (|[VP| — [E|/3) - a1 +|E|/3 - a5. This implies that ifw
is inserted before: in |V?| — |E|/3 votes, then it must be inserted at the last
possible position, that is, positidn in all remaining votes (Condition 3).

Having an exact 3-cover fdiZ, S), extend the partial votes as follows.



VYL > e > e > €3 >w > ... ifS;isin the exact 3-cover

v iw > x> e > e >e3 > ... if S;isnotinthe exact 3-cover.
Then, every element candidatés shifted exactly once (in? for e € S, if S; is in
the exact 3-cover) and thus is beatencbyt is easy to verify that beatsw andz as
well. In a yes-instance fofC, P, ¢), it follows directly from Condition 2 and 3 that
must have the positiofi in exactly|E|/3 votes and the first position in all remaining
partial votes. Since there afE|/3 partial votes such that three element candidates are
shifted in each of them, due to Condition 1, every elementlickaie must appear in
exactly one of these votes. Heneés a possible winner i if and only if there exists
an exact 3-cover ofv.

By inserting further candidates, one can pad the construstich that is also works
if the equally decreasing score differences appear at @bsitions |E|4]. Now, we
consider the situation in which no such equally decreasoogesdifferences appear
at all. More precisely, we show how to extend the reductioedoring vectors with
strictly, but not equally decreasing scoring values. Thebf@m we encounter is the
following: By sending candidate to the last possible position in the partial vatg
each of the candidates, e;2, ¢;3 improves by one position and therefore improves
its score by the difference given between the corresponglisgions. In I[__3|4], these
differences all had the same value, but now we have to dehlwaitying differences.
Since the same candidatec E may appear in several votes at different positions,
e.g.e might be identical withe;; andejs for ¢ # j, it is not clear how to set the
maximum partial score of. Basically, to cope with this situation, we construct three
partial votesv},v?, and v} for every setS; € S and permute the positions of the
candidates;, e;2, e;3 such that each of them takes a different position/invZ, v3.

For example:

VP X €41 7 €2 €43 ..
Lo X €2 7 €i3 7 €41 7 ...
L X €3 €41 6o ...

In this way, if the candidate is sent to the last possible position in all three partial
votes of a sefS;, each of the candidates;, e;2, e;3 improves its score by the same
value. We only have to guarantee that whenevés sent back in the partial vote,
then it has to be sent back andv; as well. This is realized by a gadget construction,
which is the main technical contribution of the followingetirem.

p
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Theorem 1. An X3C-instancé can be reduced to ROSSIBLE WINNER-instance for
a scoring rule which produces a scoring vector havifld) positions with different
score values. A suitable poly-type functipean be computed in polynomial time.

PROOE Given an X3C-instanc@, S) withS = {51, ..., S} andS; = {e;1, eia, €3}
fori € {1,...,t}, construct a partial profil® on C as follows. The set of candidates
is defined ag”' := {x,w,c} W EW D15 W D13 W L (wherew denotes the disjoint
union), whereF is the set of candidates that represent the elements of thersa of
the X3C-instanceD12 = {dl, ey dt, hl, ey ht}, D3 := {dll, R ,dé, h’/17 ey hé},
andL := {ly,...,l;}. We definef ((E,S)) := |C|. To ease the presentation,
we first assume that we have a strictly decreasing scoringpwet size f ((E,S))
and describe how to generalize this at the end of the prooé péatial profile con-
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sp(w) = (3t —q) o1 +q- asqa
sp(z)  =q-a1+(3t—q) a2
Vec B sp™(e) = (aataztas)+ (ne—1)- (az+as+as)+fixed(e)
\V/dl Sglax(di) = q/3 * 444 —|—(t — q/3) * 544 + ﬁxed(dl)
\V/hz Sglax(hi) = q/3 * 444 —|—(t — q/3) * 544 + ﬁxed(hz)
vd; sp(dy) = q/3 qupipr +(t — q/3) - aspite +fixed(d;)
Vh; sp(hi) = a/3 - qupire +(t — q/3) - a5 pige +fixed(h)
v, sMx(L) =2t - ay + fixed(l;)

Table 2: Maximum partial scores. Recall that |S|, ¢ = |E|, andn. = |{S; € S | e € S;}|.

sists of a set of partial voteg? and a set of linear voteg'. The partial votes are
VP = {vl,v? v} | 1 < i <t} with,

19 Y1

forl<i<t-—1,

vil:xeileigeigdl...dihHl...htd’l...d§h§+1...h;>-ci1,w>—C’i1
U?SIGiQGigeilhl...hidiJrl...dt i ... ... ... Iy }CE,’LU}O?
vf’:xeigeileig i .0 oo Iy h’lh;d;+ldg>Cl3,w>Cf’
and

viiwen epesd...ddy ... dy = CH, w=C}
viizemesenghy . hyly ol = C?E,ow- C?

vPimesen el ool By R = CP L w = CF

where ‘" signs are partially omitted an@}, C?, andC? denote the remaining can-
didates that are fixed in an arbitrary order, respectivelgwNve give some notation
needed to define the maximum partial scores. &or C'\{c}, let fixed(¢’) denote
the number of points which makes in the partial votes in which the positioncbfs
already fixed. Lek. denote the number of subsets witke S; andg = |E|. Due to
Lemmad[d, one can set the maximum partial scores as given ie[Baflhe particular
partial scores will be explained within the proof of the émlling claim.

Claim: Candidate: is a possible winner of if and only if there is an exact 3-cover
for (E,S).

“«<". Given an exact 3-cove§’ C S, complete the votes ifv? in the following
way: For eachS; € &', placew in the last possible position (i.e., positiérH 2t)

in the partial votes)}, v2, andv?, and on the first position in the remaining partial
votes. SincgS’| = ¢/3, in the extension of the votes frofi? ones has(w) =
(3t —q) - o1 +q - a5y = 5" (w) ands(z) = ¢ - a1 +(3t — q) - az = 5,"(x).
Furthermore, it is easy to see thdt;) < s,"**(l;) for everyi. Every element candi-
datee is shifted to the left in exactly three partial votes. Moregisely, in the three
votes that correspond t6; € S’ with e € S;, it makesas + a3 + a4 points and
(ne — 1) - (g + g + ai5) + fixed(e) points in the remaining votes and thus does not
beatc. Every candidate fronD5 is not “fixed” in exactly one vote of every triple
corresponding to af;. More precisely, it can be shifted eitherifi or in v? and never
in v?. Due to the insertion of, it is shifted to positiont + i in ¢/3 of the votes and
takes positiors + 7 in the remaining — ¢/3 non-fixed votes. Thus, it does not beat
Analogously, every candidate frofM;; makesay;+: points ing/3 of the non-fixed
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votes andvs 1+ in the remaining—¢/3 votes and hence does not beadltogethere
beats every other candidate and wins.

“=": Consider an extension d? in which ¢ wins. Due to its maximum partial score,
candidater can take the first position only times. Thus, it must be shiftett — ¢
times to positior2. Clearly, this is only possible ifv is placed on the first position
in 3t — ¢ votes. Then due to its maximum partial scorecan only be set to posi-
tion 5 + 2t in the remaining; votes. In the following, we will show that for eveiyw
takes positiord + 2t in v} if and only if it takes positiors + 2t in v? if and only if it
takes positiors + 2¢ in v3 (Observation I). Then it follows that in the votes in whieh
takes positiord + 2t, the corresponding element candidates are shifted to thand
obtainas + a3 + a4 points each, whereas they obtain+ a4 + a5 points in the re-
maining corresponding vote triples. Since each elemerndidatee; can only obtain
s + a3 + ay points exactly once (and the scoring values are strictlyeseing), the
setS’ := {S; | wis placed on positios + 2¢ in v} } must be an exact 3-cover &f.

It remains to settle Observation I, which says thabehaves equally in the votes
corresponding to one subset. First, we arguedhatust be inserted at positidn+ 2¢
in exactlyq/3 votes of VP := {v} | 1 < i < ¢}, VF = {02 |1 <i < t}, and
V¥ = {v} | 1 <i < t}, respectively. Assume that is inserted at position + 2t in
more thary/3 votes of V. Then,d;, which is not fixed in every vote df}’, would
beatc. Analogously, ifw was inserted at positioh+ 2¢ in more thany/3 votes ofV}’
or V', thenc would be beaten by, or i/, respectively. Now, we have that must
take positiorb + 2¢ in ¢ votes and can take this position in at mgg$ votes fromV;”,
for everyi € {1, 2,3} and thus must take this position in exact}{3 votes of V', V.I’|
andVy.

Second, we show that the candidates frbm ensure thatv takes positiord + 2¢
in v} if and only if w takes positiors + 2t in vZ. The proof is by contradiction. Assume
that there is an extension in whiehtakes positiord + 2¢ in v} and another position
in v? for anyi. Sinced; andh;; have been shifted to the left ir}, each of them can
only be shifted to the left in at mogy/3 — 1 further votes. By construction? is the
only vote of V" U V" in which neitherd; nor h;; is shifted to the left by setting
to position5 + 2t. However, sincav can either take the first or positi@a + 5 in an
extension (as argued above), it must take the first positiad.i Now, w has to take
the positions + 2t in 2¢/3 — 1 further votes from¥/” U V’ and thus in each of these
votesw will either shiftd; or h; 1. Hence, eithed; or h;; 1 must be shifted to the left
in more thany/3 — 1 further votes and will beat, a contradiction. The other case (
takes positiors + 2¢ in v? and another position in}) follows in complete analogy by
consideringh; andd; 1. One can show analogously that the candidatd3;gfensure
thatw takes positiord + 2t in v} if and only if it takes the same position irf. Thus,
Observation | follows.

Now, one has that®ssiBLE WINNER is NP-hard for all scoring rules with a scor-
ing vector of sizef ((EF, S)) with strictly decreasing score values. By using some sim-
ple padding, we extend the result for the remaining casasjgtor scoring vectors of
sizem’ > f((E,S)) andf((E,S)) different score values. To this end, we introduce a
setofm’— f((F,S)) new dummy candidates and cast the linear votes such thepttann
beat the distinguished candidate in any extension. Thénatigandidates frond” are
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placed on positions endued with strictly decreasing powitereas the new candidates
are placed on the remaining positions. Then, if the postmfircandidates get shifted
(whenw is inserted), the “old” candidates are affected in the saraanar as in the
above construction and the theorem follows. ]

6. An unbounded number of positionswith equal score values

In the previous section, we showed NP-hardness for scoeetpus with an un-
bounded number of different score values. In this sectiom,digcuss scoring vec-
tors with an unbounded number of positions with equal scateer In the first sub-
section, we show NP-hardness foo$SIBLE WINNER for scoring vectors that ful-
fill e # cun—1, @nd, in the second subsection, we consider the speciatitatze >
as = -+ = a1 > 0. Note that these two cases cover all scoring vectors with an
unbounded number of equal score values (except pluraldyvato): There are three
ways to “violate’a; > as = -+ = «ay,—1 > 0. First, if one requires; = a», then
one ends up with veto. Second, requiriag_; = 0, one arrives at plurality. Third,
requiringas # a.,,—1, then one ends up with the other case that includes the famous
examples 2-approval arieh — 2)-approval.

6.1. An unbounded number of equal score valueseang o, 1

The scoring vectors considered in this subsection divide two classes. First,
there are at least two score values that are greater tharethml‘score value”. Sec-
ond, there are at least two score values that are smalletthieatequal score value”.
Formally, a sizem scoring vector for the second class looks as follows: theemni,
with i < m — 2 and an “unbounded” integer such thatv;_, = «; > a;y1. This
property can be used to construct a basic “logical” tool us¢lde many-one reductions
of this subsection: For two candidaies’, havinge > ¢’ in a partial vote implies that
settingc such that it makes less than points implies that alse’ makes less than;
points whereas all candidates placed in the range betiveenand: make exactlyy;
points. This can be used to model some implication of the type> ¢’” in a vote.
For (m — 2)-approval, which will play a prominent role for stating owsults, this
condition means that only has the possibility to make zero points in a vote if also
makes zero points in this vote whereas all other candidasdé® mne point.

Most of the reductions of this subsection are from the NPete MuLTICOL-
ORED CLIQUE (MC) problem [25]:

Given: Anundirected grapty = (X;UX,U---UXy, F) with X;NX; =

( for1 < i < j < k and the vertices okX; induce an independent set for
1<i<k.

Question: Is there a complete subgraph (clique) of size

Here,1,..., k are considered as different colors. Then, the problem is/algnt to
ask for amulticolored cliquethat is, a clique that contains one vertex for every color.
To ease the presentation, for ahy i # j < k, we interpret the vertices of; as red
vertices and write: € X;, and the vertices ok ; as green vertices and writec X ;.
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Reductions from MC are often used to show parameterizembaajresuItﬁZ].
Intuitively, the different colors give some useful struettio the instance. The general
idea is to construct different types of gadgets. Here, tmggbaotes realize four kinds
of gadgets. First, gadgets that choose a vertex of every g@dex selection). Second,
gadgets that choose an edge of every ordered pair of cotlmrgxhmple, one edge
from green to red and one edge from red to green (edge selgciibird, gadgets that
check the consistency of two selected ordered edges, eeg.te chosen red-green
candidate refer to the same edge as the choice of the grderaneidate (edge-edge
match)? Finally, gadgets that check whether all edgesrsgdrom the same color start
from the same vertex (vertex-edge match). Though redusfiom MC have become a
standard tool to obtain hardness results, the reducti@ndiere is not straightforward.
For example, we are not aware of any reduction in the liteettar which it is necessary
to employ vertex-edge match gadgets.

We start by giving a reduction from MC that settles the NPdhass of BSSIBLE
WINNER for (m — 2)-approval. Then we describe how the given construction can
be generalized to work for most of the cases considered snstlitbsection. The NP-
hardness of the remaining cases will be shown by reductions EXACT COVER By
3-SETs.

Lemma 2. POssIBLEWINNER is NP-hard for(m — 2)-approval.

PROOF Givenan MC-instancé&' = (X, E) with X = X;UX,U---UX}. LetE(i, j)
denote all edges fromfy betweenX; and.X ;. Without loss of generality, we can assume
that there are integersandt such that X;| = sfor1 < i < k, |E(i,5)| = t for all
1,7, and thatk is odd since every other instance can be padded easily inveys
We construct a partial profil® on a setC' of candidates such that the distinguished
candidate: € C' is a possible winner if and only if there is a sizeslique inG. The
set of candidate€' := {¢} W Cx W Cr W D, wherew denotes the disjoint union, is
specified as follows:

o Forie {1,...,k},letC% = {ry,...,rp—1 | r € X;} andCx := | J, C%.
e Fori,j €{1,...,k},i#j,let
Cij:={rg|{r,g} € E(i,j),r € X;, andg € X;}

and

C{_’j :={rg" | {r,g9} € E(i,j),r € X;, andg € X, }.
Then,Cg = (U4, Cij) ® (Ui, Ci ), i-e., for every edgdr, g} € E(i, j),
the setC'r contains the four candidates, ¢, gr, gr’.

e The setD := Dx W D; & D, is defined as follows. Fare {1,...,k}, D% =
{ct,....cq_o | r € X;} andDx = |J, D%. Fori € {1,...,k}, one has
t={d},...,d,_,}andD; :=|J,; D}. The setD, is defined a, := {d" |
1e{l,....k}}.
We refer to the candidates @fy asvertex-candidatesto the candidates of'r as
edge-candidatesnd to the candidates &f asdummy-candidates
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The partial profileP consists of a set of linear vot&g and a set of partial votds?.

In each extension of, the distinguished candidategets one point in every vote
from V'? (see definition below). Thus, according to Lenitha 1, we cathsanhaximum
partial scores as follows. For every candiddte Ds, sp**(d") = |[VP| — s 4 1, that
is, d° must get zero pointddke a zero positionin at leasts — 1 of the partial votes.
For every remaining candidate € C\({c} U Dz), s,/**(c') = [V?| — 1, that is,c
must get zero points in at least one of the partial votes.

In the following, we defind’? := V; U Vo U V3 U V,. For all our gadgets only
the last positions of the votes are relevant. Hence, in thigapgotes it is sufficient to
explicitly specify the “relevant candidates”. More pregis we define for all partial
votes that each candidate that does not appear explicitheinlescription of a partial
vote is positioned before all candidates that appear invthtis.

The partial votes of/; realize theedge selection gadgets. Basically, selecting
an ordered edgér, g) with {r,g} € E means to select the correspondipgjr of
edge-candidatesg andrg’. The candidate-g is used for the vertex-edge match
check andrg’ for the edge-edge match check. Now, we give the definitiofi;of
For every ordered color paiti,j),: # j, V1 hast — 1 copies of the partial vote
{rg = rg | {r,g} € E(i,7)}, thatis, one partial vote contains the constraint- r¢’
for every{r,g} € E(i,j). The idea of this gadget is as follows. For every ordered
color pair we have edges and — 1 corresponding votes. Within one vote, one pair of
edge-candidates can get the two available zero positidmss, Tt is possible to set all
but one, namely the selected pair of edge-candidates, dqpositions.

The partial votes of/;, realize thevertex selection gadgets. Here, we will use the
k — 1 candidates corresponding to a selected vertex to do thexvedge match for
all edges that are incident in a multicolored clique. Fotyale setV, := Vi U VY
as further defined in the following. Intuitively, iy we select a vertex and i,
by a cascading effect, we achieve that/all- 1 candidates that correspond to this
vertex are selected. IVi}*, for every colori, we haves — 1 copies of the partial vote
{ry =} | r € X;}. In V2, for every colori and for every vertex € X;, we have the
following k — 2 votes.

Foralloddz € {1,...,k—4}, o' :{cl > ¢l 1, r2q1 = raqa}.
Forallevenz € {2,...,k—3}, ol':{c > cl ,di_; = d.},
vy e g = di g i1 = dY

The partial votes oF; realize thever tex-edgematch gadgets. Fori, j € {1,...,k},
for j < ¢, V3 contains the votgrg > r; | {r,g} € E,r € X;,andg € X,} and,
for j > 4, V5 contains the vot¢rg > r;_1 | {r,g} € E,r € X;, andg € X, }.

The partial votes o¥/, realize theedge-edge match gadgets. For every unordered
color pair{i,j},i # j there is the partial vot¢rg’ = gr' | {r,g9} € E(i,j),r €
X;, andg € X;}.

This completes the description of the partial profile. Nowe verify a property
of the construction that is crucial to see the correctnassotal, the number of zero
positions available in the partial votes is exactly equath® sum of the minimum
number of zero position the candidate<8f{c} must take such thatis a winner. We
denote this property of the constructiontaghtness To see the tightness property, we
first compute the number of partial votes:
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Vi ->rg>rg fori,j € {l,...,k},i # j,r € X;\Q, andg € X,;\Q

Vi ->rp > forl <i<kandre X;\Q

VY. ol S>>y >y forl <i<kreX;\Qforallze {1,3,5,...,k—4}
AL > >l forl <i<k,re X;\Qforall z € {2,4,6,...,k — 3}
A > > d for1 <i<k,reX;\Q
AL >l >l for1 <i<k,reX;nQforallze{1,3,5,....k—4}
AL >dl_y > dl forl <i<k,reX;nQforallze{2,4,6,....k—3}
oty >y >di o, forl<i<kreX;NQ

Vs S>rg > Ty fori,je{l,....k},j<i,re X;NQ, andg € X; N Q

S>> T fori,je{l,....k},j>i,re X;NQ, andg € X; N Q
Vi ->rg > gr’ fori,je{l,....k},i#jreX;NnQ,geX;NQ

Figure 3: Extension of the partial votes for the MC-instan&tensions in which candidates that do not
correspond to the solution s@ttake the zero positions are highlighted.

Vil + V| + Vs3] + [Vi| =
E(k—1)(t—1)+k(s—1)+ks(k—2)+ k(k—1)+ k(k—1)/2=
t(k? — k) +s(k* — k) +k?/2-3k/2. (1)

Regarding the number of zero positions that must be takerfirstecompute the
number of candidates for each subset:

o |Cx|=sk(k—-1),
o |Cg|=2tk(k—1),
e |Dx|=sk(k—2),|Dy| =k(k—2),and|Ds| = k.

The candidates db, must take at least— 1 zero positions and all other candidates
at least one. Thus, in total the number of zero positions ipeistt least

sk? — sk + 2tk? — 2tk + sk* — 2ks + k* — 2k + k(s — 1) =
25(k? — k) + 2t(k* — k) + k? — 3. (2)

Furthermore, there are two zero positions for every pavoéd. It is easy to ver-
ify that (@) times two equaldl2). Hence, the tightness ofdbestruction is shown.
It directly follows that if there is a candidate that takesrenaero positions than de-
sired, thenc cannot win in this extension since then at least one zerdipnsnust be
“missing” for another candidate.

We can now show the following claim to complete the proof.

Claim: The graphG has a clique of sizé if and only if ¢ is a possible winner iP.

“=" Given a multicolored cliqué&) of G of sizek. We refer to the vertices and edges
belonging toQ as solution vertices and solution edges, respectivelyiatite corre-
sponding candidates as solution candidates. Then, extengittial profileP as given
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in Figurel3. In the following we argue that in the given extensvery candidate takes
the required number of zero positions.

In V4, for every ordered color pair, all pairs of edge-candidateept the pair of
solution edge-candidates are set to the last two positioogsé of thet — 1 votes.

In Vi* for every colori, we set all candidates that do not belong to the solution
vertices and the correspondidgto zero positions in one of the votes. 1 for every
non-solution vertex € X;\@Q we set the corresponding candidates, andr, - at
zero positions in the votes* with odd indexz € {1,...,k — 4}. In the votes with
evenindex € {2,...,k— 3}, we set the corresponding dummy candidates’ , ; at
zero positions. We further set the candidate; at a zero position in votes* for all
the s — 1 non-solution vertices of colat which implies that the dummy candidateis
placed at — 1 zero positions. Thus, we have “enough” zero positions fichalcopies
of the non-solution candidates, the corresponding dummgidates{cy,...,c, 5 |
r € X;\ Q}, andd’. The remaining votes df;’ “correspond” to the gadgets for the
solution vertices. Here, we set the candidate pdirs- ., in the votes with odd
indexz € {1,...,k — 4} at position zero and the candidate pairs with candiddfes
forp = 1,...,k — 2 to zero positions in the votes with even index. ThusVinwe
have improved upon all dummy candidates and upon all candidates corregpgpio
non-solution vertices, whereas each candidate corregpptala solution vertex must
still take a zero position.

Now, it remains to set every candidate corresponding to @tisol vertex or a so-
lution edge to a zero position in at least one vote. Due totcocison, for a solution
edge{r,g} € FE, the two corresponding candidateg andgr’ can be set to zero in
the corresponding vote df;. And, in V3 the k — 1 vertex-candidates belonging to
every solution vertex can be set to a zero position in contisinavith the correspond-
ing edge-candidate. Thus, the distinguished candidet¢he winner of the described
extension.

“<" Given an extension of in which ¢ is a winner, we show that the “selected” can-
didates must correspond to a sizelique. Recall that the number of zero positions
that each candidate must take is “tight” in the sense thatéf candidate gets an un-
necessary zero position, then for another candidate thenesotenough zero positions
left.

First (edge selection), for,j € {1,...,k},i # j, we consider the candidates
of C; ;. The candidates af; ; can take zero positions in one voteléf and int — 1
votes ofl;. Since|C; ;| = t and in the considered votes at most one candidafé of
can take a zero position, every candidate’pf; must take one zero position in one
of these votes. We refer to a candidate that takes the zeitiopois V3 as solution
candidatergs,1. For every non-solution candidatg € C; ;\{rgso1}, its placement
in V1 also implies thatg’ gets a zero position, whereag, , still needs to take one
zero position (which is only possible ir,).

Second, we consider the vertex selection gadgets. Herlngmssly to the edge
selection, for every colot, we can argue that iy, out of the sef{r, | r € X;}, we
have to set all but one candidate to a zero position. The sporedingsolution vertex
is denoted as,,. For every vertex € X;\{rs1}, this implies that the corresponding
dummy-candidate] also takes a zero position#*. Now, we show that iy’ we have
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to set all candidates that correspond to non-solutioneestio a zero position whereas
all candidates correspondingitQ,, must appear only at one-positions. Since for every
vertexr € X;\{rsa1}, the vertexc] has already a zero position If§?, it cannot take
a zero position withirl anymore without violating the tightness. In contrast, foe t
selected solution candidatg,, the corresponding candidatgs” andr,,,, still need
to take one zero position. The only possibility fgr to take a zero position is within
votev|*"" by settinge;*! andc}! to the last two positions. Thus, one cannotisgt,
andry, t0 a zero position withirl,. Hence, the only remaining possibility fot,
andr1, to get zero points remains within the corresponding voté$ i his implies
for every non-solution vertex thatr, andr3 cannot get zero points iz and thus
we have to choose to put them on zero positions in the ¥ptérom V. The same
principle leads to a cascading effect in the following vaié$7’: One cannot choose
to set the candidateg=' for p € {1,...,k — 2} to zero positions in votes oFy
with even indexz and thus has to improve upon them in the votes with odd index
This implies that all vertex-candidates belongingig only appear in one-positions
within V’ and that all dummy candidaté$ for p € {1,...,k — 2} are set to one zero
position. In contrast, for every non-solution vertgone has to set the candidatgs

p € {2,...,k—2},to zero positions in the votes with even indgxand thus in the votes
with odd indexz, one has to set all vertex-candidates belongingtmzero positions.
This further implies that for every non-solution vertexlietast vote o> one has to
setd’ to a zero position, and since there are exacthyl non-solution vertices]’ takes
the required number of zero positions. Altogether, alleetandidates belonging to a
solution vertex still need to be placed at a zero positioh@remaining vote®s U Vy,
whereas all dummy candidates of and the candidates corresponding to the other
vertices must have taken enough zero positions.

Third, consider the vertex-edge match realize#jnFori,j € {1,...,k},i # j,
there is only one remaining vote in whieh,,; with » € X; andg € X; can take a zero
position. Hencergs,; must take this zero-position. This implies that the coroesiing
incident vertex-candidateis also set to a zero-position in this votezI# ry,;,, thenz
has already a zero-position 3. Hence, this would contradict the tightness ang,;
and the corresponding vertex must “match”. Furthermoregtnstruction ensures that
each of thek — 1 candidates corresponding to one vertex appears exactlyervate
of V5 (for each of thek — 1 candidates, the vote corresponds to edges from different
colors). Hence¢ can only be a possible winner if a selected vertex matchéds allit
selected incident edges.

Finally, we discuss the edge-edge match gadget¥,lfori,j € {1,...,k},i #

j, one still needs to set the solution candidates ft@m to zero positions. We show
that this can only be done if the two “opposite” selected eciyedidates match each
other. For two such edgeg,, andgrs.1, r € X;, g € X, there is only one vote i,

in which they can get a zero position. lfis,; andgry. refer to different edges, then
in this vote only one of them can get zero points, and thus thermne still beats.
Altogether, ifc is a possible winner, then the selected vertices and edgesspond to
a multicolored clique of sizé. ]

By generalizing the reduction used for Lemiha 2, one can sheviailowing.

Theorem 2. An MC-instance can be reduced to BossIBLE WINNER-instance for
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a scoring rule which produces a size-scoring vector that fulfills the following. There
isani < m — 1 such thate;_, = -+ = a;—1 > a; withz = f(I). A suitable
poly-type functiory’ can be computed in polynomial time.

ProoFR We describe how to modify the reduction given in the prooLemmal2 to
work for the considered cases. For this, f2on C' denote a partial profile as con-
structed in the proof of Lemnfd 2. Sin¢e< m — 1, the position; + 1 must exist. We
setz = f(I) := |C|—2 andfill all positions smaller thain- = and all positions greater
thani + 1 with dummy candidates that are different from candidates and that are
beaten by in every extension. We distinguish the two subcases- «;.1 (1a) and
(673 }é Q41 (1b)

For the case (1a), one can argue in complete analogy to Lé&ibyéi@entifying”
the two zero positions of Lemnfia 2 with positioand: + 1 and setting the maximum
partial score as follows (which can be done without changfiegpartial votes due to
Lemmal). For altl’ € D, s (d') = (s — 1) - +(|V?| — s + 1) - a;_; and for
all " € C\({c} U Dy), s;"*(c") = a; +(|VP| = 1) - 1.

For (1b), we need to argue that the tightness argument stdish For this, we set
the maximum partial scores as follows (which can be doneouittbhanging the partial
votes due to Lemnid 1). Forall € Dy, s'*(d") = (s—1)-aip1 +(|VP|—s+1)-a;
and, for all¢’ € C\({c} U D2), sp**(c) = a; +(|[V?| = 1) - a;—1. Now, in any
extension in whicle wins, each candidate iR, must be placed at least- 1 times on
positioni + 1, and each of the other candidates must be placed on posibion+ 1
at least once. Then again, the number of positioasdi + 1 that still have to be
assigned to candidates is exactly equal to the number ofidated that need to take
these positions, hence, the tightness argument still hdldss, the correctness of the
modified reduction can be shown in complete analogy to Lefdma 2 ]

In the following, we consider scoring rules with an unbowhdamberz of equal
positions for which it holds that there is dn> 2 such thato; > a1 = -+ =
;4. Parts of the results are based on further extensions of tedduction used to
prove Lemmd&R. After that there still remain some cases fachvih seems even more
complicated to adapt the MC-reduction. However, for thesees we can make use of
other properties of the scoring rules and settle them byitesdved reductions from
ExACT COVER BY 3-SETs. As we will see in Sectiofl 7, the following Lemmé&lid B—6
cover all scoring vectors with> 2 such thaty; > a1 =+ = Q14

Lemma3. An MC-instancd can be reduced to RossIBLE WINNER-instance for a
scoring rule which produces a size-scoring vector that fulfills the following. There
isani > 2 such thato;, > a1 = -+ = a4, Withz = f(I) and there is a
positionj < i with «; < 2 aj41. A suitable poly-type functiofi can be computed in
polynomial time.

PrRoOOF We describe how to modify the MC-reduction given in the frafd_emmal2
to work for the considered case. For this, léon C' denote a partial profile as con-
structed in the proof of Lemndd 2. First, we describe the ¢onsbn forj = i — 1,
that is, one has;_ 1 < 2«;. We construct a partial profil® as follows. We set
x = f(I) = |C| — 2 and all positions< ¢ — 1 and> i + « are filled with dummy
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candidates that are beaten din every extension. The positions not filled with dum-
mies “contain” the partial votes aP in “reverse” order: InP all relative orders are
given for pairs of candidates. IR we just “flip” every pair, for example, instead of
havingrg >~ r¢’ we haverg’ = rg in V4. We define that all candidates that are not
given explicitly are worse than the given candidates in & {intstead of being better).
By flipping the order of a pair, we adapt the “logical implicet’, for example, instead
of having “if rg makes zero points, then alsg’ makes zero points” i®, we have “if

rg makesw; points, then alseg’ makes at least; points” in P. Furthermore, we set
the maximum partial scores &'**(d') = (s — 1) - a1 +(|VP| — 5+ 1) - vy for
alld' € Dy ands®(c') = a;—1 +(|V?| = 1) - ayq forall ¢ € C\({¢} U Ds). Note
that sincer; 1 < 2 o, every candidate’ can take either positiohor position; — 1

in one of the partial votes. Then, we can use a “reverse”riggg argument: Since the
positions: andi — 1 must be taken by two candidates in every vote and every candi-
date can take at most one such position (or at mestl such positions for candidates
in Dy, respectively), by counting candidates and positionslid$ithat if every candi-
date of D, must makex;_; points exactly(s — 1) times, then every other candidate
must makey;_; or a; points exactly once. Thus, it remains to show that eviéry D
must take positionn — 1 in s — 1 of the votes. Assume this is not the case, then there
must be two votes ", andv] ", with r + ' in which ' does not take position— 1.
Due to construction, the only remaining candidate that e&a this position in these
votes isdj,_,, but this is not possible due &'**(d;,_, ). Hence, we can use a tightness
argument analogously to Lemila 2. Since we also adapteddieldmplication, the
correctness follows in complete analogy to Leniiha 2.

The remaining caseg (< 7 — 1) follow by padding positions within the gadgets.
More precisely, replace each specified pair, e)d.>- rg by r¢’ = rg = H with a
dummy setH of sizei — (j + 1) and replacey;,—; by «; in the new definitions of the
maximum partial scores. ]

So far, we settled the NP-hardness for scoring vectors iwith2 such thatv; >
Qip1 = -+ = Q44 if there is a positiorj < i with «; < 2 aj11. Without the con-
strainta; < 2 o541, it Seems pretty complicated to adapt the tightness prppdrich
is crucial for the MC-reduction. Fortunately, the remagitases have some differ-
ent properties that allow to settle them by less complica¢eldictions from EACT
CoVER By 3-SETs. More precisely, in the following, we give three reductiavith
increasing difficulty. (Although all three reductions asfsontained, they might be
easier to understand when reading them in the given order.)

Lemma4. An X3C-instancé can be reduced to RossIBLE WINNER-instance for a
scoring rule which produces a size-scoring vector that fulfills the following. There
isani > 2 such thatw; > a1 = -+ = a4, Withz = f(I) and there is a posi-
tion j < i with ; > 3 o;. A suitable poly-type functiofi for X3C can be computed in
polynomial time.

PROOF Let (F,S) denote an X3C-instance. Construct a partial prdfilen a set of
candidate€”. The setC of candidates is defined ity := {¢} W SW F' W H W D where
¢ denotes the distinguished candidat& := {s, | S, € S}, E the set of candidates
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that represent the elements of the universe, Anand D contain disjoint candidates
such that the following hold. We definé := \1J\%!, H. with |H.| = i — j forall z €
{1,...,|S|} needed to “pad” some positions relevant to the construetiah D| =

m —|S| —|E| — |H| — 1 needed to pad irrelevant positions. We refer to the caneidat
from S assubset candidateand to the candidates frofd aselement candidatesSet
FU(E,S)) :=|C\D|—(i—3j). Forl < z < S|, letS, = {e.1,e.2,e.3}. The
partial profile P consists of a set of linear votes and a set of partial vbtesIn all
votes ofV?, we pad all irrelevant positions, i.e. all positions smatlfean; and greater
thanj — 1+ |C'\ D| by fixing candidates fronD (omitted in the further description).
The setl’? consists ofS| — |E|/3 copies of the vote

s1=Hy = C\(SUH),sy = Hy = C\(SUH),...,55 = Hs = C\(SUH)

denoted a3/} and the following three votes, denotedig¥(z), for everys. € S

vl Hy = {s.,e.1} = C\({s:,e.1} U Hy),
v2: Hy = {s.,e.n} = C\({s:,e.2} UH;),and
v3: Hy = {s.,e.3} = C\({52, €3} U Hy).

The basic idea of this construction is thatliff one has to set all buf|/3 “subset”
candidates to positiohwhereas the remaining candidates will be able to take aiposit
greater thari in all votes fromV”. Therefore, the remainind®|/3 subset candidates
can makey; — a; 41 points more than the other candidates within the remainargss
This will enable them to shift their corresponding elemearididates to position+ 1
by taking positioni. Sincea; > 3 - a4, they will be able to shift all three element
candidates, respectively. To realize the basic idea, wetdldamaximum partial scores
appropriately. Foe € E, let n, denote the number of subsets§Srwhich containe.
Then according to Lemnfa 1, we can cast the linear votes satkhg following holds:

o s0%(s,) = a; +(|[VP| —1)- iy, foralls, € S,

o 5%(e) = (ne — 1) - a; +(|[VP| = ne + 1) - a4, foralle € E, and

¢ all other candidates are beatendin every extension.

We show that: is a possible winner i if and only if there is an exact 3-cover
for (E,S):

Assume there is an exact 3-cov@t Then one extend® by setting eachs,
with S, ¢ @ at positionj in one vote fromV}’ and the corresponding candidates

from H, to the positiong/ + 1,...,4 in the same vote. Furthermore, sgtto posi-
tioni + 1in vl ,v2, andv?. Now, we have that every, with S, ¢ ( takes positiory

in one vote and a position greater than all remaining votes and thus is beatendy
This also means that i’ all positions< i are filled and thus every candidate
with S, € @ takes a position greater thain all votes fromV”. Thus, the remaining
votes can be extended by setting everwith S, € @ to positioni in v!, 2%, andv?.
Sincea; > 3 «;, the maximum partial score 6f is not exceeded. Becauggis an
exact 3-cover, all element candidates are shifted to jpositi- 1 in one vote and thus
are beaten by. Hencec is a winner in the described extension.

For the other direction, consider an extensionPoin which ¢ wins. Due to con-
struction, inV}” only subset candidates fros can take positioy. Because of the
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maximum partial scores, positighmust be taken by different candidates frain

the |S| — | E|/3 votes of V). We denote these candidates as non-solution candidates
and the remaining/|/3 candidates front as solution candidates. Due &}}**(s. ),
every non-solution candidate must take position 1 in all remaining votes and thus
the corresponding element candidates must mal@ints in the corresponding votes.
Hence, there remain only%|/3 solution candidates that have to “shift” the| ele-
ment candidates to positiort 1. Since every solution candidate can shift at most 3
candidates, the solution candidates must correspond teeenh &-cover. |

In the following lemma, we consider a more specific type ofrisgpvector in the
sense that there are only two score values greater than Eeirestriction allows us
to find an easy way to “lift” the conditiont; > 3 - «;” for two special types of scoring
rules that will be sufficient for the proof of the main resultSectiorlly. Compared to
the reduction from the previous lemma, for the followinges®/e also choose a set of
“solution subset candidates” within the first part of thetjdwvotes, but we will need
some additional gadgetry to be able to “shift” the corresjiog element candidates.

Lemma5. An X3C-instancd can be reduced to 0ssiBLE WINNER-instance for
a scoring rule which produces a size-scoring vector(«q, as, 0, ..., 0) with 3 ag >
a1 > 2a0 andm = f(I) + 2. A suitable poly-type functiofi can be computed in
polynomial time.

PROOF Let (F,S) denote an X3C-instance. Construct a partial prdfilen a set of
candidate€” as follows. The set of candidates consists of a distingdisaadidate,

asetS := {s; | S; € S} (the subset candidates), a det:= {d; | S; € S},

the setE (the element candidates), a candidatfeand H := {hi,...,hs}. Set
FUE,S)) :==|C] —2. Forl <i < S|, letS; = {e;1, ei2, ei3}. The partial profileP

consists of a set of linear votes and a set of partial vbtes The setl’? consists
of |S| — |E|/3 copies of the vote

51 = hy = C\(SUH),sy = hy = C\(SUH),...,ss| = his| = C\(SUH)

denoted ad’}’ and the following three votes for evefy € S
d; = ej1 — C\{di,eil,si},si - C’\{di,e“, Si}
v x = {di,eiQ} - C’\{di,eig,x}
v, X > {di7ei3} - C\{di,€i371‘}
Let n. denote the number of subsets in whicbccurs. Then, due to Lemrhh 1, we
can set the maximum partial scores as follows:

v,

SN TS =

° Sglax(si) = for all S; € Sn

° Sglax(di) = 3 (e fOI’ a” dz S D:

o s (e) = (n.—1)-agforalle € E,

¢ all other candidates are beatendin every extension.
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We show that: is a possible winner i if and only if there is an exact 3-cover
for (E,S):

Assume there is an exact 3-covgffor (E, S). Then we extend as follows. For
everysS; ¢ Q, s; takes position 1 anél; takes positior2 in one vote fromV’}’ ands;
takes position 3 in}. The corresponding; takes position 3 in? andv?. Clearly,
for S; ¢ Q, sglax(si) is notexceeded,,(d;) = a1 < 3az = s, *(d;), and withinV”
allfirst positions are fixed. For every solution $ete @), we sets; to a position greater
than 2 in all votes fron¥” and to the first position in} . Since this implies that; takes
the second position in}, this enables us to set to the second position in? andv;
without violating s;***(d;). Since( is an exact 3-cover, all corresponding element
candidates are shifted to the third position once and foryeslement candidate the
maximum partial score is not exceeded. Henrds,a winner.

To see the other direction, assume there is an extensionighwhvins. InV}, the
first positions can only be taken by candidates fi§nSince eacly; € S can geto;
points exactly onceS| — |F|/3 different subset candidates frashhave to be placed
on the first position. Let the set consisting of these cardglae denoted hy’. Every
candidates; from S’ has exploited its maximum partial score and therefore ha®to
placed on the third position in}. This implies that the corresponding candiddte
takes the first position im}. Sincea; > 2 s and sg’a"(di) = 3 g, d; has to take
the third position in both? andv?. Hence, fors; € S’, the corresponding element
candidates;, e;2, ;3 receivens points each. However, each of the element candidates
from E has to be placed on positidnat least once due to its maximum partial score.
This can only be in the remaining partial votes, that ispall?, v? with s; € S\ S’
Since|S \ S| = |E|/3, one must shift one element candidate in each of these votes.
For this, the only possibility is to set evesy € S\ S’ to position 1 inv}, and the
corresponding candidatk takes the second positiondfi andv?. Sincec wins, all|E]|
element candidates must get shifted to posisioHence,S'\ S’ corresponds to an exact
3-cover of(E, S). O

Finally, we settle the NP-hardness for a specific scoringorec

Lemma 6. An X3C-instancé can be reduced to RossIBLE WINNER-instance for a
scoring rule which produces a size-scoring vector(2, 1,0, ..., 0) form = f(I)+2.
A suitable poly-type functiofi can be computed in polynomial time.

PROOF Let (F,S) denote an X3C-instance. Construct a partial prdfilen a set of
candidate€’ as follows. The set of candidates consists of a distingdishadidate:,
asetS := {s; | S; € S} (the subset candidated), := {d; | S; € S}, T := {t; |
S; € S}, E (the element candidates), a candidatand X := {x1,...,2s/—|g|/3}
Setf((E,S)) := |C| —2. Forl < i < |S], let S; = {ei1, e, e;3}. The partial
profile P consists of a set of linear votes and a set of partial vibtesThe setV’? :=
VP UVL U VY is further defined as follows. The séf’ consists ofS| — | E|/3 copies
of the partial vote

51 =t = C\(SUT),s2 =t = C\(SUT),...,s5 = t|s| = C\(SUT).
The setV’} consists of S| — |E|/3 copies of the partial vote
y=T»C\(TU{y})
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VP s>t > ... for S; ¢ Q
vy y>ti> ... forS; ¢ @
vap: ’Uil di >epn >8> ... fOTSi¢Q
v2 oy>ep>di>... forS;¢Q
v ez > x>t .. for S; ¢ @ and differeny
vil si>dp>ei > ... fOfSiEQ
v? y>d1‘>€i2>... fOfSiEQ
’US’ t; > €3> ... fOfSiEQ

Table 3: Extension for the X3C-reduction for the cé2¢l, 0, . . . ). The remark “different” means that for
1 # ¢ with S; ¢ Q andS;, ¢ Q one chooses two different candidates fréfn Extensions corresponding
to non-solution candidates are highlighted.

andVy’ contains the following three votes for evefy € S
’Uil Cod; e - C\{di,eil,si},si - C\{di,eil, Si}
v, y - {di,eig} - C\{di,eig,y}
v {ti,€i3} }C\({ti,ew}UX)
Let n. denote the number of subsets in whictoccurs andz. 3 the number of
subsets in which is denoted as;3 fori € {1,...,|S|}. Then, using Lemmid 1, we set
the maximum partial scores as follows:

SToSTo

o SMX(g,) = §X(1,) = smax(d,) = 2fori € {1,...,|S|}

o )% (x;) = 1forie{1,...,[S|—|E|/3}

e 5,%(e) =2ne 3+ (ne —me3) —1forec E
e the candidatg is beaten by: in every extension

We show that: is a possible winner i if and only if there is an exact 3-cover
for (E,S):

Assume there is an exact 3-cov@rfor (E,S). Then we extend® as given in
Table[3. For eveng; ¢ Q, s; takes the first position in one vote froly’ and makes
zero points in all remaining votes. The correspondintpkes the second position
in one vote fromV” and one vote fronV}” and makes zero points in all remaining
votes. Hence¢ beats these; and¢; and the votes fronV” and V" are fixed. For
everyS; ¢ Q, we extendv} by setting a different candidate froii at the second
position such that none of them is put on this position tware] hence: also beats
every candidate fronX. For everyS; € @, d;, t; ands; make exactly 2 points i’
and thus are beaten hyas well. It remains to consider the element candidates. To
this end, note that a candidate= F is beaten by if there is ani such that takes
position 3 inv} or v? or takes position 2 in?. SinceQ is an exact 3-cover and all
candidates corresponding to subsets fi@rare shifted to the right in one votewins
in the given extension.

To see the other direction, assume there is an extensionighwiwvins. LetG! :=
{1 <i<|S|},G? = {v? |1 <i<|S[},andG3 = {v? |1 <i < |S|}. We
start by arguing that at mo2¢ 3 - | F'| candidates fron¥ can make zero points in a vote
from G' UG?2. For anyi, at most two element candidates, namglyande;; can make
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zero points inG' U G2. More precisely, due te;'**(d;), if s; takes the first position in
v}, thene;; ande;» can take the third position and4f takes the second position, then
only e;; can be shifted to the third position, sinégtakes the first position in} and
has exploited its maximum partial score. Thus, the numbpoits that all candidates
from S can make withirl}’ is an upper bound for the number of element candidates
that can be shifted. Since only candidates frSroan take the first positions ",

VP = |S|—|E|/3, ands}***(s;) = 2, the candidates frorfi can make at mogt/3|E|
points inVY. Thus, there are at moat3|E| element candidates that can take a position
with zero points inG' UG?. Thus, due ta**(¢), in G* one must shift (at leastF|/3
candidates to the second positi@bservation 1). In the following, we show that the
only way to do so leads to an extension in which exadfly/3 candidates; from S
make zero points i’ and the correspondirig make zero points ifv}” UV whereas

all other candidates froisiuT" have already accomplished their maximum partial score
in VP U VY (Claim 1). This means that the element candidates that are shiftéto
right correspond to exactly|/3 subsetsS; € S. Since every element candidate must
be shifted at least once, these subsets must form an exas€Bin (E, S).

We use a tightness criterion (analogously to the MC-redadtiom LemmdR) to
prove Claim 1. To this end, we show that the score of all pms&ithat must be filled
equals the sum of the maximum partial scores of all candidafgyain, it directly
follows that a candidate’ € C'\{c} cannot make less tha#'**(c’) points since oth-
erwise there must be another candidate that hedt®w, we show the tightness. The
total number of votes is

VP + IV + VS = |S| = |EI/3+ |S| — | El/3 + 3|S| = 5|S| — 2/3|E.

In V andVy’, candidatey is already fixed at the first position ljS| — 1/3| E| votes
and since in every vote 3 points have to be given, ther@ar|S| — 2/3|E|) — 2 -
(2|S| — 1/3|E|) = 11|S| — 4/3| E| points for the remaining candidates left. The sum
of the maximum partial scores from all candidates fiSm 7T U DU X U E is

3.2 [S|+ S| - |E|/3 +2IS| + 2IS| — |E| = 11]S| — 4/3| E].

To see this, note that clearly’
tightness follows.

Now, we finally show the correctness of Claim 1. Due to thettighs, theS| —
|E|/3 candidates fromX must take position 2 inS| — |E|/3 votes fromG3. Thus,
there remaink| /3 second positions i that are not fixed. Note that due to tightness,
a candidate;; cannot take the third position irf. Hence, if the remaining second po-
sitions are not taken by candidates frémwe shift less thanZ|/3 candidates i3,

a contradiction to Observation 1. Hence, these positionst ineitaken by candidates
from E and thus all second positions withi® are fixed. This implies that every can-
didatet, from T must take either the first or the third positiomip. More precisely,
since|E|/3 candidates fronk take a second position there must|B#/3 candidates
from 7" that take the first positions within the corresponding votdswever, a can-
didate fromT" can only take the first position if it makes zero pointsifi U V.
Hence, there must bé| /3 candidates fronT", denoted ag”, that make zero points
in VP UV} and, due to tightness, all remaining candidates flomust make 2 points

nes = |S| and ne = 3|S|. Thus, the

ecE ecE
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in V7 U V). A candidatet; € T' can make at most one point i’ since due to the
condition “s; > ;" it shifts s; to the first position (and}'**(s;) = 2). Hence, making
two points withinV}” U V" implies thatt; must make one point i/’ and one point
in V¥ and that the correspondisgmust make 2 points iv}’. This fixes all positions
in V UVY and since a candidate with ¢; € T” clearly makes zero points i’ UV,

the correctness of Claim 1 follows. Altogether, we have {ft| ¢; € 7'} forms an
exact 3-cover fo(E, S). a

6.2. Scoring vectors withy; > as = --- = ay,—1 > 0

In this subsection, we consider scoring rules defined byirsgarectors that ful-
fill oy > as =--- = a,,—1 > 0. Although quite special, these rules might be of inter-
est of their own. They can be considered as a direct combimafithe very common
plurality and veto rules where one allows to weight the dbntion of the plurality or
veto part. For example, by usiri@o, 1,. .., 1, 0) the “plurality” part would have more
influence to the outcome, whereas a0, 9, ..., 9,0) the “veto” part would be more
important. To show NP-hardness, we give two types of marg/s@ductions from
X3C; one for the case; < 2 - a» and one for the case; > 2 - as. As mentioned be-
fore, the caser; = 2 - a, remains open. Intuitively, for all other cases we make use of
the “asymmetry” of the differences of the score values, ihdty shifting a candidate
from the first to the second position one decreases its sgoaalifferent amount than
by shifting it from the last but one to the last position. le tiwvo following proofs, the
position in a linear order in which a candidate getsoints is denoted asp position
a position in which a candidate gets points asmiddle positionand the position in
which a candidate gets zero pointdast position

Theorem 3. An X3C-instancé can be reduced to ROSSIBLE WINNER-instance for
a scoring rule which produces a size-scoring vector satisfying the conditions >
Qg = Q-1 > oy = 0anday < 2-ay form = f(I) + 2. A suitable poly-type
functionf can be computed in polynomial time.

PROOF Let(F,S) denote an X3C-instance. We construct a partial préfifer which
the distinguished candidatec C is a possible winner if and only {f£, S) is a yes-
instance. The set of candidates(s:= {c,h} W {s;,d;,t; | S; € S} W E. The
partial profile P consists of a set of partial votds? and a set of linear orderg’.
Forl <i < |S], letS; = {ei1, es2, €;3}. Then the set of partial votds? := V" U V)
is given by the following subsets. The gét consists of £/|/3 copies of the partial
vote
h > C\{h,sl,...,sw} - {Sl,...,5‘5|}.

For everyi € {1,...,|S|}, the seti’ contains the three votes

Uil ch = C\{h, Si,di} - {Si,di},

Vel - C\{eilatudi} = t;, and

U5 €0 - O\{eiQ,eig,ti} - €;3.

Now, we pass on to the definitions of the maximum partial ssofe this end, for
a candidate: corresponding to an elemente E (referred to as element candidate),
let ne, 12 denote the number of subsets fréhin which e is identical withe;; or e;s.
Due to Lemmdll, we can cast the linear votes such that thevioiphold:

SToSo
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VP h > >s S;€eqQ
VP vl h> oo >8>d S eqQ
’U? d; >epn > ... >t SlEQ
’US’ ti > € > ... > €53 SlEQ
’Uil h > >d; > s; Sng
’U? e;1 > >t; > d; Sng
’U? €2 > ... o >ei3 >t Sng

Figure 4: Extension for the cagg > as = am—1 > 0anda; < 2 - a. Extensions for candidates that
do not correspond to subsets belonging to the solutio@sae highlighted.

o spx(s) = (V7] = 1)-a

o () = () = an+(VP] —2) -,

o sy (e) = (VP = neige + 1) - g +(nei42 — 1) -,

e h is beaten by: in every extension.

The maximum partial scores of the element candidates aushtthat every el-
ement candidate has to be “shifted” to the right at least oridere precisely, if a
candidate: took the first position in all votes in which it is identicaltwie;; or e;> and
the second position in all remaining votes (including théesan which it is identical
with e;3), thens(e) = (|[V?]| — ne142) - Q2 +Ne,142 - 1 > sg“*x(e) sincea; > as.
However, if, for anyi, t; or d; are inserted at the first position in one of the votes in
which e appears, theamakes at least; — a» points less and thus is beatendhywWe
denote this a®bservation 2. Now, we show the correctness of the construction.

Claim: Candidate: is a possible winner i if and only if (£, S) is a yes-instance.

“«<" Let @ denote an exact 3-cover fOF, S). Then extend® as displayed in Fig-
ure[d. More precisely, withi}” every candidate; with S; € @ takes the last po-
sition in exactly one of theF|/3 votes. Then, the candidates make the following
points within the extension of the partial votes. Everyakes the last position in one
vote and middle positions in all other votes and thus makestlxs,**(s;) points.
For S; € @, every candidate; and every candidaté; takes one first and one last
position, and thuss(d;) = s(ti) = a1 +(|[VP| = 2) - aa = sp™(d;) = sp*(ts).

In the corresponding votes every element candidate isesh@dhce since) is an ex-
act 3-cover and thus is beaten bylue to Observatio. Clearly, forS; ¢ Q, s; is
beaten byc as well. It remains to considet; and¢; with S; ¢ Q. Here, one has
s(di) = (VP = 1) - ag < s™(d;) ands(t;) = ([VP| = 1) - a2 < sp**(t;). Henceg
beats all other candidates and wins.

“=". Consider an extension in whichwins. Due to,sg’ax(si), every candidate;
must take the last position in at least one of the votes. Sivife = |E|/3, at most
|E]/3 candidates can take a last positior¥ifi; denote the set of them /. Hence at
least|S| — | E|/3 candidates; must take the last position irj. Now, we show that for
these candidates the corresponding element candidataetdam shifted to the right
in v? or v?. Sinces; takes the last position in}, d; already make$§|V?| — 1) - az in
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the extended partial votes without. Hence d; must take the last position if since
otherwises(d;) = |VP| - ay > 5*(d;) becausey; < 2. This implies that;; is
not shifted and that; takes a middle position in?. Now, for¢; it follows analogously
that¢; must take the last position i and thus neithee;» nor ¢;3 is shifted. Alto-
gether, this means that all element candidates must bedHift candidates frorf’.
Everys; € S’ can shift three candidates by settingin the last position in} and
d; andt; to the first positions in? andv?, respectively. Since there afB| element
candidates, it follows thats’| = |E|/3 and that alls; € S’ must shift disjoint sets of
element candidates. Henc¥,corresponds to an exact 3-cover {@f, S). ad

In the remainder of this subsection, we consider the casevtha 2 - as. We also
give a reduction from X3C. Note that the previous proof carotransferred directly
and thus we give a modified construction for which it will benataborious to show
the correctness.

Theorem 4. An X3C-instancé can be reduced to ROSSIBLE WINNER-instance for
a scoring rule which produces a size-scoring vector satisfying the conditions >
Qg = Q-1 > oy = 0anday > 2-ay form = f(I) + 2. A suitable poly-type
functionf can be computed in polynomial time.

PROOF Let (E,S) denote an X3C-instance. Lét denote the size of a solution
for (E,S), thatis,k := |E|/3, andt := |S|. We construct a partial profil® for which
the distinguished candidatec C is a possible winner if and only {f£, S) is a yes-
instance. The set of candidate€ls= SWDWEW {c, h} with S := {s; | 1 <i <t}
(the subset candidates) aid:= {d; | 1 < ¢ < t}, andFE (the element candidates).

Very roughly, the basic idea of the reduction is as followkefe are three subsets
of partial votes, in the first subs&f’ one “selects™ — k subset candidates fro
that do not correspond to an exact 3-cover and in the secdrs®8d” one selects
subset candidates that correspond to an exact 3-coverctiglbereby means that a
solution subset candidate gets zero points in one votg afhereas every non-solution
candidate gets; points in a vote of’. Hence, a solution candidate can make more
points than a non-solution candidate in the third subgetThus, a solution candidate
can take a top position iy’ which yields a cascading effect that makes it possible to
shift the corresponding element candidates such that theptbeat the distinguished
candidate-.

Formally, the partial profileP consists of a set of partial votés” and a set of
linear ordersV’!. Forl < i < t, letS; = {ei, e, e}, then the set of partial
votesV? := V" UV} U VY is given by the following subsets.

VPt — k copies of the partial vote S=C\(SU{h}) = h

VY. k copies of the partial vote h=C\(SuU{h}) =S

VP forl <i <tthe three partial votes wi: d; = C\{d;,ei1,si} = en
’w%: h > C\{di7ei2,h} - {eig,di}
wg : h- C\{di,eig, h} = {€i3,di}

Note that inw?, candidates; can be inserted at any position. The distinguished can-
didatec makesx,, points in every partial vote fro?. Hence, according to Lemrih 1,
we can set the linear orders Bf such that the following holds. For= 1, ... .t,

sp(s1) = (VP =2) - ag+ o,
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le : S; > C\{Sl,h} > h Vs; with S; ¢ &

‘/2:0 : h > C\{Si,h} > 8; Vs; with S; € S’
vap : wzi d; > C\{Sl,dl} > S5 Vs; with S; §é S’
wé h > C\{d“ h} > d; Vs; with S §é S’
wg h > C\{dl, h} > d; Vs; with S; ¢ &

wi S; > C\{Si, eil} > €41 Vs; with S; € S’
U)ZQ h > C\{eig, h} > €52 Vs; with S; € S’
’w% h > C\{€i3, h} > €53 Vs; with S; € S’

Figure 5: Extension of/? for an exact 3-cove’ C S. The middle positions are not given explicitly since
the order of the candidates is irrelevant. Extensions fodickates which do not belong to the solution Sét
are highlighted.

sp(di) = (VP =2) s+ oq —=

p

with z = a1 mod as if a1 < 3an, andz = o, otherwisl. Note that it holds
thatay > 2 and

a1 —z2 > 209, 3

Foralle € E, sp*™(e) = (|[V?| — 1) - az, that is,e must have the last position in one
of the partial votes. Ands;**(h) > [V?| - ay, that is,h can beat in no extension.

We now prove the following claim.

Claim: Candidate: is a possible winner af’, C) ifand only if (E, S) is a yes-instance
for X3C.

“«<" Let S C S denote an exact 3-cover fOF, S). Then, we extend the partial
profile as follows (Figur€l5). I5; € S’, thens; is placed at the last position in one
vote of V’ and at a middle position in all other votes froif U V). If S; ¢ 5,
thens; is placed at the first position in one of the voteslifi and at a middle po-
sition in all other votes froni” U VY. This is possible since there ate- k top
position andk last positions that can be taken by candidates fonm vV U V.

In V', every candidate; with S; € S’ is placed at the top position and the corre-
sponding element candidates, e;3 at the last position in the respective votes. Every
candidates; with S; ¢ S’ is placed at the last position and the corresponding element
candidateg;, e;3 are placed at a middle position.

In the described extension, the candidates make the falppoints inV?. Every
candidates, € S takes exactly one top position and exactly one last position?”.
Hences(s;) = s,"**(s;). For the candidates dD one has to distinguish two cases.
First, if S; ¢ S, then,s(d;) = ([VP?| = 3) - az + a1 < s,"%(d;) sinceaz > 2. Second,
if S; €8, thenS(di) = |Vp|-a2 = (|Vp|—2)-o¢2 +2ao < (|Vp|—2)-oz2+o¢1 —Z =

4Note that this maximum partial score does not exactly fulfi# conditions of LemmBl1 if # axo.
However, the construction can be easily extended to workHisr case as well. More precisely, in this
casez = a1 —|a1 /az] -az and|a; / az] < 3. Thus, in the construction given in the proof of Lendtha 1
one can addv; and “subtract’as as often as required. The subtraction can be accomplishetidnging
the role of the dummyd” and d; within a block.
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sp™*(d;) because of InequalitfZl(3). Finally, we have to consider thedidates froni.
Since for evenys; in the 3-cover, the corresponding element candidgies;», ande;s
getatthe last position, every candidatéstiakes one last ar@”|—1 middle positions

and thus make§V?| —1)-ay points. It follows that wins in the considered extension.

“=": In an extension o/ in which c is the winner, every element candidate frém
must take the last position in one vote6f. This is only possible iV’ since every
element candidate is already fixed at a middle positiolinJ V. More precisely,
for everyi, e;; gets a last position if; is inserted at a middle or the top position in
the corresponding vote! ande;»/e;3 can get a last position only if; takes a middle
position in the corresponding vote,/w}.

To find out what this means for the other candidates, we haye tato details here.
Fori = 1,...,t, let b; denote the “benefit”, i.e., the maximum number of element
candidates that can be put at a last positioijhdepending on where; is placed
in wt. Then, we can show the following.

Observation 3:

1. b; = 3 if s; is placed in a top position in?t.
2. b; = 1if s; is placed in a middle position im?.
3. b; = 0if s; is placed in a last position im?.

To see Observation 3, note thatifis on the top position invt, thend; can take
the middle position invi or wf since the corresponding scos@l;) = |V?| - as <
sg‘a"(di). Thus, all three element candidates can be shifted to th@destion. Ifs;
is not placed on the top, but in the middle position, theanis still shifted to the last
position, butd; must take the last position in} or w’ and thus neithet;> nore;s can
have a last position im} or wf. To see this, assume thathas the top position in}
and a middle position in4 or wg, then

S(di) > |V1p U V2p| Rye?) +(|V3p| — 2) s oy = (|Vp| —2)-as+ag > Sglax(di),
a contradiction. Ifs; is placed on the last position in}, thene;; cannot take the last
position inV¥, and neither can;» ande;3, becausd; takes the first position i} and
getsa; points and has to take the last position in bethandw} by the same argument
as before.

In the following, we show that in an extension in whictvins, inV}” there must be
t — k different subset candidataesthat take the top position and each of the remain-
ing k (solution) candidates of must take one last position /. It directly follows
by Observation 3 that for all non-solution candidates wetrhase that); = 0 and
thus every solution candidate must shift the three cormedipg element candidates
that must be different from the element candidates corredipg to the other solution
candidates.

For everyi, lett; denote the number of top positions thatakes withinV}” andl;
the number of last positions thattakes withinVY’. Observe that the following condi-
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tions must hold.

t
S L=k
i=1
t
Z t; =t — k, since every position must be taken, (4)
1=1
t
Z b; > 3k, since there ar8k element candidates and each
i=1 one must take at least one last position

In the following, our strategy consists of three steps:

e We first investigate the dependencied ot;, andb; upon each other. For that
sake, we distinguish the cades= 0, I; = 1, andl; > 2.

e Second, based on these case distinctions, we can showeletdd; > 2 is not
possible, that is, every; can have at most one last positionlig. This will need
the most technical effort and will directly imply < 1 for all :.

e Third, we show that there is no candidatewith [; = ¢; = 1, which will imply
that only candidates with = 1 contribute with a positive benefit and can place
their element candidates at a last position. Since thererdyé: such candidates,
they must correspond to an exact 3-cover.

First step. We show some dependencied ot;, andb; by systematically enumer-
ating all possible cases. (In the argumentation that faltve case distinction we are
only interested in upper boundsigf Hence, we omit to show lower bounds.)

Casel:l; =0 a)ift; =0, thend; <1,

b) if t, =1, thenbi =0,

¢) t; > 2 is not possible.
Proof of Case I:
la) (I; = t; = 0): Assumeb; = 3, i.e.,s; is on the top position i} due to Observa-
tion 3. Thens(s;) = (|V?| — 1) a2 + a1 > s;%*(s;), a contradiction, hende < 1.
Ib) (I; = 0, t; = 1): Assumeb; = 1, i.e.,s; is on a middle position in} due to Obser-
vation 3. Thens(s;) = (|[V?| — 1) az + a1 > s'**(s;), a contradiction, hende = 0.
Ic) (I; = 0, t; > 2): Assumes; takes the last position in?, that is,s; makes as few
points as possible within this case. Then,

s(si) = (VP —ti—=1)az+t;ay
> (|Vp|—ti—1+2(ti—1))0é2+a1
> 5, (s4),

a contradiction, hence this case is not possible.
Casell:l; =1 a)if t; =0, thenb; < 3,
b) if t; =1, thenbi <1,
C) t; > 2is not possible.
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Proof of Case II:

l1a) (I; = 1, t; = 0), trivial upper bound.

llb) (I; = t; = 1) Assumeh; = 3, i.e.,s; is on the top position i} due to Observa-
tion 3. Thens(s;) = (|V?| = 3) a2 +2 a1 > s,"**(s;), a contradiction, hendg < 1.
llc) (I; = 1, t; > 2): Evenifs; takes the last position ¢ one has

s(si) = ([VP[—=ti=2)aa+t;aq
> (|Vp|—ti—2+2(ti—1))a2+a1
= (IVP[+ti—4) ozt
> s,

a contradiction, hence this case is not possible.
Caselll: l; >2 a)if t; =1;, thenb; = 0,
b) if ti=1—1, thenbi <1,
C) if t; <l; —2, thenbi < 3,
d) t; > I; is not possible.
Proof of Case lll:
Ma) (I; > 2, t; = l;): Assumeb; = 1, i.e.,s; is on a middle position inv{ due to
Observation 3. Then

s(si) = (VP —ti—1;) ag+t;n
(|Vp|—2t)a2+t (o7
> (VP =2t 4+2(t; — 1) e+ an
(VP =2) e + g

s

maX(S )

a contradiction, hendg = 0.
lb) (1; > 2,t; = I; — 1): Assumeb; = 3, i.e., s; is on the top position invi due to
Observation 3, then

s(si) = (VP|—ti—li—1)as+(ti+ 1)
(VP =2t; —2) ag +(ti + 1) aq
> (VP =2t —2+2t) ae + oy
(VP =2) a2+

s

maX(S )

a contradiction, hendg < 1.
lic) (I; > 2, t; < 1; — 2): trivial upper bound.
|||d) (ll > 2.t > li): Then

s(s;) (|[VP| —t; — ;i — 1) ag +t; on
> (VP =t =1L =142t —1)as+an
= (VPI+ti—1li—3)as+
> 5, (si),
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a contradiction, hence this case is not possible.

Second step. Using the previous case distinctions, we show that no sidaseti-
dates; can take more than one last positioriifi. For this, without loss of generality,
we assume that the candidatesre sorted in decreasing order according to their cor-
respondingd;, i.e.,

S1yecvy 85585415+ 5SrySr41y---5 5t
N——

1;>2 l;=1 1,=0
Claim I In an extension in which wins, it holds that; < 1 for all 4.

To prove Claim 1, we show thgt= 0. More specifically, we prove thagt> 0 implies
that the total benefiB := 3";_, b; is less thargk. This means that not allk element
candidates can take a last position and thaannot win.

Assume thaj > 0. We start to show how to distribute the last and the first ot
of VI’ and VY in order to maximizeB. For that sake, leT; := >~7_, ¢; denote the
number of top positions that were taken by the firsndidates, ..., s;. Now, we
consider the remaining indicéss {j + 1, ...,t}. Since for all of theri; < 1, it must
also holdt; < 1 (see Case | and Case Il). Thus and because of EquBtion (& nthest
be at least — k — T); candidates froms;1,...,s; with ¢; = 1. For both remaining
casesl; = 1 andl; = 0), the benefib; is greater for the case = 0 than it is for
the case; = 1 (cf. Case | and Case Il). Hence, to maximize the total bergfit is
desirable to minimize the number of candidates having 1. Since there aré — j
indices greater thajandt; must be equal to one for at ledst k& — T} indices, there
areatmost — j — (t — k —T;) = k + T — j indices witht; = 0 (Observation 4).
Furthermore, for every index frorfyj + 1,...,s,}, by settingt; to zero or one, one
can “choose” betweely = 1 andb; = 3 (Case Il). For the remaining indices, one can
choose betweeb, = 0 andb; = 1 by settingt; to zero or one (Case I). We show by
contradiction that choosing Case lla (which result$;in= 3) as often as possible is
the way to maximize3:

Assume that Case lla holds, thatljs= 1 and¢; = 0, is not chosen as often as
possible. Then, first, there must be an index{j + 1,...,r} with ¢, = 1 and hence
with b; = 1 (Case llb). Second, there must be an index- r with ¢, = 0 and
henceb, = 1 (Case la). Then setting = 1 and¢,, = 0 does not violate Equatiohl(4)
and has the following effect.

e b; isincreased by 2 (from 1 to 3),
e b, is decreased by 1 (from 1 to 0).

Thus,B = 3_'_, b; was not maximal.

Now, we have argued that to maximiZz& one has to choose Case lla as often
as possible@bservation 5). Using this, we can compute the maximal valuex B
of B (showing that is must be less thak). For that sake, we first consider the benefit
coming from the firstj candidatess, ..., s;, which we denote by3; := >7_ b;.
Let BY denote the set of indicese {1,...,;} with b; = 0, let B} denote the set of
indicesi € {1,...,j} with b; = 1, and letB? denote the set of indicesc {1,...,;}
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with b; = 3. Then, Case lll directly gives the following bound for thenmoer of top
positions assumed by the firstandidates.

J
T<> L+ Y (Li—1)+ > (i—2)=)Y L—|Bj|-2|B}, (5
=1

iGB;? ieB; iijf?

which will be needed in the following.

Due to the previous discussion we know that in the remainasitions, we have to
choose; = 0for k+T; —j indices (cf. Observation 4) and one should choose Case lla,
thatis,l; = 1 andt; = 0, as often as possible (cf. Observation 5). Cledfly= 1
must be choseh — Y"7_, I; times whereas there ake+ T, — j indices witht; = 0.
Hence, to compute a total upper bound®nwe have to distinguish two cases: First,
k—>7_,1; <k+T;—j and,second; — > 7_, l; > k+T; — j.

For the first case, we obtain

J J

maxB = |Bj|+3[B}|+3 (k=Y L)+k+T;—j— (k- L)
T i=1 i=1
J

l;i=1,t;=0 1;=0,t;=0

J
B} +3|B3| +3k—2-Y Li+T)—j
=1
J J
(E) 1 3 _ 9. . o 1 3 _ 4
< B} +3B|+3k—2-> i+ > Li—|Bj|—2|B}| —j

i=1 =1

J
3k—> Li—j+|Bj|

=1

Since|BJ3-| < j it holds that the maximal value @ is strictly less thak for j >
1. Thus, at least one element candidate does not take a lasbpasd hence beats
a contradiction.

For the second case, we obtain

J
maxB = |Bj|+3|B}|+3(k+T;—j)+k— Y lLi—(k+T;—j)
i=1

Bj lizl,tl-:O

l;i=1,t;=1

J
= |Bj|+3|B}|+3k+2T; —2j - > i
i=1
J j
8 1 3 . _ Bl — 3 L _ 94 _ )
< |BH+3IBY+3k+ > 1Bl - 2B+ Ty -2 — > I
=1 i=1
= 3k+|B}|+T;—2j

Furthermore, in this case it follows directly fraba-5"7_, I; > k+T;—j that>"7_, I;+
T; < j. Forj > 0 this means thdl; < j. By definition, we hav¢Bj3-| < j, and thus
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max B is less thar8k. This completes the proof of Claim 1. We therefore have 0
which meang; < 1forall € {1,...,t} and thus alse; < 1 for all i (Case | and II).

Third step. We now show that there cannot be any candidatehich takes one
last position and one first position i, U V5, i.e. we cannot have = [; = 1 for
anys;. Assume that the set of candidates= {s, | t;, = [; = 1} is not empty. Then,
due to Observation 3, the maximum valueidfs

maxB = 1-]Q| +3-(k— Q)+ _0_ +1-1Q =3k—|Ql,
——— N—— ~~ ——

li=t;=1 li:l,ti:O 1;=0,t;=1 li=t;=0

a contradiction. Thug,— k£ many of the subset candidategake a top position i,

and the remaining subset candidates take a last positiojh Now, each of thesg
candidates must place its corresponding element candidatie last positions iy .
Sincec can only be a winner if each of tt3 element candidates takes a last position
in a vote fromV;’ and in total at mos8% element candidates can take a last position
in V¥, every element candidate must take exactly one last posifitius, fori # j
such that; ands; take a last position iy, {e;1, €2, e;3} and{e;1, e;2, €3} must be
disjoint. It follows that{.S; | s, takes a last position i}’ } forms an exact 3-cover

7. Putting all together

We are now ready to combine the many-one reductions fromréngqus sections
to one general reduction. Basically, the problem we en@runyt using one specific re-
duction from the previous sections is that such a reductiodyces a BSSIBLEWIN-
NER-instance with a certain numbet of candidates. Thus, one needs to ensure that
the sizem scoring vector provides a sufficient number of positiondweual/different
scores. This seems not to be possible in general. Howevewnéoy specific instance of
EXACT COVER By 3-SETSsor MULTICOLORED CLIQUE, we can compute a number
of positions with equal or different scores that is suffitien the corresponding reduc-
tion, and we can use the maximum of all these numbers for thtwed reduction.
This is the underlying idea for the following proof.

Theorem 5. PossIBLEWINNER is NP-complete for a scoring ruleif there is a con-
stantz such that all scoring vectors produced byfor more thanz candidates are
different from(0, ..., 0), (1,0,...,0),(1,...,1,0),and(2,1,...,1,0).

PROOF We give a reduction from X3C restricted to instances of gisater thar:

to PossiBLE WINNER for r. Let I with |I| > z denote an X3C-instance. Since
X3C and MC are NP-complete, there is a polynomial-time rédadrom X3C to MC.
Hence, letl’” denote an MC-instance whose size is polynomidllinand which is a
yes-instance if and only if is a yes-instance.

Let f; denote a poly-type function to compute the number of difieseore val-
ues as stated for Theordt f; as for Theorenfl2f} as for Lemmd13,f. as for
Lemma[?,f3 as for Lemmdls,f, as for Lemmdl6, ands as for Theoren]4. Define
x = max{f1(I), f1(I"), f5(I"), fo(I), fs(I), fa(I), fs(I)} and consider the scoring
vectora of sizex - (x + 1) produced by. Then we show the following.
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Table 4: Subcases for scoring rules having an unbounded ewoflequal score values.

Case | i <m-—1st. Qi = " = Q1 > Qy TheoreniP

Casella i >2,3dj<ist ;> = = Qg andoy < 241 LemmdB

Casellb i >2 3j<ist a; > ==, anda; >3 Lemmd3

Case llc (1,09,0,...,0)and3 as > a1 > 2 ae Lemmd®b

Case lld (2,1,0,...,0) Lemmd®

Case lll o1 > Qg = Qo1 >y = 0anda; #2-as Theorenth
Claim: For @ it holds that|{i | ; > a;41}| > z or thata; = --- = ;. for some
positions.

The correctness of the claim can be seen as follows. Fisinaesthaf’ does not
fulfill o;; > o for = different positions. Then consides - (z + 1) indices of@. Since
they can have at mostdifferent score values, there must be a single score vaate th
is assigned to at least+ 1 indices, that is, there is an indéxvith «; = -+ - = 4,
Second, if there is no indexsuch that; = --- = a4, for a positioni, then again
considerr - (x + 1) indices of @’. Since each score value can be assumed at most
times, there must be at leastifferent score values.

Now, due to the Claim, we can distinguish two main cases® las at least: dif-
ferent score values, then we apply the X3C-reduction gimerhieorenidL. Otherwise,
we have an unbounded number of equal score values. In thesweaslistinguish the
subcases given in Tadlg 4. For all these subcases, thereaageane reductions used
in the corresponding lemmata/theorems. Hence, it remaishdw that each scoring
vector can be handled by at least one of these cases. Cleanyst have the form
Qi—y = -+ = ;1 > qa; forani < m — 1 (Case l), oro; > 11 = -+ = Qigg
fori > 2 (Case ll), oray > s = a1 > ay, = 0 @nday # 2 - ag (Case lll). For
Case | and Case lll, the existence of many-one reductiotmaslimmediately from
the corresponding Theorelfds 2 &id 4. Thus, it remains tosis€ase I, the case that
o has the formy; > a1 = -+ = i, fori > 2.

To this end, we start with the case- 2. Clearly, there must be at least three scoring
values which are not equal to zero, namely, s, a;_1, anda;. Ifone hasy;, | < 2 q;
or a;_a < 2y_1, then NP-hardness follows directly from Lemida 3. Otheryvise
must havev;_1 > 2«; anda;_2 > 2 ;1. Hence, it follows thaty;_» > 4 a; and
NP-hardness follows directly from Lemrfih 4. It remains tosider all scoring rules
of type (a1, a2,0,...,0). Here, we can distinguish the following four cases:

e oy < 2ay: NP-hardness follows from Lemnih 3,
e a1 = 2 ay: NP-hardness follows from Lemnih 6,
e 205 < a1 < 3z NP-hardness follows from Lemriih 5, and
e a1 > 3 as: NP-hardness follows from Lemrith 4.

Since the membership in NP is obvious, the main theoremvislio |
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Pure scoring rules.Based on all previous considerations, for pure scoringsrule
almost arrive at a dichotomy. More precisely, we can staddhowing.

Theorem 6. PossIBLEWINNER is NP-complete for all non-trivial pure scoring rules
except plurality, veto, and scoring rules for which thereaizonstantz such that
the produced scoring vector (&, 1,. .., 1,0) for every number of candidates greater
thanz. For plurality and veto it is solvable in polynomial time.

PrROOF Plurality and veto are polynomial-time solvable due togesition[1. Having
any non-trivial scoring vector different frof, 0, ..., 0), (1,...,1,0),and(2,1,...,1,0)
for m candidates, it is not possible to obtain a scoring vectonefaf these three types
(or (0, ...,0)) form’ > m by inserting scoring values. Hence, since we only consider
pure scoring rules, the scoring rule does not produce argg@ector of type plural-

ity, veto, (0,...,0), or (2,1,...,1,0) for all m > 2. Then the statement follows by
Theorenth. O

“Non-pure” scoring rules. We end this section with a brief informal discussion about
the problem of classifying non-pure scoring rules in geheka stated in Theoreid 5,
we can show NP-hardness for non-pure scoring rules if {istpfitom a constant num-
ber of candidates) all produced scoring vectors are “difficClearly, it is possible to
extend the range of NP-hardness results to scoring ruléprtbduce only few “easy”
vectors; for example, having a difficult vector for all oddnmoers of candidates and
an easy vector for all even ones. However, this is not passibeneral. Roughly
speaking, if the underlying difficult part of the languaget®es too sparse, then there
cannot be a many-one reduction from an NP-complete probiece she densities of
the problems are not polynomially related (see Q [30pteNhat this situation does
not appear for the dichotomy result from Hemaspaandra amﬂadpaandrﬂiZS] for
MANIPULATION for weighted voters. The intuitive reason for this is thaithreduc-
tions for the NP-hardness in the case of weighted votera@réold for a constant
number of candidates (and all scoring rules except plyratié¢ NP-hard in this case).

8. Conclusion and outlook

In this work, we settled the computational complexity far$siBLE WINNER for
almost all pure scoring rules. More precisely, the only dhs¢was left open regards
the scoring rule defined by the scoring vedtarl, . . ., 1,0), whereas for all other rules
except plurality and veto, we obtained NP-completenessteedn a very recent work,
Baumeister and RothE! [2] completed the dichotomy by showiegNP-completeness
of PossIBLEWINNER for the case of2,1,...,1,0).

A natural next step of research is to investigate algorithagproaches that deal
with NP-hard problems like approximation algorithms orfi@ént” exponential-time
algorithms. Here, an interesting approach is to consideptirameterized complex-
ity [E, @@] and its sequel multivariate aIgorithmi@p There are first consid-
erations for several voting rules [7] as well as fixed-par@meactability results for
PossiBLE WINNER for k-approval with respect to the combined parameter “number
of partial votes” andk [E] A parameter of general interest is the “number of candi-
dates”. In this case,®sSIBLE WINNER is shown to be fixed-parameter tractable for
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several voting systems using a powerful classification éaork based on integer lin-
ear programming but still lacks efficient combinatorial fixgarameter aIgorithmEI[?].
Furthermore, multivariate complexity analysis might ofieway to tackle the &ssk
BLE WINNER problem for voting systems for which the “normal” winner elehina-
tion is already NP-hard. For example, there are recentesudr Kemeny, Dodgson,
and Young elections that contain parameterized algorithitisrespect to several pa-
rameter ED(E’BZ]. It is open whether such results cachiewed for the BSSIBLE
WINNER problem.

The RossIBLE WINNER problem not only generalizes theAWIPULATION prob-
lem but also comprises other relevant special cases. For@gavery recently, Cheva-
leyre et al. |Eb] investigated the computational compienrit the following problem:
Given a set of linear votes, an integerand a distinguished candidatecan one add
s candidates such thatbecomes a winner? There is reasonable hope to achieve more
positive algorithmic results for this and other relevargapl cases of 8SSIBLEWIN-
NER.

A further direction of future research regards the countiagsion of ROSSIBLE
WINNER [El]. Here, one wants to find out in how many extensions a djsished
candidate wins. Answering this question allows to compa@ ¢andidates that are
possible winners.
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